WorldWideScience

Sample records for ras-mapk gain-in-function phenotypes

  1. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms.

    Science.gov (United States)

    Tartaglia, Marco; Gelb, Bruce D

    2010-12-01

    RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway-the first identified mitogen-associated protein kinase (MAPK) cascade-mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity, and growth. Signaling through the RAS-MAPK cascade is tightly controlled; and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits, and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors, or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging toward the dysregulation of this signaling cascade, and major genotype-phenotype correlations. © 2010 New York Academy of Sciences.

  2. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome.

    Science.gov (United States)

    Aoki, Yoko; Niihori, Tetsuya; Banjo, Toshihiro; Okamoto, Nobuhiko; Mizuno, Seiji; Kurosawa, Kenji; Ogata, Tsutomu; Takada, Fumio; Yano, Michihiro; Ando, Toru; Hoshika, Tadataka; Barnett, Christopher; Ohashi, Hirofumi; Kawame, Hiroshi; Hasegawa, Tomonobu; Okutani, Takahiro; Nagashima, Tatsuo; Hasegawa, Satoshi; Funayama, Ryo; Nagashima, Takeshi; Nakayama, Keiko; Inoue, Shin-Ichi; Watanabe, Yusuke; Ogura, Toshihiko; Matsubara, Yoichi

    2013-07-11

    RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome. In the present study, we identified a total of nine missense, nonsynonymous mutations in RIT1, encoding a member of the RAS subfamily, in 17 of 180 individuals (9%) with Noonan syndrome or a related condition but with no detectable mutations in known Noonan-related genes. Clinical manifestations in the RIT1-mutation-positive individuals are consistent with those of Noonan syndrome, which is characterized by distinctive facial features, short stature, and congenital heart defects. Seventy percent of mutation-positive individuals presented with hypertrophic cardiomyopathy; this frequency is high relative to the overall 20% incidence in individuals with Noonan syndrome. Luciferase assays in NIH 3T3 cells showed that five RIT1 alterations identified in children with Noonan syndrome enhanced ELK1 transactivation. The introduction of mRNAs of mutant RIT1 into 1-cell-stage zebrafish embryos was found to result in a significant increase of embryos with craniofacial abnormalities, incomplete looping, a hypoplastic chamber in the heart, and an elongated yolk sac. These results demonstrate that gain-of-function mutations in RIT1 cause Noonan syndrome and show a similar biological effect to mutations in other RASopathy-related genes. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Rasputin, the Drosophila homologue of the RasGAP SH3 binding protein, functions in ras- and Rho-mediated signaling.

    Science.gov (United States)

    Pazman, C; Mayes, C A; Fanto, M; Haynes, S R; Mlodzik, M

    2000-04-01

    The small GTPase Ras plays an important role in many cellular signaling processes. Ras activity is negatively regulated by GTPase activating proteins (GAPs). It has been proposed that RasGAP may also function as an effector of Ras activity. We have identified and characterized the Drosophila homologue of the RasGAP-binding protein G3BP encoded by rasputin (rin). rin mutants are viable and display defects in photoreceptor recruitment and ommatidial polarity in the eye. Mutations in rin/G3BP genetically interact with components of the Ras signaling pathway that function at the level of Ras and above, but not with Raf/MAPK pathway components. These interactions suggest that Rin is required as an effector in Ras signaling during eye development, supporting an effector role for RasGAP. The ommatidial polarity phenotypes of rin are similar to those of RhoA and the polarity genes, e.g. fz and dsh. Although rin/G3BP interacts genetically with RhoA, affecting both photoreceptor differentiation and polarity, it does not interact with the gain-of-function genotypes of fz and dsh. These data suggest that Rin is not a general component of polarity generation, but serves a function specific to Ras and RhoA signaling pathways.

  4. A functional screen reveals an extensive layer of transcriptional and splicing control underlying RAS/MAPK signaling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dariel Ashton-Beaucage

    2014-03-01

    Full Text Available The small GTPase RAS is among the most prevalent oncogenes. The evolutionarily conserved RAF-MEK-MAPK module that lies downstream of RAS is one of the main conduits through which RAS transmits proliferative signals in normal and cancer cells. Genetic and biochemical studies conducted over the last two decades uncovered a small set of factors regulating RAS/MAPK signaling. Interestingly, most of these were found to control RAF activation, thus suggesting a central regulatory role for this event. Whether additional factors are required at this level or further downstream remains an open question. To obtain a comprehensive view of the elements functionally linked to the RAS/MAPK cascade, we used a quantitative assay in Drosophila S2 cells to conduct a genome-wide RNAi screen for factors impacting RAS-mediated MAPK activation. The screen led to the identification of 101 validated hits, including most of the previously known factors associated to this pathway. Epistasis experiments were then carried out on individual candidates to determine their position relative to core pathway components. While this revealed several new factors acting at different steps along the pathway--including a new protein complex modulating RAF activation--we found that most hits unexpectedly work downstream of MEK and specifically influence MAPK expression. These hits mainly consist of constitutive splicing factors and thereby suggest that splicing plays a specific role in establishing MAPK levels. We further characterized two representative members of this group and surprisingly found that they act by regulating mapk alternative splicing. This study provides an unprecedented assessment of the factors modulating RAS/MAPK signaling in Drosophila. In addition, it suggests that pathway output does not solely rely on classical signaling events, such as those controlling RAF activation, but also on the regulation of MAPK levels. Finally, it indicates that core splicing

  5. [Arnold-Chiari malformation in Noonan syndrome and other syndromes of the RAS/MAPK pathway].

    Science.gov (United States)

    Ejarque, Ismael; Millán-Salvador, José M; Oltra, Silvestre; Pesudo-Martínez, José V; Beneyto, Magdalena; Pérez-Aytés, Antonio

    2015-05-01

    Noonan syndrome (NS) and other syndromes with a similar phenotype, such as LEOPARD, cardiofaciocutaneous, Costello and Legius, are associated to mutations in genes included in the RAS/MAPK pathway (RASopathies), which is an important signalling pathway related to cell proliferation. Tonsillar descent into the upper cervical spinal canal, known as Arnold-Chiari malformation (ACM), has been reported in patients with NS and this has led some researchers to suggest that ACM could be part of the phenotypic spectrum of NS. We report two cases of NS and ACM. Case 1: 29-year-old female with Noonan phenotype who underwent surgery at the age of nine years due to pulmonary valve stenosis. At the age of 27, she presented symptomatic ACM that required surgical decompression. She presented the c.922A>G (N308D) mutation in the gene PTPN that belongs to the RAS/MAPK pathway. Case 2: a 10-year-old female with Noonan phenotype and asymptomatic ACM detected in magnetic resonance imaging of the brain. She was a carrier of the c.923A>G (N308S) mutation in gene PTPN11. Six patients with this association have been found in the literature, four with the Noonan phenotype and two with LEOPARD. Our two patients provide supplementary evidence that backs up the hypothesis by which ACM would be part of the phenotypic spectrum of NS. The small number of reported cases of patients with this association does not allow us to draw up recommendations about when and how often neuroimaging studies should be performed; a careful neurological examination, however, should be included in the anticipatory health guidelines in syndromes involving the RAS/MAPK pathway.

  6. Mutations in RIT1 cause Noonan syndrome - additional functional evidence and expanding the clinical phenotype.

    Science.gov (United States)

    Koenighofer, M; Hung, C Y; McCauley, J L; Dallman, J; Back, E J; Mihalek, I; Gripp, K W; Sol-Church, K; Rusconi, P; Zhang, Z; Shi, G-X; Andres, D A; Bodamer, O A

    2016-03-01

    RASopathies are a clinically heterogeneous group of conditions caused by mutations in 1 of 16 proteins in the RAS-mitogen activated protein kinase (RAS-MAPK) pathway. Recently, mutations in RIT1 were identified as a novel cause for Noonan syndrome. Here we provide additional functional evidence for a causal role of RIT1 mutations and expand the associated phenotypic spectrum. We identified two de novo missense variants p.Met90Ile and p.Ala57Gly. Both variants resulted in increased MEK-ERK signaling compared to wild-type, underscoring gain-of-function as the primary functional mechanism. Introduction of p.Met90Ile and p.Ala57Gly into zebrafish embryos reproduced not only aspects of the human phenotype but also revealed abnormalities of eye development, emphasizing the importance of RIT1 for spatial and temporal organization of the growing organism. In addition, we observed severe lymphedema of the lower extremity and genitalia in one patient. We provide additional evidence for a causal relationship between pathogenic mutations in RIT1, increased RAS-MAPK/MEK-ERK signaling and the clinical phenotype. The mutant RIT1 protein may possess reduced GTPase activity or a diminished ability to interact with cellular GTPase activating proteins; however the precise mechanism remains unknown. The phenotypic spectrum is likely to expand and includes lymphedema of the lower extremities in addition to nuchal hygroma. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The third international meeting on genetic disorders in the RAS/MAPK pathway: towards a therapeutic approach.

    Science.gov (United States)

    Korf, Bruce; Ahmadian, Reza; Allanson, Judith; Aoki, Yoko; Bakker, Annette; Wright, Emma Burkitt; Denger, Brian; Elgersma, Ype; Gelb, Bruce D; Gripp, Karen W; Kerr, Bronwyn; Kontaridis, Maria; Lazaro, Conxi; Linardic, Corinne; Lozano, Reymundo; MacRae, Calum A; Messiaen, Ludwine; Mulero-Navarro, Sonia; Neel, Benjamin; Plotkin, Scott; Rauen, Katherine A; Roberts, Amy; Silva, Alcino J; Sittampalam, Sitta G; Zhang, Chao; Schoyer, Lisa

    2015-08-01

    "The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Towards a Therapeutic Approach" was held at the Renaissance Orlando at SeaWorld Hotel (August 2-4, 2013). Seventy-one physicians and scientists attended the meeting, and parallel meetings were held by patient advocacy groups (CFC International, Costello Syndrome Family Network, NF Network and Noonan Syndrome Foundation). Parent and patient advocates opened the meeting with a panel discussion to set the stage regarding their hopes and expectations for therapeutic advances. In keeping with the theme on therapeutic development, the sessions followed a progression from description of the phenotype and definition of therapeutic endpoints, to definition of genomic changes, to identification of therapeutic targets in the RAS/MAPK pathway, to preclinical drug development and testing, to clinical trials. These proceedings will review the major points of discussion. © 2015 Wiley Periodicals, Inc.

  8. Effects of Germline Mutations in the Ras/MAPK Signaling Pathway on Adaptive Behavior: Cardiofaciocutaneous Syndrome and Noonan Syndrome

    Science.gov (United States)

    Pierpont, Elizabeth I.; Pierpont, Mary Ella; Mendelsohn, Nancy J.; Roberts, Amy E.; Tworog-Dube, Erica; Rauen, Katherine A.; Seidenberg, Mark S.

    2011-01-01

    Cardiofaciocutaneous syndrome (CFC) and Noonan syndrome (NS) are two phenotypically overlapping genetic disorders whose underlying molecular etiologies affect a common signaling pathway. Mutations in the BRAF, MEK1 and MEK2 genes cause most cases of CFC and mutations in PTPN11, SOS1, KRAS and RAF1 typically cause NS. Although both syndromes are associated with developmental delays of varying severity, the extent to which the behavioral profiles differ may shed light on the different roles these respective genes play in development of skills necessary for everyday functioning. In this study, profiles of adaptive behavior of individuals with CFC and NS who had confirmed pathogenic mutations in Ras/MAPK pathway genes were investigated. Patterns of strengths and weaknesses, age-related differences, and risk factors for difficulties in adaptive skills were assessed. Although genes acting more downstream in the Ras/MAPK pathway were associated with more difficulties in adaptive functioning than genes more upstream in the pathway, several inconsistencies highlight the wide spectrum of possible developmental courses in CFC and NS. Along with clinical and genetic factors, variables such as chronological age, gestational age at birth and parental education levels accounted for significant variance in adaptive skills. Results indicate that there is wide heterogeneity in adaptive ability in CFC and NS, but that these abilities are correlated to some extent with the specific disease-causing genes. PMID:20186801

  9. Development of a High-Throughput Gene Expression Screen for Modulators of RAS-MAPK Signaling in a Mutant RAS Cellular Context.

    Science.gov (United States)

    Severyn, Bryan; Nguyen, Thi; Altman, Michael D; Li, Lixia; Nagashima, Kumiko; Naumov, George N; Sathyanarayanan, Sriram; Cook, Erica; Morris, Erick; Ferrer, Marc; Arthur, Bill; Benita, Yair; Watters, Jim; Loboda, Andrey; Hermes, Jeff; Gilliland, D Gary; Cleary, Michelle A; Carroll, Pamela M; Strack, Peter; Tudor, Matt; Andersen, Jannik N

    2016-10-01

    The RAS-MAPK pathway controls many cellular programs, including cell proliferation, differentiation, and apoptosis. In colorectal cancers, recurrent mutations in this pathway often lead to increased cell signaling that may contribute to the development of neoplasms, thereby making this pathway attractive for therapeutic intervention. To this end, we developed a 26-member gene signature of RAS-MAPK pathway activity utilizing the Affymetrix QuantiGene Plex 2.0 reagent system and performed both primary and confirmatory gene expression-based high-throughput screens (GE-HTSs) using KRAS mutant colon cancer cells (SW837) and leveraging a highly annotated chemical library. The screen achieved a hit rate of 1.4% and was able to enrich for hit compounds that target RAS-MAPK pathway members such as MEK and EGFR. Sensitivity and selectivity performance measurements were 0.84 and 1.00, respectively, indicating high true-positive and true-negative rates. Active compounds from the primary screen were confirmed in a dose-response GE-HTS assay, a GE-HTS assay using 14 additional cancer cell lines, and an in vitro colony formation assay. Altogether, our data suggest that this GE-HTS assay will be useful for larger unbiased chemical screens to identify novel compounds and mechanisms that may modulate the RAS-MAPK pathway. © 2016 Society for Laboratory Automation and Screening.

  10. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration.

    Science.gov (United States)

    Missinato, Maria A; Saydmohammed, Manush; Zuppo, Daniel A; Rao, Krithika S; Opie, Graham W; Kühn, Bernhard; Tsang, Michael

    2018-03-06

    Zebrafish regenerate cardiac tissue through proliferation of pre-existing cardiomyocytes and neovascularization. Secreted growth factors such as FGFs, IGF, PDGFs and Neuregulin play essential roles in stimulating cardiomyocyte proliferation. These factors activate the Ras/MAPK pathway, which is tightly controlled by the feedback attenuator Dual specificity phosphatase 6 (Dusp6), an ERK phosphatase. Here, we show that suppressing Dusp6 function enhances cardiac regeneration. Inactivation of Dusp6 by small molecules or by gene inactivation increased cardiomyocyte proliferation, coronary angiogenesis, and reduced fibrosis after ventricular resection. Inhibition of Erbb or PDGF receptor signaling suppressed cardiac regeneration in wild-type zebrafish, but had a milder effect on regeneration in dusp6 mutants. Moreover, in rat primary cardiomyocytes, NRG1-stimulated proliferation can be enhanced upon chemical inhibition of Dusp6 with BCI. Our results suggest that Dusp6 attenuates Ras/MAPK signaling during regeneration and that suppressing Dusp6 can enhance cardiac repair. © 2018. Published by The Company of Biologists Ltd.

  11. H-Ras and K-Ras Oncoproteins Induce Different Tumor Spectra When Driven by the Same Regulatory Sequences.

    Science.gov (United States)

    Drosten, Matthias; Simón-Carrasco, Lucía; Hernández-Porras, Isabel; Lechuga, Carmen G; Blasco, María T; Jacob, Harrys K C; Fabbiano, Salvatore; Potenza, Nicoletta; Bustelo, Xosé R; Guerra, Carmen; Barbacid, Mariano

    2017-02-01

    Genetic studies in mice have provided evidence that H-Ras and K-Ras proteins are bioequivalent. However, human tumors display marked differences in the association of RAS oncogenes with tumor type. Thus, to further assess the bioequivalence of oncogenic H-Ras and K-Ras, we replaced the coding region of the murine K-Ras locus with H-Ras G12V oncogene sequences. Germline expression of H-Ras G12V or K-Ras G12V from the K-Ras locus resulted in embryonic lethality. However, expression of these genes in adult mice led to different tumor phenotypes. Whereas H-Ras G12V elicited papillomas and hematopoietic tumors, K-Ras G12V induced lung tumors and gastric lesions. Pulmonary expression of H-Ras G12V created a senescence-like state caused by excessive MAPK signaling. Likewise, H-Ras G12V but not K-Ras G12V induced senescence in mouse embryonic fibroblasts. Label-free quantitative analysis revealed that minor differences in H-Ras G12V expression levels led to drastically different biological outputs, suggesting that subtle differences in MAPK signaling confer nonequivalent functions that influence tumor spectra induced by RAS oncoproteins. Cancer Res; 77(3); 707-18. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. Evolutionary analyses of entire genomes do not support the association of mtDNA mutations with Ras/MAPK pathway syndromes.

    Directory of Open Access Journals (Sweden)

    Alberto Gómez-Carballa

    Full Text Available BACKGROUND: There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS and related disorders (such as LEOPARD, neurofibromatosis type 1, although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM, which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45, most of them classified as NS patients (n = 42. METHODS/PRINCIPAL FINDINGS: The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg patterns of a typical Iberian dataset (including hgs H, T, J, and U. Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5 are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. CONCLUSIONS/SIGNIFICANCE: As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS.

  13. Evolutionary Analyses of Entire Genomes Do Not Support the Association of mtDNA Mutations with Ras/MAPK Pathway Syndromes

    Science.gov (United States)

    Cerezo, María; Balboa, Emilia; Heredia, Claudia; Castro-Feijóo, Lidia; Rica, Itxaso; Barreiro, Jesús; Eirís, Jesús; Cabanas, Paloma; Martínez-Soto, Isabel; Fernández-Toral, Joaquín; Castro-Gago, Manuel; Pombo, Manuel; Carracedo, Ángel; Barros, Francisco

    2011-01-01

    Background There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS) and related disorders (such as LEOPARD, neurofibromatosis type 1), although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA) genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM), which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45), most of them classified as NS patients (n = 42). Methods/Principal Findings The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg) patterns of a typical Iberian dataset (including hgs H, T, J, and U). Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5) are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. Conclusions/Significance As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS. PMID:21526175

  14. Stabilization of dendritic spine clusters and hyperactive Ras-MAPK signaling predict enhanced motor learning in an autistic savant mouse model

    Directory of Open Access Journals (Sweden)

    Ryan Thomas Ash

    2014-03-01

    Full Text Available That both prominent behavioral inflexibility and exceptional learning abilities are seen occasionally in autistic patients is a mystery. We hypothesize that these altered patterns of learning and memory can arise from a pathological imbalance between the stability and plasticity of internal neural representations. We evaluated this hypothesis in the mouse model of MECP2 duplication syndrome, which demonstrates enhanced motor learning, stereotyped behaviors, and social avoidance. Learning-associated structural plasticity was measured in the motor cortex of MECP2 duplication mice by 2-photon imaging (Fig. 1A. An increased stabilization rate of learning-associated dendritic spines was observed in mutants, and this correlated with rotarod performance. Analysis of the spatial distribution of stabilized spines revealed that the mutant’s increased spine stabilization was due to a specific increase in the stability of spines jointly formed in ~9-micron clusters. Clustered spine stabilization but not isolated spine stabilization predicted enhanced motor performance in MECP2 duplication mice (Fig. 1B. Biochemical assays of Ras-MAPK and mTOR pathway activation demonstrated profound hyperphosphorylation of MAPK in the motor cortex of MECP2 duplication mice with motor training (Fig. 1C. Taken together these data suggest that a pathological bias towards hyperstability of learning-associated dendritic spine clusters driven by hyperactive Ras-MAPK signaling could contribute to neurobehavioral phenotypes in this form of syndromic autism.

  15. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    Directory of Open Access Journals (Sweden)

    Vincent Runtuwene

    2011-05-01

    Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras–mitogen-activated-protein-kinase (MAPK signaling pathway. Recently, two mutations in NRAS were reported to be associated with Noonan syndrome, T50I and G60E. Here, we report a mutation in NRAS, resulting in an I24N amino acid substitution, that we identified in an individual bearing typical Noonan syndrome features. The I24N mutation activates N-Ras, resulting in enhanced downstream signaling. Expression of N-Ras-I24N, N-Ras-G60E or the strongly activating mutant N-Ras-G12V, which we included as a positive control, results in developmental defects in zebrafish embryos, demonstrating that these activating N-Ras mutants are sufficient to induce developmental disorders. The defects in zebrafish embryos are reminiscent of symptoms in individuals with Noonan syndrome and phenocopy the defects that other Noonan-syndrome-associated genes induce in zebrafish embryos. MEK inhibition completely rescued the activated N-Ras-induced phenotypes, demonstrating that these defects are mediated exclusively by Ras-MAPK signaling. In conclusion, mutations in NRAS from individuals with Noonan syndrome activated N-Ras signaling and induced developmental defects in zebrafish embryos, indicating that activating mutations in NRAS cause Noonan syndrome.

  16. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    Science.gov (United States)

    Runtuwene, Vincent; van Eekelen, Mark; Overvoorde, John; Rehmann, Holger; Yntema, Helger G.; Nillesen, Willy M.; van Haeringen, Arie; van der Burgt, Ineke; Burgering, Boudewijn; den Hertog, Jeroen

    2011-01-01

    SUMMARY Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras–mitogen-activated-protein-kinase (MAPK) signaling pathway. Recently, two mutations in NRAS were reported to be associated with Noonan syndrome, T50I and G60E. Here, we report a mutation in NRAS, resulting in an I24N amino acid substitution, that we identified in an individual bearing typical Noonan syndrome features. The I24N mutation activates N-Ras, resulting in enhanced downstream signaling. Expression of N-Ras-I24N, N-Ras-G60E or the strongly activating mutant N-Ras-G12V, which we included as a positive control, results in developmental defects in zebrafish embryos, demonstrating that these activating N-Ras mutants are sufficient to induce developmental disorders. The defects in zebrafish embryos are reminiscent of symptoms in individuals with Noonan syndrome and phenocopy the defects that other Noonan-syndrome-associated genes induce in zebrafish embryos. MEK inhibition completely rescued the activated N-Ras-induced phenotypes, demonstrating that these defects are mediated exclusively by Ras-MAPK signaling. In conclusion, mutations in NRAS from individuals with Noonan syndrome activated N-Ras signaling and induced developmental defects in zebrafish embryos, indicating that activating mutations in NRAS cause Noonan syndrome. PMID:21263000

  17. Gain-of-function SOS1 mutations cause a distinctive form of noonansyndrome

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglia, Marco; Pennacchio, Len A.; Zhao, Chen; Yadav, KamleshK.; Fodale, Valentina; Sarkozy, Anna; Pandit, Bhaswati; Oishi, Kimihiko; Martinelli, Simone; Schackwitz, Wendy; Ustaszewska, Anna; Martin, Joes; Bristow, James; Carta, Claudio; Lepri, Francesca; Neri, Cinzia; Vasta,Isabella; Gibson, Kate; Curry, Cynthia J.; Lopez Siguero, Juan Pedro; Digilio, Maria Cristina; Zampino, Giuseppe; Dallapiccola, Bruno; Bar-Sagi, Dafna; Gelb, Brude D.

    2006-09-01

    Noonan syndrome (NS) is a developmental disordercharacterized by short stature, facial dysmorphia, congenital heartdefects and skeletal anomalies1. Increased RAS-mitogenactivated proteinkinase (MAPK) signaling due to PTPN11 and KRAS mutations cause 50 percentof NS2-6. Here, we report that 22 of 129 NS patients without PTPN11 orKRAS mutation (17 percent) have missense mutations in SOS1, which encodesa RAS-specific guanine nucleotide exchange factor (GEF). SOS1 mutationscluster at residues implicated in the maintenance of SOS1 in itsautoinhibited form and ectopic expression of two NS-associated mutantsinduced enhanced RAS activation. The phenotype associated with SOS1defects is distinctive, although within NS spectrum, with a highprevalence of ectodermal abnormalities but generally normal developmentand linear growth. Our findings implicate for the first timegain-of-function mutations in a RAS GEF in inherited disease and define anew mechanism by which upregulation of the RAS pathway can profoundlychange human development.

  18. The Fourth International Symposium on Genetic Disorders of the Ras/MAPK pathway

    NARCIS (Netherlands)

    D.A. Stevenson (David A.); L. Schill (Lisa); L. Schoyer (Lisa); B.S. Andresen (B.); A. Bakker (Annette); P. Bayrak-Toydemir (Pinar); E.M.M. Burkitt Wright (Emma M.); K. Chatfield (Kathryn); F. Elefteriou (Florent); Y. Elgersma (Ype); M.J. Fisher (Michael J.); D. Franz (David); B.D. Gelb (Bruce); A. Goriely (Anne); K.W. Gripp (Karen); A.Y. Hardan (Antonio Y.); K.M. Keppler-Noreuil (Kim M.); B. Kerr (Bronwyn); B. Korf (Bruce); C. Leoni (Chiara); F. Mccormick (Frank); S.R. Plotkin (Scott R.); K.A. Rauen (Katherine); K. Reilly (Karlyne); A.E. Roberts; A. Sandler (Abby); D. Siegel (Dawn); K.S. Walsh (Karin S.); B.C. Widemann (Brigitte C.)

    2016-01-01

    textabstractThe RASopathies are a group of disorders due to variations of genes associated with the Ras/MAPK pathway. Some of the RASopathies include neurofibromatosis type 1 (NF1), Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous (CFC) syndrome, Costello syndrome,

  19. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Copp& #233; , Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  20. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras

    Science.gov (United States)

    Acin, Sergio; Li, Zhongyou; Mejia, Olga; Roop, Dennis R; El-Naggar, Adel K; Caulin, Carlos

    2015-01-01

    Mutations in p53 occur in over 50% of the human head and neck squamous cell carcinomas (SCCHN). The majority of these mutations result in the expression of mutant forms of p53, rather than deletions in the p53 gene. Some p53 mutants are associated with poor prognosis in SCCHN patients. However, the molecular mechanisms that determine the poor outcome of cancers carrying p53 mutations are unknown. Here, we generated a mouse model for SCCHN and found that activation of the endogenous p53 gain-of-function mutation p53R172H, but not deletion of p53, cooperates with oncogenic K-ras during SCCHN initiation, accelerates oral tumour growth, and promotes progression to carcinoma. Mechanistically, expression profiling of the tumours that developed in these mice and studies using cell lines derived from these tumours determined that mutant p53 induces the expression of genes involved in mitosis, including cyclin B1 and cyclin A, and accelerates entry in mitosis. Additionally, we discovered that this oncogenic function of mutant p53 was dependent on K-ras because the expression of cyclin B1 and cyclin A decreased, and entry in mitosis was delayed, after suppressing K-ras expression in oral tumour cells that express p53R172H. The presence of double-strand breaks in the tumours suggests that oncogene-dependent DNA damage resulting from K-ras activation promotes the oncogenic function of mutant p53. Accordingly, DNA damage induced by doxorubicin also induced increased expression of cyclin B1 and cyclin A in cells that express p53R172H. These findings represent strong in vivo evidence for an oncogenic function of endogenous p53 gain-of-function mutations in SCCHN and provide a mechanistic explanation for the genetic interaction between oncogenic K-ras and mutant p53. PMID:21952947

  1. Genetic analysis of Ras genes in epidermal development and tumorigenesis

    Science.gov (United States)

    Drosten, Matthias; Lechuga, Carmen G; Barbacid, Mariano

    2013-01-01

    Proliferation and differentiation of epidermal keratinocytes are tightly controlled to ensure proper development and homeostasis of the epidermis. The Ras family of small GTPases has emerged as a central node in the coordination of cell proliferation in the epidermis. Recent genetic evidence from mouse models has revealed that the intensity of Ras signaling modulates the proliferative capacity of epidermal keratinocytes. Interfering with Ras signaling either by combined elimination of the 3 Ras genes from the basal layer of the epidermis or by overexpression of dominant-negative Ras isoforms caused epidermal thinning due to hypoproliferation of keratinocytes. In contrast, overexpression of oncogenic Ras mutants in different epidermal cell layers led to hyperproliferative phenotypes including the development of papillomas and squamous cell carcinomas. Here, we discuss the value of loss- and gain-of-function studies in mouse models to assess the role of Ras signaling in the control of epidermal proliferation. PMID:24150175

  2. PKI-587 and sorafenib targeting PI3K/AKT/mTOR and Ras/Raf/MAPK pathways synergistically inhibit HCC cell proliferation.

    Science.gov (United States)

    Gedaly, Roberto; Angulo, Paul; Hundley, Jonathan; Daily, Michael F; Chen, Changguo; Evers, B Mark

    2012-08-01

    Deregulated Ras/Raf/MAPK and PI3K/AKT/mTOR signaling pathways are found in hepatocellular carcinoma (HCC). This study aimed to test the inhibitory effects of PKI-587 and sorafenib as single agents or in combination on HCC (Huh7 cell line) proliferation. (3)H-thymidine incorporation and MTT assay were used to assess Huh7 cell proliferation. Phosphorylation of the key enzymes in the Ras/Raf/MAPK and PI3K/AKT/mTOR pathways was detected by Western blot. We found that PKI-587 is a more potent PI3K/mTOR inhibitor than PI-103. Combination of PKI-587 and sorafenib was a more effective inhibitor of Huh7 proliferation than the combination of PI-103 and sorafenib. Combination of PKI-587 and sorafenib synergistically inhibited epidermal growth factor (EGF)-stimulated Huh7 proliferation compared with monodrug therapy. EGF increased phosphorylation of Ras/Raf downstream signaling proteins MEK and ERK; EGF-stimulated activation was inhibited by sorafenib. However, sorafenib, as a single agent, increased AKT (Ser473) phosphorylation. EGF-stimulated AKT (ser473) activation was inhibited by PKI-587. PKI-587 is a potent inhibitor of AKT (Ser473), mTOR (Ser2448), and S6K (Thr389) phosphorylation; in contrast, rapamycin stimulated mTOR complex 2 substrate AKT(Ser473) phosphorylation although it inhibited mTOR complex 1 substrate S6K phosphorylation. PKI-587, as a single agent, stimulated MEK and ERK phosphorylation. However, when PKI-587 and sorafenib were used in combination, they inhibited all the tested kinases in the Ras/Raf /MAPK and PI3K/AKT/mTOR pathways. The combination of PKI-587 and sorafenib has the advantage over monodrug therapy on inhibition of HCC cell proliferation by blocking both PI3K/AKT/mTOR and Ras/Raf/MAPK signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS.

    Science.gov (United States)

    Zuidervaart, W; van Nieuwpoort, F; Stark, M; Dijkman, R; Packer, L; Borgstein, A-M; Pavey, S; van der Velden, P; Out, C; Jager, M J; Hayward, N K; Gruis, N A

    2005-06-06

    In contrast to cutaneous melanoma, there is no evidence that BRAF mutations are involved in the activation of the mitogen-activated protein kinase (MAPK) pathway in uveal melanoma, although there is increasing evidence that this pathway is activated frequently in the latter tumours. In this study, we performed mutation analysis of the RAS and BRAF genes in a panel of 11 uveal melanoma cell lines and 19 primary uveal melanoma tumours. In addition, Western blot and immunohistochemical analyses were performed on downstream members of the MAPK pathway in order to assess the contribution of each of these components. No mutations were found in any of the three RAS gene family members and only one cell line carried a BRAF mutation (V599E). Despite this, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK), ERK and ELK were constitutively activated in all samples. These data suggest that activation of the MAPK pathway is commonly involved in the development of uveal melanoma, but occurs through a mechanism different to that of cutaneous melanoma.

  4. FGFR2c-mediated ERK-MAPK activity regulates coronal suture development

    Science.gov (United States)

    Pfaff, Miles J.; Xue, Ke; Li, Li; Horowitz, Mark C.; Steinbacher, Derek M.; Eswarakumar, Jacob V.P.

    2017-01-01

    Fibroblast growth factor receptor 2 (FGFR2) signaling is critical for proper craniofacial development. A gain-of-function mutation in the 2c splice variant of the receptor’s gene is associated with Crouzon syndrome, which is characterized by craniosynostosis, the premature fusion of one or more of the cranial vault sutures, leading to craniofacial maldevelopment. Insight into the molecular mechanism of craniosynostosis has identified the ERK-MAPK signaling cascade as a critical regulator of suture patency. The aim of this study is to investigate the role of FGFR2c-induced ERK-MAPK activation in the regulation of coronal suture development. Loss-of-function and gain-of-function Fgfr2c mutant mice have overlapping phenotypes, including coronal synostosis and craniofacial dysmorphia. In vivo analysis of coronal sutures in loss-of-function and gain-of-function models demonstrated fundamentally different pathogenesis underlying coronal suture synostosis. Calvarial osteoblasts from gain-of-function mice demonstrated enhanced osteoblastic function and maturation with concomitant increase in ERK-MAPK activation. In vitro inhibition with the ERK protein inhibitor U0126 mitigated ERK protein activation levels with a concomitant reduction in alkaline phosphatase activity. This study identifies FGFR2c-mediated ERK-MAPK signaling as a key mediator of craniofacial growth and coronal suture development. Furthermore, our results solve the apparent paradox between loss-of-function and gain-of-function FGFR2c mutants with respect to coronal suture synostosis. PMID:27034231

  5. The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Toward a Therapeutic Approach

    OpenAIRE

    Korf, Bruce; Ahmadian, Reza; Allanson, Judith; Aoki, Yoko; Bakker, Annette; Wright, Emma Burkitt; Denger, Brian; Elgersma, Ype; Gelb, Bruce D.; Gripp, Karen W.; Kerr, Bronwyn; Kontaridis, Maria; Lazaro, Conxi; Linardic, Corinne; Lozano, Reymundo

    2015-01-01

    "The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Towards a Therapeutic Approach" was held at the Renaissance Orlando at SeaWorld Hotel (August 2-4, 2013). Seventy-one physicians and scientists attended the meeting, and parallel meetings were held by patient advocacy groups (CFC International, Costello Syndrome Family Network, NF Network and Noonan Syndrome Foundation). Parent and patient advocates opened the meeting with a panel discussion to set the stage regard...

  6. RasGRP1 confers the phorbol ester-sensitive phenotype to EL4 lymphoma cells.

    Science.gov (United States)

    Han, Shujie; Knoepp, Stewart M; Hallman, Mark A; Meier, Kathryn E

    2007-01-01

    The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to the tumor promoter phorbol 12-myristate 13-acetate (PMA). In sensitive EL4 cells, PMA causes robust Erk mitogen-activated protein kinase activation that results in growth arrest. In resistant cells, PMA induces minimal Erk activation, without growth arrest. PMA stimulates IL-2 production in sensitive, but not resistant, cells. The role of RasGRP1, a PMA-activated guanine nucleotide exchange factor for Ras, in EL4 phenotype was examined. Endogenous RasGRP1 protein is expressed at much higher levels in sensitive than in resistant cells. PMA-induced Ras activation is observed in sensitive cells but not in resistant cells lacking Ras-GRP1. PMA induces down-regulation of RasGRP1 protein in sensitive cells but increases RasGRP1 in resistant cells. Transfection of RasGRP1 into resistant cells enhances PMA-induced Erk activation. In the reverse experiment, introduction of small interfering RNA (siRNA) for RasGRP1 suppresses PMA-induced Ras and Erk activations in sensitive cells. Sensitive cells incubated with siRNA for RasGRP1 exhibit the PMA-resistant phenotype, in that they are able to proliferate in the presence of PMA and do not secrete IL-2 when stimulated with PMA. These studies indicate that the PMA-sensitive phenotype, as previously defined for the EL4 cell line, is conferred by endogenous expression of RasGRP1 protein.

  7. Manipulation of EphB2 regulatory motifs and SH2 binding sites switches MAPK signaling and biological activity.

    Science.gov (United States)

    Tong, Jiefei; Elowe, Sabine; Nash, Piers; Pawson, Tony

    2003-02-21

    Signaling by the Eph family of receptor tyrosine kinases (RTKs) is complex, because they can interact with a variety of intracellular targets, and can potentially induce distinct responses in different cell types. In NG108 neuronal cells, activated EphB2 recruits p120RasGAP, in a fashion that is associated with down-regulation of the Ras-Erk mitogen-activated kinase (MAPK) pathway and neurite retraction. To pursue the role of the Ras-MAPK pathway in EphB2-mediated growth cone collapse, and to explore the biochemical and biological functions of Eph receptors, we sought to re-engineer the signaling properties of EphB2 by manipulating its regulatory motifs and SH2 binding sites. An EphB2 mutant that retained juxtamembrane (JM) RasGAP binding sites but incorporated a Grb2 binding motif at an alternate RasGAP binding site within the kinase domain had little effect on basal Erk MAPK activation. In contrast, elimination of all RasGAP binding sites, accompanied by the addition of a Grb2 binding site within the kinase domain, led to an increase in phospho-Erk levels in NG108 cells following ephrin-B1 stimulation. Functional assays indicated a correlation between neurite retraction and the ability of the EphB2 mutants to down-regulate Ras-Erk MAPK signaling. These data suggest that EphB2 can be designed to repress, stabilize, or activate the Ras-Erk MAPK pathway by the manipulation of RasGAP and Grb2 SH2 domain binding sites and support the notion that Erk MAPK regulation plays a significant role in axon guidance. The behavior of EphB2 variants with mutations in the JM region and kinase domains suggests an intricate pattern of regulation and target recognition by Eph receptors.

  8. Evidence implicating the Ras pathway in multiple CD28 costimulatory functions in CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Sujit V Janardhan

    Full Text Available CD28 costimulation is a critical event in the full activation of CD4(+ T cells that augments cytokine gene transcription, promotes cytokine mRNA stability, prevents induction of anergy, increases cellular metabolism, and increases cell survival. However, despite extensive biochemical analysis of the signaling events downstream of CD28, molecular pathways sufficient to functionally replace the diverse aspects of CD28-mediated costimulation in normal T cells have not been identified. Ras/MAPK signaling is a critical pathway downstream of T cell receptor stimulation, but its role in CD28-mediated costimulation has been controversial. We observed that physiologic CD28 costimulation caused a relocalization of the RasGEF RasGRP to the T cell-APC interface by confocal microscopy. In whole cell biochemical analysis, CD28 cross-linking with either anti-CD28 antibody or B7.1-Ig augmented TCR-induced Ras activation. To determine whether Ras signaling was sufficient to functionally mimic CD28 costimulation, we utilized an adenoviral vector encoding constitutively active H-Ras (61L to transduce normal, Coxsackie-Adenovirus Receptor (CAR transgenic CD4(+ T cells. Like costimulation via CD28, active Ras induced AKT, JNK and ERK phosphorylation. In addition, constitutive Ras signaling mimicked the ability of CD28 to costimulate IL-2 protein secretion, prevent anergy induction, increase glucose uptake, and promote cell survival. Importantly, we also found that active Ras mimicked the mechanism by which CD28 costimulates IL-2 production: by increasing IL-2 gene transcription, and promoting IL-2 mRNA stability. Finally, active Ras was able to induce IL-2 production when combined with ionomycin stimulation in a MEK-1-dependent fashion. Our results are consistent with a central role for Ras signaling in CD28-mediated costimulation.

  9. Regulation of Ras exchange factors and cellular localization of Ras activation by lipid messengers in T cells

    Directory of Open Access Journals (Sweden)

    Jesse E. Jun

    2013-09-01

    Full Text Available The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and SOS-family GEFs.Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood.One large group of biomolecules critically involved in the control of Ras-GEFs´functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells.

  10. Functional studies of TcRjl, a novel GTPase of Trypanosoma cruzi, reveals phenotypes related with MAPK activation during parasite differentiation and after heterologous expression in Drosophila model system

    International Nuclear Information System (INIS)

    Reis Monteiro dos-Santos, Guilherme Rodrigo; Fontenele, Marcio Ribeiro; Dias, Felipe de Almeida; Oliveira, Pedro Lagerblad de; Nepomuceno-Silva, José Luciano

    2015-01-01

    The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.

  11. Functional studies of TcRjl, a novel GTPase of Trypanosoma cruzi, reveals phenotypes related with MAPK activation during parasite differentiation and after heterologous expression in Drosophila model system

    Energy Technology Data Exchange (ETDEWEB)

    Reis Monteiro dos-Santos, Guilherme Rodrigo [Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro (Brazil); Fontenele, Marcio Ribeiro [Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, CCS, UFRJ, Rio de Janeiro (Brazil); Dias, Felipe de Almeida [Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, CCS, UFRJ, Rio de Janeiro (Brazil); Oliveira, Pedro Lagerblad de [Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, CCS, UFRJ, Rio de Janeiro (Brazil); Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM) (Brazil); Nepomuceno-Silva, José Luciano [Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM/UFRJ, Pólo Barreto, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé (Brazil); and others

    2015-11-06

    The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.

  12. Black Rice Anthocyanins Suppress Metastasis of Breast Cancer Cells by Targeting RAS/RAF/MAPK Pathway.

    Science.gov (United States)

    Chen, Xiang-Yan; Zhou, Jie; Luo, Li-Ping; Han, Bin; Li, Fei; Chen, Jing-Yao; Zhu, Yan-Feng; Chen, Wei; Yu, Xiao-Ping

    2015-01-01

    Overexpression of human epidermal growth factor receptor 2 (HER2) drives the biology of 30% of breast cancer cases. As a transducer of HER2 signaling, RAS/RAF/MAPK pathway plays a pivotal role in the development of breast cancer. In this study, we examined the molecular mechanisms underlying the chemopreventive effects of black rice anthocyanins (BRACs) extract and identified their molecular targets in HER2(+) breast cancer cells. Treatment of MDA-MB-453 cells (HER2(+)) with BRACs inhibited cell migration and invasion, suppressed the activation of mitogen-activated protein kinase kinase kinase (RAF), mitogen-activated protein kinase kinase (MEK), and c-Jun N-terminal kinase (JNK), and downregulated the secretion of matrix metalloproteinase 2 (MMP2) and MMP9. BRACs also weakened the interactions of HER2 with RAF, MEK, and JNK proteins, respectively, and decreased the mRNA expression of raf, mek, and jnk. Further, we found combined treatment with BRACs and RAF, MEK, or JNK inhibitors could enhance the antimetastatic activity, compared with that of each treatment. Transient transfection with small interfering RNAs (siRNAs) specific for raf, mek, and jnk inhibited their mRNA expression in MDA-MB-453 cells. Moreover, cotreatment with BRACs and siRNA induces a more remarkable inhibitory effect than that by either substance alone. In summary, our study suggested that BRACs suppress metastasis in breast cancer cells by targeting the RAS/RAF/MAPK pathway.

  13. Ras Signaling Regulates Stem Cells and Amelogenesis in the Mouse Incisor.

    Science.gov (United States)

    Zheng, X; Goodwin, A F; Tian, H; Jheon, A H; Klein, O D

    2017-11-01

    The role of Ras signaling during tooth development is poorly understood. Ras proteins-which are activated by many upstream pathways, including receptor tyrosine kinase cascades-signal through multiple effectors, such as the mitogen-activated protein kinase (MAPK) and PI3K pathways. Here, we utilized the mouse incisor as a model to study how the MAPK and PI3K pathways regulate dental epithelial stem cells and amelogenesis. The rodent incisor-which grows continuously throughout the life of the animal due to the presence of epithelial and mesenchymal stem cells-provides a model for the study of ectodermal organ renewal and regeneration. Utilizing models of Ras dysregulation as well as inhibitors of the MAPK and PI3K pathways, we found that MAPK and PI3K regulate dental epithelial stem cell activity, transit-amplifying cell proliferation, and enamel formation in the mouse incisor.

  14. Tumor cell phenotype is sustained by selective MAPK oxidation in mitochondria.

    Directory of Open Access Journals (Sweden)

    Soledad Galli

    2008-06-01

    Full Text Available Mitochondria are major cellular sources of hydrogen peroxide (H(2O(2, the production of which is modulated by oxygen availability and the mitochondrial energy state. An increase of steady-state cell H(2O(2 concentration is able to control the transition from proliferating to quiescent phenotypes and to signal the end of proliferation; in tumor cells thereby, low H(2O(2 due to defective mitochondrial metabolism can contribute to sustain proliferation. Mitogen-activated protein kinases (MAPKs orchestrate signal transduction and recent data indicate that are present in mitochondria and regulated by the redox state. On these bases, we investigated the mechanistic connection of tumor mitochondrial dysfunction, H(2O(2 yield, and activation of MAPKs in LP07 murine tumor cells with confocal microscopy, in vivo imaging and directed mutagenesis. Two redox conditions were examined: low 1 microM H(2O(2 increased cell proliferation in ERK1/2-dependent manner whereas high 50 microM H(2O(2 arrested cell cycle by p38 and JNK1/2 activation. Regarding the experimental conditions as a three-compartment model (mitochondria, cytosol, and nuclei, the different responses depended on MAPKs preferential traffic to mitochondria, where a selective activation of either ERK1/2 or p38-JNK1/2 by co-localized upstream kinases (MAPKKs facilitated their further passage to nuclei. As assessed by mass spectra, MAPKs activation and efficient binding to cognate MAPKKs resulted from oxidation of conserved ERK1/2 or p38-JNK1/2 cysteine domains to sulfinic and sulfonic acids at a definite H(2O(2 level. Like this, high H(2O(2 or directed mutation of redox-sensitive ERK2 Cys(214 impeded binding to MEK1/2, caused ERK2 retention in mitochondria and restricted shuttle to nuclei. It is surmised that selective cysteine oxidations adjust the electrostatic forces that participate in a particular MAPK-MAPKK interaction. Considering that tumor mitochondria are dysfunctional, their inability to

  15. Qingfei Xiaoyan Wan, a traditional Chinese medicine formula, ameliorates Pseudomonas aeruginosa–induced acute lung inflammation by regulation of PI3K/AKT and Ras/MAPK pathways

    Directory of Open Access Journals (Sweden)

    Yuanyuan Hou

    2016-05-01

    Full Text Available Gram-negative pathogen–induced nosocomial infections and resistance are a most serious menace to global public health. Qingfei Xiaoyan Wan (QF, a traditional Chinese medicine (TCM formula, has been used clinically in China for the treatment of upper respiratory tract infections, acute or chronic bronchitis and pulmonary infection. In this study, the effects of QF on Pseudomonas aeruginosa–induced acute pneumonia in mice were evaluated. The mechanisms by which four typical anti-inflammatory ingredients from QF, arctigenin (ATG, cholic acid (CLA, chlorogenic acid (CGA and sinapic acid (SPA, regulate anti-inflammatory signaling pathways and related targets were investigated using molecular biology and molecular docking techniques. The results showed that pretreatment with QF significantly inhibits the release of cytokines (TNF-α and IL-6 and chemokines (IL-8 and RANTES, reduces leukocytes recruitment into inflamed tissues and ameliorates pulmonary edema and necrosis. In addition, ATG was identified as the primary anti-inflammatory agent with action on the PI3K/AKT and Ras/MAPK pathways. CLA and CGA enhanced the actions of ATG and exhibited synergistic NF-κB inactivation effects possibly via the Ras/MAPK signaling pathway. Moreover, CLA is speculated to target FGFR and MEK firstly. Overall, QF regulated the PI3K/AKT and Ras/MAPK pathways to inhibit pathogenic bacterial infections effectively.

  16. Ras proteins have multiple functions in vegetative cells of Dictyostelium.

    Science.gov (United States)

    Bolourani, Parvin; Spiegelman, George; Weeks, Gerald

    2010-11-01

    During the aggregation of Dictyostelium cells, signaling through RasG is more important in regulating cyclic AMP (cAMP) chemotaxis, whereas signaling through RasC is more important in regulating the cAMP relay. However, RasC is capable of substituting for RasG for chemotaxis, since rasG⁻ cells are only partially deficient in chemotaxis, whereas rasC⁻/rasG⁻ cells are totally incapable of chemotaxis. In this study we have examined the possible functional overlap between RasG and RasC in vegetative cells by comparing the vegetative cell properties of rasG⁻, rasC⁻, and rasC⁻/rasG⁻ cells. In addition, since RasD, a protein not normally found in vegetative cells, is expressed in vegetative rasG⁻ and rasC⁻/rasG⁻ cells and appears to partially compensate for the absence of RasG, we have also examined the possible functional overlap between RasG and RasD by comparing the properties of rasG⁻ and rasC⁻/rasG⁻ cells with those of the mutant cells expressing higher levels of RasD. The results of these two lines of investigation show that RasD is capable of totally substituting for RasG for cytokinesis and growth in suspension, whereas RasC is without effect. In contrast, for chemotaxis to folate, RasC is capable of partially substituting for RasG, but RasD is totally without effect. Finally, neither RasC nor RasD is able to substitute for the role that RasG plays in regulating actin distribution and random motility. These specificity studies therefore delineate three distinct and none-overlapping functions for RasG in vegetative cells.

  17. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    NARCIS (Netherlands)

    Runtuwene, V.J.; van Eekelen, M.J.L.; Overvoorde, J.; Rehmann, H.; Yntema, H.G.; Nillesen, W.M.; van Haeringen, A.; van der Burgt, I.; Burgering, B.; den Hertog, J.

    2011-01-01

    Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras-mitogen-activated-protein-kinase (MAPK) signaling pathway. Recently, two mutations in NRAS

  18. Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors.

    Directory of Open Access Journals (Sweden)

    Mark Merchant

    Full Text Available Mitogen-activated protein kinase (MAPK pathway dysregulation is implicated in >30% of all cancers, rationalizing the development of RAF, MEK and ERK inhibitors. While BRAF and MEK inhibitors improve BRAF mutant melanoma patient outcomes, these inhibitors had limited success in other MAPK dysregulated tumors, with insufficient pathway suppression and likely pathway reactivation. In this study we show that inhibition of either MEK or ERK alone only transiently inhibits the MAPK pathway due to feedback reactivation. Simultaneous targeting of both MEK and ERK nodes results in deeper and more durable suppression of MAPK signaling that is not achievable with any dose of single agent, in tumors where feedback reactivation occurs. Strikingly, combined MEK and ERK inhibition is synergistic in RAS mutant models but only additive in BRAF mutant models where the RAF complex is dissociated from RAS and thus feedback productivity is disabled. We discovered that pathway reactivation in RAS mutant models occurs at the level of CRAF with combination treatment resulting in a markedly more active pool of CRAF. However, distinct from single node targeting, combining MEK and ERK inhibitor treatment effectively blocks the downstream signaling as assessed by transcriptional signatures and phospho-p90RSK. Importantly, these data reveal that MAPK pathway inhibitors whose activity is attenuated due to feedback reactivation can be rescued with sufficient inhibition by using a combination of MEK and ERK inhibitors. The MEK and ERK combination significantly suppresses MAPK pathway output and tumor growth in vivo to a greater extent than the maximum tolerated doses of single agents, and results in improved anti-tumor activity in multiple xenografts as well as in two Kras mutant genetically engineered mouse (GEM models. Collectively, these data demonstrate that combined MEK and ERK inhibition is functionally unique, yielding greater than additive anti-tumor effects and

  19. LncMAPK6 drives MAPK6 expression and liver TIC self-renewal.

    Science.gov (United States)

    Huang, Guanqun; Jiang, Hui; He, Yueming; Lin, Ye; Xia, Wuzheng; Luo, Yuanwei; Liang, Min; Shi, Boyun; Zhou, Xinke; Jian, Zhixiang

    2018-05-15

    Liver tumor initiating cells (TICs) have self-renewal and differentiate capacities, and largely contribute to tumor initiation, metastasis and drug resistance. MAPK signaling is a critical pathway in many biological processes, while its role in liver TICs hasn't been explored. Online-available dataset was used for unbiased screening. Liver TICs were examined CD133 FACS or oncosphere formation. TIC self-renewal was detected by oncosphere formation and tumor initiation assay. LncRNA function was detected by loss of function or gain of function assays. The molecular mechanism of lncRNA was explored by RNA pulldown, RNA immunoprecipitation, ChIP, western blot and double FISH. Here, we examined the expression profiles of MAPK components (MAPKs, MAP2Ks, MAP3Ks, MAP4Ks), and found MAPK6 is most highly expressed in liver cancer samples. Moreover, a divergent lncRNA (long noncoding RNA) of MAPK6, termed lncMAPK6 here, is also overexpressed along with liver tumorigenesis. LncMAPK6 promotes liver tumor propagation and TIC self-renewal through MAPK6. LncMAPK6 interacts with and recruits RNA polymerase II to MAPK6 promoter, and finally activates the transcription of MAPK6. Through MAPK6 transcriptional regulation, lncMAPK6 drives MARK signaling activation. LncMAPK6-MAPK6 pathway can be used for liver TIC targeting. Altogether, lncMAPK6 promotes MARK signaling and the self-renewal of liver TICs through MAPK6 expression. MAPK6 was the most highly expressed MAPK component in liver cancer and liver TICs and lncMAPK6 participated in the transcriptional regulation of MAPK6in cis. This work revealed the importance role of MAPK signaling in liver TIC self-renewal and added a new layer for liver TIC and MAPK6 expression regulation.

  20. Genetic and Molecular Analysis of Suppressors of Ras Mutations

    National Research Council Canada - National Science Library

    Eastburn, Dennis

    2000-01-01

    .... The study of Caenorhabditis elegans and other model systems has demonstrated that Ras is part of a conserved Ras/MAPK signaling pathway involved in many aspects of development and cell regulation. The C...

  1. Craniosynostosis and Noonan syndrome with KRAS mutations: Expanding the phenotype with a case report and review of the literature.

    Science.gov (United States)

    Addissie, Yonit A; Kotecha, Udhaya; Hart, Rachel A; Martinez, Ariel F; Kruszka, Paul; Muenke, Maximilian

    2015-11-01

    Noonan syndrome (NS) is a multiple congenital anomaly syndrome caused by germline mutations in genes coding for components of the Ras-mitogen-activated protein kinase (RAS-MAPK) pathway. Features include short stature, characteristic facies, congenital heart anomalies, and developmental delay. While there is considerable clinical heterogeneity in NS, craniosynostosis is not a common feature of the condition. Here, we report on a 2 month-old girl with Noonan syndrome associated with a de novo mutation in KRAS (p.P34Q) and premature closure of the sagittal suture. We provide a review of the literature of germline KRAS mutations and find that approximately 10% of published cases have craniosynostosis. Our findings expand on the NS phenotype and suggest that germline mutations in the KRAS gene are causally involved in craniosynostosis, supporting the role of the RAS-MAPK pathway as a mediator of aberrant bone growth in cranial sutures. The inclusion of craniosynostosis as a possible phenotype in KRAS-associated Noonan Syndrome has implications in the differential diagnosis and surgical management of individuals with craniosynostosis. © 2015 Wiley Periodicals, Inc.

  2. The Ras GTPase-activating protein Rasal3 supports survival of naive T cells.

    Directory of Open Access Journals (Sweden)

    Ryunosuke Muro

    Full Text Available The Ras-mitogen-activated protein kinase (MAPK pathway is crucial for T cell receptor (TCR signaling in the development and function of T cells. The significance of various modulators of the Ras-MAPK pathway in T cells, however, remains to be fully understood. Ras-activating protein-like 3 (Rasal3 is an uncharacterized member of the SynGAP family that contains a conserved Ras GTPase-activating protein (GAP domain, and is predominantly expressed in the T cell lineage. In the current study, we investigated the function and physiological roles of Rasal3. Our results showed that Rasal3 possesses RasGAP activity, but not Rap1GAP activity, and represses TCR-stimulated ERK phosphorylation in a T cell line. In systemic Rasal3-deficient mice, T cell development in the thymus including positive selection, negative selection, and β-selection was unaffected. However, the number of naive, but not effector memory CD4 and CD8 T cell in the periphery was significantly reduced in Rasal3-deficient mice, and associated with a marked increase in apoptosis of these cells. Indeed, survival of Rasal3 deficient naive CD4 T cells in vivo by adoptive transfer was significantly impaired, whereas IL-7-dependent survival of naive CD4 T cells in vitro was unaltered. Collectively, Rasal3 is required for in vivo survival of peripheral naive T cells, contributing to the maintenance of optimal T cell numbers.

  3. Phenotypic and evolutionary implications of modulating the ERK-MAPK cascade using the dentition as a model

    Science.gov (United States)

    Marangoni, Pauline; Charles, Cyril; Tafforeau, Paul; Laugel-Haushalter, Virginie; Joo, Adriane; Bloch-Zupan, Agnès; Klein, Ophir D.; Viriot, Laurent

    2015-06-01

    The question of phenotypic convergence across a signalling pathway has important implications for both developmental and evolutionary biology. The ERK-MAPK cascade is known to play a central role in dental development, but the relative roles of its components remain unknown. Here we investigate the diversity of dental phenotypes in Spry2-/-, Spry4-/-, and Rsk2-/Y mice, including the incidence of extra teeth, which were lost in the mouse lineage 45 million years ago (Ma). In addition, Sprouty-specific anomalies mimic a phenotype that is absent in extant mice but present in mouse ancestors prior to 9 Ma. Although the mutant lines studied display convergent phenotypes, each gene has a specific role in tooth number determination and crown patterning. The similarities found between teeth in fossils and mutants highlight the pivotal role of the ERK-MAPK cascade during the evolution of the dentition in rodents.

  4. Two cases of RIT1 associated Noonan syndrome: Further delineation of the clinical phenotype and review of the literature

    NARCIS (Netherlands)

    Milosavljević, Doris; Overwater, Eline; Tamminga, Saskia; de Boer, Karin; Elting, Mariet W.; van Hoorn, Marion E.; Rinne, Tuula; Houweling, Arjan C.

    2016-01-01

    Mutations in RIT1, involved in the RAS-MAPK pathway, have recently been identified as a cause for Noonan syndrome. We present two patients with Noonan syndrome caused by a RIT1 mutation with novel phenotypic manifestations, severe bilateral lower limb lymphedema starting during puberty, and fetal

  5. The bovine papillomavirus E5 oncogene can cooperate with ras: identification of p21 amino acids critical for transformation by c-rasH but not v-rasH

    DEFF Research Database (Denmark)

    Willumsen, B M; Vass, W C; Velu, T J

    1991-01-01

    We have previously used a series of insertion-deletion mutants of the mutationally activated v-rasH gene to identify several regions of the encoded protein that are dispensable for cellular transformation (B. M. Willumsen, A. G. Papageorge, H.-F. Kung, E. Bekesi, T. Robins, M. Johnsen, W. C. Vass...... in their v-rasH forms. We conclude that a region including amino acids 102 and 103 encodes a function that is more critical to c-rasH than to v-rasH. Guanine nucleotide exchange is one function that is compatible with such a phenotype......., and D. R. Lowy, Mol. Cell. Biol. 6:2646-2654, 1986). To determine if some of these amino acids are more important for the biological activity of c-rasH, we have now tested many of the same insertion-deletion mutants in the c-rasH form for their ability to transform NIH 3T3 cells. Since the transforming...

  6. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma.

    Science.gov (United States)

    Haston, Scott; Pozzi, Sara; Carreno, Gabriela; Manshaei, Saba; Panousopoulos, Leonidas; Gonzalez-Meljem, Jose Mario; Apps, John R; Virasami, Alex; Thavaraj, Selvam; Gutteridge, Alice; Forshew, Tim; Marais, Richard; Brandner, Sebastian; Jacques, Thomas S; Andoniadou, Cynthia L; Martinez-Barbera, Juan Pedro

    2017-06-15

    Despite the importance of the RAS-RAF-MAPK pathway in normal physiology and disease of numerous organs, its role during pituitary development and tumourigenesis remains largely unknown. Here, we show that the over-activation of the MAPK pathway, through conditional expression of the gain-of-function alleles BrafV600E and KrasG12D in the developing mouse pituitary, results in severe hyperplasia and abnormal morphogenesis of the gland by the end of gestation. Cell-lineage commitment and terminal differentiation are disrupted, leading to a significant reduction in numbers of most of the hormone-producing cells before birth, with the exception of corticotrophs. Of note, Sox2 + stem cells and clonogenic potential are drastically increased in the mutant pituitaries. Finally, we reveal that papillary craniopharyngioma (PCP), a benign human pituitary tumour harbouring BRAF p.V600E also contains Sox2 + cells with sustained proliferative capacity and disrupted pituitary differentiation. Together, our data demonstrate a crucial function of the MAPK pathway in controlling the balance between proliferation and differentiation of Sox2 + cells and suggest that persistent proliferative capacity of Sox2 + cells may underlie the pathogenesis of PCP. © 2017. Published by The Company of Biologists Ltd.

  7. RAS signalling in energy metabolism and rare human diseases.

    Science.gov (United States)

    Dard, L; Bellance, N; Lacombe, D; Rossignol, R

    2018-05-08

    The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. RASopathies: unraveling mechanisms with animal models

    Directory of Open Access Journals (Sweden)

    Granton A. Jindal

    2015-08-01

    Full Text Available RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment.

  9. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling

    OpenAIRE

    Shrestha, Yashaswi; Schafer, Eric J.; Boehm, Jesse S.; Thomas, Sapana R.; He, Frank; Du, Jinyan; Wang, Shumei; Barretina, Jordi; Weir, Barbara A.; Zhao, Jean J.; Polyak, Kornelia; Golub, Todd R.; Beroukhim, Rameen; Hahn, William C.

    2011-01-01

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce ...

  10. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange.

    Science.gov (United States)

    Burns, Michael C; Sun, Qi; Daniels, R Nathan; Camper, DeMarco; Kennedy, J Phillip; Phan, Jason; Olejniczak, Edward T; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2014-03-04

    Aberrant activation of the small GTPase Ras by oncogenic mutation or constitutively active upstream receptor tyrosine kinases results in the deregulation of cellular signals governing growth and survival in ∼30% of all human cancers. However, the discovery of potent inhibitors of Ras has been difficult to achieve. Here, we report the identification of small molecules that bind to a unique pocket on the Ras:Son of Sevenless (SOS):Ras complex, increase the rate of SOS-catalyzed nucleotide exchange in vitro, and modulate Ras signaling pathways in cells. X-ray crystallography of Ras:SOS:Ras in complex with these molecules reveals that the compounds bind in a hydrophobic pocket in the CDC25 domain of SOS adjacent to the Switch II region of Ras. The structure-activity relationships exhibited by these compounds can be rationalized on the basis of multiple X-ray cocrystal structures. Mutational analyses confirmed the functional relevance of this binding site and showed it to be essential for compound activity. These molecules increase Ras-GTP levels and disrupt MAPK and PI3K signaling in cells at low micromolar concentrations. These small molecules represent tools to study the acute activation of Ras and highlight a pocket on SOS that may be exploited to modulate Ras signaling.

  11. Identification of H-Ras-Specific Motif for the Activation of Invasive Signaling Program in Human Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Hae-Young Yong

    2011-02-01

    Full Text Available Increased expression and/or activation of H-Ras are often associated with tumor aggressiveness in breast cancer. Previously, we showed that H-Ras, but not N-Ras, induces MCF10A human breast epithelial cell invasion and migration, whereas both H-Ras and N-Ras induce cell proliferation and phenotypic transformation. In an attempt to determine the sequence requirement directing the divergent phenotype induced by H-Ras and N-Ras with a focus on the induction of human breast cell invasion, we investigated the structural and functional relationships between H-Ras and N-Ras using domain-swap and site-directed mutagenesis approaches. Here, we report that the hypervariable region (HVR, consisting of amino acids 166 to 189 in H-Ras, determines the invasive/migratory signaling program as shown by the exchange of invasive phenotype by swapping HVR sequences between H-Ras and N-Ras. We also demonstrate that the H-Ras-specific additional palmitoylation site at Cys184 is not responsible for the signaling events that distinguish between H-Ras and N-Ras. Importantly, this work identifies the C-terminal HVR, especially the flexible linker domain with two consecutive proline residues Pro173 and Pro174, as a critical domain that contributes to activation of H-Ras and its invasive potential in human breast epithelial cells. The present study sheds light on the structural basis for the Ras isoform-specific invasive program of breast epithelial cells, providing information for the development of agents that specifically target invasion-related H-Ras pathways in human cancer.

  12. Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory.

    Science.gov (United States)

    Gyurkó, M Dávid; Csermely, Péter; Sőti, Csaba; Steták, Attila

    2015-10-15

    The Ras GTPase activating proteins (RasGAPs) are regulators of the conserved Ras/MAPK pathway. Various roles of some of the RasGAPs in learning and memory have been reported in different model systems, yet, there is no comprehensive study to characterize all gap genes in any organism. Here, using reverse genetics and neurobehavioural tests, we studied the role of all known genes of the rasgap family in C. elegans in associative learning and memory. We demonstrated that their proteins are implicated in different parts of the learning and memory processes. We show that gap-1 contribute redundantly with gap-3 to the chemosensation of volatile compounds, gap-1 plays a major role in associative learning, while gap-2 and gap-3 are predominantly required for short- and long-term associative memory. Our results also suggest that the C. elegans Ras orthologue let-60 is involved in multiple processes during learning and memory. Thus, we show that the different classes of RasGAP proteins are all involved in cognitive function and their complex interplay ensures the proper formation and storage of novel information in C. elegans.

  13. Inhibition of p38 MAPK attenuates renal atrophy and fibrosis in a murine renal artery stenosis model.

    Science.gov (United States)

    Wang, Diping; Warner, Gina M; Yin, Ping; Knudsen, Bruce E; Cheng, Jingfei; Butters, Kim A; Lien, Karen R; Gray, Catherine E; Garovic, Vesna D; Lerman, Lilach O; Textor, Stephen C; Nath, Karl A; Simari, Robert D; Grande, Joseph P

    2013-04-01

    Renal artery stenosis (RAS) is an important cause of chronic renal dysfunction. Recent studies have underscored a critical role for CCL2 (MCP-1)-mediated inflammation in the progression of chronic renal damage in RAS and other chronic renal diseases. In vitro studies have implicated p38 MAPK as a critical intermediate for the production of CCL2. However, a potential role of p38 signaling in the development and progression of chronic renal disease in RAS has not been previously defined. We sought to test the hypothesis that inhibition of p38 MAPK ameliorates chronic renal injury in mice with RAS. We established a murine RAS model by placing a cuff on the right renal artery and treated mice with the p38 inhibitor SB203580 or vehicle for 2 wk. In mice treated with vehicle, the cuffed kidney developed interstitial fibrosis, tubular atrophy, and interstitial inflammation. In mice treated with SB203580, the RAS-induced renal atrophy was reduced (70% vs. 39%, P < 0.05). SB203580 also reduced interstitial inflammation and extracellular matrix deposition but had no effect on the development of hypertension. SB203580 partially blocked the induction of CCL2, CCL7 (MCP-3), CC chemokine receptor 2 (CCR2), and collagen 4 mRNA expression in the cuffed kidneys. In vitro, blockade of p38 hindered both TNF-α and TGF-β-induced CCL2 upregulation. Based on these observations, we conclude that p38 MAPK plays a critical role in the induction of CCL2/CCL7/CCR2 system and the development of interstitial inflammation in RAS.

  14. Functional analysis of the MAPK pathways in fungi.

    Science.gov (United States)

    Martínez-Soto, Domingo; Ruiz-Herrera, José

    The Mitogen-Activated Protein Kinase (MAPK) signaling pathways constitute one of the most important and evolutionarily conserved mechanisms for the perception of extracellular information in all the eukaryotic organisms. The MAPK pathways are involved in the transfer to the cell of the information perceived from extracellular stimuli, with the final outcome of activation of different transcription factors that regulate gene expression in response to them. In all species of fungi, the MAPK pathways have important roles in their physiology and development; e.g. cell cycle control, mating, morphogenesis, response to different stresses, resistance to UV radiation and to temperature changes, cell wall assembly and integrity, degradation of cellular organelles, virulence, cell-cell signaling, fungus-plant interaction, and response to damage-associated molecular patterns (DAMPs). Considering the importance of the phylogenetically conserved MAPK pathways in fungi, an updated review of the knowledge on them is discussed in this article. This information reveals their importance, their distribution in fungal species evolutionarily distant and with different lifestyles, their organization and function, and the interactions occurring between different MAPK pathways, and with other signaling pathways, for the regulation of the most complex cellular processes. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. RasGRP1, but not RasGRP3, is required for efficient thymic β-selection and ERK activation downstream of CXCR4.

    Directory of Open Access Journals (Sweden)

    Dominic P Golec

    Full Text Available T cell development is a highly dynamic process that is driven by interactions between developing thymocytes and the thymic microenvironment. Upon entering the thymus, the earliest thymic progenitors, called CD4(-CD8(- 'double negative' (DN thymocytes, pass through a checkpoint termed "β-selection" before maturing into CD4(+CD8(+ 'double positive' (DP thymocytes. β-selection is an important developmental checkpoint during thymopoiesis where developing DN thymocytes that successfully express the pre-T cell receptor (TCR undergo extensive proliferation and differentiation towards the DP stage. Signals transduced through the pre-TCR, chemokine receptor CXCR4 and Notch are thought to drive β-selection. Additionally, it has long been known that ERK is activated during β-selection; however the pathways regulating ERK activation remain unknown. Here, we performed a detailed analysis of the β-selection events in mice lacking RasGRP1, RasGRP3 and RasGRP1 and 3. We report that RasGRP1 KO and RasGRP1/3 DKO deficient thymi show a partial developmental block at the early DN3 stage of development. Furthermore, DN3 thymocytes from RasGRP1 and RasGRP1/3 double knock-out thymi show significantly reduced proliferation, despite expression of the TCRβ chain. As a result of impaired β-selection, the pool of TCRβ(+ DN4 is significantly diminished, resulting in inefficient DN to DP development. Also, we report that RasGRP1 is required for ERK activation downstream of CXCR4 signaling, which we hypothesize represents a potential mechanism of RasGRP1 regulation of β-selection. Our results demonstrate that RasGRP1 is an important regulator of proliferation and differentiation at the β-selection checkpoint and functions downstream of CXCR4 to activate the Ras/MAPK pathway.

  16. ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway Inhibition | Office of Cancer Genomics

    Science.gov (United States)

    Intrinsic resistance and RTK-RAS-MAPK pathway reactivation has limited the effectiveness of MEK and RAF inhibitors (MAPKi) in RAS- and RAF-mutant cancers. To identify genes that modulate sensitivity to MAPKi, we performed genome-scale CRISPR-Cas9 loss-of-function screens in two KRAS mutant pancreatic cancer cell lines treated with the MEK1/2 inhibitor trametinib. Loss of CIC, a transcriptional repressor of ETV1, ETV4, and ETV5, promoted survival in the setting of MAPKi in cancer cells derived from several lineages.

  17. Expression microarray meta-analysis identifies genes associated with Ras/MAPK and related pathways in progression of muscle-invasive bladder transition cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Jonathan A Ewald

    Full Text Available The effective detection and management of muscle-invasive bladder Transition Cell Carcinoma (TCC continues to be an urgent clinical challenge. While some differences of gene expression and function in papillary (Ta, superficial (T1 and muscle-invasive (≥T2 bladder cancers have been investigated, the understanding of mechanisms involved in the progression of bladder tumors remains incomplete. Statistical methods of pathway-enrichment, cluster analysis and text-mining can extract and help interpret functional information about gene expression patterns in large sets of genomic data. The public availability of patient-derived expression microarray data allows open access and analysis of large amounts of clinical data. Using these resources, we investigated gene expression differences associated with tumor progression and muscle-invasive TCC. Gene expression was calculated relative to Ta tumors to assess progression-associated differences, revealing a network of genes related to Ras/MAPK and PI3K signaling pathways with increased expression. Further, we identified genes within this network that are similarly expressed in superficial Ta and T1 stages but altered in muscle-invasive T2 tumors, finding 7 genes (COL3A1, COL5A1, COL11A1, FN1, ErbB3, MAPK10 and CDC25C whose expression patterns in muscle-invasive tumors are consistent in 5 to 7 independent outside microarray studies. Further, we found increased expression of the fibrillar collagen proteins COL3A1 and COL5A1 in muscle-invasive tumor samples and metastatic T24 cells. Our results suggest that increased expression of genes involved in mitogenic signaling may support the progression of muscle-invasive bladder tumors that generally lack activating mutations in these pathways, while expression changes of fibrillar collagens, fibronectin and specific signaling proteins are associated with muscle-invasive disease. These results identify potential biomarkers and targets for TCC treatments, and

  18. Phosphorylated AKT and MAPK expression in primary tumours and in corresponding metastases and clinical outcome in colorectal cancer patients receiving irinotecan-cetuximab

    Directory of Open Access Journals (Sweden)

    Scartozzi Mario

    2012-04-01

    Full Text Available Abstract Background Clinical observations suggested that a non negligible proportion of patients, ranging from 40% to 70%, does not seem to benefit from the use of anti-EGFR targeted antibodies even in the absence of a mutation of the K- RAS gene. The EGFR pathway activation via the Ras-Raf-MAP-kinase and the protein-serine/threonine kinase AKT could determine resistance to anti-EGFR treatment. Methods We tested the interaction between phosphorylated AKT and MAPK expression in colorectal tumours and corresponding metastases and global outcome in K-RAS wild type patients receiving irinotecan-cetuximab. Results Seventy-two patients with histologically proven metastatic colorectal cancer, treated with Irinotecan and Cetuximab based chemotherapy, were eligible for our analysis. In metastases pAKT correlated with RR (9% vs. 58%, p = 0.004, PFS (2.3 months vs.9.2 months p  Discussion pAKT and pMAPK expression in metastases may modulate the activity of EGFR-targeted antibodies. We could speculate that in patients with pAKT and pMAPK metastases expression targeting these factors may be crucial.

  19. Ras oncogenes in oral cancer: the past 20 years.

    Science.gov (United States)

    Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan; Tsuchida, Nobuo

    2012-05-01

    Oral squamous cell carcinoma (OSCC) of head and neck is associated with high morbidity and mortality in both Western and Asian countries. Several risk factors for the development of oral cancer are very well established, including tobacco chewing, betel quid, smoking, alcohol drinking and human papilloma virus (HPV) infection. Apart from these risk factors, many genetic factors such as oncogenes, tumor suppressor genes and regulatory genes are identified to involve in oral carcinogenesis with these risk factors dependent and independent manner. Ras is one of the most frequently genetically deregulated oncogene in oral cancer. In this review, we analyze the past 22years of literature on genetic alterations such as mutations and amplifications of the isoforms of the ras oncogene in oral cancer. Further, we addressed the isoform-specific role of the ras in oral carcinogenesis. We also discussed how targeting the Akt and MEK, downstream effectors of the PI3K/Akt and MAPK pathways, respectively, would probably pave the possible molecular therapeutic target for the ras driven tumorigenesis in oral cancer. Analysis of these ras isoforms may critically enlighten specific role of a particular ras isoform in oral carcinogenesis, enhance prognosis and pave the way for isoform-specific molecular targeted therapy in OSCC. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Impaired binding of 14-3-3 to C-RAF in noonan syndrome suggests new approaches in diseases with increased ras signaling

    NARCIS (Netherlands)

    Molzan, M.; Schumacher, B.; Ottmann, C.; Baljuls, A.; Polzien, L.; Weyand, M.; Thiel, P.; Rose, R.; Rose, M.; Kuhenne, P.; Kaiser, M.; Rapp, U.R.; Kuhlmann, J.; Ottmann, C.

    2010-01-01

    The Ras-RAF-mitogen-activated protein kinase (Ras-RAF-MAPK) pathway is overactive in many cancers and in some developmental disorders. In one of those disorders, namely, Noonan syndrome, nine activating C-RAF mutations cluster around Ser(259), a regulatory site for inhibition by 14-3-3 proteins. We

  1. Role of pp60(c-src) and p(44/42) MAPK in ANG II-induced contraction of rat tonic gastrointestinal smooth muscles.

    Science.gov (United States)

    Puri, Rajinder N; Fan, Ya-Ping; Rattan, Satish

    2002-08-01

    We examined the role of mitogen-activated protein kinase (p(44/42) MAPK) in ANG II-induced contraction of lower esophageal sphincter (LES) and internal anal sphincter (IAS) smooth muscles. Studies were performed in the isolated smooth muscles and cells (SMC). ANG II-induced changes in the levels of phosphorylation of different signal transduction and effector proteins were determined before and after selective inhibitors. ANG II-induced contraction of the rat LES and IAS SMC was inhibited by genistein, PD-98059 [a specific inhibitor of MAPK kinases (MEK 1/2)], herbimycin A (a pp60(c-src) inhibitor), and antibodies to pp60(c-src) and p(120) ras GTPase-activating protein (p(120) rasGAP). ANG II-induced contraction of the tonic smooth muscles was accompanied by an increase in tyrosine phosphorylation of p(120) rasGAP. These were attenuated by genistein but not by PD-98059. ANG II-induced increase in phosphorylations of p(44/42) MAPKs and caldesmon was attenuated by both genistein and PD-98059. We conclude that pp60(c-src) and p(44/42) MAPKs play an important role in ANG II-induced contraction of LES and IAS smooth muscles.

  2. Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes.

    Science.gov (United States)

    Martinelli, Simone; Krumbach, Oliver H F; Pantaleoni, Francesca; Coppola, Simona; Amin, Ehsan; Pannone, Luca; Nouri, Kazem; Farina, Luciapia; Dvorsky, Radovan; Lepri, Francesca; Buchholzer, Marcel; Konopatzki, Raphael; Walsh, Laurence; Payne, Katelyn; Pierpont, Mary Ella; Vergano, Samantha Schrier; Langley, Katherine G; Larsen, Douglas; Farwell, Kelly D; Tang, Sha; Mroske, Cameron; Gallotta, Ivan; Di Schiavi, Elia; Della Monica, Matteo; Lugli, Licia; Rossi, Cesare; Seri, Marco; Cocchi, Guido; Henderson, Lindsay; Baskin, Berivan; Alders, Mariëlle; Mendoza-Londono, Roberto; Dupuis, Lucie; Nickerson, Deborah A; Chong, Jessica X; Meeks, Naomi; Brown, Kathleen; Causey, Tahnee; Cho, Megan T; Demuth, Stephanie; Digilio, Maria Cristina; Gelb, Bruce D; Bamshad, Michael J; Zenker, Martin; Ahmadian, Mohammad Reza; Hennekam, Raoul C; Tartaglia, Marco; Mirzaa, Ghayda M

    2018-01-17

    Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. The ras1 function of Schizosaccharomyces pombe mediates pheromone-induced transcription

    DEFF Research Database (Denmark)

    Nielsen, O; Davey, William John; Egel, R

    1992-01-01

    Loss of ras1+ function renders fission yeast cells unable to undergo morphological changes in response to mating pheromones, whereas cells carrying activated mutations in ras1 are hyper-responsive. This has led to the suggestion that the ras1 gene product plays a role in mating pheromone signal...

  4. Craniofacial and dental development in Costello syndrome.

    Science.gov (United States)

    Goodwin, Alice F; Oberoi, Snehlata; Landan, Maya; Charles, Cyril; Massie, Jessica C; Fairley, Cecilia; Rauen, Katherine A; Klein, Ophir D

    2014-06-01

    Costello syndrome (CS) is a RASopathy characterized by a wide range of cardiac, musculoskeletal, dermatological, and developmental abnormalities. The RASopathies are defined as a group of syndromes caused by activated Ras/mitogen-activated protein kinase (MAPK) signaling. Specifically, CS is caused by activating mutations in HRAS. Although receptor tyrosine kinase (RTK) signaling, which is upstream of Ras/MAPK, is known to play a critical role in craniofacial and dental development, the craniofacial and dental features of CS have not been systematically defined in a large group of individuals. In order to address this gap in our understanding and fully characterize the CS phenotype, we evaluated the craniofacial and dental phenotype in a large cohort (n = 41) of CS individuals. We confirmed that the craniofacial features common in CS include macrocephaly, bitemporal narrowing, convex facial profile, full cheeks, and large mouth. Additionally, CS patients have a characteristic dental phenotype that includes malocclusion with anterior open bite and posterior crossbite, enamel hypo-mineralization, delayed tooth development and eruption, gingival hyperplasia, thickening of the alveolar ridge, and high palate. Comparison of the craniofacial and dental phenotype in CS with other RASopathies, such as cardio-facio-cutaneous syndrome (CFC), provides insight into the complexities of Ras/MAPK signaling in human craniofacial and dental development. © 2014 Wiley Periodicals, Inc.

  5. Small GTPase R-Ras participates in neural tube formation in zebrafish embryonic spinal cord.

    Science.gov (United States)

    Ohata, Shinya; Uga, Hideko; Okamoto, Hitoshi; Katada, Toshiaki

    2018-06-27

    Ras related (R-Ras), a small GTPase, is involved in the maintenance of apico-basal polarity in neuroepithelial cells of the zebrafish hindbrain, axonal collapse in cultured murine hippocampal neurons, and maturation of blood vessels in adult mice. However, the role of R-Ras in neural tube formation remains unknown. Using antisense morpholino oligonucleotides (AMOs), we found that in the spinal cord of zebrafish embryos, the lumen was formed bilaterally in rras morphants, whereas it was formed at the midline in control embryos. As AMO can cause off-target effects, we generated rras mutant zebrafish lines using CRISPR/Cas9 technology. Although these rras mutant embryos did not have a bilateral lumen in the spinal cord, the following findings suggest that the phenotype is unlikely due to an off-target effect of rras AMO: 1) The rras morphant phenotype was rescued by an injection of AMO-resistant rras mRNA, and 2) a bilaterally segregated spinal cord was not observed in rras mutant embryos injected with rras AMO. The results suggest that the function of other ras family genes may be redundant in rras mutants. Previous research reported a bilaterally formed lumen in the spinal cord of zebrafish embryos with a mutation in a planar cell polarity (PCP) gene, van gogh-like 2 (vangl2). In the present study, in cultured cells, R-Ras was co-immunoprecipitated with Vangl2 but not with another PCP regulator, Pricke1. Interestingly, the interaction between R-Ras and Vangl2 was stronger in guanine-nucleotide free point mutants of R-Ras than in wild-type or constitutively active (GTP-bound) forms of R-Ras. R-Ras may regulate neural tube formation in cooperation with Vangl2 in the developing zebrafish spinal cord. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Trihydrophobin 1 Phosphorylation by c-Src Regulates MAPK/ERK Signaling and Cell Migration

    Science.gov (United States)

    Wu, Weibin; Sun, Zhichao; Wu, Jingwen; Peng, Xiaomin; Gan, Huacheng; Zhang, Chunyi; Ji, Lingling; Xie, Jianhui; Zhu, Haiyan; Ren, Shifang

    2012-01-01

    c-Src activates Ras-MAPK/ERK signaling pathway and regulates cell migration, while trihydrophobin 1 (TH1) inhibits MAPK/ERK activation and cell migration through interaction with A-Raf and PAK1 and inhibiting their kinase activities. Here we show that c-Src interacts with TH1 by GST-pull down assay, coimmunoprecipitation and confocal microscopy assay. The interaction leads to phosphorylation of TH1 at Tyr-6 in vivo and in vitro. Phosphorylation of TH1 decreases its association with A-Raf and PAK1. Further study reveals that Tyr-6 phosphorylation of TH1 reduces its inhibition on MAPK/ERK signaling, enhances c-Src mediated cell migration. Moreover, induced tyrosine phosphorylation of TH1 has been found by EGF and estrogen treatments. Taken together, our findings demonstrate a novel mechanism for the comprehensive regulation of Ras/Raf/MEK/ERK signaling and cell migration involving tyrosine phosphorylation of TH1 by c-Src. PMID:22238675

  7. Cognitive functioning in adults with Noonan syndrome

    NARCIS (Netherlands)

    Wingbermühle, P.A.M.; Roelofs, R.L.; Burgt, I. van der; Verhoeven, W.M.A.; Kessels, R.P.C.; Egger, J.I.M.

    2013-01-01

    Objective: Noonan syndrome (NS) is a common genetic disorder characterized by short stature, facial dysmorphia, congenital heart defects and a slightly lowered mean IQ. Genetic research has revealed mutations in nine genes in the RAS-MAPK pathway. Although research on cognitive functioning in NS is

  8. Ras promotes cell survival by antagonizing both JNK and Hid signals in the Drosophila eye.

    Science.gov (United States)

    Wu, Yue; Zhuang, Yuan; Han, Min; Xu, Tian; Deng, Kejing

    2009-10-20

    Programmed cell death, or apoptosis, is a fundamental physiological process during normal development or in pathological conditions. The activation of apoptosis can be elicited by numerous signalling pathways. Ras is known to mediate anti-apoptotic signals by inhibiting Hid activity in the Drosophila eye. Here we report the isolation of a new loss-of-function ras allele, rasKP, which causes excessive apoptosis in the Drosophila eye. This new function is likely to be mediated through the JNK pathway since the inhibition of JNK signalling can significantly suppress rasKP-induced apoptosis, whereas the removal of hid only weakly suppresses the phenotype. Furthermore, the reduction of JNK signalling together with the expression of the baculovirus caspase inhibitor p35, which blocks Hid activity, strongly suppresses the rasKP cell death. In addition, we find a strong correlation between rasKP-induced apoptosis in the eye disc and the activation of JNK signalling. In the Drosophila eye, Ras may protect cells from apoptosis by inhibiting both JNK and Hid activities. Surprisingly, reducing Ras activity in the wing, however, does not cause apoptosis but rather affects cell and organ size. Thus, in addition to its requirement for cell viability, Ras appears to mediate different biological roles depending on the developmental context and on the level of its expression.

  9. Galectin-3 mediates cross-talk between K-Ras and Let-7c tumor suppressor microRNA.

    Directory of Open Access Journals (Sweden)

    Ran Levy

    Full Text Available BACKGROUND: Galectin-3 (Gal-3 and active (GTP-bound K-Ras contribute to the malignant phenotype of many human tumors by increasing the rate of cell proliferation, survival, and migration. These Gal-3-mediated effects result from a selective binding to K-Ras.GTP, causing increased nanoclustering in the cell membrane and leading to robust Ras signaling. Regulation of the interactions between Gal-3 and active K-Ras is not fully understood. METHODS AND FINDINGS: To gain a better understanding of what regulates the critical interactions between these two proteins, we examined the role of Gal-3 in the regulation of K-Ras by using Gal-3-knockout mouse embryonic-fibroblasts (Gal-3-/- MEFs and/or Gal-3/Gal-1 double-knockout MEFs. We found that knockout of Gal-3 induced strong downregulation (∼60% of K-Ras and K-Ras.GTP. The downregulation was somewhat more marked in the double-knockout MEFs, in which we also detected robust inhibition(∼50% of ERK and Akt activation. These additional effects are probably attributable to inhibition of the weak interactions of K-Ras.GTP with Gal-1. Re-expression of Gal-3 reversed the phenotype of the Gal-3-/- MEFs and dramatically reduced the disappearance of K-Ras in the presence of cycloheximide to the levels seen in wild-type MEFs. Furthermore, phosphorylation of Gal-3 by casein kinase-1 (CK-1 induced translocation of Gal-3 from the nucleus to the cytoplasm and the plasma membrane, leading to K-Ras stabilization accompanied by downregulation of the tumor suppressor miRNA let-7c, known to negatively control K-Ras transcription. CONCLUSIONS: Our results suggest a novel cross-talk between Gal-3-mediated downregulation of let 7c microRNA (which in turn negatively regulates K-Ras transcription and elucidates the association among Gal-3 let-7c and K-Ras transcription/translation, cellular compartmentalization and activity.

  10. Activation of multiple signaling pathways causes developmental defects in mice with a Noonan syndrome–associated Sos1 mutation

    Science.gov (United States)

    Chen, Peng-Chieh; Wakimoto, Hiroko; Conner, David; Araki, Toshiyuki; Yuan, Tao; Roberts, Amy; Seidman, Christine E.; Bronson, Roderick; Neel, Benjamin G.; Seidman, Jonathan G.; Kucherlapati, Raju

    2010-01-01

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, unique facial features, and congenital heart disease. About 10%–15% of individuals with NS have mutations in son of sevenless 1 (SOS1), which encodes a RAS and RAC guanine nucleotide exchange factor (GEF). To understand the role of SOS1 in the pathogenesis of NS, we generated mice with the NS-associated Sos1E846K gain-of-function mutation. Both heterozygous and homozygous mutant mice showed many NS-associated phenotypes, including growth delay, distinctive facial dysmorphia, hematologic abnormalities, and cardiac defects. We found that the Ras/MAPK pathway as well as Rac and Stat3 were activated in the mutant hearts. These data provide in vivo molecular and cellular evidence that Sos1 is a GEF for Rac under physiological conditions and suggest that Rac and Stat3 activation might contribute to NS phenotypes. Furthermore, prenatal administration of a MEK inhibitor ameliorated the embryonic lethality, cardiac defects, and NS features of the homozygous mutant mice, demonstrating that this signaling pathway might represent a promising therapeutic target for NS. PMID:21041952

  11. Gain-of-function KCNJ6 Mutation in a Severe Hyperkinetic Movement Disorder Phenotype.

    Science.gov (United States)

    Horvath, Gabriella A; Zhao, Yulin; Tarailo-Graovac, Maja; Boelman, Cyrus; Gill, Harinder; Shyr, Casper; Lee, James; Blydt-Hansen, Ingrid; Drögemöller, Britt I; Moreland, Jacqueline; Ross, Colin J; Wasserman, Wyeth W; Masotti, Andrea; Slesinger, Paul A; van Karnebeek, Clara D M

    2018-05-29

    Here, we describe a fourth case of a human with a de novo KCNJ6 (GIRK2) mutation, who presented with clinical findings of severe hyperkinetic movement disorder and developmental delay, similar to the Keppen-Lubinsky syndrome but without lipodystrophy. Whole-exome sequencing of the patient's DNA revealed a heterozygous de novo variant in the KCNJ6 (c.512T>G, p.Leu171Arg). We conducted in vitro functional studies to determine if this Leu-to-Arg mutation alters the function of GIRK2 channels. Heterologous expression of the mutant GIRK2 channel alone produced an aberrant basal inward current that lacked G protein activation, lost K + selectivity and gained Ca 2+ permeability. Notably, the inward current was inhibited by the Na + channel blocker QX-314, similar to the previously reported weaver mutation in murine GIRK2. Expression of a tandem dimer containing GIRK1 and GIRK2(p.Leu171Arg) did not lead to any currents, suggesting heterotetramers are not functional. In neurons expressing p.Leu171Arg GIRK2 channels, these changes in channel properties would be expected to generate a sustained depolarization, instead of the normal G protein-gated inhibitory response, which could be mitigated by expression of other GIRK subunits. The identification of the p.Leu171Arg GIRK2 mutation potentially expands the Keppen-Lubinsky syndrome phenotype to include severe dystonia and ballismus. Our study suggests screening for dominant KCNJ6 mutations in the evaluation of patients with severe movement disorders, which could provide evidence to support a causal role of KCNJ6 in neurological channelopathies. Copyright © 2018. Published by Elsevier Ltd.

  12. K-RAS and N-RAS mutations in testicular germ cell tumors

    Directory of Open Access Journals (Sweden)

    Bekir Muhammet Hacioglu

    2017-05-01

    Full Text Available Testicular cancer is a relatively rare tumor type, accounting for approximately 1% of all cancers in men. However, among men aged between 15 and 40 years, testicular cancer is the most commonly diagnosed malignancy. Testicular germ cell tumors (TGCTs are classified as seminoma and non-seminoma. The RAS oncogene controls several cellular functions, including cell proliferation, apoptosis, migration, and differentiation. Thus, RAS signaling is important for normal germ cell development. Mutations of the Kirsten RAS (K-RAS gene are present in over 20% of all cancers. RAS gene mutations have also been reported in TGCTs. We investigated K-RAS and N-RAS mutations in seminoma and non-seminoma TGCT patients. A total of 24 (55% pure seminoma cases and 19 (45% non-seminoma cases were included in the study. K-RAS and N-RAS analyses were performed in our molecular pathology laboratory, using K-RAS and N-RAS Pyro Kit 24 V1 (Qiagen. In total, a RAS mutation was present in 12 patients (27%: 7 seminoma (29% and 5 non-seminoma cases (26% [p = 0.55]. A K-RAS mutation was present in 4 pure seminoma tumors (16% and 3 non-seminoma tumors (15% [p = 0.63], and an N-RAS mutation was observed in 4 seminoma tumors (16% and 3 non-seminoma tumors (15% [p = 0.63]. Both, K-RAS and N-RAS mutations were present in two patients: one with seminoma tumor and the other with non-seminoma tumor. To date, no approved targeted therapy is available for the treatment of TGCTs. The analysis of K-RAS and N-RAS mutations in these tumors may provide more treatment options, especially in platinum-resistant tumors.

  13. RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies.

    Science.gov (United States)

    Fang, Bingliang

    2016-01-01

    Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2C in lung cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancreatic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mutant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibitors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients. This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related studies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may be necessary to improve patients' outcomes through personalized precision medicine. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology

  14. miR-654-5p Targets GRAP to Promote Proliferation, Metastasis, and Chemoresistance of Oral Squamous Cell Carcinoma Through Ras/MAPK Signaling.

    Science.gov (United States)

    Lu, Meng; Wang, Chengyong; Chen, Weihui; Mao, Chuanqing; Wang, Jin

    2018-04-01

    Oral squamous cell carcinoma (OSCC) is characterized by rapid local migration and invasion. This study was aimed at clarifying the effect of miR-654-5p on progression of OSCC. miR-654-5p promoted proliferation, metastasis, and chemoresistance of OSCC in vitro and in vivo. Consistently, miR-654-5p was upregulated in late-stage OSCC and was correlated with poor prognosis of OSCC patients. Furthermore, miR-654-5p was mechanistically verified to target Grb-2-related adaptor protein (GRAP), accompanied by the activation of Ras/MAPK signaling and the facilitation of epithelial-mesenchymal transition in OSCC cells. GRAP was downregulated in T1-2 stage versus T3-4 stage head and neck squamous cell carcinoma (HNSC) and was negatively correlated with tumor-node-metastases (TNM) stage in HNSC patients based on The Cancer Genome Atlas (TCGA) analysis. In addition, GRAP was positively correlated with good prognosis in HNSC patients. Our findings suggest that the miR-654-5p/GRAP/Ras/Erk signaling pathway in OSCC cells might contribute to the underlying mechanism through which miR-654-5p participates in the regulation of OSCC progression. miR-654-5p, as a potential biomarker for the clinical diagnosis and prognosis of OSCC, may be an effective anticancer target for the treatment of OSCC.

  15. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling.

    Science.gov (United States)

    Shrestha, Y; Schafer, E J; Boehm, J S; Thomas, S R; He, F; Du, J; Wang, S; Barretina, J; Weir, B A; Zhao, J J; Polyak, K; Golub, T R; Beroukhim, R; Hahn, W C

    2012-07-19

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK MAPK pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified p21-activated kinase 1 (PAK1) as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 30--33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation.

  16. Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S

    Science.gov (United States)

    Stewart, Andrew K.; Shmukler, Boris E.; Vandorpe, David H.; Rivera, Alicia; Heneghan, John F.; Li, Xiaojin; Hsu, Ann; Karpatkin, Margaret; O'Neill, Allison F.; Bauer, Daniel E.; Heeney, Matthew M.; John, Kathryn; Kuypers, Frans A.; Gallagher, Patrick G.; Lux, Samuel E.; Brugnara, Carlo; Westhoff, Connie M.

    2011-01-01

    Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li+ and 86Rb+, with secondarily increased 86Rb+ influx sensitive to ouabain and to bumetanide. Increased RhAG-associated 14C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li+, 86Rb+, and 14C-MA were pharmacologically distinct, and Li+ uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH4+ and Gd3+. RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH3/NH4+, but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA+). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH4Cl, but MA/MA+ elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li+ substitution or bath addition of 5 mM NH4Cl or MA/MA+. These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH3/NH4+ and MA/MA+; 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA+ transport, and decreased NH3/NH4+-associated depolarization; and 3) RhAG transports NH3/NH4+ and MA/MA+ by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms. PMID:21849667

  17. Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an invasive pancreatic cancer cell phenotype

    Directory of Open Access Journals (Sweden)

    De Oliveira Tiago

    2012-04-01

    Full Text Available Abstract Background We have identified syndecan-2 as a protein potentially involved in perineural invasion of pancreatic adenocarcinoma (PDAC cells. Methods Syndecan-2 (SDC-2 expression was analyzed in human normal pancreas, chronic pancreatitis and PDAC tissues. Functional in vitro assays were carried out to determine its role in invasion, migration and signaling. Results SDC-2 was expressed in the majority of the tested pancreatic cancer cell lines while it was upregulated in nerve-invasive PDAC cell clones. There were 2 distinct expression patterns of SDC-2 in PDAC tissue samples: SDC-2 positivity in the cancer cell cytoplasm and a peritumoral expression. Though SDC-2 silencing (using specific siRNA oligonucleotides did not affect anchorage-dependent growth, it significantly reduced cell motility and invasiveness in the pancreatic cancer cell lines T3M4 and Su8686. On the transcriptional level, migration-and invasion-associated genes were down-regulated following SDC-2 RNAi. Furthermore, SDC-2 silencing reduced K-ras activity, phosphorylation of Src and - further downstream - phosphorylation of ERK2 while levels of the putative SDC-2 signal transducer p120GAP remained unaltered. Conclusion SDC-2 is a novel (perineural invasion-associated gene in PDAC which cooperates with K-ras to induce a more invasive phenotype.

  18. Effect of QSKL on MAPK and RhoA Pathways in a Rat Model of Heart Failure

    Directory of Open Access Journals (Sweden)

    Kai Xia

    2017-01-01

    Full Text Available Qishenkeli (QSKL is one of the Chinese medicine formulae for treating heart failure and has been shown to have an antifibrotic effect. However, the mechanism of its therapeutic effects remains unclear. In this study, we aimed to explore whether QSKL could exert an antifibrotic effect by attenuating ras homolog family member A (RhoA and mitogen activated protein kinase (MAPK pathways. Rats were randomly divided into sham group, model group, QSKL group, and positive control group. Heart failure was induced by ligation of the left ventricle anterior descending artery. Cardiac functions were measured by echocardiography and collagen deposition was assessed by Masson staining. Expressions of the key molecules involved in the RhoA and MAPK pathways were also measured. Twenty-one days after surgery, cardiac functions were severely impaired and collagen deposition was remarkable, while QSKL treatment could improve heart functions and alleviate collagen deposition. Further results demonstrated that the effects may be mediated by suppressing expressions of extracellular signal-regulated kinase (ERK and c-Jun N-terminal kinase (JNK. Moreover, expressions of RhoA, Rho-associated protein kinase 1/2 (ROCK1/2, and phosphorylated myosin light chain (p-MLC were also downregulated by QSKL compared with the model group. The cardioprotective mechanism of QSKL on heart failure is probably mediated by regulating both the MAPK and RhoA signaling pathways.

  19. A non-Mendelian MAPK-generated hereditary unit controlled by a second MAPK pathway in Podospora anserina.

    Science.gov (United States)

    Lalucque, Hervé; Malagnac, Fabienne; Brun, Sylvain; Kicka, Sébastien; Silar, Philippe

    2012-06-01

    The Podospora anserina PaMpk1 MAP kinase (MAPK) signaling pathway can generate a cytoplasmic and infectious element resembling prions. When present in the cells, this C element causes the crippled growth (CG) cell degeneration. CG results from the inappropriate autocatalytic activation of the PaMpk1 MAPK pathway during growth, whereas this cascade normally signals stationary phase. Little is known about the control of such prion-like hereditary units involved in regulatory inheritance. Here, we show that another MAPK pathway, PaMpk2, is crucial at every stage of the fungus life cycle, in particular those controlled by PaMpk1 during stationary phase, which includes the generation of C. Inactivation of the third P. anserina MAPK pathway, PaMpk3, has no effect on the development of the fungus. Mutants of MAPK, MAPK kinase, and MAPK kinase kinase of the PaMpk2 pathway are unable to present CG. This inability likely relies upon an incorrect activation of PaMpk1, although this MAPK is normally phosphorylated in the mutants. In PaMpk2 null mutants, hyphae are abnormal and PaMpk1 is mislocalized. Correspondingly, stationary phase differentiations controlled by PaMpk1 are defective in the mutants of the PaMpk2 cascade. Constitutive activation of the PaMpk2 pathway mimics in many ways its inactivation, including an effect on PaMpk1 localization. Analysis of double and triple mutants inactivated for two or all three MAPK genes undercover new growth and differentiation phenotypes, suggesting overlapping roles. Our data underscore the complex regulation of a prion-like element in a model organism.

  20. Identification of Differentially Expressed K-Ras Transcript Variants in Patients With Leiomyoma.

    Science.gov (United States)

    Zolfaghari, Nooshin; Shahbazi, Shirin; Torfeh, Mahnaz; Khorasani, Maryam; Hashemi, Mehrdad; Mahdian, Reza

    2017-10-01

    Molecular studies have demonstrated a wide range of gene expression variations in uterine leiomyoma. The rat sarcoma virus/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase (RAS/RAF/MAPK) is the crucial cellular pathway in transmitting external signals into nucleus. Deregulation of this pathway contributes to excessive cell proliferation and tumorigenesis. The present study aims to investigate the expression profile of the K-Ras transcripts in tissue samples from patients with leiomyoma. The patients were leiomyoma cases who had no mutation in mediator complex subunit 12 ( MED12) gene. A quantitative approach has been applied to determine the difference in the expression of the 2 main K-Ras messenger RNA (mRNA) variants. The comparison between gene expression levels in leiomyoma and normal myometrium group was performed using relative expression software tool. The expression of K-Ras4B gene was upregulated in leiomyoma group ( P = .016), suggesting the involvement of K-Ras4B in the disease pathogenesis. Pairwise comparison of the K-Ras4B expression between each leiomyoma tissue and its matched adjacent normal myometrium revealed gene upregulation in 68% of the cases. The expression of K-Ras4A mRNA was relatively upregulated in leiomyoma group ( P = .030). In addition, the mean expression of K-Ras4A gene in leiomyoma tissues relative to normal samples was 4.475 (95% confidence interval: 0.10-20.42; standard error: 0.53-12.67). In total, 58% of the cases showed more than 2-fold increase in K-Ras4A gene expression. Our results demonstrated increased expression of both K-Ras mRNA splicing variants in leiomyoma tissue. However, the ultimate result of KRAS expression on leiomyoma development depends on the overall KRAS isoform balance and, consequently, on activated signaling pathways.

  1. Effect of Repeated Electroacupuncture Intervention on Hippocampal ERK and p38MAPK Signaling in Neuropathic Pain Rats

    Directory of Open Access Journals (Sweden)

    Jun-ying Wang

    2015-01-01

    Full Text Available Results of our past studies showed that hippocampal muscarinic acetylcholine receptor (mAChR-1 mRNA and differentially expressed proteins participating in MAPK signaling were involved in electroacupuncture (EA induced cumulative analgesia in neuropathic pain rats, but the underlying intracellular mechanism remains unknown. The present study was designed to observe the effect of EA stimulation (EAS on hippocampal extracellular signal-regulated kinases (ERK and p38 MAPK signaling in rats with chronic constrictive injury (CCI of the sciatic nerve, so as to reveal its related intracellular targets in pain relief. After CCI, the thermal pain thresholds of the affected hind were significantly decreased compared with the control group (P<0.05. Following one and two weeks’ EAS of ST 36-GB34, the pain thresholds were significantly upregulated (P<0.05, and the effect of EA2W was remarkably superior to that of EA2D and EA1W (P<0.05. Correspondingly, CCI-induced decreased expression levels of Ras, c-Raf, ERK1 and p-ERK1/2 proteins, and p38 MAPK mRNA and p-p38MAPK protein in the hippocampus tissues were reversed by EA2W (P<0.05. The above mentioned results indicated that EA2W induced cumulative analgesic effect may be closely associated with its function in removing neuropathic pain induced suppression of intracellular ERK and p38MAPK signaling in the hippocampus.

  2. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    Science.gov (United States)

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  3. Inhibitors of Ras-SOS Interactions.

    Science.gov (United States)

    Lu, Shaoyong; Jang, Hyunbum; Zhang, Jian; Nussinov, Ruth

    2016-04-19

    Activating Ras mutations are found in about 30 % of human cancers. Ras activation is regulated by guanine nucleotide exchange factors, such as the son of sevenless (SOS), which form protein-protein interactions (PPIs) with Ras and catalyze the exchange of GDP by GTP. This is the rate-limiting step in Ras activation. However, Ras surfaces lack any evident suitable pockets where a molecule might bind tightly, rendering Ras proteins still 'undruggable' for over 30 years. Among the alternative approaches is the design of inhibitors that target the Ras-SOS PPI interface, a strategy that is gaining increasing recognition for treating Ras mutant cancers. Herein we focus on data that has accumulated over the past few years pertaining to the design of small-molecule modulators or peptide mimetics aimed at the interface of the Ras-SOS PPI. We emphasize, however, that even if such Ras-SOS therapeutics are potent, drug resistance may emerge. To counteract this development, we propose "pathway drug cocktails", that is, drug combinations aimed at parallel (or compensatory) pathways. A repertoire of classified cancer, cell/tissue, and pathway/protein combinations would be beneficial toward this goal. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Acquired resistance to cetuximab is associated with the overexpression of Ras family members and the loss of radiosensitization in head and neck cancer cells

    International Nuclear Information System (INIS)

    Saki, Mohammad; Toulany, Mahmoud; Rodemann, H. Peter

    2013-01-01

    Purpose: Cetuximab in combination with radiation therapy is used to treat patients with head and neck squamous cell carcinoma (HNSCC). In the present study, the mechanism of acquired resistance to cetuximab in HNSCC cells was investigated in vitro. Material and methods: The HNSCC cell lines UT5 and SAS and UT5 cells with acquired resistance to cetuximab (UT5R9) were used. The radiotoxicity potentials of cetuximab and inhibitors of PI3K, MAPK and farnesylation were tested using a clonogenic survival assay. Western blotting was used to evaluate protein expression. The levels of EGFR ligands were detected by ELISA. Results: Cetuximab inhibited proliferation and induced radiosensitization in UT5 cells but not in SAS cells. In comparison with UT5 cells, cetuximab-resistant SAS cells markedly overexpressed the K-Ras, H-Ras and N-Ras proteins, as detected by Western blotting. Resistance in UT5R9 cells was associated with the overexpression of the K-Ras, H-Ras and N-Ras proteins as well as an increase in the autocrine production of the EGFR ligands amphiregulin and transforming growth factor α (TGFα). UT5R9 cells were significantly more radioresistant than UT5 cells. Radioresistant UT5R9 cells were not radiosensitized by cetuximab, but knocking down H-RAS and N-RAS with siRNA and targeting Ras farnesylation using the farnesyltransferase inhibitor lonafarnib induced radiosensitization in these cells. Targeting PI3K and MEK revealed that the activation of the PI3K/Akt pathway but not the MAPK/ERK pathway is associated with radioresistance in UT5R9 cells. Conclusion: Targeting Ras and PI3K activity improves the outcome of irradiation in cetuximab-resistant HNSCC cell lines in vitro

  5. Objective studies of the face of Noonan, Cardio-facio-cutaneous, and Costello syndromes: A comparison of three disorders of the Ras/MAPK signaling pathway.

    Science.gov (United States)

    Allanson, Judith E

    2016-10-01

    Noonan, Cardio-facio-cutaneous, and Costello syndromes are disorders of the Ras/MAPK pathway that share many clinical features. This observational and anthropometric study was conducted to describe the key facial features of each syndrome in order to improve discrimination between the three conditions, particularly in young children where diagnosis is most challenging. Direct measurement of the head and face was used to enhance diagnostic accuracy, and identify the most unusual or specific dimensions. The Noonan syndrome cohort included 123 individuals, aged 6 months to 41 years. There were 20 children and adolescents with Cardio-facio-cutaneous syndrome, and 28 individuals with Costello syndrome, aged 1-32 years. The facial phenotypes of these syndromes, particularly Noonan syndrome, are well-described but objective data have not been published in peer-reviewed literature. In this study, subjective observations, in the main, were validated by anthropometry with one exception. In individuals with Costello syndrome, mouth width was normal, thus the impression of wide mouth is likely due to full lips or the mouth being viewed in relation to a narrow lower face. When the three conditions were compared objectively, syndrome-specific pattern profiles showed high concordance in early life. At older ages, Cardio-facio-cutaneous syndrome was distinguished by increased width of the mid/lower face, and reduced growth of maxillary and mandibular dimensions was noted in both Noonan and Costello syndromes. Despite substantial similarities in face shape in older individuals with these two conditions, bulbous nasal tip, full lips, and an apparently wide mouth in those with Costello Syndrome facilitate discrimination from Noonan syndrome. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Effects of Butyltins (BTs) on Mitogen-Activated-Protein Kinase Kinase Kinase (MAP3K) and Ras Activity in Human Natural Killer Cells

    Science.gov (United States)

    Celada, Lindsay J.; Whalen, Margaret M.

    2013-01-01

    Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT), diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally-infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to the activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 minutes of TBT exposure and the MAP3K, ASK1, after one hour exposures to TBT. In addition, our results suggest that both TBT and DBT are impacting the regulation of c-Raf. PMID:24038145

  7. Impact of MAPK Pathway Activation in BRAFV600 Melanoma on T Cell and Dendritic Cell Function

    Directory of Open Access Journals (Sweden)

    Patrick A. Ott

    2013-10-01

    Full Text Available Constitutive upregulation of the MAPK pathway by a BRAFV600 mutation occurs in about half of melanomas. This leads to increased oncogenic properties such as tumor cell invasion, metastatic potential, and resistance to apoptosis. Blockade of the MAPK pathway with highly specific kinase inhibitors induces unprecedented tumor response rates in patients with advanced BRAFV600 mutant melanoma. Immune checkpoint blockade with monoclonal antibodies targeting cytotoxic T-lymphocyte antigen 4 and programed death-1/PD-L1 has also demonstrated striking anti-tumor activity in patients with advanced melanoma. Tumor responses are likely limited by multiple additional layers of immune suppression in the tumor microenvironment. There is emerging preclinical and clinical evidence suggesting that MAPK inhibition has a beneficial effect on the immunosuppressive tumor microenvironment, providing a strong rationale for combined immunotherapy and MAPK pathway inhibition in melanoma. The T cell response has been the main focus in the studies reported to date. Since dendritic cells (DCs are important in the induction of tumor-specific T cell responses, the impact of MAPK pathway activation in melanoma on DC function is critical for the melanoma directed immune response. BRAFV600E melanoma cells modulate DCs through the MAPK pathway because its blockade in melanoma cells can reverse suppression of DC function. As both MEK/BRAF inhibition and immune checkpoint blockade have recently taken center stage in the treatment of melanoma, a deeper understanding of how MAPK pathway inhibition affects the tumor immune response is needed.

  8. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis.

    Science.gov (United States)

    Schnorr, J D; Holdcraft, R; Chevalier, B; Berg, C A

    2001-10-01

    Little is known about the genes that interact with Ras signaling pathways to regulate morphogenesis. The synthesis of dorsal eggshell structures in Drosophila melanogaster requires multiple rounds of Ras signaling followed by dramatic epithelial sheet movements. We took advantage of this process to identify genes that link patterning and morphogenesis; we screened lethal mutations on the second chromosome for those that could enhance a weak Ras1 eggshell phenotype. Of 1618 lethal P-element mutations tested, 13 showed significant enhancement, resulting in forked and fused dorsal appendages. Our genetic and molecular analyses together with information from the Berkeley Drosophila Genome Project reveal that 11 of these lines carry mutations in previously characterized genes. Three mutations disrupt the known Ras1 cell signaling components Star, Egfr, and Blistered, while one mutation disrupts Sec61beta, implicated in ligand secretion. Seven lines represent cell signaling and cytoskeletal components that are new to the Ras1 pathway; these are Chickadee (Profilin), Tec29, Dreadlocks, POSH, Peanut, Smt3, and MESK2, a suppressor of dominant-negative Ksr. A twelfth insertion disrupts two genes, Nrk, a "neurospecific" receptor tyrosine kinase, and Tpp, which encodes a neuropeptidase. These results suggest that Ras1 signaling during oogenesis involves novel components that may be intimately associated with additional signaling processes and with the reorganization of the cytoskeleton. To determine whether these Ras1 Enhancers function upstream or downstream of the Egf receptor, four mutations were tested for their ability to suppress an activated Egfr construct (lambdatop) expressed in oogenesis exclusively in the follicle cells. Mutations in Star and l(2)43Bb had no significant effect upon the lambdatop eggshell defect whereas smt3 and dock alleles significantly suppressed the lambdatop phenotype.

  9. Two cases of RIT1 associated Noonan syndrome: Further delineation of the clinical phenotype and review of the literature.

    Science.gov (United States)

    Milosavljević, Doris; Overwater, Eline; Tamminga, Saskia; de Boer, Karin; Elting, Mariet W; van Hoorn, Marion E; Rinne, Tuula; Houweling, Arjan C

    2016-07-01

    Mutations in RIT1, involved in the RAS-MAPK pathway, have recently been identified as a cause for Noonan syndrome. We present two patients with Noonan syndrome caused by a RIT1 mutation with novel phenotypic manifestations, severe bilateral lower limb lymphedema starting during puberty, and fetal hydrops resulting in intrauterine fetal death, respectively. Including our patients, a total of 52 patients have been reported with Noonan syndrome caused by a RIT1 mutation. Our report contributes to the delineation of the phenotype associated with RIT1 mutations and underlines that lymphatic involvement is part of this spectrum. In addition, we provide an overview of the currently described Noonan syndrome patients with RIT1 mutations in literature. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Molecular interaction between K-Ras and H-REV107 in the Ras signaling pathway.

    Science.gov (United States)

    Han, Chang Woo; Jeong, Mi Suk; Jang, Se Bok

    2017-09-16

    Ras proteins are small GTPases that serve as master moderators of a large number of signaling pathways involved in various cellular processes. Activating mutations in Ras are found in about one-third of cancers. H-REV107, a K-Ras binding protein, plays an important role in determining K-Ras function. H-REV107 is a member of the HREV107 family of class II tumor suppressor genes and a growth inhibitory Ras target gene that suppresses cellular growth, differentiation, and apoptosis. Expression of H-REV107 was strongly reduced in about 50% of human carcinoma cell lines. However, the specific molecular mechanism by which H-REV107 inhibits Ras is still unknown. In the present study, we suggest that H-REV107 forms a strong complex with activating oncogenic mutation Q61H K-Ras from various biochemical binding assays and modeled structures. In addition, the interaction sites between K-Ras and H-REV107 were predicted based on homology modeling. Here, we found that some structure-based mutants of the K-Ras disrupted the complex formation with H-REV107. Finally, a novel molecular mechanism describing K-Ras and H-REV107 binding is suggested and insights into new K-Ras effector target drugs are provided. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Morus alba Leaf Lectin (MLL) Sensitizes MCF-7 Cells to Anoikis by Inhibiting Fibronectin Mediated Integrin-FAK Signaling through Ras and Activation of P38 MAPK

    Science.gov (United States)

    Saranya, Jayaram; Shilpa, Ganesan; Raghu, Kozhiparambil G.; Priya, Sulochana

    2017-01-01

    Lectins are a unique class of carbohydrate binding proteins/glycoproteins, and many of them possess anticancer properties. They can induce cell cycle arrest and apoptosis, inhibit protein synthesis, telomerase activity and angiogenesis in cancer cells. In the present study, we have demonstrated the effect of Morus alba leaf lectin (MLL) on anoikis induction in MCF-7 cells. Anoikis induction in cancer cells has a significant role in preventing early stage metastasis. MLL treatment in monolayers of MCF-7 cells caused significant detachment of cells in a time and concentration dependent manner. The detached cells failed to re-adhere and grew even to culture plates coated with different matrix proteins. DNA fragmentation, membrane integrity studies, annexin V staining, caspase 9 activation and upregulation of Bax/Bad confirmed that the detached cells underwent apoptosis. Upregulation of matrix metalloproteinase 9 (MMP-9) caused a decrease in fibronectin (FN) production which facilitated the cells to detach by blocking the FN mediated downstream signaling. On treatment with MLL, we have observed downregulation of integrin expression, decreased phosphorylation of focal adhesion kinase (FAK), loss in FAK-integrin interaction and active Ras. MLL treatment downregulated the levels of phosphorylated Akt and PI3K. Also, we have studied the effect of MLL on two stress activated protein kinases p38 MAPK and JNK. p38 MAPK activation was found to be elevated, but there was no change in the level of JNK. Thus our study substantiated the possible antimetastatic effect of MLL by inducing anoikis in MCF-7 cells by activation of caspase 9 and proapoptotic Bax/Bad by blockage of FN mediated integrin/FAK signaling and partly by activation of p38 MAPK. PMID:28223935

  12. IKs Gain- and Loss-of-Function In Early-Onset Lone Atrial Fibrillation

    DEFF Research Database (Denmark)

    Steffensen, Annette Buur; Refsgaard, Lena; Andersen, Martin Nybo

    2015-01-01

    INTRODUCTION: Atrial fibrillation (AF) is the most frequent cardiac arrhythmia. The potassium current IKs is essential for cardiac repolarization. Gain-of-function mutation in KCNQ1, the gene encoding the pore-forming α-subunit of the IKs channel (KV 7.1), was the first ion channel dysfunction...... to be associated with familial AF. We hypothesized that early-onset lone AF is associated with a high prevalence of mutations in KCNQ1. METHODS AND RESULTS: We bidirectionally sequenced the entire coding sequence of KCNQ1 in 209 unrelated patients with early-onset lone AF (...-of-function phenotype. CONCLUSIONS: Mutations in the IKs channel leading to gain-of-function have previously been described in familial AF, yet this is the first time a loss-of-function mutation in KCNQ1 is associated with early-onset lone AF. These findings suggest that both gain-of function and loss...

  13. De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy

    DEFF Research Database (Denmark)

    Syrbe, Steffen; Hedrich, Ulrike B S; Riesch, Erik

    2015-01-01

    disability, delayed speech development and sometimes ataxia. Functional studies of the two mutations associated with this phenotype showed almost complete loss of function with a dominant-negative effect. Two further individuals presented with a different and more severe epileptic encephalopathy phenotype....... They carried mutations inducing a drastic gain-of-function effect leading to permanently open channels. These results establish KCNA2 as a new gene involved in human neurodevelopmental disorders through two different mechanisms, predicting either hyperexcitability or electrical silencing of KV1.2-expressing...

  14. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype

    Directory of Open Access Journals (Sweden)

    Pluk Helma

    2009-07-01

    Full Text Available Abstract Background The Warburg phenotype in cancer cells has been long recognized, but there is still limited insight in the consecutive metabolic alterations that characterize its establishment. We obtained better understanding of the coupling between metabolism and malignant transformation by studying mouse embryonic fibroblast-derived cells with loss-of-senescence or H-RasV12/E1A-transformed phenotypes at different stages of oncogenic progression. Results Spontaneous immortalization or induction of senescence-bypass had only marginal effects on metabolic profiles and viability. In contrast, H-RasV12/E1A transformation initially caused a steep increase in oxygen consumption and superoxide production, accompanied by massive cell death. During prolonged culture in vitro, cell growth rate increased gradually, along with tumor forming potential in in vitro anchorage-independent growth assays and in vivo tumor formation assays in immuno-deficient mice. Notably, glucose-to-lactic acid flux increased with passage number, while cellular oxygen consumption decreased. This conversion in metabolic properties was associated with a change in mitochondrial NAD+/NADH redox, indicative of decreased mitochondrial tricarboxic acid cycle and OXPHOS activity. Conclusion The high rate of oxidative metabolism in newly transformed cells is in marked contrast with the high glycolytic rate in cells in the later tumor stage. In our experimental system, with cells growing under ambient oxygen conditions in nutrient-rich media, the shift towards this Warburg phenotype occurred as a step-wise adaptation process associated with augmented tumorigenic capacity and improved survival characteristics of the transformed cells. We hypothesize that early-transformed cells, which potentially serve as founders for new tumor masses may escape therapies aimed at metabolic inhibition of tumors with a fully developed Warburg phenotype.

  15. MAPK cascades in guard cell signal transduction

    Directory of Open Access Journals (Sweden)

    Yuree eLee

    2016-02-01

    Full Text Available Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.

  16. Function of mammalian genes regulation cellular growth; Saibo zoshoku wo seigyosuru dobutsu saibo idenshi no kino kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K. [Nagoya University, Nagoya (Japan)

    1995-12-15

    Intracellular signaling from receptor tyrosine kindles in mammalian cells results in activation of a signal cascade that includes the guanine nucleotide binding protein Ras and the protein kinases Raf, MEK [Mitogen activated protein kindle (MAPK) or Extracellular signal regulated kinase (ERK) kinase] and MAPK. MAPK activation that is dependent on the coupling of Ras and Raf was reconstituted in yeast. Yeast genes were isolated that, when overexpressed, enhanced the function of Raf. One of them is identical to BMH 1, which encodes a protein similar to members of the mammalian 14-3-3 family. Bacterially synthesized mammalian 14-3-3 protein stimulated the activity of Raf prepared from yeast cells expressing c-Raf-1. Thus, the 14-3-3 protein may participate in or be required for activation of Raf. 9 refs., 2 figs.

  17. H-RAS, K-RAS, and N-RAS gene activation in human bladder cancers.

    Science.gov (United States)

    Przybojewska, B; Jagiello, A; Jalmuzna, P

    2000-08-01

    Bladder cancer is one of the leading causes of cancer death in most developed countries. In this work, 19 bladder cancer specimens, along with their infiltrations of the urinary bladder wall from the same patients, were examined for the presence of H-RAS, K-RAS, and N-RAS activation using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The H-RAS activation was found in 15 (about 84%) of the 19 bladder cancers studied. The same results were obtained in the infiltrating urinary bladder wall samples. N-RAS gene mutations were observed in all cases (except 1) in which H-RAS gene mutations were detected. The results suggest a strong relationship between H-RAS and N-RAS gene activation in bladder cancer. Changes in the K-RAS gene in bladder cancers seem to be a rare event; this is in agreement with findings of other authors. We found activation of the gene in one specimen of bladder cancer and its infiltration of the urinary bladder wall in the same patient.

  18. The Face of Noonan Syndrome: Does Phenotype Predict Genotype

    Science.gov (United States)

    Allanson, Judith E.; Bohring, Axel; Dorr, Helmuth-Guenther; Dufke, Andreas; Gillessen-Kaesbach, Gabrielle; Horn, Denise; König, Rainer; Kratz, Christian P.; Kutsche, Kerstin; Pauli, Silke; Raskin, Salmo; Rauch, Anita; Turner, Anne; Wieczorek, Dagmar; Zenker, Martin

    2011-01-01

    The facial photographs of 81 individuals with Noonan syndrome, from infancy to adulthood, have been evaluated by two dysmorphologists (JA and MZ), each of whom has considerable experience with disorders of the Ras/MAPK pathway. Thirty-two of this cohort have PTPN11 mutations, 21 SOS1 mutations, 11 RAF1 mutations, and 17 KRAS mutations. The facial appearance of each person was judged to be typical of Noonan syndrome or atypical. In each gene category both typical and unusual faces were found. We determined that some individuals with mutations in the most commonly affected gene, PTPN11, which is correlated with the cardinal physical features, may have a quite atypical face. Conversely, some individuals with KRAS mutations, which may be associated with a less characteristic intellectual phenotype and a resemblance to Costello and cardio-facio-cutaneous syndromes, can have a very typical face. Thus, the facial phenotype, alone, is insufficient to predict the genotype, but certain facial features may facilitate an educated guess in some cases. PMID:20602484

  19. Challenging a dogma: co-mutations exist in MAPK pathway genes in colorectal cancer.

    Science.gov (United States)

    Grellety, Thomas; Gros, Audrey; Pedeutour, Florence; Merlio, Jean-Philippe; Duranton-Tanneur, Valerie; Italiano, Antoine; Soubeyran, Isabelle

    2016-10-01

    Sequencing of genes encoding mitogen-activated protein kinase (MAPK) pathway proteins in colorectal cancer (CRC) has established as dogma that of the genes in a pathway only a single one is ever mutated. We searched for cases with a mutation in more than one MAPK pathway gene (co-mutations). Tumor tissue samples of all patients presenting with CRC, and referred between 01/01/2008 and 01/06/2015 to three French cancer centers for determination of mutation status of RAS/RAF+/-PIK3CA, were retrospectively screened for co-mutations using Sanger sequencing or next-generation sequencing. We found that of 1791 colorectal patients with mutations in the MAPK pathway, 20 had a co-mutation, 8 of KRAS/NRAS, and some even with a third mutation. More than half of the mutations were in codons 12 and 13. We also found 3 cases with a co-mutation of NRAS/BRAF and 9 with a co-mutation of KRAS/BRAF. In 2 patients with a co-mutation of KRAS/NRAS, the co-mutation existed in the primary as well as in a metastasis, which suggests that co-mutations occur early during carcinogenesis and are maintained when a tumor disseminates. We conclude that co-mutations exist in the MAPK genes but with low frequency and as yet with unknown outcome implications.

  20. Ras signaling in aging and metabolic regulation.

    Science.gov (United States)

    Slack, Cathy

    2017-12-07

    Aberrant signal transduction downstream of the Ras GTPase has a well-established role in tumorigenesis. Mutations that result in hyperactivation of Ras are responsible for a third of all human cancers. Hence, small molecule inhibitors of the Ras signal transduction cascade have been under intense focus as potential cancer treatments. In both invertebrate and mammalian models, emerging evidence has also implicated components of the Ras signaling pathway in aging and metabolic regulation. Here, I review the current evidence for Ras signaling in these newly discovered roles highlighting the interactions between the Ras pathway and other longevity assurance mechanisms. Defining the role of Ras signaling in maintaining age-related health may have important implications for the development of interventions that could not only increase lifespan but also delay the onset and/or progression of age-related functional decline.

  1. Normal p21Ras/MAP kinase pathway expression and function in PBMC from patients with polycystic ovary disease.

    Science.gov (United States)

    Buchs, A; Chagag, P; Weiss, M; Kish, E; Levinson, R; Aharoni, D; Rapoport, M J

    2004-04-01

    Polycystic ovary disease (PCOD) is associated with insulin resistance and increased prevalence of type II diabetes mellitus (T2DM). The p21Ras/MAP kinase is a major intracellular signaling pathway mediating insulin signaling in insulin responsive tissues. The expression, regulation and function of the p21Ras/MAP kinase pathway in PCOD patients were examined. Peripheral blood mononuclear cells (PBMC) were isolated from ten patients with PCOD and ten controls. The expression of p21Ras and its regulatory proteins; hSOS1 and p120GAP were studied. The basal and phytohemaglutinin (PHA) or insulin stimulated phosphorylation of MAP kinase was determined. Expression of p21Ras, and its regulatory proteins hSOS1 and p120GAP were similar in PCOD patients and controls. Basal, PHA and insulin stimulated phosphorylation of MAP kinase, were also comparable in the two groups as well as their PBMC proliferative response. These data indicate that the expression and overall function of the p21Ras/MAP kinase pathway remain intact in non-diabetic patients with PCOD.

  2. The inflammatory cytokine TNFα cooperates with Ras in elevating metastasis and turns WT-Ras to a tumor-promoting entity in MCF-7 cells

    International Nuclear Information System (INIS)

    Leibovich-Rivkin, Tal; Liubomirski, Yulia; Meshel, Tsipi; Abashidze, Anastasia; Brisker, Daphna; Solomon, Hilla; Rotter, Varda; Weil, Miguel; Ben-Baruch, Adit

    2014-01-01

    In the present study we determined the relative contribution of two processes to breast cancer progression: (1) Intrinsic events, such as activation of the Ras pathway and down-regulation of p53; (2) The inflammatory cytokines TNFα and IL-1β, shown in our published studies to be highly expressed in tumors of >80% of breast cancer patients with recurrent disease. Using MCF-7 human breast tumor cells originally expressing WT-Ras and WT-p53, we determined the impact of the above-mentioned elements and cooperativity between them on the expression of CXCL8 (ELISA, qRT-PCR), a member of a “cancer-related chemokine cluster” that we have previously identified. Then, we determined the mechanisms involved (Ras-binding-domain assays, Western blot, luciferase), and tested the impact of Ras + TNFα on angiogenicity (chorioallantoic membrane assays) and on tumor growth at the mammary fat pad of mice and on metastasis, in vivo. Using Ras G12V that recapitulates multiple stimulations induced by receptor tyrosine kinases, we found that Ras G12V alone induced CXCL8 expression at the mRNA and protein levels, whereas down-regulation of p53 did not. TNFα and IL-1β potently induced CXCL8 expression and synergized with Ras G12V , together leading to amplified CXCL8 expression. Testing the impact of WT-Ras, which is the common form in breast cancer patients, we found that WT-Ras was not active in promoting CXCL8; however, TNFα has induced the activation of WT-Ras: joining these two elements has led to cooperative induction of CXCL8 expression, via the activation of MEK, NF-κB and AP-1. Importantly, TNFα has led to increased expression of WT-Ras in an active GTP-bound form, with properties similar to those of Ras G12V . Jointly, TNFα + Ras activities have given rise to increased angiogenesis and to elevated tumor cell dissemination to lymph nodes. TNFα cooperates with Ras in promoting the metastatic phenotype of MCF-7 breast tumor cells, and turns WT-Ras into a tumor

  3. Activation of RAS/ERK alone is insufficient to inhibit RXRα function and deplete retinoic acid in hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ai-Guo, E-mail: wangaiguotl@hotmail.com; Song, Ya-Nan; Chen, Jun; Li, Hui-Ling; Dong, Jian-Yi; Cui, Hai-Peng; Yao, Liang; Li, Xue-Feng; Gao, Wen-Ting; Qiu, Ze-Wen; Wang, Fu-Jin; Wang, Jing-Yu, E-mail: wangjingyus@163.com

    2014-09-26

    Highlights: • The activation of RAS/ERK is insufficient to inhibit RXRα function and deplete RA. • The retinoid metabolism-related genes are down-regulated by ras oncogene. • The atRA has no effect on preventing hepatic tumorigenesis or curing the developed hepatic nodules. - Abstract: Activation of RAS/ERK signaling pathway, depletion of retinoid, and phosphorylation of retinoid X receptor alpha (RXRα) are frequent events found in liver tumors and thought to play important roles in hepatic tumorigenesis. However, the relationships among them still remained to be elucidated. By exploring the transgenic mouse model of hepatic tumorigenesis induced by liver-specific expression of H-ras12V oncogene, the activation of RAS/ERK, the mRNA expression levels of retinoid metabolism-related genes, the contents of retinoid metabolites, and phosphorylation of RXRα were determined. RAS/ERK signaling pathway was gradually and significantly activated in hepatic tumor adjacent normal liver tissues (P) and hepatic tumor tissues (T) of H-ras12V transgenic mice compared with normal liver tissues (Wt) of wild type mice. On the contrary, the mRNA expression levels of retinoid metabolism-related genes were significantly reduced in P and T compared with Wt. Interestingly, the retinoid metabolites 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (atRA), the well known ligands for nuclear transcription factor RXR and retinoic acid receptor (RAR), were significantly decreased only in T compared with Wt and P, although the oxidized polar metabolite of atRA, 4-keto-all-trans-retinoic-acid (4-keto-RA) was significantly decreased in both P and T compared with Wt. To our surprise, the functions of RXRα were significantly blocked only in T compared with Wt and P. Namely, the total protein levels of RXRα were significantly reduced and the phosphorylation levels of RXRα were significantly increased only in T compared with Wt and P. Treatment of H-ras12V transgenic mice at 5-week

  4. Increased p38-MAPK is responsible for chemotherapy resistance in human gastric cancer cells

    International Nuclear Information System (INIS)

    Guo, Xianling; Zhang, Baihe; Wu, Mengchao; Wei, Lixin; Ma, Nannan; Wang, Jin; Song, Jianrui; Bu, Xinxin; Cheng, Yue; Sun, Kai; Xiong, Haiyan; Jiang, Guocheng

    2008-01-01

    Chemoresistance is one of the main obstacles to successful cancer therapy and is frequently associated with Multidrug resistance (MDR). Many different mechanisms have been suggested to explain the development of an MDR phenotype in cancer cells. One of the most studied mechanisms is the overexpression of P-glycoprotein (P-gp), which is a product of the MDR1 gene. Tumor cells often acquire the drug-resistance phenotype due to upregulation of the MDR1 gene. Overexpression of MDR1 gene has often been reported in primary gastric adenocarcinoma. This study investigated the role of p38-MAPK signal pathway in vincristine-resistant SGC7901/VCR cells. P-gp and MDR1 RNA were detected by Western blot analysis and RT-PCR amplification. Mitgen-activated protein kinases and function of P-gp were demonstrated by Western blot and FACS Aria cytometer analysis. Ap-1 activity and cell apoptosis were detected by Dual-Luciferase Reporter Assay and annexin V-PI dual staining. The vincristine-resistant SGC7901/VCR cells with increased expression of the multidrug-resistance 1 (MDR1) gene were resistant to P-gp-related drug and P-gp-unrelated drugs. Constitutive increases of phosphorylated p38-MAPK and AP-1 activities were also found in the drug-resistant cells. Inhibition of p38-MAPK by SB202190 reduced activator protein-1 (AP-1) activity and MDR1 expression levels and increased the sensitivity of SGC7901/VCR cells to chemotherapy. Activation of the p38-MAPK pathway might be responsible for the modulation of P-glycoprotein-mediated and P-glycoprotein-unmediated multidrug resistance in the SGC7901/VCR cell line

  5. Mutation and phenotypic spectrum in patients with cardio-facio-cutaneous and Costello syndrome.

    NARCIS (Netherlands)

    Schulz, A.L.; Albrecht, B.; Arici, C.; Burgt, I. van der; Buske, A.; Gillessen-Kaesbach, G.; Heller, R.; Horn, D.; Hubner, C.A.; Korenke, C.G.; Konig, R.; Kress, W.; Kruger, G.; Meinecke, P.; Mucke, J.; Plecko, B.; Rossier, E.; Schinzel, A.; Schulze, A.; Seemanova, E.; Seidel, H.; Spranger, S.; Tuysuz, B.; Uhrig, S.; Wieczorek, D.; Kutsche, K.; Zenker, M.

    2008-01-01

    Cardio-facio-cutaneous (CFC) and Costello syndrome (CS) are congenital disorders with a significant clinical overlap. The recent discovery of heterozygous mutations in genes encoding components of the RAS-RAF-MAPK pathway in both CFC and CS suggested a similar underlying pathogenesis of these two

  6. Multiple giant cell lesions in patients with Noonan syndrome and cardio-facio-cutaneous syndrome

    Science.gov (United States)

    Neumann, Thomas E; Allanson, Judith; Kavamura, Ines; Kerr, Bronwyn; Neri, Giovanni; Noonan, Jacqueline; Cordeddu, Viviana; Gibson, Kate; Tzschach, Andreas; Krüger, Gabriele; Hoeltzenbein, Maria; Goecke, Timm O; Kehl, Hans Gerd; Albrecht, Beate; Luczak, Klaudiusz; Sasiadek, Maria M; Musante, Luciana; Laurie, Rohan; Peters, Hartmut; Tartaglia, Marco; Zenker, Martin; Kalscheuer, Vera

    2009-01-01

    Noonan syndrome (NS) and cardio-facio-cutaneous syndrome (CFCS) are related developmental disorders caused by mutations in genes encoding various components of the RAS-MAPK signaling cascade. NS is associated with mutations in the genes PTPN11, SOS1, RAF1, or KRAS, whereas CFCS can be caused by mutations in BRAF, MEK1, MEK2, or KRAS. The NS phenotype is rarely accompanied by multiple giant cell lesions (MGCL) of the jaw (Noonan-like/MGCL syndrome (NL/MGCLS)). PTPN11 mutations are the only genetic abnormalities reported so far in some patients with NL/MGCLS and in one individual with LEOPARD syndrome and MGCL. In a cohort of 75 NS patients previously tested negative for mutations in PTPN11 and KRAS, we detected SOS1 mutations in 11 individuals, four of whom had MGCL. To explore further the relevance of aberrant RAS-MAPK signaling in syndromic MGCL, we analyzed the established genes causing CFCS in three subjects with MGCL associated with a phenotype fitting CFCS. Mutations in BRAF or MEK1 were identified in these patients. All mutations detected in these seven patients with syndromic MGCL had previously been described in NS or CFCS without apparent MGCL. This study demonstrates that MGCL may occur in NS and CFCS with various underlying genetic alterations and no obvious genotype–phenotype correlation. This suggests that dysregulation of the RAS-MAPK pathway represents the common and basic molecular event predisposing to giant cell lesion formation in patients with NS and CFCS rather than specific mutation effects. PMID:18854871

  7. Multiple giant cell lesions in patients with Noonan syndrome and cardio-facio-cutaneous syndrome.

    Science.gov (United States)

    Neumann, Thomas E; Allanson, Judith; Kavamura, Ines; Kerr, Bronwyn; Neri, Giovanni; Noonan, Jacqueline; Cordeddu, Viviana; Gibson, Kate; Tzschach, Andreas; Krüger, Gabriele; Hoeltzenbein, Maria; Goecke, Timm O; Kehl, Hans Gerd; Albrecht, Beate; Luczak, Klaudiusz; Sasiadek, Maria M; Musante, Luciana; Laurie, Rohan; Peters, Hartmut; Tartaglia, Marco; Zenker, Martin; Kalscheuer, Vera

    2009-04-01

    Noonan syndrome (NS) and cardio-facio-cutaneous syndrome (CFCS) are related developmental disorders caused by mutations in genes encoding various components of the RAS-MAPK signaling cascade. NS is associated with mutations in the genes PTPN11, SOS1, RAF1, or KRAS, whereas CFCS can be caused by mutations in BRAF, MEK1, MEK2, or KRAS. The NS phenotype is rarely accompanied by multiple giant cell lesions (MGCL) of the jaw (Noonan-like/MGCL syndrome (NL/MGCLS)). PTPN11 mutations are the only genetic abnormalities reported so far in some patients with NL/MGCLS and in one individual with LEOPARD syndrome and MGCL. In a cohort of 75 NS patients previously tested negative for mutations in PTPN11 and KRAS, we detected SOS1 mutations in 11 individuals, four of whom had MGCL. To explore further the relevance of aberrant RAS-MAPK signaling in syndromic MGCL, we analyzed the established genes causing CFCS in three subjects with MGCL associated with a phenotype fitting CFCS. Mutations in BRAF or MEK1 were identified in these patients. All mutations detected in these seven patients with syndromic MGCL had previously been described in NS or CFCS without apparent MGCL. This study demonstrates that MGCL may occur in NS and CFCS with various underlying genetic alterations and no obvious genotype-phenotype correlation. This suggests that dysregulation of the RAS-MAPK pathway represents the common and basic molecular event predisposing to giant cell lesion formation in patients with NS and CFCS rather than specific mutation effects.

  8. Role of protein kinase C in TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells.

    Science.gov (United States)

    Abraha, Abraham B; Rana, Krupa; Whalen, Margaret M

    2010-11-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C(PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml),indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT.However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.

  9. Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components.

    Science.gov (United States)

    Şahin, Aslı; Held, Aaron; Bredvik, Kirsten; Major, Paxton; Achilli, Toni-Marie; Kerson, Abigail G; Wharton, Kristi; Stilwell, Geoff; Reenan, Robert

    2017-02-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies. Copyright © 2017 by the Genetics Society of America.

  10. Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rebecca Josowitz

    2016-09-01

    Full Text Available Germline mutations in BRAF cause cardio-facio-cutaneous syndrome (CFCS, whereby 40% of patients develop hypertrophic cardiomyopathy (HCM. As the role of the RAS/MAPK pathway in HCM pathogenesis is unclear, we generated a human induced pluripotent stem cell (hiPSC model for CFCS from three patients with activating BRAF mutations. By cell sorting for SIRPα and CD90, we generated a method to examine hiPSC-derived cell type-specific phenotypes and cellular interactions underpinning HCM. BRAF-mutant SIRPα+/CD90− cardiomyocytes displayed cellular hypertrophy, pro-hypertrophic gene expression, and intrinsic calcium-handling defects. BRAF-mutant SIRPα−/CD90+ cells, which were fibroblast-like, exhibited a pro-fibrotic phenotype and partially modulated cardiomyocyte hypertrophy through transforming growth factor β (TGFβ paracrine signaling. Inhibition of TGFβ or RAS/MAPK signaling rescued the hypertrophic phenotype. Thus, cell autonomous and non-autonomous defects underlie HCM due to BRAF mutations. TGFβ inhibition may be a useful therapeutic option for patients with HCM due to RASopathies or other etiologies.

  11. Coexistence of K-ras mutations and HPV infection in colon cancer

    Directory of Open Access Journals (Sweden)

    Tezol Ayda

    2006-05-01

    Full Text Available Abstract Background Activation of the ras genes or association with human papillomavirus infection have been extensively studied in colorectal cancer. However, the correlation between K-ras mutations and HPV in colorectal cancer has not been investigated yet. In this study we aimed to investigate the presence of K-ras mutations and their correlation with HPV infection in colon cancer. Methods K-ras mutations were analyzed by a mutagenic PCR assay and digestion with specific restriction enzymes to distinguish the wild-type and mutant codons. HPV infection was analyzed by PCR amplification and hybridization with specific probes by Southern blotting. Stattistical analyses were performed by the chi-square and Fisher's exact tests Results HPV gene fragments were detected in 43 tumors and 17 normal tissue samples. HPV 18 was the prevalent type in the tumor tissue. A mutation at codon 12 of the K-ras gene was present in 31 patients. 56% of the HPV-positive tumors also harbored a K-ras mutation. Codon 13 mutations were not observed. These data indicate that infection with high risk HPV types and mutational activation of the K-ras gene are frequent events in colorectal carcinogenesis. Conclusion Our findings suggest that mutational activation of the K-ras gene is a common event in colon carcinogenesis and that HPV infection may represent an important factor in the development of the premalignant lesions leading to the neoplastic phenotype.

  12. v-Ha-ras oncogene insertion: A model for tumor progression of human small cell lung cancer

    International Nuclear Information System (INIS)

    Mabry, M.; Nakagawa, Toshitaro; Nelkin, B.D.; McDowell, E.; Gesell, M.; Eggleston, J.C.; Casero, R.A. Jr.; Baylin, S.B.

    1988-01-01

    Small cell lung cancer (SCLC) manifests a range of phenotypes in culture that may be important in understanding its relationship to non-SCLCs and to tumor progression events in patients. Most SCLC-derived cell lines, termed classic SCLC lines, have properties similar to SCLC tumors in patients. To delineate further the relationships between these phenotypes and the molecular events involved, the authors inserted the v-Ha-ras gene in SCLC cell lines with (biochemical variant) and without (classic) an amplified c-myc gene. These two SCLC subtypes had markedly different phenotypic responses to similar levels of expression of v-Ha-ras RNA. No biochemical or morphologic changes were observed in classic SCLC cells. In contrast, in biochemical variant SCLC cells, v-Ha-ras expression induced features typical of large cell undifferentiated lung carcinoma. Expression of v-Ha-ras in biochemical variant SCLC cells directly demonstrates that important transitions can occur between phenotypes of human lung cancer cells and that these may play a critical role in tumor progression events in patients. The finding provide a model system to study molecular events involved in tumor progression steps within a series of related tumor types

  13. Receiver gain function: the actual NMR receiver gain

    OpenAIRE

    Mo, Huaping; Harwood, John S.; Raftery, Daniel

    2010-01-01

    The observed NMR signal size depends on the receiver gain parameter. We propose a receiver gain function to characterize how much the raw FID is amplified by the receiver as a function of the receiver gain setting. Although the receiver is linear for a fixed gain setting, the actual gain of the receiver may differ from what the gain setting suggests. Nevertheless, for a given receiver, we demonstrate that the receiver gain function can be calibrated. Such a calibration enables accurate compar...

  14. Comparing and contrasting Escherichia coli and Mycobacterium tuberculosis mechanosensitive channels (MscL) - New gain of function mutations in the loop region

    OpenAIRE

    Maurer, Joshua A.; Elmore, Donald E.; Lester, Henry A.; Dougherty, Dennis A.

    2000-01-01

    Sequence analysis of 35 putative MscL homologues was used to develop an optimal alignment for Escherichia coli and Mycobacterium tuberculosis MscL and to place these homologues into sequence subfamilies. By using this alignment, previously identified E. coli MscL mutants that displayed severe and very severe gain of function phenotypes were mapped onto the M. tuberculosis MscL sequence. Not all of the resulting M. tuberculosis mutants displayed a gain of function phenotype; for instance, norm...

  15. Role of protein kinase C in the TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells

    Science.gov (United States)

    Abraha, Abraham B.; Rana, Krupa; Whalen, Margaret M.

    2010-01-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposures of NK cells to tributyltin (TBT) greatly diminish their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in the NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C (PKC) as well as MAPK activity. The TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in the inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposures. TBT caused a 2–3 fold activation of PKC at concentrations ranging from 50–300 nM (16–98 ng/mL), indicating that activation of PKC occurs in response to TBT exposures. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that in NK cells where PKC activation was blocked there was no activation of the MAPK, p44/42 in response to TBT. However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including the activation of p44/42 by TBT in NK cells. PMID:20390410

  16. Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice.

    Science.gov (United States)

    Xiao, Z; Li, L; Li, Y; Zhou, W; Cheng, J; Liu, F; Zheng, P; Zhang, Y; Che, Y

    2014-05-22

    Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR-Ras-Raf-MEK-ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [(3)H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras-MAPK activity could be important in its anticancer activity.

  17. Switching of the positive feedback for RAS activation by a concerted function of SOS membrane association domains.

    Science.gov (United States)

    Nakamura, Yuki; Hibino, Kayo; Yanagida, Toshio; Sako, Yasushi

    2016-01-01

    Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS.

  18. p38 MAPK signaling in postnatal tendon growth and remodeling.

    Directory of Open Access Journals (Sweden)

    Andrew J Schwartz

    Full Text Available Tendon is a dynamic tissue whose structure and function is influenced by mechanical loading, but little is known about the fundamental mechanisms that regulate tendon growth and remodeling in vivo. Data from cultured tendon fibroblasts indicated that the p38 MAPK pathway plays an important role in tendon fibroblast proliferation and collagen synthesis in vitro. To gain greater insight into the mechanisms of tendon growth, and explore the role of p38 MAPK signaling in this process, we tested the hypotheses that inducing plantaris tendon growth through the ablation of the synergist Achilles tendon would result in rapid expansion of a neotendon matrix surrounding the original tendon, and that treatment with the p38 MAPK inhibitor SB203580 would prevent this growth. Rats were treated with vehicle or SB203580, and subjected to synergist ablation by bilateral tenectomy of the Achilles tendon. Changes in histological and biochemical properties of plantaris tendons were analyzed 3, 7, or 28 days after overload, and comparisons were made to non-overloaded animals. By 28 days after overload, tendon mass had increased by 30% compared to non-overloaded samples, and cross-sectional area (CSA increased by around 50%, with most of the change occurring in the neotendon. The expansion in CSA initially occurred through the synthesis of a hyaluronic acid rich matrix that was progressively replaced with mature collagen. Pericytes were present in areas of active tendon growth, but never in the original tendon ECM. Inhibition of p38 MAPK resulted in a profound decrease in IL6 expression, and had a modest effect on the expression of other ECM and cell proliferation genes, but had a negligible impact on overall tendon growth. The combined results from this study provided novel insights into tendon mechanobiology, and suggest that p38 MAPK signaling does not appear to be necessary for tendon growth in vivo.

  19. OCD-like behavior is caused by dysfunction of thalamo-amygdala circuits and upregulated TrkB/ERK-MAPK signaling as a result of SPRED2 deficiency.

    Science.gov (United States)

    Ullrich, M; Weber, M; Post, A M; Popp, S; Grein, J; Zechner, M; Guerrero González, H; Kreis, A; Schmitt, A G; Üçeyler, N; Lesch, K-P; Schuh, K

    2018-02-01

    Obsessive-compulsive disorder (OCD) is a common neuropsychiatric disease affecting about 2% of the general population. It is characterized by persistent intrusive thoughts and repetitive ritualized behaviors. While gene variations, malfunction of cortico-striato-thalamo-cortical (CSTC) circuits, and dysregulated synaptic transmission have been implicated in the pathogenesis of OCD, the underlying mechanisms remain largely unknown. Here we show that OCD-like behavior in mice is caused by deficiency of SPRED2, a protein expressed in various brain regions and a potent inhibitor of Ras/ERK-MAPK signaling. Excessive self-grooming, reflecting OCD-like behavior in rodents, resulted in facial skin lesions in SPRED2 knockout (KO) mice. This was alleviated by treatment with the selective serotonin reuptake inhibitor fluoxetine. In addition to the previously suggested involvement of cortico-striatal circuits, electrophysiological measurements revealed altered transmission at thalamo-amygdala synapses and morphological differences in lateral amygdala neurons of SPRED2 KO mice. Changes in synaptic function were accompanied by dysregulated expression of various pre- and postsynaptic proteins in the amygdala. This was a result of altered gene transcription and triggered upstream by upregulated tropomyosin receptor kinase B (TrkB)/ERK-MAPK signaling in the amygdala of SPRED2 KO mice. Pathway overactivation was mediated by increased activity of TrkB, Ras, and ERK as a specific result of SPRED2 deficiency and not elicited by elevated brain-derived neurotrophic factor levels. Using the MEK inhibitor selumetinib, we suppressed TrkB/ERK-MAPK pathway activity in vivo and reduced OCD-like grooming in SPRED2 KO mice. Altogether, this study identifies SPRED2 as a promising new regulator, TrkB/ERK-MAPK signaling as a novel mediating mechanism, and thalamo-amygdala synapses as critical circuitry involved in the pathogenesis of OCD.

  20. A novel rasopathy caused by recurrent de novo missense mutations in PPP1CB closely resembles Noonan syndrome with loose anagen hair.

    Science.gov (United States)

    Gripp, Karen W; Aldinger, Kimberly A; Bennett, James T; Baker, Laura; Tusi, Jessica; Powell-Hamilton, Nina; Stabley, Deborah; Sol-Church, Katia; Timms, Andrew E; Dobyns, William B

    2016-09-01

    Noonan syndrome is a rasopathy caused by mutations in multiple genes encoding components of the RAS/MAPK pathway. Despite its variable phenotype, limited genotype-phenotype correlations exist. Noonan syndrome with loose anagen hair (NS-LAH) is characterized by its distinctive hair anomalies, developmental differences, and structural brain abnormalities and is caused by a single recurrent missense SHOC2 mutation. SHOC2 forms a complex with protein phosphatase 1 (PP1C). Protein phosphatases counterbalance kinases and control activation of signaling proteins, such as the mitogen-activated protein kinases of the RAS/MAPK pathway. Here we report four patients with de novo missense mutations in protein phosphatase one catalytic subunit beta (PPP1CB), sharing a recognizable phenotype. Three individuals had the recurrent PPP1CB c.146G>C, p.Pro49Arg mutation, the fourth had a c.166G>C, p.Ala56Pro change. All had relative or absolute macrocephaly, low-set and posteriorly angulated ears, and developmental delay. Slow growing and/or sparse hair and/or an unruly hair texture was present in all. Three individuals had feeding difficulties requiring feeding tubes. One of two males had cryptorchidism, another had pectus excavatum. Short stature was present in three. A female with the recurrent mutation had a Dandy-Walker malformation and optic nerve hypoplasia. Mild ventriculomegaly occurred in all, cerebellar tonsillar ectopia was seen in two and progressed to Chiari 1 malformation in one individual. Based on the combination of phenotypic findings and PPP1CB's effect on RAF dephosphorylation within the RAS/MAPK pathway, this novel condition can be considered a rasopathy, most similar to NS-LAH. Collectively, these mutations meet the standardized criteria for pathogenicity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Genetic and proteomic evidence for roles of Drosophila SUMO in cell cycle control, Ras signaling, and early pattern formation.

    Directory of Open Access Journals (Sweden)

    Minghua Nie

    2009-06-01

    Full Text Available SUMO is a protein modifier that is vital for multicellular development. Here we present the first system-wide analysis, combining multiple approaches, to correlate the sumoylated proteome (SUMO-ome in a multicellular organism with the developmental roles of SUMO. Using mass-spectrometry-based protein identification, we found over 140 largely novel SUMO conjugates in the early Drosophila embryo. Enriched functional groups include proteins involved in Ras signaling, cell cycle, and pattern formation. In support of the functional significance of these findings, sumo germline clone embryos exhibited phenotypes indicative of defects in these same three processes. Our cell culture and immunolocalization studies further substantiate roles for SUMO in Ras signaling and cell cycle regulation. For example, we found that SUMO is required for efficient Ras-mediated MAP kinase activation upstream or at the level of Ras activation. We further found that SUMO is dynamically localized during mitosis to the condensed chromosomes, and later also to the midbody. Polo kinase, a SUMO substrate found in our screen, partially colocalizes with SUMO at both sites. These studies show that SUMO coordinates multiple regulatory processes during oogenesis and early embryogenesis. In addition, our database of sumoylated proteins provides a valuable resource for those studying the roles of SUMO in development.

  2. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype

    NARCIS (Netherlands)

    Toubiana, Julie; Okada, Satoshi; Hiller, Julia; Oleastro, Matias; Lagos Gomez, Macarena; Aldave Becerra, Juan Carlos; Ouachée-Chardin, Marie; Fouyssac, Fanny; Girisha, Katta Mohan; Etzioni, Amos; van Montfrans, Joris M.; Camcioglu, Yildiz; Kerns, Leigh Ann; Belohradsky, Bernd; Blanche, Stéphane; Bousfiha, Aziz; Rodriguez-Gallego, Carlos; Meyts, Isabelle; Kisand, Kai; Reichenbach, Janine; Renner, Ellen D; Rosenzweig, Sergio; Grimbacher, Bodo; van de Veerdonk, Frank L; Traidl-Hoffmann, Claudia; Picard, Capucine; Marodi, Laszlo; Morio, Tomohiro; Kobayashi, Masao; Lilic, Desa; Milner, Joshua D; Holland, Steven; Casanova, Jean-Laurent; Puel, Anne

    2016-01-01

    Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274

  3. RASAL3, a novel hematopoietic RasGAP protein, regulates the number and functions of NKT cells.

    Science.gov (United States)

    Saito, Suguru; Kawamura, Toshihiko; Higuchi, Masaya; Kobayashi, Takahiro; Yoshita-Takahashi, Manami; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Kanda, Yasuhiro; Kawamura, Hiroki; Jiang, Shuying; Naito, Makoto; Yoshizaki, Takumi; Takahashi, Masahiko; Fujii, Masahiro

    2015-05-01

    Ras GTPase-activating proteins negatively regulate the Ras/Erk signaling pathway, thereby playing crucial roles in the proliferation, function, and development of various types of cells. In this study, we identified a novel Ras GTPase-activating proteins protein, RASAL3, which is predominantly expressed in cells of hematopoietic lineages, including NKT, B, and T cells. We established systemic RASAL3-deficient mice, and the mice exhibited a severe decrease in NKT cells in the liver at 8 weeks of age. The treatment of RASAL3-deficient mice with α-GalCer, a specific agonist for NKT cells, induced liver damage, but the level was less severe than that in RASAL3-competent mice, and the attenuated liver damage was accompanied by a reduced production of interleukin-4 and interferon-γ from NKT cells. RASAL3-deficient NKT cells treated with α-GalCer in vitro presented augmented Erk phosphorylation, suggesting that there is dysregulated Ras signaling in the NKT cells of RASAL3-deficient mice. Taken together, these results suggest that RASAL3 plays an important role in the expansion and functions of NKT cells in the liver by negatively regulating Ras/Erk signaling, and might be a therapeutic target for NKT-associated diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A PTPN11 allele encoding a catalytically impaired SHP2 protein in a patient with a Noonan syndrome phenotype.

    Science.gov (United States)

    Edwards, Jonathan J; Martinelli, Simone; Pannone, Luca; Lo, Ivan Fai-Man; Shi, Lisong; Edelmann, Lisa; Tartaglia, Marco; Luk, Ho-Ming; Gelb, Bruce D

    2014-09-01

    The RASopathies are a relatively common group of phenotypically similar and genetically related autosomal dominant genetic syndromes caused by missense mutations affecting genes participating in the RAS/mitogen-activated protein kinase (MAPK) pathway that include Noonan syndrome (NS) and Noonan syndrome with multiple lentigines (NSML, formerly LEOPARD syndrome). NS and NSML can be difficult to differentiate during infancy, but the presence of multiple lentigines, café au lait spots, and specific cardiac defects facilitate the diagnosis. Furthermore, individual PTPN11 missense mutations are highly specific to each syndrome and engender opposite biochemical alterations on the function of SHP-2, the protein product of that gene. Here, we report on a 5-year-old male with two de novo PTPN11 mutations in cis, c.1471C>T (p.Pro491Ser), and c.1492C>T (p.Arg498Trp), which are associated with NS and NSML, respectively. This boy's phenotype is intermediate between NS and NSML with facial dysmorphism, short stature, mild global developmental delay, pulmonic stenosis, and deafness but absence of café au lait spots or lentigines. The double-mutant SHP-2 was found to be catalytically impaired. This raises the question of whether clinical differences between NS and NSML can be ascribed solely to the relative SHP-2 catalytic activity. © 2014 Wiley Periodicals, Inc.

  5. TPC2 polymorphisms associated with a hair pigmentation phenotype in humans result in gain of channel function by independent mechanisms.

    Science.gov (United States)

    Chao, Yu-Kai; Schludi, Verena; Chen, Cheng-Chang; Butz, Elisabeth; Nguyen, O N Phuong; Müller, Martin; Krüger, Jens; Kammerbauer, Claudia; Ben-Johny, Manu; Vollmar, Angelika M; Berking, Carola; Biel, Martin; Wahl-Schott, Christian A; Grimm, Christian

    2017-10-10

    Two-pore channels (TPCs) are endolysosomal cation channels. Two members exist in humans, TPC1 and TPC2. Functional roles associated with the ubiquitously expressed TPCs include VEGF-induced neoangiogenesis, LDL-cholesterol trafficking and degradation, physical endurance under fasting conditions, autophagy regulation, the acrosome reaction in sperm, cancer cell migration, and intracellular trafficking of pathogens such as Ebola virus or bacterial toxins (e.g., cholera toxin). In a genome-wide association study for variants associated with human pigmentation characteristics two coding variants of TPC2, rs35264875 (encoding M484L) and rs3829241 (encoding G734E), have been found to be associated with a shift from brown to blond hair color. In two recent follow-up studies a role for TPC2 in pigmentation has been further confirmed. However, these human polymorphic variants have not been functionally characterized until now. The development of endolysosomal patch-clamp techniques has made it possible to investigate directly ion channel activities and characteristics in isolated endolysosomal organelles. We applied this technique here to scrutinize channel characteristics of the polymorphic TPC2 variants in direct comparison with WT. We found that both polymorphisms lead to a gain of channel function by independent mechanisms. We next conducted a clinical study with more than 100 blond- and brown/black-haired individuals. We performed a genotype/phenotype analysis and subsequently isolated fibroblasts from WT and polymorphic variant carriers for endolysosomal patch-clamp experimentation to confirm key in vitro findings.

  6. Inhibition of RAS in diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Yacoub R

    2015-04-01

    Full Text Available Rabi Yacoub, Kirk N Campbell Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA Abstract: Diabetic kidney disease (DKD is a progressive proteinuric renal disorder in patients with type 1 or type 2 diabetes mellitus. It is a common cause of end-stage kidney disease worldwide, particularly in developed countries. Therapeutic targeting of the renin–angiotensin system (RAS is the most validated clinical strategy for slowing disease progression. DKD is paradoxically a low systematic renin state with an increased intrarenal RAS activity implicated in its pathogenesis. Angiotensin II (AngII, the main peptide of RAS, is not only a vasoactive peptide but functions as a growth factor, activating interstitial fibroblasts and mesangial and tubular cells, while promoting the synthesis of extracellular matrix proteins. AngII also promotes podocyte injury through increased calcium influx and the generation of reactive oxygen species. Blockade of the RAS using either angiotensin converting enzyme inhibitors, or angiotensin receptor blockers can attenuate progressive glomerulosclerosis in animal models, and slows disease progression in humans with DKD. In this review, we summarize the role of intrarenal RAS activation in the pathogenesis and progression of DKD and the rationale for RAS inhibition in this population. Keywords: renin–angiotensin system, diabetic kidney disease, angiotensin II, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers

  7. A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1.

    Science.gov (United States)

    Vercoulen, Yvonne; Kondo, Yasushi; Iwig, Jeffrey S; Janssen, Axel B; White, Katharine A; Amini, Mojtaba; Barber, Diane L; Kuriyan, John; Roose, Jeroen P

    2017-09-27

    RasGRPs are guanine nucleotide exchange factors that are specific for Ras or Rap, and are important regulators of cellular signaling. Aberrant expression or mutation of RasGRPs results in disease. An analysis of RasGRP1 SNP variants led to the conclusion that the charge of His 212 in RasGRP1 alters signaling activity and plasma membrane recruitment, indicating that His 212 is a pH sensor that alters the balance between the inactive and active forms of RasGRP1. To understand the structural basis for this effect we compared the structure of autoinhibited RasGRP1, determined previously, to those of active RasGRP4:H-Ras and RasGRP2:Rap1b complexes. The transition from the autoinhibited to the active form of RasGRP1 involves the rearrangement of an inter-domain linker that displaces inhibitory inter-domain interactions. His 212 is located at the fulcrum of these conformational changes, and structural features in its vicinity are consistent with its function as a pH-dependent switch.

  8. Sotos syndrome is associated with deregulation of the MAPK/ERK-signaling pathway.

    Directory of Open Access Journals (Sweden)

    Remco Visser

    Full Text Available Sotos syndrome (SoS is characterized by tall stature, characteristic craniofacial features and mental retardation. It is caused by haploinsufficiency of the NSD1 gene. In this study, our objective was to identify downstream effectors of NSD1 and to map these effectors in signaling pathways associated with growth. Genome-wide expression studies were performed on dermal fibroblasts from SoS patients with a confirmed NSD1 abnormality. To substantiate those results, phosphorylation, siRNA and transfection experiments were performed. A significant association was demonstrated with the Mitogen-Activated Protein Kinase (MAPK pathway. Members of the fibroblast growth factor family such as FGF4 and FGF13 contributed strongly to the differential expression in this pathway. In addition, a diminished activity state of the MAPK/ERK pathway was demonstrated in SoS. The Ras Interacting Protein 1 (RASIP1 was identified to exhibit upregulated expression in SoS. It was shown that RASIP1 dose-dependently potentiated bFGF induced expression of the MAPK responsive SBE reporter providing further support for a link between NSD1 and the MAPK/ERK signaling pathway. Additionally, we demonstrated NSD1 expression in the terminally differentiated hypertrophic chondrocytes of normal human epiphyseal growth plates. In short stature syndromes such as hypochondroplasia and Noonan syndrome, the activation level of the FGF-MAPK/ERK-pathway in epiphyseal growth plates is a determining factor for statural growth. In analogy, we propose that deregulation of the MAPK/ERK pathway in SoS results in altered hypertrophic differentiation of NSD1 expressing chondrocytes and may be a determining factor in statural overgrowth and accelerated skeletal maturation in SoS.

  9. Flavopiridol Synergizes with Sorafenib to Induce Cytotoxicity and Potentiate Antitumorigenic Activity in EGFR/HER-2 and Mutant RAS/RAF Breast Cancer Model Systems

    Directory of Open Access Journals (Sweden)

    Teddy S Nagaria

    2013-08-01

    Full Text Available Oncogenic receptor tyrosine kinase (RTK signaling through the Ras-Raf-Mek-Erk (Ras-MAPK pathway is implicated in a wide array of carcinomas, including those of the breast. The cyclin-dependent kinases (CDKs are implicated in regulating proliferative and survival signaling downstream of this pathway. Here, we show that CDK inhibitors exhibit an order of magnitude greater cytotoxic potency than a suite of inhibitors targeting RTK and Ras-MAPK signaling in cell lines representative of clinically recognized breast cancer (BC subtypes. Drug combination studies show that the pan-CDK inhibitor, flavopiridol (FPD, synergistically potentiated cytotoxicity induced by the Raf inhibitor, sorafenib (SFN. This synergy was most pronounced at sub-EC50 SFN concentrations in MDA-MB-231 (KRAS-G13D and BRAF-G464V mutations, MDA-MB-468 [epidermal growth factor receptor (EGFR overexpression], and SKBR3 [ErbB2/EGFR2 (HER-2 overexpression] cells but not in hormone-dependent MCF-7 and T47D cells. Potentiation of SFN cytotoxicity by FPD correlated with enhanced apoptosis, suppression of retinoblastoma (Rb signaling, and reduced Mcl-1 expression. SFN and FPD were also tested in an MDA-MB-231 mammary fat pad engraftment model of tumorigenesis. Mice treated with both drugs exhibited reduced primary tumor growth rates and metastatic tumor load in the lungs compared to treatment with either drug alone, and this correlated with greater reductions in Rb signaling and Mcl-1 expression in resected tumors. These findings support the development of CDK and Raf co-targeting strategies in EGFR/HER-2-overexpressing or RAS/RAF mutant BCs.

  10. An orthosteric inhibitor of the RAS-SOS interaction.

    Science.gov (United States)

    Nickerson, Seth; Joy, Stephen T; Arora, Paramjit S; Bar-Sagi, Dafna

    2013-01-01

    Rat sarcoma (RAS) proteins are signaling nodes that transduce extracellular cues into precise alterations in cellular physiology by engaging effector pathways. RAS signaling thus regulates diverse cell processes including proliferation, migration, differentiation, and survival. Owing to this central role in governing mitogenic signals, RAS pathway components are often dysregulated in human diseases. Targeted therapy of RAS pathways has generally not been successful, largely because of the robust biochemistry of the targets and their multifaceted network of molecular regulators. The rate-limiting step of RAS activation is Son of Sevenless (SOS)-mediated nucleotide exchange involving a single evolutionarily conserved catalytic helix from SOS. Structure function data of this mechanism provided a strong platform to design an SOS-derived, helically constrained peptide mimic as an inhibitor of the RAS-SOS interaction. In this chapter, we review RAS-SOS signaling dynamics and present evidence supporting the novel paradigm of inhibiting their interaction as a therapeutic strategy. We then describe a method of generating helically constrained peptide mimics of protein surfaces, which we have employed to inhibit the RAS-SOS active site interaction. The biochemical and functional properties of this SOS mimic support the premise that inhibition of RAS-nucleotide exchange can effectively block RAS activation and downstream signaling. © 2013 Elsevier Inc. All rights reserved.

  11. Possible involvement of MSX-2 homeoprotein in v-ras-induced transformation.

    Science.gov (United States)

    Takahashi, C; Akiyama, N; Kitayama, H; Takai, S; Noda, M

    1997-04-01

    A truncated MSX-2 homeoprotein was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in untransformed cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a full-length human MSX-2 cDNA and tested its activities in two cell systems: fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated MSX-2 cDNA interfered with the transforming activities of both v-Ki-ras and v-raf oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and truncated MSX-2 cDNA was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that the truncated version MSX-2 may act as a dominant suppressor of intact MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  12. miR-11 regulates pupal size of Drosophila melanogaster via directly targeting Ras85D.

    Science.gov (United States)

    Li, Yao; Li, Shengjie; Jin, Ping; Chen, Liming; Ma, Fei

    2017-01-01

    MicroRNAs play diverse roles in various physiological processes during Drosophila development. In the present study, we reported that miR-11 regulates pupal size during Drosophila metamorphosis via targeting Ras85D with the following evidences: pupal size was increased in the miR-11 deletion mutant; restoration of miR-11 in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant; ectopic expression of miR-11 in brain insulin-producing cells (IPCs) and whole body shows consistent alteration of pupal size; Dilps and Ras85D expressions were negatively regulated by miR-11 in vivo; miR-11 targets Ras85D through directly binding to Ras85D 3'-untranslated region in vitro; removal of one copy of Ras85D in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant. Thus, our current work provides a novel mechanism of pupal size determination by microRNAs during Drosophila melanogaster metamorphosis. Copyright © 2017 the American Physiological Society.

  13. Ras and relatives--job sharing and networking keep an old family together.

    Science.gov (United States)

    Ehrhardt, Annette; Ehrhardt, Götz R A; Guo, Xuecui; Schrader, John W

    2002-10-01

    Many members of the Ras superfamily of GTPases have been implicated in the regulation of hematopoietic cells, with roles in growth, survival, differentiation, cytokine production, chemotaxis, vesicle-trafficking, and phagocytosis. The well-known p21 Ras proteins H-Ras, N-Ras, K-Ras 4A, and K-Ras 4B are also frequently mutated in human cancer and leukemia. Besides the four p21 Ras proteins, the Ras subfamily of the Ras superfamily includes R-Ras, TC21 (R-Ras2), M-Ras (R-Ras3), Rap1A, Rap1B, Rap2A, Rap2B, RalA, and RalB. They exhibit remarkable overall amino acid identities, especially in the regions interacting with the guanine nucleotide exchange factors that catalyze their activation. In addition, there is considerable sharing of various downstream effectors through which they transmit signals and of GTPase activating proteins that downregulate their activity, resulting in overlap in their regulation and effector function. Relatively little is known about the physiological functions of individual Ras family members, although the presence of well-conserved orthologs in Caenorhabditis elegans suggests that their individual roles are both specific and vital. The structural and functional similarities have meant that commonly used research tools fail to discriminate between the different family members, and functions previously attributed to one family member may be shared with other members of the Ras family. Here we discuss similarities and differences in activation, effector usage, and functions of different members of the Ras subfamily. We also review the possibility that the differential localization of Ras proteins in different parts of the cell membrane may govern their responses to activation of cell surface receptors.

  14. Impact of The Protective Renin-Angiotensin System (RAS) on The Vasoreparative Function of CD34+ CACs in Diabetic Retinopathy

    Science.gov (United States)

    Duan, Yaqian; Moldovan, Leni; Miller, Rehae C.; Beli, Eleni; Salazar, Tatiana; Hazra, Sugata; Al-Sabah, Jude; Chalam, KV; Raghunandan, Sneha; Vyas, Ruchi; hide

    2016-01-01

    Purpose: In diabetes, the impaired vasoreparative function of Circulating Angiogenic Cells (CACs) is believed to contribute to the progression of diabetic retinopathy (DR). Accumulating evidence suggests that the protective arm of renin-angiotensin system (RAS) ACE2 Angiotensin-(1-7) Mas plays an important role in restoring the function of diabetic CACs. We examined the protective RAS in CACs in diabetic individuals with different stages of retinopathy. Methods: Study subjects (n43) were recruited as controls or diabetics with either no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR (PDR). Fundus photography and fluorescein angiograms were analyzed using Vessel Generation Analysis (VESGEN) software in a cohort of subjects. CD34+ CACs were isolated from peripheral blood of diabetics and control subjects. RAS gene expressions in CACs were measured by qPCR. The vasoreparative function of CACs was assessed by migration ability toward CXCL12 using the QCM 5M 96-well chemotaxis cell migration assay. Results: ACE2 gene is a key enzyme converting the deleterious Angiotensin II to the beneficial Angiotensin-(1-7). ACE2 expression in CACs from diabetic subjects without DR was increased compared to controls, suggestive of compensation (p0.0437). The expression of Mas (Angiotensin-(1-7) receptor) in CACs was also increased in diabetics without DR, while was reduced in NPDR compared to controls (p0.0002), indicating a possible loss of compensation of the protective RAS at this stage of DR. The presence of even mild NPDR was associated with CD34+ CAC migratory dysfunction. When pretreating CACs of DR subjects with Angiotensin-(1-7), migratory ability to a chemoattractant CXCL12 was restored (p0.0008). By VESGEN analysis, an increase in small vessel density was observed in NPDR subjects when compared with the controls. Conclusions: These data suggest the protective RAS axis within diabetic CACs may help maintain their vasoreparative potential

  15. p38gamma and p38delta mitogen activated protein kinases (MAPKs, new stars in the MAPK galaxy

    Directory of Open Access Journals (Sweden)

    Alejandra eEscós

    2016-04-01

    Full Text Available The protein kinases p38γ and p38δ belong to the p38 mitogen-activated protein kinase (MAPK family. p38MAPK signalling controls many cellular processes and is one of the most conserved mechanisms in eukaryotes for the cellular response to environmental stress and inflammation. Although p38γ and p38δ are widely expressed, it is likely that they perform specific functions in different tissues. Their involvement in human pathologies such as inflammation-related diseases or cancer is starting to be uncovered. In this article we give a general overview and highlight recent advances made in defining the functions of p38γ and p38δ, focusing in innate immunity and inflammation. We consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases and cancer

  16. 1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency

    Directory of Open Access Journals (Sweden)

    Natália Duarte Linhares

    Full Text Available Abstract Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS, we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients.

  17. Sequence analysis of the Ras-MAPK pathway genes SOS1, EGFR & GRB2 in silver foxes (Vulpes vulpes): candidate genes for hereditary hyperplastic gingivitis.

    Science.gov (United States)

    Clark, Jo-Anna B J; Tully, Sara J; Dawn Marshall, H

    2014-12-01

    Hereditary hyperplastic gingivitis (HHG) is an autosomal recessive disease that presents with progressive gingival proliferation in farmed silver foxes. Hereditary gingival fibromatosis (HGF) is an analogous condition in humans that is genetically heterogeneous with several known autosomal dominant loci. For one locus the causative mutation is in the Son of sevenless homologue 1 (SOS1) gene. For the remaining loci, the molecular mechanisms are unknown but Ras pathway involvement is suspected. Here we compare sequences for the SOS1 gene, and two adjacent genes in the Ras pathway, growth receptor bound protein 2 (GRB2) and epidermal growth factor receptor (EGFR), between HHG-affected and unaffected foxes. We conclude that the known HGF causative mutation does not cause HHG in foxes, nor do the coding regions or intron-exon boundaries of these three genes contain any candidate mutations for fox gum disease. Patterns of molecular evolution among foxes and other mammals reflect high conservation and strong functional constraints for SOS1 and GRB2 but reveal a lineage-specific pattern of variability in EGFR consistent with mutational rate differences, relaxed functional constraints, and possibly positive selection.

  18. Cost-effectiveness of RAS screening before monoclonal antibodies therapy in metastatic colorectal cancer based on FIRE3 Study

    Science.gov (United States)

    Wen, Feng; Yang, Yu; Zhang, Pengfei; Zhang, Jian; Zhou, Jing; Tang, Ruilei; Chen, Hongdou; Zheng, Hanrui; Fu, Ping; Li, Qiu

    2015-01-01

    The surprising results published by FIRE-3 revealed that the overall survival (OS) of RAS wild-type metastatic colorectal cancer (mCRC) patients treated with Cetuximab(Cmab) and FOLFIRI combination was prolonged to 33.1 months. The substantial increase in testing and treatment costs, however, impose a considerable health burden on patients and society. Hence the study was aimed to assess the cost-effectiveness of RAS screening before monoclonal antibodies (mAbs) therapy based on FIRE-3 study. Four groups were analyzed: group 1, patients with KRAS testing treated with Cmab and FOLFIRI; group 2, patients with RAS testing treated with Cmab and FOLFIRI; group 3, patients with KRAS testing treated with bevacizumab(Bmab) and FOLFIRI; group 4, patients with RAS testing treated with Bmab and FOLFIRI. A Markov model comprising 3 health states (progression-free survival, progressive disease and death) was built. The costs were calculated from a Chinese payer perspective, and survival was reported in quality-adjusted life-months (QALMs). Average total lifetime costs ranged from $104,682.44 (RAS-Bmab) to $136,867.44 (RAS-Cmab), while the survival gained varied from 16.88 QALMs in RAS-Bmab to 21.85 QALMs in RAS-Cmab. The cost per QALM was $6,263.86 for RAS-Cmab, $6,145.84 for KRAS-Bmab, $6,201.57 for RAS-Bmab and $6,960.70 for KRAS-Cmab respectively. The KRAS-Cmab strategy was dominated by the other 3 groups. The first-treatment cost of RAS-Cmab was the most influential one to the model. In all, the RAS screening prior to Cmab treatment in mCRC seems to be a cost-effective strategy in the time of monoclonal antibodies (mAbs) therapy with the most gained QALMs. PMID:26418570

  19. FLI-1 Flightless-1 and LET-60 Ras control germ line morphogenesis in C. elegans

    Directory of Open Access Journals (Sweden)

    Dentler William L

    2008-05-01

    Full Text Available Abstract Background In the C. elegans germ line, syncytial germ line nuclei are arranged at the cortex of the germ line as they exit mitosis and enter meiosis, forming a nucleus-free core of germ line cytoplasm called the rachis. Molecular mechanisms of rachis formation and germ line organization are not well understood. Results Mutations in the fli-1 gene disrupt rachis organization without affecting meiotic differentiation, a phenotype in C. elegans referred to here as the germ line morphogenesis (Glm phenotype. In fli-1 mutants, chains of meiotic germ nuclei spanned the rachis and were partially enveloped by invaginations of germ line plasma membrane, similar to nuclei at the cortex. Extensions of the somatic sheath cells that surround the germ line protruded deep inside the rachis and were associated with displaced nuclei in fli-1 mutants. fli-1 encodes a molecule with leucine-rich repeats and gelsolin repeats similar to Drosophila flightless 1 and human Fliih, which have been shown to act as cytoplasmic actin regulators as well as nuclear transcriptional regulators. Mutations in let-60 Ras, previously implicated in germ line development, were found to cause the Glm phenotype. Constitutively-active LET-60 partially rescued the fli-1 Glm phenotype, suggesting that LET-60 Ras and FLI-1 might act together to control germ line morphogenesis. Conclusion FLI-1 controls germ line morphogenesis and rachis organization, a process about which little is known at the molecular level. The LET-60 Ras GTPase might act with FLI-1 to control germ line morphogenesis.

  20. Ras mutations are rare in solitary cold and toxic thyroid nodules.

    Science.gov (United States)

    Krohn, K; Reske, A; Ackermann, F; Müller, A; Paschke, R

    2001-08-01

    Activation of ras proto-oncogenes as a result of point mutations is detectable in a significant percentage of most types of tumour. Similar to neoplasms of other organs, mutations of all three ras genes can be found in thyroid tumours. H-, K- and N-ras mutations have been detected in up to 20% of follicular adenomas and adenomatous nodules which were not functionally characterized. This raises the question as to whether ras mutations are specific for hypofunctional nodules and TSH receptor mutations for hyperfunctioning nodules. To investigate ras and TSH receptor mutations with respect to functional differentiation we studied 41 scintigraphically cold nodules and 47 toxic thyroid nodules. To address the likelihood of a somatic mutation we also studied the clonal origin of these tumours. Genomic DNA was extracted from nodular and surrounding tissue. Mutational hot spots in exons 1 and 2 of the H- and K-ras gene were PCR amplified and sequenced using big dye terminator chemistry. Denaturing gradient gel electrophoresis (DGGE) was used to verify sequencing results for the H-ras gene and to analyse the N-ras gene because its greater sensitivity in detecting somatic mutations. Clonality of nodular thyroid tissue was evaluated using X-Chromosome inactivation based on PCR amplification of the human androgen receptor locus. Monoclonal origin was detectable in 14 of 23 informative samples from cold thyroid nodules. In toxic thyroid nodules the frequency of clonal tissue was 20 in 30 informative cases. Only one point mutation could be found in the N-ras gene codon 61 (Gly to Arg) in a cold adenomatous nodule which was monoclonal. In toxic thyroid nodules no ras mutation was detectable. Our study suggests that ras mutations are rare in solitary cold and toxic thyroid nodules and that the frequent monoclonal origin of these tumours implies somatic mutations in genes other than H-, K- and N-ras.

  1. Absence of ERK5/MAPK7 delays tumorigenesis in Atm-/- mice.

    Science.gov (United States)

    Granados-Jaén, Alba; Angulo-Ibáñez, Maria; Rovira-Clavé, Xavier; Gamez, Celina Paola Vasquez; Soriano, Francesc X; Reina, Manuel; Espel, Enric

    2016-11-15

    Ataxia-telangiectasia mutated (ATM) is a cell cycle checkpoint kinase that upon activation by DNA damage leads to cell cycle arrest and DNA repair or apoptosis. The absence of Atm or the occurrence of loss-of-function mutations in Atm predisposes to tumorigenesis. MAPK7 has been implicated in numerous types of cancer with pro-survival and pro-growth roles in tumor cells, but its functional relation with tumor suppressors is not clear. In this study, we show that absence of MAPK7 delays death due to spontaneous tumor development in Atm-/- mice. Compared with Atm-/- thymocytes, Mapk7-/-Atm-/- thymocytes exhibited an improved response to DNA damage (increased phosphorylation of H2AX) and a restored apoptotic response after treatment of mice with ionizing radiation. These findings define an antagonistic function of ATM and MAPK7 in the thymocyte response to DNA damage, and suggest that the lack of MAPK7 inhibits thymic lymphoma growth in Atm-/- mice by partially restoring the DNA damage response in thymocytes.

  2. Fungal communication requires the MAK-2 pathway elements STE-20 and RAS-2, the NRC-1 adapter STE-50 and the MAP kinase scaffold HAM-5.

    Science.gov (United States)

    Dettmann, Anne; Heilig, Yvonne; Valerius, Oliver; Ludwig, Sarah; Seiler, Stephan

    2014-11-01

    Intercellular communication is critical for the survival of unicellular organisms as well as for the development and function of multicellular tissues. Cell-to-cell signaling is also required to develop the interconnected mycelial network characteristic of filamentous fungi and is a prerequisite for symbiotic and pathogenic host colonization achieved by molds. Somatic cell-cell communication and subsequent cell fusion is governed by the MAK-2 mitogen activated protein kinase (MAPK) cascade in the filamentous ascomycete model Neurospora crassa, yet the composition and mode of regulation of the MAK-2 pathway are currently unclear. In order to identify additional components involved in MAK-2 signaling we performed affinity purification experiments coupled to mass spectrometry with strains expressing functional GFP-fusion proteins of the MAPK cascade. This approach identified STE-50 as a regulatory subunit of the Ste11p homolog NRC-1 and HAM-5 as cell-communication-specific scaffold protein of the MAPK cascade. Moreover, we defined a network of proteins consisting of two Ste20-related kinases, the small GTPase RAS-2 and the adenylate cyclase capping protein CAP-1 that function upstream of the MAK-2 pathway and whose signals converge on the NRC-1/STE-50 MAP3K complex and the HAM-5 scaffold. Finally, our data suggest an involvement of the striatin interacting phosphatase and kinase (STRIPAK) complex, the casein kinase 2 heterodimer, the phospholipid flippase modulators YPK-1 and NRC-2 and motor protein-dependent vesicle trafficking in the regulation of MAK-2 pathway activity and function. Taken together, these data will have significant implications for our mechanistic understanding of MAPK signaling and for homotypic cell-cell communication in fungi and higher eukaryotes.

  3. Transformation by Oncogenic Ras Expands the Early Genomic Response to Transforming Growth Factor β in Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Carl E. Allen

    2008-10-01

    Full Text Available A substantial body of evidence implicates TGFβ as a tumor promoter in epithelial cells that have become resistant to its tumor suppressor activity. To better understand early, genome-wide TGFβ responses in cells resistant to growth inhibition by TGFβ, we used microarray analysis in a well-defined cell culture system of sensitive and resistant intestinal epithelial cells. TGFβ-regulated gene expression in TGFβ-growth-sensitive, nontransformed rat intestinal epithelial cells (RIE-1 was compared to expression in TGFβ-growth-resistant RIE cells stably transformed by oncogenic Ras(12V. Treatment of RIE-1 cells with 2 ng/ml TGFβ1 for 1 hour increased the expression of eight gene sequences by 2.6-fold or more, whereas eight were down regulated 2.6-fold. In RIE-Ras(12V cells, 42 gene sequences were upregulated and only 3 were down-regulated. Comparison of RIE and RIE-Ras(12V identified 37 gene sequences as unique, Ras-dependent genomic targets of TGFβ1. TGFβ-regulation of connective tissue growth factor and vascular endothelial growth factor, two genes up-regulated in RIE-Ras cells and previously implicated in tumor promotion, was independently confirmed and further characterized by Northern analysis. Our data indicate that overexpression of oncogenic Ras in intestinal epithelial cells confers a significantly expanded repertoire of robust, early transcriptional responses to TGFβ via signaling pathways yet to be fully elucidated but including the canonical Raf-1/MAPK/Erk pathway. Loss of sensitivity to growth inhibition by TGFβ does not abrogate TGFβ signaling and actually expands the early transcriptional response to TGFβ1. Expression of some of these genes may confer to Ras-transformed cells characteristics favorable for tumor promotion.

  4. Oxidative Stress Posttranslationally Regulates the Expression of Ha-Ras and Ki-Ras in Cultured Astrocytes

    Directory of Open Access Journals (Sweden)

    Samantha Messina

    2012-01-01

    Full Text Available Addition of hydrogen peroxide to cultured astrocytes induced a rapid and transient increase in the expression of Ha-Ras and Ki-Ras. Pull-down experiments with the GTP-Ras-binding domain of Raf-1 showed that oxidative stress substantially increased the activation of Ha-Ras, whereas a putative farnesylated activated form of Ki-Ras was only slightly increased. The increase in both Ha-Ras and Ki-Ras was insensitive to the protein synthesis inhibitor, cycloheximide, and was occluded by the proteasomal inhibitor, MG-132. In addition, exposure to hydrogen peroxide reduced the levels of ubiquitinated Ras protein, indicating that oxidative stress leads to a reduced degradation of both isoforms through the ubiquitin/proteasome pathway. Indeed, the late reduction in Ha-Ras and Ki-Ras was due to a recovery of proteasomal degradation because it was sensitive to MG-132. The late reduction of Ha-Ras levels was abrogated by compound PD98059, which inhibits the MAP kinase pathway, whereas the late reduction of Ki-Ras was unaffected by PD98059. We conclude that oxidative stress differentially regulates the expression of Ha-Ras and Ki-Ras in cultured astrocytes, and that activation of the MAP kinase pathway by oxidative stress itself or by additional factors may act as a fail-safe mechanism limiting a sustained expression of the potentially detrimental Ha-Ras.

  5. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte.

    Science.gov (United States)

    Kusminski, Christine M; Gallardo-Montejano, Violeta I; Wang, Zhao V; Hegde, Vijay; Bickel, Perry E; Dhurandhar, Nikhil V; Scherer, Philipp E

    2015-10-01

    Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte.

  6. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    Energy Technology Data Exchange (ETDEWEB)

    Su, L.-N.; Little, J.B. (Harvard School of Public Health, Boston, MA (United States))

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author).

  7. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    International Nuclear Information System (INIS)

    Su, L.-N.; Little, J.B.

    1992-01-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author)

  8. Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences

    KAUST Repository

    Frei dit Frey, Nicolas

    2014-06-30

    Background Mitogen-activated protein kinases (MAPKs) are key regulators of immune responses in animals and plants. In Arabidopsis, perception of microbe-associated molecular patterns (MAMPs) activates the MAPKs MPK3, MPK4 and MPK6. Increasing information depicts the molecular events activated by MAMPs in plants, but the specific and cooperative contributions of the MAPKs in these signalling events are largely unclear. Results In this work, we analyse the behaviour of MPK3, MPK4 and MPK6 mutants in early and late immune responses triggered by the MAMP flg22 from bacterial flagellin. A genome-wide transcriptome analysis reveals that 36% of the flg22-upregulated genes and 68% of the flg22-downregulated genes are affected in at least one MAPK mutant. So far MPK4 was considered as a negative regulator of immunity, whereas MPK3 and MPK6 were believed to play partially redundant positive functions in defence. Our work reveals that MPK4 is required for the regulation of approximately 50% of flg22-induced genes and we identify a negative role for MPK3 in regulating defence gene expression, flg22-induced salicylic acid accumulation and disease resistance to Pseudomonas syringae. Among the MAPK-dependent genes, 27% of flg22-upregulated genes and 76% of flg22-downregulated genes require two or three MAPKs for their regulation. The flg22-induced MAPK activities are differentially regulated in MPK3 and MPK6 mutants, both in amplitude and duration, revealing a highly interdependent network. Conclusions These data reveal a new set of distinct functions for MPK3, MPK4 and MPK6 and indicate that the plant immune signalling network is choreographed through the interplay of these three interwoven MAPK pathways.

  9. Ras and Rheb Signaling in Survival and Cell Death

    International Nuclear Information System (INIS)

    Ehrkamp, Anja; Herrmann, Christian; Stoll, Raphael; Heumann, Rolf

    2013-01-01

    One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively

  10. Ras and Rheb Signaling in Survival and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ehrkamp, Anja [Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum (Germany); Herrmann, Christian [Department of Physical Chemistry1, Protein Interaction, Ruhr University of Bochum, 44780 Bochum (Germany); Stoll, Raphael [Biomolecular NMR, Ruhr University of Bochum, 44780 Bochum (Germany); Heumann, Rolf, E-mail: rolf.heumann@rub.de [Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum (Germany)

    2013-05-28

    One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively.

  11. Co-occurrence of hypertrophic cardiomyopathy and myeloproliferative disorder in a neonate with Noonan syndrome carrying Thr73Ile mutation in PTPN11.

    Science.gov (United States)

    Yagasaki, Hideaki; Nakane, Takaya; Hasebe, Youhei; Watanabe, Atsushi; Kise, Hiroaki; Toda, Takako; Koizumi, Keiichi; Hoshiai, Minako; Sugita, Kanji

    2015-12-01

    Most cases of Noonan syndrome (NS) result from mutations in one of the RAS-MAPK signaling genes, including PTPN11, SOS1, KRAS, NRAS, RAF1, BRAF, SHOC2, MEK1 (MAP2K1), and CBL. Cardiovascular diseases of varying severity, such as pulmonary stenosis and hypertrophic cardiomyopathy (HCM), are common in NS patients. RAF1 mutations are most frequent in NS with HCM, while PTPN11 mutations are also well known. Thr73Ile is a gain-of-function mutation of PTPN11, which has been highly associated with juvenile myelomonocytic leukemia and NS/myeloproliferative disease (MPD), but has not previously been reported in HCM. Here, we report a Japanese female infant with NS carrying the PTPN11 T73I mutation with NS/MPD, complete atrio-ventricular septal defect, and rapidly progressive HCM. No other HCM-related mutations were detected in PTPN11, RAF1, KRAS, BRAF, and SHOC2. This patient provides additional information regarding the genotype-phenotype correlation for PTPN11 T73I mutation in NS. © 2015 Wiley Periodicals, Inc.

  12. PI3K: A Crucial Piece in the RAS Signaling Puzzle.

    Science.gov (United States)

    Krygowska, Agata Adelajda; Castellano, Esther

    2018-06-01

    RAS proteins are key signaling switches essential for control of proliferation, differentiation, and survival of eukaryotic cells. RAS proteins are mutated in 30% of human cancers. In addition, mutations in upstream or downstream signaling components also contribute to oncogenic activation of the pathway. RAS proteins exert their functions through activation of several signaling pathways and dissecting the contributions of these effectors in normal cells and in cancer is an ongoing challenge. In this review, we summarize our current knowledge about how RAS regulates type I phosphatidylinositol 3-kinase (PI3K), one of the main RAS effectors. RAS signaling through PI3K is necessary for normal lymphatic vasculature development and for RAS-induced transformation in vitro and in vivo, especially in lung cancer, where it is essential for tumor initiation and necessary for tumor maintenance. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Endothelium-Derived 5-Methoxytryptophan Protects Endothelial Barrier Function by Blocking p38 MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Ling-Yun Chu

    Full Text Available The endothelial junction is tightly controlled to restrict the passage of blood cells and solutes. Disruption of endothelial barrier function by bacterial endotoxins, cytokines or growth factors results in inflammation and vascular damage leading to vascular diseases. We have identified 5-methoxytryptophan (5-MTP as an anti-inflammatory factor by metabolomic analysis of conditioned medium of human fibroblasts. Here we postulated that endothelial cells release 5-MTP to protect the barrier function. Conditioned medium of human umbilical vein endothelial cells (HUVECs prevented endothelial hyperpermeability and VE-cadherin downregulation induced by VEGF, LPS and cytokines. We analyzed the metabolomic profile of HUVEC conditioned medium and detected 5-MTP but not melatonin, serotonin or their catabolites, which was confirmed by enzyme-linked immunosorbent assay. Addition of synthetic pure 5-MTP preserved VE-cadherin and maintained barrier function despite challenge with pro-inflammatory mediators. Tryptophan hydroxylase-1, an enzyme required for 5-MTP biosynthesis, was downregulated in HUVECs by pro-inflammatory mediators and it was accompanied by reduction of 5-MTP. 5-MTP protected VE-cadherin and prevented endothelial hyperpermeability by blocking p38 MAPK activation. A chemical inhibitor of p38 MAPK, SB202190, exhibited a similar protective effect as 5-MTP. To determine whether 5-MTP prevents vascular hyperpermeability in vivo, we evaluated the effect of 5-MTP administration on LPS-induced murine microvascular permeability with Evans blue. 5-MTP significantly prevented Evans blue dye leakage. Our findings indicate that 5-MTP is a new class of endothelium-derived molecules which protects endothelial barrier function by blocking p38 MAPK.

  14. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated ras oncogene and SV40 T-antigen.

    Science.gov (United States)

    Su, L N; Little, J B

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. Cells transfected with EJ ras alone showed no morphological alterations nor significant changes in radiosensitivity. Cell clones expressing ras and/or SV40 T-antigen showed a reduced requirement for serum supplements, an increase in aneuploidy and chromosomal aberrations, and enhanced growth in soft agar as an early cellular response to SV40 T-antigen expression. The sequential order of transfection with SV40 T-antigen and ras influenced radio-sensitivity but not the induction of morphological changes. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself.

  15. A Drosophila immune response against Ras-induced overgrowth

    Directory of Open Access Journals (Sweden)

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  16. NMR 1H,13C, 15N backbone and 13C side chain resonance assignment of the G12C mutant of human K-Ras bound to GDP.

    Science.gov (United States)

    Sharma, Alok K; Lee, Seung-Joo; Rigby, Alan C; Townson, Sharon A

    2018-05-02

    K-Ras is a key driver of oncogenesis, accounting for approximately 80% of Ras-driven human cancers. The small GTPase cycles between an inactive, GDP-bound and an active, GTP-bound state, regulated by guanine nucleotide exchange factors and GTPase activating proteins, respectively. Activated K-Ras regulates cell proliferation, differentiation and survival by signaling through several effector pathways, including Raf-MAPK. Oncogenic mutations that impair the GTPase activity of K-Ras result in a hyperactivated state, leading to uncontrolled cellular proliferation and tumorogenesis. A cysteine mutation at glycine 12 is commonly found in K-Ras associated cancers, and has become a recent focus for therapeutic intervention. We report here 1 H N, 15 N, and 13 C resonance assignments for the 19.3 kDa (aa 1-169) human K-Ras protein harboring an oncogenic G12C mutation in the GDP-bound form (K-RAS G12C-GDP ), using heteronuclear, multidimensional NMR spectroscopy. Backbone 1 H- 15 N correlations have been assigned for all non-proline residues, except for the first methionine residue.

  17. New insights into RAS biology reinvigorate interest in mathematical modeling of RAS signaling.

    Science.gov (United States)

    Erickson, Keesha E; Rukhlenko, Oleksii S; Posner, Richard G; Hlavacek, William S; Kholodenko, Boris N

    2018-03-05

    RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisition of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Absence of ERK5/MAPK7 delays tumorigenesis in Atm−/− mice

    Science.gov (United States)

    Rovira-Clavé, Xavier; Gamez, Celina Paola Vasquez; Soriano, Francesc X.; Reina, Manuel; Espel, Enric

    2016-01-01

    Ataxia-telangiectasia mutated (ATM) is a cell cycle checkpoint kinase that upon activation by DNA damage leads to cell cycle arrest and DNA repair or apoptosis. The absence of Atm or the occurrence of loss-of-function mutations in Atm predisposes to tumorigenesis. MAPK7 has been implicated in numerous types of cancer with pro-survival and pro-growth roles in tumor cells, but its functional relation with tumor suppressors is not clear. In this study, we show that absence of MAPK7 delays death due to spontaneous tumor development in Atm−/− mice. Compared with Atm−/− thymocytes, Mapk7−/−Atm−/− thymocytes exhibited an improved response to DNA damage (increased phosphorylation of H2AX) and a restored apoptotic response after treatment of mice with ionizing radiation. These findings define an antagonistic function of ATM and MAPK7 in the thymocyte response to DNA damage, and suggest that the lack of MAPK7 inhibits thymic lymphoma growth in Atm−/− mice by partially restoring the DNA damage response in thymocytes. PMID:27793024

  19. c-Fms signaling mediates neurofibromatosis Type-1 osteoclast gain-in-functions.

    Directory of Open Access Journals (Sweden)

    Yongzheng He

    Full Text Available Skeletal abnormalities including osteoporosis and osteopenia occur frequently in both pediatric and adult neurofibromatosis type 1 (NF1 patients. NF1 (Nf1 haploinsufficient osteoclasts and osteoclast progenitors derived from both NF1 patients and Nf1(+/- mice exhibit increased differentiation, migration, and bone resorptive capacity in vitro, mediated by hyperactivation of p21(Ras in response to limiting concentrations of macrophage-colony stimulating factor (M-CSF. Here, we show that M-CSF binding to its receptor, c-Fms, results in increased c-Fms activation in Nf1(+/ (- osteoclast progenitors, mediating multiple gain-in-functions through the downstream effectors Erk1/2 and p90RSK. PLX3397, a potent and selective c-Fms inhibitor, attenuated M-CSF mediated Nf1(+/- osteoclast migration by 50%, adhesion by 70%, and pit formation by 60%. In vivo, we administered PLX3397 to Nf1(+/- osteoporotic mice induced by ovariectomy (OVX and evaluated changes in bone mass and skeletal architecture. We found that PLX3397 prevented bone loss in Nf1(+/--OVX mice by reducing osteoclast differentiation and bone resorptive activity in vivo. Collectively, these results implicate the M-CSF/c-Fms signaling axis as a critical pathway underlying the aberrant functioning of Nf1 haploinsufficient osteoclasts and may provide a potential therapeutic target for treating NF1 associated osteoporosis and osteopenia.

  20. Ras Activity Oscillates in the Mouse Suprachiasmatic Nucleus and Modulates Circadian Clock Dynamics.

    Science.gov (United States)

    Serchov, Tsvetan; Jilg, Antje; Wolf, Christian T; Radtke, Ina; Stehle, Jörg H; Heumann, Rolf

    2016-04-01

    Circadian rhythms, generated in the mouse suprachiasmatic nucleus (SCN), are synchronized to the environmental day-night changes by photic input. The activation of the extracellular signal-regulated kinases 1 and 2 (ERK1,2) and cAMP response element-binding protein (CREB)-mediated transcription play a critical role in this photoentrainment. The small GTPase Ras is one of the major upstream regulators of the ERK1,2/CREB pathway. In contrast to the well-described role of Ras in structural and functional synaptic plasticity in the adult mouse brain, the physiological regulation of Ras by photic sensory input is yet unknown. Here, we describe for the first time a circadian rhythm of Ras activity in the mouse SCN. Using synRas transgenic mice, expressing constitutively activated V12-Ha-Ras selectively in neurons, we demonstrate that enhanced Ras activation causes shortening of the circadian period length. We found upregulated expression and decreased inhibitory phosphorylation of the circadian period length modulator, glycogen synthase kinase-3 beta (GSK3β), in the SCN of synRas mice. Conversely, downregulation of Ras activity by blocking its function with an antibody in oscillating cell cultures reduced protein levels and increased phosphorylation of GSK3β and lengthened the period of BMAL1 promoter-driven luciferase activity. Furthermore, enhanced Ras activity in synRas mice resulted in a potentiation of light-induced phase delays at early subjective night, and increased photic induction of pERK1,2/pCREB and c-Fos. In contrast, at late subjective night, photic activation of Ras/ERK1,2/CREB in synRas mice was not sufficient to stimulate c-Fos protein expression and phase advance the clock. Taken together, our results demonstrate that Ras activity fine tunes the period length and modulates photoentrainment of the circadian clock.

  1. Genetic alterations in Ki-ras and Ha-ras genes in Juvenile Nasopharyngeal Angiofibromas and head and neck cancer

    Directory of Open Access Journals (Sweden)

    Cláudia Malheiros Coutinho

    1999-05-01

    Full Text Available CONETXT: Ras gene mutations have been associated to a wide range of human solid tumors. Members of the ras gene family (Ki-ras, Ha-ras and N-ras are structurally related and code for a protein (p21 known to play an important role in the regulation of normal signal transduction and cell growth. The frequency of ras mutations is different from one type of tumor to another, suggesting that point mutations might be carcinogen-specific. OBJECTIVES: To study the occurrence of Ki-ras and Ha-ras mutations. We also studied the relative level of Ha-ras mRNA in 32 of the head and neck tumors. DESIGN: Case series. SETTING: University referral unit. PARTICIPANTS: 60 head and neck tumors and in 28 Juvenile Nasopharyngeal Angiofibromas (JNA. DIAGNOSTIC TEST: Using PCR-SSCP we examined the occurrence of Ki-ras and Ha-ras mutations. The relative level of Ha-ras mRNA was examined by Northern blot analysis. RESULTS: None of the head and neck tumors or JNA samples showed evidence of mutations within codons 12, 13, 59 and 61 of Ki-ras or Ha-ras genes. However, 17 (53% of the tumors where gene expression could be examined exhibited increased levels of Ha-ras mRNA compared with the normal tissue derived from the same patient. CONCLUSIONS: Our results demonstrate for the first time that mutations of Ki-ras and Ha-ras genes are not associated with the development of JNA and confirm previous reports indicating that activating ras mutations are absent or rarely involved in head and neck tumors from western world patients. Furthermore, our findings suggest that overexpression of Ha-ras, rather than mutations, might be an important factor in the development and progression of head and neck tumors.

  2. Use of p38 MAPK Inhibitors for the Treatment of Werner Syndrome

    Directory of Open Access Journals (Sweden)

    Mark C. Bagley

    2010-06-01

    Full Text Available Werner syndrome provides a convincing model for aspects of the normal ageing phenotype and may provide a suitable model for therapeutic interventions designed to combat the ageing process. Cultured primary fibroblast cells from Werner syndrome patients provide a powerful model system to study the link between replicative senescence in vitro and in vivo pathophysiology. Genome instability, together with an increased pro-oxidant state, and frequent replication fork stalling, all provide plausible triggers for intracellular stress in Werner syndrome cells, and implicates p38 MAPK signaling in their shortened replicative lifespan. A number of different p38 MAPK inhibitor chemotypes have been prepared rapidly and efficiently using microwave heating techniques for biological study in Werner syndrome cells, including SB203580, VX-745, RO3201195, UR-13756 and BIRB 796, and their selectivity and potency evaluated in this cellular context. Werner syndrome fibroblasts treated with a p38 MAPK inhibitor reveal an unexpected reversal of the accelerated ageing phenotype. Thus the study of p38 inhibition and its effect upon Werner pathophysiology is likely to provide new revelations into the biological mechanisms operating in cellular senescence and human ageing in the future.

  3. Regulation of an H-ras-related transcript by parathyroid hormone in rat osteosarcoma cells

    Science.gov (United States)

    Scott, D. K.; Weaver, W. R.; Clohisy, J. C.; Brakenhoff, K. D.; Kahn, A. J.; Partridge, N. C.

    1992-01-01

    The rat osteosarcoma cell line UMR 106-01 is a commonly used model system for the study of osteoblast function. However, it also expresses a phenotype characteristic of transformed cells. To test whether the latter could be accounted for by aberrant oncogene expression, we probed Northern blots of UMR and other osteoblastic cells with a panel of oncogene probes. These blots, when probed with a cDNA specific for v-H-ras, revealed a 7.0-kilobase (kb) H-ras-related transcript (designated HRRT) in UMR 106-01 cells that was not expressed in other osteoblastic cells. Osteoblast-enriched calvarial cells expressed the typical 1.1-kb H-ras mRNA, which was absent in UMR cells. Additionally, Western blots of lysates of UMR cells documented the presence of three proteins immunologically related to H-rasp21. To determine whether HRRT represented a recombinant retrovirus product, Northern blots were probed with a cDNA specific for the highly conserved gag-pol region of Moloney murine leukemia virus. These blots showed parallel cross-reactivity with an apparently identical transcript of 7.0 kb. The 7.0-kb transcripts detected by both v-H-ras and gag-pol probes declined to the same extent after treatment with concentrations of PTH known to inhibit proliferation of these cells. PTH regulated the abundance of HRRT in a time- and dose-dependent manner, with greatest repression of the transcript after 8 h of treatment with 10(-8) M PTH. The decrease in HRRT could not be completely accounted for by changes in transcriptional activity, as determined by nuclear run-on assays.(ABSTRACT TRUNCATED AT 250 WORDS).

  4. Activated platelet-derived growth factor β receptor and Ras-mitogen-activated protein kinase pathway in natural bovine urinary bladder carcinomas.

    Science.gov (United States)

    Corteggio, Annunziata; Di Geronimo, Ornella; Roperto, Sante; Roperto, Franco; Borzacchiello, Giuseppe

    2012-03-01

    Bovine papillomavirus types 1 or 2 (BPV-1/2) are involved in the aetiopathogenesis of bovine urinary bladder cancer. BPV-1/2 E5 activates the platelet-derived growth factor β receptor (PDGFβR). The aim of this study was to analyse the Ras/mitogen-activated protein kinase (MAPK) pathway in relation to activation of PDGFβR in natural bovine urinary bladder carcinomas. Co-immunoprecipitation and Western blot analysis demonstrated that recruitment of growth factor receptor bound protein 2 (GRB-2) and Sos-1 to the activated PDGFβR was increased in carcinomas compared to normal tissues. Higher grade bovine urinary bladder carcinomas were associated with activation of Ras, but not with activation of downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (Mek 1/2) or extracellular signal-regulated kinase (Erk 1/2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Cyclic AMP signalling in Dictyostelium : G-proteins activate separate Ras pathways using specific RasGEFs

    NARCIS (Netherlands)

    Kae, Helmut; Kortholt, Arjan; Rehmann, Holger; Insall, RobertH.; Van Haastert, Peter J. M.; Spiegelman, George B.; Weeks, Gerald

    In general, mammalian Ras guanine nucleotide exchange factors (RasGEFs) show little substrate specificity, although they are often thought to regulate specific pathways. Here, we provide in vitro and in vivo evidence that two RasGEFs can each act on specific Ras proteins. During Dictyostelium

  6. The MAPK ERK5, but not ERK1/2, inhibits the progression of monocytic phenotype to the functioning macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuening [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States); Pesakhov, Stella [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Harrison, Jonathan S [Department of Medicine, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08903 (United States); Kafka, Michael; Danilenko, Michael [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Studzinski, George P, E-mail: studzins@njms.rutgers.edu [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States)

    2015-01-01

    Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D{sub 3} (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML. - Highlights: • ERK5 has at least some functions in AML cells which are distinct from those of ERK1/2. • ERK5 activity negatively controls the expression of M-CSFR. • ERK5 retards the progression of differentiation from monocyte to functional macrophage.

  7. Sorafenib paradoxically activates the RAS/RAF/ERK pathway in polyclonal human NK cells during expansion and thereby enhances effector functions in a dose- and time-dependent manner.

    Science.gov (United States)

    Lohmeyer, J; Nerreter, T; Dotterweich, J; Einsele, H; Seggewiss-Bernhardt, R

    2018-03-24

    Natural killer (NK) cells play a major role in host immunity against leukaemia and lymphoma. However, clinical trials applying NK cells have not been as efficient as hoped for. Patients treated with rapidly accelerated fibrosarcoma (RAF) inhibitors exhibit increased tumour infiltration by immune cells, suggesting that a combination of RAF inhibitors with immunotherapy might be beneficial. As mitogen-activated protein kinases (MAPKs) such as raf-1 proto-oncogene, serine/threonine kinase (CRAF) regulate NK cell functions, we performed an in-vitro investigation on the potential of clinically relevant short-acting tyrosine kinase inhibitors (TKIs) as potential adjuvants for NK cell therapy: NK cells from healthy human blood donors were thus treated with sorafenib, sunitinib or the pan-RAF inhibitor ZM336372 during ex-vivo expansion. Functional outcomes assessed after washout of the drugs included cytokine production, degranulation, cytotoxicity, apoptosis induction and signal transduction with/without target cell contact. Paradoxically, sorafenib enhanced NK cell effector functions in a time- and dose-dependent manner by raising the steady-state activation level. Of note, this did not lead to NK cell exhaustion, but enhanced activity against target cells such as K562 or Daudis mediated via the RAS/RAF/extracellular-regulated kinase (ERK) pathway, but not via protein kinase B (AKT). Our data will pave the path to develop a rationale for the considered use of RAF inhibitors such as sorafenib for pre-activation in NK cell-based adoptive immune therapy. © 2018 British Society for Immunology.

  8. Oncogene Mimicry as a Mechanism of Primary Resistance to BRAF Inhibitors

    Directory of Open Access Journals (Sweden)

    Martin L. Sos

    2014-08-01

    Full Text Available Despite the development of potent RAF/mitogen-activated protein kinase (MAPK pathway inhibitors, only a fraction of BRAF-mutant patients benefit from treatment with these drugs. Using a combined chemogenomics and chemoproteomics approach, we identify drug-induced RAS-RAF-MEK complex formation in a subset of BRAF-mutant cancer cells characterized by primary resistance to vemurafenib. In these cells, autocrine interleukin-6 (IL-6 secretion may contribute to the primary resistance phenotype via induction of JAK/STAT3 and MAPK signaling. In a subset of cell lines, combined IL-6/MAPK inhibition is able to overcome primary resistance to BRAF-targeted therapy. Overall, we show that the signaling plasticity exerted by primary resistant BRAF-mutant cells is achieved by their ability to mimic signaling features of oncogenic RAS, a strategy that we term “oncogene mimicry.” This model may guide future strategies for overcoming primary resistance observed in these tumors.

  9. Renal Artery Stenosis (RAS) Case study

    International Nuclear Information System (INIS)

    Zaater, M.K.

    2012-01-01

    Renal Artery Stenosis (RAS), is one of the causes of secondary hypertension; there are many causes of renal artery stenosis, as atherosclerosis of the renal artery which account for 90% of cases of RAS; fibromuscular dysplasia accounts for 10% of RAS. Various causes of thrombophilia either due congenital causes or acquired causes and can lead to RAS. Our patient was presented by acute attack of epistaxis and hypertension. Angiography of the Renal Arteries,are showed no sign of renal artery stenosis. However, the right kidney showed upper pole infarction, and the left kidney showed evidence of functional lower pole renal artery stenosis, although there is no anatomical stenosis detected in angiography. Work up for the cause of thrombophilia did not help in the diagnosis, which may be due to an undiscovered cause of thrombophilia

  10. Mutational analysis of a ras catalytic domain

    DEFF Research Database (Denmark)

    Willumsen, B M; Papageorge, A G; Kung, H F

    1986-01-01

    localization. We speculate that this latter region interacts with the putative cellular target of ras. The results suggest that transforming ras proteins require membrane localization, guanosine nucleotide binding, and an additional undefined function that may represent interaction with their target....

  11. Proteomic analysis uncovers a metabolic phenotype in C. elegans after nhr-40 reduction of function

    International Nuclear Information System (INIS)

    Pohludka, Michal; Simeckova, Katerina; Vohanka, Jaroslav; Yilma, Petr; Novak, Petr; Krause, Michael W.; Kostrouchova, Marta; Kostrouch, Zdenek

    2008-01-01

    Caenorhabditis elegans has an unexpectedly large number (284) of genes encoding nuclear hormone receptors, most of which are nematode-specific and are of unknown function. We have exploited comparative two-dimensional chromatography of synchronized cultures of wild type C. elegans larvae and a mutant in nhr-40 to determine if proteomic approaches will provide additional insight into gene function. Chromatofocusing, followed by reversed-phase chromatography and mass spectrometry, identified altered chromatographic patterns for a set of proteins, many of which function in muscle and metabolism. Prompted by the proteomic analysis, we find that the penetrance of the developmental phenotypes in the mutant is enhanced at low temperatures and by food restriction. The combination of our phenotypic and proteomic analysis strongly suggests that NHR-40 provides a link between metabolism and muscle development. Our results highlight the utility of comparative two-dimensional chromatography to provide a relatively rapid method to gain insight into gene function

  12. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function.

    Science.gov (United States)

    Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A

    2016-02-04

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.

  13. R-Ras regulates migration through an interaction with filamin A in melanoma cells.

    Directory of Open Access Journals (Sweden)

    Joanna E Gawecka

    2010-06-01

    Full Text Available Changes in cell adhesion and migration in the tumor microenvironment are key in the initiation and progression of metastasis. R-Ras is one of several small GTPases that regulate cell adhesion and migration on the extracellular matrix, however the mechanism has not been completely elucidated. Using a yeast two-hybrid approach we sought to identify novel R-Ras binding proteins that might mediate its effects on integrins.We identified Filamin A (FLNa as a candidate interacting protein. FLNa is an actin-binding scaffold protein that also binds to integrin beta1, beta2 and beta7 tails and is associated with diverse cell processes including cell migration. Indeed, M2 melanoma cells require FLNa for motility. We further show that R-Ras and FLNa interact in co-immunoprecipitations and pull-down assays. Deletion of FLNa repeat 3 (FLNaDelta3 abrogated this interaction. In M2 melanoma cells active R-Ras co-localized with FLNa but did not co-localize with FLNa lacking repeat 3. Thus, activated R-Ras binds repeat 3 of FLNa. The functional consequence of this interaction was that active R-Ras and FLNa coordinately increased cell migration. In contrast, co-expression of R-Ras and FLNaDelta3 had a significantly reduced effect on migration. While there was enhancement of integrin activation and fibronectin matrix assembly, cell adhesion was not altered. Finally, siRNA knockdown of endogenous R-Ras impaired FLNa-dependent fibronectin matrix assembly.These data support a model in which R-Ras functionally associates with FLNa and thereby regulates integrin-dependent migration. Thus in melanoma cells R-Ras and FLNa may cooperatively promote metastasis by enhancing cell migration.

  14. The role of autophagy in cytotoxicity induced by new oncogenic B-Raf inhibitor UI-152 in v-Ha-ras transformed fibroblasts

    International Nuclear Information System (INIS)

    Ahn, Jun-Ho; Ahn, Soon Kil; Lee, Michael

    2012-01-01

    Highlights: ► We recently discovered a potent and selective B-Raf inhibitor, UI-152. ► UI-152 displayed a selective cytotoxicity toward v-Ha-ras transformed cells. ► UI-152-induced growth inhibition was largely meditated by autophagy. ► UI-152 induced paradoxical activation of Raf-1. -- Abstract: In human cancers, B-Raf is the most frequently mutated protein kinase in the MAPK signaling cascade, making it an important therapeutic target. We recently discovered a potent and selective B-Raf inhibitor, UI-152, by using a structure-based drug design strategy. In this study, we examined whether B-Raf inhibition by UI-152 may be an effective therapeutic strategy for eliminating cancer cells transformed with v-Ha-ras (Ras-NIH 3T3). UI-152 displayed selective cytotoxicity toward Ras-NIH 3T3 cells while having little to no effect on non-transformed NIH 3T3 cells. We found that treatment with UI-152 markedly increased autophagy and, to a lesser extent, apoptosis. However, inhibition of autophagy by addition of 3-MA failed to reverse the cytotoxic effects of UI-152 on Ras-NIH 3T3 cells, demonstrating that apoptosis and autophagy can act as cooperative partners to induce growth inhibition in Ras-NIH 3T3 cells treated with UI-152. Most interestingly, cell responses to UI-152 appear to be paradoxical. Here, we showed that although UI-152 inhibited ERK, it induced B-Raf binding to Raf-1 as well as Raf-1 activation. This paradoxical activation of Raf-1 by UI-152 is likely to be coupled with the inhibition of the mTOR pathway, an intracellular signaling pathway involved in autophagy. We also showed for the first time that, in multi-drug resistant cells, the combination of UI-152 with verapamil significantly decreased cell proliferation and increased autophagy. Thus, our findings suggest that the inhibition of autophagy, in combination with UI-152, offers a more effective therapeutic strategy for v-Ha-ras-transformed cells harboring wild-type B-Raf.

  15. Mice lacking Ras-GRF1 show contextual fear conditioning but not spatial memory impairments: convergent evidence from two independently generated mouse mutant lines

    Directory of Open Access Journals (Sweden)

    Raffaele ed'Isa

    2011-12-01

    Full Text Available Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning the Brambilla’s mice with a third mouse line (GENA53 in which a nonsense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in the Brambilla’s mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdalar functions but possibly to some distinct hippocampal connections specific to

  16. High-throughput screening identifies small molecules that bind to the RAS:SOS:RAS complex and perturb RAS signaling.

    Science.gov (United States)

    Burns, Michael C; Howes, Jennifer E; Sun, Qi; Little, Andrew J; Camper, DeMarco V; Abbott, Jason R; Phan, Jason; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2018-05-01

    K-RAS is mutated in approximately 30% of human cancers, resulting in increased RAS signaling and tumor growth. Thus, RAS is a highly validated therapeutic target, especially in tumors of the pancreas, lung and colon. Although directly targeting RAS has proven to be challenging, it may be possible to target other proteins involved in RAS signaling, such as the guanine nucleotide exchange factor Son of Sevenless (SOS). We have previously reported on the discovery of small molecules that bind to SOS1, activate SOS-mediated nucleotide exchange on RAS, and paradoxically inhibit ERK phosphorylation (Burns et al., PNAS, 2014). Here, we describe the discovery of additional, structurally diverse small molecules that also bind to SOS1 in the same pocket and elicit similar biological effects. We tested >160,000 compounds in a fluorescence-based assay to assess their effects on SOS-mediated nucleotide exchange. X-Ray structures revealed that these small molecules bind to the CDC25 domain of SOS1. Compounds that elicited high levels of nucleotide exchange activity in vitro increased RAS-GTP levels in cells, and inhibited phospho ERK levels at higher treatment concentrations. The identification of structurally diverse SOS1 binding ligands may assist in the discovery of new molecules designed to target RAS-driven tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Ras GTPases Modulate Morphogenesis, Sporulation and Cellulase Gene Expression in the Cellulolytic Fungus Trichoderma reesei

    Science.gov (United States)

    Zhang, Jiwei; Zhang, Yanmei; Zhong, Yaohua; Qu, Yinbo; Wang, Tianhong

    2012-01-01

    Background The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. Methodology/Principal Findings Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. Conclusions/Significance Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute to deciphering the

  18. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    International Nuclear Information System (INIS)

    Kumari, Gita; Mahalingam, S.

    2009-01-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  19. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Gita [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Mahalingam, S., E-mail: mahalingam@iitm.ac.in [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Department of Biotechnology, Laboratory of Molecular Virology and Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036 (India)

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  20. Acidic environment leads to ROS-induced MAPK signaling in cancer cells.

    Directory of Open Access Journals (Sweden)

    Anne Riemann

    Full Text Available Tumor micromilieu often shows pronounced acidosis forcing cells to adapt their phenotype towards enhanced tumorigenesis induced by altered cellular signalling and transcriptional regulation. In the presents study mechanisms and potential consequences of the crosstalk between extra- and intracellular pH (pH(e, pH(i and mitogen-activated-protein-kinases (ERK1/2, p38 was analyzed. Data were obtained mainly in AT1 R-3327 prostate carcinoma cells, but the principle importance was confirmed in 5 other cell types. Extracellular acidosis leads to a rapid and sustained decrease of pH(i in parallel to p38 phosphorylation in all cell types and to ERK1/2 phosphorylation in 3 of 6 cell types. Furthermore, p38 phosphorylation was elicited by sole intracellular lactacidosis at normal pH(e. Inhibition of ERK1/2 phosphorylation during acidosis led to necrotic cell death. No evidence for the involvement of the kinases c-SRC, PKC, PKA, PI3K or EGFR nor changes in cell volume in acidosis-induced MAPK activation was obtained. However, our data reveal that acidosis enhances the formation of reactive oxygen species (ROS, probably originating from mitochondria, which subsequently trigger MAPK phosphorylation. Scavenging of ROS prevented acidosis-induced MAPK phosphorylation whereas addition of H(2O(2 enhanced it. Finally, acidosis increased phosphorylation of the transcription factor CREB via p38, leading to increased transcriptional activity of a CRE-reporter even 24 h after switching the cells back to a normal environmental milieu. Thus, an acidic tumor microenvironment can induce a longer lasting p38-CREB-medited change in the transcriptional program, which may maintain the altered phenotype even when the cells leave the tumor environment.

  1. Exploiting orthologue diversity for systematic detection of gain-of-function phenotypes

    Directory of Open Access Journals (Sweden)

    Cantarella Daniela

    2008-05-01

    Full Text Available Abstract Background Systematic search for genes whose gain-of-function by exogenous expression confers an advantage in cell-based selective screenings is a powerful method for unbiased functional exploration of the genome, and has the potential to disclose new targets for cancer therapy. A major limit of this approach resides in the labor-intensive cloning of resistant cells, identification of the integrated genes and validation of their ability to confer a selective advantage. Moreover, the selection has to be drastic and genes conferring a limited advantage are typically missed. Results We developed a new functional screening strategy based on transduction of mammalian cells of a given species with an expression library from another species, followed by one-shot quantitative tracing with DNA microarrays of all library-derived transcripts before and after selection. In this way, exogenous transcripts enriched after selection, and therefore likely to confer resistance, are readily detected. We transduced a retroviral cDNA expression library from mouse testis into human and canine cells, and optimized the use of commercial murine gene expression arrays for species-specific detection of library-derived transcripts. We then conducted a functional screening by growing library-transduced canine MDCK cells in suspension, to enrich for cDNAs conferring anchorage independence. Notably, these cells show partial resistance to loss of anchorage, and the selection can be of limited stringency, compromising approaches based on clonal selection or anyway requiring high stringency. Microarray analysis revealed reproducible enrichment after three weeks of growth on polyhema for seven genes, among which the Hras proto-oncogene and Sox5. When individually transduced into MDCK cells, Sox5 specifically promoted anchorage-independent growth, thereby confirming the validity and specificity of the approach. Conclusion The procedure described here brings substantial

  2. The RAS Initiative

    Science.gov (United States)

    NCI established the RAS Initiative to explore innovative approaches for attacking the proteins encoded by mutant forms of RAS genes and to ultimately create effective, new therapies for RAS-related cancers.

  3. Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis.

    Science.gov (United States)

    Lu, Li-Min; Li, Qing-Zhang; Huang, Jian-Guo; Gao, Xue-Jun

    2012-12-27

    L-Lysine (L-Lys) is an essential amino acid that plays fundamental roles in protein synthesis. Many nuclear phosphorylated proteins such as Stat5 and mTOR regulate milk protein synthesis. However, the details of milk protein synthesis control at the transcript and translational levels are not well known. In this current study, a two-dimensional gel electrophoresis (2-DE)/MS-based proteomic technology was used to identify phosphoproteins responsible for milk protein synthesis in dairy cow mammary epithelial cells (DCMECs). The effect of L-Lys on DCMECs was analyzed by CASY technology and reversed phase high performance liquid chromatography (RP-HPLC). The results showed that cell proliferation ability and β-casein expression were enhanced in DCMECs treated with L-Lys. By phosphoproteomics analysis, six proteins, including MAPK1, were identified up-expressed in DCMECs treated with 1.2 mM L-Lys for 24 h, and were verified by quantitative real-time PCR (qRT-PCR) and western blot. Overexpression and siRNA inhibition of MAPK1 experiments showed that MAPK1 upregulated milk protein synthesis through Stat5 and mTOR pathway. These findings that MAPK1 involves in regulation of milk synthesis shed new insights for understanding the mechanisms of milk protein synthesis.

  4. RAS in the central nervous system: Potential role in neuropsychiatric disorders.

    Science.gov (United States)

    Rocha, Natalia Pessoa; Simões e Silva, Ana Cristina; Prestes, Thiago Ruiz Rodrigues; Feracin, Victor; Machado, Caroline Amaral; Ferreira, Rodrigo Novaes; Teixeira, Antonio Lucio; de Miranda, Aline Silva

    2018-02-25

    The Renin-Angiotensin System (RAS) is a key regulator of cardiovascular and renal homeostasis, but also plays important roles in mediating physiological functions in the central nervous system (CNS). The effects of the RAS were classically described as mediated by angiotensin (Ang) II via angiotensin type 1 (AT1) receptors. However, another arm of the RAS formed by the angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and the Mas receptor has been a matter of investigation due to its important physiological roles, usually counterbalancing the classical effects exerted by Ang II. We aim to provide an overview of effects elicited by the RAS, especially Ang-(1-7), in the brain. We also aim to discuss the therapeutic potential for neuropsychiatric disorders of the modulation of RAS. We carried out an extensive literature search in PubMed central. Within the brain, Ang-(1-7) contributes to the regulation of blood pressure by acting at regions that control cardiovascular functions. In contrast with Ang II, Ang-(1-7) improves baroreflex sensitivity and plays an inhibitory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to blood pressure regulation, but also acts as a neuroprotective component of the RAS, for instance, by reducing cerebral infarct size, inflammation, oxidative stress and neuronal apoptosis. Pre-clinical evidence supports a relevant role for ACE2/Ang-(1-7)/Mas receptor axis in several neuropsychiatric conditions, including stress-related and mood disorders, cerebrovascular ischemic and haemorrhagic lesions and neurodegenerative diseases. However, very few data are available regarding the ACE2/Ang-(1-7)/Mas receptor axis in human CNS. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Negative regulation of MAP kinase signaling in Drosophila by Ptp61F/PTP1B.

    Science.gov (United States)

    Tchankouo-Nguetcheu, Stéphane; Udinotti, Mario; Durand, Marjorie; Meng, Tzu-Ching; Taouis, Mohammed; Rabinow, Leonard

    2014-10-01

    PTP1B is an important negative regulator of insulin and other signaling pathways in mammals. However, the role of PTP1B in the regulation of RAS-MAPK signaling remains open to deliberation, due to conflicting evidence from different experimental systems. The Drosophila orthologue of mammalian PTP1B, PTP61F, has until recently remained largely uncharacterized. To establish the potential role of PTP61F in the regulation of signaling pathways in Drosophila and particularly to help resolve its fundamental function in RAS-MAPK signaling, we generated a new allele of Ptp61F as well as employed both RNA interference and overexpression alleles. Our results validate recent data showing that the activity of insulin and Abl kinase signaling is increased in Ptp61F mutants and RNA interference lines. Importantly, we establish negative regulation of the RAS/MAPK pathway by Ptp61F activity in whole animals. Of particular interest, our results document the modulation of hyperactive MAP kinase activity by Ptp61F alleles, showing that the phosphatase intervenes to directly or indirectly regulate MAP kinase itself.

  6. p38 MAPK inhibition suppresses the TLR-hypersensitive phenotype in FANCC- and FANCA-deficient mononuclear phagocytes.

    Science.gov (United States)

    Anur, Praveen; Yates, Jane; Garbati, Michael R; Vanderwerf, Scott; Keeble, Winifred; Rathbun, Keaney; Hays, Laura E; Tyner, Jeffrey W; Svahn, Johanna; Cappelli, Enrico; Dufour, Carlo; Bagby, Grover C

    2012-03-01

    Fanconi anemia, complementation group C (FANCC)-deficient hematopoietic stem and progenitor cells are hypersensitive to a variety of inhibitory cytokines, one of which, TNFα, can induce BM failure and clonal evolution in Fancc-deficient mice. FANCC-deficient macrophages are also hypersensitive to TLR activation and produce TNFα in an unrestrained fashion. Reasoning that suppression of inhibitory cytokine production might enhance hematopoiesis, we screened small molecules using TLR agonist-stimulated FANCC- and Fanconi anemia, complementation group A (FANCA)-deficient macrophages containing an NF-κB/AP-1-responsive reporter gene (SEAP). Of the 75 small molecules screened, the p38 MAPK inhibitor BIRB 796 and dasatinib potently suppressed TLR8-dependent expression of the reporter gene. Fanconi anemia (FA) macrophages were hypersensitive to the TLR7/8 activator R848, overproducing SEAP and TNFα in response to all doses of the agonist. Low doses (50nM) of both agents inhibited p38 MAPK-dependent activation of MAPKAPK2 (MK2) and suppressed MK2-dependent TNFα production without substantially influencing TNFα gene transcription. Overproduction of TNFα by primary FA cells was likewise suppressed by these agents and involved inhibition of MK2 activation. Because MK2 is also known to influence production and/or sensitivity to 2 other suppressive factors (MIP-1α and IFNγ) to which FA hematopoietic progenitor cells are uniquely vulnerable, targeting of p38 MAPK in FA hematopoietic cells is a rational objective for preclinical evaluation.

  7. The roles of DNA damage-dependent signals and MAPK cascades in tributyltin-induced germline apoptosis in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Yun; Wang, Shunchang; Luo, Xun; Yang, Yanan; Jian, Fenglei; Wang, Xuemin; Xie, Lucheng

    2014-08-01

    The induction of apoptosis is recognized to be a major mechanism of tributyltin (TBT) toxicity. However, the underlying signaling pathways for TBT-induced apoptosis remain unclear. In this study, using the nematode Caenorhabditis elegans, we examined whether DNA damage response (DDR) pathway and mitogen-activated protein kinase (MAPK) signaling cascades are involved in TBT-induced germline apoptosis and cell cycle arrest. Our results demonstrated that exposing worms to TBT at the dose of 10nM for 6h significantly increased germline apoptosis in N2 strain. Germline apoptosis was absent in strains that carried ced-3 or ced-4 loss-of-function alleles, indicating that both caspase protein CED-3 and Apaf-1 protein CED-4 were required for TBT-induced apoptosis. TBT-induced apoptosis was blocked in the Bcl-2 gain-of-function strain ced-9(n1950), whereas TBT induced a minor increase in the BH3-only protein EGL-1 mutated strain egl-1(n1084n3082). Checkpoint proteins HUS-1 and CLK-2 exerted proapoptotic effects, and the null mutation of cep-1, the homologue of tumor suppressor gene p53, significantly inhibited TBT-induced apoptosis. Apoptosis in the loss-of-function strains of ERK, JNK and p38 MAPK signaling pathways were completely or mildly suppressed under TBT stress. These results were supported by the results of mRNA expression levels of corresponding genes. The present study indicated that TBT-induced apoptosis required the core apoptotic machinery, and that DDR genes and MAPK pathways played essential roles in signaling the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. RAS Insight

    Science.gov (United States)

    David Heimbrook, now CEO of the Frederick National Laboratory for Cancer Research, played a major role in a large pharma as it tried to develop an anti-RAS drug. Lessons from that failure inform the RAS Initiative today.

  9. Unique cerebrovascular anomalies in Noonan syndrome with RAF1 mutation.

    Science.gov (United States)

    Zarate, Yuri A; Lichty, Angie W; Champion, Kristen J; Clarkson, L Kate; Holden, Kenton R; Matheus, M Gisele

    2014-08-01

    Noonan syndrome is a common autosomal dominant neurodevelopmental disorder caused by gain-of-function germline mutations affecting components of the Ras-MAPK pathway. The authors present the case of a 6-year-old male with Noonan syndrome, Chiari malformation type I, shunted benign external hydrocephalus in infancy, and unique cerebrovascular changes. A de novo heterozygous change in the RAF1 gene was identified. The patient underwent brain magnetic resonance imaging, computed tomography angiography, and magnetic resonance angiography to further clarify the nature of his abnormal brain vasculature. The authors compared his findings to the few cases of Noonan syndrome reported with cerebrovascular pathology. © The Author(s) 2013.

  10. Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis.

    Science.gov (United States)

    Shah, Meera; Stebbins, John L; Dewing, Antimone; Qi, Jianfei; Pellecchia, Maurizio; Ronai, Ze'ev A

    2009-12-01

    The E3 ubiquitin ligase Siah2 has been implicated in the regulation of the hypoxia response, as well as in the control of Ras, JNK/p38/NF-kappaB signaling pathways. Both Ras/mitogen-activated protein kinase (MAPK) and hypoxia pathways are important for melanoma development and progression, pointing to the possible use of Siah2 as target for treatment of this tumor type. In the present study, we have established a high-throughput electro-chemiluninescent-based assay in order to screen and identify inhibitors of Siah2 ubiquitin ligase activity. Of 1840 compounds screened, we identified and characterized menadione (MEN) as a specific inhibitor of Siah2 ligase activity. MEN attenuated Siah2 self-ubiquitination, and increased expression of its substrates PHD3 and Sprouty2, with concomitant decrease in levels of HIF-1alpha and pERK, the respective downstream effectors. MEN treatment no longer affected PHD3 or Sprouty2 in Siah-KO cells, pointing to its Siah-dependent effects. Further, MEN inhibition of Siah2 was not attenuated by free radical scavenger, suggesting it is ROS-independent. Significantly, growth of xenograft melanoma tumors was inhibited following the administration of MEN or its derivative. These findings reveal an efficient platform for the identification of Siah inhibitors while identifying and characterizing MEN as Siah inhibitor that attenuates hypoxia and MAPK signaling, and inhibits melanoma tumorigenesis.

  11. Opposite effects of Ha-Ras and Ki-Ras on radiation-induced apoptosis via differential activation of PI3K/Akt and Rac/p38 mitogen-activated protein kinase signaling

    International Nuclear Information System (INIS)

    Choi, J.-A.; Kang, C.-M.; Lee, Y.-S.; Lee, S.-J.; Bae, S.-W.; Cho, C.-K.

    2003-01-01

    It has been well known that Ras signaling is involved in various cellular processes, including proliferation, differentiation, and apoptosis. However, distinct cellular functions of Ras isozymes are not fully understood. Here we show the opposing roles of Ha-Ras and Ki-Ras genes in the modulation of cell sensitivity to ionizing radiation. Overexpression of active isoform of Ha-Ras (12V-Ha- Ras) in Rat2 cells increases resistance to the ionizing radiation. Constitutive activation of phosphoinositide-3-kinase (PI3K) and Akt is detected specifically in 12V-Ha-Ras-overexpressing cells. The specific PI3K inhibitor LY294002 inhibits PI3K/Akt signaling and potentiates the radiation-induced apoptosis, suggesting that activation of PI3K/Akt signaling pathway is involved in the increased radio-resistance in cells overexpressing 12V-Ha-Ras. Overexpression of activated Ki-Ras (12V-Ki-Ras), on the other hand, markedly increases radiation sensitivity. The p38 mitogen-activated protein (MAP) kinase activity is selectively enhanced by ionizing radiation in cells overexpressing 12V-Ki-Ras. The specific p38 MAP kinase inhibitor, PD169316, or dominant-negative p38 MAP kinase decreases radiation-induced cell death. We further show that the mechanism that underlies potentiation of cell death in cells overexpressing 12V-Ki-Ras involves Bax translocation to the mitochondrial membrane. Elevated Bax translocation following ionizing irradiation in 12V-Ki-Ras-overexpressing cells is completely inhibited by PD169316 or dominant-negative p38 MAP kinase. In addition, introduction of cells with RacN17, a dominant negative mutant of Rac, resulted in a marked inhibition of radiation-induced Bax translocation and apoptotic cell death as well as p38 MAP kinase activation. Taken together, these findings explain the opposite effects of Ha-Ras and Ki-Ras on modulation of radio-sensitivity, and suggest that differential activation of PI3K/Akt and Rac/p38 MAP kinase signaling by Ha-Ras and Ki-Ras may

  12. Farming different species in RAS in Nordic countries: Current status and future perspectives

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang; Lund, Ivar; Thorarinsdottir, Ragnheidur

    2013-01-01

    Recirculating aquaculture systems (RAS) have gained increasing interest in recent years as a means to intensify fish production while at the same time minimize the environmental impact. Considerable hands-on experience has accumulated within the Nordic countries over the last 20-30 years in desig...... such as aquaponic systems appear to be feasible primarily when culturing more exotic species targeted for selected customers...

  13. Active Erk Regulates Microtubule Stability in H-ras-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Rene E. Harrison

    2001-01-01

    Full Text Available Increasing evidence suggests that activated erk regulates cell functions, at least in part, by mechanisms that do not require gene transcription. Here we show that the map kinase, erk, decorates microtubules (MTs and mitotic spindles in both parental and mutant active rastransfected 10T1 /2 fibroblasts and MCF10A breast epithelial cells. Approximately 20% of total cellular erk decorated MTs in both cell lines. A greater proportion of activated erk was associated with MTs in the presence of mutant active H-ras than in parental cells. Activation of erk by the ras pathway coincided with a decrease in the stability of MT, as detected by a stability marker. The MKK1 inhibitor, PD98059 and transfection of a dominant negative MKK1 blocked ras-induced instability of MTs but did not modify the association of erk with MTs or affect MT stability of the parental cells. These results indicate that the subset of active erk kinase that associates with MTs contributes to their instability in the presence of a mutant active ras. The MT-associated subset of active erk likely contributes to the enhanced invasive and proliferative abilities of cells containing mutant active H-ras.

  14. PKR is a novel functional direct player that coordinates skeletal muscle differentiation via p38MAPK/AKT pathways.

    Science.gov (United States)

    Alisi, A; Spaziani, A; Anticoli, S; Ghidinelli, M; Balsano, C

    2008-03-01

    Myogenic differentiation is a highly orchestrated multistep process controlled by extracellular growth factors that modulate largely unknown signals into the cell affecting the muscle-transcription program. P38MAPK-dependent signalling, as well as PI3K/Akt pathway, has a key role in the control of muscle gene expression at different stages during the myogenic process. P38MAPK affects the activities of transcription factors, such as MyoD and myogenin, and contributes, together with PI3K/Akt pathway, to control the early and late steps of myogenic differentiation. The aim of our work was to better define the role of PKR, a dsRNA-activated protein kinase, as potential component in the differentiation program of C2C12 murine myogenic cells and to correlate its activity with p38MAPK and PI3K/Akt myogenic regulatory pathways. Here, we demonstrate that PKR is an essential component of the muscle development machinery and forms a functional complex with p38MAPK and/or Akt, contributing to muscle differentiation of committed myogenic cells in vitro. Inhibition of endogenous PKR activity by a specific (si)RNA and a PKR dominant-negative interferes with the myogenic program of C2C12 cells, causing a delay in activation of myogenic specific genes and inducing the formation of thinner myofibers. In addition, the construction of three PKR mutants allowed us to demonstrate that both N and C-terminal regions of PKR are critical for the interaction with p38MAPK and Akt. The novel discovered complex permits PKR to timely regulate the inhibition/activation of p38MAPK and Akt, controlling in this way the different steps characterizing skeletal muscle differentiation.

  15. Unexpected Cartilage Phenotype in CD4-Cre-Conditional SOS-Deficient Mice.

    Science.gov (United States)

    Guittard, Geoffrey; Gallardo, Devorah L; Li, Wenmei; Melis, Nicolas; Lui, Julian C; Kortum, Robert L; Shakarishvili, Nicholas G; Huh, Sunmee; Baron, Jeffrey; Weigert, Roberto; Kramer, Joshua A; Samelson, Lawrence E; Sommers, Connie L

    2017-01-01

    RAS signaling is central to many cellular processes and SOS proteins promote RAS activation. To investigate the role of SOS proteins in T cell biology, we crossed Sos1 f/f Sos2 -/- mice to CD4-Cre transgenic mice. We previously reported an effect of these mutations on T cell signaling and T cell migration. Unexpectedly, we observed nodules on the joints of greater than 90% of these mutant mice at 5 months of age, especially on the carpal joints. As the mice aged further, some also displayed joint stiffness, hind limb paralysis, and lameness. Histological analysis indicated that the abnormal growth in joints originated from dysplastic chondrocytes. Second harmonic generation imaging of the carpal nodules revealed that nodules were encased by rich collagen fibrous networks. Nodules formed in mice also deficient in RAG2, indicating that conventional T cells, which undergo rearrangement of the T cell antigen receptor, are not required for this phenotype. CD4-Cre expression in a subset of cells, either immune lineage cells (e.g., non-conventional T cells) or non-immune lineage cells (e.g., chondrocytes) likely mediates the dramatic phenotype observed in this study. Disruptions of genes in the RAS signaling pathway are especially likely to cause this phenotype. These results also serve as a cautionary tale to those intending to use CD4-Cre transgenic mice to specifically delete genes in conventional T cells.

  16. Rhein inhibits malignant phenotypes of human renal cell carcinoma by impacting on MAPK/NF-κB signaling pathways

    Directory of Open Access Journals (Sweden)

    Ma YL

    2018-03-01

    Full Text Available Ya-Li Ma,* Fang Chen,* Jun ShiDepartment of Nephrology, Huaihe Hospital Henan University, Kaifeng, People’s Republic of China*These authors contributed equally to this workBackground: Rhein, an anthraquinone derivative of rhubarb, is traditionally used in Chinese herbal medicine. Now emerging studies suggest its antitumor properties in many human cancers. The present study aims to investigate the antitumor role of Rhein and its possible mechanism in human renal cell carcinoma (RCC.Materials and methods: Three RCC cell lines (A489, 786-O and ACHN were used as the cell models. We applied CCK-8, cell counting, colony formation, wound healing and Transwell assays to assess the antitumor roles of Rhein in RCC cells in vitro. The therapeutic efficacy of Rhein was further evaluated by intraperitoneal administrations in tumor formation of mice. Western blot was used to investigate the underlying mechanisms of action of Rhein.Results: Rhein inhibited RCC cell proliferation in a dose- and time-dependent manner. It also suppressed RCC cell migration and invasion in vitro. Moreover, Rhein was able to inhibit tumor growth in nude mice by intraperitoneal administration in vivo. Mechanistically, the protein levels of phosphorylated MAPK (mitogen-activated protein kinase, extracellular signal-regulated kinase and c-Jun N-terminal kinase, phosphorylated Akt and two targets of NF-κB (nuclear factor kappa-light-chain enhancer of activated B cells pathway, matrix metalloproteinase 9 and CCND1 were all markedly reduced by Rhein treatment.Conclusion: Rhein processed the antitumor effects in RCC cells by inhibiting cell proliferation, migration and invasion, and these tumor-suppressing functions might be mediated by MAPK/NF-κB signaling pathways.Keywords: Rhein, renal cell carcinoma, antitumor effects, MAPK, NF-κB

  17. Plasticity of the MAPK signaling network in response to mechanical stress.

    Directory of Open Access Journals (Sweden)

    Andrea M Pereira

    Full Text Available Cells display versatile responses to mechanical inputs and recent studies have identified the mitogen-activated protein kinase (MAPK cascades mediating the biological effects observed upon mechanical stimulation. Although, MAPK pathways can act insulated from each other, several mechanisms facilitate the crosstalk between the components of these cascades. Yet, the combinatorial complexity of potential molecular interactions between these elements have prevented the understanding of their concerted functions. To analyze the plasticity of the MAPK signaling network in response to mechanical stress we performed a non-saturating epistatic screen in resting and stretched conditions employing as readout a JNK responsive dJun-FRET biosensor. By knocking down MAPKs, and JNK pathway regulators, singly or in pairs in Drosophila S2R+ cells, we have uncovered unexpected regulatory links between JNK cascade kinases, Rho GTPases, MAPKs and the JNK phosphatase Puc. These relationships have been integrated in a system network model at equilibrium accounting for all experimentally validated interactions. This model allows predicting the global reaction of the network to its modulation in response to mechanical stress. It also highlights its context-dependent sensitivity.

  18. RAS Initiative - Events

    Science.gov (United States)

    The NCI RAS Initiative has organized multiple events with outside experts to discuss how the latest scientific and technological breakthroughs can be applied to discover vulnerabilities in RAS-driven cancers.

  19. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors.

    Science.gov (United States)

    Loboda, Andrey; Nebozhyn, Michael; Klinghoffer, Rich; Frazier, Jason; Chastain, Michael; Arthur, William; Roberts, Brian; Zhang, Theresa; Chenard, Melissa; Haines, Brian; Andersen, Jannik; Nagashima, Kumiko; Paweletz, Cloud; Lynch, Bethany; Feldman, Igor; Dai, Hongyue; Huang, Pearl; Watters, James

    2010-06-30

    Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors.

  20. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors

    Directory of Open Access Journals (Sweden)

    Paweletz Cloud

    2010-06-01

    Full Text Available Abstract Background Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. Methods We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. Results The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90% sensitivity but relatively low (50% specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. Conclusions These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical

  1. K-ras2 Activation and Genome Instability Increase Proliferation and Size of FAP Adenomas

    Directory of Open Access Journals (Sweden)

    Anna Rapallo

    1999-01-01

    Full Text Available The possible role of K‐ras2 mutations and aneuploidy toward increase of proliferation and adenoma size in Familial Adenomatous Polyposis (FAP adenomas is not known. The present study addresses these issues by investigating 147 colorectal adenomas obtained from four FAP patients. The majority of adenomas had size lower than or equal to 10 mm (86%, low grade dysplasia (63%, and were preferentially located in the right colon (60%. Normal mucosa samples were obtained from 19 healthy donors. Three synchronous adenocarcinomas were also investigated. K‐ras2 mutation spectrum was analysed by PCR and Sequence Specific Oligonucleotide (SSO hybridization, while flow cytometry (FCM was used for evaluating degree of DNA ploidy and S‐phase fraction. Overall, incidences of K‐ras2 mutations, DNA aneuploidy and high S‐phase values (>7.2% were 6.6%, 5.4% and 10.5%, respectively. In particular, among the adenomas with size lower than 5 mm, K‐ras2 mutation and DNA aneuploidy frequencies were only slightly above 1%. Statistically significant correlations were found between K‐ras2 and size, DNA ploidy and size and K‐ras2 and S‐phase (p. In particular, among the wild type K‐ras2 adenomas, high S‐phase values were detected in 8% of the cases versus 57% among the K‐ras2 mutated adenomas (p=0.0005. The present series of FAP adenomas indicates that K‐ras2 activation and gross genomic changes play a role toward a proliferative gain and tumour growth in size.

  2. Processing and fatty acid acylation of RAS1 and RAS2 proteins in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Fujiyama, A.; Tamanoi, F.

    1986-01-01

    The authors demonstrate the pathway for the biosynthesis of RAS1 and RAS2 gene products of Saccharomyces cerevisiae leading to their localization in membranes. The primary translation products of these genes are detected in a soluble fraction. Shortly after synthesis, these precursor molecules are converted to forms that migrate slightly faster than the precursor forms on a NaDodSO 4 /polyacrylamide gel. These processed proteins are further modified by fatty acid acylation, which is detected by [ 3 H]palmitic acid labeling. The acylated derivatives are found exclusively in cell membranes, indicating the translocation of the RAS proteins from cytosol to membranes during maturation process. The attached fatty acids can be released by mild alkaline hydrolysis, suggesting that the linkage between the fatty acid and the protein is an ester bond. The site of the modification by fatty acid is presumably localized to the COOH-terminal portion of the RAS proteins. Fraction of the membranes by sucrose gradient demonstrates that a majority of the fatty-acylated RAS proteins are localized in plasma membrane

  3. Unilateral giant cell lesion of the jaw in Noonan syndrome

    OpenAIRE

    Eyselbergs, M; Vanhoenacker, F; Hintjens, J; Dom, M; Devriendt, K; Dijck, H Van

    2014-01-01

    Noonan syndrome (NS) is an etiologically heterogeneous disorder caused by mutations in the RAS-MAPK signaling pathway. Noonan-Like/Multiple Giant Cell Lesion (NL/MGCL) syndrome is initially described as the occurrence of multiple gnathic giant cell lesions in patients with phenotypic features of NS. Nowadays, NS/MGCL syndrome is considered a variant of the NS spectrum rather than a distinct entity. We report the case of a 14-year-old female patient carrying a SOS1 mutation with a unilateral g...

  4. BMP suppresses PTEN expression via RAS/ERK signaling.

    Science.gov (United States)

    Beck, Stayce E; Carethers, John M

    2007-08-01

    Bone morphogenetic protein (BMP), a member of the transforming growth factor beta family, classically utilizes the SMAD signaling pathway for its growth suppressive effects,and loss of this signaling cascade may accelerate cell growth. In the colon cancer predisposition syndrome Juvenile Polyposis, as well as in the late progression stages of nonsyndromic colorectal cancers, SMAD4 function is typically abrogated. Here, we utilized the SMAD4-null SW480 colon cancer cell line to examine BMPs effect on a potential target gene, PTEN, and how its expression might be regulated. Initial treatment of the SMAD4-null cells with BMP resulted in mild growth suppression, but with prolonged exposure to BMP, the cells become growth stimulatory, which coincided with observed decreases in transcription and translation of PTEN, and with corresponding increases in phospho-AKT protein levels. BMP-induced PTEN suppression was mediated via the RAS/ERK pathway, as pharmacologic inhibition of RAS/ERK, or interference with protein function in the cytosol by DN-RAS prevented BMP-induced growth promotion and changes in PTEN levels, as did treatment with noggin, a BMP ligand inhibitor. Thus, BMP downregulates PTEN via RAS/ERK in a SMAD4-null environment that contributes to cell growth, and constitutes a SMAD4-independent but BMP-responsive signaling pathway.

  5. Using the capital markets in Ras Gas

    International Nuclear Information System (INIS)

    Voge, B.; Penzer, M.

    1997-01-01

    In December 1996, Ras Laffan Liquefied Natural Gas Company Ltd (Ras Gas) closed a multi-source financing that included an offering of US$1.2bn of bonds. The sponsors of the Ras Gas project overcame a number of obstacles on the road to closing the capital markets offering. This article provides a general overview of capital markets offerings in international project financings and discusses how Ras Gas was able to successfully integrate a capital markets offering into a financing plan which included a commercial bank facility and several export-credit agency facilities. (Author)

  6. The effect of aquaporin 5 overexpression on the Ras signaling pathway

    International Nuclear Information System (INIS)

    Woo, Janghee; Lee, Juna; Kim, Myoung Sook; Jang, Se Jin; Sidransky, David; Moon, Chulso

    2008-01-01

    Human aquaporin 5 (AQP5) has been shown to be overexpressed in multiple cancers, such as pancreatic cancer and colon cancer. Furthermore, it has been reported that ectopic expression of AQP5 leads to many phenotypic changes characteristic of transformation. However, the biochemical mechanism leading to transformation in AQP5-overexpressing cells has not been clearly elucidated. In this report, the overexpression of AQP5 in NIH3T3 cells demonstrated a significant effect on Ras activity and, thus, cell proliferation. Furthermore, this influence was shown to be mediated by phosphorylation of the PKA consensus site of AQP5. This is the first evidence demonstrating an association between AQP5 and a signaling pathway, namely the Ras signal transduction pathway, which may be the basis of the oncogenic properties seen in AQP-overexpressing cells

  7. A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium.

    Science.gov (United States)

    Lee, S; Parent, C A; Insall, R; Firtel, R A

    1999-09-01

    We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced approximately 60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras

  8. Clinical spectrum and genotype-phenotype associations of KCNA2-related encephalopathies.

    Science.gov (United States)

    Masnada, Silvia; Hedrich, Ulrike B S; Gardella, Elena; Schubert, Julian; Kaiwar, Charu; Klee, Eric W; Lanpher, Brendan C; Gavrilova, Ralitza H; Synofzik, Matthis; Bast, Thomas; Gorman, Kathleen; King, Mary D; Allen, Nicholas M; Conroy, Judith; Ben Zeev, Bruria; Tzadok, Michal; Korff, Christian; Dubois, Fanny; Ramsey, Keri; Narayanan, Vinodh; Serratosa, Jose M; Giraldez, Beatriz G; Helbig, Ingo; Marsh, Eric; O'Brien, Margaret; Bergqvist, Christina A; Binelli, Adrian; Porter, Brenda; Zaeyen, Eduardo; Horovitz, Dafne D; Wolff, Markus; Marjanovic, Dragan; Caglayan, Hande S; Arslan, Mutluay; Pena, Sergio D J; Sisodiya, Sanjay M; Balestrini, Simona; Syrbe, Steffen; Veggiotti, Pierangelo; Lemke, Johannes R; Møller, Rikke S; Lerche, Holger; Rubboli, Guido

    2017-09-01

    Recently, de novo mutations in the gene KCNA2, causing either a dominant-negative loss-of-function or a gain-of-function of the voltage-gated K+ channel Kv1.2, were described to cause a new molecular entity within the epileptic encephalopathies. Here, we report a cohort of 23 patients (eight previously described) with epileptic encephalopathy carrying either novel or known KCNA2 mutations, with the aim to detail the clinical phenotype associated with each of them, to characterize the functional effects of the newly identified mutations, and to assess genotype-phenotype associations. We identified five novel and confirmed six known mutations, three of which recurred in three, five and seven patients, respectively. Ten mutations were missense and one was a truncation mutation; de novo occurrence could be shown in 20 patients. Functional studies using a Xenopus oocyte two-microelectrode voltage clamp system revealed mutations with only loss-of-function effects (mostly dominant-negative current amplitude reduction) in eight patients or only gain-of-function effects (hyperpolarizing shift of voltage-dependent activation, increased amplitude) in nine patients. In six patients, the gain-of-function was diminished by an additional loss-of-function (gain-and loss-of-function) due to a hyperpolarizing shift of voltage-dependent activation combined with either decreased amplitudes or an additional hyperpolarizing shift of the inactivation curve. These electrophysiological findings correlated with distinct phenotypic features. The main differences were (i) predominant focal (loss-of-function) versus generalized (gain-of-function) seizures and corresponding epileptic discharges with prominent sleep activation in most cases with loss-of-function mutations; (ii) more severe epilepsy, developmental problems and ataxia, and atrophy of the cerebellum or even the whole brain in about half of the patients with gain-of-function mutations; and (iii) most severe early-onset phenotypes

  9. Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis

    Science.gov (United States)

    Shah, Meera; Stebbins, John L.; Dewing, Antimone; Qi, Jianfei; Pellecchia, Maurizio; Ronai, Ze’ev A.

    2010-01-01

    Summary The E3 ubiquitin ligase Siah2 has been implicated in the regulation of the hypoxia response, as well as in the control of Ras, JNK/p38/NF-κB signaling pathways. Both Ras/mitogen-activated protein kinase (MAPK) and hypoxia pathways are important for melanoma development and progression, pointing to the possible use of Siah2 as target for treatment of this tumor type. In the present study, we have established a high-throughput electro-chemiluninescent-based assay in order to screen and identify inhibitors of Siah2 ubiquitin ligase activity. Of 1840 compounds screened, we identified and characterized menadione (MEN) as a specific inhibitor of Siah2 ligase activity. MEN attenuated Siah2 self-ubiquitination, and increased expression of its substrates PHD3 and Sprouty2, with concomitant decrease in levels of HIF-1α and pERK, the respective downstream effectors. MEN treatment no longer affected PHD3 or Sprouty2 in Siah-KO cells, pointing to its Siah-dependent effects. Further, MEN inhibition of Siah2 was not attenuated by free radical scavenger, suggesting it is ROS-independent. Significantly, growth of xenograft melanoma tumors was inhibited following the administration of MEN or its derivative. These findings reveal an efficient platform for the identification of Siah inhibitors while identifying and characterizing MEN as Siah inhibitor that attenuates hypoxia and MAPK signaling, and inhibits melanoma tumorigenesis. PMID:19712206

  10. Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex

    Science.gov (United States)

    Xing, Lei; Larsen, Rylan S; Bjorklund, George Reed; Li, Xiaoyan; Wu, Yaohong; Philpot, Benjamin D; Snider, William D; Newbern, Jason M

    2016-01-01

    Aberrant signaling through the Raf/MEK/ERK (ERK/MAPK) pathway causes pathology in a family of neurodevelopmental disorders known as 'RASopathies' and is implicated in autism pathogenesis. Here, we have determined the functions of ERK/MAPK signaling in developing neocortical excitatory neurons. Our data reveal a critical requirement for ERK/MAPK signaling in the morphological development and survival of large Ctip2+ neurons in layer 5. Loss of Map2k1/2 (Mek1/2) led to deficits in corticospinal tract formation and subsequent corticospinal neuron apoptosis. ERK/MAPK hyperactivation also led to reduced corticospinal axon elongation, but was associated with enhanced arborization. ERK/MAPK signaling was dispensable for axonal outgrowth of layer 2/3 callosal neurons. However, Map2k1/2 deletion led to reduced expression of Arc and enhanced intrinsic excitability in both layers 2/3 and 5, in addition to imbalanced synaptic excitation and inhibition. These data demonstrate selective requirements for ERK/MAPK signaling in layer 5 circuit development and general effects on cortical pyramidal neuron excitability. DOI: http://dx.doi.org/10.7554/eLife.11123.001 PMID:26848828

  11. RAS - Target Identification - Informatics

    Science.gov (United States)

    The RAS Informatics lab group develops tools to track and analyze “big data” from the RAS Initiative, as well as analyzes data from external projects. By integrating internal and external data, this group helps improve understanding of RAS-driven cancers.

  12. p38α MAPK Is Required for Tooth Morphogenesis and Enamel Secretion*

    Science.gov (United States)

    Greenblatt, Matthew B.; Kim, Jung-Min; Oh, Hwanhee; Park, Kwang Hwan; Choo, Min-Kyung; Sano, Yasuyo; Tye, Coralee E.; Skobe, Ziedonis; Davis, Roger J.; Park, Jin Mo; Bei, Marianna; Glimcher, Laurie H.; Shim, Jae-Hyuck

    2015-01-01

    An improved understanding of the molecular pathways that drive tooth morphogenesis and enamel secretion is needed to generate teeth from organ cultures for therapeutic implantation or to determine the pathogenesis of primary disorders of dentition (Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L., and Wrana, J. L. (1997) J. Biol. Chem. 272, 27678–27685). Here we present a novel ectodermal dysplasia phenotype associated with conditional deletion of p38α MAPK in ectodermal appendages using K14-cre mice (p38αK14 mice). These mice display impaired patterning of dental cusps and a profound defect in the production and biomechanical strength of dental enamel because of defects in ameloblast differentiation and activity. In the absence of p38α, expression of amelogenin and β4-integrin in ameloblasts and p21 in the enamel knot was significantly reduced. Mice lacking the MAP2K MKK6, but not mice lacking MAP2K MKK3, also show the enamel defects, implying that MKK6 functions as an upstream kinase of p38α in ectodermal appendages. Lastly, stimulation with BMP2/7 in both explant culture and an ameloblast cell line confirm that p38α functions downstream of BMPs in this context. Thus, BMP-induced activation of the p38α MAPK pathway is critical for the morphogenesis of tooth cusps and the secretion of dental enamel. PMID:25406311

  13. The K-Ras 4A isoform promotes apoptosis but does not affect either lifespan or spontaneous tumor incidence in aging mice

    International Nuclear Information System (INIS)

    Plowman, Sarah J.; Arends, Mark J.; Brownstein, David G.; Luo Feijun; Devenney, Paul S.; Rose, Lorraine; Ritchie, Ann-Marie; Berry, Rachel L.; Harrison, David J.; Hooper, Martin L.; Patek, Charles E.

    2006-01-01

    Ras proteins function as molecular switches in signal transduction pathways, and, here, we examined the effects of the K-ras4A and 4B splice variants on cell function by comparing wild-type embryonic stem (ES) cells with K-ras tmΔ4A/tmΔ4A (exon 4A knock-out) ES cells which express K-ras4B only and K-ras -/- (exons 1-3 knock-out) ES cells which express neither splice variant, and intestinal epithelium from wild-type and K-ras tmΔ4A/tmΔ4A mice. RT-qPCR analysis found that K-ras4B expression was reduced in K-ras tmΔ4A/tmΔ4A ES cells but unaffected in small intestine. K-Ras deficiency did not affect ES cell growth, and K-Ras4A deficiency did not affect intestinal epithelial proliferation. K-ras tmΔ4A/tmΔ4A and K-ras -/- ES cells showed a reduced capacity for differentiation following LIF withdrawal, and K-ras -/- cells were least differentiated. K-Ras4A deficiency inhibited etoposide-induced apoptosis in ES cells and intestinal epithelial cells. However, K-ras tmΔ4A/tmΔ4A ES cells were more resistant to etoposide-induced apoptosis than K-ras -/- cells. The results indicate that (1) K-Ras4A promotes apoptosis while K-Ras4B inhibits it, and (2) K-Ras4B, and possibly K-Ras4A, promotes differentiation. The findings raise the possibility that alteration of the K-Ras4A/4B isoform ratio modulates tumorigenesis by differentially affecting stem cell survival and/or differentiation. However, K-Ras4A deficiency did not affect life expectancy or spontaneous overall tumor incidence in aging mice

  14. RasGRP3 regulates the migration of glioma cells via interaction with Arp3

    Science.gov (United States)

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Poisson, Laila M.; Blumberg, Peter M.; Brodie, Chaya

    2015-01-01

    Glioblastoma (GBM), the most aggressive primary brain tumors, are highly infiltrative. Although GBM express high Ras activity and Ras proteins have been implicated in gliomagenesis, Ras-activating mutations are not frequent in these tumors. RasGRP3, an important signaling protein responsive to diacylglycerol (DAG), increases Ras activation. Here, we examined the expression and functions of RasGRP3 in GBM and glioma cells. RasGRP3 expression was upregulated in GBM specimens and glioma stem cells compared with normal brains and neural stem cells, respectively. RasGRP3 activated Ras and Rap1 in glioma cells and increased cell migration and invasion partially via Ras activation. Using pull-down assay and mass spectroscopy we identified the actin-related protein, Arp3, as a novel interacting protein of RasGRP3. The interaction of RasGRP3 and Arp3 was validated by immunofluorescence staining and co-immunoprecipitation, and PMA, which activates RasGRP3 and induces its translocation to the peri-nuclear region, increased the association of Arp3 and RasGRP3. Arp3 was upregulated in GBM, regulated cell spreading and migration and its silencing partially decreased these effects of RasGRP3 in glioma cells. In summary, RasGRP3 acts as an important integrating signaling protein of the DAG and Ras signaling pathways and actin polymerization and represents an important therapeutic target in GBM. PMID:25682201

  15. Three Fusarium oxysporum mitogen-activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and cross-kingdom pathogenicity.

    Science.gov (United States)

    Segorbe, David; Di Pietro, Antonio; Pérez-Nadales, Elena; Turrà, David

    2017-09-01

    Mitogen-activated protein kinase (MAPK) cascades mediate cellular responses to environmental signals. Previous studies in the fungal pathogen Fusarium oxysporum have revealed a crucial role of Fmk1, the MAPK orthologous to Saccharomyces cerevisiae Fus3/Kss1, in vegetative hyphal fusion and plant infection. Here, we genetically dissected the individual and combined contributions of the three MAPKs Fmk1, Mpk1 and Hog1 in the regulation of development, stress response and virulence of F. oxysporum on plant and animal hosts. Mutants lacking Fmk1 or Mpk1 were affected in reactive oxygen species (ROS) homeostasis and impaired in hyphal fusion and aggregation. Loss of Mpk1 also led to increased sensitivity to cell wall and heat stress, which was exacerbated by simultaneous inactivation of Fmk1, suggesting that both MAPKs contribute to cellular adaptation to high temperature, a prerequisite for mammalian pathogens. Deletion of Hog1 caused increased sensitivity to hyperosmotic stress and resulted in partial rescue of the restricted colony growth phenotype of the mpk1Δ mutant. Infection assays on tomato plants and the invertebrate animal host Galleria mellonella revealed distinct and additive contributions of the different MAPKs to virulence. Our results indicate that positive and negative cross-talk between the three MAPK pathways regulates stress adaptation, development and virulence in the cross-kingdom pathogen F. oxysporum. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  16. Bile acids modulate signaling by functional perturbation of plasma membrane domains.

    Science.gov (United States)

    Zhou, Yong; Maxwell, Kelsey N; Sezgin, Erdinc; Lu, Maryia; Liang, Hong; Hancock, John F; Dial, Elizabeth J; Lichtenberger, Lenard M; Levental, Ilya

    2013-12-13

    Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.

  17. MRAS: A Close but Understudied Member of the RAS Family.

    Science.gov (United States)

    Young, Lucy C; Rodriguez-Viciana, Pablo

    2018-01-08

    MRAS is the closest relative to the classical RAS oncoproteins and shares most regulatory and effector interactions. However, it also has unique functions, including its ability to function as a phosphatase regulatory subunit when in complex with SHOC2 and protein phosphatase 1 (PP1). This phosphatase complex regulates a crucial step in the activation cycle of RAF kinases and provides a key coordinate input required for efficient ERK pathway activation and transformation by RAS. MRAS mutations rarely occur in cancer but deregulated expression may play a role in tumorigenesis in some settings. Activating mutations in MRAS (as well as SHOC2 and PP1) do occur in the RASopathy Noonan syndrome, underscoring a key role for MRAS within the RAS-ERK pathway. MRAS also has unique roles in cell migration and differentiation and has properties consistent with a key role in the regulation of cell polarity. Further investigations should shed light on what remains a relatively understudied RAS family member. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. Functional Analysis of Drosophila NF1

    National Research Council Canada - National Science Library

    Bernards, Andre

    2005-01-01

    ...) for Ras, yet homozygous loss of a highly conserved Drosophila NF1 ortholog results in several phenotypes that are insensitive to manipulating Ras signal transduction, but rescued by increasing...

  19. Mechanisms of Membrane Binding of Small GTPase K-Ras4B Farnesylated Hypervariable Region*

    Science.gov (United States)

    Jang, Hyunbum; Abraham, Sherwin J.; Chavan, Tanmay S.; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I.; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. PMID:25713064

  20. Regulation of p21ras activity

    DEFF Research Database (Denmark)

    Lowy, D R; Zhang, K; DeClue, J E

    1992-01-01

    The ras genes encode GTP/GDP-binding proteins that participate in mediating mitogenic signals from membrane tyrosine kinases to downstream targets. The activity of p21ras is determined by the concentration of GTP-p21ras, which is tightly regulated by a complex array of positive and negative control...... mechanisms. GAP and NF1 can negatively regulate p21ras activity by stimulating hydrolysis of GTP bound to p21ras. Other cellular factors can positively regulate p21ras by stimulating GDP/GTP exchange....

  1. Oncogenic N-Ras Stimulates SRF-Mediated Transactivation via H3 Acetylation at Lysine 9

    Directory of Open Access Journals (Sweden)

    Sun-Ju Yi

    2018-01-01

    Full Text Available Signal transduction pathways regulate the gene expression by altering chromatin dynamics in response to mitogens. Ras proteins are key regulators linking extracellular stimuli to a diverse range of biological responses associated with gene regulation. In mammals, the three ras genes encode four Ras protein isoforms: H-Ras, K-Ras4A, K-Ras4B, and N-Ras. Although emerging evidence suggests that Ras isoforms differentially regulate gene expressions and are functionally nonredundant, the mechanisms underlying Ras specificity and Ras signaling effects on gene expression remain unclear. Here, we show that oncogenic N-Ras acts as the most potent regulator of SRF-, NF-κB-, and AP-1-dependent transcription. N-Ras-RGL2 axis is a distinct signaling pathway for SRF target gene expression such as Egr1 and JunB, as RGL2 Ras binding domain (RBD significantly impaired oncogenic N-Ras-induced SRE activation. By monitoring the effect of Ras isoforms upon the change of global histone modifications in oncogenic Ras-overexpressed cells, we discovered that oncogenic N-Ras elevates H3K9ac/H3K23ac levels globally in the chromatin context. Importantly, chromatin immunoprecipitation (ChIP assays revealed that H3K9ac is significantly enriched at the promoter and coding regions of Egr1 and JunB. Collectively, our findings define an undocumented role of N-Ras in modulating of H3 acetylation and in gene regulation.

  2. Human Mut T Homolog 1 (MTH1): a roadblock for the tumor-suppressive effects of oncogenic RAS-induced ROS.

    Science.gov (United States)

    Rai, Priyamvada

    2012-01-01

    Oncogenic RAS-induced reactive oxygen species (ROS) trigger barriers to cell transformation and cancer progression through tumor-suppressive responses such as cellular senescence or cell death. We have recently shown that oncogenic RAS-induced DNA damage and attendant premature senescence can be prevented by overexpressing human MutT Homolog 1 (MTH1), the major mammalian detoxifier of the oxidized DNA precursor, 8-oxo-dGTP. Paradoxically, RAS-induced ROS are also able to participate in tumor progression via transformative processes such as mitogenic signaling, the epithelial-mesenchymal transition (EMT), anoikis inhibition, and PI3K/Akt-mediated survival signaling. Here we provide a preliminary insight into the influence of MTH1 levels on the EMT phenotype and Akt activation in RAS-transformed HMLE breast epithelial cells. Within this context, we will discuss the implications of MTH1 upregulation in oncogenic RAS-sustaining cells as a beneficial adaptive change that inhibits ROS-mediated cell senescence and participates in the maintenance of ROS-associated tumor-promoting mechanisms. Accordingly, targeting MTH1 in RAS-transformed tumor cells will not only induce proliferative defects but also potentially enhance therapeutic cytotoxicity by shifting cellular response away from pro-survival mechanisms.

  3. WNK1 and p38-MAPK distribution in ionocytes and accessory cells of euryhaline teleost fish implies ionoregulatory function

    Directory of Open Access Journals (Sweden)

    W. S. Marshall

    2017-07-01

    Full Text Available Ionocytes of euryhaline teleost fish secrete NaCl, under regulation by serine and threonine kinases, including with-no-lysine kinase (WNK1 and p38 mitogen-activated protein kinase (MAPK. Mummichogs (Fundulus heteroclitus L. were acclimated to freshwater (FW, full strength seawater (SW and hypersaline conditions (2SW. Immunocytochemistry of ionocytes in opercular epithelia of fish acclimated to SW and 2SW revealed that WNK1-anti-pT58 phosphoantibody localized strongly to accessory cells and was present in the cytosol of ionocytes, close to cystic fibrosis transmembrane conductance regulator (CFTR in the apical membrane and the sodium potassium 2 chloride cotransporter (NKCC in the basolateral membrane. In FW acclimated fish, WNK1 localized to a sub-apical zone, did not colocalize with apical membrane-located sodium chloride cotransporter (NCC, and typically was present in one cell of paired ionocytes and in some single ionocytes. Forskolin treatment (10 μM, 30 min increased WNK1 immunofluorescence in SW ionocytes only, while hypertonicity had little effect, compared to controls. Anti-p38-MAPK antibody localized to the cytosolic compartment. The distribution of WNK1 and p38MAPK is consistent with a proximal position in regulatory cascades, rather than directly affecting transporters. The strong staining of accessory cells by WNK1 phosphoantibody infers an osmoregulatory function for WNK.

  4. Bacillus subtilis Intramembrane Protease RasP Activity in Escherichia coli and In Vitro.

    Science.gov (United States)

    Parrell, Daniel; Zhang, Yang; Olenic, Sandra; Kroos, Lee

    2017-10-01

    RasP is a predicted intramembrane metalloprotease of Bacillus subtilis that has been proposed to cleave the stress response anti-sigma factors RsiW and RsiV, the cell division protein FtsL, and remnant signal peptides within their transmembrane segments. To provide evidence for direct effects of RasP on putative substrates, we developed a heterologous coexpression system. Since expression of catalytically inactive RasP E21A inhibited expression of other membrane proteins in Escherichia coli , we added extra transmembrane segments to RasP E21A, which allowed accumulation of most other membrane proteins. A corresponding active version of RasP appeared to promiscuously cleave coexpressed membrane proteins, except those with a large periplasmic domain. However, stable cleavage products were not observed, even in clpP mutant E. coli Fusions of transmembrane segment-containing parts of FtsL and RsiW to E. coli maltose-binding protein (MBP) also resulted in proteins that appeared to be RasP substrates upon coexpression in E. coli , including FtsL with a full-length C-terminal domain (suggesting that prior cleavage by a site 1 protease is unnecessary) and RsiW designed to mimic the PrsW site 1 cleavage product (suggesting that further trimming by extracytoplasmic protease is unnecessary). Purified RasP cleaved His 6 -MBP-RsiW(73-118) in vitro within the RsiW transmembrane segment based on mass spectrometry analysis, demonstrating that RasP is an intramembrane protease. Surprisingly, purified RasP failed to cleave His 6 -MBP-FtsL(23-117). We propose that the lack of α-helix-breaking residues in the FtsL transmembrane segment creates a requirement for the membrane environment and/or an additional protein(s) in order for RasP to cleave FtsL. IMPORTANCE Intramembrane proteases govern important signaling pathways in nearly all organisms. In bacteria, they function in stress responses, cell division, pathogenesis, and other processes. Their membrane-associated substrates are

  5. Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region.

    Science.gov (United States)

    Jang, Hyunbum; Abraham, Sherwin J; Chavan, Tanmay S; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I; Nussinov, Ruth; Gaponenko, Vadim

    2015-04-10

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Increased p21ras activity in human fibroblasts transduced with survivin enhances cell proliferation

    International Nuclear Information System (INIS)

    Temme, Achim; Diestelkoetter-Bachert, Petra; Schmitz, Marc; Morgenroth, Agnieszka; Weigle, Bernd; Rieger, Michael A.; Kiessling, Andrea; Rieber, E. Peter

    2005-01-01

    Survivin is critically involved in mitosis and when overexpressed enhances the activity of the Aurora B kinase, a serine-threonine kinase belonging to the family of oncogenic Aurora/IpI1p-related kinases. Both proteins interact with Ras GTPase-activating protein suggesting an impact on the Ras pathway. This study aimed at defining the role of survivin in proliferation and potential transformation of cells. When survivin was overexpressed in normal human lung fibroblasts, the characteristic track lanes of fibroblasts were disturbed and the rate of cell proliferation was increased. An enhanced level of p21 ras mRNA and protein expression and concomitant rise in levels of activated p21 ras were observed. Despite increased proliferation cell survival remained dependent on serum and cells were not able to form colonies in soft agar assays. These data suggest that overexpression of survivin increases cell growth but, despite the increase in active p21 ras , is not sufficient to transform primary cells. Yet, in addition to its anti-apoptotic function it might contribute to the accelerated growth of tumour cells by increasing p21 ras activity

  7. ECR-MAPK regulation in liver early development.

    Science.gov (United States)

    Zhao, Xiu-Ju; Zhuo, Hexian

    2014-01-01

    Early growth is connected to a key link between embryonic development and aging. In this paper, liver gene expression profiles were assayed at postnatal day 22 and week 16 of age. Meanwhile another independent animal experiment and cell culture were carried out for validation. Significance analysis of microarrays, qPCR verification, drug induction/inhibition assays, and metabonomics indicated that alpha-2u globulin (extracellular region)-socs2 (-SH2-containing signals/receptor tyrosine kinases)-ppp2r2a/pik3c3 (MAPK signaling)-hsd3b5/cav2 (metabolism/organization) plays a vital role in early development. Taken together, early development of male rats is ECR and MAPK-mediated coordination of cancer-like growth and negative regulations. Our data represent the first comprehensive description of early individual development, which could be a valuable basis for understanding the functioning of the gene interaction network of infant development.

  8. Multiple giant cell lesions in patients with Noonan syndrome and cardio-facio-cutaneous syndrome

    OpenAIRE

    Neumann, Thomas E; Allanson, Judith; Kavamura, Ines; Kerr, Bronwyn; Neri, Giovanni; Noonan, Jacqueline; Cordeddu, Viviana; Gibson, Kate; Tzschach, Andreas; Krüger, Gabriele; Hoeltzenbein, Maria; Goecke, Timm O; Kehl, Hans Gerd; Albrecht, Beate; Luczak, Klaudiusz

    2008-01-01

    Noonan syndrome (NS) and cardio-facio-cutaneous syndrome (CFCS) are related developmental disorders caused by mutations in genes encoding various components of the RAS-MAPK signaling cascade. NS is associated with mutations in the genes PTPN11, SOS1, RAF1, or KRAS, whereas CFCS can be caused by mutations in BRAF, MEK1, MEK2, or KRAS. the NS phenotype is rarely accompanied by multiple giant cell lesions (MGCL) of the jaw (Noonan-like/MGCL syndrome (NL/MGCLS)). PTPN11 mutations are the only gen...

  9. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T

    2014-07-04

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. Copyright © 2014, American Association for the Advancement of Science.

  10. Fetisisme Ras Kaukasoid dan Ras Mongoloid Sebagai Strategi Pemasaran dalam Sinetron Indonesia

    Directory of Open Access Journals (Sweden)

    Dimas Yudhistira

    2014-12-01

    ABSTRAK   Budaya populer yang tumbuh seiring dengan industrialisasi memengaruhi produksi per- filman di Indonesia. Salah satu genre perfilman di Indonesia adalah sinetron. Sinetron yang di- kategorikan sebagai produk seni kitsch memiliki dua kriteria yaitu sebagai komoditi seni yang populer dan sebagai komoditi dagang yang menghasilkan keuntungan ekonomis. Sebagai se- buah produk seni kitsch yang merupakan dasar pembuatan karyanya adalah selera masyarakat kebanyakan maka sinetron harus jeli dalam melihat keadaan dan latar belakang masyarakat. Penelitian ini menggunakan metode kualitatif. Hasil penelitian ini menggambarkan masyara- kat Indonesia yang merupakan ras Melayu telah dijajah oleh ras Kaukasoid dan Mongoloid sebelum tahun 1945 dan setelahnya. Efek dari penjajahan ini adalah ras Melayu telah ditanami fantasi yang menjadi stereotip mengenai ras Kaukasoid dan Mongoloid yang berakhir dengan fetisisme. Fetisisme ini dijadikan sebagai strategi pemasaran oleh produser dan sutradara un- tuk menarik antusiasme calon penonton sinetron. Caranya dengan menampilkan aktor dan aktris Melayu keturunan Kaukasoid dan Mongoloid sebagai pemeran utama.   Kata kunci: sinetron, seni kitsch, ras, fetisisme

  11. Trend analysis of body weight parameters, mortality, and incidence of spontaneous tumors in Tg.rasH2 mice.

    Science.gov (United States)

    Paranjpe, Madhav G; Denton, Melissa D; Vidmar, Tom; Elbekai, Reem H

    2014-01-01

    Carcinogenicity studies have been performed in conventional 2-year rodent studies for at least 3 decades, whereas the short-term carcinogenicity studies in transgenic mice, such as Tg.rasH2, have only been performed over the last decade. In the 2-year conventional rodent studies, interlinked problems, such as increasing trends in the initial body weights, increased body weight gains, high incidence of spontaneous tumors, and low survival, that complicate the interpretation of findings have been well established. However, these end points have not been evaluated in the short-term carcinogenicity studies involving the Tg.rasH2 mice. In this article, we present retrospective analysis of data obtained from control groups in 26-week carcinogenicity studies conducted in Tg.rasH2 mice since 2004. Our analysis showed statistically significant decreasing trends in initial body weights of both sexes. Although the terminal body weights did not show any significant trends, there was a statistically significant increasing trend toward body weight gains, more so in males than in females, which correlated with increasing trends in the food consumption. There were no statistically significant alterations in mortality trends. In addition, the incidence of all common spontaneous tumors remained fairly constant with no statistically significant differences in trends. © The Author(s) 2014.

  12. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families

    DEFF Research Database (Denmark)

    Hamel, Louis-Philippe; Nicole, Marie-Claude; Sritubtim, Somrudee

    2006-01-01

    MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, and their components are encoded by highly conserved genes. The recent availability of genome sequences for rice and poplar now makes it possible to examine how well the previously described...... Arabidopsis MAPK and MAPKK gene family structures represent the broader evolutionary situation in plants, and analysis of gene expression data for MPK and MKK genes in all three species allows further refinement of those families, based on functionality. The Arabidopsis MAPK nomenclature appears sufficiently...

  13. Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M.; Abel, Steven M.; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S.; Hansen, Scott D.; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K.; Kuriyan, John; Groves, Jay T.

    2014-01-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras–guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. PMID:24994643

  14. A Dual Phenotype of Periventricular Nodular Heterotopia and Frontometaphyseal Dysplasia in One Patient Caused by a Single FLNA Mutation Leading to Two Functionally Different Aberrant Transcripts

    Science.gov (United States)

    Zenker, Martin; Rauch, Anita; Winterpacht, Andreas; Tagariello, Andreas; Kraus, Cornelia; Rupprecht, Thomas; Sticht, Heinrich; Reis, André

    2004-01-01

    Two disorders, periventricular nodular heterotopia (PVNH) and a group of skeletal dysplasias belonging to the oto-palato-digital (OPD) spectrum, are caused by FLNA mutations. They are considered mutually exclusive because of the different presumed effects of the respective FLNA gene mutations, leading to loss of function (PVNH) and gain of function (OPD), respectively. We describe here the first patient manifesting PVNH in combination with frontometaphyseal dysplasia, a skeletal dysplasia of the OPD-spectrum. A novel de novo mutation, 7315C→A in exon 45 of the FLNA gene, was identified. It leads to two aberrant transcripts, one full-length transcript with the point mutation causing a substitution of a highly conserved leucine residue (L2439M) and a second shortened transcript lacking 21 bp due to the creation of an ectopic splice donor site in exon 45. We propose that the dual phenotype is caused by two functionally different, aberrant filamin A proteins and therefore represents an exceptional model case of allelic gain-of-function and loss-of-function phenotypes due to a single mutational event. PMID:14988809

  15. What makes Ras an efficient molecular switch: a computational, biophysical, and structural study of Ras-GDP interactions with mutants of Raf.

    Science.gov (United States)

    Filchtinski, Daniel; Sharabi, Oz; Rüppel, Alma; Vetter, Ingrid R; Herrmann, Christian; Shifman, Julia M

    2010-06-11

    Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (Ras(GTP)) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (Ras(GDP)) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with Ras(GDP). Most of our designed mutations narrow the gap between the affinity of Raf for Ras(GTP) and Ras(GDP), producing the desired shift in binding specificity towards Ras(GDP). A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards Ras(GDP). The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of Ras(GDP) bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the Ras(GDP).Raf mutant complex is found in a conformation similar to that of Ras(GTP) and not Ras(GDP). Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in Ras(GTP) is likely to explain the natural low affinity of Raf and other Ras effectors to Ras(GDP). Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch. Copyright 2010 Elsevier Ltd

  16. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ting; Wang, Wei-Na, E-mail: weina63@aliyun.com; Gu, Mei-Mei; Xie, Chen-Ying; Xiao, Yu-Chao; Liu, Yuan; Wang, Lei

    2015-06-15

    Highlights: • Cd{sup 2+} induces Cdc42 and MAPKs pathway related gene of Litopenaeus vannamei up-regulation. • Reduction of THC, increase of ROS production and apoptotic cell rate were observed when the shrimps exposure to Cd{sup 2+}. • DsRNA-suppression of LvCdc42 and MAPKs during Cd{sup 2+} stress reduces the ROS production and apoptosis. • We conclude that LvCdc42 and MAPKs play key roles in Cd{sup 2+} stress responses of shrimps. - Abstract: Cadmium, one of the most toxic heavy metals in aquatic environments, has severe effects on marine invertebrates and fishes. The MAPK signaling pathway plays a vital role in stress responses of animals. The mitogen-activated protein kinase (MAPK) signaling pathway plays a vital role in animals’ stress responses, including mediation of apoptosis induced by the Rho GTPase Cdc42. However, there is limited knowledge about its function in shrimps, although disorders exacerbated by environmental stresses (including heavy metal pollution) have caused serious mortality in commercially cultured shrimps. Thus, we probed roles of Cdc42 in Litopenaeus vannamei shrimps (LvCdc42) during cadmium exposure by inhibiting its expression using dsRNA-mediated RNA interference. The treatment successfully reduced expression levels of MAPKs (including p38, JNK, and ERK). Cadmium exposure induced significant increases in expression levels of LvCdc42 and MAPKs, accompanied by reductions in total hemocyte counts (THC) and increases in apoptotic hemocyte ratios and ROS production. However, all of these responses were much weaker in LvCdc42-suppressed shrimps, in which mortality rates were higher than in controls. Our results suggest that the MAPK pathway plays a vital role in shrimps’ responses to Cd{sup 2+}. They also indicate that LvCdc42 in shrimps participates in its regulation, and thus plays key roles in ROS production, regulation of apoptosis and associated stress responses.

  17. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei

    International Nuclear Information System (INIS)

    Peng, Ting; Wang, Wei-Na; Gu, Mei-Mei; Xie, Chen-Ying; Xiao, Yu-Chao; Liu, Yuan; Wang, Lei

    2015-01-01

    Highlights: • Cd 2+ induces Cdc42 and MAPKs pathway related gene of Litopenaeus vannamei up-regulation. • Reduction of THC, increase of ROS production and apoptotic cell rate were observed when the shrimps exposure to Cd 2+ . • DsRNA-suppression of LvCdc42 and MAPKs during Cd 2+ stress reduces the ROS production and apoptosis. • We conclude that LvCdc42 and MAPKs play key roles in Cd 2+ stress responses of shrimps. - Abstract: Cadmium, one of the most toxic heavy metals in aquatic environments, has severe effects on marine invertebrates and fishes. The MAPK signaling pathway plays a vital role in stress responses of animals. The mitogen-activated protein kinase (MAPK) signaling pathway plays a vital role in animals’ stress responses, including mediation of apoptosis induced by the Rho GTPase Cdc42. However, there is limited knowledge about its function in shrimps, although disorders exacerbated by environmental stresses (including heavy metal pollution) have caused serious mortality in commercially cultured shrimps. Thus, we probed roles of Cdc42 in Litopenaeus vannamei shrimps (LvCdc42) during cadmium exposure by inhibiting its expression using dsRNA-mediated RNA interference. The treatment successfully reduced expression levels of MAPKs (including p38, JNK, and ERK). Cadmium exposure induced significant increases in expression levels of LvCdc42 and MAPKs, accompanied by reductions in total hemocyte counts (THC) and increases in apoptotic hemocyte ratios and ROS production. However, all of these responses were much weaker in LvCdc42-suppressed shrimps, in which mortality rates were higher than in controls. Our results suggest that the MAPK pathway plays a vital role in shrimps’ responses to Cd 2+ . They also indicate that LvCdc42 in shrimps participates in its regulation, and thus plays key roles in ROS production, regulation of apoptosis and associated stress responses

  18. Genotype-phenotype associations in filaggrin loss-of-function mutation carriers

    NARCIS (Netherlands)

    Landeck, Lilla; Visser, Maaike; Kezic, Sanja; John, Swen M.

    2013-01-01

    Loss-of-function mutations in the filaggrin gene (FLG) have been reported to be associated with specific phenotypic characteristics such as hyperlinearity and keratosis pilaris. To study phenotypic features in patients with occupational irritant contact eczema of the hands in relation to FLG

  19. About the RAS Initiative

    Science.gov (United States)

    The RAS Initiative, a "hub and spoke" model, connects researchers to better understand and target the more than 30% of cancers driven by mutations in RAS genes. Includes oversight and contact information.

  20. The C-terminus of H-Ras as a target for the covalent binding of reactive compounds modulating Ras-dependent pathways.

    Directory of Open Access Journals (Sweden)

    Clara L Oeste

    2011-01-01

    Full Text Available Ras proteins are crucial players in differentiation and oncogenesis and constitute important drug targets. The localization and activity of Ras proteins are highly dependent on posttranslational modifications at their C-termini. In addition to an isoprenylated cysteine, H-Ras, but not other Ras proteins, possesses two cysteine residues (C181 and C184 in the C-terminal hypervariable domain that act as palmitoylation sites in cells. Cyclopentenone prostaglandins (cyPG are reactive lipidic mediators that covalently bind to H-Ras and activate H-Ras dependent pathways. Dienone cyPG, such as 15-deoxy-Δ(12,14-PGJ(2 (15d-PGJ(2 and Δ(12-PGJ(2 selectively bind to the H-Ras hypervariable domain. Here we show that these cyPG bind simultaneously C181 and C184 of H-Ras, thus potentially altering the conformational tendencies of the hypervariable domain. Based on these results, we have explored the capacity of several bifunctional cysteine reactive small molecules to bind to the hypervariable domain of H-Ras proteins. Interestingly, phenylarsine oxide (PAO, a widely used tyrosine phosphatase inhibitor, and dibromobimane, a cross-linking agent used for cysteine mapping, effectively bind H-Ras hypervariable domain. The interaction of PAO with H-Ras takes place in vitro and in cells and blocks modification of H-Ras by 15d-PGJ(2. Moreover, PAO treatment selectively alters H-Ras membrane partition and the pattern of H-Ras activation in cells, from the plasma membrane to endomembranes. These results identify H-Ras as a novel target for PAO. More importantly, these observations reveal that small molecules or reactive intermediates interacting with spatially vicinal cysteines induce intramolecular cross-linking of H-Ras C-terminus potentially contributing to the modulation of Ras-dependent pathways.

  1. Prenatal Exposure to LPS Alters The Intrarenal RAS in Offspring, Which Is Ameliorated by Adipose Tissue-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Ding, Xian-Fei; Sun, Mou; Guan, Fang-Xia; Guo, Li-Na; Zhang, Yan-Yan; Wan, You-Dong; Zhang, Xiao-Juan; Yu, Yan-Wu; Ma, Shan-Shan; Yao, Hai-Mu; Yao, Rui; Zhang, Rui-Fang; Sun, Tong-Wen; Kan, Quan-Cheng

    2017-11-06

    Prenatal lipopolysaccharide (LPS) exposure causes hypertension in rat offspring through an unknown mechanism. Here, we investigated the role of the intrarenal renin-angiotensin system (RAS) in hypertension induced by prenatal LPS exposure and also explored whether adipose tissue-derived mesenchymal stem cells (ADSCs) can ameliorate the effects of prenatal LPS exposure in rat offspring. Sixty-four pregnant rats were randomly divided into 4 groups (n = 16 in each), namely, a control group and an LPS group, which were intraperitoneally injected with vehicle and 0.79 mg/kg LPS, respectively, on the 8th, 10th, and 12th days of gestation; an ADSCs group, which was intravenously injected with 1.8 × 107 ADSCs on the 8th, 10th, and 12th days of gestation; and an LPS + ADSCs group, which received a combination of the treatments administered to the LPS and ADSCs groups. Prenatal LPS exposure increased blood pressure, Ang II expression, Ang II-positive, monocyte and lymphocyte, apoptotic cells in the kidney, and induced renal histological changes in offspring; however, the LPS and control groups did not differ significantly with respect to plasma renin activity levels, Ang II levels, or renal function. ADSCs treatment attenuated the blood pressure and also ameliorated the other effects of LPS-treated adult offspring. Prenatal exposure to LPS activates the intrarenal RAS but not the circulating RAS and thus induces increases in blood pressure in adult offspring; however, ADSCs treatment attenuates the blood pressure increases resulting from LPS exposure and also ameliorates the other phenotypic changes induced by LPS treatment by inhibiting intrarenal RAS activation. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Noonans syndrom kan diagnosticere sklinisk og molekylærgenetisk

    DEFF Research Database (Denmark)

    Krab Henningsen, Marie; Jelsig, Anne Marie; Andersen, Helle

    2015-01-01

    Noonan syndrome is part of the group of RASopathies caused by germ line mutations in genes involved in the RAS/MAPK pathway. There is substantial phenotypic overlap among the RASopathies. Diagnosis of Noonan syndrome is often based on clinical features including dysmorphic facial features, short...... stature and congenital heart disease. Rapid advances in sequencing technology have made molecular genetic analyses a helpful tool in diagnosing and distinguishing Noonan syndrome from other RASopathies....

  3. [Noonan syndrome can be diagnosed clinically and through molecular genetic analyses].

    Science.gov (United States)

    Henningsen, Marie Krab; Jelsig, Anne Marie; Andersen, Helle; Brusgaard, Klaus; Ousager, Lilian Bomme; Hertz, Jens Michael

    2015-08-03

    Noonan syndrome is part of the group of RASopathies caused by germ line mutations in genes involved in the RAS/MAPK pathway. There is substantial phenotypic overlap among the RASopathies. Diagnosis of Noonan syndrome is often based on clinical features including dysmorphic facial features, short stature and congenital heart disease. Rapid advances in sequencing technology have made molecular genetic analyses a helpful tool in diagnosing and distinguishing Noonan syndrome from other RASopathies.

  4. ECR-MAPK Regulation in Liver Early Development

    Directory of Open Access Journals (Sweden)

    Xiu-Ju Zhao

    2014-01-01

    Full Text Available Early growth is connected to a key link between embryonic development and aging. In this paper, liver gene expression profiles were assayed at postnatal day 22 and week 16 of age. Meanwhile another independent animal experiment and cell culture were carried out for validation. Significance analysis of microarrays, qPCR verification, drug induction/inhibition assays, and metabonomics indicated that alpha-2u globulin (extracellular region-socs2 (-SH2-containing signals/receptor tyrosine kinases-ppp2r2a/pik3c3 (MAPK signaling-hsd3b5/cav2 (metabolism/organization plays a vital role in early development. Taken together, early development of male rats is ECR and MAPK-mediated coordination of cancer-like growth and negative regulations. Our data represent the first comprehensive description of early individual development, which could be a valuable basis for understanding the functioning of the gene interaction network of infant development.

  5. Molecular analysis of pediatric brain tumors identifies microRNAs in pilocytic astrocytomas that target the MAPK and NF-κB pathways.

    Science.gov (United States)

    Jones, Tania A; Jeyapalan, Jennie N; Forshew, Tim; Tatevossian, Ruth G; Lawson, Andrew R J; Patel, Sheena N; Doctor, Gabriel T; Mumin, Muhammad A; Picker, Simon R; Phipps, Kim P; Michalski, Antony; Jacques, Thomas S; Sheer, Denise

    2015-12-18

    Pilocytic astrocytomas are slow-growing tumors that usually occur in the cerebellum or in the midline along the hypothalamic/optic pathways. The most common genetic alterations in pilocytic astrocytomas activate the ERK/MAPK signal transduction pathway, which is a major driver of proliferation but is also believed to induce senescence in these tumors. Here, we have conducted a detailed investigation of microRNA and gene expression, together with pathway analysis, to improve our understanding of the regulatory mechanisms in pilocytic astrocytomas. Pilocytic astrocytomas were found to have distinctive microRNA and gene expression profiles compared to normal brain tissue and a selection of other pediatric brain tumors. Several microRNAs found to be up-regulated in pilocytic astrocytomas are predicted to target the ERK/MAPK and NF-κB signaling pathways as well as genes involved in senescence-associated inflammation and cell cycle control. Furthermore, IGFBP7 and CEBPB, which are transcriptional inducers of the senescence-associated secretory phenotype (SASP), were also up-regulated together with the markers of senescence and inflammation, CDKN1A (p21), CDKN2A (p16) and IL1B. These findings provide further evidence of a senescent phenotype in pilocytic astrocytomas. In addition, they suggest that the ERK/MAPK pathway, which is considered the major driver of these tumors, is regulated not only by genetic aberrations but also by microRNAs.

  6. Noonan syndrome in diverse populations.

    Science.gov (United States)

    Kruszka, Paul; Porras, Antonio R; Addissie, Yonit A; Moresco, Angélica; Medrano, Sofia; Mok, Gary T K; Leung, Gordon K C; Tekendo-Ngongang, Cedrik; Uwineza, Annette; Thong, Meow-Keong; Muthukumarasamy, Premala; Honey, Engela; Ekure, Ekanem N; Sokunbi, Ogochukwu J; Kalu, Nnenna; Jones, Kelly L; Kaplan, Julie D; Abdul-Rahman, Omar A; Vincent, Lisa M; Love, Amber; Belhassan, Khadija; Ouldim, Karim; El Bouchikhi, Ihssane; Shukla, Anju; Girisha, Katta M; Patil, Siddaramappa J; Sirisena, Nirmala D; Dissanayake, Vajira H W; Paththinige, C Sampath; Mishra, Rupesh; Klein-Zighelboim, Eva; Gallardo Jugo, Bertha E; Chávez Pastor, Miguel; Abarca-Barriga, Hugo H; Skinner, Steven A; Prijoles, Eloise J; Badoe, Eben; Gill, Ashleigh D; Shotelersuk, Vorasuk; Smpokou, Patroula; Kisling, Monisha S; Ferreira, Carlos R; Mutesa, Leon; Megarbane, Andre; Kline, Antonie D; Kimball, Amy; Okello, Emmy; Lwabi, Peter; Aliku, Twalib; Tenywa, Emmanuel; Boonchooduang, Nonglak; Tanpaiboon, Pranoot; Richieri-Costa, Antonio; Wonkam, Ambroise; Chung, Brian H Y; Stevenson, Roger E; Summar, Marshall; Mandal, Kausik; Phadke, Shubha R; Obregon, María G; Linguraru, Marius G; Muenke, Maximilian

    2017-09-01

    Noonan syndrome (NS) is a common genetic syndrome associated with gain of function variants in genes in the Ras/MAPK pathway. The phenotype of NS has been well characterized in populations of European descent with less attention given to other groups. In this study, individuals from diverse populations with NS were evaluated clinically and by facial analysis technology. Clinical data and images from 125 individuals with NS were obtained from 20 countries with an average age of 8 years and female composition of 46%. Individuals were grouped into categories of African descent (African), Asian, Latin American, and additional/other. Across these different population groups, NS was phenotypically similar with only 2 of 21 clinical elements showing a statistically significant difference. The most common clinical characteristics found in all population groups included widely spaced eyes and low-set ears in 80% or greater of participants, short stature in more than 70%, and pulmonary stenosis in roughly half of study individuals. Using facial analysis technology, we compared 161 Caucasian, African, Asian, and Latin American individuals with NS with 161 gender and age matched controls and found that sensitivity was equal to or greater than 94% for all groups, and specificity was equal to or greater than 90%. In summary, we present consistent clinical findings from global populations with NS and additionally demonstrate how facial analysis technology can support clinicians in making accurate NS diagnoses. This work will assist in earlier detection and in increasing recognition of NS throughout the world. © 2017 Wiley Periodicals, Inc.

  7. The F-box protein Fbp1 functions in the invasive growth and cell wall integrity mitogen-activated protein kinase (MAPK) pathways in Fusarium oxysporum.

    Science.gov (United States)

    Miguel-Rojas, Cristina; Hera, Concepcion

    2016-01-01

    F-box proteins determine substrate specificity of the ubiquitin-proteasome system. Previous work has demonstrated that the F-box protein Fbp1, a component of the SCF(Fbp1) E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen-activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  8. Tg.rasH2 Mice and not CByB6F1 Mice Should Be Used for 28-Day Dose Range Finding Studies Prior to 26-Week Tg.rasH2 Carcinogenicity Studies.

    Science.gov (United States)

    Paranjpe, Madhav G; Belich, Jessica; Vidmar, Tom J; Elbekai, Reem H; McKeon, Marie; Brown, Caren

    Our recent retrospective analysis of data, collected from 29 Tg.rasH2 mouse carcinogenicity studies, determined how successful the strategy of choosing the high dose for the 26-week studies was based on the estimated maximum tolerated dose (EMTD) derived from earlier 28-day dose range finding (DRF) studies conducted in CByB6F1 mice. Our analysis demonstrated that the high doses applied at EMTD in the 26-week Tg.rasH2 studies failed to detect carcinogenic effects. To investigate why the dose selection process failed in the 26-week carcinogenicity studies, the initial body weights, terminal body weights, body weight gains, food consumption, and mortality from the first 4 weeks of 26-week studies with Tg.rasH2 mice were compared with 28-day DRF studies conducted with CByB6F1 mice. Both the 26-week and the earlier respective 28-day studies were conducted with the exact same vehicle, test article, and similar dose levels. The analysis of our results further emphasizes that the EMTD and subsequent lower doses, determined on the basis of the 28-day studies in CByB6F1 mice, may not be an accurate strategy for selecting appropriate dose levels for the 26-week carcinogenicity studies in Tg.rasH2 mice. Based on the analysis presented in this article, we propose that the Tg.rasH2 mice and not the CByB6F1 mice should be used in future DRF studies. The Tg.rasH2 mice demonstrate more toxicity than the CByB6F1 mice, possibly because of their smaller size compared to CByB6F1 mice. Also, the Tg.rasH2 males appear to be more sensitive than the female Tg.rasH2 mice.

  9. The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and Their Role in Human Tumorigenesis

    Science.gov (United States)

    Cazzanelli, Giulia; Francisco, Rita; Azevedo, Luísa; Carvalho, Patrícia Dias; Almeida, Ana; Côrte-Real, Manuela; Oliveira, Maria José; Lucas, Cândida; Sousa, Maria João

    2018-01-01

    The exploitation of the yeast Saccharomyces cerevisiae as a biological model for the investigation of complex molecular processes conserved in multicellular organisms, such as humans, has allowed fundamental biological discoveries. When comparing yeast and human proteins, it is clear that both amino acid sequences and protein functions are often very well conserved. One example of the high degree of conservation between human and yeast proteins is highlighted by the members of the RAS family. Indeed, the study of the signaling pathways regulated by RAS in yeast cells led to the discovery of properties that were often found interchangeable with RAS proto-oncogenes in human pathways, and vice versa. In this work, we performed an updated critical literature review on human and yeast RAS pathways, specifically highlighting the similarities and differences between them. Moreover, we emphasized the contribution of studying yeast RAS pathways for the understanding of human RAS and how this model organism can contribute to unveil the roles of RAS oncoproteins in the regulation of mechanisms important in the tumorigenic process, like autophagy. PMID:29463063

  10. Assessment of brain activation regulation in first graders via RAN / RAS test

    Directory of Open Access Journals (Sweden)

    Tatiana V. Akhutina

    2015-03-01

    Full Text Available RAN / RAS test (Rapid Automatized Naming / Rapid Alternating Stimulus has been used successfully used by many psychologists, primarily to predict the risk of dyslexia, as it includes a language component and requires good visual-verbal connections. However, The research demonstrates that the low speed of naming is an effective indicator of neurocognitive problems of information processing as a whole (learning difficulties in general, not just reading difficulties. This can be explained in two ways: disturbance of executive mental control and the difficulties of automatization: the difficulties of the transition from a controlled energy-consuming assignment to a less energy-consuming one. The second interpretation describes the problems of energy resources of cognitive functioning. It is similar to weak maintenance of cortical structures activation. However, using the test mentioned herewith for assessing functions of activation regulation has not been described previously. In terms of the Luria’s three functional units of the brain theory the RAN / RAS test can be considered as sensitive to the weakness of the first unit, whose function is to maintain the activity of cortical structures. So the aim of the research is to prove the possibility of assessing the activation regulation using the RAN / RAS test. This issue is relevant because neuropsychological tools for determining the weakness of Unit I functions are not quite sufficient, while the problem of “energetic” unit ranks first in the frequency of occurrence in children with learning disabilities.

  11. Effects of andrographolide on postoperative cognitive dysfunction and the association with NF-κB/MAPK pathway.

    Science.gov (United States)

    Ding, Yongbo; Shi, Cunxian; Chen, Linjing; Ma, Piliang; Li, Kezhong; Jin, Jin; Zhang, Qingfeng; Li, Aizhi

    2017-12-01

    The present study investigated the effects of andrographolide on postoperative cognitive dysfunction (POCD) in aged rats to gain insight of the underlying mechanism, which may provide theoretical basis for the clinical application of andrographolide to prevent POCD in older patients. Thirty aged male rats were randomly assigned to 3 groups: Control, model and andrographolide groups. The Morris water maze test was used to examine the spatial memory and learning ability of the rats postoperatively. The histological alterations of neuronal cells in the hippocampus were visualized by H&E staining. The serum levels of neuron-specific enolase (NSE), human soluble protein-100β (S-100β) and the inflammation factors of interluekin (IL)-1β, IL-6 and TNF-α involved in the nuclear factor κB (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway were detected by ELISA. The NF-κB/MAPK signaling pathway-associated proteins in rat serum were detected by western blotting. Following andrographolide treatment, the rats significantly gained learning ability after surgery. Is it ameliorated hippocampal neuronal injury in rats following surgery. Andrographolide decreased NSE, S-100β, and the inflammation factors, IL-6, IL-1β and TNF-α in serum. Andrographolide reduced NF-κB/MAPK pathway-associated protein expression. Andrographolide ameliorated POCD in aged rats following surgery. The underlying mechanism may be associated with the downregulation the inflammatory factors and NF-κB/MAPK-associated protein expression.

  12. Activation of p44/42 MAPK plays a role in the TBT-induced loss of human natural killer (NK) cell function.

    Science.gov (United States)

    Dudimah, Fred D; Griffey, Denisha; Wang, Xiaofei; Whalen, Margaret M

    2010-10-01

    Natural killer (NK) cells destroy (lyse) tumor cells, virally infected cells, and antibody-coated cells. Previous studies indicated that exposure to the environmental contaminant tributyltin (TBT) decreases the lytic function of NK cells and activates mitogen-activated protein kinases (MAPK), including p44/42 (Aluoch and Whalen Toxicology 209:263-277, 2005). If activation of p44/42 is required for TBT-induced decreases of lytic function, then activation of p44/42 to similar extents by pharmacological agents such as phorbol 12-myristate 13-acetate (PMA) should mimic to some extent changes induced in NK cells with TBT exposures. NK cells were exposed to PMA concentrations between 0.25 and 10 nM for 10 min, 1 h, and 6 h before determining the lytic function ((51)Cr release assay) and phosphorylation state of MAPKs (Western blot). A 1-h exposure of NK cells to 5 nM PMA resulted in a loss of lytic function of 47%. Western blot analysis showed that a 1-h exposure to 5 nM PMA caused a sixfold increase in phospho-p44/42 levels. Previous studies showed a fivefold increase in phospho-p44/42 in response to a 1-h exposure to 300 nM TBT. Exposure to 300 nM TBT caused about a 40% decrease in lytic function. This study supports the hypothesis that p44/42 activation (as seen with TBT exposures) can cause a loss of NK-cell lytic function.

  13. Activation of p44/42 MAPK Plays a Role in the TBT-induced Loss of Human Natural Killer (NK) Cell Function

    Science.gov (United States)

    Dudimah, Fred D.; Griffey, Denisha; Wang, Xiaofei; Whalen, Margaret M.

    2009-01-01

    Natural Killer (NK) cells destroy (lyse) tumor cells, virally infected cells and antibody-coated cells. Previous studies indicated that exposure to the environmental contaminant tributyltin (TBT) decreases the lytic function of NK cells and activates mitogen activated protein kinases (MAPK), including p44/42 (Aluoch and Whalen, 2005). If activation of p44/42 is required for TBT-induced decreases of lytic function, then activation of p44/42 to similar extents by pharmacological agents such as Phorbol 12-myristate 13-acetate (PMA) should mimic to some extent changes induced in NK cells with TBT exposures. NK cells were exposed to PMA concentrations between 0.25 and 10 nM for 10 min, 1 h, and 6 h before determining the lytic function (51Cr release assay) and phosphorylation state of MAPKs (Western blot). A 1 h exposure of NK cells to 5 nM PMA resulted in a loss of lytic function of 47%. Western blot analysis showed that a 1 h exposure to 5 nM PMA caused a 6 fold increase in phospho-p44/42 levels. Previous studies showed a 5 fold increase in phospho-p44/42 in response to a 1 h exposure to 300 nM TBT. Exposure to 300 nM TBT caused about a 40% decrease in lytic function. This study supports the hypothesis that p44/42 activation (as seen with TBT exposures) can cause a loss of NK-cell lytic function. PMID:20213532

  14. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica.

    Science.gov (United States)

    Zhang, Shizhong; Xu, Ruirui; Luo, Xiaocui; Jiang, Zesheng; Shu, Huairui

    2013-12-01

    MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, which are composed of three classes of hierarchically organized protein kinases, namely MAPKKKs, MAPKKs, and MAPKs. Although genome-wide analysis of this family has been carried out in some species, little is known about MAPK and MAPKK genes in apple (Malus domestica). In this study, a total of 26 putative apple MAPK genes (MdMPKs) and 9 putative apple MAPKK genes (MdMKKs) have been identified and located within the apple genome. Phylogenetic analysis revealed that MdMAPKs and MdMAPKKs could be divided into 4 subfamilies (groups A, B, C and D), respectively. The predicted MdMAPKs and MdMAPKKs were distributed across 13 out of 17 chromosomes with different densities. In addition, analysis of exon-intron junctions and of intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. According to the microarray and expressed sequence tag (EST) analysis, the different expression patterns indicate that they may play different roles during fruit development and rootstock-scion interaction process. Moreover, MAPK and MAPKK genes were performed expression profile analyses in different tissues (root, stem, leaf, flower and fruit), and all of the selected genes were expressed in at least one of the tissues tested, indicating that the MAPKs and MAPKKs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this is the first report of a genome-wide analysis of the apple MAPK and MAPKK gene family. This study provides valuable information for understanding the classification and putative functions of the MAPK signal in apple. © 2013.

  15. Genetic Validation of Cell Proliferation via Ras-Independent Activation of the Raf/Mek/Erk Pathway.

    Science.gov (United States)

    Lechuga, Carmen G; Simón-Carrasco, Lucía; Jacob, Harrys K C; Drosten, Matthias

    2017-01-01

    Signaling transmitted by the Ras family of small GTPases (H-, N-, and K-Ras) is essential for proliferation of mouse embryonic fibroblasts (MEFs). However, constitutive activation of the downstream Raf/Mek/Erk pathway can bypass the requirement for Ras proteins and allow cells to proliferate in the absence of the three Ras isoforms. Here we describe a protocol for a colony formation assay that permits evaluating the role of candidate proteins that are positive or negative regulators of cell proliferation mediated via Ras-independent Raf/Mek/Erk pathway activation. K-Ras lox (H-Ras -/- , N-Ras -/- , K-Ras lox/lox , RERT ert/ert ) MEFs are infected with retro- or lentiviral vectors expressing wild-type or constitutively activated candidate cDNAs, shRNAs, or sgRNAs in combination with Cas9 to ascertain the possibility of candidate proteins to function either as an activator or inhibitor of Ras-independent Raf/Mek/Erk activation. These cells are then seeded in the absence or presence of 4-Hydroxytamoxifen (4-OHT), which activates the resident CreERT2 alleles resulting in elimination of the conditional K-Ras alleles and ultimately generating Rasless cells. Colony formation in the presence of 4-OHT indicates cell proliferation via Ras-independent Raf/Mek/Erk activation.

  16. Dietary influence on MAPK-signaling pathways and risk of colon and rectal cancer.

    Science.gov (United States)

    Slattery, Martha L; Lundgreen, Abbie; Wolff, Roger K

    2013-01-01

    Mitogen-activated protein kinase (MAPK) pathways regulate cellular functions including cell proliferation, differentiation, migration, and apoptosis. Associations between genes in the DUSP, ERK1/2, JNK, and p38 MAPK-signaling pathways and dietary factors associated with growth factors, inflammation, and oxidative stress and risk of colon and rectal cancer were evaluated. Data include colon cases (n = 1555) and controls (n = 1956) and rectal cases (n = 754) and controls (n = 959). Statistically significant interactions were observed for the MAPK-signaling pathways after adjustment for multiple comparisons. DUSP genes interacted with carbohydrates, mutagen index, calories, calcium, vitamin D, lycopene, dietary fats, folic acid, and selenium. MAPK1, MAPK3, MAPK1, and RAF1 within the ERK1/2 MAPK-signaling pathway interacted with dietary fats and cruciferous vegetables. Within the JNK MAPK-signaling pathway, interactions between MAP3K7 and protein, vitamin C, iron, folic acid, carbohydrates, and cruciferous vegetables; MAP3K10 and folic acid; MAP3K9 and lutein/zeaxanthin; MAPK8 and calcium; MAP3K3 and calcium and lutein; MAP3K1 and cruciferous vegetables. Interaction within the p38-signaling pathway included MAPK14 with calories, carbohydrates saturated fat, selenium, vitamin C; MAP3K2 and carbohydrates, and folic acid. These data suggest that dietary factors involved in inflammation and oxidative stress interact with MAPK-signaling genes to alter risk of colorectal cancer.

  17. High-Affinity Interaction of the K-Ras4B Hypervariable Region with the Ras Active Site

    Science.gov (United States)

    Chavan, Tanmay S.; Jang, Hyunbum; Khavrutskii, Lyuba; Abraham, Sherwin J.; Banerjee, Avik; Freed, Benjamin C.; Johannessen, Liv; Tarasov, Sergey G.; Gaponenko, Vadim; Nussinov, Ruth; Tarasova, Nadya I.

    2015-01-01

    Ras proteins are small GTPases that act as signal transducers between cell surface receptors and several intracellular signaling cascades. They contain highly homologous catalytic domains and flexible C-terminal hypervariable regions (HVRs) that differ across Ras isoforms. KRAS is among the most frequently mutated oncogenes in human tumors. Surprisingly, we found that the C-terminal HVR of K-Ras4B, thought to minimally impact the catalytic domain, directly interacts with the active site of the protein. The interaction is almost 100-fold tighter with the GDP-bound than the GTP-bound protein. HVR binding interferes with Ras-Raf interaction, modulates binding to phospholipids, and slightly slows down nucleotide exchange. The data indicate that contrary to previously suggested models of K-Ras4B signaling, HVR plays essential roles in regulation of signaling. High affinity binding of short peptide analogs of HVR to K-Ras active site suggests that targeting this surface with inhibitory synthetic molecules for the therapy of KRAS-dependent tumors is feasible. PMID:26682817

  18. Methodology for the inference of gene function from phenotype data.

    Science.gov (United States)

    Ascensao, Joao A; Dolan, Mary E; Hill, David P; Blake, Judith A

    2014-12-12

    Biomedical ontologies are increasingly instrumental in the advancement of biological research primarily through their use to efficiently consolidate large amounts of data into structured, accessible sets. However, ontology development and usage can be hampered by the segregation of knowledge by domain that occurs due to independent development and use of the ontologies. The ability to infer data associated with one ontology to data associated with another ontology would prove useful in expanding information content and scope. We here focus on relating two ontologies: the Gene Ontology (GO), which encodes canonical gene function, and the Mammalian Phenotype Ontology (MP), which describes non-canonical phenotypes, using statistical methods to suggest GO functional annotations from existing MP phenotype annotations. This work is in contrast to previous studies that have focused on inferring gene function from phenotype primarily through lexical or semantic similarity measures. We have designed and tested a set of algorithms that represents a novel methodology to define rules for predicting gene function by examining the emergent structure and relationships between the gene functions and phenotypes rather than inspecting the terms semantically. The algorithms inspect relationships among multiple phenotype terms to deduce if there are cases where they all arise from a single gene function. We apply this methodology to data about genes in the laboratory mouse that are formally represented in the Mouse Genome Informatics (MGI) resource. From the data, 7444 rule instances were generated from five generalized rules, resulting in 4818 unique GO functional predictions for 1796 genes. We show that our method is capable of inferring high-quality functional annotations from curated phenotype data. As well as creating inferred annotations, our method has the potential to allow for the elucidation of unforeseen, biologically significant associations between gene function and

  19. Examination of VDR/RXR/DRIP205 Interaction, Intranuclear Localization, and DNA Binding in Ras-Transformed Keratinocytes and Its Implication for Designing Optimal Vitamin D Therapy in Cancer.

    Science.gov (United States)

    Jusu, Sylvester; Presley, John F; Williams, Chris; Das, Sanjoy Kumar; Jean-Claude, Bertrand; Kremer, Richard

    2018-03-01

    Retinoid X receptor (RXR) occupies a central position within the nuclear receptor superfamily, serving as an obligatory partner to numerous other nuclear receptors, including vitamin D receptor (VDR). In the current study, we examined whether phosphorylation of RXRα at serine 260 affects VDR/RXR and VDR interacting protein (DRIP) 205 coactivator recruitment, interactions, and binding of the VDR/human RXRα (hRXRα)/DRIP205 complex to chromatin. Serine 260 is a critical amino acid on the hRXRα that is located in close spatial proximity to regions of coactivator and corepressor interactions. Using fluorescence resonance energy transfer and immunofluorescence studies, we showed that the physical interaction between hRXRα and DRIP205 coactivator was impaired in human keratinocytes with the ras oncogene (HPK1Aras) or transfected with the wild-type hRXRα. Furthermore, the nuclear colocalization of VDR/DRIP205, hRXRα/DRIP205, and VDR/hRXRα/DRIP205 complex binding to chromatin is impaired in the HPK1Aras cells when compared with the normal human keratinocytes (HPK1A cells). However, transfection with the nonphosphorylatable hRXRα (S260A) mutant or treatment with the mitogen-activated protein kinase (MAPK) inhibitor UO126 rescued their nuclear localization, interaction, and binding of the complex to chromatin in the HPK1Aras cells. In summary, we have demonstrated, using highly specific intracellular tagging methods in live and fixed cells, important alterations of the vitamin D signaling system in cancer cells in which the ras-raf-MAPK system is activated, suggesting that specific inhibition of this commonly activated pathway could be targeted therapeutically to enhance vitamin D efficacy. Copyright © 2018 Endocrine Society.

  20. Stat1 phosphorylation determines Ras oncogenicity by regulating p27 kip1.

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    Full Text Available Inactivation of p27 Kip1 is implicated in tumorigenesis and has both prognostic and treatment-predictive values for many types of human cancer. The transcription factor Stat1 is essential for innate immunity and tumor immunosurveillance through its ability to act downstream of interferons. Herein, we demonstrate that Stat1 functions as a suppressor of Ras transformation independently of an interferon response. Inhibition of Ras transformation and tumorigenesis requires the phosphorylation of Stat1 at tyrosine 701 but is independent of Stat1 phosphorylation at serine 727. Stat1 induces p27 Kip1 expression in Ras transformed cells at the transcriptional level through mechanisms that depend on Stat1 phosphorylation at tyrosine 701 and activation of Stat3. The tumor suppressor properties of Stat1 in Ras transformation are reversed by the inactivation of p27 Kip1. Our work reveals a novel functional link between Stat1 and p27 Kip1, which act in coordination to suppress the oncogenic properties of activated Ras. It also supports the notion that evaluation of Stat1 phosphorylation in human tumors may prove a reliable prognostic factor for patient outcome and a predictor of treatment response to anticancer therapies aimed at activating Stat1 and its downstream effectors.

  1. Characterization of early events involved in human dendritic cell maturation induced by sensitizers: Cross talk between MAPK signalling pathways

    International Nuclear Information System (INIS)

    Trompezinski, Sandra; Migdal, Camille; Tailhardat, Magalie; Le Varlet, Beatrice; Courtellemont, Pascal; Haftek, Marek; Serres, Mireille

    2008-01-01

    Dendritic cells (DCs), efficient-antigen presenting cells play an important role in initiating and regulating immune responses. DC maturation following exposure to nickel or DNCB induced an up-regulation of phenotypic markers and inflammatory cytokine secretion. Early intracellular mechanisms involved in DC maturation required to be precise. To address this purpose, DCs derived from human monocytes were treated with sensitizers (nickel, DNCB or thimerosal) in comparison with an irritant (SDS). Our data confirming the up-regulation of CD86, CD54 and cytokine secretion (IL-8 and TNFα) induced by sensitizers but not by SDS, signalling transduction involved in DC maturation was investigated using these chemicals. Kinase activity measurement was assessed using two new sensitive procedures (Face TM and CBA) requiring few cells. SDS did not induce changes in signalling pathways whereas NiSO 4 , DNCB and thimerosal markedly activated p38 MAPK and JNK, in contrast Erk1/2 phosphorylation was completely inhibited by DNCB or thimerosal and only activated by nickel. A pre-treatment with p38 MAPK inhibitor (SB203580) suppressed Erk1/2 inhibition induced by DNCB or thimerosal demonstrating a direct interaction between p38 MAPK and Erk1/2. A pre-treatment with an antioxidant, N-acetyl-L-cysteine (NAC) markedly reduced Erk1/2 inhibition and p38 MAPK phosphorylation induced by DNCB and thimerosal, suggesting a direct activation of p38 MAPK via an oxidative stress and a regulation of MAPK signalling pathways depending on chemicals. Because of a high sensitivity of kinase activity measurements, these procedures will be suitable for weak or moderate sensitizer screening

  2. Parallel imaging of Drosophila embryos for quantitative analysis of genetic perturbations of the Ras pathway

    Directory of Open Access Journals (Sweden)

    Yogesh Goyal

    2017-07-01

    Full Text Available The Ras pathway patterns the poles of the Drosophila embryo by downregulating the levels and activity of a DNA-binding transcriptional repressor Capicua (Cic. We demonstrate that the spatiotemporal pattern of Cic during this signaling event can be harnessed for functional studies of mutations in the Ras pathway in human diseases. Our approach relies on a new microfluidic device that enables parallel imaging of Cic dynamics in dozens of live embryos. We found that although the pattern of Cic in early embryos is complex, it can be accurately approximated by a product of one spatial profile and one time-dependent amplitude. Analysis of these functions of space and time alone reveals the differential effects of mutations within the Ras pathway. Given the highly conserved nature of Ras-dependent control of Cic, our approach provides new opportunities for functional analysis of multiple sequence variants from developmental abnormalities and cancers.

  3. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells.

    Science.gov (United States)

    Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival.

  4. Brominated flame retardants, tetrabromobisphenol A and hexabromocyclododecane, activate mitogen-activated protein kinases (MAPKs) in human natural killer cells.

    Science.gov (United States)

    Cato, Anita; Celada, Lindsay; Kibakaya, Esther Caroline; Simmons, Nadia; Whalen, Margaret M

    2014-12-01

    Natural killer (NK) cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10-0.5 μM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA.

  5. Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and cardiovascular disease. A redox-regulated master controller of monocyte function and macrophage phenotype.

    Science.gov (United States)

    Kim, Hong Seok; Asmis, Reto

    2017-08-01

    MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis

    Science.gov (United States)

    Huang, Jia-Lin; Jiang, Gan; Song, Qing-Xiang; Gu, Xiao; Hu, Meng; Wang, Xiao-Lin; Song, Hua-Hua; Chen, Le-Pei; Lin, Ying-Ying; Jiang, Di; Chen, Jun; Feng, Jun-Feng; Qiu, Yong-Ming; Jiang, Ji-Yao; Jiang, Xin-Guo; Chen, Hong-Zhuan; Gao, Xiao-Ling

    2017-05-01

    Hyperactivated Ras regulates many oncogenic pathways in several malignant human cancers including glioblastoma and it is an attractive target for cancer therapies. Ras activation in cancer cells drives protein internalization via macropinocytosis as a key nutrient-gaining process. By utilizing this unique endocytosis pathway, here we create a biologically inspired nanostructure that can induce cancer cells to `drink drugs' for targeting activating transcription factor-5 (ATF5), an overexpressed anti-apoptotic transcription factor in glioblastoma. Apolipoprotein E3-reconstituted high-density lipoprotein is used to encapsulate the siRNA-loaded calcium phosphate core and facilitate it to penetrate the blood-brain barrier, thus targeting the glioblastoma cells in a macropinocytosis-dependent manner. The nanostructure carrying ATF5 siRNA exerts remarkable RNA-interfering efficiency, increases glioblastoma cell apoptosis and inhibits tumour cell growth both in vitro and in xenograft tumour models. This strategy of targeting the macropinocytosis caused by Ras activation provides a nanoparticle-based approach for precision therapy in glioblastoma and other Ras-activated cancers.

  7. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis

    KAUST Repository

    Ren, Zhonghai

    2010-03-08

    Soil salinity limits agricultural production and is a major obstacle for feeding the growing world population. We used natural genetic variation in salt tolerance among different Arabidopsis accessions to map a major quantitative trait locus (QTL) for salt tolerance and abscisic acid (ABA) sensitivity during seed germination and early seedling growth. A recombinant inbred population derived from Landsberg erecta (Ler; salt and ABA sensitive) x Shakdara (Sha; salt and ABA resistant) was used for QTL mapping. High-resolution mapping and cloning of this QTL, Response to ABA and Salt 1 (RAS1), revealed that it is an ABA- and salt stress-inducible gene and encodes a previously undescribed plant-specific protein. A premature stop codon results in a truncated RAS1 protein in Sha. Reducing the expression of RAS1 by transfer-DNA insertion in Col or RNA interference in Ler leads to decreased salt and ABA sensitivity, whereas overexpression of the Ler allele but not the Sha allele causes increased salt and ABA sensitivity. Our results suggest that RAS1 functions as a negative regulator of salt tolerance during seed germination and early seedling growth by enhancing ABA sensitivity and that its loss of function contributes to the increased salt tolerance of Sha.

  8. Dexras1 links glucocorticoids to insulin-like growth factor-1 signaling in adipogenesis

    Science.gov (United States)

    Kim, Hyo Jung; Cha, Jiyoung Y.; Seok, Jo Woon; Choi, Yoonjeong; Yoon, Bo Kyung; Choi, Hyeonjin; Yu, Jung Hwan; Song, Su Jin; Kim, Ara; Lee, Hyemin; Kim, Daeun; Han, Ji Yoon; Kim, Jae-woo

    2016-01-01

    Glucocorticoids are associated with obesity, but the underlying mechanism by which they function remains poorly understood. Previously, we showed that small G protein Dexras1 is expressed by glucocorticoids and leads to adipocyte differentiation. In this study, we explored the mechanism by which Dexras1 mediates adipogenesis and show a link to the insulin-like growth factor-1 (IGF-1) signaling pathway. Without Dexras1, the activation of MAPK and subsequent phosphorylation of CCAAT/enhancer binding protein β (C/EBPβ) is abolished, thereby inhibiting mitotic clonal expansion and further adipocyte differentiation. Dexras1 translocates to the plasma membrane upon insulin or IGF-1 treatment, for which the unique C-terminal domain (amino acids 223–276) is essential. Dexras1-dependent MAPK activation is selectively involved in the IGF-1 signaling, because another Ras protein, H-ras localized to the plasma membrane independently of insulin treatment. Moreover, neither epidermal growth factor nor other cell types shows Dexras1-dependent MAPK activation, indicating the importance of Dexras1 in IGF-1 signaling in adipogenesis. Dexras1 interacts with Shc and Raf, indicating that Dexras1-induced activation of MAPK is largely dependent on the Shc-Grb2-Raf complex. These results suggest that Dexras1 is a critical mediator of the IGF-1 signal to activate MAPK, linking glucocorticoid signaling to IGF-1 signaling in adipogenesis. PMID:27345868

  9. RAS Initiative - Community Outreach

    Science.gov (United States)

    Through community and technical collaborations, workshops and symposia, and the distribution of reference reagents, the RAS Initiative seeks to increase the sharing of knowledge and resources essential to defeating cancers caused by mutant RAS genes.

  10. Radiosensitivity and ras oncogene expression in preneoplastic rat tracheal epithelial cells

    International Nuclear Information System (INIS)

    Thomassen, D.G.; Wuensch, S.A.; Kelly, G.

    1988-01-01

    The sensitivity of preneoplastic rat tracheal epithelial (RTE) cells to the cytotoxic effects of high- and low-LET radiation, and the modulating effect of the viral ras oncogene on this sensitivity were determined. Two lines of preneoplastic RTE cells have the same responsiveness to high-LET radiation, but differ in their responsiveness to a transfected ras oncogene and in their sensitivities to low-LET radiation. Cells that respond to ras by becoming neoplastic are more resistant to the cytotoxic effects of low-LET radiation than cells that are not transformable by ras. The radiosensitivity of ras-responsive cells was not altered by transfection with ras. However, transfection of ras-non responsive cells with ras decreased their sensitivity to low-LET radiation. These data suggest that the ability of cells to repair radiation damage changes as they progress to neoplasia. (author)

  11. p38 MAPK inhibition suppresses the TLR-hypersensitive phenotype in FANCC- and FANCA-deficient mononuclear phagocytes

    Science.gov (United States)

    Anur, Praveen; Yates, Jane; Garbati, Michael R.; Vanderwerf, Scott; Keeble, Winifred; Rathbun, Keaney; Hays, Laura E.; Tyner, Jeffrey W.; Svahn, Johanna; Cappelli, Enrico; Dufour, Carlo

    2012-01-01

    Fanconi anemia, complementation group C (FANCC)–deficient hematopoietic stem and progenitor cells are hypersensitive to a variety of inhibitory cytokines, one of which, TNFα, can induce BM failure and clonal evolution in Fancc-deficient mice. FANCC-deficient macrophages are also hypersensitive to TLR activation and produce TNFα in an unrestrained fashion. Reasoning that suppression of inhibitory cytokine production might enhance hematopoiesis, we screened small molecules using TLR agonist–stimulated FANCC- and Fanconi anemia, complementation group A (FANCA)–deficient macrophages containing an NF-κB/AP-1–responsive reporter gene (SEAP). Of the 75 small molecules screened, the p38 MAPK inhibitor BIRB 796 and dasatinib potently suppressed TLR8-dependent expression of the reporter gene. Fanconi anemia (FA) macrophages were hypersensitive to the TLR7/8 activator R848, overproducing SEAP and TNFα in response to all doses of the agonist. Low doses (50nM) of both agents inhibited p38 MAPK–dependent activation of MAPKAPK2 (MK2) and suppressed MK2-dependent TNFα production without substantially influencing TNFα gene transcription. Overproduction of TNFα by primary FA cells was likewise suppressed by these agents and involved inhibition of MK2 activation. Because MK2 is also known to influence production and/or sensitivity to 2 other suppressive factors (MIP-1α and IFNγ) to which FA hematopoietic progenitor cells are uniquely vulnerable, targeting of p38 MAPK in FA hematopoietic cells is a rational objective for preclinical evaluation. PMID:22234699

  12. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase.

    Science.gov (United States)

    Schlaepfer, D D; Hanks, S K; Hunter, T; van der Geer, P

    The cytoplasmic focal adhesion protein-tyrosine kinase (FAK) localizes with surface integrin receptors at sites where cells attach to the extracellular matrix. Increased FAK tyrosine phosphorylation occurs upon integrin engagement with fibronectin. Here we show that adhesion of murine NIH3T3 fibroblasts to fibronectin promotes SH2-domain-mediated association of the GRB2 adaptor protein and the c-Src protein-tyrosine kinase (PTK) with FAK in vivo, and also results in activation of mitogen-activated protein kinase (MAPK). In v-Src-transformed NIH3T3, the association of v-Src, GRB2 and Sos with FAK is independent of cell adhesion to fibronectin. The GRB2 SH2 domain binds directly to tyrosine-phosphorylated FAK. Mutation of tyrosine residue 925 of FAK (YENV motif) to phenylalanine blocks GRB2 SH2-domain binding to FAK in vitro. Our results show that fibronectin binding to integrins on NIH3T3 fibroblasts promotes c-Src and FAK association and formation of an integrin-activated signalling complex. Phosphorylation of FAK at Tyr 925 upon fibronectin stimulation creates an SH2-binding site for GRB2 which may link integrin engagement to the activation of the Ras/MAPK signal transduction pathway.

  13. Root phenotyping: from component trait in the lab to breeding.

    Science.gov (United States)

    Kuijken, René C P; van Eeuwijk, Fred A; Marcelis, Leo F M; Bouwmeester, Harro J

    2015-09-01

    In the last decade cheaper and faster sequencing methods have resulted in an enormous increase in genomic data. High throughput genotyping, genotyping by sequencing and genomic breeding are becoming a standard in plant breeding. As a result, the collection of phenotypic data is increasingly becoming a limiting factor in plant breeding. Genetic studies on root traits are being hampered by the complexity of these traits and the inaccessibility of the rhizosphere. With an increasing interest in phenotyping, breeders and scientists try to overcome these limitations, resulting in impressive developments in automated phenotyping platforms. Recently, many such platforms have been thoroughly described, yet their efficiency to increase genetic gain often remains undiscussed. This efficiency depends on the heritability of the phenotyped traits as well as the correlation of these traits with agronomically relevant breeding targets. This review provides an overview of the latest developments in root phenotyping and describes the environmental and genetic factors influencing root phenotype and heritability. It also intends to give direction to future phenotyping and breeding strategies for optimizing root system functioning. A quantitative framework to determine the efficiency of phenotyping platforms for genetic gain is described. By increasing heritability, managing effects caused by interactions between genotype and environment and by quantifying the genetic relation between traits phenotyped in platforms and ultimate breeding targets, phenotyping platforms can be utilized to their maximum potential. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Hepatocyte cytoskeleton during ischemia and reperfusion influence of ANP-mediated p38 MAPK activation

    Institute of Scientific and Technical Information of China (English)

    Melanie Keller; Alexander L Gerbes; Stefanie Kulhanek-Heinze; Tobias Gerwig; Uwe Grützner; Nico van Rooijen; Angelika M Vollmar; Alexandra K Kiemer

    2005-01-01

    AIM: To determine functional consequences of this activation, whereby we focused on a potential regulation of the hepatocyte cytoskeleton during ischemia and reperfusion.METHODS: For in vivo experiments, animals received ANP (5 μg/kg) intravenously. In a different experimental setting, isolated rat livers were perfused with KH-buffer ±ANP (200 nmol/L)±SB203580 (2 μmol/L). Liverswere then kept under ischemic conditions for 24 h, and either transplanted or reperfused. Actin, Hsp27, and phosphorylated Hsp27 were determined by Western blotting, p38 MAPK activity by in vitro phosphorylation assay. F-actin distribution was determined by confocal microscopy.RESULTS: We first confirmed that ANP preconditioning leads to an activation of p38 MAPK and observedalterations of the cytoskeleton in hepatocytes of ANPpreconditioned organs. ANP induced an increase of hepatic F-actin after ischemia, which could be prevented by the p38 MAPK inhibitor SB203580 but had no effect on bile flow. After ischemia untreated livers showed a translocation of Hsp27 towards the cytoskeleton and an increase in total Hsp27, whereas ANP preconditioning prohibited translocation but caused an augmentation of Hsp27 phosphorylation. This effect is also mediated via p38 MAPK, since it was abrogated by the p38 MAPK inhibitor SB203580.CONCLUSION: This study reveals that ANP-mediated p38 MAPK activation leads to changes in hepatocyte cytoskeleton involving an elevation of phosphorylated Hsp27 and thereby for the first time shows functional consequences of ANP-induced hepatic p38 MAPK activation.

  15. Characterization of a novel oncogenic K-ras mutation in colon cancer

    International Nuclear Information System (INIS)

    Akagi, Kiwamu; Uchibori, Ryosuke; Yamaguchi, Kensei; Kurosawa, Keiko; Tanaka, Yoichiro; Kozu, Tomoko

    2007-01-01

    Activating mutations of RAS are frequently observed in subsets of human cancers, indicating that RAS activation is involved in tumorigenesis. Here, we identified and characterized a novel G to T transversion mutation of the K-ras gene at the third position of codon 19 (TTG) which substituted phenylalanine for leucine in 3 primary colon carcinomas. Biological and biochemical activity was examined using transformed NIH3T3 cells expressing mutant or wild-type K-ras. Transformants harboring the K-ras mutation at codon 19 showed proliferative capacity under serum-starved conditions, less contact inhibition, anchorage-independent growth, tumorigenicity in nude mice and elevation of active Ras-GTP levels. These results indicated that this novel mutation possesses high oncogenic activity

  16. In Silico Screening and In Vitro Activity Measurement of Javamide Analogues as Potential p38 MAPK Inhibitors.

    Science.gov (United States)

    Park, Jae B

    2017-12-13

    p38 Mitogen-activated protein kinase (p38 MAPK) is a protein kinase critically involved in the progress of inflammation/stress-associated diseases. Our data suggested that javamide analogues may contain strong anti-inflammation activities, but there is little information about their effects on p38 MAPK. Therefore, in this paper, the effects of thirty javamide analogues on p38 MAPK were investigated using in silico screening and in vitro p38 MAPK assay methods. The javamide analogues were synthesized and their chemical structures were confirmed using nuclear magnetic resonance (NMR) spectroscopic methods. Then, the javamide analogues were screened using an in silico modeling program. The screened analogues demonstrated a wide range of binding energy (ΔE; -20 to -39) and several analogues with ΔE; -34 to -39 showed strong binding affinity to p38 MAPK. In vitro p38 MAPK assay, the kinase was significantly inhibited by the analogues with great binding energy (ΔE; -34 to -39) and in silico scores (Avg. score; -27.5 to -29.3). Furthermore, the comparative analysis of both assays showed a positive correlation between the in silico scores and p38 MAPK inhibition. In fact, the javamide analogues with top five in silico scores (Avg. score; -27.5 to -29.3) were found to inhibit p38 MAPK by 27-31% ( p silico score (Avg. score; -29.2) inhibited p38 MAPK (IC 50 = 9.9 μM) a little better than its methyl ester with best in silico score (Avg. score; -29.3). To support the ability to inhibit p38 MAPK, the treatment of javamide-II-ethyl and -methyl esters could suppress the production of IL-8 and MCP-1 protein significantly by 22-73% ( p silico and in vitro assay approach may be a useful and efficient solution as a functional screening approach in searching new lead compounds for targeted molecules.

  17. Plant MAPK cascades: Just rapid signaling modules?

    KAUST Repository

    Boudsocq, Marie

    2015-08-27

    © 2015 Taylor & Francis Group, LLC. Abscisic acid (ABA) is a major phytohormone mediating important stress-related processes. We recently unveiled an ABA-activated MAPK signaling module constituted of MAP3K17/18-MKK3-MPK1/2/7/14. Unlike classical rapid MAPK activation, we showed that the activation of the new MAPK module is delayed and relies on the MAP3K protein synthesis. In this addendum, we discuss the role of this original and unexpected activation mechanism of MAPK cascades which suggests that MAPKs can regulate both early and longterm plant stress responses.

  18. Vagal innervation is required for pulmonary function phenotype in Htr4-/- mice.

    Science.gov (United States)

    House, John S; Nichols, Cody E; Li, Huiling; Brandenberger, Christina; Virgincar, Rohan S; DeGraff, Laura M; Driehuys, Bastiaan; Zeldin, Darryl C; London, Stephanie J

    2017-04-01

    Human genome-wide association studies have identified over 50 loci associated with pulmonary function and related phenotypes, yet follow-up studies to determine causal genes or variants are rare. Single nucleotide polymorphisms in serotonin receptor 4 ( HTR4 ) are associated with human pulmonary function in genome-wide association studies and follow-up animal work has demonstrated that Htr4 is causally associated with pulmonary function in mice, although the precise mechanisms were not identified. We sought to elucidate the role of neural innervation and pulmonary architecture in the lung phenotype of Htr4 -/- animals. We report here that the Htr4 -/- phenotype in mouse is dependent on vagal innervation to the lung. Both ex vivo tracheal ring reactivity and in vivo flexiVent pulmonary functional analyses demonstrate that vagotomy abrogates the Htr4 -/- airway hyperresponsiveness phenotype. Hyperpolarized 3 He gas magnetic resonance imaging and stereological assessment of wild-type and Htr4 -/- mice reveal no observable differences in lung volume, inflation characteristics, or pulmonary microarchitecture. Finally, control of breathing experiments reveal substantive differences in baseline breathing characteristics between mice with/without functional HTR4 in breathing frequency, relaxation time, flow rate, minute volume, time of inspiration and expiration and breathing pauses. These results suggest that HTR4's role in pulmonary function likely relates to neural innervation and control of breathing. Copyright © 2017 the American Physiological Society.

  19. The Role of Conserved Waters in Conformational Transitions of Q61H K-ras

    Science.gov (United States)

    Prakash, Priyanka; Sayyed-Ahmad, Abdallah; Gorfe, Alemayehu A.

    2012-01-01

    To investigate the stability and functional role of long-residence water molecules in the Q61H variant of the signaling protein K-ras, we analyzed all available Ras crystal structures and conformers derived from a series of independent explicit solvent molecular dynamics (MD) simulations totaling 1.76 µs. We show that the protein samples a different region of phase space in the presence and absence of several crystallographically conserved and buried water molecules. The dynamics of these waters is coupled with the local as well as the global motions of the protein, in contrast to less buried waters whose exchange with bulk is only loosely coupled with the motion of loops in their vicinity. Aided by two novel reaction coordinates involving the distance (d) between the Cα atoms of G60 at switch 2 and G10 at the P-loop and the N-Cα-C-O dihedral (ξ) of G60, we further show that three water molecules located in lobe1, at the interface between the lobes and at lobe2, are involved in the relative motion of residues at the two lobes of Q61H K-ras. Moreover, a d/ξ plot classifies the available Ras x-ray structures and MD-derived K-ras conformers into active GTP-, intermediate GTP-, inactive GDP-bound, and nucleotide-free conformational states. The population of these states and the transition between them is modulated by water-mediated correlated motions involving the functionally critical switch 2, P-loop and helix 3. These results suggest that water molecules act as allosteric ligands to induce a population shift among distinct switch 2 conformations that differ in effector recognition. PMID:22359497

  20. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  1. Effects of mutant human Ki-rasG12C gene dosage on murine lung tumorigenesis and signaling to its downstream effectors

    International Nuclear Information System (INIS)

    Dance-Barnes, Stephanie T.; Kock, Nancy D.; Floyd, Heather S.; Moore, Joseph E.; Mosley, Libyadda J.; D'Agostino, Ralph B.; Pettenati, Mark J.; Miller, Mark Steven

    2008-01-01

    Studies in cell culture have suggested that the level of RAS expression can influence the transformation of cells and the signaling pathways stimulated by mutant RAS expression. However, the levels of RAS expression in vivo appear to be subject to feedback regulation, limiting the total amount of RAS protein that can be expressed. We utilized a bitransgenic mouse lung tumor model that expressed the human Ki-ras G12C allele in a tetracycline-inducible, lung-specific manner. Treatment for 12 months with 500 μg/ml of doxycycline (DOX) allowed for maximal expression of the human Ki-ras G12C allele in the lung, and resulted in the development of focal hyperplasia and adenomas. We determined if different levels of mutant RAS expression would influence the phenotype of the lung lesions. Treatment with 25, 100 and 500 μg/ml of DOX resulted in dose-dependent increases in transgene expression and tumor multiplicity. Microscopic analysis of the lungs of mice treated with the 25 μg/ml dose of DOX revealed infrequent foci of hyperplasia, whereas mice treated with the 100 and 500 μg/ml doses exhibited numerous hyperplastic foci and also adenomas. Immunohistochemical and RNA analysis of the downstream effector pathways demonstrated that different levels of mutant RAS transgene expression resulted in differences in the expression and/or phosphorylation of specific signaling molecules. Our results suggest that the molecular alterations driving tumorigenesis may differ at different levels of mutant Ki-ras G12C expression, and this should be taken into consideration when inducible transgene systems are utilized to promote tumorigenesis in mouse models

  2. Overexpression of K-p21Ras play a prominent role in lung cancer

    Science.gov (United States)

    Zhang, Peng-bo; Zhou, Xin-liang; Yang, Ju-lun

    2018-06-01

    The proto-oncogene ras product, p21Ras, has been found overexpression in many human tumors. However, the subtypes of overexpressed p21Ras still remain unclear. The purpose of this study was to investigate overexpressed isoforms of p21Ras and their roles in the progress of lung cancer. Method: The expression of total p21Ras in normal lung tissues and lung cancers was determined by immunohistochemically staining with monoclonal antibody (Mab) KGHR-1 which could recognize and broad spectrum reaction with the (K/H/N) ras protein. Then, the isoforms of p21Ras was examined by specific Mab for each p21Ras subtypes. Results: Low expression of total p21Ras was found in 26.67% (8/30) of normal lung tissues, and 81.31% (87/107) of adenocarcinoma harbored overexpressed total p21Ras. Besides, 70.00% (35/50) of squamous cell carcinoma were detected overexpressed total p21Ras. In addition, 122 lung cancer tissues from overexpression of total p21Ras protein were selected to detect the expression of each subtype. And all the 122 lung cancer tissues were K-p21Ras overexpression. Moreover, there was a statistical significance difference between the expression level of total p21Ras and differentiation, and the same results were observed between the expression level of total p21Ras and lymph node metastasis (P0.05). Conclusions: Overexpression of K-p21Ras plays a prominent role in the progress of lung cancer and it is suggested that the p21Ras could serve as a promising treatment target in lung cancer.

  3. SHP2 sails from physiology to pathology.

    Science.gov (United States)

    Tajan, Mylène; de Rocca Serra, Audrey; Valet, Philippe; Edouard, Thomas; Yart, Armelle

    2015-10-01

    Over the two past decades, mutations of the PTPN11 gene, encoding the ubiquitous protein tyrosine phosphatase SHP2 (SH2 domain-containing tyrosine phosphatase 2), have been identified as the causal factor of several developmental diseases (Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML), and metachondromatosis), and malignancies (juvenile myelomonocytic leukemia). SHP2 plays essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones, notably the pleiotropic Ras/Mitogen-Activated Protein Kinase (MAPK) and the Phosphoinositide-3 Kinase (PI3K)/AKT cascades. Analysis of the biochemical impacts of PTPN11 mutations first identified both loss-of-function and gain-of-function mutations, as well as more subtle defects, highlighting the major pathophysiological consequences of SHP2 dysregulation. Then, functional genetic studies provided insights into the molecular dysregulations that link SHP2 mutants to the development of specific traits of the diseases, paving the way for the design of specific therapies for affected patients. In this review, we first provide an overview of SHP2's structure and regulation, then describe its molecular roles, notably its functions in modulating the Ras/MAPK and PI3K/AKT signaling pathways, and its physiological roles in organism development and homeostasis. In the second part, we describe the different PTPN11 mutation-associated pathologies and their clinical manifestations, with particular focus on the biochemical and signaling outcomes of NS and NS-ML-associated mutations, and on the recent advances regarding the pathophysiology of these diseases. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Biogenetic mechanisms predisposing to complex phenotypes in parents may function differently in their children

    DEFF Research Database (Denmark)

    Kulminski, Alexander M; Arbeev, Konstantin G; Christensen, Kaare

    2013-01-01

    rule. Our findings suggest that biogenetic mechanisms underlying relationships among different phenotypes, even if they are causally related, can function differently in successive generations or in different age groups of biologically related individuals. The results suggest that the role of aging-related......This study focuses on the participants of the Long Life Family Study to elucidate whether biogenetic mechanisms underlying relationships among heritable complex phenotypes in parents function in the same way for the same phenotypes in their children. Our results reveal 3 characteristic groups...

  5. Plant MAPK cascades: Just rapid signaling modules?

    KAUST Repository

    Boudsocq, Marie; Danquah, Agyemang; Zé licourt, Axel de; Hirt, Heribert; Colcombet, Jean

    2015-01-01

    rapid MAPK activation, we showed that the activation of the new MAPK module is delayed and relies on the MAP3K protein synthesis. In this addendum, we discuss the role of this original and unexpected activation mechanism of MAPK cascades which suggests

  6. CREBBP knockdown enhances RAS/RAF/MEK/ERK signaling in Ras pathway mutated acute lymphoblastic leukemia but does not modulate chemotherapeutic response.

    Science.gov (United States)

    Dixon, Zach A; Nicholson, Lindsay; Zeppetzauer, Martin; Matheson, Elizabeth; Sinclair, Paul; Harrison, Christine J; Irving, Julie A E

    2017-04-01

    Relapsed acute lymphoblastic leukemia is the most common cause of cancer-related mortality in young people and new therapeutic strategies are needed to improve outcome. Recent studies have shown that heterozygous inactivating mutations in the histone acetyl transferase, CREBBP , are particularly frequent in relapsed childhood acute lymphoblastic leukemia and associated with a hyperdiploid karyotype and KRAS mutations. To study the functional impact of CREBBP haploinsufficiency in acute lymphoblastic leukemia, RNA interference was used to knock down expression of CREBBP in acute lymphoblastic leukemia cell lines and various primagraft acute lymphoblastic leukemia cells. We demonstrate that attenuation of CREBBP results in reduced acetylation of histone 3 lysine 18, but has no significant impact on cAMP-dependent target gene expression. Impaired induction of glucocorticoid receptor targets was only seen in 1 of 4 CREBBP knockdown models, and there was no significant difference in glucocorticoid-induced apoptosis, sensitivity to other acute lymphoblastic leukemia chemotherapeutics or histone deacetylase inhibitors. Importantly, we show that CREBBP directly acetylates KRAS and that CREBBP knockdown enhances signaling of the RAS/RAF/MEK/ERK pathway in Ras pathway mutated acute lymphoblastic leukemia cells, which are still sensitive to MEK inhibitors. Thus, CREBBP mutations might assist in enhancing oncogenic RAS signaling in acute lymphoblastic leukemia but do not alter response to MEK inhibitors. Copyright© Ferrata Storti Foundation.

  7. Integrative modelling of the influence of MAPK network on cancer cell fate decision.

    Directory of Open Access Journals (Sweden)

    Luca Grieco

    2013-10-01

    Full Text Available The Mitogen-Activated Protein Kinase (MAPK network consists of tightly interconnected signalling pathways involved in diverse cellular processes, such as cell cycle, survival, apoptosis and differentiation. Although several studies reported the involvement of these signalling cascades in cancer deregulations, the precise mechanisms underlying their influence on the balance between cell proliferation and cell death (cell fate decision in pathological circumstances remain elusive. Based on an extensive analysis of published data, we have built a comprehensive and generic reaction map for the MAPK signalling network, using CellDesigner software. In order to explore the MAPK responses to different stimuli and better understand their contributions to cell fate decision, we have considered the most crucial components and interactions and encoded them into a logical model, using the software GINsim. Our logical model analysis particularly focuses on urinary bladder cancer, where MAPK network deregulations have often been associated with specific phenotypes. To cope with the combinatorial explosion of the number of states, we have applied novel algorithms for model reduction and for the compression of state transition graphs, both implemented into the software GINsim. The results of systematic simulations for different signal combinations and network perturbations were found globally coherent with published data. In silico experiments further enabled us to delineate the roles of specific components, cross-talks and regulatory feedbacks in cell fate decision. Finally, tentative proliferative or anti-proliferative mechanisms can be connected with established bladder cancer deregulations, namely Epidermal Growth Factor Receptor (EGFR over-expression and Fibroblast Growth Factor Receptor 3 (FGFR3 activating mutations.

  8. The Protective Arm of the Renin Angiotensin System (RAS)

    DEFF Research Database (Denmark)

    understanding of the protective side of the Renin Angiotensin System (RAS) involving angiotensin AT2 receptor, ACE2, and Ang(1-7)/Mas receptor Combines the knowledge of editors who pioneered research on the protective renin angiotensin system including; Dr. Thomas Unger, one of the founders of AT2 receptor......The Protective Arm of the Renin Angiotensin System: Functional Aspects and Therapeutic Implications is the first comprehensive publication to signal the protective role of a distinct part of the renin-angiotensin system (RAS), providing readers with early insight into a complex system which...... will become of major medical importance in the near future. Focusing on recent research, The Protective Arm of the Renin Angiotensin System presents a host of new experimental studies on specific components of the RAS, namely angiotensin AT2 receptors (AT2R), the angiotensin (1-7) peptide with its receptor...

  9. MKK3 Was Involved in Larval Settlement of the Barnacle Amphibalanus amphitrite through Activating the Kinase Activity of p38MAPK

    KAUST Repository

    Zhang, Gen

    2013-07-29

    The p38 mitogen-activated protein kinase (p38MAPK) plays a key role in larval settlement of the barnacle Amphibalanus amphitrite. To study the signaling pathway associated with p38MAPK during larval settlement, we sought to identify the upstream kinase of p38MAPK. Three MKKs (MKK3, MKK4 and MKK7) and three MAPKs (p38MAPK, ERK and JNK) in A. amphitrite were cloned and recombinantly expressed in E. coli. Through kinase assays, we found that MKK3, but not MKK4 or MKK7, phosphorylated p38MAPK. Furthermore, MKK3 activity was specific to p38MAPK, as it did not phosphorylate ERK or JNK. To further investigate the functional relationship between MKK3 and p38MAPK in vivo, we studied the localization of phospho-MKK3 (pMKK3) and MKK3 by immunostaining. Consistent with the patterns of p38MAPK and phospho-p38MAPK (pp38MAPK), pMKK3 and MKK3 mainly localized to the antennules of the cyprids. Western blot analysis revealed that pMKK3 levels, like pp38MAPK levels, were elevated at cyprid stage, compared to nauplii and juvenile stages. Moreover, pMKK3 levels increased after treatment with adult barnacle crude extracts, suggesting that MKK3 might mediate the stimulatory effects of adult barnacle extracts on the p38MAPK pathway. © 2013 Zhang et al.

  10. MKK3 Was Involved in Larval Settlement of the Barnacle Amphibalanus amphitrite through Activating the Kinase Activity of p38MAPK

    KAUST Repository

    Zhang, Gen; He, Li-Sheng; Wong, Yue Him; Qian, Pei-Yuan

    2013-01-01

    The p38 mitogen-activated protein kinase (p38MAPK) plays a key role in larval settlement of the barnacle Amphibalanus amphitrite. To study the signaling pathway associated with p38MAPK during larval settlement, we sought to identify the upstream kinase of p38MAPK. Three MKKs (MKK3, MKK4 and MKK7) and three MAPKs (p38MAPK, ERK and JNK) in A. amphitrite were cloned and recombinantly expressed in E. coli. Through kinase assays, we found that MKK3, but not MKK4 or MKK7, phosphorylated p38MAPK. Furthermore, MKK3 activity was specific to p38MAPK, as it did not phosphorylate ERK or JNK. To further investigate the functional relationship between MKK3 and p38MAPK in vivo, we studied the localization of phospho-MKK3 (pMKK3) and MKK3 by immunostaining. Consistent with the patterns of p38MAPK and phospho-p38MAPK (pp38MAPK), pMKK3 and MKK3 mainly localized to the antennules of the cyprids. Western blot analysis revealed that pMKK3 levels, like pp38MAPK levels, were elevated at cyprid stage, compared to nauplii and juvenile stages. Moreover, pMKK3 levels increased after treatment with adult barnacle crude extracts, suggesting that MKK3 might mediate the stimulatory effects of adult barnacle extracts on the p38MAPK pathway. © 2013 Zhang et al.

  11. Trabecular meshwork ECM remodeling in glaucoma: could RAS be a target?

    Science.gov (United States)

    Agarwal, Puneet; Agarwal, Renu

    2018-06-14

    Disturbances of extracellular matrix (ECM) homeostasis in trabecular meshwork (TM) cause increased aqueous outflow resistance leading to elevated intraocular pressure (IOP) in glaucomatous eyes. Therefore, restoration of ECM homeostasis is a rational approach to prevent disease progression. Since renin-angiotensin system (RAS) inhibition positively alters ECM homeostasis in cardiovascular pathologies involving pressure and volume overload, it is likely that RAS inhibitors reduce IOP primarily by restoring ECM homeostasis. Areas covered: Current evidence showing the presence of RAS components in ocular tissue and its role in regulating aqueous humor dynamics is briefly summarized. The role of RAS in ECM remodeling is discussed both in terms of its effects on ECM synthesis and its breakdown. The mechanisms of ECM remodeling involving interactions of RAS with transforming growth factor-β, Wnt/β-catenin signaling, bone morphogenic proteins, connective tissue growth factor, and matrix metalloproteinases in ocular tissue are discussed. Expert opinion: Current literature strongly indicates a significant role of RAS in ECM remodeling in TM of hypertensive eyes. Hence, IOP-lowering effect of RAS inhibitors may primarily be attributed to restoration of ECM homeostasis in aqueous outflow pathways rather than its vascular effects. However, the mechanistic targets for RAS inhibitors have much wider distribution and consequences, which remain relatively unexplored in TM.

  12. Concomitant BCORL1 and BRAF Mutations in Vemurafenib-Resistant Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Luca Mologni

    2018-05-01

    Full Text Available BRAF is the most frequently mutated gene in melanoma. Constitutive activation of mutant BRAFV600E leads to aberrant Ras-independent MAPK signaling and cell transformation. Inhibition of mutant BRAF is a current frontline therapy for such cases, with improved survival compared with chemotherapy. Unfortunately, reactivation of MAPK signaling by several mechanisms has been shown to cause drug resistance and disease recurrence. In this work, we describe the co-occurrence of an in-frame deletion within an amplified BRAFV600E locus and a missense point mutation of the transcriptional repressor BCORL1 in vemurafenib-resistant A375 melanoma cells. Functional data confirmed that truncated p47BRAFV600E and mutant BCORL1Q1076H both contribute to resistance. Interestingly, either endogenous BCORL1 silencing or ectopic BCORL1Q1076H expression mimicked the effects of a CRISPR/Cas9-edited BCORL1Q1076H locus, suggesting a complex mixture of loss- and gain-of-function effects caused by the mutation. Transcriptomic data confirmed this hypothesis. Finally, we show that the pan-RAF inhibitor sorafenib is not affected by expression of BRAF deletion variant and effectively synergizes with vemurafenib to block resistant cells, suggesting a possible intervention for this class of mutants.

  13. Changes in microbial water quality in RAS following altered feed loading

    DEFF Research Database (Denmark)

    Rojas-Tirado, Paula Andrea; Pedersen, Per Bovbjerg; Vadstein, Olav

    2018-01-01

    and inorganic nutrients available for microbial growth in RAS. How these nutrient inputs affect and regulate bacteria in RAS water is, however, unclear. To investigate this relationship and the associated water quality dynamics, the effects of altered feed loading on microbial water quality in RAS was studied....... The study included six independent, identical pilot-scale RAS, each with a total volume of 1.7 m3 (make-up water: 80 L/day) stocked with juvenile rainbow trout (Oncorhynchus mykiss). All systems had been operating with constant and identical feed loading of 3.13 kg feed/m3 make-up water for a period......Intensive recirculating aquaculture systems (RAS) with its hyper-eutrophic water offer ideal conditions for bacterial growth, abundance and activity, potentially affecting fish and system performance. Feed composition and feed loading in particular will have significant impact on organic...

  14. Phosphorylation of mitogen-activated protein kinase (MAPK) is required for cytokinesis and progression of cell cycle in tobacco BY-2 cells.

    Science.gov (United States)

    Ma, Zhaowu; Yu, Guanghui

    2010-02-15

    The role of mitogen-activated protein kinase (MAPK) in plant cytokinesis remains largely uncharacterized. To elucidate its role, tobacco Bright Yellow-2 (BY-2) cells have been synchronized using a two-step procedure, and the different phases of the cell cycle identified by Histone 4 gene expression and the mitotic index. MAPK expression was analyzed by semi-quantitative (SQ) RT-PCR and protein gel blot analysis for phosphorylated MAPK during cell cycle progression. The SQ RT-PCR analysis indicated that MAPK expression is lower in mitosis than in interphase (G1, G2 and S). However, the amount of phosphorylated MAPK remained stable throughout the cell cycle, indicating that MAPK activity is predominantly regulated at the post-translational level and that phosphorylation of MAPK plays an important role in mitosis. Application of the specific MAPK phosphorylation inhibitor U0126 revealed that while U0126 treatment decreases the phosphorylation of MAPK and the progression from telophase to early cytokinesis is significantly inhibited. The formation of the phragmoplast is also negatively affected at this stage. These results demonstrate that MAPK phosphorylation is involved in the formation of the cell plate within the phragmoplast during cytokinesis and that MAPK predominantly functions during the cytokinesis stage of the cell cycle in tobacco BY-2 cells. Copyright 2009 Elsevier GmbH. All rights reserved.

  15. The association between patient participation and functional gain following inpatient rehabilitation.

    Science.gov (United States)

    Morghen, Sara; Morandi, Alessandro; Guccione, Andrew A; Bozzini, Michela; Guerini, Fabio; Gatti, Roberto; Del Santo, Francesco; Gentile, Simona; Trabucchi, Marco; Bellelli, Giuseppe

    2017-08-01

    To evaluate patients' participation during physical therapy sessions as assessed with the Pittsburgh rehabilitation participation scale (PRPS) as a possible predictor of functional gain after rehabilitation training. All patients aged 65 years or older consecutively admitted to a Department of Rehabilitation and Aged Care (DRAC) were evaluated on admission regarding their health, nutritional, functional and cognitive status. Functional status was assessed with the functional independence measure (FIM) on admission and at discharge. Participation during rehabilitation sessions was measured with the PRPS. Functional gain was evaluated using the Montebello rehabilitation factor score (MRFS efficacy), and patients stratified in two groups according to their level of functional gain and their sociodemographic, clinical and functional characteristics were compared. Predictors of poor functional gain were evaluated using a multivariable logistic regression model adjusted for confounding factors. A total of 556 subjects were included in this study. Patients with poor functional gain at discharge demonstrated lower participation during physical therapy sessions were significantly older, more cognitively and functionally impaired on admission, more depressed, more comorbid, and more frequently admitted for cardiac disease or immobility syndrome than their counterparts. There was a significant linear association between PRPS scores and MRFS efficacy. In a multivariable logistic regression model, participation was independently associated with functional gain at discharge (odds ratio 1.51, 95 % confidence interval 1.19-1.91). This study showed that participation during physical therapy affects the extent of functional gain at discharge in a large population of older patients with multiple diseases receiving in-hospital rehabilitation.

  16. Modulation of radiation injury response in retinal endothelial cells by quinic acid derivative KZ-41 involves p38 MAPK.

    Directory of Open Access Journals (Sweden)

    Jordan J Toutounchian

    Full Text Available Radiation-induced damage to the retina triggers leukostasis, retinal endothelial cell (REC death, and subsequent hypoxia. Resultant ischemia leads to visual loss and compensatory retinal neovascularization (RNV. Using human RECs, we demonstrated that radiation induced leukocyte adhesion through mechanisms involving p38MAPK, p53, and ICAM-1 activation. Additional phenotypic changes included p38MAPK-dependent tyrosine phosphorylation of the focal adhesion scaffolding protein, paxillin (Tyr118. The quinic acid derivative KZ-41 lessened leukocyte adhesion and paxillin-dependent proliferation via inhibition of p38MAPK-p53-ICAM-1 signaling. Using the murine oxygen-induced retinopathy (OIR model, we examined the effect of KZ-41 on pathologic RNV. Daily ocular application of a KZ-41-loaded nanoemulsion significantly reduced both the avascular and neovascular areas in harvested retinal flat mounts when compared to the contralateral eye receiving vehicle alone. Our data highlight the potential benefit of KZ-41 in reducing both the retinal ischemia and neovascularization provoked by genotoxic insults. Further research into how quinic acid derivatives target and mitigate inflammation is needed to fully appreciate their therapeutic potential for the treatment of inflammatory retinal vasculopathies.

  17. MiR-206 functions as a tumor suppressor and directly targets K-Ras in human oral squamous cell carcinoma [Retraction

    Directory of Open Access Journals (Sweden)

    Lin FO

    2016-10-01

    Full Text Available The Editor-in-Chief and Publisher of OncoTargets and Therapy have been alerted to unacceptable levels of duplication with another published paper: Zhang D, Ni Z, Xu X, and Xiao J. MiR-32 Functions as a Tumor Suppressor and Directly Targets EZH2 in Human Oral Squamous Cell Carcinoma. Medical Science Monitor. 20:2527–2535, 2014.Accordingly, we retract Lin FO, Yao LJ, Xiao J, Liu DF, and Ni ZY. MiR-206 functions as a tumor suppressor and directly targets K-Ras in human oral squamous cell carcinoma. OncoTargets and Therapy. 2014;7:1583–1591.This Retraction relates to 

  18. Spectrum of K ras mutations in Pakistani colorectal cancer patients

    International Nuclear Information System (INIS)

    Murtaza, B.N.; Bibi, A.; Rashid, M.U.; Khan, Y.I.; Chaudri, M.S.; Shakoori, A.R.

    2013-01-01

    The incidence of colorectal cancer (CRC) is increasing daily worldwide. Although different aspects of CRC have been studied in other parts of the world, relatively little or almost no information is available in Pakistan about different aspects of this disease at the molecular level. The present study was aimed at determining the frequency and prevalence of K ras gene mutations in Pakistani CRC patients. Tissue and blood samples of 150 CRC patients (64% male and 36% female) were used for PCR amplification of K ras and detection of mutations by denaturing gradient gel electrophoresis, restriction fragment length polymorphism analysis, and nucleotide sequencing. The K ras mutation frequency was found to be 13%, and the most prevalent mutations were found at codons 12 and 13. A novel mutation was also found at codon 31. The dominant mutation observed was a G to A transition. Female patients were more susceptible to K ras mutations, and these mutations were predominant in patients with a nonmetastatic stage of CRC. No significant differences in the prevalence of K ras mutations were observed for patient age, gender, or tumor type. It can be inferred from this study that Pakistani CRC patients have a lower frequency of K ras mutations compared to those observed in other parts of the world, and that K ras mutations seemed to be significantly associated with female patients

  19. Spectrum of K ras mutations in Pakistani colorectal cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Murtaza, B.N.; Bibi, A. [School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore (Pakistan); Rashid, M.U.; Khan, Y.I. [Shaukat Khanum Memorial Cancer Hospital and Research Centre, Johar Town, Lahore (Pakistan); Chaudri, M.S. [Services Institute of Medical Sciences, Lahore (Pakistan); Shakoori, A.R. [School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore (Pakistan)

    2013-11-29

    The incidence of colorectal cancer (CRC) is increasing daily worldwide. Although different aspects of CRC have been studied in other parts of the world, relatively little or almost no information is available in Pakistan about different aspects of this disease at the molecular level. The present study was aimed at determining the frequency and prevalence of K ras gene mutations in Pakistani CRC patients. Tissue and blood samples of 150 CRC patients (64% male and 36% female) were used for PCR amplification of K ras and detection of mutations by denaturing gradient gel electrophoresis, restriction fragment length polymorphism analysis, and nucleotide sequencing. The K ras mutation frequency was found to be 13%, and the most prevalent mutations were found at codons 12 and 13. A novel mutation was also found at codon 31. The dominant mutation observed was a G to A transition. Female patients were more susceptible to K ras mutations, and these mutations were predominant in patients with a nonmetastatic stage of CRC. No significant differences in the prevalence of K ras mutations were observed for patient age, gender, or tumor type. It can be inferred from this study that Pakistani CRC patients have a lower frequency of K ras mutations compared to those observed in other parts of the world, and that K ras mutations seemed to be significantly associated with female patients.

  20. Ras conformational switching: simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Barry J Grant

    2009-03-01

    Full Text Available Ras mediates signaling pathways controlling cell proliferation and development by cycling between GTP- and GDP-bound active and inactive conformational states. Understanding the complete reaction path of this conformational change and its intermediary structures is critical to understanding Ras signaling. We characterize nucleotide-dependent conformational transition using multiple-barrier-crossing accelerated molecular dynamics (aMD simulations. These transitions, achieved for the first time for wild-type Ras, are impossible to observe with classical molecular dynamics (cMD simulations due to the large energetic barrier between end states. Mapping the reaction path onto a conformer plot describing the distribution of the crystallographic structures enabled identification of highly populated intermediate structures. These structures have unique switch orientations (residues 25-40 and 57-75 intermediate between GTP and GDP states, or distinct loop3 (46-49, loop7 (105-110, and alpha5 C-terminus (159-166 conformations distal from the nucleotide-binding site. In addition, these barrier-crossing trajectories predict novel nucleotide-dependent correlated motions, including correlations of alpha2 (residues 66-74 with alpha3-loop7 (93-110, loop2 (26-37 with loop10 (145-151, and loop3 (46-49 with alpha5 (152-167. The interconversion between newly identified Ras conformations revealed by this study advances our mechanistic understanding of Ras function. In addition, the pattern of correlated motions provides new evidence for a dynamic linkage between the nucleotide-binding site and the membrane interacting C-terminus critical for the signaling function of Ras. Furthermore, normal mode analysis indicates that the dominant collective motion that occurs during nucleotide-dependent conformational exchange, and captured in aMD (but absent in cMD simulations, is a low-frequency motion intrinsic to the structure.

  1. A cell-death-defying factor, anamorsin mediates cell growth through inactivation of PKC and p38MAPK

    International Nuclear Information System (INIS)

    Saito, Yuri; Shibayama, Hirohiko; Tanaka, Hirokazu; Tanimura, Akira; Kanakura, Yuzuru

    2011-01-01

    Research highlights: → Anamorsin (AM) (also called CIAPIN-1) is a cell-death-defying factor. → Biological mechanisms of AM functions have not been elucidated yet. → PKCθ , PKCδ and p38MAPK were more phosphorylated in AM deficient MEF cells. → AM may negatively regulates PKCs and p38MAPK in MEF cells. -- Abstract: Anamorsin (AM) plays crucial roles in hematopoiesis and embryogenesis. AM deficient (AM KO) mice die during late gestation; AM KO embryos are anemic and very small compared to wild type (WT) embryos. To determine which signaling pathways AM utilizes for these functions, we used murine embryonic fibroblast (MEF) cells generated from E-14.5 AM KO or WT embryos. Proliferation of AM KO MEF cells was markedly retarded, and PKCθ, PKCδ, and p38MAPK were more highly phosphorylated in AM KO MEF cells. Expression of cyclinD1, the target molecule of p38MAPK, was down-regulated in AM KO MEF cells. p38MAPK inhibitor as well as PKC inhibitor restored expression of cyclinD1 and cell growth in AM KO MEF cells. These data suggest that PKCθ, PKCδ, and p38MAPK activation lead to cell cycle retardation in AM KO MEF cells, and that AM may negatively regulate novel PKCs and p38MAPK in MEF cells.

  2. Macrophage Phenotype and Function in Different Stages of Atherosclerosis

    Science.gov (United States)

    Tabas, Ira; Bornfeldt, Karin E.

    2016-01-01

    The remarkable plasticity and plethora of biological functions performed by macrophages have enticed scientists to study these cells in relation to atherosclerosis for more than 50 years, and major discoveries continue to be made today. It is now understood that macrophages play important roles in all stages of atherosclerosis, from initiation of lesions and lesion expansion, to necrosis leading to rupture and the clinical manifestations of atherosclerosis, to resolution and regression of atherosclerotic lesions. Lesional macrophages are derived primarily from blood monocytes, although recent research has shown that lesional macrophage-like cells can also be derived from smooth muscle cells. Lesional macrophages take on different phenotypes depending on their environment and which intracellular signaling pathways are activated. Rather than a few distinct populations of macrophages, the phenotype of the lesional macrophage is more complex and likely changes during the different phases of atherosclerosis and with the extent of lipid and cholesterol loading, activation by a plethora of receptors, and metabolic state of the cells. These different phenotypes allow the macrophage to engulf lipids, dead cells, and other substances perceived as danger signals; efflux cholesterol to HDL; proliferate and migrate; undergo apoptosis and death; and secrete a large number of inflammatory and pro-resolving molecules. This review article, part of the Compendium on Atherosclerosis, discusses recent advances in our understanding of lesional macrophage phenotype and function in different stages of atherosclerosis. With the increasing understanding of the roles of lesional macrophages, new research areas and treatment strategies are beginning to emerge. PMID:26892964

  3. ERK mediated upregulation of death receptor 5 overcomes the lack of p53 functionality in the diaminothiazole DAT1 induced apoptosis in colon cancer models: efficiency of DAT1 in Ras-Raf mutated cells.

    Science.gov (United States)

    Thamkachy, Reshma; Kumar, Rohith; Rajasekharan, K N; Sengupta, Suparna

    2016-03-08

    p53 is a tumour suppressor protein that plays a key role in many steps of apoptosis, and malfunctioning of this transcription factor leads to tumorigenesis. Prognosis of many tumours also depends upon the p53 status. Most of the clinically used anticancer compounds activate p53 dependent pathway of apoptosis and hence require p53 for their mechanism of action. Further, Ras/Raf/MEK/ERK axis is an important signaling pathway activated in many cancers. Dependence of diaminothiazoles, compounds that have gained importance recently due to their anticancer and anti angiogenic activities, were tested in cancer models with varying p53 or Ras/Raf mutational status. In this study we have used p53 mutated and knock out colon cancer cells and xenograft tumours to study the role of p53 in apoptosis mediated by diaminothiazoles. Colon cancer cell lines with varying mutational status for Ras or Raf were also used. We have also examined the toxicity and in vivo efficacy of a lead diaminothiazole 4-Amino-5-benzoyl-2-(4-methoxy phenylamino)thiazole (DAT1) in colon cancer xenografts. We have found that DAT1 is active in both in vitro and in vivo models with nonfunctional p53. Earlier studies have shown that extrinsic pathway plays major role in DAT1 mediated apoptosis. In this study, we have found that DAT1 is causing p53 independent upregulation of the death receptor 5 by activating the Ras/Raf/MEK/ERK signaling pathway both in wild type and p53 suppressed colon cancer cells. These findings are also confirmed by the in vivo results. Further, DAT1 is more efficient to induce apoptosis in colon cancer cells with mutated Ras or Raf. Minimal toxicity in both acute and subacute studies along with the in vitro and in vivo efficacy of DAT1 in cancers with both wild type and nonfunctional p53 place it as a highly beneficial candidate for cancer chemotherapy. Besides, efficiency in cancer cells with mutations in the Ras oncoprotein or its downstream kinase Raf raise interest in

  4. Functional validation of GWAS gene candidates for abnormal liver function during zebrafish liver development

    Directory of Open Access Journals (Sweden)

    Leah Y. Liu

    2013-09-01

    Genome-wide association studies (GWAS have revealed numerous associations between many phenotypes and gene candidates. Frequently, however, further elucidation of gene function has not been achieved. A recent GWAS identified 69 candidate genes associated with elevated liver enzyme concentrations, which are clinical markers of liver disease. To investigate the role of these genes in liver homeostasis, we narrowed down this list to 12 genes based on zebrafish orthology, zebrafish liver expression and disease correlation. To assess the function of gene candidates during liver development, we assayed hepatic progenitors at 48 hours post fertilization (hpf and hepatocytes at 72 hpf using in situ hybridization following morpholino knockdown in zebrafish embryos. Knockdown of three genes (pnpla3, pklr and mapk10 decreased expression of hepatic progenitor cells, whereas knockdown of eight genes (pnpla3, cpn1, trib1, fads2, slc2a2, pklr, mapk10 and samm50 decreased cell-specific hepatocyte expression. We then induced liver injury in zebrafish embryos using acetaminophen exposure and observed changes in liver toxicity incidence in morphants. Prioritization of GWAS candidates and morpholino knockdown expedites the study of newly identified genes impacting liver development and represents a feasible method for initial assessment of candidate genes to instruct further mechanistic analyses. Our analysis can be extended to GWAS for additional disease-associated phenotypes.

  5. In Silico Screening and In Vitro Activity Measurement of Javamide Analogues as Potential p38 MAPK Inhibitors

    Directory of Open Access Journals (Sweden)

    Jae B. Park

    2017-12-01

    be a most potent p38 MAPK inhibitor among the tested compounds and the combining in silico and in vitro assay approach may be a useful and efficient solution as a functional screening approach in searching new lead compounds for targeted molecules.

  6. Uric acid stimulates proliferative pathways in vascular smooth muscle cells through the activation of p38 MAPK, p44/42 MAPK and PDGFRβ.

    Science.gov (United States)

    Kırça, M; Oğuz, N; Çetin, A; Uzuner, F; Yeşilkaya, A

    2017-04-01

    Hyperuricemia and angiotensin II (Ang II) may have a pathogenetic role in the development of hypertension and atherosclerosis as well as cardiovascular disease (CVD) and its prognosis. The purpose of this study was to investigate whether uric acid can induce proliferative pathways of vascular smooth muscle cell (VSMC) that are thought to be responsible for the development of CVD. The phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), p44/42 mitogen-activated protein kinase (p44/42 MAPK) and platelet-derived growth factor receptor β (PDGFRβ) was measured by Elisa and Western blot techniques to determine the activation of proliferative pathways in primary cultured VSMCs from rat aorta. Results demonstrated that uric acid can stimulate p38 MAPK, p44/42 MAPK and PDGFRβ phosphorylation in a time- and concentration-dependent manner. Furthermore, treatment of VSMCs with the angiotensin II type I receptor (AT1R) inhibitor losartan suppressed p38 MAPK and p44/42 MAPK induction by uric acid. The stimulatory effect of uric acid on p38 MAPK was higher compared to that of Ang II. The results of this study show for the first time that uric acid-induced PDGFRβ phosphorylation plays a crucial role in the development of CVDs and that elevated uric acid levels could be a potential therapeutical target in CVD patients.

  7. Genetic and Molecular Analysis of Suppressors of Ras Mutations

    National Research Council Canada - National Science Library

    Sieburth, Derek

    1998-01-01

    .... elegans vulval development. We describe the identification and characterization of a novel gene, sur-8, that functions to regulate a receptor tyrosine kinase-Ras-MAP kinase-mediated signal transduction pathway during C...

  8. RAS - Screens & Assays - Drug Discovery

    Science.gov (United States)

    The RAS Drug Discovery group aims to develop assays that will reveal aspects of RAS biology upon which cancer cells depend. Successful assay formats are made available for high-throughput screening programs to yield potentially effective drug compounds.

  9. Ras-dva is a novel Pit-1- and glucocorticoid-regulated gene in the embryonic anterior pituitary gland.

    Science.gov (United States)

    Ellestad, Laura E; Porter, Tom E

    2013-01-01

    Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5'-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5'-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland.

  10. Activated H-Ras regulates hematopoietic cell survival by modulating Survivin

    International Nuclear Information System (INIS)

    Fukuda, Seiji; Pelus, Louis M.

    2004-01-01

    Survivin expression and Ras activation are regulated by hematopoietic growth factors. We investigated whether activated Ras could circumvent growth factor-regulated Survivin expression and if a Ras/Survivin axis mediates growth factor independent survival and proliferation in hematopoietic cells. Survivin expression is up-regulated by IL-3 in Ba/F3 and CD34 + cells and inhibited by the Ras inhibitor, farnesylthiosalicylic acid. Over-expression of constitutively activated H-Ras (CA-Ras) in Ba/F3 cells blocked down-modulation of Survivin expression, G 0 /G 1 arrest, and apoptosis induced by IL-3 withdrawal, while dominant-negative (DN) H-Ras down-regulated Survivin. Survivin disruption by DN T34A Survivin blocked CA-Ras-induced IL-3-independent cell survival and proliferation; however, it did not affect CA-Ras-mediated enhancement of S-phase, indicating that the anti-apoptotic activity of CA-Ras is Survivin dependent while its S-phase enhancing effect is not. These results indicate that CA-Ras modulates Survivin expression independent of hematopoietic growth factors and that a CA-Ras/Survivin axis regulates survival and proliferation of transformed hematopoietic cells

  11. Genetic and Molecular Analysis of Suppressors of Ras Mutations

    National Research Council Canada - National Science Library

    Sieburth, Derek

    1999-01-01

    .... elegans vulvaZ development. We describe the identification and characterization of a novel gene, sur-8, that functions to regulate a receptor tyrosine kinase-Ras-MAp kinase- mediated signal transduction pathway during C...

  12. Socs36E Controls Niche Competition by Repressing MAPK Signaling in the Drosophila Testis.

    Directory of Open Access Journals (Sweden)

    Marc Amoyel

    2016-01-01

    Full Text Available The Drosophila testis is a well-established system for studying stem cell self-renewal and competition. In this tissue, the niche supports two stem cell populations, germ line stem cells (GSCs, which give rise to sperm, and somatic stem cells called cyst stem cells (CySCs, which support GSCs and their descendants. It has been established that CySCs compete with each other and with GSCs for niche access, and mutations have been identified that confer increased competitiveness to CySCs, resulting in the mutant stem cell and its descendants outcompeting wild type resident stem cells. Socs36E, which encodes a negative feedback inhibitor of the JAK/STAT pathway, was the first identified regulator of niche competition. The competitive behavior of Socs36E mutant CySCs was attributed to increased JAK/STAT signaling. Here we show that competitive behavior of Socs36E mutant CySCs is due in large part to unbridled Mitogen-Activated Protein Kinase (MAPK signaling. In Socs36E mutant clones, MAPK activity is elevated. Furthermore, we find that clonal upregulation of MAPK in CySCs leads to their outcompetition of wild type CySCs and of GSCs, recapitulating the Socs36E mutant phenotype. Indeed, when MAPK activity is removed from Socs36E mutant clones, they lose their competitiveness but maintain self-renewal, presumably due to increased JAK/STAT signaling in these cells. Consistently, loss of JAK/STAT activity in Socs36E mutant clones severely impairs their self-renewal. Thus, our results enable the genetic separation of two essential processes that occur in stem cells. While some niche signals specify the intrinsic property of self-renewal, which is absolutely required in all stem cells for niche residence, additional signals control the ability of stem cells to compete with their neighbors. Socs36E is node through which these processes are linked, demonstrating that negative feedback inhibition integrates multiple aspects of stem cell behavior.

  13. Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition.

    Science.gov (United States)

    Trotta, Andrew P; Gelles, Jesse D; Serasinghe, Madhavika N; Loi, Patrick; Arbiser, Jack L; Chipuk, Jerry E

    2017-07-14

    The mitochondrial network is a major site of ATP production through the coupled integration of the electron transport chain (ETC) with oxidative phosphorylation. In melanoma arising from the V600E mutation in the kinase v-RAF murine sarcoma viral oncogene homolog B (BRAF V600E ), oncogenic signaling enhances glucose-dependent metabolism while reducing mitochondrial ATP production. Likewise, when BRAF V600E is pharmacologically inhibited by targeted therapies ( e.g. PLX-4032/vemurafenib), glucose metabolism is reduced, and cells increase mitochondrial ATP production to sustain survival. Therefore, collateral inhibition of oncogenic signaling and mitochondrial respiration may help enhance the therapeutic benefit of targeted therapies. Honokiol (HKL) is a well tolerated small molecule that disrupts mitochondrial function; however, its underlying mechanisms and potential utility with targeted anticancer therapies remain unknown. Using wild-type BRAF and BRAF V600E melanoma model systems, we demonstrate here that HKL administration rapidly reduces mitochondrial respiration by broadly inhibiting ETC complexes I, II, and V, resulting in decreased ATP levels. The subsequent energetic crisis induced two cellular responses involving cyclin-dependent kinases (CDKs). First, loss of CDK1-mediated phosphorylation of the mitochondrial division GTPase dynamin-related protein 1 promoted mitochondrial fusion, thus coupling mitochondrial energetic status and morphology. Second, HKL decreased CDK2 activity, leading to G 1 cell cycle arrest. Importantly, although pharmacological inhibition of oncogenic MAPK signaling increased ETC activity, co-treatment with HKL ablated this response and vastly enhanced the rate of apoptosis. Collectively, these findings integrate HKL action with mitochondrial respiration and shape and substantiate a pro-survival role of mitochondrial function in melanoma cells after oncogenic MAPK inhibition.

  14. BRAF Gene Copy Number and Mutant Allele Frequency Correlate with Time to Progression in Metastatic Melanoma Patients Treated with MAPK Inhibitors.

    Science.gov (United States)

    Stagni, Camilla; Zamuner, Carolina; Elefanti, Lisa; Zanin, Tiziana; Bianco, Paola Del; Sommariva, Antonio; Fabozzi, Alessio; Pigozzo, Jacopo; Mocellin, Simone; Montesco, Maria Cristina; Chiarion-Sileni, Vanna; De Nicolo, Arcangela; Menin, Chiara

    2018-06-01

    Metastatic melanoma is characterized by complex genomic alterations, including a high rate of mutations in driver genes and widespread deletions and amplifications encompassing various chromosome regions. Among them, chromosome 7 is frequently gained in BRAF -mutant melanoma, inducing a mutant allele-specific imbalance. Although BRAF amplification is a known mechanism of acquired resistance to therapy with MAPK inhibitors, it is still unclear if BRAF copy-number variation and BRAF mutant allele imbalance at baseline can be associated with response to treatment. In this study, we used a multimodal approach to assess BRAF copy number and mutant allele frequency in pretreatment melanoma samples from 46 patients who received MAPK inhibitor-based therapy, and we analyzed the association with progression-free survival. We found that 65% patients displayed BRAF gains, often supported by chromosome 7 polysomy. In addition, we observed that 64% patients had a balanced BRAF -mutant/wild-type allele ratio, whereas 14% and 23% patients had low and high BRAF mutant allele frequency, respectively. Notably, a significantly higher risk of progression was observed in patients with a diploid BRAF status versus those with BRAF gains [HR, 2.86; 95% confidence interval (CI), 1.29-6.35; P = 0.01] and in patients with low percentage versus those with a balanced BRAF mutant allele percentage (HR, 4.54; 95% CI, 1.33-15.53; P = 0.016). Our data suggest that quantitative analysis of the BRAF gene could be useful to select the melanoma patients who are most likely to benefit from therapy with MAPK inhibitors. Mol Cancer Ther; 17(6); 1332-40. ©2018 AACR . ©2018 American Association for Cancer Research.

  15. Involvement of Mos-MEK-MAPK pathway in cytostatic factor (CSF) arrest in eggs of the parthenogenetic insect, Athalia rosae.

    Science.gov (United States)

    Yamamoto, Daisuke S; Tachibana, Kazunori; Sumitani, Megumi; Lee, Jae Min; Hatakeyama, Masatsugu

    2008-01-01

    Extensive survey of meiotic metaphase II arrest during oocyte maturation in vertebrates revealed that the mitogen-activated protein kinase (MAPK) pathway regulated by the c-mos proto-oncogene product, Mos, has an essential role in cytostatic activity, termed cytostatic factor (CSF). In contrast, little is known in invertebrates in which meiotic arrest occurs in most cases at metaphase I (MI arrest). A parthenogenetic insect, the sawfly Athalia rosae, in which artificial egg activation is practicable, has advantages to investigate the mechanisms of MI arrest. Both the MAPK/extracellular signal-regulated protein kinase kinase (MEK) and MAPK were phosphorylated and maintained active in MI-arrested sawfly eggs, whereas they were dephosphorylated soon after egg activation. Treatment of MI-arrested eggs with U0126, an inhibitor of MEK, resulted in dephosphorylation of MAPK and MI arrest was resumed. The sawfly c-mos gene orthologue encoding a serine/threonine kinase was cloned and analyzed. It was expressed in nurse cells in the ovaries. To examine CSF activity of the sawfly Mos, synthesized glutathione S-transferase (GST)-fusion sawfly Mos protein was injected into MI-resumed eggs in which MEK and MAPK were dephosphorylated. Both MEK and MAPK were phosphorylated again upon injection. In these GST-fusion sawfly Mos-injected eggs subsequent mitotic (syncytial) divisions were blocked and embryonic development was ceased. These results demonstrated that the MEK-MAPK pathway was involved in maintaining CSF arrest in sawfly eggs and Mos functioned as its upstream regulatory molecule.

  16. Role of dystrophin in airway smooth muscle phenotype, contraction and lung function.

    Directory of Open Access Journals (Sweden)

    Pawan Sharma

    Full Text Available Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh when compared to genetic control BL10ScSnJ mice (wild-type. In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM.

  17. Dominant Drop mutants are gain-of-function alleles of the muscle segment homeobox gene (msh) whose overexpression leads to the arrest of eye development.

    Science.gov (United States)

    Mozer, B A

    2001-05-15

    Dominant Drop (Dr) mutations are nearly eyeless and have additional recessive phenotypes including lethality and patterning defects in eye and sensory bristles due to cis-regulatory lesions in the cell cycle regulator string (stg). Genetic analysis demonstrates that the dominant small eye phenotype is the result of separate gain-of-function mutations in the closely linked muscle segment homeobox (msh) gene, encoding a homeodomain transcription factor required for patterning of muscle and nervous system. Reversion of the Dr(Mio) allele was coincident with the generation of lethal loss-of-function mutations in msh in cis, suggesting that the dominant eye phenotype is the result of ectopic expression. Molecular genetic analysis revealed that two dominant Dr alleles contain lesions upstream of the msh transcription start site. In the Dr(Mio) mutant, a 3S18 retrotransposon insertion is the target of second-site mutations (P-element insertions or deletions) which suppress the dominant eye phenotype following reversion. The pattern of 3S18 expression and the absence of msh in eye imaginal discs suggest that transcriptional activation of the msh promoter accounts for ectopic expression. Dr dominant mutations arrest eye development by blocking the progression of the morphogenetic furrow leading to photoreceptor cell loss via apoptosis. Gal4-mediated ubiquitous expression of msh in third-instar larvae was sufficient to arrest the morphogenetic furrow in the eye imaginal disc and resulted in lethality prior to eclosion. Dominant mutations in the human msx2 gene, one of the vertebrate homologs of msh, are associated with craniosynostosis, a disease affecting cranial development. The Dr mutations are the first example of gain-of-function mutations in the msh/msx gene family identified in a genetically tractible model organism and may serve as a useful tool to identify additional genes that regulate this class of homeodomain proteins. Copyright 2001 Academic Press.

  18. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway

    International Nuclear Information System (INIS)

    Mishra, Sakshi; Tripathi, Anurag; Chaudhari, Bhushan P.; Dwivedi, Premendra D.; Pandey, Haushila P.; Das, Mukul

    2014-01-01

    Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84–672 nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672 nmol) caused significant enhancement in [ 3 H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168 nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposure also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168 nmol) showed no tumorigenesis after 24 weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24 weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. - Highlights: • Topical application of DON enhanced epidermal inflammation and cell proliferation. • DON follows PI3K/Akt/MAPK signaling cascade, with activation of AP-1 and NF

  19. Tissue-specific functional networks for prioritizing phenotype and disease genes.

    Directory of Open Access Journals (Sweden)

    Yuanfang Guan

    Full Text Available Integrated analyses of functional genomics data have enormous potential for identifying phenotype-associated genes. Tissue-specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and pathways in diverse cell lineages. Accounting for tissue specificity in global integration of functional genomics data is challenging, as "functionality" and "functional relationships" are often not resolved for specific tissue types. We address this challenge by generating tissue-specific functional networks, which can effectively represent the diversity of protein function for more accurate identification of phenotype-associated genes in the laboratory mouse. Specifically, we created 107 tissue-specific functional relationship networks through integration of genomic data utilizing knowledge of tissue-specific gene expression patterns. Cross-network comparison revealed significantly changed genes enriched for functions related to specific tissue development. We then utilized these tissue-specific networks to predict genes associated with different phenotypes. Our results demonstrate that prediction performance is significantly improved through using the tissue-specific networks as compared to the global functional network. We used a testis-specific functional relationship network to predict genes associated with male fertility and spermatogenesis phenotypes, and experimentally confirmed one top prediction, Mbyl1. We then focused on a less-common genetic disease, ataxia, and identified candidates uniquely predicted by the cerebellum network, which are supported by both literature and experimental evidence. Our systems-level, tissue-specific scheme advances over traditional global integration and analyses and establishes a prototype to address the tissue-specific effects of genetic perturbations, diseases and drugs.

  20. A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis.

    Science.gov (United States)

    Lloyd, Johnny; Meinke, David

    2012-03-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms.

  1. Predictive value of K-ras and PIK3CA in non-small cell lung cancer patients treated with EGFR-TKIs: a systemic review and meta-analysis

    International Nuclear Information System (INIS)

    Chen, Jie-Ying; Cheng, Ya-Nan; Han, Lei; Wei, Feng; Yu, Wen-Wen; Zhang, Xin-Wei; Cao, Shui; Yu, Jin-Pu

    2015-01-01

    A meta-analysis was performed to augment the insufficient data on the impact of mutative EGFR downstream phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on the clinical efficiency of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment of non-small cell lung cancer (NSCLC) patients. Network databases were explored in April, 2015. Papers that investigated the clinical outcomes of NSCLC patients treated with EGFR-TKIs according to the status of K-ras and/or PIK3CA gene mutation were included. A quantitative meta-analysis was conducted using standard statistical methods. Odds ratios (ORs) for objective response rate (ORR) and hazard ratios (HRs) for progression-free survival (PFS) and overall survival (OS) were calculated. Mutation in K-ras significantly predicted poor ORR [OR =0.22; 95% confidence interval (CI), 0.13-0.35], shorter PFS (HR =1.56; 95% CI, 1.27-1.92), and shorter OS (HR =1.59; 95% CI, 1.33-1.91) in NSCLC patients treated with EGFR-TKIs. Mutant PIK3CA significantly predicted shorter OS (HR =1.83; 95% CI, 1.05-3.20), showed poor ORR (OR =0.70; 95% CI, 0.22-2.18), and shorter PFS (HR =1.79; 95% CI, 0.91-3.53) in NSCLC patients treated with EGFR-TKIs. K-ras mutation adversely affected the clinical response and survival of NSCLC patients treated with EGFR-TKIs. PIK3CA mutation showed similar trends. In addition to EGFR, adding K-ras and PIK3CA as routine gene biomarkers in clinical genetic analysis is valuable to optimize the effectiveness of EGFR-TKI regimens and identify optimal patients who will benefit from EGFR-TKI treatment

  2. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    International Nuclear Information System (INIS)

    Roffe, Suzy; Hagai, Yosey; Pines, Mark; Halevy, Orna

    2010-01-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  3. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    Energy Technology Data Exchange (ETDEWEB)

    Roffe, Suzy [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel); Hagai, Yosey [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel); Institute of Animal Sciences, Volcani Center, Bet Dagan 50250 (Israel); Pines, Mark [Institute of Animal Sciences, Volcani Center, Bet Dagan 50250 (Israel); Halevy, Orna, E-mail: halevyo@agri.huji.ac.il [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel)

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  4. Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement

    KAUST Repository

    He, Li-Sheng

    2012-10-24

    The barnacle Balanus ( = Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts.

  5. Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement

    KAUST Repository

    He, Li-Sheng; Xu, Ying; Matsumura, Kiyotaka; Zhang, Yu; Zhang, Gen; Qi, Shu-Hua; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus ( = Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts.

  6. Crosstalk between Bcl-2 family and Ras family small GTPases: potential cell fate regulation?

    International Nuclear Information System (INIS)

    Kang, Jia; Pervaiz, Shazib

    2013-01-01

    Cell fate regulation is a function of diverse cell signaling pathways that promote cell survival and or inhibit cell death execution. In this regard, the role of the Bcl-2 family in maintaining a tight balance between cell death and cell proliferation has been extensively studied. The conventional dogma links cell fate regulation by the Bcl-2 family to its effect on mitochondrial permeabilization and apoptosis amplification. However, recent evidence provide a novel mechanism for death regulation by the Bcl-2 family via modulating cellular redox metabolism. For example overexpression of Bcl-2 has been shown to contribute to a pro-oxidant intracellular milieu and down-regulation of cellular superoxide levels enhanced death sensitivity of Bcl-2 overexpressing cells. Interestingly, gene knockdown of the small GTPase Rac1 or pharmacological inhibition of its activity also reverted death phenotype in Bcl-2 expressing cells. This appears to be a function of an interaction between Bcl-2 and Rac1. Similar functional associations have been described between the Bcl-2 family and other members of the Ras superfamily. These interactions at the mitochondria provide novel opportunities for strategic therapeutic targeting of drug-resistant cancers.

  7. Human hypervariable sequences in risk assessment: rare Ha-ras alleles in cancer patients

    International Nuclear Information System (INIS)

    Krontiris, T.G.; DiMartino, N.A.; Mitcheson, H.D.; Lonergan, J.A.; Begg, C.; Parkinson, D.R.

    1987-01-01

    A variable tandem repeat (VTR) is responsible for the hyperallelism one kilobase 3' to the human c-Ha-ras-1 (Ha-ras) gene. Thirty-two distinct restriction fragments, comprising 3 allelic classes by frequency of occurrence, have thus far been detected in a sample size of approximately 800 caucasians. Rare Ha-ras alleles, 21 in all, are almost exclusively confined to the genomes of cancer patients. From their data the authors have computed the relative cancer risk associated with possession of a rare Ha-ras allele to be 27. To understand the molecular basis for this phenomenon, they have begun to clone Ha-ras fragments from nontumor DNA of cancer patients. They report here the weak activation, as detected by transfection and transformation of NIH 3T3 mouse cells, of two Ha-ras genes which were obtained from lymphocyte DNA of a melanoma patient. They have mapped the regions that confer this transforming activity to the fragment containing the VTR in one Ha-ras clone and the fragment containing gene coding sequences in the other

  8. Genetic and phenotypic relationships of serum leptin concentration with performance, efficiency of gain, and carcass merit of feedlot cattle.

    Science.gov (United States)

    Nkrumah, J D; Keisler, D H; Crews, D H; Basarab, J A; Wang, Z; Li, C; Price, M A; Okine, E K; Moore, S S

    2007-09-01

    Leptin is the hormone product of the obese gene that is synthesized and predominantly expressed by adipocytes. This study estimated the genetic variation in serum leptin concentration and evaluated the genetic and phenotypic relationships of serum leptin concentration with performance, efficiency of gain, and carcass merit. There were 464 steers with records for serum leptin concentration, performance, and efficiency of gain and 381 steers with records for carcass traits. The analyses included a total of 813 steers, including those without phenotypic records. Phenotypic and genetic parameter estimates were obtained using SAS and ASREML, respectively. Serum leptin concentration was moderately heritable (h2 = 0.34 +/- 0.13) and averaged 13.91 (SD = 5.74) ng/mL. Sire breed differences in serum leptin concentration correlated well with breed differences in body composition. Specifically, the serum leptin concentration was 20% greater in Angus-sired steers compared with Charolais-sired steers (P 0.10). Serum leptin concentration was correlated phenotypically with ultrasound backfat (r = 0.41; P < 0.001), carcass 12th-rib fat (r = 0.42; P < 0.001), ultrasound marbling (r = 0.25; P < 0.01), carcass marbling (r = 0.28; P < 0.01), ultrasound LM area (r = -0.19; P < 0.01), carcass LM area (r = -0.17; P < 0.05), lean meat yield (r = -0.38; P < 0.001), and yield grade (r = 0.32; P < 0.001). The corresponding genetic correlations were generally greater than the phenotypic correlations and included ultrasound backfat (r = 0.76 +/- 0.19), carcass 12th-rib fat (r = 0.54 +/- 0.23), ultrasound marbling (r = 0.27 +/- 0.22), carcass marbling (r = 0.76 +/- 0.21), ultrasound LM area (r = -0.71 +/- 0.19), carcass LM area (r = -0.75 +/- 0.20), lean meat yield (r = -0.59 +/- 0.22), and yield grade (r = 0.39 +/- 0.26). Serum leptin concentration can be a valuable tool that can be incorporated into appropriate selection programs to favorably improve the carcass merit of cattle.

  9. Comparison of prophylactic effect of UGIB and effects on platelet function between PPIs and H2RAs combined with DAPT: systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Yi Z

    2017-03-01

    Full Text Available Zhan-Miao Yi,1 Ting-Ting Qiu,1,2 Yuan Zhang,3 Zhi-Yan Liu,1 Suo-Di Zhai1 1Department of Pharmacy, Peking University Third Hospital, Beijing, 2Department of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China; 3Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada Objective: We compared prophylactic effects of proton pump inhibitors (PPIs and histamine-2 receptor antagonists (H2RAs on upper gastrointestinal bleeding (UGIB associated with dual antiplatelet therapy (DAPT and explored this influence on platelet function. Methods: Randomized controlled trials and cohort studies comparing PPIs with H2RAs in adults receiving DAPT were collected from PubMed, EMBASE and Cochrane databases. Dichotomous data were pooled to obtain risk ratios (RRs for UGIB, major adverse cardiovascular events (MACEs, poor responders to clopidogrel and rehospitalization, and continuous data were pooled to obtain mean differences (MDs for P2Y12 reaction units (PRUs, with 95% confidence intervals (CIs. Results: Twelve clinical trials (n=3,301 met the inclusion criteria. Compared to H2RAs, PPIs lessened UGIB (RR =0.16, 95% CI: 0.03–0.70, and there was no significant difference in the incidence of PRUs (MD =18.21 PRUs, 95% CI: -4.11–40.54, poor responders to clopidogrel (RR =1.21, 95% CI: 0.92–1.61, incidence of MACEs (RR =0.89, 95% CI: 0.45–1.75 or rehospitalization (RR =1.76, 95% CI: 0.79–3.92. Subgroup analysis confirmed fewer PRUs in the H2RAs group compared to the omeprazole group (2 studies, n=189, MD =31.80 PRUs, 95% CI: 11.65–51.96. However, poor responder data for clopidogrel and MACEs might be unreliable because few studies of this kind were included. Conclusion: Limited evidence indicates that PPIs were better than H2RAs for prophylaxis of UGIB associated with DAPT and had no effect on platelet function. Further study is needed to confirm these observations. Keywords: proton pump

  10. Electrostatic Interactions Positively Regulate K-Ras Nanocluster Formation and Function▿

    Science.gov (United States)

    Plowman, Sarah J.; Ariotti, Nicholas; Goodall, Andrew; Parton, Robert G.; Hancock, John F.

    2008-01-01

    The organization of Ras proteins into plasma membrane nanoclusters is essential for high-fidelity signal transmission, but whether the nanoscale enviroments of different Ras nanoclusters regulate effector interactions is unknown. We show using high-resolution spatial mapping that Raf-1 is recruited to and retained in K-Ras-GTP nanoclusters. In contrast, Raf-1 recruited to the plasma membrane by H-Ras is not retained in H-Ras-GTP nanoclusters. Similarly, upon epidermal growth factor receptor activation, Raf-1 is preferentially recruited to K-Ras-GTP and not H-Ras-GTP nanoclusters. The formation of K-Ras-GTP nanoclusters is inhibited by phosphorylation of S181 in the C-terminal polybasic domain or enhanced by blocking S181 phosphorylation, with a concomitant reduction or increase in Raf-1 plasma membrane recruitment, respectively. Phosphorylation of S181 does not, however, regulate in vivo interactions with the nanocluster scaffold galectin-3 (Gal3), indicating separate roles for the polybasic domain and Gal3 in driving K-Ras nanocluster formation. Together, these data illustrate that Ras nanocluster composition regulates effector recruitment and highlight the importance of lipid/protein nanoscale environments to the activation of signaling cascades. PMID:18458061

  11. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    International Nuclear Information System (INIS)

    Naumov, Inna; Kazanov, Dina; Lisiansky, Victoria; Starr, Alex; Aroch, Ilan; Shapira, Shiran; Kraus, Sarah; Arber, Nadir

    2012-01-01

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35–40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1 and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our “gene therapy” approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce ∼ 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by ∼ 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.

  12. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Naumov, Inna [Integrated Cancer Prevention Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Kazanov, Dina [Integrated Cancer Prevention Center, Tel Aviv (Israel); Lisiansky, Victoria [Integrated Cancer Prevention Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Starr, Alex [Lung and Allergy Institute, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Aroch, Ilan; Shapira, Shiran; Kraus, Sarah [Integrated Cancer Prevention Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Arber, Nadir, E-mail: narber@post.tau.ac.il [Integrated Cancer Prevention Center, Tel Aviv (Israel); Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2012-01-15

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35-40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1 and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our 'gene therapy' approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce {approx} 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by {approx} 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.

  13. Analog reactor simulator RAS; Reaktorski analogni simulator RAS

    Energy Technology Data Exchange (ETDEWEB)

    Radanovic, Lj; Bingulac, S; Popovic, D [The Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1961-07-01

    Analog computer RAS was designed as a nuclear reactor simulator, but it can be simultaneously used for solving a number of other problems. This paper contains a brief description of the simulator parts and their principal characteristics.

  14. Resistance and resilience of small-scale recirculating aquaculture systems (RAS) with or without algae to pH perturbation

    Science.gov (United States)

    Giatsis, Christos; Md Yusoff, Fatimah; Verreth, Johan; Verdegem, Marc

    2018-01-01

    The experimental set-up of this study mimicked recirculating aquaculture systems (RAS) where water quality parameters such as dissolved oxygen, pH, temperature, and turbidity were controlled and wastes produced by fish and feeding were converted to inorganic forms. A key process in the RAS was the conversion of ammonia to nitrite and nitrite to nitrate through nitrification. It was hypothesized that algae inclusion in RAS would improve the ammonia removal from the water; thereby improving RAS water quality and stability. To test this hypothesis, the stability of the microbiota community composition in a freshwater RAS with (RAS+A) or without algae (RAS-A) was challenged by introducing an acute pH drop (from pH 7 to 4 during three hours) to the system. Stigeoclonium nanum, a periphytic freshwater microalga was used in this study. No significant effect of the algae presence was found on the resistance to the acute pH drop on ammonia conversion to nitrite and nitrite conversion to nitrate. Also the resilience of the ammonia conversion to the pH drop disruption was not affected by the addition of algae. This could be due to the low biomass of algae achieved in the RAS. However, with regard to the conversion step of nitrite to nitrate, RAS+A was significantly more resilient than RAS-A. In terms of overall bacterial communities, the composition and predictive function of the bacterial communities was significantly different between RAS+A and RAS-A. PMID:29659617

  15. In vitro atrazine exposure affects the phenotypic and functional maturation of dendritic cells

    International Nuclear Information System (INIS)

    Pinchuk, Lesya M.; Lee, Sang-Ryul; Filipov, Nikolay M.

    2007-01-01

    Recent data suggest that some of the immunotoxic effects of the herbicide atrazine, a very widely used pesticide, may be due to perturbations in dendritic cell (DC) function. As consequences of atrazine exposure on the phenotypic and functional maturation of DC have not been studied, our objective was, using the murine DC line, JAWSII, to determine whether atrazine will interfere with DC maturation. First, we characterized the maturation of JAWSII cells in vitro by inducing them to mature in the presence of growth factors and selected maturational stimuli in vitro. Next, we exposed the DC cell line to a concentration range of atrazine and examined its effects on phenotypic and functional maturation of DC. Atrazine exposure interfered with the phenotypic and functional maturation of DC at non-cytotoxic concentrations. Among the phenotypic changes caused by atrazine exposure was a dose-dependent removal of surface MHC-I with a significant decrease being observed at 1 μM concentration. In addition, atrazine exposure decreased the expression of the costimulatory molecule CD86 and it downregulated the expression of the CD11b and CD11c accessory molecules and the myeloid developmental marker CD14. When, for comparative purposes, we exposed primary thymic DC to atrazine, MHC-I and CD11c expression was also decreased. Phenotypic changes in JAWSII DC maturation were associated with functional inhibition of maturation as, albeit at higher concentrations, receptor-mediated antigen uptake was increased by atrazine. Thus, our data suggest that atrazine directly targets DC maturation and that toxicants such as atrazine that efficiently remove MHC-I molecules from the DC surface are likely to contribute to immune evasion

  16. Novel Approach to Design Ultra Wideband Microwave Amplifiers: Normalized Gain Function Method

    Directory of Open Access Journals (Sweden)

    R. Kopru

    2013-09-01

    Full Text Available In this work, we propose a novel approach called as “Normalized Gain Function (NGF method” to design low/medium power single stage ultra wide band microwave amplifiers based on linear S parameters of the active device. Normalized Gain Function TNGF is defined as the ratio of T and |S21|^2, desired shape or frequency response of the gain function of the amplifier to be designed and the shape of the transistor forward gain function, respectively. Synthesis of input/output matching networks (IMN/OMN of the amplifier requires mathematically generated target gain functions to be tracked in two different nonlinear optimization processes. In this manner, NGF not only facilitates a mathematical base to share the amplifier gain function into such two distinct target gain functions, but also allows their precise computation in terms of TNGF=T/|S21|^2 at the very beginning of the design. The particular amplifier presented as the design example operates over 800-5200 MHz to target GSM, UMTS, Wi-Fi and WiMAX applications. An SRFT (Simplified Real Frequency Technique based design example supported by simulations in MWO (MicroWave Office from AWR Corporation is given using a 1400mW pHEMT transistor, TGF2021-01 from TriQuint Semiconductor.

  17. Phenotypic and functional characterization of earthworm coelomocyte subsets

    DEFF Research Database (Denmark)

    Engelmann, Péter; Hayashi, Yuya; Bodo, Kornélia

    2016-01-01

    Flow cytometry is a common approach to study invertebrate immune cells including earthworm coelomocytes. However, the link between light-scatter- and microscopy-based phenotyping remains obscured. Here we show, by means of light scatter-based cell sorting, both subpopulations (amoebocytes...... amoebocytes and eleocytes, with the former being in favor of bacterial engulfment. This study has proved successful in linking flow cytometry and microscopy analysis and provides further experimental evidence of phenotypic and functional heterogeneity in earthworm coelomocyte subsets....

  18. A Bystander Mechanism Explains the Specific Phenotype of a Broadly Expressed Misfolded Protein.

    Directory of Open Access Journals (Sweden)

    Lauren Klabonski

    2016-12-01

    Full Text Available Misfolded proteins in transgenic models of conformational diseases interfere with proteostasis machinery and compromise the function of many structurally and functionally unrelated metastable proteins. This collateral damage to cellular proteins has been termed 'bystander' mechanism. How a single misfolded protein overwhelms the proteostasis, and how broadly-expressed mutant proteins cause cell type-selective phenotypes in disease are open questions. We tested the gain-of-function mechanism of a R37C folding mutation in an endogenous IGF-like C.elegans protein DAF-28. DAF-28(R37C is broadly expressed, but only causes dysfunction in one specific neuron, ASI, leading to a distinct developmental phenotype. We find that this phenotype is caused by selective disruption of normal biogenesis of an unrelated endogenous protein, DAF-7/TGF-β. The combined deficiency of DAF-28 and DAF-7 biogenesis, but not of DAF-28 alone, explains the gain-of-function phenotype-deficient pro-growth signaling by the ASI neuron. Using functional, fluorescently-tagged protein, we find that, in animals with mutant DAF-28/IGF, the wild-type DAF-7/TGF-β is mislocalized to and accumulates in the proximal axon of the ASI neuron. Activation of two different branches of the unfolded protein response can modulate both the developmental phenotype and DAF-7 mislocalization in DAF-28(R37C animals, but appear to act through divergent mechanisms. Our finding that bystander targeting of TGF-β explains the phenotype caused by a folding mutation in an IGF-like protein suggests that, in conformational diseases, bystander misfolding may specify the distinct phenotypes caused by different folding mutations.

  19. Characteristics of Patients With Satisfactory Functional Gain Following Total Joint Arthroplasty in a Postacute Rehabilitation Setting.

    Science.gov (United States)

    Hershkovitz, Avital; Vesilkov, Marina; Beloosesky, Yichayaou; Brill, Shai

    2017-01-10

    Total joint arthroplasty (TJA) is an effective and successful treatment of osteoarthritis of the hip and knee as quantified by several measures, such as pain relief, improved walking, improved self-care, functions, and increased quality of life. Data are lacking as to the definition of a satisfactory functional gain in a postacute setting and identifying the characteristics of older patients with TJA who may achieve that gain. Our aim was to characterize patients who may achieve a satisfactory functional gain in a postacute rehabilitation setting following TJA. This was a retrospective study of 180 patients with TJA admitted during 2010-2013. The main outcome measures were the Functional Independence Measure (FIM), the Montebello Rehabilitation Factor Score (MRFS) on the motor FIM, and the Timed Get Up and Go Test. Satisfactory functional gain was defined as an mFIM MRFS score above median score. Comparisons of clinical and demographic characteristics between patients who achieved a satisfactory functional gain versus those who did not were performed by the Mann-Whitney U test and the χ test. The proportion of patients who achieved a satisfactory functional gain was similar in the total knee arthroplasty and total hip arthroplasty (THA) groups. The most significant characteristic of patients who achieved a satisfactory functional gain was their admission functional ability. Age negatively impacted the ability to achieve a satisfactory functional gain in patients with THA. Functional level on admission is the best predictive factor for a better rehabilitation outcome for patients with TJA. Age negatively affects functional gain in patients with THA.

  20. The Bisphenol A analogue Bisphenol S binds to K-Ras4B--implications for 'BPA-free' plastics.

    Science.gov (United States)

    Schöpel, Miriam; Herrmann, Christian; Scherkenbeck, Jürgen; Stoll, Raphael

    2016-02-01

    K-Ras4B is a small GTPase that belongs to the Ras superfamily of guanine nucleotide-binding proteins. GTPases function as molecular switches in cells and are key players in intracellular signalling. Ras has been identified as an oncogene and is mutated in more than 20% of human cancers. Here, we report that Bisphenol S binds into a binding pocket of K-Ras4B previously identified for various low molecular weight compounds. Our results advocate for more comprehensive safety studies on the toxicity of Bisphenol S, as it is frequently used for Bisphenol A-free food containers. © 2016 Federation of European Biochemical Societies.

  1. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function......). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  2. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    ). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially......Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  3. Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome.

    Science.gov (United States)

    Yamamoto, Guilherme Lopes; Aguena, Meire; Gos, Monika; Hung, Christina; Pilch, Jacek; Fahiminiya, Somayyeh; Abramowicz, Anna; Cristian, Ingrid; Buscarilli, Michelle; Naslavsky, Michel Satya; Malaquias, Alexsandra C; Zatz, Mayana; Bodamer, Olaf; Majewski, Jacek; Jorge, Alexander A L; Pereira, Alexandre C; Kim, Chong Ae; Passos-Bueno, Maria Rita; Bertola, Débora Romeo

    2015-06-01

    Noonan syndrome is an autosomal dominant, multisystemic disorder caused by dysregulation of the RAS/mitogen activated protein kinase (MAPK) pathway. Heterozygous, pathogenic variants in 11 known genes account for approximately 80% of cases. The identification of novel genes associated with Noonan syndrome has become increasingly challenging, since they might be responsible for very small fractions of the cases. A cohort of 50 Brazilian probands negative for pathogenic variants in the known genes associated with Noonan syndrome was tested through whole-exome sequencing along with the relatives in the familial cases. Families from the USA and Poland with mutations in the newly identified genes were included subsequently. We identified rare, segregating or de novo missense variants in SOS2 and LZTR1 in 4% and 8%, respectively, of the 50 Brazilian probands. SOS2 and LZTR1 variants were also found to segregate in one American and one Polish family. Notably, SOS2 variants were identified in patients with marked ectodermal involvement, similar to patients with SOS1 mutations. We identified two novel genes, SOS2 and LZTR1, associated with Noonan syndrome, thereby expanding the molecular spectrum of RASopathies. Mutations in these genes are responsible for approximately 3% of all patients with Noonan syndrome. While SOS2 is a natural candidate, because of its homology with SOS1, the functional role of LZTR1 in the RAS/MAPK pathway is not known, and it could not have been identified without the large pedigrees. Additional functional studies are needed to elucidate the role of LZTR1 in RAS/MAPK signalling and in the pathogenesis of Noonan syndrome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. RAS in Pregnancy and Preeclampsia and Eclampsia

    Directory of Open Access Journals (Sweden)

    M. Rodriguez

    2012-01-01

    Full Text Available Preeclampsia is a common disease of pregnancy characterized by the presence of hypertension and commitment of many organs, including the brain, secondary to generalized endothelial dysfunction. Its etiology is not known precisely, but it involved several factors, highlighting the renin angiotensin system (RAS, which would have an important role in the origin of multisystem involvement. This paper reviews the evidence supporting the involvement of RAS in triggering the disease, in addition to the components of this system that would be involved and how it eventually produces brain engagement.

  5. Feed intake, live mass-gain, body composition and protein ...

    African Journals Online (AJOL)

    Feed intake, live mass-gain, body composition and protein deposition in pigs fed three protein levels. E.H. Kemm,* F.K. Siebrits, M.N. Ras and H.A. Badenhorst. Animal and Dairy Science Research Institute, Private Bag X2, Irene 1675, Republic of South Africa. A group of 82 genetically lean and 90 obese Landrace pigs was ...

  6. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells

    DEFF Research Database (Denmark)

    Doehn, Ulrik; Hauge, Camilla; Frank, Scott R

    2009-01-01

    The RAS-stimulated RAF-MEK-ERK pathway confers epithelial cells with critical motile and invasive capacities during development, tissue regeneration, and carcinoma progression, often via promoting the epithelial-mesenchymal transition (EMT). Many mechanisms by which ERK exerts this control remain...... elusive. We demonstrate that the ERK-activated kinase RSK is necessary to induce mesenchymal motility and invasive capacities in nontransformed epithelial and carcinoma cells. RSK is sufficient to induce certain motile responses. Expression profiling analysis revealed that a primary role of RSK...... to stimulate motility and invasion. These findings uncover a mechanism whereby the RAS-ERK pathway controls epithelial cell motility by identifying RSK as a key effector, from which emanate multiple highly coordinate transcription-dependent mechanisms for stimulation of motility and invasive properties....

  7. Exploiting the bad eating habits of Ras-driven cancers.

    Science.gov (United States)

    White, Eileen

    2013-10-01

    Oncogenic Ras promotes glucose fermentation and glutamine use to supply central carbon metabolism, but how and why have only emerged recently. Ras-mediated metabolic reprogramming generates building blocks for growth and promotes antioxidant defense. To fuel metabolic pathways, Ras scavenges extracellular proteins and lipids. To bolster metabolism and mitigate stress, Ras activates cellular self-cannibalization and recycling of proteins and organelles by autophagy. Targeting these distinct features of Ras-driven cancers provides novel approaches to cancer therapy.

  8. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes.

    Science.gov (United States)

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Marshall, Shannon; Krawczyk, Melissa; Talan, Mark

    2016-01-15

    Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/- mouse [Marfan heterozygous (HT) mouse] and its association with valvular regurgitation. Marfan HT mice of 2-4 mo demonstrated a mild hypertrophic cardiac remodeling with predominant decline of diastolic function and increased transforming growth factor-β canonical (p-SMAD2/3) and noncanonical (p-ERK1/2 and p-p38 MAPK) signaling and upregulation of hypertrophic markers natriuretic peptides atrium natriuretic peptide and brain natriuretic peptide. Among older HT mice (6-14 mo), cardiac remodeling was associated with two distinct phenotypes, manifesting either dilated or constricted left ventricular chamber. Dilatation of left ventricular chamber was accompanied by biochemical evidence of greater mechanical stress, including elevated ERK1/2 and p38 MAPK phosphorylation and higher brain natriuretic peptide expression. The aortic valve regurgitation was registered in 20% of the constricted group and 60% of the dilated group, whereas mitral insufficiency was observed in 40% of the constricted group and 100% of the dilated group. Cardiac dysfunction was not associated with the increase of interstitial fibrosis and nonmyocyte proliferation. In the mouse model fibrillin-1, haploinsufficiency results in the early onset of nonfibrotic hypertrophic cardiac remodeling and dysfunction, independently from valvular abnormalities. MFS heart is vulnerable to stress-induced cardiac dilatation in the face of valvular regurgitation, and stress-activated MAPK signals represent a potential target for cardiac management in MFS.

  9. Exploring environmental causes of altered ras effects: fragmentation plus integration?

    Science.gov (United States)

    Porta, Miquel; Ayude, Daniel; Alguacil, Juan; Jariod, Manuel

    2003-02-01

    Mutations in ras genes are the most common abnormality of oncogenes in human cancer and a major example of activation by point mutation. Experimental and epidemiological studies support the notion that Ki-ras activation and expression may be chemically related. We discuss the potential role of several environmental compounds in the induction or promotion of ras mutations in humans, with a focus on exocrine pancreatic cancer, the human tumor with the highest prevalence at diagnosis of Ki-ras mutations. Organochlorine compounds, organic solvents, and coffee compounds may play an indirect role in causing Ki-ras mutations, rather than as direct inducers of the mutations. Although for some organochlorine compounds the induction of point mutations in ras oncogenes cannot be excluded, it seems more likely that the effects of these compounds are mediated through nongenomic or indirectly genotoxic mechanisms of action. Organic solvents also may act via enzymatic induction of ras mutagens or by providing a proliferation advantage to ras-mutated cell clones. In exocrine pancreatic cancer, caffeine, other coffee compounds, or other factors with which coffee drinking is associated could modulate Ki-ras activation by interfering with DNA repair, cell-cycle checkpoints, and apoptosis. Asbestos, cigarette smoking, and some dietary factors also may be involved in the initiation or the promotion of Ki-ras mutations in lung and colon cancers. Further development of the mechanistic scenarios proposed here could contribute to a meaningful integration of biological, clinical, and environmental knowledge on the causes of altered ras effects. Copyright 2003 Wiley-Liss, Inc.

  10. High Intra- and Inter-Tumoral Heterogeneity of RAS Mutations in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Marion Jeantet

    2016-12-01

    Full Text Available Approximately 30% of patients with wild type RAS metastatic colorectal cancer are non-responders to anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs, possibly due to undetected tumoral subclones harboring RAS mutations. The aim of this study was to analyze the distribution of RAS mutations in different areas of the primary tumor, metastatic lymph nodes and distant metastasis. A retrospective cohort of 18 patients with a colorectal cancer (CRC was included in the study. Multiregion analysis was performed in 60 spatially separated tumor areas according to the pathological tumor node metastasis (pTNM staging and KRAS, NRAS and BRAF mutations were tested using pyrosequencing. In primary tumors, intra-tumoral heterogeneity for RAS mutation was found in 33% of cases. Inter-tumoral heterogeneity for RAS mutation between primary tumors and metastatic lymph nodes or distant metastasis was found in 36% of cases. Moreover, 28% of tumors had multiple RAS mutated subclones in the same tumor. A high proportion of CRCs presented intra- and/or inter-tumoral heterogeneity, which has relevant clinical implications for anti-EGFR mAbs prescription. These results suggest the need for multiple RAS testing in different parts of the same tumor and/or more sensitive techniques.

  11. Evolution and Diversity of the Ras Superfamily of Small GTPases in Prokaryotes

    Science.gov (United States)

    Wuichet, Kristin; Søgaard-Andersen, Lotte

    2015-01-01

    The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases. PMID:25480683

  12. Relationship of body weight parameters with the incidence of common spontaneous tumors in Tg.rasH2 mice.

    Science.gov (United States)

    Paranjpe, Madhav G; Denton, Melissa D; Vidmar, Tom J; Elbekai, Reem H

    2014-10-01

    The mechanistic relationship between increased food consumption, increased body weights, and increased incidence of tumors has been well established in 2-year rodent models. Body weight parameters such as initial body weights, terminal body weights, food consumption, and the body weight gains in grams and percentages were analyzed to determine whether such relationship exists between these parameters with the incidence of common spontaneous tumors in Tg.rasH2 mice. None of these body weight parameters had any statistically significant relationship with the incidence of common spontaneous tumors in Tg.rasH2 males, namely lung tumors, splenic hemangiosarcomas, nonsplenic hemangiosarcomas, combined incidence of all hemangiosarcomas, and Harderian gland tumors. These parameters also did not have any statistically significant relationship with the incidence of lung and Harderian gland tumors in females. However, in females, increased initial body weights did have a statistically significant relationship with the nonsplenic hemangiosarcomas, and increased terminal body weights did have a statistically significant relationship with the incidence of splenic hemangiosarcomas, nonsplenic hemangiosarcomas, and the combined incidence of all hemangiosarcomas. In addition, increased body weight gains in grams and percentages had a statistically significant relationship with the combined incidence of all hemangiosarcomas in females, but not separately with splenic and nonsplenic hemangiosarcomas. © 2013 by The Author(s).

  13. c-Ha-ras BamHI RFLP in human urothelial tumors and point mutations in hot codons

    International Nuclear Information System (INIS)

    Weismanova, E; Skovraga, M.; Kaluz, S.

    1993-01-01

    High-molecular weights DNAs from 30 bladder and renal cell carcinomas (RCC) were isolated and the c-Ha-ras the c-Ha-ras gene BamHI RFLP was examined. Amplification of c-Ha-ras with normal localization with regard to the size of alleles was found only in the case. One of the normally localized c-Ha-ras allele termed RCC c-H-ras of a length of about 6.6 kbp was cloned and an oncogene-activating point mutation was identified using two restriction enzymes. After comparison of CfrI and Cfr10I cleavage maps of RCC c-Ha-ras to complete nucleotide sequences of EJ/T24 c-Ha-ras oncogene and its normal counterpart, a point mutation was identified within codon 11 or 12. The use of CfrI and Cfr10I is of value for clinical practice in identification of point mutations in c-Ha-ras PCR product in neoplasia accompanied by somatic mutation of c-Ha-ras. The correlation among c-Ha-ras allele, amplification/loss, presence of point mutation and progression of neoplasia is discussed. (author)

  14. Gain-of-function HCN2 variants in genetic epilepsy.

    Science.gov (United States)

    Li, Melody; Maljevic, Snezana; Phillips, A Marie; Petrovski, Slave; Hildebrand, Michael S; Burgess, Rosemary; Mount, Therese; Zara, Federico; Striano, Pasquale; Schubert, Julian; Thiele, Holger; Nürnberg, Peter; Wong, Michael; Weisenberg, Judith L; Thio, Liu Lin; Lerche, Holger; Scheffer, Ingrid E; Berkovic, Samuel F; Petrou, Steven; Reid, Christopher A

    2018-02-01

    Genetic generalized epilepsy (GGE) is a common epilepsy syndrome that encompasses seizure disorders characterized by spike-and-wave discharges (SWDs). Pacemaker hyperpolarization-activated cyclic nucleotide-gated channels (HCN) are considered integral to SWD genesis, making them an ideal gene candidate for GGE. We identified HCN2 missense variants from a large cohort of 585 GGE patients, recruited by the Epilepsy Phenome-Genome Project (EPGP), and performed functional analysis using two-electrode voltage clamp recordings from Xenopus oocytes. The p.S632W variant was identified in a patient with idiopathic photosensitive occipital epilepsy and segregated in the family. This variant was also independently identified in an unrelated patient with childhood absence seizures from a European cohort of 238 familial GGE cases. The p.V246M variant was identified in a patient with photo-sensitive GGE and his father diagnosed with juvenile myoclonic epilepsy. Functional studies revealed that both p.S632W and p.V246M had an identical functional impact including a depolarizing shift in the voltage dependence of activation that is consistent with a gain-of-function. In contrast, no biophysical changes resulted from the introduction of common population variants, p.E280K and p.A705T, and the p.R756C variant from EPGP that did not segregate with disease. Our data suggest that HCN2 variants can confer susceptibility to GGE via a gain-of-function mechanism. © 2017 Wiley Periodicals, Inc.

  15. RAS/ERK modulates TGFbeta-regulated PTEN expression in human pancreatic adenocarcinoma cells.

    Science.gov (United States)

    Chow, Jimmy Y C; Quach, Khai T; Cabrera, Betty L; Cabral, Jennifer A; Beck, Stayce E; Carethers, John M

    2007-11-01

    Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is rarely mutated in pancreatic cancers, but its regulation by transforming growth factor (TGF)-beta might mediate growth suppression and other oncogenic actions. Here, we examined the role of TGFbeta and the effects of oncogenic K-RAS/ERK upon PTEN expression in the absence of SMAD4. We utilized two SMAD4-null pancreatic cell lines, CAPAN-1 (K-RAS mutant) and BxPc-3 (WT-K-RAS), both of which express TGFbeta surface receptors. Cells were treated with TGFbeta1 and separated into cytosolic/nuclear fractions for western blotting with phospho-SMAD2, SMAD 2, 4 phospho-ATP-dependent tyrosine kinases (Akt), Akt and PTEN antibodies. PTEN mRNA levels were assessed by reverse transcriptase-polymerase chain reaction. The MEK1 inhibitor, PD98059, was used to block the downstream action of oncogenic K-RAS/ERK, as was a dominant-negative (DN) K-RAS construct. TGFbeta increased phospho-SMAD2 in both cytosolic and nuclear fractions. PD98059 treatment further increased phospho-SMAD2 in the nucleus of both pancreatic cell lines, and DN-K-RAS further improved SMAD translocation in K-RAS mutant CAPAN cells. TGFbeta treatment significantly suppressed PTEN protein levels concomitant with activation of Akt by 48 h through transcriptional reduction of PTEN mRNA that was evident by 6 h. TGFbeta-induced PTEN suppression was reversed by PD98059 and DN-K-RAS compared with treatments without TGFbeta. TGFbeta-induced PTEN expression was inversely related to cellular proliferation. Thus, oncogenic K-RAS/ERK in pancreatic adenocarcinoma facilitates TGFbeta-induced transcriptional down-regulation of the tumor suppressor PTEN in a SMAD4-independent manner and could constitute a signaling switch mechanism from growth suppression to growth promotion in pancreatic cancers.

  16. Concomitant BCORL1 and BRAF Mutations in Vemurafenib-Resistant Melanoma Cells.

    Science.gov (United States)

    Mologni, Luca; Costanza, Mariantonia; Sharma, Geeta Geeta; Viltadi, Michela; Massimino, Luca; Citterio, Stefania; Purgante, Stefania; Raman, Hima; Pirola, Alessandra; Zucchetti, Massimo; Piazza, Rocco; Gambacorti-Passerini, Carlo

    2018-05-01

    BRAF is the most frequently mutated gene in melanoma. Constitutive activation of mutant BRAF V600E leads to aberrant Ras-independent MAPK signaling and cell transformation. Inhibition of mutant BRAF is a current frontline therapy for such cases, with improved survival compared with chemotherapy. Unfortunately, reactivation of MAPK signaling by several mechanisms has been shown to cause drug resistance and disease recurrence. In this work, we describe the co-occurrence of an in-frame deletion within an amplified BRAF V600E locus and a missense point mutation of the transcriptional repressor BCORL1 in vemurafenib-resistant A375 melanoma cells. Functional data confirmed that truncated p47BRAF V600E and mutant BCORL1 Q1076H both contribute to resistance. Interestingly, either endogenous BCORL1 silencing or ectopic BCORL1 Q1076H expression mimicked the effects of a CRISPR/Cas9-edited BCORL1 Q1076H locus, suggesting a complex mixture of loss- and gain-of-function effects caused by the mutation. Transcriptomic data confirmed this hypothesis. Finally, we show that the pan-RAF inhibitor sorafenib is not affected by expression of BRAF deletion variant and effectively synergizes with vemurafenib to block resistant cells, suggesting a possible intervention for this class of mutants. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo.

    Science.gov (United States)

    Kabashi, Edor; Lin, Li; Tradewell, Miranda L; Dion, Patrick A; Bercier, Valérie; Bourgouin, Patrick; Rochefort, Daniel; Bel Hadj, Samar; Durham, Heather D; Vande Velde, Christine; Rouleau, Guy A; Drapeau, Pierre

    2010-02-15

    TDP-43 has been found in inclusion bodies of multiple neurological disorders, including amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson's disease and Alzheimer's disease. Mutations in the TDP-43 encoding gene, TARDBP, have been subsequently reported in sporadic and familial ALS patients. In order to investigate the pathogenic nature of these mutants, the effects of three consistently reported TARDBP mutations (A315T, G348C and A382T) were tested in cell lines, primary cultured motor neurons and living zebrafish embryos. Each of the three mutants and wild-type (WT) human TDP-43 localized to nuclei when expressed in COS1 and Neuro2A cells by transient transfection. However, when expressed in motor neurons from dissociated spinal cord cultures these mutant TARDBP alleles, but less so for WT TARDBP, were neurotoxic, concomitant with perinuclear localization and aggregation of TDP-43. Finally, overexpression of mutant, but less so of WT, human TARDBP caused a motor phenotype in zebrafish (Danio rerio) embryos consisting of shorter motor neuronal axons, premature and excessive branching as well as swimming deficits. Interestingly, knock-down of zebrafisfh tardbp led to a similar phenotype, which was rescued by co-expressing WT but not mutant human TARDBP. Together these approaches showed that TARDBP mutations cause motor neuron defects and toxicity, suggesting that both a toxic gain of function as well as a novel loss of function may be involved in the molecular mechanism by which mutant TDP-43 contributes to disease pathogenesis.

  18. Apical accumulation of the Sevenless receptor tyrosine kinase during Drosophila eye development is promoted by the small GTPase Rap1.

    Science.gov (United States)

    Baril, Caroline; Lefrançois, Martin; Sahmi, Malha; Knævelsrud, Helene; Therrien, Marc

    2014-08-01

    The Ras/MAPK-signaling pathway plays pivotal roles during development of metazoans by controlling cell proliferation and cell differentiation elicited, in several instances, by receptor tyrosine kinases (RTKs). While the internal mechanism of RTK-driven Ras/MAPK signaling is well understood, far less is known regarding its interplay with other co-required signaling events involved in developmental decisions. In a genetic screen designed to identify new regulators of RTK/Ras/MAPK signaling during Drosophila eye development, we identified the small GTPase Rap1, PDZ-GEF, and Canoe as components contributing to Ras/MAPK-mediated R7 cell differentiation. Rap1 signaling has recently been found to participate in assembling cadherin-based adherens junctions in various fly epithelial tissues. Here, we show that Rap1 activity is required for the integrity of the apical domains of developing photoreceptor cells and that reduced Rap1 signaling hampers the apical accumulation of the Sevenless RTK in presumptive R7 cells. It thus appears that, in addition to its role in cell-cell adhesion, Rap1 signaling controls the partitioning of the epithelial cell membrane, which in turn influences signaling events that rely on apico-basal cell polarity. Copyright © 2014 by the Genetics Society of America.

  19. The Role of MAPK Modules and ABA during Abiotic Stress Signaling

    KAUST Repository

    Zélicourt, Axel de

    2016-05-01

    To respond to abiotic stresses, plants have developed specific mechanisms that allow them to rapidly perceive and respond to environmental changes. The phytohormone abscisic acid (ABA) was shown to be a pivotal regulator of abiotic stress responses in plants, triggering major changes in plant physiology. The ABA core signaling pathway largely relies on the activation of SnRK2 kinases to mediate several rapid responses, including gene regulation, stomatal closure, and plant growth modulation. Mitogen-activated protein kinases (MAPKs) have also been implicated in ABA signaling, but an entire ABA-activated MAPK module was uncovered only recently. In this review, we discuss the evidence for a role of MAPK modules in the context of different plant ABA signaling pathways. Abiotic stresses impact average yield in agriculture by more than 50% globally.Since ABA is a key regulator of abiotic stress responses, an understanding of its functioning at the molecular level is essential for plant breeding. Although the ABA core signaling pathway has been unraveled, several downstream events are still unclear.MAPKs are involved in most plant developmental stages and in response to stresses. Several members of the MAPK family were shown to be directly or indirectly activated by the ABA core signaling pathway.Recent evidence shows that the complete MAP3K17/18-MKK3-MPK1/2/7/14 module is under the control of ABA, whose members are under the transcriptional and post-translational control of the ABA core signaling pathway. © 2016 Elsevier Ltd.

  20. Characterization of a human MSX-2 cDNA and its fragment isolated as a transformation suppressor gene against v-Ki-ras oncogene.

    Science.gov (United States)

    Takahashi, C; Akiyama, N; Matsuzaki, T; Takai, S; Kitayama, H; Noda, M

    1996-05-16

    A cDNA (termed CT124) encoding a carboxyl-terminal fragment of the human homeobox protein MSX-2 was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in NIH3T3 cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a near full-length human MSX-2 cDNA and tested its activities in two cell systems, i.e. fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated CT124 cDNA interfered with the transforming activities of v-Ki-ras oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and CT124 was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that CT124 may act as a dominant suppressor of MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  1. Deregulated MAPK activity prevents adipocyte differentiation of fibroblasts lacking the retinoblastoma protein

    DEFF Research Database (Denmark)

    Hansen, Jacob B; Petersen, Rasmus K; Jørgensen, Claus

    2002-01-01

    A functional retinoblastoma protein (pRB) is required for adipose conversion of preadipocyte cell lines and primary mouse embryo fibroblasts (MEFs) in response to treatment with standard adipogenic inducers. Interestingly, lack of functional pRB in MEFs was recently linked to elevated Ras activity...

  2. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Li, Yunzhou; Qin, Lei; Zhao, Jingjing; Muhammad, Tayeb; Cao, Hehe; Li, Hailiang; Zhang, Yan; Liang, Yan

    2017-01-01

    Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.

  3. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Yunzhou Li

    Full Text Available Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3 in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L. infected with tomato yellow leaf curl virus (TYLCV. There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA and jasmonic acid (JA defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD, peroxidase (POD, catalase (CAT, and ascorbate peroxidase (APX activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.

  4. Differential roles of MAPK-Erk1/2 and MAPK-p38 in insulin or insulin-like growth factor-I (IGF-I) signaling pathways for progesterone production in human ovarian cells.

    Science.gov (United States)

    Seto-Young, D; Avtanski, D; Varadinova, M; Park, A; Suwandhi, P; Leiser, A; Parikh, G; Poretsky, L

    2011-06-01

    Insulin and insulin like-growth factor-I (IGF-I) participate in the regulation of ovarian steroidogenesis. In insulin resistant states ovaries remain sensitive to insulin because insulin can activate alternative signaling pathways, such as phosphatidylinositol-3-kinase (PI-3 kinase) and mitogen-activated protein-kinase (MAPK) pathways, as well as insulin receptors and type 1 IGF receptors. We investigated the roles of MAPK-Erk1/2 and MAPK-p38 in insulin and IGF-I signaling pathways for progesterone production in human ovarian cells. Human ovarian cells were cultured in tissue culture medium in the presence of varying concentrations of insulin or IGF-I, with or without PD98059, a specific MAPK-Erk1/2 inhibitor, with or without SB203580, a specific MAPK-p38 inhibitor or with or without a specific PI-3-kinase inhibitor LY294002. Progesterone concentrations were measured using radioimmunoassay. PD98059 alone stimulated progesterone production in a dose-dependent manner by up to 65% (pprogesterone production by 13-18% (pprogesterone production by 17-20% (pprogesterone production by 20-30% (pprogesterone production by 40-60% (pprogesterone synthesis while SB203580 abolished insulin-induced progesterone production. Either PD98059 or SB203580 abolished IGF-I-induced progesterone production. Both MAPK-Erk1/2 and MAPK-p38 participate in IGF-I-induced signaling pathways for progesterone production, while insulin-induced progesterone production requires MAPK-p38, but not MAPK-Erk1/2. These studies provide further evidence for divergence of insulin and IGF-I signaling pathways for human ovarian cell steroidogenesis. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions

    Directory of Open Access Journals (Sweden)

    Salvadore Christopher

    2004-09-01

    Full Text Available Abstract Background The mitogen-activated protein kinases (MAPKs have been shown to participate in a wide array of cellular functions. A role for some MAPKs (e.g., extracellular signal-regulated kinase, Erk1/2 has been documented in response to certain physiological stimuli, such as ischemia, visceral pain and electroconvulsive shock. We recently demonstrated that restraint stress activates the Erk MAPK pathway, but not c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK or p38MAPK, in several rat brain regions. In the present study, we investigated the effects of a different stressor, acute forced swim stress, on the phosphorylation (P state of these MAPKs in the hippocampus, neocortex, prefrontal cortex, amygdala and striatum. In addition, effects on the phosphorylation state of the upstream activators of the MAPKs, their respective MAPK kinases (MAPKKs; P-MEK1/2, P-MKK4 and P-MKK3/6, were determined. Finally, because the Erk pathway can activate c-AMP response element (CRE binding (CREB protein, and swim stress has recently been reported to enhance CREB phosphorylation, changes in P-CREB were also examined. Results A single 15 min session of forced swimming increased P-Erk2 levels 2–3-fold in the neocortex, prefrontal cortex and striatum, but not in the hippocampus or amygdala. P-JNK levels (P-JNK1 and/or P-JNK2/3 were increased in all brain regions about 2–5-fold, whereas P-p38MAPK levels remained essentially unchanged. Surprisingly, levels of the phosphorylated MAPKKs, P-MEK1/2 and P-MKK4 (activators of the Erk and JNK pathways, respectively were increased in all five brain regions, and much more dramatically (P-MEK1/2, 4.5 to > 100-fold; P-MKK4, 12 to ~300-fold. Consistent with the lack of forced swim on phosphorylation of p38MAPK, there appeared to be no change in levels of its activator, P-MKK3/6. P-CREB was increased in all but cortical (prefrontal, neocortex areas. Conclusions Swim stress specifically and markedly

  6. Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype

    Science.gov (United States)

    Martinelli, Simone; De Luca, Alessandro; Stellacci, Emilia; Rossi, Cesare; Checquolo, Saula; Lepri, Francesca; Caputo, Viviana; Silvano, Marianna; Buscherini, Francesco; Consoli, Federica; Ferrara, Grazia; Digilio, Maria C.; Cavaliere, Maria L.; van Hagen, Johanna M.; Zampino, Giuseppe; van der Burgt, Ineke; Ferrero, Giovanni B.; Mazzanti, Laura; Screpanti, Isabella; Yntema, Helger G.; Nillesen, Willy M.; Savarirayan, Ravi; Zenker, Martin; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco

    2010-01-01

    RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies. PMID:20619386

  7. Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas

    Directory of Open Access Journals (Sweden)

    Gregory P. Way

    2018-04-01

    Full Text Available Summary: Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these “hidden responders” may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders. : Way et al. develop a machine-learning approach using PanCanAtlas data to detect Ras activation in cancer. Integrating mutation, copy number, and expression data, the authors show that their method detects Ras-activating variants in tumors and sensitivity to MEK inhibitors in cell lines. Keywords: Gene expression, machine learning, Ras, NF1, KRAS, NRAS, HRAS, pan-cancer, TCGA, drug sensitivity

  8. MAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions.

    Science.gov (United States)

    Park, Sang Mee; Park, Hae Ryoun; Lee, Ji Hye

    2017-02-01

    Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled , a Drosophila homolog of human mitogen-activated protein kinase 3 ( MAPK3 ) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gα q , and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93 . In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2 , Gα q , and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.

  9. Impact of Emergent Circulating Tumor DNA RAS Mutation in Panitumumab-Treated Chemoresistant Metastatic Colorectal Cancer.

    Science.gov (United States)

    Kim, Tae Won; Peeters, Marc; Thomas, Anne L; Gibbs, Peter; Hool, Kristina; Zhang, Jianqi; Ang, Agnes; Bach, Bruce Allen; Price, Timothy

    2018-06-13

    The accumulation of emergent RAS mutations during anti-epidermal growth factor receptor (EGFR) therapy is of interest as a mechanism for acquired resistance to anti-EGFR treatment. Plasma analysis of circulating tumor (ct) DNA is a minimally invasive and highly sensitive method to determine RAS mutational status. This biomarker analysis of the global phase III ASPECCT study used next-generation sequencing to detect expanded RAS ctDNA mutations in panitumumab-treated patients. Plasma samples collected at baseline and posttreatment were analyzed categorically for the presence of RAS mutations by the Plasma Select -R™ 64-gene panel at 0.1% sensitivity. Among panitumumab-treated patients with evaluable plasma samples at baseline (n = 238), 188 (79%) were wild-type (WT) RAS, and 50 (21%) were mutant RAS Of the 188 patients with baseline ctDNA WT RAS status, 164 had evaluable posttreatment results with a 32% rate of emergent RAS mutations. The median overall survival (OS) for WT and RAS mutant status by ctDNA at baseline was 13.7 (95% confidence interval: 11.5-15.4) and 7.9 months (6.4-9.6), respectively ( P < 0.0001). Clinical outcomes were not significantly different between patients with and without emergent ctDNA RAS mutations. Although patients with baseline ctDNA RAS mutations had worse outcomes than patients who were WT RAS before initiating treatment, emergent ctDNA RAS mutations were not associated with less favorable patient outcomes in panitumumab-treated patients. Further research is needed to determine a clinically relevant threshold for baseline and emergent ctDNA RAS mutations. Copyright ©2018, American Association for Cancer Research.

  10. Stress activated MAPKs in plants

    NARCIS (Netherlands)

    Ligterink, J.W.

    2000-01-01

    Plants are exposed to a wide variety of extracellular stimuli and employ a broad set of signaling pathways to give the appropriate response. M itogen a ctivated p rotein k inases (MAPKs) play an important role in

  11. Triiodothyronine promotes the proliferation of epicardial progenitor cells through the MAPK/ERK pathway

    International Nuclear Information System (INIS)

    Deng, Song-Bai; Jing, Xiao-Dong; Wei, Xiao-ming; Du, Jian-Lin; Liu, Ya-Jie; Qin, Qin; She, Qiang

    2017-01-01

    Thyroid hormone has important functions in the development and physiological function of the heart. The aim of this study was to determine whether 3,5,3′-Triiodothyronine (T3) can promote the proliferation of epicardial progenitor cells (EPCs) and to investigate the potential underlying mechanism. Our results showed that T3 significantly promoted the proliferation of EPCs in a concentration- and time-dependent manner. The thyroid hormone nuclear receptor inhibitor bisphenol A (100 μmol/L) did not affect T3's ability to induce proliferation. Further studies showed that the mRNA expression levels of mitogen-activated protein kinase 1 (MAPK1), MAPK3, and Ki67 in EPCs in the T3 group (10 nmol/L) increased 2.9-, 3-, and 4.1-fold, respectively, compared with those in the control group (P < 0.05). In addition, the mRNA expression of the cell cycle protein cyclin D1 in the T3 group increased approximately 2-fold compared with the control group (P < 0.05), and there were more EPCs in the S phase of the cell cycle (20.6% vs. 12.0%, P < 0.05). The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway inhibitor U0126 (10 μmol/L) significantly inhibited the ability of T3 to promote the proliferation of EPCs and to alter cell cycle progression. This study suggested that T3 significantly promotes the proliferation of EPCs, and this effect may be achieved through activation of the MAPK/ERK signaling pathway. - Highlights: • Epicardial progenitor cells were successfully cultured from E12.5 mice. • Thyroid hormone T3 significantly promoted the proliferation of EPCs. • This biological effect may be mediated via activation of the MAPK/ERK pathway.

  12. EMT-induced stemness and tumorigenicity are fueled by the EGFR/Ras pathway.

    Directory of Open Access Journals (Sweden)

    Dominic Chih-Cheng Voon

    Full Text Available Recent studies have revealed that differentiated epithelial cells would acquire stem cell-like and tumorigenic properties following an Epithelial-Mesenchymal Transition (EMT. However, the signaling pathways that participate in this novel mechanism of tumorigenesis have not been fully characterized. In Runx3 (-/- p53 (-/- murine gastric epithelial (GIF-14 cells, EMT-induced plasticity is reflected in the expression of the embryonal proto-oncogene Hmga2 and Lgr5, an exclusive gastrointestinal stem cell marker. Here, we report the concurrent activation of an EGFR/Ras gene expression signature during TGF-β1-induced EMT in GIF-14 cells. Amongst the altered genes was the induction of Egfr, which corresponded with a delayed sensitization to EGF treatment in GIF-14. Co-treatment with TGF-β1 and EGF or the expression of exogenous KRas led to increased Hmga2 or Lgr5 expression, sphere initiation and colony formation in soft agar assay. Interestingly, the gain in cellular plasticity/tumorigenicity was not accompanied by increased EMT. This uncoupling of EMT and the induction of plasticity reveals an involvement of distinct signaling cues, whereby the EGFR/Ras pathway specifically promotes stemness and tumorigenicity in EMT-altered GIF-14 cells. These data show that the EGFR/Ras pathway requisite for the sustenance of gastric stem cells in vivo and in vitro is involved in the genesis and promotion of EMT-induced tumor-initiating cells.

  13. Exploring the gain of function contribution of AKT to mammary tumorigenesis in mouse models.

    Directory of Open Access Journals (Sweden)

    Carmen Blanco-Aparicio

    Full Text Available Elevated expression of AKT has been noted in a significant percentage of primary human breast cancers, mainly as a consequence of the PTEN/PI3K pathway deregulation. To investigate the mechanistic basis of the AKT gain of function-dependent mechanisms of breast tumorigenesis, we explored the phenotype induced by activated AKT transgenes in a quantitative manner. We generated several transgenic mice lines expressing different levels of constitutively active AKT in the mammary gland. We thoroughly analyzed the preneoplastic and neoplastic mammary lesions of these mice and correlated the process of tumorigenesis to AKT levels. Finally, we analyzed the impact that a possible senescent checkpoint might have in the tumor promotion inhibition observed, crossing these lines to mammary specific p53(R172H mutant expression, and to p27 knock-out mice. We analyzed the benign, premalignant and malignant lesions extensively by pathology and at molecular level analysing the expression of proteins involved in the PI3K/AKT pathway and in cellular senescence. Our findings revealed an increased preneoplastic phenotype depending upon AKT signaling which was not altered by p27 or p53 loss. However, p53 inactivation by R172H point mutation combined with myrAKT transgenic expression significantly increased the percentage and size of mammary carcinoma observed, but was not sufficient to promote full penetrance of the tumorigenic phenotype. Molecular analysis suggest that tumors from double myrAKT;p53(R172H mice result from acceleration of initiated p53(R172H tumors and not from bypass of AKT-induced oncogenic senescence. Our work suggests that tumors are not the consequence of the bypass of senescence in MIN. We also show that AKT-induced oncogenic senescence is dependent of pRb but not of p53. Finally, our work also suggests that the cooperation observed between mutant p53 and activated AKT is due to AKT-induced acceleration of mutant p53-induced tumors. Finally, our

  14. Noise propagation in two-step series MAPK cascade.

    Directory of Open Access Journals (Sweden)

    Venkata Dhananjaneyulu

    Full Text Available Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.

  15. Constitutively active Arabidopsis MAP Kinase 3 triggers defense responses involving salicylic acid and SUMM2 resistance protein

    KAUST Repository

    Genot, Baptiste

    2017-04-12

    Mitogen-activated protein kinases (MAPKs) are important regulators of plant immunity. Most of the knowledge about the function of these pathways is derived from loss-of-function approaches. Using a gain-of-function approach, we investigated the responses controlled by a constitutively active (CA) MPK3 in Arabidopsis thaliana. CA-MPK3 plants are dwarfed and display a massive de-repression of defense genes associated with spontaneous cell death as well as accumulation of reactive oxygen species (ROS), phytoalexins and the stress-related hormones ethylene and salicylic acid (SA). Remarkably CA-MPK3/sid2 and CA-MPK3/ein2-50 lines which are impaired in SA synthesis and ethylene signaling, respectively, retain most of the CA-MPK3-associated phenotypes, indicating that constitutive activity of MPK3 can bypass SA and ethylene signaling to activate defense responses. A comparative analysis of the molecular phenotypes of CA-MPK3 and mpk4 autoimmunity suggested convergence between the MPK3 and MPK4-guarding modules. In support of this model, CA-MPK3 crosses with summ1 and summ2, two known suppressors of mpk4, resulted in a partial reversion of the CA-MPK3 phenotypes. Overall, our data unravel a novel mechanism by which the MAPK signaling network contributes to a robust defense response system.

  16. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype

    Science.gov (United States)

    Murakami, Shunichi; Balmes, Gener; McKinney, Sandra; Zhang, Zhaoping; Givol, David; de Crombrugghe, Benoit

    2004-01-01

    We generated transgenic mice that express a constitutively active mutant of MEK1 in chondrocytes. These mice showed a dwarf phenotype similar to achondroplasia, the most common human dwarfism, caused by activating mutations in FGFR3. These mice displayed incomplete hypertrophy of chondrocytes in the growth plates and a general delay in endochondral ossification, whereas chondrocyte proliferation was unaffected. Immunohistochemical analysis of the cranial base in transgenic embryos showed reduced staining for collagen type X and persistent expression of Sox9 in chondrocytes. These observations indicate that the MAPK pathway inhibits hypertrophic differentiation of chondrocytes and negatively regulates bone growth without inhibiting chondrocyte proliferation. Expression of a constitutively active mutant of MEK1 in chondrocytes of Fgfr3-deficient mice inhibited skeletal overgrowth, strongly suggesting that regulation of bone growth by FGFR3 is mediated at least in part by the MAPK pathway. Although loss of Stat1 restored the reduced chondrocyte proliferation in mice expressing an achondroplasia mutant of Fgfr3, it did not rescue the reduced hypertrophic zone, the delay in formation of secondary ossification centers, and the achondroplasia-like phenotype. These observations suggest a model in which Fgfr3 signaling inhibits bone growth by inhibiting chondrocyte differentiation through the MAPK pathway and by inhibiting chondrocyte proliferation through Stat1. PMID:14871928

  17. GWIS: Genome-Wide Inferred Statistics for Functions of Multiple Phenotypes

    NARCIS (Netherlands)

    Nieuwboer, H.A.; Pool, R.; Dolan, C.V.; Boomsma, D.I.; Nivard, M.G.

    2016-01-01

    Here we present a method of genome-wide inferred study (GWIS) that provides an approximation of genome-wide association study (GWAS) summary statistics for a variable that is a function of phenotypes for which GWAS summary statistics, phenotypic means, and covariances are available. A GWIS can be

  18. Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)·extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1.

    Science.gov (United States)

    Mazalouskas, Matthew D; Godoy-Ruiz, Raquel; Weber, David J; Zimmer, Danna B; Honkanen, Richard E; Wadzinski, Brian E

    2014-02-14

    Serine/threonine protein phosphatase 5 (PP5, PPP5C) is known to interact with the chaperonin heat shock protein 90 (HSP90) and is involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, such as cell growth, differentiation, proliferation, motility, and apoptosis. Here, we identify PP5 in stable complexes with extracellular signal-regulated kinases (ERKs). Studies using mutant proteins reveal that the formation of PP5·ERK1 and PP5·ERK2 complexes partially depends on HSP90 binding to PP5 but does not require PP5 or ERK1/2 activity. However, PP5 and ERK activity regulates the phosphorylation state of Raf1 kinase, an upstream activator of ERK signaling. Whereas expression of constitutively active Rac1 promotes the assembly of PP5·ERK1/2 complexes, acute activation of ERK1/2 fails to influence the phosphatase-kinase interaction. Introduction of oncogenic HRas (HRas(V12)) has no effect on PP5-ERK1 binding but selectively decreases the interaction of PP5 with ERK2, in a manner that is independent of PP5 and MAPK/ERK kinase (MEK) activity, yet paradoxically requires ERK2 activity. Additional studies conducted with oncogenic variants of KRas4B reveal that KRas(L61), but not KRas(V12), also decreases the PP5-ERK2 interaction. The expression of wild type HRas or KRas proteins fails to reduce PP5-ERK2 binding, indicating that the effect is specific to HRas(V12) and KRas(L61) gain-of-function mutations. These findings reveal a novel, differential responsiveness of PP5-ERK1 and PP5-ERK2 interactions to select oncogenic Ras variants and also support a role for PP5·ERK complexes in regulating the feedback phosphorylation of PP5-associated Raf1.

  19. Tumorigenesis of K-ras mutation in human endometrial carcinoma via upregulation of estrogen receptor.

    Science.gov (United States)

    Tu, Zheng; Gui, Liming; Wang, Jianliu; Li, Xiaoping; Sun, Pengming; Wei, Lihui

    2006-05-01

    To investigate the tumorigenesis of mutant [12Asp]-K-ras in endometrial carcinoma and its relationship with ER. We constructed pcDI-[12Asp]K-ras4B by inserting full-length [12Asp]K-ras4B from human endometrial carcinoma Hec-1A cells, into pcDI vector. Cell proliferation of NIH3T3 after transfection with pcDI-[12Asp]K-ras4B was measured by MTT assay. The cell transformation was determined by colony formation and tumor nodule development. [12Asp]-K-ras4B-NIH3T3 cells were transfected with constitutively active pCMV-RafCAAX and dominant-negative pCMV-RafS621A. Cell growth was measured by MTT assay and [3H]thymidine incorporation. After transfected with pcDI-[12Asp]K-ras4B or pCMV-RafS621A, the cells were harvested for Western blot and reporter assay to determine the expression and transcriptional activity of ERalpha and ERbeta, respectively. [12Asp]-K-ras4B enhanced NIH3T3 cells proliferation after 48 h post-transfection (P ras4B-NIH3T3 cells (13.48%) than pcDI-NIH3T3 (4.26%) or untreated NIH3T3 (2.33%). The pcDI-[12Asp]-K-ras4B-NIH3T3 cells injected to the nude mice Balb/C developed tumor nodules with poor-differentiated cells after 12 days. An increase of ERalpha and ERbeta was observed in pcDI-[12Asp]-K-ras4B-NIH3T3 cells. RafS621A downregulated ERalpha and ERbeta expression. Estrogen induced the ER transcriptional activity by 5-fold in pcDI-NIH3T3 cells, 13-fold in pcDI-[12Asp]K-ras4B-NIH3T3 and 19-fold in HEC-1A. RafS621A suppressed the ER transcriptional activity. K-ras mutation induces tumorigenesis in endometrium, and this malignant transformation involves Raf signaling pathway and ER.

  20. MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Julija Umbrasaite

    2010-12-01

    Full Text Available In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells.

  1. Novel determinants of H-Ras plasma membrane localization and transformation

    DEFF Research Database (Denmark)

    Willumsen, B M; Cox, A D; Solski, P A

    1996-01-01

    cysteine did not abolish palmitoylation. However, despite continued lipid modification the mutant proteins failed to bind to plasma membranes and instead accumulated on internal membranes and, importantly, were not transforming. Addition of an N-terminal myristoylation signal to these defective mutants......, or to proteins entirely lacking the C-terminal 25 residues restored both plasma membrane association and transforming activity. Thus, H-Ras does not absolutely require prenylation or palmitoylation nor indeed its hypervariable domain in order to interact with effectors that ultimately cause transformation....... However, in this native state, the C-terminus appears to provide a combination of lipids and a previously unrecognized signal for specific plasma membrane targeting that are essential for the correct localization and biological function of H-Ras....

  2. Coordinating ERK signaling via the molecular scaffold Kinase Suppressor of Ras [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Danielle Frodyma

    2017-08-01

    Full Text Available Many cancers, including those of the colon, lung, and pancreas, depend upon the signaling pathways induced by mutated and constitutively active Ras. The molecular scaffolds Kinase Suppressor of Ras 1 and 2 (KSR1 and KSR2 play potent roles in promoting Ras-mediated signaling through the Raf/MEK/ERK kinase cascade. Here we summarize the canonical role of KSR in cells, including its central role as a scaffold protein for the Raf/MEK/ERK kinase cascade, its regulation of various cellular pathways mediated through different binding partners, and the phenotypic consequences of KSR1 or KSR2 genetic inactivation. Mammalian KSR proteins have a demonstrated role in cellular and organismal energy balance with implications for cancer and obesity. Targeting KSR1 in cancer using small molecule inhibitors has potential for therapy with reduced toxicity to the patient. RNAi and small molecule screens using KSR1 as a reference standard have the potential to expose and target vulnerabilities in cancer. Interestingly, although KSR1 and KSR2 are similar in structure, KSR2 has a distinct physiological role in regulating energy balance. Although KSR proteins have been studied for two decades, additional analysis is required to elucidate both the regulation of these molecular scaffolds and their potent effect on the spatial and temporal control of ERK activation in health and disease.

  3. Estrogen Enhances Matrix Synthesis in Nucleus Pulposus Cell through the Estrogen Receptor β-p38 MAPK Pathway

    Directory of Open Access Journals (Sweden)

    Pei Li

    2016-11-01

    Full Text Available Background/Aims: Matrix homeostasis within the disc nucleus pulposus (NP tissue is important for disc function. Increasing evidence indicates that sex hormone can influence the severity of disc degeneration. This study was aimed to study the role of 17β-estradiol (E2 in NP matrix synthesis and its underlying mechanism. Methods: Rat NP cells were cultured with (10-5, 10-7 and 10-9 M or without (control E2 for48 hours. The estrogen receptor (ER-β antagonist PHTPP and ERβ agonist ERB 041 were used to investigate the role mediated by ERβ. The p38 MAPK inhibitor SB203580 was used to investigate the role of p38 MAPK signaling pathway. Gene and protein expression of SOX9, aggrecan and collagen II, glycosaminoglycan (GAG content, and immunostaining assay for aggrecan and collagen II were analyzed to evaluate matrix production in rat NP cells. Results: E2 enhanced NP matrix synthesis in a concentration-dependent manner regarding gene and proetin expression of SOX9, aggrecan and collagen II, protein deposition of aggrecan and collagen II, and GAG content. Moreover, activation of p38 MAPK signaling pathway was increased with elevating E2 concentration. Further analysis indicated that ERB 041 and PHTPP could respectively enhance and suppress effects of E2 on matrix synthesis in NP cells, as well as activation of p38 MAPK pathway. Additionally, inhibition of p38 MAPK signaling pathway significantly abolished the effects of E2 on matrix synthesis. Conclusion: E2 can enhance matrix synthesis of NP cells and the ERβ/p38 MAPK pathway is involved in this regulatory process.

  4. 17β-estradiol rapidly activates calcium release from intracellular stores via the GPR30 pathway and MAPK phosphorylation in osteocyte-like MLO-Y4 cells

    KAUST Repository

    Ren, Jian

    2012-03-06

    Estrogen regulates critical cellular functions, and its deficiency initiates bone turnover and the development of bone mass loss in menopausal females. Recent studies have demonstrated that 17β-estradiol (E 2) induces rapid non-genomic responses that activate downstream signaling molecules, thus providing a new perspective to understand the relationship between estrogen and bone metabolism. In this study, we investigated rapid estrogen responses, including calcium release and MAPK phosphorylation, in osteocyte-like MLO-Y4 cells. E 2 elevated [Ca 2+] i and increased Ca 2+ oscillation frequency in a dose-dependent manner. Immunolabeling confirmed the expression of three estrogen receptors (ERα, ERβ, and G protein-coupled receptor 30 [GPR30]) in MLO-Y4 cells and localized GPR30 predominantly to the plasma membrane. E 2 mobilized calcium from intracellular stores, and the use of selective agonist(s) for each ER showed that this was mediated mainly through the GPR30 pathway. MAPK phosphorylation increased in a biphasic manner, with peaks occurring after 7 and 60 min. GPR30 and classical ERs showed different temporal effects on MAPK phosphorylation and contributed to MAPK phosphorylation sequentially. ICI182,780 inhibited E 2 activation of MAPK at 7 min, while the GPR30 agonist G-1 and antagonist G-15 failed to affect MAPK phosphorylation levels. G-1-mediated MAPK phosphorylation at 60 min was prevented by prior depletion of calcium stores. Our data suggest that E 2 induces the non-genomic responses Ca 2+ release and MAPK phosphorylation to regulate osteocyte function and indicate that multiple receptors mediate rapid E 2 responses. © 2012 Springer Science+Business Media, LLC.

  5. Prenyltransferase inhibitor radiosensitization of pancreatic ductal carcinoma (PaCa) cells

    International Nuclear Information System (INIS)

    Brunner, T.B.; Hahn, S.M.; Rustgi, A.K.

    2003-01-01

    Farnesyltransferase inhibitors (FTIs) radiosensitize tumor cell lines expressing activated H-Ras. K-Ras however remains active after FTI treatment due to prenylation by geranylgeranyltransferase. Up to 90% of pancreatic carcinomas (PaCa) are mutant in K-ras. We hypothesized that combined FTI and geranylgeranyltransferase inhibitor (GGTI) treatment could radiosensitize PaCa cells. Nine human PaCa lines (7 K-ras-mutant, 2 ras-wt) and transgenic mouse pancreatic ductal cells (PDC) expressing wt-ras or mutant K-ras were tested in clonogenic assays with combined FTI-A +/- GGTI-B (Merck and Co Inc.). Inhibition of PI3- kinase (with LY294002) or inhibition of MEK1/2 (with U0126) served to assess the significance of the PI3-kinase and MAPK to radiation survival in these cells. H- and K-Ras prenylation status and changes in phosphorylation of AKT and MAPK were monitored as were changes in cell cycle distribution. FTI+GGTI treatment achieved inhibition of K-Ras prenylation in all PaCa cell lines. This treatment radiosensitized the K-ras mutant cell lines AsPC-1, Capan-2, MiaPaCa-2 and PSN-1, PancM, but not Capan-1 or the ras-wt cell lines (BxPC-3, HS766T, PDC-wt). L-778,123, a dual action inhibitor, sensitized all K-ras mutant cells. Surprisingly, PancM, Panc-1, MiaPaCa-2 and PDC K-Ras cells were radiosensitized by FTI treatment alone. R11577, another FTI without GGTI activity, also sensitized Panc-1 and MiaPaCa-2 and additionally AsPC-1 cells. Radiosensitization was also achieved after treatment with LY294002 in all PaCa lines expressing mutant-K-ras and the ras-wt line BxPC-3 overexpressing Akt2. However these lines were not sensitized by U0126. FTI+GGTI sensitize K-ras mt PaCa cell lines to radiation. PI3-kinase signaling but not MAPK signaling appears to contribute to radiation survival in PaCa cells. Radiosensitization of certain PaCa cells by FTI alone indicates that alternate pathways or farnesylated targets other than K-Ras may also be involved in radiation survival

  6. Involvement of H- and N-Ras isoforms in transforming growth factor-β1-induced proliferation and in collagen and fibronectin synthesis

    International Nuclear Information System (INIS)

    Martinez-Salgado, Carlos; Fuentes-Calvo, Isabel; Garcia-Cenador, Begona; Santos, Eugenio; Lopez-Novoa, Jose M.

    2006-01-01

    Transforming growth factor β1 (TGF-β1) has a relevant role in the origin and maintenance of glomerulosclerosis and tubule-interstitial fibrosis. TGF-β and Ras signaling pathways are closely related: TGF-β1 overcomes Ras mitogenic effects and Ras counteracts TGF-β signaling. Tubule-interstitial fibrosis is associated to increases in Ras, Erk, and Akt activation in a renal fibrosis model. We study the role of N- and H-Ras isoforms, and the involvement of the Ras effectors Erk and Akt, in TGF-β1-mediated extracellular matrix (ECM) synthesis and proliferation, using embrionary fibroblasts from double knockout (KO) mice for H- and N-Ras (H-ras -/- /N-ras -/- ) isoforms and from heterozygote mice (H-ras +/- /N-ras +/- ). ECM synthesis is increased in basal conditions in H-ras -/- /N-ras -/- fibroblasts, this increase being higher after stimulation with TGF-β1. TGF-β1-induced fibroblast proliferation is smaller in H-ras -/- /N-ras -/- than in H-ras +/- /N-ras +/- fibroblasts. Erk activation is decreased in H-ras -/- /N-ras -/- fibroblasts; inhibition of Erk activation reduces fibroblast proliferation. Akt activation is higher in double KO fibroblasts than in heterozygotes; inhibition of Akt activation also inhibits ECM synthesis. We suggest that H- and N-Ras isoforms downregulate ECM synthesis, and mediate proliferation, in part through MEK/Erk activation. PI3K-Akt pathway activation may be involved in the increase in ECM synthesis observed in the absence of H- and N-Ras

  7. Renal Development and Blood Pressure in Offspring from Dams Submitted to High-Sodium Intake during Pregnancy and Lactation

    Directory of Open Access Journals (Sweden)

    Terezila M. Coimbra

    2012-01-01

    Full Text Available Exposure to an adverse environment in utero appears to programme physiology and metabolism permanently, with long-term consequences for health of the fetus or offspring. It was observed that the offspring from dams submitted to high-sodium intake during pregnancy present disturbances in renal development and in blood pressure. These alterations were associated with lower plasma levels of angiotensin II (AII and changes in renal AII receptor I (AT1 and mitogen-activated protein kinase (MAPK expressions during post natal kidney development. Clinical and experimental evidence show that the renin-angiotensin system (RAS participates in renal development. Many effects of AII are mediated through MAPK pathways. Extracellular signal-regulated protein kinases (ERKs play a pivotal role in cellular proliferation and differentiation. In conclusion, high-sodium intake during pregnancy and lactation can provoke disturbances in renal development in offspring leading to functional and structural alterations that persist in adult life. These changes can be related at least in part with the decrease in RAS activity considering that this system has an important role in renal development.

  8. Subcellular Distribution of S-Nitrosylated H-Ras in Differentiated and Undifferentiated PC12 Cells during Hypoxia.

    Science.gov (United States)

    Barbakadze, Tamar; Goloshvili, Galina; Narmania, Nana; Zhuravliova, Elene; Mikeladze, David

    2017-10-01

    Hypoxia or exposure to excessive reactive oxygen or nitrogen species could induce S-nitrosylation of various target proteins, including GTPases of the Ras-superfamily. Under hypoxic conditions, the Ras-protein is translocated to the cytosol and interacts with the Golgi complex, endoplasmic reticulum, mitochondria. The mobility/translocation of Ras depend on the cells oxidative status. However, the importance of relocated Snitrosylated- H-Ras (NO-H-Ras) in proliferation/differentiation processes is not completely understood. We have determined the content of soluble- and membrane-bound-NO-HRas in differentiated (D) and undifferentiated (ND) rat pheochromocytoma (PC12) cells under hypoxic and normoxic conditions. In our experimental study, we analyzed NO-H-Ras levels under hypoxic/normoxic conditions in membrane and soluble fractions of ND and D PC12 cells with/without nitric oxide donor, sodium nitroprusside (SNP) treatment. Cells were analyzed by the S-nitrosylated kit, immunoprecipitation, and Western blot. We assessed the action of NO-H-Ras on oxidative metabolism of isolated mitochondria by determining mitochondrial hydrogen peroxide generation via the scopoletin oxidation method and ATPproduction as estimated by the luminometric method. Hypoxia did not influence nitrosylation of soluble H-Ras in ND PC12 cells. Under hypoxic conditions, the nitrosylation of soluble-H-Ras greatly decreased in D PC12 cells. SNP didn't change the levels of nitrosylation of soluble-H-Ras, in either hypoxic or normoxic conditions. On the other hand, hypoxia, per se, did not affect the nitrosylation of membrane-bound-H-Ras in D and ND PC12 cells. SNP-dependent nitrosylation of membrane-bound-H-Ras greatly increased in D PC12 cells. Both unmodified normal and mutated H-Ras enhanced the mitochondrial synthesis of ATP, whereas the stimulatory effects on ATP synthesis were eliminated after S-nitrosylation of H-Ras. According to the results, it may be proposed that hypoxia can decrease S

  9. Characterization of ERAS, a putative novel human oncogene, in skin and breast

    Energy Technology Data Exchange (ETDEWEB)

    Peña Avalos, B.L. de la

    2014-07-01

    Most human tumors have mutations in genes of the RAS small GTPase protein family. RAS works as a molecular switch for signaling pathways that modulate many aspects of cell behavior, including proliferation, differentiation, motility and death. Oncogenic mutations in RAS prevent GTP hydrolysis, locking RAS in a permanently active state, being the most common mutations in HRAS, KRAS and NRAS. The human RAS family consists of at least 36 different genes, many of which have been scarcely studied. One of these relatively unknown genes is ERAS (ES cell-expressed RAS), which is a constitutively active RAS protein, localized in chromosome X and expressed only in embryonic cells, being undetectable in adult tissues. New high throughput technologies have made it possible to screen complete cancer genomes for identification of mutations associated to cancer. Using the Sleeping Beauty (SB) transposon system, ERAS was identified as a putative novel oncogene in non-melanoma skin and breast cancers. The major aim of this project is to determine the general characteristics of ERAS as a putative novel human oncogene in skin and breast cells. Forced expression of ERAS results in drastic changes in cell shape, proliferation and motility. When ERAS is overexpressed in skin and breast human cells it is mainly localized in the cytoplasmic membrane. ERAS activates the phosphatidylinositol-3-OH kinase (PI3K) pathway but not the mitogen-activated protein kinase (MAPK) pathway. ERAS-expressing cells suffer spontaneous morphologic and phenotypic EMT-like changes, including cytoskeleton reorganization, vimentin and N-cadherin up-regulation and down-regulation of E-cadherin, which can be associated with increased malignancy, and invasive and metastatic potential. Our results suggest that inappropriate expression of ERAS lead to transformation of human cells. (Author)

  10. Phenotypic stability and genetic gains in six-year girth growth of Hevea clones

    Directory of Open Access Journals (Sweden)

    Paulo de Souza Gonçalves

    1999-07-01

    Full Text Available Rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss. Müell. Arg.] budgrafts of seven clones were evaluated on five contrasting sites in the plateau region of the São Paulo State, Brazil. The objective of this work was to study the phenotypic stability for girth growth. The experimental design was a randomized block design with three replications and seven treatments. Analysis of variance of girth at six-year plant growth indicated a highly significant clone x site interaction. Only linear sites and clone x site components of clone x year interaction were significant, indicating that the performance of clones over sites for this trait could be predicted. The clones GT 1 and PB 235 showed the greatest stability in relation to girth growth, with foreseen responses to change, introduced in the sites. The clones PB 235 and IAN 873 showed significative difference in relation to regression coefficient, representing clones with specific adaptability on favorable and unfavorable sites respectively. The clone GT 1 became the most promissory one in the study of stability and adaptability even showing low girth growth. Expected genetic gains from planting sites, along with estimates of clonal variance and repeatability of clonal means are generally greatest or close to the greatest when selection is done at the same site.

  11. Identification of novel X-linked gain-of-function RPGR-ORF15 mutation in Italian family with retinitis pigmentosa and pathologic myopia

    Science.gov (United States)

    Parmeggiani, Francesco; Barbaro, Vanessa; De Nadai, Katia; Lavezzo, Enrico; Toppo, Stefano; Chizzolini, Marzio; Palù, Giorgio; Parolin, Cristina; Di Iorio, Enzo

    2016-01-01

    The aim of this study was to describe a new pathogenic variant in the mutational hot spot exon ORF15 of retinitis pigmentosa GTPase regulator (RPGR) gene within an Italian family with X-linked retinitis pigmentosa (RP), detailing its distinctive genotype-phenotype correlation with pathologic myopia (PM). All members of this RP-PM family underwent a complete ophthalmic examination. The entire open reading frames of RPGR and retinitis pigmentosa 2 genes were analyzed by Sanger sequencing. A novel frame-shift mutation in exon ORF15 of RPGR gene (c.2091_2092insA; p.A697fs) was identified as hemizygous variant in the male proband with RP, and as heterozygous variant in the females of this pedigree who invariably exhibited symmetrical PM in both eyes. The c.2091_2092insA mutation coherently co-segregated with the observed phenotypes. These findings expand the spectrum of X-linked RP variants. Interestingly, focusing on Caucasian ethnicity, just three RPGR mutations are hitherto reported in RP-PM families: one of these is located in exon ORF15, but none appears to be characterized by a high penetrance of PM trait as observed in the present, relatively small, pedigree. The geno-phenotypic attributes of this heterozygosity suggest that gain-of-function mechanism could give rise to PM via a degenerative cell-cell remodeling of the retinal structures. PMID:27995965

  12. [Expressions of Ras and Sos1 in epithelial ovarian cancer tissues and their clinical significance].

    Science.gov (United States)

    Xiao, Zheng-Hua; Linghu, Hua; Liu, Qian-Fen

    2016-11-20

    To detect the expressions of Ras and Sos1 proteins in human epithelial ovarian cancer (EOC) tissues and explore their correlation with the clinicopathological features of the patients. The expressions of Ras and Sos1 proteins were detected immunohistochemically in 62 EOC tissues, 5 borderline ovarian cancer tissues, 15 benign epithelial ovarian neoplasm tissues, and 18 normal ovarian tissues. The EOC tissues showed significantly higher expression levels of both Ras and Sos1 than the other tissues tested (Ptissues, Ras and Sos1 proteins were expressed mostly on the cell membrane and in the cytoplasm. The expression level of Ras was correlated with pathological types of the tumor (Ptissue-specific variation of Ras expression can lend support to a specific diagnosis of ovarian serous adenocarcinoma. The association of Ras and Sos1 protein expression with the tumor-free survival time of the patients awaits further investigation with a larger sample size.

  13. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen, E-mail: nesnow.stephen@epa.gov

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  14. One-way membrane trafficking of SOS in receptor-triggered Ras activation.

    Science.gov (United States)

    Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T

    2016-09-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis.

  15. Simvastatin attenuates acrolein-induced mucin production in rats: involvement of the Ras/extracellular signal-regulated kinase pathway.

    Science.gov (United States)

    Chen, Ya-Juan; Chen, Peng; Wang, Hai-Xia; Wang, Tao; Chen, Lei; Wang, Xun; Sun, Bei-Bei; Liu, Dai-Shun; Xu, Dan; An, Jing; Wen, Fu-Qiang

    2010-06-01

    Airway mucus overproduction is a cardinal feature of airway inflammatory diseases, such as chronic obstructive pulmonary disease and cystic fibrosis. Since the small G-protein Ras is known to modulate cellular functions in the lung, we sought to investigate whether the Ras inhibitor simvastatin could attenuate acrolein-induced mucin production in rat airways. Rats were exposed to acrolein for 12 days, after first being pretreated intragastrically for 24 h with either simvastatin alone or simvastatin in combination with mevalonate, which prevents the isoprenylation needed for Ras activation. Lung tissue was analyzed for extracellular signal-regulated kinase (ERK) activity, goblet cell metaplasia and mucin production. To analyze the effect of simvastatin on mucin production in more detail, acrolein-exposed human airway epithelial NCI-H292 cells were pretreated with simvastatin alone or together with mevalonate. Culture medium was collected to detect mucin secretion, and cell lysates were examined for Ras-GTPase activity and epidermal growth factor receptor (EGFR)/ERK phosphorylation. In vivo, simvastatin treatment dose-dependently suppressed acrolein-induced goblet cell hyperplasia and metaplasia in bronchial epithelium and inhibited ERK phosphorylation in rat lung homogenates. Moreover, simvastatin inhibited Muc5AC mucin synthesis at both the mRNA and protein levels in the lung. In vitro, simvastatin pretreatment attenuated the acrolein-induced significant increase in MUC5AC mucin expression, Ras-GTPase activity and EGFR/ERK phosphorylation. These inhibitory effects of simvastatin were neutralized by mevalonate administration both in vitro and in vivo. Our results suggest that simvastatin may attenuate acrolein-induced mucin protein synthesis in the airway and airway inflammation, possibly by blocking ERK activation mediated by Ras protein isoprenylation. Thus, the evidence from the experiment suggests that human trials are warranted to determine the potential

  16. EGFR immunoexpression, RAS immunoexpression and their effects on survival in lung adenocarcinoma cases.

    Science.gov (United States)

    Gundogdu, Ahmet Gokhan; Onder, Sevgen; Firat, Pinar; Dogan, Riza

    2014-06-01

    The impacts of epidermal growth factor receptor (EGFR) immunoexpression and RAS immunoexpression on the survival and prognosis of lung adenocarcinoma patients are debated in the literature. Twenty-six patients, who underwent pulmonary resections between 2002 and 2007 in our clinic, and whose pathologic examinations yielded adenocarcinoma, were included in the study. EGFR and RAS expression levels were examined by immunohistochemical methods. The results were compared with the survival, stage of the disease, nodal involvement, lymphovascular invasion, and pleural invasion. Nonparametric bivariate analyses were used for statistical analyses. A significant link between EGFR immunoexpression and survival has been identified while RAS immunoexpression and survival have been proven to be irrelevant. Neither EGFR, nor RAS has displayed a significant link with the stage of the disease, nodal involvement, lymphovascular invasion, or pleural invasion. Positive EGFR immunoexpression affects survival negatively, while RAS immunoexpression has no effect on survival in lung adenocarcinoma patients.

  17. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence*

    Science.gov (United States)

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  18. Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells.

    Science.gov (United States)

    Vitale, Ilio; Senovilla, Laura; Galluzzi, Lorenzo; Criollo, Alfredo; Vivet, Sonia; Castedo, Maria; Kroemer, Guido

    2008-07-01

    We have previously shown that tetraploid cancer cells succumb through a p53-dependent apoptotic pathway when checkpoint kinase 1 (Chk1) is depleted by small interfering RNAs (siRNAs) or inhibited with 7-hydroxystaurosporine (UCN-01). Here, we demonstrate that Chk1 inhibition results in the activating phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Depletion of p38 MAPK by transfection with a siRNA targeting the alpha isoform of p38 MAPK (p38alpha MAPK) abolishes the phosphorylation of p53 on serines 15 and 46 that is induced by Chk1 knockdown. The siRNA-mediated downregulation and pharmacological inhibition of p38alpha MAPK (with SB 203580) also reduces cell death induced by Chk1 knockdown or UCN-01. These results underscore the role of p38 MAPK as a pro-apoptotic kinase in the p53-dependant pathway for the therapeutic elimination of polyploidy cells.

  19. Convergence of Multiple MAP3Ks on MKK3 Identifies a Set of Novel Stress MAPK Modules

    KAUST Repository

    Colcombet, Jean

    2016-12-22

    Since its first description in 1995 and functional characterization 12 years later, plant MKK3-type MAP2Ks have emerged as important integrators in plant signaling. Although they have received less attention than the canonical stress-activated mitogen-activated protein kinases (MAPKs), several recent publications shed light on their important roles in plant adaptation to environmental conditions. Nevertheless, the MKK3-related literature is complicated. This review summarizes the current knowledge and discrepancies on MKK3 MAPK modules in plants and highlights the singular role of MKK3 in green plants. In the light of the latest data, we hypothesize a general model that all clade-III MAP3Ks converge on MKK3 and C-group MAPKs, thereby defining a set of novel MAPK modules which are activated by stresses and internal signals through the transcriptional regulation of MAP3K genes.

  20. Involvement of MAPK proteins in bystander effects induced by chemicals and ionizing radiation

    International Nuclear Information System (INIS)

    Asur, Rajalakshmi; Balasubramaniam, Mamtha; Marples, Brian; Thomas, Robert A.; Tucker, James D.

    2010-01-01

    Many studies have examined bystander effects induced by ionizing radiation, however few have evaluated the ability of chemicals to induce similar effects. We previously reported the ability of two chemicals, mitomycin C (MMC) and phleomycin (PHL) to induce bystander effects in normal human lymphoblastoid cell lines. The focus of the current study was to determine the involvement of the MAPK proteins in bystander effects induced by physical and chemical DNA damaging agents and to evaluate the effects of MAPK inhibition on bystander-induced caspase 3/7 activation. The phosphorylation levels of the MAPK proteins ERK1/2, JNK, and p38, were measured from 1 to 24 h following direct or bystander exposure to MMC, PHL or radiation. We observed transient phosphorylation, at early time points, of all 3 proteins in bystander cells. We also evaluated the effect of MAPK inhibition on bystander-induced caspase 3/7 activity to determine the role of MAPK proteins in bystander-induced apoptosis. We observed bystander-induced activation of caspase 3/7 in bystander cells. Inhibition of MAPK proteins resulted in a decrease in caspase 3/7 activity at the early time points, and the caspase activity increased (in the case of ERK inhibition) or returned to basal levels (in the case of JNK or p38 inhibition) between 12 and 24 h. PHL is considered to be a radiomimetic agent, however in the present study PHL behaved more like a chemical and not like radiation in terms of MAPK phosphorylation. These results point to the involvement of MAPK proteins in the bystander effect induced by radiation and chemicals and provide additional evidence that this response is not limited to radiation but is a generalized stress response in cells.

  1. Loss of RASSF1A Expression in Colorectal Cancer and Its Association with K-ras Status

    Directory of Open Access Journals (Sweden)

    Dan Cao

    2013-01-01

    Full Text Available Background. The RAS-association domain family 1 A (RASSF1A is a classical member of RAS effectors regulating cell proliferation and apoptosis. Loss of RASSF1A expression may shift the balance towards a growth-promoting effect without the necessity of activating K-ras mutations. Its potential association with K-ras mutations in colorectal cancer (CRC is unclear. Methods. RASSF1A expression was examined in normal mucosa, adenoma, and tumor tissues of colon and rectum, respectively. We examined the association of RASSF1A expression, mutations of K-ras, and EGFR status in 76 primary CRCs. The relationship between clinicopathological characteristics and RASSF1A expression was also analyzed. Results. RASSF1A expression level decreased progressively in normal mucosa, adenoma and, tumor tissues, and the loss of RASSF1A expression occurred more frequently in tumor tissues. Of 76 primary CRCs, loss of RASSF1A expression and/or K-ras mutations were detected in 77% cases. Loss of RASSF1A expression was more frequent in K-ras wild-type than in mutation cases (63% versus 32%, . Conclusions. Our study indicates that loss of RASSF1A may be involved in pathogenesis of CRC, its expression was found predominantly in K-ras wild-type CRCs, suggesting that it may be another way of affecting RAS signaling, in addition to K-ras mutations.

  2. A Comprehensive Dataset of Genes with a Loss-of-Function Mutant Phenotype in Arabidopsis1[W][OA

    Science.gov (United States)

    Lloyd, Johnny; Meinke, David

    2012-01-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms. PMID:22247268

  3. REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Dilli Ram Bhandari

    Full Text Available BACKGROUND: REX1/ZFP42 is a well-known embryonic stem cell (ESC marker. However, the role of REX1, itself, is relatively unknown because the function of REX1 has only been reported in the differentiation of ESCs via STAT signaling pathways. Human mesenchymal stem cells (hMSCs isolated from young tissues and cancer cells express REX1. METHODOLOGY/PRINCIPAL FINDING: Human umbilical cord blood-derived MSCs (hUCB-MSCs and adipose tissue-derived MSCs (hAD-MSCs strongly express REX1 and have a lower activation status of p38 MAPK, but bone marrow-derived MSCs (hBM-MSCs have weak REX1 expression and higher activation of p38 MAPK. These results indicated that REX1 expression in hMSCs was positively correlated with proliferation rates but inversely correlated with the phosphorylation of p38 MAPK. In hUCB-MSCs, the roles of REX1 and p38 MAPK were investigated, and a knockdown study was performed using a lentiviral vector-based small hairpin RNA (shRNA. After REX1 knockdown, decreased cell proliferation was observed. In REX1 knocked-down hUCB-MSCs, the osteogenic differentiation ability deteriorated, but the adipogenic potential increased or was similar to that observed in the controls. The phosphorylation of p38 MAPK in hUCB-MSCs significantly increased after REX1 knockdown. After p38 MAPK inhibitor treatment, the cell growth in REX1 knocked-down hUCB-MSCs almost recovered, and the suppressed expression levels of CDK2 and CCND1 were also restored. The expression of MKK3, an upstream regulator of p38 MAPK, significantly increased in REX1 knocked-down hUCB-MSCs. The direct binding of REX1 to the MKK3 gene was confirmed by a chromatin immunoprecipitation (ChIP assay. CONCLUSIONS/SIGNIFICANCE: These findings showed that REX1 regulates the proliferation/differentiation of hMSCs through the suppression of p38 MAPK signaling via the direct suppression of MKK3. Therefore, p38 MAPK and REX-1 status can determine the cell fate of adult stem cells (ASCs. These

  4. miR-518b Enhances Human Trophoblast Cell Proliferation Through Targeting Rap1b and Activating Ras-MAPK Signal

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2018-03-01

    Full Text Available Preeclampsia is a pregnancy-specific complication defined as newly onset gestational hypertension and proteinuria. Deficiency in placental development is considered as the predominant cause of preeclampsia. Our previous study found that the expression of miR-518b increased significantly in the preeclamptic placentas, indicating the potential participation of this small RNA in the occurrence of preeclampsia. In this study, data analysis using multiple databases predicted Rap1b as a candidate target of miR-518b. An evident decrease in Rap1b expression was observed in preeclamptic placentas when compared with the control placentas, which was negatively correlated with the level of miR-518b. Based on the data of in situ hybridization and immunohistochemistry showing that Rap1b exhibited similar localization with miR-518b in villous cytotrophoblast cells and column trophoblasts, we further explored their function in regulating trophoblast cell proliferation. In HTR8/SVneo cells, exogenous transfection of miR-518b reduced the expression of Rap1b, and dual-luciferase reporter assay validated Rap1b as the direct target of miR-518b. The small RNA could increase the BrdU incorporation and the ratio of cells at S phase, and enhance the phosphorylation of Raf-1 and ERK1/2. Such growth-promoting effect could be efficiently reversed by Rap1b overexpression. The data indicate that miR-518b can promote trophoblast cell proliferation via Rap1b–Ras–MAPK pathway, and the aberrant upregulation of miR-518b in preeclamptic placenta may contribute to the excessive trophoblast proliferation. The study provides new evidence to further understand the etiology of preeclampsia.

  5. RAS/ERK modulates TGFβ-regulated PTEN expression in human pancreatic adenocarcinoma cells

    OpenAIRE

    Chow, Jimmy Y.C.; Quach, Khai T.; Cabrera, Betty L.; Cabral, Jennifer A.; Beck, Stayce E.; Carethers, John M.

    2007-01-01

    Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is rarely mutated in pancreatic cancers, but its regulation by transforming growth factor (TGF)-β might mediate growth suppression and other oncogenic actions. Here, we examined the role of TGFβ and the effects of oncogenic K-RAS/ERK upon PTEN expression in the absence of SMAD4. We utilized two SMAD4-null pancreatic cell lines, CAPAN-1 (K-RAS mutant) and BxPc-3 (WT-K-RAS), both of which express TGFβ surface receptors. Cells were t...

  6. Plasticity of the MAPK signaling network in response to mechanical stress

    NARCIS (Netherlands)

    Pereira, Andrea M; Tudor, Cicerone; Pouille, Philippe-Alexandre; Shekhar, Shashank; Kanger, Johannes S; Subramaniam, Vinod; Martín-Blanco, Enrique

    2014-01-01

    Cells display versatile responses to mechanical inputs and recent studies have identified the mitogen-activated protein kinase (MAPK) cascades mediating the biological effects observed upon mechanical stimulation. Although, MAPK pathways can act insulated from each other, several mechanisms

  7. Detection of up to 65% of Precancerous Lesions of the Human Colon and Rectum by Mutation Analysis of APC, K-Ras, B-Raf and CTNNB1

    International Nuclear Information System (INIS)

    Schneider, Mandy; Scholtka, Bettina; Gottschalk, Uwe; Faiss, Siegbert; Schatz, Daniela; Berghof-Jäger, Kornelia; Steinberg, Pablo

    2010-01-01

    In the present study a recently conceived 4-gene marker panel covering the Wnt and Ras-Raf-MEK-MAPK signaling pathways was used to analyze 20 colorectal serrated lesions and 41 colorectal adenoma samples and to determine the percentage of each of the above-mentioned potentially precancerous lesions carrying at least one of the four above-mentioned genes in a mutated form. CTNNB1 and B-Raf were screened by PCR-single-strand conformation polymorphism analysis, K-Ras by restriction fragment length polymorphism analysis and the APC gene mutation cluster region (codons 1243–1567) by direct DNA sequencing. APC mutations were only detected in 10% of the serrated lesions but in 34% of the adenomas. Twenty percent of the serrated lesions and 14% of the adenomas carried a mutated K-Ras. B-Raf was found to be mutated in 50% of the serrated lesions and in 22% of the adenomas. CTNNB1 was altered in 12% of the adenomas, but not in serrated lesions. By using the above gene marker panel it could be shown that 65% of the serrated lesions and 61% of the adenomas carried at least one of the four genes in a mutated form. Based on its excellent performance in detecting mutations in sporadic preneoplastic (in this study) and neoplastic lesions (in a previous study) of the human colon and rectum, this primer combination might also be suited to efficiently and non-invasively detect genetic alterations in stool DNA of patients with early colorectal cancer

  8. Detection of up to 65% of Precancerous Lesions of the Human Colon and Rectum by Mutation Analysis of APC, K-Ras, B-Raf and CTNNB1

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Mandy; Scholtka, Bettina, E-mail: scholtka@uni-potsdam.de [Chair of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur- Scheunert-Allee 114-116, 14558 Nuthetal (Germany); Gottschalk, Uwe [Maria Heimsuchung Caritas-Klinik Pankow, Breite Straße 46/47, 13187 Berlin (Germany); Faiss, Siegbert [III. Medizinische Abteilung - Gastroenterologie und Hepatologie, Asklepios Klinik Barmbek, Rubenkamp 220, 22291 Hamburg (Germany); Schatz, Daniela; Berghof-Jäger, Kornelia [BIOTECON Diagnostics GmbH, Hermannswerder Haus 17, 14473 Potsdam (Germany); Steinberg, Pablo, E-mail: scholtka@uni-potsdam.de [Chair of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur- Scheunert-Allee 114-116, 14558 Nuthetal (Germany); Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover (Germany)

    2010-12-29

    In the present study a recently conceived 4-gene marker panel covering the Wnt and Ras-Raf-MEK-MAPK signaling pathways was used to analyze 20 colorectal serrated lesions and 41 colorectal adenoma samples and to determine the percentage of each of the above-mentioned potentially precancerous lesions carrying at least one of the four above-mentioned genes in a mutated form. CTNNB1 and B-Raf were screened by PCR-single-strand conformation polymorphism analysis, K-Ras by restriction fragment length polymorphism analysis and the APC gene mutation cluster region (codons 1243–1567) by direct DNA sequencing. APC mutations were only detected in 10% of the serrated lesions but in 34% of the adenomas. Twenty percent of the serrated lesions and 14% of the adenomas carried a mutated K-Ras. B-Raf was found to be mutated in 50% of the serrated lesions and in 22% of the adenomas. CTNNB1 was altered in 12% of the adenomas, but not in serrated lesions. By using the above gene marker panel it could be shown that 65% of the serrated lesions and 61% of the adenomas carried at least one of the four genes in a mutated form. Based on its excellent performance in detecting mutations in sporadic preneoplastic (in this study) and neoplastic lesions (in a previous study) of the human colon and rectum, this primer combination might also be suited to efficiently and non-invasively detect genetic alterations in stool DNA of patients with early colorectal cancer.

  9. Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells

    Directory of Open Access Journals (Sweden)

    Weifeng Shi

    Full Text Available BACKGROUND: Mitogen-activated protein kinase (MAPK signaling pathway plays an important role in response to viral infection. The aim of this study was to explore the function and mechanism of MAPK signaling pathway in enterovirus 71 (EV71 infection of human rhabdomyosarcoma (RD cells. METHODS: Apoptosis of RD cells was observed using annexin V-FITC/PI binding assay under a fluorescence microscope. Cellular RNA was extracted and transcribed to cDNA. The expressions of 56 genes of MAPK signaling pathway in EV71-infected RD cells at 8 h and 20 h after infection were analyzed by PCR array. The levels of IL-2, IL-4, IL-10, and TNF-α in the supernatant of RD cells infected with EV71 at different time points were measured by ELISA. RESULTS: The viability of RD cells decreased obviously within 48 h after EV71 infection. Compared with the control group, EV71 infection resulted in the significantly enhanced releases of IL-2, IL-4, IL-10 and TNF-α from infected RD cells (p < 0.05. At 8 h after infection, the expressions of c-Jun, c-Fos, IFN-i, MEKK1, MLK3 and NIK genes in EV71-infected RD cells were up-regulated by 2.08-6.12-fold, whereas other 19 genes (e.g. AKT1, AKT2, E2F1, IKK and NF-κB1 exhibited down-regulation. However, at 20 h after infection, those MAPK signaling molecules including MEKK1, ASK1, MLK2, MLK3, NIK, MEK1, MEK2, MEK4, MEK7, ERK1, JNK1 and JNK2 were up-regulated. In addition, the expressions of AKT2, ELK1, c-Jun, c-Fos, NF-κB p65, PI3K and STAT1 were also increased. CONCLUSION: EV71 infection induces the differential gene expressions of MAPK signaling pathway such as ERK, JNK and PI3K/AKT in RD cells, which may be associated with the secretions of inflammatory cytokines and host cell apoptosis.

  10. Function and Phenotype prediction through Data and Knowledge Fusion

    KAUST Repository

    Vespoor, Karen

    2016-01-01

    I will introduce the use of text mining techniques to support analysis of biological data sets, and will specifically discuss applications in protein function and phenotype prediction, as well as analysis of genetic variants that are supported

  11. Triiodothyronine promotes the proliferation of epicardial progenitor cells through the MAPK/ERK pathway.

    Science.gov (United States)

    Deng, Song-Bai; Jing, Xiao-Dong; Wei, Xiao-Ming; Du, Jian-Lin; Liu, Ya-Jie; Qin, Qin; She, Qiang

    2017-04-29

    Thyroid hormone has important functions in the development and physiological function of the heart. The aim of this study was to determine whether 3,5,3'-Triiodothyronine (T3) can promote the proliferation of epicardial progenitor cells (EPCs) and to investigate the potential underlying mechanism. Our results showed that T3 significantly promoted the proliferation of EPCs in a concentration- and time-dependent manner. The thyroid hormone nuclear receptor inhibitor bisphenol A (100 μmol/L) did not affect T3's ability to induce proliferation. Further studies showed that the mRNA expression levels of mitogen-activated protein kinase 1 (MAPK1), MAPK3, and Ki67 in EPCs in the T3 group (10 nmol/L) increased 2.9-, 3-, and 4.1-fold, respectively, compared with those in the control group (P < 0.05). In addition, the mRNA expression of the cell cycle protein cyclin D1 in the T3 group increased approximately 2-fold compared with the control group (P < 0.05), and there were more EPCs in the S phase of the cell cycle (20.6% vs. 12.0%, P < 0.05). The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway inhibitor U0126 (10 μmol/L) significantly inhibited the ability of T3 to promote the proliferation of EPCs and to alter cell cycle progression. This study suggested that T3 significantly promotes the proliferation of EPCs, and this effect may be achieved through activation of the MAPK/ERK signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. [RIT1: a novel gene associated with Noonan syndrome].

    Science.gov (United States)

    Arroyo-Carrera, I; Solo de Zaldivar-Tristancho, M; Martin-Fernandez, R; Vera-Torres, M; Gonzalez de Buitrago-Amigo, J F; Botet-Rodriguez, J

    2016-10-16

    Noonan syndrome is the most frequent of the congenital group of malformation syndromes caused by germline mutations that encode components of the RAS/MAPK pathway, termed RASopathies, one of the most frequent congenital genetic disorders in the clinical practice. Recently RIT1 mutations have been reported in patients with Noonan syndrome. A 7 years-old girl with a clinical diagnosis of Noonan syndrome, and with a hypertrophic cardiomyopathy included in her clinical manifestations, where a de novo heterozygous, probably pathogenic, novel mutation in RIT1, c.295T>C (p.Phe99Leu), has been identified. RIT1 shares homology with other RAS proteins and the expression of mutant alleles demonstrates a gain-of-function effect supporting a causative role in Noonan syndrome pathogenesis. Data suggest that the frequency of RIT1 mutations can be estimated as 3-5% in Noonan syndrome patients. These cases compared with Noonan patients harboring mutations in other genes are characterized by high frequency of prenatal abnormalities and hypertrophic cardiomyopathy, and lower frequencies of short stature and pectus abnormalities. We emphasize the importance of the novel identified genes in order to be included in the diagnostic panels.

  13. Assessment of the chemosensitizing activity of TAT-RasGAP317-326 in childhood cancers.

    Directory of Open Access Journals (Sweden)

    Nadja Chevalier

    Full Text Available Although current anti-cancer protocols are reasonably effective, treatment-associated long-term side effects, induced by lack of specificity of the anti-cancer procedures, remain a challenging problem in pediatric oncology. TAT-RasGAP317-326 is a RasGAP-derived cell-permeable peptide that acts as a sensitizer to various anti-cancer treatments in adult tumor cells. In the present study, we assessed the effect of TAT-RasGAP317-326 in several childhood cancer cell lines. The RasGAP-derived peptide-induced cell death was analyzed in several neuroblastoma, Ewing sarcoma and leukemia cell lines (as well as in normal lymphocytes. Cell death was evaluated using flow cytometry methods in the absence or in the presence of the peptide in combination with various genotoxins used in the clinics (4-hydroperoxycyclophosphamide, etoposide, vincristine and doxorubicin. All tested pediatric tumors, in response to at least one genotoxin, were sensitized by TAT-RasGAP317-326. The RasGAP-derived peptide did not increase cell death of normal lymphocytes, alone or in combination with the majority of the tested chemotherapies. Consequently, TAT-RasGAP317-326 may benefit children with tumors by increasing the efficacy of anti-cancer therapies notably by allowing reductions in anti-cancer drug dosage and the associated drug-induced side effects.

  14. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence.

    Science.gov (United States)

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-22

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The Prognostic Impact of K-RAS Mutations in Adult Acute Myeloid Leukemia Patients Treated with High Dose Cytarabine

    International Nuclear Information System (INIS)

    Ahmad, E.I.; Gawish, H.H.; Al-Azizi, N.M.A.; El-Hefni, A.M.

    2009-01-01

    Activating point mutation of the RAS gene has been generally accepted as an oncogenic event in a variety of malignancies. It represents one of the most common genetic alterations in acute myeloid leukemia (AML). However there is still controversy about its clinical relevance on the treatment outcome of this leukemia. Objective: This study aimed to clarify the biologic and prognostic impact of K-RAS mutations in relation to the dose of cytarabine (ara-C) used in post induction consolidation chemotherapy in adult AML patients. Patients and Methods: The study comprised 71de novo AML patients with a male: Female ratio of 1.4: 1; their ages ranged from 21-59 years with a median of 37 years. They were subjected to full clinical evaluation, routine laboratory investigations, cytogenetic studies by G banding and K-RAS mutation detection using realtime PCR. The patients were randomized into 2 groups (gps) according to the ara-C dose used in consolidation treatment, HDAC gp receiving 400 mg ara-C and LDAC gp receiving 100 mg ara-C. They were followed over a period of 5 years. Results: Mutations in the K-RAS gene (mutRAS) were detected in 23 patients (32%) with the remaining 48 patients (68%) having wild type RAS (wtRAS). Blast cell percentage was significantly lower in mutRAS compared to wtRAS patients (p=<0.001). The M4 subtype of AML and cases with Inv 16 showed significantly higher frequencies in mutRAS compared to wtRAS patients, (p=0.015, 0.003, respectively). The patients were followed up for a median of 43 months (range 11-57 months). There was no significant difference in overall survival (OS) between mutRAS and wtRAS patients (p=0.326). Within the mutRAS patients treated with HDAC, cumulative OS was significantly higher than those treated with LDAC (p=0.001). This was not the case in the wtRAS group (p=0.285). There was no significant difference in disease The Prognostic Impact of K-RAS Mutations in Adult Acute Myeloid Leukemia Patients Treated with High Dose

  16. Effect of Primary Tumor Location on Second- or Later-line Treatment Outcomes in Patients With RAS Wild-type Metastatic Colorectal Cancer and All Treatment Lines in Patients With RAS Mutations in Four Randomized Panitumumab Studies.

    Science.gov (United States)

    Boeckx, Nele; Koukakis, Reija; Op de Beeck, Ken; Rolfo, Christian; Van Camp, Guy; Siena, Salvatore; Tabernero, Josep; Douillard, Jean-Yves; André, Thierry; Peeters, Marc

    2018-03-08

    The primary tumor location has a prognostic impact in metastatic colorectal cancer (mCRC). We report the results from retrospective analyses assessing the effect of tumor location on prognosis and efficacy of second- and later-line panitumumab treatment in patients with RAS wild-type (WT) mCRC and on prognosis in all lines of treatment in patients with RAS mutant (MT) mCRC. RAS WT data (n = 483) from 2 randomized phase III panitumumab trials (ClinicalTrials.gov identifiers, NCT00339183 and NCT00113763) were analyzed for treatment outcomes stratified by tumor location. The second analysis assessed the effect of tumor location in RAS MT patients (n = 1205) from 4 panitumumab studies (ClinicalTrials.gov identifiers, NCT00364013, NCT00819780, NCT00339183, and NCT00113763). Primary tumors located in the cecum to transverse colon were coded as right-sided; those located from the splenic flexure to the rectum were coded as left-sided. Of all patients, the tumor location was ascertained for 83% to 88%; 71% to 77% of patients had left-sided tumors. RAS WT patients with right-sided tumors did worse for all efficacy parameters compared with those with left-sided tumors. The patients with left-sided tumors had better outcomes with panitumumab than with the comparator treatment. Because of the low patient numbers, no conclusions could be drawn for right-sided mCRC. The prognostic effect of tumor location on survival was unclear for RAS MT patients. These retrospective analyses have confirmed that RAS WT right-sided mCRC is associated with a poor prognosis, regardless of the treatment. RAS WT patients with left-sided tumors benefitted from the addition of panitumumab in second or later treatment lines. Further research is warranted to determine the optimum management of right-sided mCRC and RAS MT tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Interactions of Ras proteins with the plasma membrane and their roles in signaling.

    Science.gov (United States)

    Eisenberg, Sharon; Henis, Yoav I

    2008-01-01

    The complex dynamic structure of the plasma membrane plays critical roles in cellular signaling; interactions with the membrane lipid milieu, spatial segregation within and between cellular membranes and/or targeting to specific membrane-associated scaffolds are intimately involved in many signal transduction pathways. In this review, we focus on the membrane interactions of Ras proteins. These small GTPases play central roles in the regulation of cell growth and proliferation, and their excessive activation is commonly encountered in human tumors. Ras proteins associate with the membrane continuously via C-terminal lipidation and additional interactions in both their inactive and active forms; this association, as well as the targeting of specific Ras isoforms to plasma membrane microdomains and to intracellular organelles, have recently been implicated in Ras signaling and oncogenic potential. We discuss biochemical and biophysical evidence for the roles of specific domains of Ras proteins in mediating their association with the plasma membrane, and consider the potential effects of lateral segregation and interactions with membrane-associated protein assemblies on the signaling outcomes.

  18. Quantitative Assays for RAS Pathway Proteins and Phosphorylation States

    Science.gov (United States)

    The NCI CPTAC program is applying its expertise in quantitative proteomics to develop assays for RAS pathway proteins. Targets include key phosphopeptides that should increase our understanding of how the RAS pathway is regulated.

  19. Genetics and evolution of function-valued traits: understanding environmentally responsive phenotypes.

    Science.gov (United States)

    Stinchcombe, John R; Kirkpatrick, Mark

    2012-11-01

    Many central questions in ecology and evolutionary biology require characterizing phenotypes that change with time and environmental conditions. Such traits are inherently functions, and new 'function-valued' methods use the order, spacing, and functional nature of the data typically ignored by traditional univariate and multivariate analyses. These rapidly developing methods account for the continuous change in traits of interest in response to other variables, and are superior to traditional summary-based analyses for growth trajectories, morphological shapes, and environmentally sensitive phenotypes. Here, we explain how function-valued methods make flexible use of data and lead to new biological insights. These approaches frequently offer enhanced statistical power, a natural basis of interpretation, and are applicable to many existing data sets. We also illustrate applications of function-valued methods to address ecological, evolutionary, and behavioral hypotheses, and highlight future directions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation

    Science.gov (United States)

    Wu, Xue; Simpson, Jeremy; Hong, Jenny H.; Kim, Kyoung-Han; Thavarajah, Nirusha K.; Backx, Peter H.; Neel, Benjamin G.; Araki, Toshiyuki

    2011-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden death in children and young adults. Abnormalities in several signaling pathways are implicated in the pathogenesis of HCM, but the role of the RAS-RAF-MEK-ERK MAPK pathway has been controversial. Noonan syndrome (NS) is one of several autosomal-dominant conditions known as RASopathies, which are caused by mutations in different components of this pathway. Germline mutations in RAF1 (which encodes the serine-threonine kinase RAF1) account for approximately 3%–5% of cases of NS. Unlike other NS alleles, RAF1 mutations that confer increased kinase activity are highly associated with HCM. To explore the pathogenesis of such mutations, we generated knockin mice expressing the NS-associated Raf1L613V mutation. Like NS patients, mice heterozygous for this mutation (referred to herein as L613V/+ mice) had short stature, craniofacial dysmorphia, and hematologic abnormalities. Valvuloseptal development was normal, but L613V/+ mice exhibited eccentric cardiac hypertrophy and aberrant cardiac fetal gene expression, and decompensated following pressure overload. Agonist-evoked MEK-ERK activation was enhanced in multiple cell types, and postnatal MEK inhibition normalized the growth, facial, and cardiac defects in L613V/+ mice. These data show that different NS genes have intrinsically distinct pathological effects, demonstrate that enhanced MEK-ERK activity is critical for causing HCM and other RAF1-mutant NS phenotypes, and suggest a mutation-specific approach to the treatment of RASopathies. PMID:21339642

  1. Validating the breeding value for maternal preweaning gain in beef ...

    African Journals Online (AJOL)

    The objective of this research was to validate the maternal breeding value for preweaning gain as a predictor of genetic differences in milk production. Phenotypic variation in preweaning gain and in milk production measured by the weigh-suckle-weigh method was partitioned into genetic and non-genetic components.

  2. Mitochondrial clearance by the STK38 kinase supports oncogenic Ras-induced cell transformation

    Science.gov (United States)

    Bettoun, Audrey; Surdez, Didier; Vallerand, David; Gundogdu, Ramazan; Sharif, Ahmad A.D.; Gomez, Marta; Cascone, Ilaria; Meunier, Brigitte; White, Michael A.; Codogno, Patrice; Parrini, Maria Carla; Camonis, Jacques H.; Hergovich, Alexander

    2016-01-01

    Oncogenic Ras signalling occurs frequently in many human cancers. However, no effective targeted therapies are currently available to treat patients suffering from Ras-driven tumours. Therefore, it is imperative to identify downstream effectors of Ras signalling that potentially represent promising new therapeutic options. Particularly, considering that autophagy inhibition can impair the survival of Ras-transformed cells in tissue culture and mouse models, an understanding of factors regulating the balance between autophagy and apoptosis in Ras-transformed human cells is needed. Here, we report critical roles of the STK38 protein kinase in oncogenic Ras transformation. STK38 knockdown impaired anoikis resistance, anchorage-independent soft agar growth, and in vivo xenograft growth of Ras-transformed human cells. Mechanistically, STK38 supports Ras-driven transformation through promoting detachment-induced autophagy. Even more importantly, upon cell detachment STK38 is required to sustain the removal of damaged mitochondria by mitophagy, a selective autophagic process, to prevent excessive mitochondrial reactive oxygen species production that can negatively affect cancer cell survival. Significantly, knockdown of PINK1 or Parkin, two positive regulators of mitophagy, also impaired anoikis resistance and anchorage-independent growth of Ras-transformed human cells, while knockdown of USP30, a negative regulator of PINK1/Parkin-mediated mitophagy, restored anchorage-independent growth of STK38-depleted Ras-transformed human cells. Therefore, our findings collectively reveal novel molecular players that determine whether Ras-transformed human cells die or survive upon cell detachment, which potentially could be exploited for the development of novel strategies to target Ras-transformed cells. PMID:27283898

  3. [Carcinogenesis and its mechanism of mutant-type[12Asp]K-ras4B gene].

    Science.gov (United States)

    Gui, Li-ming; Wei, Li-hui; Zhang, Ying-mei; Wang, Jian-liu; Wang, Ying; Chen, Ying; Ma, Da-long

    2002-01-01

    Ras gene plays an important role in the extra- and intra-cellular signal transduction pathway. It mediates series cascade reactions, and eventually actives transcriptional factors in nucleus. It is unknown on the mechanism of carcinogenesis of Ras gene in endometrial carcinoma, though K-ras mutant is very common in endometrial atypical hyperplasia and carcinoma. On basis of discovering the mutation in 12th codon of K-ras in endometrial carcinoma cell line, HEC-1A, we explored the carcinogenesis and molecular mechanism of mutant-type [12Asp] K-ras4B gene. (1) Full-length [12Asp]K-ras4B cDNA was amplified with RT-PCR, then inserted into pcDI eukaryotic expressive vector. (2) Morphological change, growth kinetics in vitro and tumorigencity in nude mice in vivo after-before transfection were observed. (3) To test the cell growth kinetics by methyl thiazolium tetrazolium (MTT) and [3H]thymidine incorporation method. (1) The authors have successfully constructed eukaryotic expression plasmid pcDI-[12Asp] K-ras4B; (2) To confirm that [12Asp] K-ras4B mutant can trigger the neoplastic transformation of NIH3T3 cells by test in vitro and in vivo. (3) After pMCV-RasN17 plasmid, a Ras mutant were transfected into pcDI-[12Asp] K-ras4B cells, the growth of this cell were restrained significantly in comparison with control group. (4) These findings indicate the expression of RafS621A resulted in remarkable inhibition in proliferation of pcDI-[12Asp]K-ras4B cell (P ras4B cell growth (P ras4B gene alone is able to cause neoplastic transformation in NIH3T3 cells in vitro and in vivo. (2) [12Asp]K-ras4B-induced NIH3T3 cells neoplastic transformation required Raf signaling pathway.

  4. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells

    International Nuclear Information System (INIS)

    Cheon, Soyoung; Song, Seok Bean; Jung, Minkyung; Park, Yoorim; Bang, Jung-Wook; Kim, Tae Sung; Park, Hyunjeong; Kim, Cherl-hyun; Yang, Yool-hee; Bang, Sa Ik; Cho, Daeho

    2008-01-01

    Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-γ inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-γ production, we measured IL-18-induced IFN-γ production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-γ expression was blocked by SKI pre-treatment in both mRNA and protein levels. In addition, the increased IFN-γ production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-γ production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-γ production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-γ production via p38 MAPK

  5. Mixture Growth Models of RAN and RAS Row by Row: Insight into the Reading System at Work over Time

    Science.gov (United States)

    Amtmann, Dagmar; Abbott, Robert D.; Berninger, V. W.

    2007-01-01

    Children (n = 122) and adults (n = 200) with dyslexia completed rapid automatic naming (RAN) letters, rapid automatic switching (RAS) letters and numbers, executive function (inhibition, verbal fluency), and phonological working memory tasks. Typically developing 3rd (n = 117) and 5th (n = 103) graders completed the RAS task. Instead of analyzing…

  6. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Science.gov (United States)

    Kashyap, Sonu; Warner, Gina; Hu, Zeng; Gao, Feng; Osman, Mazen; Al Saiegh, Yousif; Lien, Karen R; Nath, Karl; Grande, Joseph P

    2017-01-01

    Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  7. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Directory of Open Access Journals (Sweden)

    Sonu Kashyap

    Full Text Available Renovascular hypertension (RVH has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO protects the stenotic kidney (STK from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS was established in Wild-type (WT and Smad3 KO mice (129 genetic background by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  8. Macrophage heterogeneity in tissues: phenotypic diversity and functions

    Science.gov (United States)

    Gordon, Siamon; Plüddemann, Annette; Martinez Estrada, Fernando

    2014-01-01

    During development and throughout adult life, macrophages derived from hematopoietic progenitors are seeded throughout the body, initially in the absence of inflammatory and infectious stimuli as tissue-resident cells, with enhanced recruitment, activation, and local proliferation following injury and pathologic insults. We have learned a great deal about macrophage properties ex vivo and in cell culture, but their phenotypic heterogeneity within different tissue microenvironments remains poorly characterized, although it contributes significantly to maintaining local and systemic homeostasis, pathogenesis, and possible treatment. In this review, we summarize the nature, functions, and interactions of tissue macrophage populations within their microenvironment and suggest questions for further investigation. PMID:25319326

  9. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chao-Feng [The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan (China); Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (China); Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan (China); Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan (China); Huang, Han-Li [The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan (China); Peng, Chieh-Yu [Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan (China); School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan (China); Lee, Yu-Ching [The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan (China); Ph.D. Program for Biotechnology in Medicine, Taipei Medical University, Taipei, Taiwan (China); Wang, Hui-Po [College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); Teng, Che-Ming [College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Pan, Shiow-Lin, E-mail: slpan@tmu.edu.tw [The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan (China); Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 10031, Taiwan (China)

    2016-08-15

    Purpose: Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. Methods: Cell proliferation was determined using [{sup 3}H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. Results: TW-01 significantly inhibited cell proliferation. At the concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. Conclusion: The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment. - Highlights: • TW-01significantly inhibits vascular smooth muscle cell proliferation. • TW-01 inhibits ERK, Akt and Ras pathway and DNA binding activity of NF-κB. • TW-01 significantly suppresses intimal hyperplasia induced by balloon angioplasty. • TW-01 might be a potential candidate for atherosclerosis treatment.

  10. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis

    International Nuclear Information System (INIS)

    Lin, Chao-Feng; Huang, Han-Li; Peng, Chieh-Yu; Lee, Yu-Ching; Wang, Hui-Po; Teng, Che-Ming; Pan, Shiow-Lin

    2016-01-01

    Purpose: Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. Methods: Cell proliferation was determined using [ 3 H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. Results: TW-01 significantly inhibited cell proliferation. At the concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. Conclusion: The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment. - Highlights: • TW-01significantly inhibits vascular smooth muscle cell proliferation. • TW-01 inhibits ERK, Akt and Ras pathway and DNA binding activity of NF-κB. • TW-01 significantly suppresses intimal hyperplasia induced by balloon angioplasty. • TW-01 might be a potential candidate for atherosclerosis treatment.

  11. The prognostic impact of K-RAS mutations in adult acute myeloid leukemia patients treated with high-dose cytarabine

    Directory of Open Access Journals (Sweden)

    Ahmad EI

    2011-07-01

    Full Text Available Ebtesam I Ahmad, Heba H Gawish, Nashwa MA Al Azizi, Ashraf M ElhefniClinical Pathology Department, Hematology and Oncology Unit of Internal Medicine Department, Faculty of Medicine, Zagazig University, Sharkia, EgyptBackground: Activating point mutation of the RAS gene has been generally accepted as an oncogenic event in a variety of malignancies. It represents one of the most common genetic alterations in acute myeloid leukemia (AML. However, little is known about its clinical relevance in the treatment outcome for this leukemia.Objective: This study aimed to clarify the biologic and prognostic impact of K-RAS mutations in relation to the dose of cytarabine (ara-C used in postinduction consolidation chemotherapy in adult AML patients.Patients and methods: The study comprised of 71 de novo AML patients with male/female ratio 1.4:1; their ages ranged from 21–59 years with a median of 37 years. They were subjected to full clinical evaluation, routine laboratory investigations, cytogenetic studies by G-banding (Giemsa staining, and K-RAS mutation detection using real-time polymerase chain reaction. The patients were randomized into two groups according to the ara-C dose used in consolidation treatment, the high the dose ara-C (HDAC group receiving 400 mg ara-C and-low-dose ara-C (LDAC group receiving 100 mg ara-C; they were followed over a period of five years.Results: Mutations in the K-RAS gene (mutRAS were detected in 23 patients (32% with the remaining 48 patients (68% having wild-type RAS (wtRAS. The percent of blast cells was significantly lower in mutRAS compared to wtRAS patients (P ≤ 0.001 while M4 subtype of AML and Inv(16 frequencies were significantly higher in mutRAS compared to wtRAS patients (P = 0.015 and (P = 0.003, respectively. The patients were followed up for a median of 43 months (range 11–57 months. There was no significant difference in overall survival (OS between mutRAS and wtRAS (P = 0.326. Within the mutRAS

  12. Diet, Lifestyle and risk of K-ras mutation-positive and -negative colorectal adenomas

    NARCIS (Netherlands)

    Wark, P.A.; Kuil, van der W.; Ploemacher, J.; Muijen, van G.N.P.; Mulder, Ch.J.J.; Weijenberg, M.P.; Kok, F.J.; Kampman, E.

    2006-01-01

    K-ras mutation-positive (K-ras+) and -negative (K-ras-) colorectal adenomas may differ clinically and pathologically. As environmental compounds may cause mutations in the growth-related K-ras oncogene or affect clonal selection depending on mutational status, we evaluated whether the aetiology of

  13. Gain beyond cosmesis: Demonstration of psychosocial and functional gains following successful strabismus surgery using the adult strabismus questionnaire adult strabismus 20

    Directory of Open Access Journals (Sweden)

    Danish Alam

    2014-01-01

    Full Text Available Background: Strabismus adversely affects psychosocial and functional aspects; while its correction impacts positively. Aim: The aim was to evaluate the gains in scores: Overall scores (OASs, psychosocial subscale scores (PSSs and functional subscale scores (FSSs following successful surgical alignment. Settings and Design: We evaluated changed scores in the adult strabismus 20 (AS-20 questionnaire, administered before and after successful surgery. Materials and Methods: Thirty adults horizontal strabismics, were administered the AS-20, at baseline, and at 6-week and 3-month. Group-wise analysis was carried out based on gender, strabismus type (esotropia [ET] or exotropia [XT], back-ground and amblyopia. Statistical Analysis: We used Wilcoxon, and Mann-Whitney U-tests. Significance was set at P ≤ 0.05. Results: At baseline, there were no significant differences within the groups, except that those with amblyopia significantly scored less than nonamblyopes in OAS (median scores: 53.8 vs. 71.3; P = 0.009 and FSS (56.3 vs. 85.3; P = 0.009. OAS, PSS and FSS showed significant gains at 6-week and 3-month (all Wilcoxon P < 0.001. Compared with males, females showed significantly more gain at 3-month (OAS: 37.9 vs. 28.7; P = 0.02, on account of PSS gain (49.6 vs. 37.5; P = 0.01. The ET performed better than XT only on the FSS at 6-week (28.7 vs. 15.0; P = 0.02. Vis-à-vis the nonamblyopes, the amblyopes showed significantly more benefit at 6-week alone (OAS: 18.7 vs. 28.7; P = 0.04, largely due to gains in PSS. Conclusions: Successful strabismus surgery has demonstrated significant gains in psychosocial, functional and overall functions. There is some evidence that gains may be more in females; with a trend to better outcomes in ET and amblyopes up to 6-week.

  14. Molecular analysis of p53 and K-ras in lung carcinomas of coal miners

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, F.H.; Li, Y.W.; Vallyathan, V. [Wayne State University, Detroit, MI (United States). School of Medicine, Dept. of Pathology

    2001-10-01

    Thirty-three cases of non-small cell lung cancers (NSCLC) from the archives of National Coal Workers' Autopsy Study were studied for mutational alterations in p53 and K-ras using PCR-SSCP, DNA sequencing and PCR-oligonucleotide probe hybridization techniques. Mutations of the p53 were observed in 4 smokers (19%) and one in a never smoker (8%). Two polymorphisms in smokers were detected at codon 213, a common site for sequence variation. Among the smokers the p53 mutations were in the heavy smokers. In never smokers there was only a single p53 mutation and two K-ras mutations. In never smokers the frequency of K-ras mutations was similar (17%) in smokers, but one never smoker had two K-ras mutations. Mutations of p53 were more frequent in adenocarcinomas (27%) and they were AT-GC transitions. There were two large cell undifferentiated carcinomas with p53 mutation and one with a K-ras mutation. Two of the 16 squamous cell carcinomas were positive for p53 mutation, while no K-ras mutations were found in this group. The results of these preliminary studies indicate a moderately different mutational spectrum of p53 and K-ras in coal miners independent of cigarette smoking. The mutational spectrum observed in this study of coal miners with heavy cigarette smoking history suggest a protective effect of coal mine dust in preventing abnormal mutations induced by chemical carcinogens in cigarette smoke or reactive oxygen species.

  15. Analysis of mammalian gene function through broad based phenotypic screens across a consortium of mouse clinics

    Science.gov (United States)

    Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl MJ; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie

    2015-01-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse ES cell knockout resource provides a basis for characterisation of relationships between gene and phenotype. The EUMODIC consortium developed and validated robust methodologies for broad-based phenotyping of knockouts through a pipeline comprising 20 disease-orientated platforms. We developed novel statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no prior functional annotation. We captured data from over 27,000 mice finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. Novel phenotypes were uncovered for many genes with unknown function providing a powerful basis for hypothesis generation and further investigation in diverse systems. PMID:26214591

  16. The accumulation of substances in Recirculating Aquaculture Systems (RAS) affects embryonic and larval development in common carp Cyprinus carpio

    NARCIS (Netherlands)

    Martins, C.I.; Pristin, M.G.; Ende, S.S.W.; Eding, E.H.; Verreth, J.A.J.

    2009-01-01

    The accumulation of substances in Recirculating Aquaculture Systems (RAS) may impair the growth and welfare of fish. To test the severity of contaminants accumulated in RAS, early-life stages of fish were used. Ultrafiltered water from two Recirculating Aquaculture Systems (RAS), one RAS with a high

  17. The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer.

    Science.gov (United States)

    Akino, Kimishige; Toyota, Minoru; Suzuki, Hiromu; Mita, Hiroaki; Sasaki, Yasushi; Ohe-Toyota, Mutsumi; Issa, Jean-Pierre J; Hinoda, Yuji; Imai, Kohzoh; Tokino, Takashi

    2005-07-01

    Activation of Ras signaling is a hallmark of colorectal cancer (CRC), but the roles of negative regulators of Ras are not fully understood. Our aim was to address that question by surveying genetic and epigenetic alterations of Ras-Ras effector genes in CRC cells. The expression and methylation status of 6 RASSF family genes were examined using RT-PCR and bisulfite PCR in CRC cell lines and in primary CRCs and colorectal adenomas. Colony formation assays and flow cytometry were used to assess the tumor suppressor activities of RASSF1 and RASSF2. Immunofluorescence microscopy was used to determine the effect of altered RASSF2 expression on cell morphology. Mutations of K- ras , BRAF, and p53 were identified using single-strand conformation analysis and direct sequencing. Aberrant methylation and histone deacetylation of RASSF2 was associated with the gene's silencing in CRC. The activities of RASSF2, which were distinct from those of RASSF1, included induction of morphologic changes and apoptosis; moreover, its ability to prevent cell transformation suggests that RASSF2 acts as a tumor suppressor in CRC. Primary CRCs that showed K- ras /BRAF mutations also frequently showed RASSF2 methylation, and inactivation of RASSF2 enhanced K- ras -induced oncogenic transformation. RASSF2 methylation was also frequently identified in colorectal adenomas. RASSF2 is a novel tumor suppressor gene that regulates Ras signaling and plays a pivotal role in the early stages of colorectal tumorigenesis.

  18. RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation.

    Science.gov (United States)

    Lim, C J; Spiegelman, G B; Weeks, G

    2001-08-15

    Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC(-) cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC(-) cells stimulated by 2'-deoxy-cAMP, but is produced in response to GTPgammaS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC(-) cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC(-) cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC(-) cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC(-) cells, suggesting that AleA may activate RasC.

  19. Integrating Evolutionary Game Theory into Mechanistic Genotype-Phenotype Mapping.

    Science.gov (United States)

    Zhu, Xuli; Jiang, Libo; Ye, Meixia; Sun, Lidan; Gragnoli, Claudia; Wu, Rongling

    2016-05-01

    Natural selection has shaped the evolution of organisms toward optimizing their structural and functional design. However, how this universal principle can enhance genotype-phenotype mapping of quantitative traits has remained unexplored. Here we show that the integration of this principle and functional mapping through evolutionary game theory gains new insight into the genetic architecture of complex traits. By viewing phenotype formation as an evolutionary system, we formulate mathematical equations to model the ecological mechanisms that drive the interaction and coordination of its constituent components toward population dynamics and stability. Functional mapping provides a procedure for estimating the genetic parameters that specify the dynamic relationship of competition and cooperation and predicting how genes mediate the evolution of this relationship during trait formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Neurofibromatosis-Noonan Syndrome: A Possible Paradigm of the Combination of Genetic and Epigenetic Factors.

    Science.gov (United States)

    Yapijakis, Christos; Pachis, Nikos; Voumvourakis, Costas

    2017-01-01

    Neurofibromatosis-Noonan syndrome (NFNS) is a clinical entity possessing traits of autosomal dominant disorders neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). Germline mutations that disrupt the RAS/MAPK pathway are involved in the pathogenesis of both NS and NF1. In light of a studied Greek family, a new theory for etiological pathogenesis of NFNS is suggested. The NFNS phenotype may be the final result of a combination of a genetic factor (a mutation in the NF1 gene) and an environmental factor with the epigenetic effects of muscle hypotonia (such as hydantoin in the reported Greek family), causing hypoplasia of the face and micrognathia.

  1. Evolution of AF6-RAS association and its implications in mixed-lineage leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Matthew J.; Ottoni, Elizabeth; Ishiyama, Noboru; Goudreault, Marilyn; Haman, André; Meyer, Claus; Tucholska, Monika; Gasmi-Seabrook, Genevieve; Menezes, Serena; Laister, Rob C.; Minden, Mark D.; Marschalek, Rolf; Gingras, Anne-Claude; Hoang, Trang; Ikura, Mitsuhiko

    2017-10-23

    Elucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors. Further, all patients with MLL-AF6 translocations express fusion proteins missing only this helix from AF6, resulting in exposure of hydrophobic residues that induce dimerization. We provide evidence that oligomerization is the dominant mechanism driving oncogenesis from rare MLL translocation partners and employ our mechanistic understanding of MLL-AF6 to examine how dimers induce leukemia. Proteomic data resolve association of dimerized MLL with gene expression modulators, and inhibiting dimerization disrupts formation of these complexes while completely abrogating leukemogenesis in mice. Oncogenic gene translocations are thus selected under pressure from protein structure/function, underscoring the complex nature of chromosomal rearrangements.

  2. Regulation of muscle stem cell functions: a focus on the p38 MAPK signaling pathway

    Directory of Open Access Journals (Sweden)

    Jessica Segales

    2016-08-01

    Full Text Available Formation of skeletal muscle fibers (myogenesis during development and after tissue injury in the adult constitutes an excellent paradigm to investigate the mechanisms whereby environmental cues control gene expression programs in muscle stem cells (satellite cells by acting on transcriptional and epigenetic effectors. Here we will review the molecular mechanisms implicated in the transition of satellite cells throughout the distinct myogenic stages (i.e., activation from quiescence, proliferation, differentiation and self-renewal. We will also discuss recent findings on the causes underlying satellite cell functional decline with aging. In particular, our review will focus on the epigenetic changes underlying fate decisions and on how the p38 MAPK signaling pathway integrates the environmental signals at the chromatin to build up satellite cell adaptive responses during the process of muscle regeneration, and how these responses are altered in aging. A better comprehension of the signaling pathways connecting external and intrinsic factors will illuminate the path for improving muscle regeneration in the aged.

  3. The levels of mutant K-RAS and mutant N-RAS are rapidly reduced in a Beclin1 / ATG5 -dependent fashion by the irreversible ERBB1/2/4 inhibitor neratinib.

    Science.gov (United States)

    Booth, Laurence; Roberts, Jane L; Poklepovic, Andrew; Kirkwood, John; Sander, Cindy; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Dent, Paul

    2018-02-01

    The FDA approved irreversible inhibitor of ERBB1/2/4, neratinib, was recently shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET and mutant K-RAS via autophagic degradation. In the present studies, in a dose-dependent fashion, neratinib reduced the expression levels of mutant K-RAS or of mutant N-RAS, which was augmented in an additive to greater than additive fashion by the HDAC inhibitors sodium valproate and AR42. Neratinib could reduce PDGFRα levels in GBM cells, that was enhanced by sodium valproate. Knock down of Beclin1 or of ATG5 prevented neratinib and neratinib combined with sodium valproate / AR42 from reducing the expression of mutant N-RAS in established PDX and fresh PDX models of ovarian cancer and melanoma, respectively. Neratinib and the drug combinations caused the co-localization of mutant RAS proteins and ERBB2 with Beclin1 and cathepsin B. The drug combination activated the AMP-dependent protein kinase that was causal in enhancing HMG Co A reductase phosphorylation. Collectively, our data reinforce the concept that the irreversible ERBB1/2/4 inhibitor neratinib has the potential for use in the treatment of tumors expressing mutant RAS proteins.

  4. Modulation of Ras signaling alters the toxicity of hydroquinone, a benzene metabolite and component of cigarette smoke

    International Nuclear Information System (INIS)

    North, Matthew; Shuga, Joe; Fromowitz, Michele; Loguinov, Alexandre; Shannon, Kevin; Zhang, Luoping; Smith, Martyn T; Vulpe, Chris D

    2014-01-01

    Benzene is an established human leukemogen, with a ubiquitous environmental presence leading to significant population exposure. In a genome-wide functional screen in the yeast Saccharomyces cerevisiae, inactivation of IRA2, a yeast ortholog of the human tumor suppressor gene NF1 (Neurofibromin), enhanced sensitivity to hydroquinone, an important benzene metabolite. Increased Ras signaling is implicated as a causal factor in the increased pre-disposition to leukemia of individuals with mutations in NF1. Growth inhibition of yeast by hydroquinone was assessed in mutant strains exhibiting varying levels of Ras activity. Subsequently, effects of hydroquinone on both genotoxicity (measured by micronucleus formation) and proliferation of WT and Nf1 null murine hematopoietic precursors were assessed. Here we show that the Ras status of both yeast and mammalian cells modulates hydroquinone toxicity, indicating potential synergy between Ras signaling and benzene toxicity. Specifically, enhanced Ras signaling increases both hydroquinone-mediated growth inhibition in yeast and genotoxicity in mammalian hematopoetic precursors as measured by an in vitro erythroid micronucleus assay. Hydroquinone also increases proliferation of CFU-GM progenitor cells in mice with Nf1 null bone marrow relative to WT, the same cell type associated with benzene-associated leukemia. Together our findings show that hydroquinone toxicity is modulated by Ras signaling. Individuals with abnormal Ras signaling could be more vulnerable to developing myeloid diseases after exposure to benzene. We note that hydroquinone is used cosmetically as a skin-bleaching agent, including by individuals with cafe-au-lait spots (which may be present in individuals with neurofibromatosis who have a mutation in NF1), which could be unadvisable given our findings

  5. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics.

    Science.gov (United States)

    de Angelis, Martin Hrabě; Nicholson, George; Selloum, Mohammed; White, Jacqui; Morgan, Hugh; Ramirez-Solis, Ramiro; Sorg, Tania; Wells, Sara; Fuchs, Helmut; Fray, Martin; Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl Mj; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie; Holmes, Chris; Steel, Karen P; Herault, Yann; Gailus-Durner, Valérie; Mallon, Ann-Marie; Brown, Steve Dm

    2015-09-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.

  6. Influence of feed ingredients on water quality parameters in RAS

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; Pedersen, Lars-Flemming; Suhr, Karin Isabel

    2011-01-01

    Although feed by far is providing the major input to RAS, relatively little is published about the correlation between feed composition and the resulting water quality in such systems. In a set-up with 6 identical RAS, each consisting of a fish tank (0.5 m3), a swirl separator, a submerged...... had impact on water quality in the systems as well as on matter removed by the swirl separators. In the RAS water, phosphorous (Ptot and Pdiss) concentrations were reduced by guar gum. Organic matter content (CODdiss) in the water was also reduced. Corresponding to this, more dry matter, more COD...... to the systems for 49 consecutive days. Each week, 24h-water samples (1 sample/hour) were collected from each system. The sludge collected in the swirl separator that day was also collected. Water and sludge were subsequently analysed for nitrogen, phosphorous and organic matter content. Inclusion of guar gum...

  7. C/EBPβ represses p53 to promote cell survival downstream of DNA damage independent of oncogenic Ras and p19Arf

    Science.gov (United States)

    Ewing, SJ; Zhu, S; Zhu, F; House, JS; Smart, RC

    2013-01-01

    CCAAT/enhancer-binding protein-β (C/EBPβ) is a mediator of cell survival and tumorigenesis. When C/EBPβ−/− mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19Arf and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19Arf is dramatically elevated in C/EBPβ−/− epidermis and that C/EBPβ represses a p19Arf promoter reporter. To determine whether p19Arf is responsible for the proapoptotic phenotype in C/EBPβ−/− mice, C/EBPβ−/−;p19Arf−/− mice were generated. C/EBPβ−/−;p19Arf−/− mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19Arf is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPβ−/− epidermis, we generated K14-ER:Ras; C/EBPβ−/− mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPβ−/− mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPβ represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPβ may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents. PMID:18636078

  8. Evaluation of K-ras and p53 expression in pancreatic adenocarcinoma using the cancer genome atlas.

    Directory of Open Access Journals (Sweden)

    Liming Lu

    Full Text Available Genetic alterations in K-ras and p53 are thought to be critical in pancreatic cancer development and progression. However, K-ras and p53 expression in pancreatic adenocarcinoma have not been systematically examined in The Cancer Genome Atlas (TCGA Data Portal. Information regarding K-ras and p53 alterations, mRNA expression data, and protein/protein phosphorylation abundance was retrieved from The Cancer Genome Atlas (TCGA databases, and analyses were performed by the cBioPortal for Cancer Genomics. The mutual exclusivity analysis showed that events in K-ras and p53 were likely to co-occur in pancreatic adenocarcinoma (Log odds ratio = 1.599, P = 0.006. The graphical summary of the mutations showed that there were hotspots for protein activation. In the network analysis, no solid association between K-ras and p53 was observed in pancreatic adenocarcinoma. In the survival analysis, neither K-ras nor p53 were associated with both survival events. As in the data mining study in the TCGA databases, our study provides a new perspective to understand the genetic features of K-ras and p53 in pancreatic adenocarcinoma.

  9. The modulation of neural gain facilitates a transition between functional segregation and integration in the brain.

    Science.gov (United States)

    Shine, James M; Aburn, Matthew J; Breakspear, Michael; Poldrack, Russell A

    2018-01-29

    Cognitive function relies on a dynamic, context-sensitive balance between functional integration and segregation in the brain. Previous work has proposed that this balance is mediated by global fluctuations in neural gain by projections from ascending neuromodulatory nuclei. To test this hypothesis in silico, we studied the effects of neural gain on network dynamics in a model of large-scale neuronal dynamics. We found that increases in neural gain directed the network through an abrupt dynamical transition, leading to an integrated network topology that was maximal in frontoparietal 'rich club' regions. This gain-mediated transition was also associated with increased topological complexity, as well as increased variability in time-resolved topological structure, further highlighting the potential computational benefits of the gain-mediated network transition. These results support the hypothesis that neural gain modulation has the computational capacity to mediate the balance between integration and segregation in the brain. © 2018, Shine et al.

  10. Mapping the isoprenoid binding pocket of PDEδ by a semisynthetic, photoactivatable N-ras lipoprotein

    NARCIS (Netherlands)

    Alexander, M.; Gerauer, M.; Pechlivanis, M.; Popkirova, B.; Dvorsky, R.; Brunsveld, L.; Waldmann, H.; Kuhlmann, J.

    2009-01-01

    Biologically functional Ras isoforms undergo post-translational modifications starting with farnesylation of the most C-terminal cysteine. Combined with further processing steps, this isoprenylation allows for the anchoring of these proteins in endomembranes, where signal transduction events take

  11. Preoperative RAS Mutational Analysis Is of Great Value in Predicting Follicular Variant of Papillary Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Tae Sook Hwang

    2015-01-01

    Full Text Available Follicular variant of papillary thyroid carcinoma (FVPTC, particularly the encapsulated subtype, often causes a diagnostic dilemma. We reconfirmed the molecular profiles in a large number of FVPTCs and investigated the efficacy of the preoperative mutational analysis in indeterminate thyroid nodules. BRAF V600E/K601E and RAS mutational analysis was performed on 187 FVPTCs. Of these, 132 (70.6% had a point mutation in one of the BRAF V600E (n=57, BRAF K601E (n=11, or RAS (n=64 genes. All mutations were mutually exclusive. The most common RAS mutations were at NRAS codon 61. FNA aspirates from 564 indeterminate nodules were prospectively tested for BRAF and RAS mutation and the surgical outcome was correlated with the mutational status. Fifty-seven and 47 cases were positive for BRAF and RAS mutation, respectively. Twenty-seven RAS-positive patients underwent surgery and all except one patient had FVPTC. The PPV and accuracy of RAS mutational analysis for predicting FVPTC were 96% and 84%, respectively. BRAF or RAS mutations were present in more than two-thirds of FVPTCs and these were mutually exclusive. BRAF mutational analysis followed by N, H, and KRAS codon 61 mutational analysis in indeterminate thyroid nodules would streamline the management of patients with malignancies, mostly FVPTC.

  12. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1998-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway...

  13. Metastatic function of BMP-2 in gastric cancer cells: The role of PI3K/AKT, MAPK, the NF-{kappa}B pathway, and MMP-9 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myoung Hee [Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Oh, Sang Cheul [Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Lee, Hyun Joo [Department of Pathology, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kang, Han Na; Kim, Jung Lim [Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kim, Jun Suk [Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Yoo, Young A., E-mail: ydanbi@korea.ac.kr [Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of)

    2011-07-15

    Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-{kappa}B, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of I{kappa}B{alpha} and the nuclear translocation/activation of NF-{kappa}B. Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-{kappa}B. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-{kappa}B inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-{kappa}B and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.

  14. Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS

    Science.gov (United States)

    Jun, Jesse E.; Yang, Ming; Chen, Hang; Chakraborty, Arup K.

    2013-01-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. PMID:23589333

  15. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1999-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway. C...

  16. Quantitative two-dimensional gel electrophoresis analysis of human fibroblasts transformed by ras oncogenes.

    Science.gov (United States)

    Miller, M J; Maher, V M; McCormick, J J

    1992-11-01

    Quantitative two-dimensional gel electrophoresis was used to compare the cellular protein patterns of a normal foreskin-derived human fibroblasts cell line (LG1) and three immortal derivatives of LG1. One derivative, designated MSU-1.1 VO, was selected for its ability to grow in the absence of serum and is non-tumorigenic in athymic mice. The other two strains were selected for focus-formation following transfection with either Ha-ras or N-ras oncogenes and form high grade malignant tumors. Correspondence and cluster analysis provided a nonbiased estimate of the relative similarity of the different two-dimensional patterns. These techniques separated the gel patterns into three distinct classes: LG1, MSU-1.1 VO, and the ras transformed cell strains. The MSU-1.1 VO cells were more closely related to the parental LG1 than to the ras-transformed cells. The differences between the three classes were primarily quantitative in nature: 16% of the spots demonstrated statistically significant changes (P 2) in the rate of incorporation of radioactive amino acids. The patterns from the two ras-transformed cell strains were similar, and variations in the expression of proteins that occurred between the separate experiments obscured consistent differences between the Ha-ras and N-ras transformed cells. However, while only 9 out of 758 spots were classified as different (1%), correspondence analysis could consistently separate the two ras transformants. One of these spots was five times more intense in the Ha-ras transformed cells than the N-ras.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Lactobacillus casei triggers a TLR mediated RACK-1 dependent p38 MAPK pathway in Caenorhabditis elegans to resist Klebsiella pneumoniae infection.

    Science.gov (United States)

    Kamaladevi, Arumugam; Balamurugan, Krishnaswamy

    2016-07-13

    In the present study, the effect of Lactic Acid Bacteria (LAB) was investigated at the molecular level using the model organism Caenorhabditis elegans against Klebsiella pneumoniae. Out of the 13 LAB screened, Lactobacillus casei displayed excellent protective efficacy by prolonging the survival of K. pneumoniae-infected nematodes. Pretreatment with L. casei significantly decreased bacterial colonization and rescued K. pneumoniae-infected C. elegans from various physiological impairments. The concomitant upregulation of key immune genes that regulate the TLR, RACK-1 as well as the p38 MAPK pathway rather than the IIS and ERK pathway suggested that the plausible immunomodulatory mechanism of L. casei could be by triggering the TLR, RACK-1 and p38 MAPK pathway. Furthermore, the hyper-susceptibility of L. casei treated loss-of-function mutants of the tol-1, RACK-1 and p38 MAPK pathway (sek-1 and pmk-1) to K. pneumoniae infection and gene expression analysis suggested that L. casei triggered a TLR mediated RACK-1 dependent p38 MAPK pathway to increase host resistance and protect nematodes against K. pneumoniae infection.

  18. Concurrent mutation in exons 1 and 2 of the K-ras oncogene in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Fiorella Guadagni

    2012-01-01

    Full Text Available The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine at codon 57. In addition, we found in the same patient’s sample a silent polymorphism at codon 11 (Ala11Ala of exon 1. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 729–733

  19. Primary murine CD4+ T cells fail to acquire the ability to produce effector cytokines when active Ras is present during Th1/Th2 differentiation.

    Directory of Open Access Journals (Sweden)

    Sujit V Janardhan

    Full Text Available Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo.

  20. MAPK Signaling Pathway Alters Expression of Midgut ALP and ABCC Genes and Causes Resistance to Bacillus thuringiensis Cry1Ac Toxin in Diamondback Moth

    Science.gov (United States)

    Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhu, Xun; Baxter, Simon W.; Zhou, Xuguo; Jurat-Fuentes, Juan Luis; Zhang, Youjun

    2015-01-01

    Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella. PMID:25875245

  1. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth.

    Directory of Open Access Journals (Sweden)

    Zhaojiang Guo

    2015-04-01

    Full Text Available Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L., was previously mapped to a multigenic resistance locus (BtR-1. Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella.

  2. K-ras mutations in sinonasal cancers in relation to wood dust exposure

    International Nuclear Information System (INIS)

    Bornholdt, Jette; Vogel, Ulla; Husgafvel-Pursiainen, Kirsti; Wallin, Håkan; Hansen, Johnni; Steiniche, Torben; Dictor, Michael; Antonsen, Annemarie; Wolff, Henrik; Schlünssen, Vivi; Holmila, Reetta; Luce, Danièle

    2008-01-01

    Cancer in the sinonasal tract is rare, but persons who have been occupationally exposed to wood dust have a substantially increased risk. It has been estimated that approximately 3.6 million workers are exposed to inhalable wood dust in EU. In previous small studies of this cancer, ras mutations were suggested to be related to wood dust exposure, but these studies were too limited to detect statistically significant associations. We examined 174 cases of sinonasal cancer diagnosed in Denmark in the period from 1991 to 2001. To ensure uniformity, all histological diagnoses were carefully reviewed pathologically before inclusion. Paraffin embedded tumour samples from 58 adenocarcinomas, 109 squamous cell carcinomas and 7 other carcinomas were analysed for K-ras codon 12, 13 and 61 point mutations by restriction fragment length polymorphisms and direct sequencing. Information on occupational exposure to wood dust and to potential confounders was obtained from telephone interviews and from registry data. Among the patients in this study, exposure to wood dust was associated with a 21-fold increased risk of having an adenocarcinoma than a squamous cell carcinoma compared to unexposed [OR = 21.0, CI = 8.0–55.0]. K-ras was mutated in 13% of the adenocarcinomas (seven patients) and in 1% of squamous cell carcinomas (one patient). Of these eight mutations, five mutations were located in the codon 12. The exact sequence change of remaining three could not be identified unambiguously. Among the five identified mutations, the G→A transition was the most common, and it was present in tumour tissue from two wood dust exposed adenocarcinoma patients and one patient with unknown exposure. Previously published studies of sinonasal cancer also identify the GGT → GAT transition as the most common and often related to wood dust exposure. Patients exposed to wood dust seemed more likely to develop adenocarcinoma compared to squamous cell carcinomas. K-ras mutations were detected

  3. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis.

    Science.gov (United States)

    Esteller, M; Toyota, M; Sanchez-Cespedes, M; Capella, G; Peinado, M A; Watkins, D N; Issa, J P; Sidransky, D; Baylin, S B; Herman, J G

    2000-05-01

    O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair protein that removes mutagenic and cytotoxic adducts from the O6 position of guanine. O6-methylguanine mispairs with thymine during replication, and if the adduct is not removed, this results in conversion from a guanine-cytosine pair to an adenine-thymine pair. In vitro assays show that MGMT expression avoids G to A mutations and MGMT transgenic mice are protected against G to A transitions at ras genes. We have recently demonstrated that the MGMT gene is silenced by promoter methylation in many human tumors, including colorectal carcinomas. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of K-ras mutations, we studied 244 colorectal tumor samples for MGMT promoter hypermethylation and K-ras mutational status. Our results show a clear association between the inactivation of MGMT by promoter hypermethylation and the appearance of G to A mutations at K-ras: 71% (36 of 51) of the tumors displaying this particular type of mutation had abnormal MGMT methylation, whereas only 32% (12 of 37) of those with other K-ras mutations not involving G to A transitions and 35% (55 of 156) of the tumors without K-ras mutations demonstrated MGMT methylation (P = 0.002). In addition, MGMT loss associated with hypermethylation was observed in the small adenomas, including those that do not yet contain K-ras mutations. Hypermethylation of other genes such as p16INK4a and p14ARF was not associated with either MGMT hypermethylation or K-ras mutation. Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to a particular genetic change in human cancer, specifically G to A transitions in the K-ras oncogene.

  4. Induction of nonapoptotic cell death by activated Ras requires inverse regulation of Rac1 and Arf6.

    Science.gov (United States)

    Bhanot, Haymanti; Young, Ashley M; Overmeyer, Jean H; Maltese, William A

    2010-10-01

    Methuosis is a unique form of nonapoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Methuosis can be induced in glioblastoma cells by expression of constitutively active Ras. This study identifies the small GTPases, Rac1 and Arf6, and the Arf6 GTPase-activating protein, GIT1, as key downstream components of the signaling pathway underlying Ras-induced methuosis. The extent to which graded expression of active H-Ras(G12V) triggers cytoplasmic vacuolization correlates with the amount of endogenous Rac1 in the active GTP state. Blocking Rac1 activation with the specific Rac inhibitor, EHT 1864, or coexpression of dominant-negative Rac1(T17N), prevents the accumulation of vacuoles induced by H-Ras(G12V). Coincident with Rac1 activation, H-Ras(G12V) causes a decrease in the amount of active Arf6, a GTPase that functions in the recycling of clathrin-independent endosomes. The effect of H-Ras(G12V) on Arf6 is blocked by EHT 1864, indicating that the decrease in Arf6-GTP is directly linked to the activation of Rac1. Constitutively active Rac1(G12V) interacts with GIT1 in immunoprecipitation assays. Ablation of GIT1 by short hairpin RNA prevents the decrease in active Arf6, inhibits vacuolization, and prevents loss of cell viability in cells expressing Rac1(G12V). Together, the results suggest that perturbations of endosome morphology associated with Ras-induced methuosis are due to downstream activation of Rac1 combined with reciprocal inactivation of Arf6. The latter seems to be mediated through Rac1 stimulation of GIT1. Further insights into this pathway could suggest opportunities for the induction of methuosis in cancers that are resistant to apoptotic cell death.

  5. K-Ras(V14I) -induced Noonan syndrome predisposes to tumour development in mice.

    Science.gov (United States)

    Hernández-Porras, Isabel; Schuhmacher, Alberto J; Garcia-Medina, Raquel; Jiménez, Beatriz; Cañamero, Marta; de Martino, Alba; Guerra, Carmen

    2016-06-01

    The Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. A significant proportion of NS patients may also develop myeloproliferative disorders (MPDs), including juvenile myelomonocytic leukaemia (JMML). Surprisingly, scarce information is available in relation to other tumour types in these patients. We have previously developed and characterized a knock-in mouse model that carries one of the most frequent KRAS-NS-related mutations, the K-Ras(V14I) substitution, which recapitulates most of the alterations described in NS patients, including MPDs. The K-Ras(V14I) mutation is a mild activating K-Ras protein; thus, we have used this model to study tumour susceptibility in comparison with mice expressing the classical K-Ras(G12V) oncogene. Interestingly, our studies have shown that these mice display a generalized tumour predisposition and not just MPDs. In fact, we have observed that the K-Ras(V14I) mutation is capable of cooperating with the p16Ink4a/p19Arf and Trp53 tumour suppressors, as well as with other risk factors such as pancreatitis, thereby leading to a higher cancer incidence. In conclusion, our results illustrate that the K-Ras(V14I) activating protein is able to induce cancer, although at a much lower level than the classical K-Ras(G12V) oncogene, and that it can be significantly modulated by both genetic and non-genetic events. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. Constitutional bone impairment in Noonan syndrome.

    Science.gov (United States)

    Baldassarre, Giuseppina; Mussa, Alessandro; Carli, Diana; Molinatto, Cristina; Ferrero, Giovanni Battista

    2017-03-01

    Noonan syndrome (NS) is an autosomal dominant trait characterized by genotypic and phenotypic variability. It belongs to the Ras/MAPK pathway disorders collectively named Rasopathies or neurocardiofaciocutaneous syndromes. Phenotype is characterized by short stature, congenital heart defects, facial dysmorphisms, skeletal and ectodermal anomalies, cryptorchidism, mild to moderate developmental delay/learning disability, and tumor predisposition. Short stature and skeletal dysmorphisms are almost constant and several studies hypothesized a role for the RAS pathway in regulating bone metabolism. In this study, we investigated the bone quality assessed by phalangeal quantitative ultrasound (QUS) and the metabolic bone profiling in a group of patients with NS, to determine whether low bone mineralization is primary or secondary to NS characteristics. Thirty-five patients were enrolled, including 20 males (55.6%) and 15 females (44.5%) aged 1.0-17.8 years (mean 6.4 ± 4.5, median 4.9 years). Each patients was submitted to clinical examination, estimation of the bone age, laboratory assays, and QUS assessment. Twenty-five percent of the cohort shows reduced QUS values for their age based on bone transmission time. Bone measurement were adjusted for multiple factors frequently observed in NS patients, such as growth retardation, delayed bone age, retarded puberty, and reduced body mass index, potentially affecting bone quality or its appraisal. In spite of the correction attempts, QUS measurement indicates that bone impairment persists in nearly 15% of the cohort studied. Our results indicate that bone impairment in NS is likely primary and not secondary to any of the phenotypic traits of NS, nor consistent with metabolic disturbances. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. GGCX-Associated Phenotypes: An Overview in Search of Genotype-Phenotype Correlations

    Directory of Open Access Journals (Sweden)

    Eva Y. G. De Vilder

    2017-01-01

    Full Text Available Gamma-carboxylation, performed by gamma-glutamyl carboxylase (GGCX, is an enzymatic process essential for activating vitamin K-dependent proteins (VKDP with important functions in various biological processes. Mutations in the encoding GGCX gene are associated with multiple phenotypes, amongst which vitamin K-dependent coagulation factor deficiency (VKCFD1 is best known. Other patients have skin, eye, heart or bone manifestations. As genotype–phenotype correlations were never described, literature was systematically reviewed in search of patients with at least one GGCX mutation with a phenotypic description, resulting in a case series of 47 patients. Though this number was too low for statistically valid correlations—a frequent problem in orphan diseases—we demonstrate the crucial role of the horizontally transferred transmembrane domain in developing cardiac and bone manifestations. Moreover, natural history suggests ageing as the principal determinant to develop skin and eye symptoms. VKCFD1 symptoms seemed more severe in patients with both mutations in the same protein domain, though this could not be linked to a more perturbed coagulation factor function. Finally, distinct GGCX functional domains might be dedicated to carboxylation of very specific VKDP. In conclusion, this systematic review suggests that there indeed may be genotype–phenotype correlations for GGCX-related phenotypes, which can guide patient counseling and management.

  8. Programmed Cell-to-Cell Variability in Ras Activity Triggers Emergent Behaviors during Mammary Epithelial Morphogenesis

    Directory of Open Access Journals (Sweden)

    Jennifer S. Liu

    2012-11-01

    Full Text Available Variability in signaling pathway activation between neighboring epithelial cells can arise from local differences in the microenvironment, noisy gene expression, or acquired genetic changes. To investigate the consequences of this cell-to-cell variability in signaling pathway activation on coordinated multicellular processes such as morphogenesis, we use DNA-programmed assembly to construct three-dimensional MCF10A microtissues that are mosaic for low-level expression of activated H-Ras. We find two emergent behaviors in mosaic microtissues: cells with activated H-Ras are basally extruded or lead motile multicellular protrusions that direct the collective motility of their wild-type neighbors. Remarkably, these behaviors are not observed in homogeneous microtissues in which all cells express the activated Ras protein, indicating that heterogeneity in Ras activity, rather than the total amount of Ras activity, is critical for these processes. Our results directly demonstrate that cell-to-cell variability in pathway activation within local populations of epithelial cells can drive emergent behaviors during epithelial morphogenesis.

  9. Sphingosine-1-Phosphate Mediates ICAM-1-Dependent Monocyte Adhesion through p38 MAPK and p42/p44 MAPK-Dependent Akt Activation

    Science.gov (United States)

    Lin, Chih-Chung; Lee, I-Ta; Hsu, Chun-Hao; Hsu, Chih-Kai; Chi, Pei-Ling; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-01-01

    Up-regulation of intercellular adhesion molecule-1 (ICAM-1) is frequently implicated in lung inflammation. Sphingosine-1-phosphate (S1P) has been shown to play a key role in inflammation via adhesion molecules induction, and then causes lung injury. However, the mechanisms underlying S1P-induced ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain unclear. The effect of S1P on ICAM-1 expression was determined by Western blot and real-time PCR. The involvement of signaling pathways in these responses was investigated by using the selective pharmacological inhibitors and transfection with siRNAs. S1P markedly induced ICAM-1 expression and monocyte adhesion which were attenuated by pretreatment with the inhibitor of S1PR1 (W123), S1PR3 (CAY10444), c-Src (PP1), EGFR (AG1478), PDGFR (AG1296), MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), PI3K (LY294002), or AP-1 (Tanshinone IIA) and transfection with siRNA of S1PR1, S1PR3, c-Src, EGFR, PDGFR, p38, p42, JNK1, c-Jun, or c-Fos. We observed that S1P-stimulated p42/p44 MAPK and p38 MAPK activation was mediated via a c-Src/EGFR and PDGFR-dependent pathway. S1P caused the c-Src/EGFR/PDGFR complex formation. On the other hand, we demonstrated that S1P induced p42/p44 MAPK and p38 MAPK-dependent Akt activation. In addition, S1P-stimulated JNK1/2 phosphorylation was attenuated by SP600125 or PP1. Finally, S1P enhanced c-Fos mRNA levels and c-Jun phosphorylation. S1P-induced c-Jun activation was reduced by PP1, AG1478, AG1296, U0126, SP600125, SB202190, or LY294002. These results demonstrated that S1P-induced ICAM-1 expression and monocyte adhesion were mediated through S1PR1/3/c-Src/EGFR, PDGFR/p38 MAPK, p42/p44 MAPK/Akt-dependent AP-1 activation. PMID:25734900

  10. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis

    International Nuclear Information System (INIS)

    Tsujita, Maristela; Batista, Wagner L.; Ogata, Fernando T.; Stern, Arnold; Monteiro, Hugo P.; Arai, Roberto J.

    2008-01-01

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras C118S ) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG

  11. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor β signal transduction in human glioblastoma cells

    International Nuclear Information System (INIS)

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra; Zupanska, Agata; Chouaib, Salem; Kaminska, Bozena

    2007-01-01

    Transforming growth factor-beta (TGF-β) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-β by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-β1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-β receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2 and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-β1-induced signalling

  12. Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Lmbr1.

    OpenAIRE

    Clark, R M; Marker, P C; Roessler, E; Dutra, A; Schimenti, J C; Muenke, M; Kingsley, D M

    2001-01-01

    The major locus for dominant preaxial polydactyly in humans has been mapped to 7q36. In mice the dominant Hemimelic extra toes (Hx) and Hammertoe (Hm) mutations map to a homologous chromosomal region and cause similar limb defects. The Lmbr1 gene is entirely within the small critical intervals recently defined for both the mouse and human mutations and is misexpressed at the exact time that the mouse Hx phenotype becomes apparent during limb development. This result suggests that Lmbr1 may un...

  13. [Intracellular signaling mechanisms in thyroid cancer].

    Science.gov (United States)

    Mondragón-Terán, Paul; López-Hernández, Luz Berenice; Gutiérrez-Salinas, José; Suárez-Cuenca, Juan Antonio; Luna-Ceballos, Rosa Isela; Erazo Valle-Solís, Aura

    2016-01-01

    Thyroid cancer is the most common malignancy of the endocrine system, the papillary variant accounts for 80-90% of all diagnosed cases. In the development of papillary thyroid cancer, BRAF and RAS genes are mainly affected, resulting in a modification of the system of intracellular signaling proteins known as «protein kinase mitogen-activated» (MAPK) which consist of «modules» of internal signaling proteins (Receptor/Ras/Raf/MEK/ERK) from the cell membrane to the nucleus. In thyroid cancer, these signanling proteins regulate diverse cellular processes such as differentiation, growth, development and apoptosis. MAPK play an important role in the pathogenesis of thyroid cancer as they are used as molecular biomarkers for diagnostic, prognostic and as possible therapeutic molecular targets. Mutations in BRAF gene have been correlated with poor response to treatment with traditional chemotherapy and as an indicator of poor prognosis. To review the molecular mechanisms involved in intracellular signaling of BRAF and RAS genes in thyroid cancer. Molecular therapy research is in progress for this type of cancer as new molecules have been developed in order to inhibit any of the components of the signaling pathway (RET/PTC)/Ras/Raf/MEK/ERK; with special emphasis on the (RET/PTC)/Ras/Raf section, which is a major effector of ERK pathway. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  14. Phosphofructokinase-P Modulates P44/42 MAPK Levels in HeLa Cells.

    Science.gov (United States)

    Cardim Pires, Thyago Rubens; Albanese, Jamille Mansur; Schwab, Michael; Marette, André; Carvalho, Renato Sampaio; Sola-Penna, Mauro; Zancan, Patricia

    2017-05-01

    It is known that interfering with glycolysis leads to profound modification of cancer cell proliferation. However, energy production is not the major reason for this correlation. Here, using HeLa cells as a model for cancer, we demonstrate that phosphofructokinase-P (PFK-P), which is overexpressed in diverse types of cancer including HeLa cells, modulates expression of P44/42 mitogen-activated protein kinase (MAPK). Silencing of PFK-P did not alter HeLa cell viability or energy production, including the glycolytic rate. On the other hand, silencing of PFK-P induced the downregulation of p44/42 MAPK, augmenting the sensitivity of HeLa cells to different drugs. Conversely, overexpression of PFK-P promotes the upregulation of p44/42 MAPK, making the cells more resistant to the drugs. These results indicate that overexpression of PFK-P by cancer cells is related to activation of survival pathways via upregulation of MAPK and suggest PFK-P as a promising target for cancer therapy. J. Cell. Biochem. 118: 1216-1226, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Literature review : performance of RAP/RAS mixes and new direction.

    Science.gov (United States)

    2014-04-01

    In the last several years reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) have been : widely used in asphalt mixes in Texas. The use of RAP/RAS can significantly reduce the initial cost of : asphalt mixtures, conserve energy, and...

  16. Gain-of-function mutations in the ALS8 causative gene VAPB have detrimental effects on neurons and muscles

    Directory of Open Access Journals (Sweden)

    Mario Sanhueza

    2013-12-01

    Amyotrophic Lateral Sclerosis (ALS is a motor neuron degenerative disease characterized by a progressive, and ultimately fatal, muscle paralysis. The human VAMP-Associated Protein B (hVAPB is the causative gene of ALS type 8. Previous studies have shown that a loss-of-function mechanism is responsible for VAPB-induced ALS. Recently, a novel mutation in hVAPB (V234I has been identified but its pathogenic potential has not been assessed. We found that neuronal expression of the V234I mutant allele in Drosophila (DVAP-V260I induces defects in synaptic structure and microtubule architecture that are opposite to those associated with DVAP mutants and transgenic expression of other ALS-linked alleles. Expression of DVAP-V260I also induces aggregate formation, reduced viability, wing postural defects, abnormal locomotion behavior, nuclear abnormalities, neurodegeneration and upregulation of the heat-shock-mediated stress response. Similar, albeit milder, phenotypes are associated with the overexpression of the wild-type protein. These data show that overexpressing the wild-type DVAP is sufficient to induce the disease and that DVAP-V260I is a pathogenic allele with increased wild-type activity. We propose that a combination of gain- and loss-of-function mechanisms is responsible for VAPB-induced ALS.

  17. The Drosophila Arf GEF Steppke controls MAPK activation in EGFR signaling.

    Science.gov (United States)

    Hahn, Ines; Fuss, Bernhard; Peters, Annika; Werner, Tamara; Sieberg, Andrea; Gosejacob, Dominic; Hoch, Michael

    2013-06-01

    Guanine nucleotide exchange factors (GEFs) of the cytohesin protein family are regulators of GDP/GTP exchange for members of the ADP ribosylation factor (Arf) of small GTPases. They have been identified as modulators of various receptor tyrosine kinase signaling pathways including the insulin, the vascular epidermal growth factor (VEGF) and the epidermal growth factor (EGF) pathways. These pathways control many cellular functions, including cell proliferation and differentiation, and their misregulation is often associated with cancerogenesis. In vivo studies on cytohesins using genetic loss of function alleles are lacking, however, since knockout mouse models are not available yet. We have recently identified mutants for the single cytohesin Steppke (Step) in Drosophila and we could demonstrate an essential role of Step in the insulin signaling cascade. In the present study, we provide in vivo evidence for a role of Step in EGFR signaling during wing and eye development. By analyzing step mutants, transgenic RNA interference (RNAi) and overexpression lines for tissue specific as well as clonal analysis, we found that Step acts downstream of the EGFR and is required for the activation of mitogen-activated protein kinase (MAPK) and the induction of EGFR target genes. We further demonstrate that step transcription is induced by EGFR signaling whereas it is negatively regulated by insulin signaling. Furthermore, genetic studies and biochemical analysis show that Step interacts with the Connector Enhancer of KSR (CNK). We propose that Step may be part of a larger signaling scaffold coordinating receptor tyrosine kinase-dependent MAPK activation.

  18. Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway.

    Science.gov (United States)

    Jeong, Woo-Jeong; Ro, Eun Ji; Choi, Kang-Yell

    2018-01-01

    Aberrant activation of the Wnt/β-catenin and RAS-extracellular signal-regulated kinase (ERK) pathways play important roles in the tumorigenesis of many different types of cancer, most notably colorectal cancer (CRC). Genes for these two pathways, such as adenomatous polyposis coli ( APC ) and KRAS are frequently mutated in human CRC, and involved in the initiation and progression of the tumorigenesis, respectively. Moreover, recent studies revealed interaction of APC and KRAS mutations in the various stages of colorectal tumorigenesis and even in metastasis accompanying activation of the cancer stem cells (CSCs). A key event in the synergistic cooperation between Wnt/β-catenin and RAS-ERK pathways is a stabilization of both β-catenin and RAS especially mutant KRAS by APC loss, and pathological significance of this was indicated by correlation of increased β-catenin and RAS levels in human CRC where APC mutations occur as high as 90% of CRC patients. Together with the notion of the protein activity reduction by lowering its level, inhibition of both β-catenin and RAS especially by degradation could be a new ideal strategy for development of anti-cancer drugs for CRC. In this review, we will discuss interaction between the Wnt/β-catenin and RAS-ERK pathways in the colorectal tumorigenesis by providing the mechanism of RAS stabilization by aberrant activation of Wnt/β-catenin. We will also discuss our small molecular anti-cancer approach controlling CRC by induction of specific degradations of both β-catenin and RAS via targeting Wnt/β-catenin pathway especially for the KYA1797K, a small molecule specifically binding at the regulator of G-protein signaling (RGS)-domain of Axin.

  19. CNS germinomas are characterized by global demethylation, chromosomal instability and mutational activation of the Kit-, Ras/Raf/Erk- and Akt-pathways

    Science.gov (United States)

    Schulte, Simone Laura; Waha, Andreas; Steiger, Barbara; Denkhaus, Dorota; Dörner, Evelyn; Calaminus, Gabriele; Leuschner, Ivo; Pietsch, Torsten

    2016-01-01

    CNS germinomas represent a unique germ cell tumor entity characterized by undifferentiated tumor cells and a high response rate to current treatment protocols. Limited information is available on their underlying genomic, epigenetic and biological alterations. We performed a genome-wide analysis of genomic copy number alterations in 49 CNS germinomas by molecular inversion profiling. In addition, CpG dinucleotide methylation was studied by immunohistochemistry for methylated cytosine residues. Mutational analysis was performed by resequencing of candidate genes including KIT and RAS family members. Ras/Erk and Akt pathway activation was analyzed by immunostaining with antibodies against phospho-Erk, phosho-Akt, phospho-mTOR and phospho-S6. All germinomas coexpressed Oct4 and Kit but showed an extensive global DNA demethylation compared to other tumors and normal tissues. Molecular inversion profiling showed predominant genomic instability in all tumors with a high frequency of regional gains and losses including high level gene amplifications. Activating mutations of KIT exons 11, 13, and 17 as well as a case with genomic KIT amplification and activating mutations or amplifications of RAS gene family members including KRAS, NRAS and RRAS2 indicated mutational activation of crucial signaling pathways. Co-activation of Ras/Erk and Akt pathways was present in 83% of germinomas. These data suggest that CNS germinoma cells display a demethylated nuclear DNA similar to primordial germ cells in early development. This finding has a striking coincidence with extensive genomic instability. In addition, mutational activation of Kit-, Ras/Raf/Erk- and Akt- pathways indicate the biological importance of these pathways and their components as potential targets for therapy. PMID:27391150

  20. Transcriptional Profile of Ki-Ras-Induced Transformation of Thyroid Cells

    DEFF Research Database (Denmark)

    Visconti, Roberta; Federico, Antonella; Coppola, Valeria

    2007-01-01

    Abstract In the last years, an increasing number of experiments has provided compelling evidence for a casual role of Ras protein mutations, resulting in their constitutive activation, in thyroid carcinogenesis. However, despite the clear involvement of Ras proteins in thyroid carcinogenesis, the...

  1. Functional Gain After Inpatient Stroke Rehabilitation: Correlates and Impact on Long-Term Survival.

    Science.gov (United States)

    Scrutinio, Domenico; Monitillo, Vincenzo; Guida, Pietro; Nardulli, Roberto; Multari, Vincenzo; Monitillo, Francesco; Calabrese, Gianluigi; Fiore, Pietro

    2015-10-01

    Prediction of functional outcome after stroke rehabilitation (SR) is a growing field of interest. The association between SR and survival still remains elusive. We sought to investigate the factors associated with functional outcome after SR and whether the magnitude of functional improvement achieved with rehabilitation is associated with long-term mortality risk. The study population consisted of 722 patients admitted for SR within 90 days of stroke onset, with an admission functional independence measure (FIM) score of stroke onset to rehabilitation admission (PStroke Scale score at rehabilitation admission (P<0.001), and aphasia (P=0.021) were independently associated with FIM gain. The R2 of the model was 0.275. During a median follow-up of 6.17 years, 36.9% of the patients died. At multivariable Cox analysis, age (P<0.0001), coronary heart disease (P=0.018), atrial fibrillation (P=0.042), total cholesterol (P=0.015), and total FIM gain (P<0.0001) were independently associated with mortality. The adjusted hazard ratio for death significantly decreased across tertiles of increasing FIM gain. Several factors are independently associated with functional gain after SR. Our findings strongly suggest that the magnitude of functional improvement is a powerful predictor of long-term mortality in patients admitted for SR. © 2015 American Heart Association, Inc.

  2. Functional specialization and phenotypic generalization in the pollination system of an epiphytic cactus

    Directory of Open Access Journals (Sweden)

    Cristiane Martins

    2018-03-01

    Full Text Available ABSTRACT Plant-pollinator interactions range from obligatory specialists to facultative generalists, and floral morphology and pollination system may not match completely. The floral biology, reproductive system and floral visitors of a species of the tribe Rhipsalideae were investigated with a focus on the consistency between the pollination system and the floral phenotype. Rhipsalis neves-armondii is an obligate xenogamous species, due to self-sterility. Its flowers are white, small and diurnal, and radially symmetrical. These features, along with their small amount of nectar, characterize the flowers as phenotypic generalists. The most frequent pollinators were a solitary oligolectic species of Andrenidae (Rhophitulus solani, two species of Meliponinae (Trigona spinipes and T. braueri and Apis mellifera. Despite the generalist floral phenotype, the pollination system is functionally specialized, since only small bees performed effective visits. Flowers of R. neves-armondii may represent a case of cryptic floral specialization in which attributes other than morphology act as filters, restricting them to a single functional group of pollinators. Moreover, the four most frequent species of pollinators cover a spectrum ranging from solitary oligolectic to social polylectic bees, including an exotic species. These results illustrate the distinct dimensions of specialization-generalization that may occur in the pollination process of a single species.

  3. The levels of mutant K-RAS and mutant N-RAS are rapidly reduced in a Beclin1 / ATG5 -dependent fashion by the irreversible ERBB1/2/4 inhibitor neratinib

    OpenAIRE

    Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Kirkwood, John; Sander, Cindy; Avogadri-Connors, Francesca; Cutler Jr, Richard E.; Lalani, Alshad S.; Dent, Paul

    2017-01-01

    ABSTRACT The FDA approved irreversible inhibitor of ERBB1/2/4, neratinib, was recently shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET and mutant K-RAS via autophagic degradation. In the present studies, in a dose-dependent fashion, neratinib reduced the expression levels of mutant K-RAS or of mutant N-RAS, which was augmented in an additive to greater than additive fashion by the HDAC inhibitors sodium valproate and AR42. Neratinib could reduce PDGFR...

  4. Alphavirus production is inhibited in neurofibromin 1-deficient cells through activated RAS signalling

    International Nuclear Information System (INIS)

    Kolokoltsova, Olga A.; Domina, Aaron M.; Kolokoltsov, Andrey A.; Davey, Robert A.; Weaver, Scott C.; Watowich, Stanley J.

    2008-01-01

    Virus-host interactions essential for alphavirus pathogenesis are poorly understood. To address this shortcoming, we coupled retrovirus insertional mutagenesis and a cell survival selection strategy to generate clonal cell lines broadly resistant to Sindbis virus (SINV) and other alphaviruses. Resistant cells had significantly impaired SINV production relative to wild-type (WT) cells, although virus binding and fusion events were similar in both sets of cells. Analysis of the retroviral integration sites identified the neurofibromin 1 (NF1) gene as disrupted in alphavirus-resistant cell lines. Subsequent analysis indicated that expression of NF1 was significantly reduced in alphavirus-resistant cells. Importantly, independent down-regulation of NF1 expression in WT HEK 293 cells decreased virus production and increased cell viability during SINV infection, relative to infected WT cells. Additionally, we observed hyperactive RAS signalling in the resistant HEK 293 cells, which was anticipated because NF1 is a negative regulator of RAS. Expression of constitutively active RAS (HRAS-G12V) in a WT HEK 293 cell line resulted in a marked delay in virus production, compared with infected cells transfected with parental plasmid or dominant-negative RAS (HRAS-S17N). This work highlights novel host cell determinants required for alphavirus pathogenesis and suggests that RAS signalling may play an important role in neuronal susceptibility to SINV infection

  5. The Expression, Purification, and Characterization of a Ras Oncogene (Bras2) in Silkworm (Bombyx mori)

    OpenAIRE

    Lv, Zhengbing; Wang, Tao; Zhuang, Wenhua; Wang, Dan; Chen, Jian; Nie, Zuoming; Liu, Lili; Zhang, Wenping; Wang, Lisha; Wang, Deming; Wu, Xiangfu; Li, Jun; Qian, Lian; Zhang, Yaozhou

    2013-01-01

    The Ras oncogene of silkworm pupae (Bras2) may belong to the Ras superfamily. It shares 77% of its amino acid identity with teratocarcinoma oncogene 21 (TC21) related ras viral oncogene homolog-2 (R-Ras2) and possesses an identical core effector region. The mRNA of Bombyx mori Bras2 has 1412 bp. The open reading frame contains 603 bp, which encodes 200 amino acid residues. This recombinant BmBras2 protein was subsequently used as an antigen to raise a rabbit polyclonal antibody. Western blott...

  6. Id-1 is induced in MDCK epithelial cells by activated Erk/MAPK pathway in response to expression of the Snail and E47 transcription factors

    International Nuclear Information System (INIS)

    Jorda, Mireia; Vinyals, Antonia; Marazuela, Anna; Cubillo, Eva; Olmeda, David; Valero, Eva; Cano, Amparo; Fabra, Angels

    2007-01-01

    Id-1, a member of the helix-loop-helix transcription factor family has been shown to be involved in cell proliferation, angiogenesis and invasion of many types of human cancers. We have previously shown that stable expression of E47 and Snail repressors of the E-cadherin promoter in MDCK epithelial cell line triggers epithelial mesenchymal transition (EMT) concomitantly with changes in gene expression. We show here that both factors activate the Id-1 gene promoter and induce Id-1 mRNA and protein. The upregulation of the Id-1 gene occurs through the transactivation of the promoter by the Erk/MAPK signaling pathway. Moreover, oncogenic Ras is also able to activate Id-1 promoter in MDCK cells in the absence of both E47 and Snail transcription factors. Several transcriptionally active regulatory elements have been identified in the proximal promoter, including AP-1, Sp1 and four putative E-boxes. By EMSA, we only detected an increased binding to Sp1 and AP-1 elements in E47- and Snail-expressing cells. Binding is affected by the treatment of cells with PD 98059 MEK inhibitor, suggesting that MAPK/Erk contributes to the recruitment or assembly of proteins to Id-1 promoter. Small interfering RNA directed against Sp1 reduced Id-1 expression and the upregulation of the promoter, indicating that Sp1 is required for Id-1 induction in E47- and Snail-expressing cells. Our results provide new insights into how some target genes are activated during and/or as a consequence of the EMT triggered by both E47 and Snail transcription factors

  7. Attenuated expression of the tight junction proteins is involved in clopidogrel-induced gastric injury through p38 MAPK activation

    International Nuclear Information System (INIS)

    Wu, Hai-Lu; Gao, Xin; Jiang, Zong-Dan; Duan, Zhao-Tao; Wang, Shu-Kui; He, Bang-Shun; Zhang, Zhen-Yu; Xie, Hong-Guang

    2013-01-01

    Highlights: ► Clopidogrel suppressed GES-1 cell viability in a concentration- and time-dependent manner. ► Clopidogrel significantly increased dextran permeability, reduced occludin and ZO-1 expression, and induced cell apoptosis. ► Clopidogrel activated p38 MAPK signaling pathway. ► Activation of p38 activity was involved in clopidogrel-induced increase in gastric epithelial cells permeability and disruption of TJ. -- Abstract: Bleeding complications and delayed healing of gastric ulcer associated with use of clopidogrel is a common clinical concern; however, the underlying mechanisms remain to be determined. This study aimed to clarify whether clopidogrel could cause the damage of the human gastric epithelial cells and to further elucidate the mechanisms involved. After human gastric epithelial cell line GES-1 had been treated with clopidogrel (0.5–2.5 mM), the cell proliferation was examined by MTT assay, apoptosis was measured with DAPI staining and flow cytometry analysis, and the barrier function of the tight junctions (TJ) was evaluated by permeability measurement and transmission electron microscopy. Moreover, expression of the TJ proteins occludin and ZO-1 and the phosphorylation of the mitogen-activated protein kinases (MAPK) p38, ERK, and JNK were examined by western blot. In addition, three MAPK inhibitors specific to p38, ERK and JNK were used, respectively, to verify the signaling pathways responsible for regulating the expression of the TJ proteins being tested. Results showed that clopidogrel significantly increased dextran permeability, induced apoptosis, suppressed GES-1 cell viability, and reduced the expression of the TJ proteins (occludin and ZO-1), acting through p38 MAPK phosphorylation. Furthermore, these observed effects were partially abolished by SB-203580 (a p38 MAPK inhibitor), rather than by either U-0126 (an ERK inhibitor) or SP-600125 (a JNK inhibitor), suggesting that clopidogrel-induced disruption in the gastric

  8. Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems.

    Science.gov (United States)

    Pant, Sanjay

    2018-05-01

    A new class of functions, called the 'information sensitivity functions' (ISFs), which quantify the information gain about the parameters through the measurements/observables of a dynamical system are presented. These functions can be easily computed through classical sensitivity functions alone and are based on Bayesian and information-theoretic approaches. While marginal information gain is quantified by decrease in differential entropy, correlations between arbitrary sets of parameters are assessed through mutual information. For individual parameters, these information gains are also presented as marginal posterior variances, and, to assess the effect of correlations, as conditional variances when other parameters are given. The easy to interpret ISFs can be used to (a) identify time intervals or regions in dynamical system behaviour where information about the parameters is concentrated; (b) assess the effect of measurement noise on the information gain for the parameters; (c) assess whether sufficient information in an experimental protocol (input, measurements and their frequency) is available to identify the parameters; (d) assess correlation in the posterior distribution of the parameters to identify the sets of parameters that are likely to be indistinguishable; and (e) assess identifiability problems for particular sets of parameters. © 2018 The Authors.

  9. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    International Nuclear Information System (INIS)

    Dougherty, Gerard W.; Chopp, Treasa; Qi Shengmei; Cutler, Mary Lou

    2005-01-01

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion

  10. Ras activation by SOS

    DEFF Research Database (Denmark)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen

    2014-01-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual ...

  11. Phenotypic Approaches to Drought in Cassava: Review

    Directory of Open Access Journals (Sweden)

    Emmanuel eOkogbenin

    2013-05-01

    Full Text Available Cassava is an important crop in Africa, Asia, Latin America and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12 - 18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance

  12. Sequence alignment reveals possible MAPK docking motifs on HIV proteins.

    Directory of Open Access Journals (Sweden)

    Perry Evans

    Full Text Available Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs. MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.

  13. The search for Pleiades in trait constellations: functional integration and phenotypic selection in the complex flowers of Morrenia brachystephana (Apocynaceae).

    Science.gov (United States)

    Baranzelli, M C; Sérsic, A N; Cocucci, A A

    2014-04-01

    Pollinator-mediated natural selection on single traits, such as corolla tube or spur length, has been well documented. However, flower phenotypes are usually complex, and selection is expected to act on several traits that functionally interact rather than on a single isolated trait. Despite the fact that selection on complex phenotypes is expectedly widespread, multivariate selection modelling on such phenotypes still remains under-explored in plants. Species of the subfamily Asclepiadoideae (Apocynaceae) provide an opportunity to study such complex flower contrivances integrated by fine-scaled organs from disparate developmental origin. We studied the correlation structure among linear floral traits (i) by testing a priori morphological, functional or developmental hypotheses among traits and (ii) by exploring the organization of flower covariation, considering alternative expectations of modular organization or whole flower integration through conditional dependence analysis (CDA) and integration matrices. The phenotypic selection approach was applied to determine whether floral traits involved in the functioning of the pollination mechanism were affected by natural selection. Floral integration was low, suggesting that flowers are organized in more than just one correlation pleiad; our hypothetical functional correlation matrix was significantly correlated with the empirical matrix, and the CDA revealed three putative modules. Analyses of phenotypic selection showed significant linear and correlational gradients, lending support to expectations of functional interactions between floral traits. Significant correlational selection gradients found involved traits of different floral whorls, providing evidence for the existence of functional integration across developmental domains. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  14. FGFR3, PIK3CA and RAS mutations in benign lichenoid keratosis.

    Science.gov (United States)

    Groesser, L; Herschberger, E; Landthaler, M; Hafner, C

    2012-04-01

    Benign lichenoid keratoses (BLKs) are solitary skin lesions which have been proposed to represent a regressive form of pre-existent epidermal tumours such as solar lentigo or seborrhoeic keratosis. However, the genetic basis of BLK is unknown. FGFR3, PIK3CA and RAS mutations have been shown to be involved in the pathogenesis of seborrhoeic keratosis and solar lentigo. We thus investigated whether these mutations are also present in BLK. After manual microdissection and DNA isolation, 52 BLKs were screened for FGFR3, PIK3CA and RAS hotspot mutations using SNaPshot(®) multiplex assays. We identified 6/52 (12%) FGFR3 mutations, 10/52 (19%) PIK3CA mutations, 6/52 (12%) HRAS mutations and 2/52 (4%) KRAS mutations. FGFR3 and RAS mutations were mutually exclusive. One BLK showed a simultaneous PIK3CA and HRAS mutation. In nine BLKs with a mutation, nonlesional control tissue from the epidermal margin and the dermal lymphocytic infiltrate were wild-type, indicating that these mutations are somatic. To demonstrate that these findings are specific, 10 samples of lichen planus were analysed without evidence for FGFR3, PIK3CA or RAS mutations. Our results indicate that FGFR3, PIK3CA and RAS mutations are present in approximately 50% of BLKs. These findings support the concept on the molecular genetic level that at least a proportion of BLKs represents regressive variants resulting from former benign epidermal tumours such as seborrhoeic keratosis and solar lentigo. © 2011 The Authors. BJD © 2011 British Association of Dermatologists 2011.

  15. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.

    Science.gov (United States)

    Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel

    2006-09-01

    The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.

  16. Functional characterizations of venom phenotypes in the eastern diamondback rattlesnake (Crotalus adamanteus) and evidence for expression-driven divergence in toxic activities among populations

    Science.gov (United States)

    Margres, Mark J.; Walls, Robert; Suntravat, Montamas; Lucena, Sara; Sánchez, Elda E.; Rokyta, Darin R.

    2016-01-01

    Phenotypes frequently vary across and within species. The connection between specific phenotypic effects and function, however, is less understood despite being essential to our understanding of the adaptive process. Snake venoms are ideal for identifying functionally important phenotypic variation because venom variation is common, and venoms can be functionally characterized through simple assays and toxicity measurements. Previous work with the eastern diamondback rattlesnake (Crotalus adamanteus) used multivariate statistical approaches to identify six unique venom phenotypes. We functionally characterized hemolytic, gelatinase, fibrinogenolytic, and coagulant activity for all six phenotypes, as well as one additional venom, to determine if the statistically significant differences in toxin expression levels previously documented corresponded to differences in venom activity. In general, statistical differences in toxin expression predicted the identified functional differences, or lack thereof, in toxic activity, demonstrating that the statistical approach used to characterize C. adamanteus venoms was a fair representation of biologically meaningful differences. Minor differences in activity not accounted for by the statistical model may be the result of amino-acid differences and/or post-translational modifications, but overall we were able to link variation in protein expression levels to variation in function as predicted by multivariate statistical approaches. PMID:27179420

  17. Protective Effects of Let-7b on the Expression of Occludin by Targeting P38 MAPK in Preventing Intestinal Barrier Dysfunction

    Directory of Open Access Journals (Sweden)

    Zhihua Liu

    2018-01-01

    Full Text Available Background/Aims: Let-7b was dramatically reduced after a dicer knockout of mice with intestinal barrier function injuries. This paper aims to investigate the molecular mechanism of let-7b by targeting p38 MAPK in preventing intestinal barrier dysfunction. Methods: A total of 186 patients were enrolled, with 93 in the control group and 93 in the PRO group. Only 158 patients completed the entire study, whereas the others either did not meet the inclusion criteria or refused to participate. To further verify the role of let-7b, intestinal epithelial conditional knockout (IKO mice of mmu-let-7b model were established. Serum let-7b, zonulin, IL-6, and TNF-α concentrations were measured by ELISA or quantitative RT-PCR. Permeability assay was done by ussing chamber. The apoptotic cells were identified using an In Situ Cell Death Detection Kit. Protein was detected by western blot. Results: Probiotics can lower infection-related complications, as well as increase the serum and tissue let-7b levels. P38 MAPK was identified as the target of let-7b, as verified by NCM460 cells. P38 MAPK expression was increased, whereas tight-junction (TJ proteins were significantly decreased in let-7b IKO mice (both P<0.05. Negative regulation of p38 MAPK molecular signaling pathways was involved in the protective effects of let-7b on intestinal barrier function. Conclusion: Let-7b was identified as a novel diagnosis biomarker or a potential treatment target for preventing intestinal barrier dysfunction.

  18. Protective Effects of Let-7b on the Expression of Occludin by Targeting P38 MAPK in Preventing Intestinal Barrier Dysfunction.

    Science.gov (United States)

    Liu, Zhihua; Tian, Yinghai; Jiang, Yanqiong; Chen, Shihua; Liu, Ting; Moyer, Mary Pat; Qin, Huanlong; Zhou, Xinke

    2018-01-01

    Let-7b was dramatically reduced after a dicer knockout of mice with intestinal barrier function injuries. This paper aims to investigate the molecular mechanism of let-7b by targeting p38 MAPK in preventing intestinal barrier dysfunction. A total of 186 patients were enrolled, with 93 in the control group and 93 in the PRO group. Only 158 patients completed the entire study, whereas the others either did not meet the inclusion criteria or refused to participate. To further verify the role of let-7b, intestinal epithelial conditional knockout (IKO) mice of mmu-let-7b model were established. Serum let-7b, zonulin, IL-6, and TNF-α concentrations were measured by ELISA or quantitative RT-PCR. Permeability assay was done by ussing chamber. The apoptotic cells were identified using an In Situ Cell Death Detection Kit. Protein was detected by western blot. Probiotics can lower infection-related complications, as well as increase the serum and tissue let-7b levels. P38 MAPK was identified as the target of let-7b, as verified by NCM460 cells. P38 MAPK expression was increased, whereas tight-junction (TJ) proteins were significantly decreased in let-7b IKO mice (both P<0.05). Negative regulation of p38 MAPK molecular signaling pathways was involved in the protective effects of let-7b on intestinal barrier function. Let-7b was identified as a novel diagnosis biomarker or a potential treatment target for preventing intestinal barrier dysfunction. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. Induction of Non-Apoptotic Cell Death by Activated Ras Requires Inverse Regulation of Rac1 and Arf6

    Science.gov (United States)

    Bhanot, Haymanti; Young, Ashley M.; Overmeyer, Jean H.; Maltese, William A.

    2010-01-01

    Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Methuosis can be induced in glioblastoma cells by expression of constitutively active Ras. This study identifies the small GTPases, Rac1 and Arf6, and the Arf6 GTPase-activating-protein, GIT1, as key downstream components of the signaling pathway underlying Ras-induced methuosis. The extent to which graded expression of active H-Ras(G12V) triggers cytoplasmic vacuolization correlates with the amount of endogenous Rac1 in the active GTP state. Blocking Rac1 activation with the specific Rac inhibitor, EHT 1864, or co-expression of dominant-negative Rac1(T17N), prevents the accumulation of vacuoles induced by H-Ras(G12V). Coincident with Rac1 activation, H-Ras(G12V) causes a decrease in the amount of active Arf6, a GTPase that functions in recycling of clathrin-independent endosomes. The effect of H-Ras(G12V) on Arf6 is blocked by EHT 1864, indicating that the decrease in Arf6-GTP is directly linked to activation of Rac1. Constitutively active Rac1(G12V) interacts with GIT1 in immunoprecipitation assays. Ablation of GIT1 by shRNA prevents the decrease in active Arf6, inhibits vacuolization, and prevents loss of cell viability in cells expressing Rac1(G12V). Together the results suggest that perturbations of endosome morphology associated with Ras-induced methuosis are due to downstream activation of Rac1, combined with reciprocal inactivation of Arf6. The latter appears to be mediated through Rac1 stimulation of GIT1. Further insights into this pathway could suggest opportunities for induction of methuosis in cancers that are resistant to apoptotic cell death. PMID:20713492

  20. Mevalonates, Ras and Breast Cancer

    National Research Council Canada - National Science Library

    White, Michael

    2001-01-01

    .... This selective inhibition appears to be a consequence of expression of oncogenic Ras. Here we are evaluating the ability of Fmev to selectively interfere with proliferation of breast cancer cells...