Sample records for ras induces p19arf

  1. p19Arf suppresses growth, progression, and metastasis of Hras-driven carcinomas through p53-dependent and -independent pathways.

    Karen S Kelly-Spratt


    Full Text Available Ectopic expression of oncogenes such as Ras induces expression of p19(Arf, which, in turn, activates p53 and growth arrest. Here, we used a multistage model of squamous cell carcinoma development to investigate the functional interactions between Ras, p19(Arf, and p53 during tumor progression in the mouse. Skin tumors were induced in wild-type, p19(Arf-deficient, and p53-deficient mice using the DMBA/TPA two-step protocol. Activating mutations in Hras were detected in all papillomas and carcinomas examined, regardless of genotype. Relative to wild-type mice, the growth rate of papillomas was greater in p19(Arf-deficient mice, and reduced in p53-deficient mice. Malignant conversion of papillomas to squamous cell carcinomas, as well as metastasis to lymph nodes and lungs, was markedly accelerated in both p19 (Arf- and p53-deficient mice. Thus, p19(Arf inhibits the growth rate of tumors in a p53-independent manner. Through its regulation of p53, p19(Arf also suppresses malignant conversion and metastasis. p53 expression was upregulated in papillomas from wild-type but not p19( Arf-null mice, and p53 mutations were more frequently seen in wild-type than in p19( Arf-null carcinomas. This indicates that selection for p53 mutations is a direct result of signaling from the initiating oncogenic lesion, Hras, acting through p19(Arf.

  2. P19ARF and RasV¹² offer opposing regulation of DHX33 translation to dictate tumor cell fate.

    Zhang, Yandong; Saporita, Anthony J; Weber, Jason D


    DHX33 is a pivotal DEAH-box RNA helicase in the multistep process of RNA polymerase I-directed transcription of the ribosomal DNA locus. We explored the regulation of DHX33 expression by Ras(V12) and ARF to determine DHX33's role in sensing these opposing signals to regulate ribosome biogenesis. In wild-type primary fibroblasts, Ras(V12) infection induced a transient increase in DHX33 protein level, as well as an rRNA transcriptional rate that was eventually suppressed by a delayed activation of the ARF/p53 pathway. DHX33 expression was exclusively controlled at the level of translation. ARF caused a dramatic reduction in polysome-associated DHX33 mRNAs, while Ras(V12) led to a complete shift of existing DHX33 mRNAs to actively translating polysomes. The translation of DHX33 by Ras(V12) was sensitive to inhibitors of phosphatidylinositol 3-kinase, mTOR, and mitogen-activated protein and was pivotal for enhanced rRNA transcription and enhanced overall cellular protein translation. In addition, DHX33 knockdown abolished Ras(V12)-induced rRNA transcription and protein translation and prevented both the in vitro and in vivo transforming properties of oncogenic Ras(V12). Our results directly implicate DHX33 as a crucial player in establishing rRNA synthesis rates in the face of Ras(V12) or ARF signals, adjusting ribosome biogenesis to match the appropriate growth or antigrowth signals.

  3. Specific contribution of p19(ARF) to nitric oxide-dependent apoptosis.

    Zeini, Miriam; Través, Paqui G; López-Fontal, Raquel; Pantoja, Cristina; Matheu, Ander; Serrano, Manuel; Boscá, Lisardo; Hortelano, Sonsoles


    NO is an important bioactive molecule involved in a variety of physio- and pathological processes, including apoptosis induction. The proapoptotic activity of NO involves the rise in the tumor suppressor p53 and the accumulation and targeting of proapoptotic members of the Bcl-2 family, in particular Bax and the release of cytochrome c from the mitochondria. However, the exact mechanism by which NO induces p53 activation has not been fully elucidated. In this study, we describe that NO induces p19(ARF) through a transcriptional mechanism. This up-regulation of p19(ARF) activates p53, leading to apoptosis. The importance of p19(ARF) on NO-dependent apoptosis was revealed by the finding that various cell types from alternate reading frame-knockout mice exhibit a diminished response to NO-mediated apoptosis when compared with normal mice. Moreover, the biological relevance of alternative reading frame to p53 apoptosis was confirmed in in vivo models of apoptosis. Together, these results demonstrate that NO-dependent apoptosis requires, in part, the activation of p19(ARF).

  4. Intratumoral Immunization by p19Arf and Interferon-β Gene Transfer in a Heterotopic Mouse Model of Lung Carcinoma

    João Paulo Portela Catani


    Full Text Available Therapeutic strategies that act by eliciting and enhancing antitumor immunity have been clinically validated as an effective treatment modality but may benefit from the induction of both cell death and immune activation as primary stimuli. Using our AdRGD-PG adenovector platform, we show here for the first time that in situ gene transfer of p19Arf and interferon-β (IFNβ in the LLC1 mouse model of lung carcinoma acts as an immunotherapy. Although p19Arf is sufficient to induce cell death, only its pairing with IFNβ significantly induced markers of immunogenic cell death. In situ gene therapy with IFNβ, either alone or in combination with p19Arf, could retard tumor progression, but only the combined treatment was associated with a protective immune response. Specifically in the case of combined intratumoral gene transfer, we identified 167 differentially expressed genes when using microarray to evaluate tumors that were treated in vivo and confirmed the activation of CCL3, CXCL3, IL1α, IL1β, CD274, and OSM, involved in immune response and chemotaxis. Histologic evaluation revealed significant tumor infiltration by neutrophils, whereas functional depletion of granulocytes ablated the antitumor effect of our approach. The association of in situ gene therapy with cisplatin resulted in synergistic elimination of tumor progression. In all, in situ gene transfer with p19Arf and IFNβ acts as an immunotherapy involving recruitment of neutrophils, a desirable but previously untested outcome, and this approach may be allied with chemotherapy, thus providing significant antitumor activity and warranting further development for the treatment of lung carcinoma.

  5. Effect of cell cycle inhibitor p19ARF on senescence of human diploid cell


    To investigate the effect of cell cycle inhibitor p19ARF on replicative senescence of human diploid cell, recombinant p19ARF eukaryotic expression vector was constructed and p19ARF gene was transfected into human diploid fibroblasts (WI-38 cells) by liposome-mediated transfection for overexpression. Then, the effects of p19ARF on replicative senescence of WI-38 cells were observed. The results re- vealed that, compared with control cells, the WI-38 cells in which p19ARF gene was introduced showed significant up-regulation of p53 and p21 expression level, decrease of cell generation by 10 12 generations, decline of cell growth rate with cell cycle being arrested at G1 phase, increase of positive rate of senescent marker SA-β-gal staining, and decrease of mitochondrial membrane potential. The morphology of the transfected fibroblasts presented the characteristics changes similar to senescent cells. These results indicated that high expression of p19ARF may promote the senescent process of human diploid cells.

  6. Nucleophosmin is required for DNA integrity and p19Arf protein stability

    Colombo, Emanuela; Bonetti, Paola; Lazzerini Denchi, Eros


    Nucleophosmin (NPM) is a nucleolar phosphoprotein that binds the tumor suppressors p53 and p19(Arf) and is thought to be indispensable for ribogenesis, cell proliferation, and survival after DNA damage. The NPM gene is the most frequent target of genetic alterations in leukemias and lymphomas, th...

  7. p19Arf Inhibits the Invasion of Hepatocellular Carcinoma Cells by Binding to CtBP

    Chen, Ya-Wen; Paliwal, Seema; Draheim, Kyle; Grossman, Steven R.; Lewis, Brian C.


    The INK4A/ARF tumor suppressor locus is frequently inactivated in hepatocellular carcinoma (HCC), yet the consequences of this remain unknown. We recently described a HCC mouse model in which loss of the Ink4a/Arf locus accelerates the development of metastasis and enhances tumor cell migration and invasion in cell culture assays. We show here that knockdown of p19Arf in a HCC cell line increases invasion in cell culture assays. Further, reintroduction of p19Arf into HCC cell lines lacking Ink4a/Arf inhibits tumor cell invasion, without affecting cell proliferation, or cell transformation as measured by soft agar colony formation. Inhibition of cell invasion by p19Arf was dependent on its C-terminal binding protein (CtBP) interaction domain, but independent of Mdm2 binding and nucleolar localization. Indeed, RNAi-mediated knockdown of CtBP1 or CtBP2 decreased cell invasion, and ectopic expression of CtBP2 enhanced tumor cell migration and invasion. Thus, our data indicate a novel role for the Arf tumor suppressor protein in regulating phenotypes associated with tumor progression and metastasis in HCC cells. PMID:18199542

  8. Escape from premature senescence is not sufficient for oncogenic transformation by Ras

    Peeper, D.S.; Dannenberg, J.-H.; Douma, S.; Riele, H. te; Bernards, R.A.


    Resistance of primary cells to transformation by oncogenic Ras has been attributed to the induction of replicative growth arrest1, 2, 3. This irreversible 'fail-safe mechanism' resembles senescence and requires induction by Ras of p19ARF and p53 (refs 3−5). Mutation of either p19ARF or p53 alleviate

  9. K-Ras(V14I) -induced Noonan syndrome predisposes to tumour development in mice.

    Hernández-Porras, Isabel; Schuhmacher, Alberto J; Garcia-Medina, Raquel; Jiménez, Beatriz; Cañamero, Marta; de Martino, Alba; Guerra, Carmen


    The Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. A significant proportion of NS patients may also develop myeloproliferative disorders (MPDs), including juvenile myelomonocytic leukaemia (JMML). Surprisingly, scarce information is available in relation to other tumour types in these patients. We have previously developed and characterized a knock-in mouse model that carries one of the most frequent KRAS-NS-related mutations, the K-Ras(V14I) substitution, which recapitulates most of the alterations described in NS patients, including MPDs. The K-Ras(V14I) mutation is a mild activating K-Ras protein; thus, we have used this model to study tumour susceptibility in comparison with mice expressing the classical K-Ras(G12V) oncogene. Interestingly, our studies have shown that these mice display a generalized tumour predisposition and not just MPDs. In fact, we have observed that the K-Ras(V14I) mutation is capable of cooperating with the p16Ink4a/p19Arf and Trp53 tumour suppressors, as well as with other risk factors such as pancreatitis, thereby leading to a higher cancer incidence. In conclusion, our results illustrate that the K-Ras(V14I) activating protein is able to induce cancer, although at a much lower level than the classical K-Ras(G12V) oncogene, and that it can be significantly modulated by both genetic and non-genetic events. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  10. Gene expression of the p16(INK4a)-Rb and p19(Arf)-p53-p21(Cip/Waf1) signaling pathways in the regulation of hematopoietic stem cell aging by ginsenoside Rg1.

    Yue, Z; Rong, J; Ping, W; Bing, Y; Xin, Y; Feng, L D; Yaping, W


    The elucidation of the molecular mechanisms underlying the effects of traditional Chinese medicines in clinical practice is a key step toward their worldwide application, and this topic is currently a subject of intense research interest. Rg1, a component of ginsenoside, has recently been shown to perform several pharmacological functions; however, the underlying mechanisms of these effects remain unclear. In the present study, we investigated whether Rg1 has an anti-senescence effect on hematopoietic stem cells (HSCs) and the possible molecular mechanisms driving any effects. The results showed that Rg1 could effectively delay tert-butyl hydroperoxide (t-BHP)-induced senescence and inhibit gene expression in the p16(INK4a)-Rb and p19(Arf)-p53-p21(Cip/Waf1) signaling pathways in HSCs. Our study suggested that these two signaling pathways might be potential targets for elucidating the molecular mechanisms of the Rg1 anti-senescence effect.

  11. Immortalization of mouse myogenic cells can occur without loss of p16INK4a, p19ARF, or p53 and is accelerated by inactivation of Bax

    Kravetz Amanda J


    Full Text Available Abstract Background Upon serial passaging of mouse skeletal muscle cells, a small number of cells will spontaneously develop the ability to proliferate indefinitely while retaining the ability to differentiate into multinucleate myotubes. Possible gene changes that could underlie myogenic cell immortalization and their possible effects on myogenesis had not been examined. Results We found that immortalization occurred earlier and more frequently when the myogenic cells lacked the pro-apoptotic protein Bax. Furthermore, myogenesis was altered by Bax inactivation as Bax-null cells produced muscle colonies with more nuclei than wild-type cells, though a lower percentage of the Bax-null nuclei were incorporated into multinucleate myotubes. In vivo, both the fast and slow myofibers in Bax-null muscles had smaller cross-sectional areas than those in wild-type muscles. After immortalization, both Bax-null and Bax-positive myogenic cells expressed desmin, retained the capacity to form multinucleate myotubes, expressed p19ARF protein, and retained p53 functions. Expression of p16INK4a, however, was found in only about half of the immortalized myogenic cell lines. Conclusions Mouse myogenic cells can undergo spontaneous immortalization via a mechanism that can include, but does not require, loss of p16INK4a, and also does not require inactivation of p19ARF or p53. Furthermore, loss of Bax, which appears to be a downstream effector of p53, accelerates immortalization of myogenic cells and alters myogenesis.

  12. The LIM-only protein FHL2 mediates ras-induced transformation through cyclin D1 and p53 pathways.

    Charlotte Labalette

    Full Text Available BACKGROUND: Four and a half LIM-only protein 2 (FHL2 has been implicated in multiple signaling pathways that regulate cell growth and tissue homeostasis. We reported previously that FHL2 regulates cyclin D1 expression and that immortalized FHL2-null mouse embryo fibroblasts (MEFs display reduced levels of cyclin D1 and low proliferative activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we address the contribution of FHL2 in cell transformation by investigating the effects of oncogenic Ras in FHL2-null context. We show that H-RasV12 provokes cell cycle arrest accompanied by accumulation of p53 and p16(INK4a in immortalized FHL2(-/- MEFs. These features contrast sharply with Ras transforming activity in wild type cell lines. We further show that establishment of FHL2-null cell lines differs from conventional immortalization scheme by retaining functional p19(ARF/p53 checkpoint that is required for cell cycle arrest imposed by Ras. However, after serial passages of Ras-expressing FHL2(-/- cells, dramatic increase in the levels of D-type cyclins and Rb phosphorylation correlates with the onset of cell proliferation and transformation without disrupting the p19(ARF/p53 pathway. Interestingly, primary FHL2-null cells overexpressing cyclin D1 undergo a classical immortalization process leading to loss of the p19(ARF/p53 checkpoint and susceptibility to Ras transformation. CONCLUSIONS/SIGNIFICANCE: Our findings uncover a novel aspect of cellular responses to mitogenic stimulation and illustrate a critical role of FHL2 in the signalling network that implicates Ras, cyclin D1 and p53.

  13. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes.

    Lerner, E C; Qian, Y; Blaskovich, M A; Fossum, R D; Vogt, A; Sun, J; Cox, A D; Der, C J; Hamilton, A D; Sebti, S M


    Ras-induced malignant transformation requires Ras farnesylation, a lipid posttranslational modification catalyzed by farnesyltransferase (FTase). Inhibitors of this enzyme have been shown to block Ras-dependent transformation, but the mechanism by which this occurs remains largely unknown. We have designed FTI-276, a peptide mimetic of the COOH-terminal Cys-Val-Ile-Met of K-Ras4B that inhibited potently FTase in vitro (IC50 = 500 pM) and was highly selective for FTase over geranylgeranyltransferase I (GGTase I) (IC50 = 50 nM). FTI-277, the methyl ester derivative of FTI-276, was extremely potent (IC50 = 100 nM) at inhibiting H-Ras, but not the geranylgeranylated Rap1A processing in whole cells. Treatment of H-Ras oncogene-transformed NIH 3T3 cells with FTI-277 blocked recruitment to the plasma membrane and subsequent activation of the serine/threonine kinase c-Raf-1 in cells transformed by farnesylated Ras (H-RasF), but not geranylgeranylated, Ras (H-RasGG). FTI-277 induced accumulation of cytoplasmic non-farnesylated H-Ras that was able to bind Raf and form cytoplasmic Ras/Raf complexes in which Raf kinase was not activated. Furthermore, FTI-277 blocked constitutive activation of mitogen-activated protein kinase (MAPK) in H-RasF, but not H-RasGG, or Raf-transformed cells. FTI-277 also inhibited oncogenic K-Ras4B processing and constitutive activation of MAPK, but the concentrations required were 100-fold higher than those needed for H-Ras inhibition. The results demonstrate that FTI-277 blocks Ras oncogenic signaling by accumulating inactive Ras/Raf complexes in the cytoplasm, hence preventing constitutive activation of the MAPK cascade.

  14. H-Ras and K-Ras Oncoproteins Induce Different Tumor Spectra When Driven by the Same Regulatory Sequences.

    Drosten, Matthias; Simón-Carrasco, Lucía; Hernández-Porras, Isabel; Lechuga, Carmen G; Blasco, María T; Jacob, Harrys K C; Fabbiano, Salvatore; Potenza, Nicoletta; Bustelo, Xosé R; Guerra, Carmen; Barbacid, Mariano


    Genetic studies in mice have provided evidence that H-Ras and K-Ras proteins are bioequivalent. However, human tumors display marked differences in the association of RAS oncogenes with tumor type. Thus, to further assess the bioequivalence of oncogenic H-Ras and K-Ras, we replaced the coding region of the murine K-Ras locus with H-Ras(G12V) oncogene sequences. Germline expression of H-Ras(G12V) or K-Ras(G12V) from the K-Ras locus resulted in embryonic lethality. However, expression of these genes in adult mice led to different tumor phenotypes. Whereas H-Ras(G12V) elicited papillomas and hematopoietic tumors, K-Ras(G12V) induced lung tumors and gastric lesions. Pulmonary expression of H-Ras(G12V) created a senescence-like state caused by excessive MAPK signaling. Likewise, H-Ras(G12V) but not K-Ras(G12V) induced senescence in mouse embryonic fibroblasts. Label-free quantitative analysis revealed that minor differences in H-Ras(G12V) expression levels led to drastically different biological outputs, suggesting that subtle differences in MAPK signaling confer nonequivalent functions that influence tumor spectra induced by RAS oncoproteins. Cancer Res; 77(3); 707-18. ©2016 AACR.

  15. PRG3 induces Ras-dependent oncogenic cooperation in gliomas

    Yakubov, Eduard; Chen, Daishi; Broggini, Thomas; Sehm, Tina; Majernik, Gökce Hatipoglu; Hock, Stefan W.; Schwarz, Marc; Engelhorn, Tobias; Doerfler, Arnd; Buchfelder, Michael; Eyupoglu, Ilker Y.; Savaskan, Nicolai E.


    Malignant gliomas are one of the most devastating cancers in humans. One characteristic hallmark of malignant gliomas is their cellular heterogeneity with frequent genetic lesions and disturbed gene expression levels conferring selective growth advantage. Here, we report on the neuronal-associated growth promoting gene PRG3 executing oncogenic cooperation in gliomas. We have identified perturbed PRG3 levels in human malignant brain tumors displaying either elevated or down-regulated PRG3 levels compared to non-transformed specimens. Further, imbalanced PRG3 levels in gliomas foster Ras-driven oncogenic amplification with increased proliferation and cell migration although angiogenesis was unaffected. Hence, PRG3 interacts with RasGEF1 (RasGRF1/CDC25), undergoes Ras-induced challenges, whereas deletion of the C-terminal domain of PRG3 (PRG3ΔCT) inhibits Ras. Moreover PRG3 silencing makes gliomas resistant to Ras inhibition. In vivo disequilibrated PRG3 gliomas show aggravated proliferation, invasion, and deteriorate clinical outcome. Thus, our data show that the interference with PRG3 homeostasis amplifies oncogenic properties and foster the malignancy potential in gliomas. PMID:27058420

  16. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence

    Agger, Karl; Cloos, Paul A C; Rudkjaer, Lise


    The tumor suppressor proteins p16INK4A and p14ARF, encoded by the INK4A-ARF locus, are key regulators of cellular senescence. The locus is epigenetically silenced by the repressive H3K27me3 mark in normally growing cells, but becomes activated in response to oncogenic stress. Here, we show...... that expression of the histone H3 Lys 27 (H3K27) demethylase JMJD3 is induced upon activation of the RAS-RAF signaling pathway. JMJD3 is recruited to the INK4A-ARF locus and contributes to the transcriptional activation of p16INK4A in human diploid fibroblasts. Additionally, inhibition of Jmjd3 expression...... in mouse embryonic fibroblasts results in suppression of p16Ink4a and p19Arf expression and in their immortalization....

  17. A Drosophila immune response against Ras-induced overgrowth

    Thomas Hauling


    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  18. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel


    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  19. Feedback activation of neurofibromin terminates growth factor-induced Ras activation

    Hennig, Anne; Markwart, Robby; Wolff, Katharina; Schubert, Katja; Cui, Yan; Ian A Prior; Manuel A Esparza-Franco; Ladds, Graham; Rubio, Ignacio


    This is the final published version. It first appeared at Background Growth factors induce a characteristically short-lived Ras activation in cells emerging from quiescence. Extensive work has shown that transient as opposed to sustained Ras activation is critical for the induction of mitogenic programs. Mitogen-induced accumulation of active Ras-GTP results from increased nucleotide exchange driven by the nucleo...

  20. Molecular characterization of radon-induced rat lung tumors; Caracterisation moleculaire de tumeurs pulmonaires radon-induites chez le rat

    Guillet Bastide, K


    The radon gas is a well known lung carcinogenic factor in human at high doses but the cancer risk at low doses is not established. Indeed, epidemiological studies at low doses are difficult to conduct because of the human exposure to other lung carcinogenic factors. These data underlined the necessity to conduct experiments on lung tumors developed on animal model. The aim of this work was to characterize rat lung tumors by working on a series of radon-induced tumors that included adenocarcinomas (A.C.), squamous cell carcinomas (S.C.C.) and adeno-squamous carcinomas (A.S.C.), that are mixed tumors with both A.C. and S.C.C. cellular components. A C.G.H. analysis of the three types of tumors allowed us to define chromosomal recurrent unbalances and to target candidate genes potentially implicated in lung carcinogenesis, as p16Ink4a, p19Arf, Rb1, K-Ras or c-Myc. A more precise analysis of the p16Ink4a/Cdk4/Rb1 and p19Arf/Mdm2/Tp53 pathways was performed and indicated that the Rb1 pathway was frequently inactivated through an absence of p16{sup Ink4a} protein expression, indicating that it has a major role in rat lung carcinogenesis. Finally, a comparative transcriptomic analysis of the three types of tumors allowed us to show for the first time that the complex tumors A.S.C. have a transcriptomic profile in accordance with their mixed nature but that they also display their own expression profiles specificities. This work allowed us to find molecular characteristics common to murine and human lung tumors, indicating that the model of lung tumors in rat is pertinent to search for radiation-induced lung tumors specificities and to help for a better molecular identification of this type of tumors in human. (author)

  1. R-Ras deficiency does not affect papain-induced IgE production in mice.

    Kummola, Laura; Ortutay, Zsuzsanna; Vähätupa, Maria; Prince, Stuart; Uusitalo-Järvinen, Hannele; Järvinen, Tero A H; Junttila, Ilkka S


    R-Ras GTPase has recently been implicated in the regulation of immune functions, particularly in dendritic cell (DC) maturation, immune synapse formation, and subsequent T cell responses. Here, we investigated the role of R-Ras in allergen-induced immune response (type 2 immune response) in Rras deficient (R-Ras KO) and wild type (WT) mice. Initially, we found that the number of conventional DC's in the lymph nodes (LNs) was reduced in R-Ras KO mice. The expression of co-stimulatory CD80 and CD86 molecules on these cells was also reduced on DC's from the R-Ras KO mice. However, there was no difference in papain-induced immune response between the R-Ras WT and KO as measured by serum IgE levels after the immunization. Interestingly, neither the DC number nor co-stimulatory molecule expression was different between WT and R-Ras KO animals after the immunization. Taken together, despite having reduced number of conventional DC's in the R-Ras KO mice and low expression of CD80 on DC's, the R-Ras KO mice are capable of mounting papain-induced IgE responses comparable to that of the WT mice. To our knowledge, this is the first report addressing potential differences in in vivo allergen responses regulated by the R-Ras GTPase. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  2. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release.

    Garant, K A; Shmulevitz, M; Pan, L; Daigle, R M; Ahn, D-G; Gujar, S A; Lee, P W K


    Reovirus is a naturally oncolytic virus that preferentially replicates in Ras-transformed cells and is currently undergoing clinical trials as a cancer therapeutic. Ras transformation promotes reovirus oncolysis by enhancing virion disassembly during entry, viral progeny production, and virus release through apoptosis; however, the mechanism behind the latter is not well understood. Here, we show that reovirus alters the intracellular location of oncogenic Ras to induce apoptosis of H-RasV12-transformed fibroblasts. Reovirus infection decreases Ras palmitoylation levels and causes accumulation of Ras in the Golgi through Golgi fragmentation. With the Golgi being the site of Ras palmitoylation, treatment of target cells with the palmitoylation inhibitor, 2-bromopalmitate (2BP), prompts a greater accumulation of H-RasV12 in the Golgi, and a dose-dependent increase in progeny virus release and subsequent spread. Conversely, tethering H-RasV12 to the plasma membrane (thereby preventing its movement to the Golgi) allows for efficient virus production, but results in basal levels of reovirus-induced cell death. Analysis of Ras downstream signaling reveals that cells expressing cycling H-RasV12 have elevated levels of phosphorylated JNK (c-Jun N-terminal kinase), and that Ras retained at the Golgi body by 2BP increases activation of the MEKK1/MKK4/JNK signaling pathway to promote cell death. Collectively, our data suggest that reovirus induces Golgi fragmentation of target cells, and the subsequent accumulation of oncogenic Ras in the Golgi body initiates apoptotic signaling events required for virus release and spread.

  3. Ras-inducible immortalized fibroblasts: focus formation without cell cycle deregulation.

    Jacobsen, Kivin; Groth, Anja; Willumsen, Berthe M


    The Ras oncogene transforms cultured murine fibroblasts into malignant, focus-forming cells, whose lack of contact inhibition is evidenced by high saturation densities. In order to investigate the reversibility of Ras transformation, as well as the kinetics of Ras-induced changes, cell lines that conditionally express oncogenic Ras were constructed. Both focus formation and increased saturation density were inducible and fully reversible. In exponentially growing cells, oncogenic Ras-expression had no effect on proliferation rates, Erk phosphorylation, or the level of cyclin D1, and Ras-induction did not confer serum-independent growth. As expected, growth to high density in uninduced cells led to quiescence with a low level of cyclin D1 and no active Erk; in this setting, Ras induction prevented full downregulation of cyclin D1 and inactivation of Erk. Our results show that Ras expression to a level sufficient for transformation leads to relatively subtle effects on known downstream targets, and that the focus formation and increased saturation density growth induced by Ras is not a result of growth factor independence.

  4. Oncogenic Ras promotes butyrate-induced apoptosis through inhibition of gelsolin expression.

    Klampfer, Lidija; Huang, Jie; Sasazuki, Takehiko; Shirasawa, Senji; Augenlicht, Leonard


    Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.

  5. NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition.

    Garcia-Rendueles, Maria E R; Ricarte-Filho, Julio C; Untch, Brian R; Landa, Iňigo; Knauf, Jeffrey A; Voza, Francesca; Smith, Vicki E; Ganly, Ian; Taylor, Barry S; Persaud, Yogindra; Oler, Gisele; Fang, Yuqiang; Jhanwar, Suresh C; Viale, Agnes; Heguy, Adriana; Huberman, Kety H; Giancotti, Filippo; Ghossein, Ronald; Fagin, James A


    Ch22q LOH is preferentially associated with RAS mutations in papillary and in poorly differentiated thyroid cancer (PDTC). The 22q tumor suppressor NF2, encoding merlin, is implicated in this interaction because of its frequent loss of function in human thyroid cancer cell lines. Nf2 deletion or Hras mutation is insufficient for transformation, whereas their combined disruption leads to murine PDTC with increased MAPK signaling. Merlin loss induces RAS signaling in part through inactivation of Hippo, which activates a YAP-TEAD transcriptional program. We find that the three RAS genes are themselves YAP-TEAD1 transcriptional targets, providing a novel mechanism of promotion of RAS-induced tumorigenesis. Moreover, pharmacologic disruption of YAP-TEAD with verteporfin blocks RAS transcription and signaling and inhibits cell growth. The increased MAPK output generated by NF2 loss in RAS-mutant cancers may inform therapeutic strategies, as it generates greater dependency on the MAPK pathway for viability. Intensification of mutant RAS signaling through copy-number imbalances is commonly associated with transformation. We show that NF2/merlin inactivation augments mutant RAS signaling by promoting YAP/TEAD-driven transcription of oncogenic and wild-type RAS, resulting in greater MAPK output and increased sensitivity to MEK inhibitors. ©2015 American Association for Cancer Research.

  6. Peroxiredoxin I is important for cancer-cell survival in Ras-induced hepatic tumorigenesis.

    Han, Bing; Shin, Hye-Jun; Bak, In Seon; Bak, Yesol; Jeong, Ye-Lin; Kwon, Taeho; Park, Young-Ho; Sun, Hu-Nan; Kim, Cheol-Hee; Yu, Dae-Yeul


    Peroxiredoxin I (Prx I), an antioxidant enzyme, has multiple functions in human cancer. However, the role of Prx I in hepatic tumorigenesis has not been characterized. Here we investigated the relevance and underlying mechanism of Prx I in hepatic tumorigenesis. Prx I increased in tumors of hepatocellular carcinoma (HCC) patients that aligned with overexpression of oncogenic H-ras. Prx I also increased in H-rasG12V transfected HCC cells and liver tumors of H-rasG12V transgenic (Tg) mice, indicating that Prx I may be involved in Ras-induced hepatic tumorigenesis. When Prx I was knocked down or deleted in HCC-H-rasG12V cells or H-rasG12V Tg mice, cell colony or tumor formation was significantly reduced that was associated with downregulation of pERK pathway as well as increased intracellular reactive oxygen species (ROS) induced DNA damage and cell death. Overexpressing Prx I markedly increased Ras downstream pERK/FoxM1/Nrf2 signaling pathway and inhibited oxidative damage in HCC cells and H-rasG12V Tg mice. In this study, we found Nrf2 was transcriptionally activated by FoxM1, and Prx I was activated by the H-rasG12V/pERK/FoxM1/Nrf2 pathway and suppressed ROS-induced hepatic cancer-cell death along with formation of a positive feedback loop with Ras/ERK/FoxM1/Nrf2 to promote hepatic tumorigenesis.

  7. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia

    Chen, C; Pore, N; Behrooz, A; Ismail-Beigi, F; Maity, A


    Oncogenic transformation and hypoxia both induce glut1 mRNA. We studied the interaction between the ras oncogene and hypoxia in up-regulating glut1 mRNA levels using Rat1 fibroblasts transformed with H-ras (Rat1-ras...

  8. Enhanced Ras activity in pyramidal neurons induces cellular hypertrophy and changes in afferent and intrinsic connectivity in synRas mice.

    Gärtner, Ulrich; Alpár, Alán; Seeger, Gudrun; Heumann, Rolf; Arendt, Thomas


    Neurotrophic actions are critically controlled and transmitted to cellular responses by the small G protein Ras which is therefore essential for normal functioning and plasticity of the nervous system. The present study summarises findings of recent studies on morphological changes in the neocortex of synRas mice expressing Val12-Ha-Ras in vivo under the control of the rat synapsin I promoter. In the here reported model (introduced by Heumann et al. [J. Cell Biol. 151 (2000) 1537]), transgenic Val12-Ha-Ras expression is confined to the pyramidal cell population and starts postnatally at a time, when neurons are postmitotic and their developmental maturation has been basically completed. Expression of Val12-Ha-Ras results in a significant enlargement of pyramidal neurons. Size, complexity and spine density of dendritic trees are increased, which leads, finally, to cortical expansion. However, the main morphological design principles of 'transgenic' pyramidal cells remain preserved. In addition to somato-dendritic changes, expression of Val12-Ha-Ras in pyramidal cells induces augmented axon calibres and upregulates the establishment of efferent boutons. Despite the enlargement of cortical size, the overall density of terminals representing intra- or interhemispheric, specific and non-specific afferents is unchanged or even higher in transgenic mice suggesting a significant increase in the total afferent input to the neocortex. Although interneurons do not express the transgene and are therefore excluded from direct, intrinsic Val12-Ha-Ras effects, they respond with morphological adaptations to structural changes. Thus, dendritic arbours of interneurons are extended to follow the cortical expansion and basket cells establish a denser inhibitory innervation of 'transgenic' pyramidal cells perikarya. It is concluded that expression of Val12-Ha-Ras in pyramidal neurons results in remodelling of neocortical structuring which strongly implicates a crucial involvement of

  9. The ras1 protein of S. pombe mediates pheromone-induced transcription. Abstract

    Nielsen, Olaf; Davey, John; Egel, Richard


    Differentiering, signaltransduktion, parringstype feromon, Schizosaccharomyces pombe, ras homolog, Transkription......Differentiering, signaltransduktion, parringstype feromon, Schizosaccharomyces pombe, ras homolog, Transkription...

  10. Ras Transformation Overrides a Proliferation Defect Induced by Tpm3.1 Knockout.

    Coombes, Jason D; Schevzov, Galina; Kan, Chin-Yi; Petti, Carlotta; Maritz, Michelle F; Whittaker, Shane; Mackenzie, Karen L; Gunning, Peter W


    Extensive re-organisation of the actin cytoskeleton and changes in the expression of its binding proteins is a characteristic feature of cancer cells. Previously we have shown that the tropomyosin isoform Tpm3.1, an integral component of the actin cytoskeleton in tumor cells, is required for tumor cell survival. Our objective was to determine whether cancer cells devoid of Tpm3.1 would evade the tumorgenic effects induced by H-Ras transformation. The tropomyosin isoform (Tpm) expression profile of a range of cancer cell lines (21) demonstrates that Tpm3.1 is one of the most broadly expressed Tpm isoform. Consequently, the contribution of Tpm3.1 to the transformation process was functionally evaluated. Primary embryonic fibroblasts isolated from wild type (WT) and Tpm3.1 knockout (KO) mice were transduced with retroviral vectors expressing SV40 large T antigen and an oncogenic allele of the H-Ras gene, H-RasV12, to generate immortalized and transformed WT and KO MEFs respectively. We show that Tpm3.1 is required for growth factor-independent proliferation in the SV40 large T antigen immortalized MEFs, but this requirement is overcome by H-Ras transformation. Consistent with those findings, we found that Tpm3.1 was not required for anchorage independent growth or growth of H-Ras-driven tumors in a mouse model. Finally, we show that pERK and Importin 7 protein interactions are significantly decreased in the SV40 large T antigen immortalized KO MEFs but not in the H-Ras transformed KO cells, relative to control MEFs. The data demonstrate that H-Ras transformation overrides a requirement for Tpm3.1 in growth factor-independent proliferation of immortalized MEFs. We propose that in the SV40 large T antigen immortalized MEFs, Tpm3.1 is partly responsible for the efficient interaction between pERK and Imp7 resulting in cell proliferation, but this is overidden by Ras transformation.

  11. SCD1 Expression is dispensable for hepatocarcinogenesis induced by AKT and Ras oncogenes in mice.

    Lei Li

    Full Text Available Increased de novo lipogenesis is one of the major metabolic events in cancer. In human hepatocellular carcinoma (HCC, de novo lipogenesis has been found to be increased and associated with the activation of AKT/mTOR signaling. In mice, overexpression of an activated form of AKT results in increased lipogenesis and hepatic steatosis, ultimately leading to liver tumor development. Hepatocarcinogenesis is dramatically accelerated when AKT is co-expressed with an oncogenic form of N-Ras. SCD1, the major isoform of stearoyl-CoA desaturases, catalyzing the conversion of saturated fatty acids (SFA into monounsaturated fatty acids (MUFA, is a key enzyme involved in de novo lipogenesis. While many studies demonstrated the requirement of SCD1 for tumor cell growth in vitro, whether SCD1 is necessary for tumor development in vivo has not been previously investigated. Here, we show that genetic ablation of SCD1 neither inhibits lipogenesis and hepatic steatosis in AKT-overexpressing mice nor affects liver tumor development in mice co-expressing AKT and Ras oncogenes. Molecular analysis showed that SCD2 was strongly upregulated in liver tumors from AKT/Ras injected SCD1(-/- mice. Noticeably, concomitant silencing of SCD1 and SCD2 genes was highly detrimental for the growth of AKT/Ras cells in vitro. Altogether, our study provides the evidence, for the first time, that SCD1 expression is dispensable for AKT/mTOR-dependent hepatic steatosis and AKT/Ras-induced hepatocarcinogenesis in mice. Complete inhibition of stearoyl-CoA desaturase activity may be required to efficiently suppress liver tumor development.

  12. EMT-induced stemness and tumorigenicity are fueled by the EGFR/Ras pathway.

    Dominic Chih-Cheng Voon

    Full Text Available Recent studies have revealed that differentiated epithelial cells would acquire stem cell-like and tumorigenic properties following an Epithelial-Mesenchymal Transition (EMT. However, the signaling pathways that participate in this novel mechanism of tumorigenesis have not been fully characterized. In Runx3 (-/- p53 (-/- murine gastric epithelial (GIF-14 cells, EMT-induced plasticity is reflected in the expression of the embryonal proto-oncogene Hmga2 and Lgr5, an exclusive gastrointestinal stem cell marker. Here, we report the concurrent activation of an EGFR/Ras gene expression signature during TGF-β1-induced EMT in GIF-14 cells. Amongst the altered genes was the induction of Egfr, which corresponded with a delayed sensitization to EGF treatment in GIF-14. Co-treatment with TGF-β1 and EGF or the expression of exogenous KRas led to increased Hmga2 or Lgr5 expression, sphere initiation and colony formation in soft agar assay. Interestingly, the gain in cellular plasticity/tumorigenicity was not accompanied by increased EMT. This uncoupling of EMT and the induction of plasticity reveals an involvement of distinct signaling cues, whereby the EGFR/Ras pathway specifically promotes stemness and tumorigenicity in EMT-altered GIF-14 cells. These data show that the EGFR/Ras pathway requisite for the sustenance of gastric stem cells in vivo and in vitro is involved in the genesis and promotion of EMT-induced tumor-initiating cells.

  13. Ha-ras(val12) induces HSP70b transcription via the HSE/HSF1 system, but HSP70b expression is suppressed in Ha-ras(val12)-transformed cells.

    Stanhill, A; Levin, V; Hendel, A; Shachar, I; Kazanov, D; Arber, N; Kaminski, N; Engelberg, D


    Heat shock proteins (Hsps) are overexpressed in many tumors, but are downregulated in some tumors. To check for a direct effect of Ha-Ras(val12) on HSP70 transcription, we transiently expressed the oncoprotein in Rat1 fibroblasts and monitored its effect on HSP70b promoter-driven reporter gene. We show that expression of Ha-Ras(val12) induced this promoter. Promoter analysis via systematic deletions and point mutations revealed that Ha-Ras(val12) induces HSP70b transcription via heat shock elements (HSEs). Also, Ha-Ras(val12) induction of HSE-mediated transcription was dramatically reduced in HSF1-/- cells. Yet, residual effect of Ha-Ras(val12) that was still measured in HSF1-/- cells suggests that some of the Ha-Ras(val12) effect is Hsf1-independent. When HSF1-/- cells, stably expressing Ha-Ras(val12), were grown on soft agar only small colonies were formed suggesting a role for heat shock factor 1 (Hsf1) in Ha-Ras(val12)-mediated transformation. Although Ha-ras(Val12) seems to be an inducer of HSP70's expression, we found that in Ha-ras(Val12-)transformed fibroblasts expression of this gene is suppressed. This suppression is correlated with higher sensitivity of Ha-ras(val12)-transformed cells to heat shock. We suggest that Ha-ras(Val12) is involved in Hsf1 activation, thereby inducing the cellular protective response. Cells that repress this response are perhaps those that acquire the capability to further proliferate and become transformed clones.

  14. Cold-Inducible RNA-Binding Protein Bypasses Replicative Senescence in Primary Cells through Extracellular Signal-Regulated Kinase 1 and 2 Activation▿ †

    Artero-Castro, Ana; Callejas, Francisco B.; Castellvi, Josep; Kondoh, Hiroshi; Carnero, Amancio; Fernández-Marcos, Pablo J.; Serrano, Manuel; Ramón y Cajal, Santiago; Lleonart, Matilde E.


    Embryonic stem cells are immortalized cells whose proliferation rate is comparable to that of carcinogenic cells. To study the expression of embryonic stem cell genes in primary cells, genetic screening was performed by infecting mouse embryonic fibroblasts (MEFs) with a cDNA library from embryonic stem cells. Cold-inducible RNA-binding protein (CIRP) was identified due to its ability to bypass replicative senescence in primary cells. CIRP enhanced extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation, and treatment with an MEK inhibitor decreased the proliferation caused by CIRP. In contrast to CIRP upregulation, CIRP downregulation decreased cell proliferation and resulted in inhibition of phosphorylated ERK1/2 inhibition. This is the first evidence that ERK1/2 activation, through the same mechanism as that described for a Val12 mutant K-ras to induce premature senescence, is able to bypass senescence in the absence of p16INK4a, p21WAF1, and p19ARF upregulation. Moreover, these results show that CIRP functions by stimulating general protein synthesis with the involvement of the S6 and 4E-BP1 proteins. The overall effect is an increase in kinase activity of the cyclin D1-CDK4 complex, which is in accordance with the proliferative capacity of CIRP MEFs. Interestingly, CIRP mRNA and protein were upregulated in a subgroup of cancer patients, a finding that may be of relevance for cancer research. PMID:19158277

  15. Low concentrations of hydrogen peroxide or nitrite induced of Paracoccidioides brasiliensis cell proliferation in a Ras-dependent manner.

    Ana Eliza Coronel Janu Haniu

    Full Text Available Paracoccidioides brasiliensis, a causative agent of paracoccidioidomycosis (PCM, should be able to adapt to dramatic environmental changes inside the infected host after inhalation of air-borne conidia and transition to pathogenic yeasts. Proteins with antioxidant functions may protect fungal cells against reactive oxygen (ROS and nitrogen (RNS species generated by phagocytic cells, thus acting as potential virulence factors. Ras GTPases are involved in stress responses, cell morphology, and differentiation in a range of organisms. Ras, in its activated form, interacts with effector proteins and can initiate a kinase cascade. In lower eukaryotes, Byr2 kinase represents a Ras target. The present study investigated the role of Ras in P. brasiliensis after in vitro stimulus with ROS or RNS. We have demonstrated that low concentrations of H2O2 (0.1 mM or NO2 (0.1-0.25 µM stimulated P. brasiliensis yeast cell proliferation and that was not observed when yeast cells were pre-incubated with farnesyltransferase inhibitor. We constructed an expression plasmid containing the Byr2 Ras-binding domain (RBD fused with GST (RBD-Byr2-GST to detect the Ras active form. After stimulation with low concentrations of H2O2 or NO2, the Ras active form was observed in fungal extracts. Besides, NO2 induced a rapid increase in S-nitrosylated Ras levels. This alternative posttranslational modification of Ras, probably in residue Cys123, would lead to an exchange of GDP for GTP and consequent GTPase activation in P. brasiliensis. In conclusion, low concentrations of H2O2 or NO2 stimulated P. brasiliensis proliferation through Ras activation.

  16. Rap1 overexpression reveals that activated RasD induces separable defects during Dictyostelium development.

    Louis, S A; Weeks, G; Spiegelman, G B


    One of the Dictyostelium ras genes, rasD, is expressed preferentially in prestalk cells at the slug stage of development and overexpression of this gene containing a G12T activating mutation causes the formation of aberrant multitipped aggregates that are blocked from further development (Reymond et al., 1986, Nature, 323, 340-343). The ability of the Dictyostelium rap1 gene to suppress this abnormal developmental phenotype was investigated. The rap1 gene and G12V activated and G10V negative mutant forms of the rap1 gene were independently linked to the rasD promoter and each construct used to transform M1, a Dictyostelium cell line expressing RasD[G12T]. Transformants of M1 that expressed Rap1 or Rap1[G12V] protein still formed multitipped aggregates, but most tips were able to complete development and form fruiting bodies. Cell lines showing this modified phenotype were designated ME (multitipped escape). The rap1[G10V] construct did not modify the M1 phenotype. These data suggest that overexpression of RasD[G12T] has two effects, the formation of a multitipped aggregate and a block in subsequent differentiation and that the expression of Rap1 or Rap1[G12V] reverses only the latter. Differentiation of ME cells in low density monolayers showed the identical low level of stalk and spore cell formation seen for M1 cells under the same conditions. Thus the cell autonomous defect in monolayer differentiation induced in the M1 strain was not corrected in the ME strain. Cell type-specific gene expression during the development of M1 cells is dramatically altered: prestalk cell-specific gene expression is greatly enhanced, whereas prespore-specific gene expression is almost suppressed (Louis et al., 1997, Mol. Biol. Cell, 8, 303-312). During the development of ME cells, ecmA mRNA levels were restored to those seen for Ax3, and tagB mRNA levels were also markedly reduced, although not to Ax3 levels. cotC expression in ME cells was enhanced severalfold relative to M1

  17. RGS6 Suppresses Ras-induced Cellular Transformation by Facilitating Tip60-mediated Dnmt1 Degradation and Promoting Apoptosis

    Huang, Jie; Stewart, Adele; Maity, Biswanath; Hagen, Jussara; Fagan, Rebecca L.; Yang, Jianqi; Quelle, Dawn E.; Brenner, Charles; Fisher, Rory A.


    The RAS protooncogene plays a central role in regulation of cell proliferation, and point mutations leading to oncogenic activation of Ras occur in a large number of human cancers. Silencing of tumor suppressor genes by DNA methyltransferase 1 (Dnmt1) is essential for oncogenic cellular transformation by Ras, and Dnmt1 is over-expressed in numerous human cancers. Here we provide new evidence that the pleiotropic Regulator of G protein Signaling (RGS) family member RGS6 suppresses Ras-induced cellular transformation by facilitating Tip60-mediated degradation of Dmnt1 and promoting apoptosis. Employing mouse embryonic fibroblasts (MEFs) from wild type (WT) and RGS6−/− mice, we found that oncogenic Ras induced up-regulation of RGS6, which in turn blocked Ras-induced cellular transformation. RGS6 functions to suppress cellular transformation in response to oncogenic Ras by down regulating Dnmt1 protein expression leading to inhibition of Dnmt1-mediated anti-apoptotic activity. Further experiments showed that RGS6 functions as a scaffolding protein for both Dnmt1 and Tip60 and is required for Tip60-mediated acetylation of Dnmt1 and subsequent Dnmt1 ubiquitylation and degradation. The RGS domain of RGS6, known only for its GAP activity toward Gα subunits, was sufficient to mediate Tip60 association with RGS6. This work demonstrates a novel signaling action for RGS6 in negative regulation of oncogene-induced transformation and provides new insights into our understanding of the mechanisms underlying Ras-induced oncogenic transformation and regulation of Dnmt1 expression. Importantly, these findings identify RGS6 as an essential cellular defender against oncogenic stress and a potential therapeutic target for developing new cancer treatments. PMID:23995786

  18. The ras1 function of Schizosaccharomyces pombe mediates pheromone-induced transcription

    Nielsen, O; Davey, William John; Egel, R


    Loss of ras1+ function renders fission yeast cells unable to undergo morphological changes in response to mating pheromones, whereas cells carrying activated mutations in ras1 are hyper-responsive. This has led to the suggestion that the ras1 gene product plays a role in mating pheromone signal t...

  19. Wild-Type N-Ras, Overexpressed in Basal-like Breast Cancer, Promotes Tumor Formation by Inducing IL-8 Secretion via JAK2 Activation

    Ze-Yi Zheng


    Full Text Available Basal-like breast cancers (BLBCs are aggressive, and their drivers are unclear. We have found that wild-type N-RAS is overexpressed in BLBCs but not in other breast cancer subtypes. Repressing N-RAS inhibits transformation and tumor growth, whereas overexpression enhances these processes even in preinvasive BLBC cells. We identified N-Ras-responsive genes, most of which encode chemokines; e.g., IL8. Expression levels of these chemokines and N-RAS in tumors correlate with outcome. N-Ras, but not K-Ras, induces IL-8 by binding and activating the cytoplasmic pool of JAK2; IL-8 then acts on both the cancer cells and stromal fibroblasts. Thus, BLBC progression is promoted by increasing activities of wild-type N-Ras, which mediates autocrine/paracrine signaling that can influence both cancer and stroma cells.

  20. Wild-Type N-Ras, Overexpressed in Basal-like Breast Cancer, Promotes Tumor Formation by Inducing IL-8 Secretion via JAK2 Activation.

    Zheng, Ze-Yi; Tian, Lin; Bu, Wen; Fan, Cheng; Gao, Xia; Wang, Hai; Liao, Yi-Hua; Li, Yi; Lewis, Michael T; Edwards, Dean; Zwaka, Thomas P; Hilsenbeck, Susan G; Medina, Daniel; Perou, Charles M; Creighton, Chad J; Zhang, Xiang H-F; Chang, Eric C


    Basal-like breast cancers (BLBCs) are aggressive, and their drivers are unclear. We have found that wild-type N-RAS is overexpressed in BLBCs but not in other breast cancer subtypes. Repressing N-RAS inhibits transformation and tumor growth, whereas overexpression enhances these processes even in preinvasive BLBC cells. We identified N-Ras-responsive genes, most of which encode chemokines; e.g., IL8. Expression levels of these chemokines and N-RAS in tumors correlate with outcome. N-Ras, but not K-Ras, induces IL-8 by binding and activating the cytoplasmic pool of JAK2; IL-8 then acts on both the cancer cells and stromal fibroblasts. Thus, BLBC progression is promoted by increasing activities of wild-type N-Ras, which mediates autocrine/paracrine signaling that can influence both cancer and stroma cells.

  1. Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae.

    Gourlay, C W; Ayscough, K R


    Recent research has revealed a conserved role for the actin cytoskeleton in the regulation of aging and apoptosis among eukaryotes. Here we show that the stabilization of the actin cytoskeleton caused by deletion of Sla1p or End3p leads to hyperactivation of the Ras signaling pathway. The consequent rise in cyclic AMP (cAMP) levels leads to the loss of mitochondrial membrane potential, accumulation of reactive oxygen species (ROS), and cell death. We have established a mechanistic link between Ras signaling and actin by demonstrating that ROS production in actin-stabilized cells is dependent on the G-actin binding region of the cyclase-associated protein Srv2p/CAP. Furthermore, the artificial elevation of cAMP directly mimics the apoptotic phenotypes displayed by actin-stabilized cells. The effect of cAMP elevation in inducing actin-mediated apoptosis functions primarily through the Tpk3p subunit of protein kinase A. This pathway represents the first defined link between environmental sensing, actin remodeling, and apoptosis in Saccharomyces cerevisiae.

  2. RAS Insight

    David Heimbrook, now CEO of the Frederick National Laboratory for Cancer Research, played a major role in a large pharma as it tried to develop an anti-RAS drug. Lessons from that failure inform the RAS Initiative today.

  3. The NPM-ALK tyrosine kinase mimics TCR signalling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms.

    Turner, Suzanne D; Yeung, Debra; Hadfield, Kathryn; Cook, Simon J; Alexander, Denis R


    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expression is associated with the lymphoid malignancy anaplastic large cell lymphoma (ALCL) and results from a t(2;5) chromosomal translocation. We show that NPM-ALK induces Ras activation and phosphorylation of the ERK MAP Kinase consistent with activation of the Ras-MAP Kinase pathway. Furthermore, we demonstrate that activation of Ras is necessary for inducing transcription via NFAT/AP-1 composite transcriptional binding sites. This activity is dependent on NPM-ALK forming complexes with proteins that bind to autophosphorylated tyrosine residues at positions 156, 567 and 664, associated with binding to IRS-1, Shc and PLCgamma, respectively. Specifically, NPM-ALK activates transcription from the TRE promoter element, an AP-1 binding region, an activity dependent on both Ras and Shc activity. Our results show that NPM-ALK mimics activated T-cell receptor signalling by inducing pathways associated with the activation of NFAT/AP-1 transcription factors that bind to promoter elements found in a broad array of cytokine genes.

  4. Involvement of MINK, a Ste20 Family Kinase, in Ras Oncogene-Induced Growth Arrest in Human Ovarian Surface Epithelial Cells

    Nicke, B.; Bastien, J.; Khanna, S.J.; Warne, P.H.; Cowling, V.; Cook, S.J.; Peters, G.; Delpuech, O.; Schulze, A.; Berns, K.; Mullenders, J.; Beijersbergen, R.L.; Bernards, R.A.; Ganesan, T.S.; Downward, J.; Hancock, D.C.


    The ability of activated Ras to induce growth arrest of human ovarian surface epithelial (HOSE) cells via induction of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 has been used to screen for Ras pathway signaling components using a library of RNA interference (RNAi) vectors targeting the kino

  5. Transcriptional Profile of Ki-Ras-Induced Transformation of Thyroid Cells

    Visconti, Roberta; Federico, Antonella; Coppola, Valeria


    Abstract In the last years, an increasing number of experiments has provided compelling evidence for a casual role of Ras protein mutations, resulting in their constitutive activation, in thyroid carcinogenesis. However, despite the clear involvement of Ras proteins in thyroid carcinogenesis, the...

  6. Activation of H-Ras and Rac1 correlates with epidermal growth factor-induced invasion in Hs578T and MDA-MB-231 breast carcinoma cells.

    Koh, Min-Soo; Moon, Aree


    There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.

  7. Inhibition of Ras oncogenic activity by Ras protooncogenes.

    Diaz, Roberto; Lue, Jeffrey; Mathews, Jeremy; Yoon, Andrew; Ahn, Daniel; Garcia-España, Antonio; Leonardi, Peter; Vargas, Marcelo P; Pellicer, Angel


    Point mutations in ras genes have been found in a large number and wide variety of human tumors. These oncogenic Ras mutants are locked in an active GTP-bound state that leads to a constitutive and deregulated activation of Ras function. The dogma that ras oncogenes are dominant, whereby the mutation of a single allele in a cell will predispose the host cell to transformation regardless of the presence of the normal allele, is being challenged. We have seen that increasing amounts of Ras protooncogenes are able to inhibit the activity of the N-Ras oncogene in the activation of Elk in NIH 3T3 cells and in the formation of foci. We have been able to determine that the inhibitory effect is by competition between Ras protooncogenes and the N-Ras oncogene that occurs first at the effector level at the membranes, then at the processing level and lastly at the effector level in the cytosol. In addition, coexpression of the N-Ras protooncogene in thymic lymphomas induced by the N-Ras oncogene is associated with increased levels of p107, p130 and cyclin A and decreased levels of Rb. In the present report, we have shown that the N-Ras oncogene is not truly dominant over Ras protooncogenes and their competing activities might be depending on cellular context.

  8. Autophagy Protects Against Senescence and Apoptosis via the RAS-Mitochondria in High-Glucose-Induced Endothelial Cells

    Fei Chen


    Full Text Available Backgrounds: Autophagy is an important process in the pathogenesis of diabetes and plays a critical role in maintaining cellular homeostasis. However, the autophagic response and its mechanism in diabetic vascular endothelium remain unclear. Methods and Results: We studied high-glucose-induced renin-angiotensin system (RAS-mitochondrial damage and its effect on endothelial cells. With regard to therapeutics, we investigated the beneficial effect of angiotensin-converting enzyme inhibitors (ACEIs or angiotensin II type 1 receptor blockers (ARBs against high-glucose-induced endothelial responses. High glucose activated RAS, enhanced mitochondrial damage and increased senescence, apoptosis and autophagic-responses in endothelial cells, and these effects were mimicked by using angiotensin II (Ang. The use of an ACEI or ARB, however, inhibited the negative effects of high glucose. Direct mitochondrial injury caused by carbonyl cyanide 3-chlorophenylhydrazone (CCCP resulted in similar negative effects of high glucose or Ang and abrogated the protective effects of an ACEI or ARB. Additionally, by impairing autophagy, high-glucose-induced senescence and apoptosis were accelerated and the ACEI- or ARB-mediated beneficial effects were abolished. Furthermore, increases in FragEL™ DNA Fragmentation (TUNEL-positive cells, β-galactosidase activation and the expression of autophagic biomarkers were revealed in diabetic patients and rats, and the treatment with an ACEI or ARB decreased these responses. Conclusions: These data suggest that autophagy protects against senescence and apoptosis via RAS-mitochondria in high-glucose-induced endothelial cells.

  9. Gastroprotective effects of several H2RAs on ibuprofen-induced gastric ulcer in rats.

    Liu, Jing; Sun, Dan; He, Jinfeng; Yang, Chengli; Hu, Tingting; Zhang, Lijing; Cao, Hua; Tong, Ai-Ping; Song, Xiangrong; Xie, Yongmei; He, Gu; Guo, Gang; Luo, Youfu; Cheng, Ping; Zheng, Yu


    Ibuprofen is the first line of treatment for osteoarthritis and arthritis. The main side effects of ibuprofen especially in long-term treatment include gastric ulcer, duodenal ulcer and indigestion etc. Therefore, screening drugs with effective gastric protective effects and low toxicity for combination therapy with ibuprofen is necessary. The mechanism of gastric damage induced by ibuprofen is still unclear, however, cell damage caused by reactive oxygen species (ROS) is considered as the main reason. Preliminary screening of literature with the criteria of low toxicity led to four histamine-2 receptor antagonists (H2RAs): nizatidine, famotidine, lafutidine, and roxatidine acetate, which were selected for further investigation. These drugs were evaluated systemically by examining the gastric ulcer index, lipid peroxidation (LPO), membrane permeability, toxicity to main organs, and the influence on the activity of antioxidant enzymes, and myeloperoxidase (MPO). Nizatidine was found to be the best gastric protective agent. It exhibited excellent protective effect by increasing antioxidant enzyme activity, decreasing MPO activity, reducing LPO, and membrane permeability. Combination treatment with nizatidine and ibuprofen did not show any significant toxicity. Nizatidine was considered as a good option for combination therapy with ibuprofen especially for diseases that require long-term treatment such as arthritis and osteoarthritis.

  10. Transcriptional Profile of Ki-Ras-Induced Transformation of Thyroid Cells

    Visconti, Roberta; Federico, Antonella; Coppola, Valeria


    Abstract In the last years, an increasing number of experiments has provided compelling evidence for a casual role of Ras protein mutations, resulting in their constitutive activation, in thyroid carcinogenesis. However, despite the clear involvement of Ras proteins in thyroid carcinogenesis, the...... in human thyroid carcinoma cell lines and tumor samples, our results, therefore, providing a new molecular profile of the genes involved in thyroid neoplastic transformation....

  11. Treatment of ras-induced cancers by the F-actin-bundling drug MKT-077.

    Tikoo, A; Shakri, R; Connolly, L; Hirokawa, Y; Shishido, T; Bowers, B; Ye, L H; Kohama, K; Simpson, R J; Maruta, H


    A rhodacyanine dye called MKT-077 has shown a highly selective toxicity toward several distinct human malignant cell lines, including bladder carcinoma EJ, and has been subjected to clinical trials for cancer therapy. In the pancreatic carcinoma cell line CRL-1420, but not in normal African green monkey kidney cell line CV-1, it is selectively accumulated in mitochondria. However, both the specific oncogenes responsible for its selective toxicity toward cancer cells, and its target proteins in these cancer cells, still remain to be determined. This study was conducted using normal and ras-transformed NIH 3T3 fibroblasts to determine whether oncogenic ras mutants such as v-Ha-ras are responsible for the selective toxicity of MKT-077 and also to identify its targets, using its derivative called "compound 1" as a specific ligand. We have found that v-Ha-ras is responsible for the selective toxicity of MKT-077 in both in vitro and in vivo. Furthermore, we have identified and affinity purified at least two distinct proteins of 45 kD (p45) and 75 kD (p75), which bind MKT-077 in v-Ha-ras-transformed cells but not in parental normal cells. Microsequencing analysis has revealed that the p45 is a mixture of beta- and gamma-actin, whereas the p75 is HSC70, a constitutive member of the Hsp70 heat shock adenosine triphosphatase family, which inactivates the tumor suppressor p53. MKT-077 binds actin directly, bundles actin filaments by cross-linking, and blocks membrane ruffling. Like a few F-actin-bundling proteins such as HS1, alpha-actinin, and vinculin as well as F-actin cappers such as tensin and chaetoglobosin K (CK), the F-actin-bundling drug MKT-077 suppresses ras transformation by blocking membrane ruffling. These findings suggest that other selective F-actin-bundling/capping compounds are also potentially useful for the chemotherapy of ras-associated cancers.

  12. Di2-ethylhexyl phthalate disrupts thyroid hormone homeostasis through activating the Ras/Akt/TRHr pathway and inducing hepatic enzymes

    Ye, Hanfeng; Ha, Mei; Yang, Min; Yue, Ping; Xie, Zhengyuan; Liu, Changjiang


    Di(2-ethylhexyl) phthalate (DEHP), as a widespread environmental pollutant and an endocrine disruptor, can disturb the homeostasis of thyroid hormones (THs). In order to elucidate roles of the MAPK and PI3K/Akt pathways and hepatic enzymes in thyroid-disrupting effects of DEHP, Sprague-Dawley rats were dosed with DEHP by gavage for 30 consecutive days; Nthy-ori 3-1 cells were treated with DEHP with NAC, k-Ras siRNA or inhibitors (U0126 and wortmannin). Results showed that DEHP led to histopathologic changes in rat thyroid and liver, such as the decrease in thyroid follicular cavity diameter, hepatocyte edema. Triiodothyronine (T3), thyroxine (T4) and thyrotropin releasing hormone (TRH) were reduced. DEHP caused ROS production, oxidative stress and k-Ras upregulation, thereby activating the ERK and Akt pathways in vivo and in vitro. Moreover, TRH receptor (TRHr) level was elevated after the activation of the Akt pathway and was downregulated after the inhibition of the Akt pathway. However, TRHr was not modulated by the ERK pathway. Additionally, hepatic enzymes, including Ugt1a1, CYP2b1, Sult1e1, and Sult2b1, were significantly induced after DEHP exposure. Taken together, DEHP can perturb TH homeostasis and reduce TH levels. The activated Ras/Akt/TRHr pathway and induced hepatic enzymes play vital roles in thyroid-disrupting effects of DEHP. PMID:28065941

  13. Plasma membrane regulates Ras signaling networks.

    Chavan, Tanmay Sanjeev; Muratcioglu, Serena; Marszalek, Richard; Jang, Hyunbum; Keskin, Ozlem; Gursoy, Attila; Nussinov, Ruth; Gaponenko, Vadim


    Ras GTPases activate more than 20 signaling pathways, regulating such essential cellular functions as proliferation, survival, and migration. How Ras proteins control their signaling diversity is still a mystery. Several pieces of evidence suggest that the plasma membrane plays a critical role. Among these are: (1) selective recruitment of Ras and its effectors to particular localities allowing access to Ras regulators and effectors; (2) specific membrane-induced conformational changes promoting Ras functional diversity; and (3) oligomerization of membrane-anchored Ras to recruit and activate Raf. Taken together, the membrane does not only attract and retain Ras but also is a key regulator of Ras signaling. This can already be gleaned from the large variability in the sequences of Ras membrane targeting domains, suggesting that localization, environment and orientation are important factors in optimizing the function of Ras isoforms.

  14. Transcriptional factor HBP1 targets P16(INK4A), upregulating its expression and consequently is involved in Ras-induced premature senescence.

    Li, H; Wang, W; Liu, X; Paulson, K E; Yee, A S; Zhang, X


    Oncogene-mediated premature senescence has emerged as a potential tumor-suppressive mechanism in early cancer transitions. Many studies showed that Ras and p38 mitogen-activated protein kinase (MAPK) participate in premature senescence. Our previous work indicated that the HMG box-containing protein 1 (HBP1) transcription factor is involved in Ras- and p38 MAPK-induced premature senescence, but the mechanism of which has not yet been identified. Here, we showed that the p16(INK4A) cyclin-dependent kinase inhibitor is a novel target of HBP1 participating in Ras-induced premature senescence. The promoter of the p16(INK4A) gene contains an HBP1-binding site at position -426 to -433 bp from the transcriptional start site. HBP1 regulates the expression of the endogenous p16(INK4A) gene through direct sequence-specific binding. With HBP1 expression and the subsequent increase of p16(INK4A) gene expression, Ras induces premature senescence in primary cells. The data suggest a model in which Ras and p38 MAPK signaling engage HBP1 and p16(INK4A) to trigger premature senescence. In addition, we report that HBP1 knockdown is also required for Ras-induced transformation. All the data indicate that the mechanism of HBP1-mediated transcriptional regulation is important for not only premature senescence but also tumorigenesis.

  15. Codon 64 of K-ras gene mutation pattern in hepatocellular carcinomas induced by bleomycin and 1-nitropyrene in A/J mice.

    Bai, Feng; Nakanishi, Yoichi; Takayama, Koichi; Pei, Xin-Hai; Inoue, Koji; Harada, Taishi; Izumi, Miiru; Hara, Nobuyuki


    Bleomycin is a radiomimetic antitumor agent with unique genotoxic properties. 1-nitropyrene is an environmental mutagen and carcinogen that undergoes both oxidative and reductive metabolism. In the present study, hepatocellular carcinomas were induced in male A/J mice by the intraperitoneal injection of bleomycin (120 mg/kg) followed by the intraperitoneal administration of 1-nitropyrene (total dose: 1,575 mg/kg). In order to understand the mechanism by which these two compounds induce hepatocellular carcinomas, the incidence and spectrum of mutations in the K-ras proto-oncogene in these hepatocellular carcinomas were analyzed. The hepatocellular carcinomas were induced by the administration of bleomycin and 1-nitropyrene were evaluated for point mutations in exon 1 and exon 2 of the K-ras gene by the polymerase chain reaction and a sequencing analysis. No mutation was found in the hotspots regions of the K-ras gene codon 12, 13, or 61. However, the codon 64 of the K-ras gene mutation was identified in 10 of 10 (100%) hepatocellular carcinomas. All mutations showed the same pattern, which was TAC-CAC transition. Codon 64 of the K-ras gene mutation may thus play an important role in the induction of hepatocellular carcinomas by bleomycin in the existence of 1-nitropyrene. As far as we know, this is the first report of a codon 64 mutation in the K-ras gene in a chemically induced tumor.

  16. Stressing fish in Recirculating Aquaculture Systems (RAS): Does stress induced in one group of fish affect the feeding motivation of other fish sharing the same RAS?

    Martins, C.I.; Eding, E.H.; Verreth, J.A.J.


    As a consequence of water re-use and high stocking densities, Recirculating Aquaculture Systems (RAS) may lead to an accumulation of substances released by the fish into the water, e.g. cortisol and alarm pheromones. This study investigated the effect of stressing fish on the feeding motivation of o

  17. R-Ras C-terminal sequences are sufficient to confer R-Ras specificity to H-Ras.

    Hansen, Malene; Rusyn, Elena V; Hughes, Paul E; Ginsberg, Mark H; Cox, Adrienne D; Willumsen, Berthe M


    Activated versions of the similar GTPases, H-Ras and R-Ras, have differing effects on biological phenotypes: Activated H-Ras strongly transforms many fibroblast cell lines causing dramatic changes in cell shape and cytoskeletal organization. In contrast, R-Ras transforms fewer cell lines and the transformed cells display only some of the morphological changes associated with H-Ras transformation. H-Ras cells can survive in the absence of serum whereas R-Ras cells seem to die by an apoptotic-like mechanism in response to removal of serum. H-Ras can suppress integrin activation and R-Ras specifically antagonizes this effect. To map sequences responsible for these differences we have generated and investigated a panel of H-Ras and R-Ras chimeras. We found that the C-terminal 53 amino acids of R-Ras were necessary and sufficient to specify the contrasting biological properties of R-Ras with respect to focus morphology, reactive oxygen species (ROS) production and reversal of H-Ras-induced integrin suppression. Surprisingly, we found chimeras in which the focus formation and integrin-mediated phenotypes were separated, suggesting that different effectors could be involved in mediating these responses. An integrin profile of H-Ras and R-Ras cell pools showed no significant differences; both activated H-Ras and R-Ras expressing cells were found to have reduced beta(1) activity, suggesting that the activity state of the beta(1) subunit is not sufficient to direct an H-Ras transformed cell morphology.

  18. Cdk2 deficiency decreases ras/CDK4-dependent malignant progression, but not myc-induced tumorigenesis.

    Macias, Everardo; Kim, Yongbaek; Miliani de Marval, Paula L; Klein-Szanto, Andres; Rodriguez-Puebla, Marcelo L


    We have previously shown that forced expression of CDK4 in mouse skin (K5CDK4 mice) results in increased susceptibility to squamous cell carcinoma (SCC) development in a chemical carcinogenesis protocol. This protocol induces skin papilloma development, causing a selection of cells bearing activating Ha-ras mutations. We have also shown that myc-induced epidermal proliferation and oral tumorigenesis (K5Myc mice) depends on CDK4 expression. Biochemical analysis of K5CDK4 and K5Myc epidermis as well as skin tumors showed that keratinocyte proliferation is mediated by CDK4 sequestration of p27Kip1 and p21Cip1, and activation of CDK2. Here, we studied the role of CDK2 in epithelial tumorigenesis. In normal skin, loss of CDK2 rescues CDK4-induced, but not myc-induced epidermal hyperproliferation. Ablation of CDK2 in K5CDK4 mice results in decreased incidences and multiplicity of skin tumors as well as malignant progression to SCC. Histopathologic analysis showed that K5CDK4 tumors are drastically more aggressive than K5CDK4/CDK2-/- tumors. On the other hand, we show that CDK2 is dispensable for myc-induced tumorigenesis. In contrast to our previous report of K5Myc/CDK4-/-, K5Myc/CDK2-/- mice developed oral tumors with the same frequency as K5Myc mice. Overall, we have established that ras-induced tumors are more susceptible to CDK2 ablation than myc-induced tumors, suggesting that the efficacy of targeting CDK2 in tumor development and malignant progression is dependent on the oncogenic pathway involved.

  19. Impeded Nedd4-1-Mediated Ras Degradation Underlies Ras-Driven Tumorigenesis

    Taoling Zeng


    Full Text Available RAS genes are among the most frequently mutated proto-oncogenes in cancer. However, how Ras stability is regulated remains largely unknown. Here, we report a regulatory loop involving the E3 ligase Nedd4-1, Ras, and PTEN. We found that Ras signaling stimulates the expression of Nedd4-1, which in turn acts as an E3 ubiquitin ligase that regulates Ras levels. Importantly, Ras activation, either by oncogenic mutations or by epidermal growth factor (EGF signaling, prevents Nedd4-1-mediated Ras ubiquitination. This leads to Ras-induced Nedd4-1 overexpression, and subsequent degradation of the tumor suppressor PTEN in both human cancer samples and cancer cells. Our study thus unravels the molecular mechanisms underlying the interplay of Ras, Nedd4-1, and PTEN and suggests a basis for the high prevalence of Ras-activating mutations and EGF hypersignaling in cancer.

  20. BRAF inhibitors induce metastasis in RAS mutant or inhibitor-resistant melanoma cells by reactivating MEK and ERK signaling.

    Sanchez-Laorden, Berta; Viros, Amaya; Girotti, Maria Romina; Pedersen, Malin; Saturno, Grazia; Zambon, Alfonso; Niculescu-Duvaz, Dan; Turajlic, Samra; Hayes, Andrew; Gore, Martin; Larkin, James; Lorigan, Paul; Cook, Martin; Springer, Caroline; Marais, Richard


    Melanoma is a highly metastatic and lethal form of skin cancer. The protein kinase BRAF is mutated in about 40% of melanomas, and BRAF inhibitors improve progression-free and overall survival in these patients. However, after a relatively short period of disease control, most patients develop resistance because of reactivation of the RAF-ERK (extracellular signal-regulated kinase) pathway, mediated in many cases by mutations in RAS. We found that BRAF inhibition induces invasion and metastasis in RAS mutant melanoma cells through a mechanism mediated by the reactivation of the MEK (mitogen-activated protein kinase kinase)-ERK pathway, increased expression and secretion of interleukin 8, and induction of protease-dependent invasion. These events were accompanied by a cell morphology switch from predominantly rounded to predominantly elongated cells. We also observed similar responses in BRAF inhibitor-resistant melanoma cells. These data show that BRAF inhibitors can induce melanoma cell invasion and metastasis in tumors that develop resistance to these drugs.

  1. Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin

    Lipigorngoson Suwiwek


    Full Text Available Abstract Background We investigated the chemopreventive action of dietary curcumin on 7,12-dimethylbenz(aanthracene (DMBA-initiated and 12,0-tetradecanoylphorbol-13-acetate (TPA-promoted skin tumor formation in Swiss albino mice. Curcumin, a yellow coloring matter isolated from roots of Curcuma longa Linn, is a phenolic compound possessing antioxidant, free radical scavenger, and antiinflammatory properties. It has been shown by previously reported work that TPA-induced skin tumors were inhibited by topical application of curcumin, and curcumin has been shown to inhibit a variety of biological activities of TPA. Topical application of curcumin was reported to inhibit TPA-induced c-fos, c-jun and c-myc gene expression in mouse skin. This paper reports the effects of orally administered curcumin, which was consumed as a dietary component at concentrations of 0.2 % or 1 %, in ad libitum feeding. Results Animals in which tumors had been initiated with DMBA and promoted with TPA experienced significantly fewer tumors and less tumor volume if they ingested either 0.2% or 1% curcumin diets. Also, the dietary consumption of curcumin resulted in a significantly decreased expression of ras and fos proto-oncogenes in the tumorous skin, as measured by enhanced chemiluminesence Western blotting detection system (Amersham. Conclusions Whereas earlier work demonstrated that topical application of curcumin to mouse skin inhibited TPA-induced expression of c-fos, c-jun and c-myc oncogenes, our results are the first to show that orally consumed curcumin significantly inhibited DMBA- and TPA-induced ras and fos gene expression in mouse skin.

  2. Mutation-Specific RAS Oncogenicity Explains N-RAS Codon 61 Selection in Melanoma

    Burd, Christin E.; Liu, Wenjin; Huynh, Minh V.; Waqas, Meriam A.; Gillahan, James E.; Clark, Kelly S.; Fu, Kailing; Martin, Brit L.; Jeck, William R.; Souroullas, George P.; Darr, David B.; Zedek, Daniel C.; Miley, Michael J.; Baguley, Bruce C.; Campbell, Sharon L.


    N-RAS mutation at codon 12, 13 or 61 is associated with transformation; yet, in melanoma, such alterations are nearly exclusive to codon 61. Here, we compared the melanoma susceptibility of an N-RasQ61R knock-in allele to similarly designed K-RasG12D and N-RasG12D alleles. With concomitant p16INK4a inactivation, K-RasG12D or N-RasQ61R expression efficiently promoted melanoma in vivo, whereas N-RasG12D did not. Additionally, N-RasQ61R mutation potently cooperated with Lkb1/Stk11 loss to induce highly metastatic disease. Functional comparisons of N-RasQ61R and N-RasG12D revealed little difference in the ability of these proteins to engage PI3K or RAF. Instead, N-RasQ61R showed enhanced nucleotide binding, decreased intrinsic GTPase activity and increased stability when compared to N-RasG12D. This work identifies a faithful model of human N-RAS mutant melanoma, and suggests that the increased melanomagenecity of N-RasQ61R over N-RasG12D is due to heightened abundance of the active, GTP-bound form rather than differences in the engagement of downstream effector pathways. PMID:25252692

  3. R-(+)-perillyl alcohol-induced cell cycle changes, altered actin cytoskeleton, and decreased ras and p34(cdc2) expression in colonic adenocarcinoma SW480 cells.

    Cerda, S R; Wilkinson, J; Thorgeirsdottir, S; Broitman, S A


    Monoterpenes as S-(-)-perillyl alcohol (PA) have been shown to inhibit the isoprenylation of such growth regulatory proteins as ras. In this study, we investigated the effects of the R-(+) enantiomer of PA on cell cycle, signaling, and cytoskeletal control in the colonic adenocarcinoma cell line SW480, which carries a K-ras mutation. Cell cycle analysis by flow cytometry of SW480 cells treated with 1 mM PA for 24 hours demonstrated an increase in the number of cells in G0/G1 with a decrease in S phase, compared with untreated control cells. These cell cycle changes correlated with an inhibition of protein isoprenylation from (14)C-mevalonate and decreased expression of the cell cycle regulatory kinase p34(cdc2). Additionally, PA-treated cells acquired a flattened morphology with a condensation of cytoskeletal actin spikes to the periphery. This was in contrast to treatment with 15 microM mevinolin (MVN), a direct mevalonate synthesis inhibitor, which imparted to SW480 cells a more rounded and spindly morphology, associated with the depolymerization of actin microfilaments. Together, these data suggest that fluctuations in mevalonate and isoprenoid pools may involve different morphologic phenomenon. Because ras mediated signaling is related to the organization of the actin cytoskeleton, we investigated the effects of PA on the isoprenylation of ras. Although MVN treatment inhibited ras farnesylation, PA treatment decreased the expression of total ras protein. In summary, R-(+)-PA-induced cell signaling events correlated with alterations in the organization of cytoskeletal actin and decreased protein expression of growth regulatory proteins, such as ras and cdc2 kinase. These effects may contribute to the growth inhibitory activity of R-(+)-PA.

  4. Transformation with Oncogenic Ras and the Simian Virus 40 T Antigens Induces Caspase-Dependent Sensitivity to Fatty Acid Biosynthetic Inhibition

    Xu, Shihao; Spencer, Cody M.


    ABSTRACT Oncogenesis is frequently accompanied by the activation of specific metabolic pathways. One such pathway is fatty acid biosynthesis, whose induction is observed upon transformation of a wide variety of cell types. Here, we explored how defined oncogenic alleles, specifically the simian virus 40 (SV40) T antigens and oncogenic Ras12V, affect fatty acid metabolism. Our results indicate that SV40/Ras12V-mediated transformation of fibroblasts induces fatty acid biosynthesis in the absence of significant changes in the concentration of fatty acid biosynthetic enzymes. This oncogene-induced activation of fatty acid biosynthesis was found to be mammalian target of rapamycin (mTOR) dependent, as it was attenuated by rapamycin treatment. Furthermore, SV40/Ras12V-mediated transformation induced sensitivity to treatment with fatty acid biosynthetic inhibitors. Pharmaceutical inhibition of acetyl-coenzyme A (CoA) carboxylase (ACC), a key fatty acid biosynthetic enzyme, induced caspase-dependent cell death in oncogene-transduced cells. In contrast, isogenic nontransformed cells were resistant to fatty acid biosynthetic inhibition. This oncogene-induced sensitivity to fatty acid biosynthetic inhibition was independent of the cells' growth rates and could be attenuated by supplementing the medium with unsaturated fatty acids. Both the activation of fatty acid biosynthesis and the sensitivity to fatty acid biosynthetic inhibition could be conveyed to nontransformed breast epithelial cells through transduction with oncogenic Ras12V. Similar to what was observed in the transformed fibroblasts, the Ras12V-induced sensitivity to fatty acid biosynthetic inhibition was independent of the proliferative status and could be attenuated by supplementing the medium with unsaturated fatty acids. Combined, our results indicate that specific oncogenic alleles can directly confer sensitivity to inhibitors of fatty acid biosynthesis. IMPORTANCE Viral oncoproteins and cellular mutations

  5. Calcineurin inhibitor-induced and Ras-mediated overexpression of VEGF in renal cancer cells involves mTOR through the regulation of PRAS40.

    Aninda Basu

    Full Text Available Malignancy is a major problem in patients treated with immunosuppressive agents. We have demonstrated that treatment with calcineurin inhibitors (CNIs can induce the activation of proto-oncogenic Ras, and may promote a rapid progression of human renal cancer through the overexpression of vascular endothelial growth factor (VEGF. Interestingly, we found that CNI-induced VEGF overexpression and cancer cell proliferation was inhibited by rapamycin treatment, indicating potential involvement of the mammalian target of rapamycin (mTOR pathway in this tumorigenic process. Here, we examined the role of mTOR pathway in mediating CNI- and Ras-induced overexpression of VEGF in human renal cancer cells (786-0 and Caki-1. We found that the knockdown of raptor (using siRNA significantly decreased CNI-induced VEGF promoter activity as observed by promoter-luciferase assay, suggesting the role of mTOR complex1 (mTORC1 in CNI-induced VEGF transcription. It is known that mTOR becomes activated following phosphorylation of its negative regulator PRAS40, which is a part of mTORC1. We observed that CNI treatment and activation of H-Ras (through transfection of an active H-Ras plasmid markedly increased the phosphorylation of PRAS40, and the transfection of cells using a dominant-negative plasmid of Ras, significantly decreased PRAS40 phosphorylation. Protein kinase C (PKC-ζ and PKC-δ, which are critical intermediary signaling molecules for CNI-induced tumorigenic pathway, formed complex with PRAS40; and we found that the CNI treatment increased the complex formation between PRAS40 and PKC, particularly (PKC-ζ. Inhibition of PKC activity using pharmacological inhibitor markedly decreased H-Ras-induced phosphorylation of PRAS40. The overexpression of PRAS40 in renal cancer cells significantly down-regulated CNI- and H-Ras-induced VEGF transcriptional activation. Finally, it was observed that CNI treatment increased the expression of phosho-PRAS40 in renal tumor

  6. The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway.

    Park, Jong-In; Strock, Christopher J; Ball, Douglas W; Nelkin, Barry D


    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for "fail-safe" induction and maintenance of cell cycle arrest.

  7. The Ras/Raf/MEK/Extracellular Signal-Regulated Kinase Pathway Induces Autocrine-Paracrine Growth Inhibition via the Leukemia Inhibitory Factor/JAK/STAT Pathway

    Park, Jong-In; Strock, Christopher J.; Ball, Douglas W.; Nelkin, Barry D.


    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF express...

  8. Analysis of beta-catenin, Ki-ras, and microsatellite stability in azoxymethane-induced colon tumors of BDIX/Orl Ico rats

    Sørensen, Nanna Møller; Kobaek-Larsen, Morten; Bonne, Anita


    The aim of the study reported here was to investigate whether the azoxymethane (AOM)-induced colon cancer rat model mimics the human situation with regard to microsatellite stability, changes in expression of beta-catenin, and/or changes in the sequence of the proto-oncogene Ki-ras. Colon cancer ...

  9. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway.

    Drosten, Matthias; Sum, Eleanor Y M; Lechuga, Carmen G; Simón-Carrasco, Lucía; Jacob, Harrys K C; García-Medina, Raquel; Huang, Sidong; Beijersbergen, Roderick L; Bernards, Rene; Barbacid, Mariano


    The Ras family of small GTPases constitutes a central node in the transmission of mitogenic stimuli to the cell cycle machinery. The ultimate receptor of these mitogenic signals is the retinoblastoma (Rb) family of pocket proteins, whose inactivation is a required step to license cell proliferation. However, little is known regarding the molecular events that connect Ras signaling with the cell cycle. Here, we provide genetic evidence to illustrate that the p53/p21 Cdk-interacting protein 1 (Cip1)/Rb axis is an essential component of the Ras signaling pathway. Indeed, knockdown of p53, p21Cip1, or Rb restores proliferative properties in cells arrested by ablation of the three Ras loci, H-, N- and K-Ras. Ras signaling selectively inactivates p53-mediated induction of p21Cip1 expression by inhibiting acetylation of specific lysine residues in the p53 DNA binding domain. Proliferation of cells lacking both Ras proteins and p53 can be prevented by reexpression of the human p53 ortholog, provided that it retains an active DNA binding domain and an intact lysine residue at position 164. These results unveil a previously unidentified role for p53 in preventing cell proliferation under unfavorable mitogenic conditions. Moreover, we provide evidence that cells lacking Ras and p53 proteins owe their proliferative properties to the unexpected retroactivation of the Raf/Mek/Erk cascade by a Ras-independent mechanism.

  10. 1α, 25-Dihydroxyvitamin D regulates hypoxia-inducible factor-1α in untransformed and Harvey-ras transfected breast epithelial cells.

    Jiang, Yan; Zheng, Wei; Teegarden, Dorothy


    The purpose of this study was to determine the mechanism by which 1α, 25-dihydroxyvitamin D (1,25(OH)(2)D) alters hypoxia-inducible factor-1α (HIF-1α) protein in untransformed and Harvey-ras (H-ras) oncogene transfected MCF10A breast epithelial cells. Treatment with 1,25(OH)(2)D (10nM) increased both mRNA (2.55±0.6-fold vs. vehicle, p=0.03) and protein levels (2.37±0.3-fold vs. vehicle, pMCF10A cells in 12h, which remained elevated at 24h. However, in H-ras transfected MCF10A cells, 1,25(OH)(2)D treatment increased HIF-1α protein level (2.08±0.38-fold vs. vehicle, p=0.05) at 12h, with no change in mRNA level and HIF-1α protein level returned to baseline after 24h. A transcription inhibitor prevented the 1,25(OH)(2)D induction of HIF-1α protein and mRNA levels in MCF10A cells, but failed to alter the induction of HIF-1α protein level in H-ras transfected MCF10A cells. On the other hand, inhibition of proteasomal degradation prevented the 1,25(OH)(2)D-induced HIF-1α protein level in H-ras transfected MCF10A but not in MCF10A cells. These results support that 1,25(OH)(2)D regulates HIF-1α protein level via transcriptional regulation in MCF10A cells in contrast to through proteosomal degradation with the presence of H-ras oncogene in MCF10A cells.

  11. Growth characteristics and Ha-ras mutations of cell cultures isolated from chemically induced mouse liver tumours.

    Pedrick, M S; Rumsby, P C; Wright, V; Phillimore, H E; Butler, W H; Evans, J G


    Cells have been isolated from liver tumours that have arisen in control C3H/He mice, in mice given 10 micrograms diethylnitrosamine (DEN) during the neonatal period or in mice given a diet containing phenobarbitone (PB) to allow a daily intake of 85 mg/kg/day. The cells were grown to the 8 degrees subculture when their growth characteristics were investigated in monolayer culture and following suspension in soft agar and on transplantation into nude mice. In addition, DNA was isolated from the cultures and from tumours that grew in nude mice and analysed for mutations at codon 61 of the Ha-ras oncogene. All cells derived from DEN-induced hepatocellular carcinomas (HCC) demonstrated a lack of density inhibition of growth in monolayer culture, grew in soft agar and formed tumours in nude mice with an average mean latency of 29 days. Three of the seven lines showed mutations in Ha-ras: two were CAA-->AAA transversions and one showed a CAA-->CTA transversion. In contrast, cells isolated from eosinophilic nodules in mice given PB showed inhibition of growth at confluence, did not grow in soft agar and only four of eight formed tumours in nude mice with a mean average latent period of 181 days. Cells grown from HCC in mice given PB showed a lack of density inhibition of growth, however, they did not grow in soft agar nor did they form tumours in nude mice. A single spontaneous HCC from a control mouse showed a similar growth pattern to HCC cells isolated from mice given PB. Cells from a basophilic nodule, taken from a control untreated mouse grew vigorously in culture and in soft agar and formed tumours in nude mice with a latency of 6 days. None of the cells isolated from control mice or from mice given PB showed evidence of mutations at codon 61 of Ha-ras. These data confirm that there are fundamental differences in the biology of cells grown from tumours that develop in mice under different treatment regimes. These studies also demonstrate the utility of cell culture

  12. G-CSF improves CUMS-induced depressive behaviors through downregulating Ras/ERK/MAPK signaling pathway.

    Li, Hui; Linjuan-Li; Wang, Yaping


    Neuronal plasticity in hippocampal neurons is closely related to memory, mood and behavior as well as in the development of depression. Granulocyte colony-stimulating factor (G-CSF) can promote neuronal plasticity and enhance motor skills. However, the function of G-CSF in depression remains poorly understood. In this study, we explored the biological role and potential molecular mechanism of G-CSF on depression-like behaviors. Our results showed that G-CSF was significantly downregulated in the hippocampus of chronic unexpected mild stress (CUMS) rats. Administration of G-CSF significantly reversed CUMS-induced depression-like behaviors in the open field test (OFT), sucrose preference test (SPT) and forced swimming test (FST). Moreover, G-CSF upregulated the expression of synaptic-associated proteins including polysialylated form of neural cell adhesion molecule (PSA-NCAM), synaptophysin (SYN), and postsynaptic density protein 95 (PSD-95) in the hippocampus and G-CSF significantly increased cell viability rate of hippocampal neurons in vitro. Further studies indicated that the renin-angiotensin system (Ras)/extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) signaling pathways was involved in the regulation of G-CSF on depressive-like behaviors and neuronal plasticity in CUMS rats. Taken together, our results showed that G-CSF improves depression-like behaviors via inhibiting Ras/ERK/MAPK signaling pathways. Our study suggests that G-CSF may be a promising therapeutic strategy for the treatment of depression.

  13. The role of autophagy in cytotoxicity induced by new oncogenic B-Raf inhibitor UI-152 in v-Ha-ras transformed fibroblasts

    Ahn, Jun-Ho [Division of Life Sciences, College of Natural Sciences, University of Incheon, Incheon 406-772 (Korea, Republic of); Ahn, Soon Kil [Division of Life Sciences, College of Natural Sciences, University of Incheon, Incheon 406-772 (Korea, Republic of); YOUAI Co., Ltd., Suwon-Si, Gyeonggi-Do 443-766 (Korea, Republic of); Lee, Michael, E-mail: [Division of Life Sciences, College of Natural Sciences, University of Incheon, Incheon 406-772 (Korea, Republic of)


    Highlights: Black-Right-Pointing-Pointer We recently discovered a potent and selective B-Raf inhibitor, UI-152. Black-Right-Pointing-Pointer UI-152 displayed a selective cytotoxicity toward v-Ha-ras transformed cells. Black-Right-Pointing-Pointer UI-152-induced growth inhibition was largely meditated by autophagy. Black-Right-Pointing-Pointer UI-152 induced paradoxical activation of Raf-1. -- Abstract: In human cancers, B-Raf is the most frequently mutated protein kinase in the MAPK signaling cascade, making it an important therapeutic target. We recently discovered a potent and selective B-Raf inhibitor, UI-152, by using a structure-based drug design strategy. In this study, we examined whether B-Raf inhibition by UI-152 may be an effective therapeutic strategy for eliminating cancer cells transformed with v-Ha-ras (Ras-NIH 3T3). UI-152 displayed selective cytotoxicity toward Ras-NIH 3T3 cells while having little to no effect on non-transformed NIH 3T3 cells. We found that treatment with UI-152 markedly increased autophagy and, to a lesser extent, apoptosis. However, inhibition of autophagy by addition of 3-MA failed to reverse the cytotoxic effects of UI-152 on Ras-NIH 3T3 cells, demonstrating that apoptosis and autophagy can act as cooperative partners to induce growth inhibition in Ras-NIH 3T3 cells treated with UI-152. Most interestingly, cell responses to UI-152 appear to be paradoxical. Here, we showed that although UI-152 inhibited ERK, it induced B-Raf binding to Raf-1 as well as Raf-1 activation. This paradoxical activation of Raf-1 by UI-152 is likely to be coupled with the inhibition of the mTOR pathway, an intracellular signaling pathway involved in autophagy. We also showed for the first time that, in multi-drug resistant cells, the combination of UI-152 with verapamil significantly decreased cell proliferation and increased autophagy. Thus, our findings suggest that the inhibition of autophagy, in combination with UI-152, offers a more effective

  14. Activation of Bmp2-Smad1 signal and its regulation by coordinated alteration of H3K27 trimethylation in Ras-induced senescence.

    Atsushi Kaneda


    Full Text Available Cellular senescence involves epigenetic alteration, e.g. loss of H3K27me3 in Ink4a-Arf locus. Using mouse embryonic fibroblast (MEF, we here analyzed transcription and epigenetic alteration during Ras-induced senescence on genome-wide scale by chromatin immunoprecipitation (ChIP-sequencing and microarray. Bmp2 was the most activated secreted factor with H3K4me3 gain and H3K27me3 loss, whereas H3K4me3 loss and de novo formation of H3K27me3 occurred inversely in repression of nine genes, including two BMP-SMAD inhibitors Smad6 and Noggin. DNA methylation alteration unlikely occurred. Ras-activated cells senesced with nuclear accumulation of phosphorylated SMAD1/5/8. Senescence was bypassed in Ras-activated cells when Bmp2/Smad1 signal was blocked by Bmp2 knockdown, Smad6 induction, or Noggin induction. Senescence was induced when recombinant BMP2 protein was added to Bmp2-knocked-down Ras-activated cells. Downstream Bmp2-Smad1 target genes were then analyzed genome-wide by ChIP-sequencing using anti-Smad1 antibody in MEF that was exposed to BMP2. Smad1 target sites were enriched nearby transcription start sites of genes, which significantly correlated to upregulation by BMP2 stimulation. While Smad6 was one of Smad1 target genes to be upregulated by BMP2 exposure, Smad6 repression in Ras-activated cells with increased enrichment of Ezh2 and gain of H3K27me3 suggested epigenetic disruption of negative feedback by Polycomb. Among Smad1 target genes that were upregulated in Ras-activated cells without increased repressive mark, Parvb was found to contribute to growth inhibition as Parvb knockdown lead to escape from senescence. It was revealed through genome-wide analyses in this study that Bmp2-Smad1 signal and its regulation by harmonized epigenomic alteration play an important role in Ras-induced senescence.

  15. Regulation of Ras exchange factors and cellular localization of Ras activation by lipid messengers in T cells

    Jesse E. Jun


    Full Text Available The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and SOS-family GEFs.Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood.One large group of biomolecules critically involved in the control of Ras-GEFs´functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells.

  16. Reduction of metastasis, cell invasion, and adhesion in mouse osteosarcoma by YM529/ONO-5920-induced blockade of the Ras/MEK/ERK and Ras/PI3K/Akt pathway

    Tsubaki, Masanobu [Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka 577-8502 (Japan); Satou, Takao; Itoh, Tatsuki [Department of Pathology, Kinki University School of Medicine, Osakasayama, Osaka 589-8511 (Japan); Imano, Motohiro [Department of Surgery, Kinki University School of Medicine, Osakasayama, Osaka 589-8511 (Japan); Ogaki, Mitsuhiko [Department of Pharmacy, Higahiosaka City General Hospital, Higashi-osaka, Osaka 578-8588 (Japan); Yanae, Masashi [Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka 577-8502 (Japan); Depeartment of Pharmacy, Sakai Hospital, Kinki University School of Medicine, Sakai, Osaka 590-0132 (Japan); Nishida, Shozo, E-mail: [Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka 577-8502 (Japan)


    Osteosarcoma is one of the most common primary malignant bone tumors in children and adolescents. Some patients continue to have a poor prognosis, because of the metastatic disease. YM529/ONO-5920 is a nitrogen-containing bisphosphonate that has been used for the treatment of osteoporosis. YM529/ONO-5920 has recently been reported to induce apoptosis in various tumors including osteosarcoma. However, the mode of metastasis suppression in osteosarcoma by YM529/ONO-5920 is unclear. In the present study, we investigated whether YM529/ONO-5920 inhibited tumor cell migration, invasion, adhesion, or metastasis in the LM8 mouse osteosarcoma cell line. We found that YM529/ONO-5920 significantly inhibited metastasis, cell migration, invasion, and adhesion at concentrations that did not have antiproliferative effects on LM8 cells. YM529/ONO-5920 also inhibited the mRNA expression and protein activities of matrix metalloproteinases (MMPs). In addition, YM529/ONO-5920 suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and the serine/threonine protein kinase B (Akt) by the inhibition of Ras prenylation. Moreover, U0126, a mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, also inhibited LM8 cell migration, invasion, adhesion, and metastasis, as well as the mRNA expression and protein activities of MMP-1, MMP-2, MMP-9, and MT1-MMP. The results indicated that YM529/ONO-5920 suppressed the Ras/MEK/ERK and Ras/PI3K/Akt pathways, thereby inhibiting LM8 cell migration, invasion, adhesion, and metastasis. These findings suggest that YM529/ONO-5920 has potential clinical applications for the treatment of tumor cell metastasis in osteosarcoma. -- Highlights: ► We investigated whether YM529/ONO-5920 inhibited tumor metastasis in osteosarcoma. ► YM529/ONO-5920 inhibited metastasis, cell migration, invasion, and adhesion. ► YM529/ONO-5920 suppressed Ras signalings. ► YM529/ONO-5920

  17. K-ras mutations and mucin profile in preneoplastic lesions and colon tumors induced in rats by 1,2-dimethylhydrazine.

    Femia, Angelo Pietro; Tarquini, Elena; Salvadori, Maddalena; Ferri, Stefania; Giannini, Augusto; Dolara, Piero; Caderni, Giovanna


    K-ras and mucin profile variations, associated with intestinal carcinogenesis, were studied in the preneoplastic lesions, mucin-depleted foci (MDF) and aberrant crypt foci (ACF), and in colonic tumors induced in rats by 1,2-dimethylhydrazine (DMH). The frequency of lesions with K-ras mutations was 23% (3/13), 5.5% (1/18) and 100% (14/14) in MDF, tumors and ACF, respectively. Two of three MDF mutated in K-ras also carried a missense mutation in Apc. We also tested the expression of MUC2, a mucin abundantly expressed in normal colon and M1/MUCA5C, up-regulated in colon carcinogenesis, using immunohistochemistry. MDF and tumors showed a dramatic reduction in the expression of MUC2, whereas ACF showed only a slight reduction. The expression of M1/MUC5AC was almost absent in normal mucosa, but was increased in all the lesions (MDF, tumors and ACF). The expression of the intestinal trefoil factor (ITF), a marker of goblet cell lineage, was reduced in MDF and tumors compared to normal mucosa but not in ACF. In conclusion, although K-ras mutations are present in all ACF, they are less frequent in MDF and tumors; M1/MUC5AC is a marker associated with all preneoplastic events while the reduction of MUC2 and ITF expression is selectively associated with more advanced lesions such as MDF and tumors. Copyright 2007 Wiley-Liss, Inc.

  18. Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling

    Zhi-Dong Liu


    Full Text Available Abstract Neuronal atrophy is a common pathological feature occurred in aging and neurodegenerative diseases. A variety of abnormalities including motor protein malfunction and mitochondrial dysfunction contribute to the loss of neuronal architecture; however, less is known about the intracellular signaling pathways that can protect against or delay this pathogenic process. Here, we show that the DYNC1I1 deficiency, a neuron-specific dynein intermediate chain, causes neuronal atrophy in primary hippocampal neurons. With this cellular model, we are able to find that activation of RAS-RAF-MEK signaling protects against neuronal atrophy induced by DYNC1I1 deficiency, which relies on MEK-dependent autophagy in neuron. Moreover, we further reveal that BRAF also protects against neuronal atrophy induced by mitochondrial impairment. These findings demonstrate protective roles of the RAS-RAF-MEK axis against neuronal atrophy, and imply a new therapeutic target for clinical intervention.

  19. Nf1 Loss and Ras Hyperactivation in Oligodendrocytes Induce NOS-Driven Defects in Myelin and Vasculature

    Debra A. Mayes


    Full Text Available Patients with neurofibromatosis type 1 (NF1 and Costello syndrome Rasopathy have behavioral deficits. In NF1 patients, these may correlate with white matter enlargement and aberrant myelin. To model these features, we induced Nf1 loss or HRas hyperactivation in mouse oligodendrocytes. Enlarged brain white matter tracts correlated with myelin decompaction, downregulation of claudin-11, and mislocalization of connexin-32. Surprisingly, non-cell-autonomous defects in perivascular astrocytes and the blood-brain barrier (BBB developed, implicating a soluble mediator. Nitric oxide (NO can disrupt tight junctions and gap junctions, and NO and NO synthases (NOS1–NOS3 were upregulated in mutant white matter. Treating mice with the NOS inhibitor NG-nitro-L-arginine methyl ester or the antioxidant N-acetyl cysteine corrected cellular phenotypes. CNP-HRasG12V mice also displayed locomotor hyperactivity, which could be rescued by antioxidant treatment. We conclude that Nf1/Ras regulates oligodendrocyte NOS and that dysregulated NO signaling in oligodendrocytes can alter the surrounding vasculature. The data suggest that antioxidants may improve some behavioral deficits in Rasopathy patients.

  20. Analysis of beta-catenin, Ki-ras, and microsatellite stability in azoxymethane-induced colon tumors of BDIX/Orl Ico rats.

    Sørensen, Nanna Møller; Kobaek-Larsen, Morten; Bonne, Anita; van Zutphen, Bert; Fenger, Claus; Kristiansen, Karsten; Ritskes-Hoitinga, Merel


    The aim of the study reported here was to investigate whether the azoxymethane (AOM)-induced colon cancer rat model mimics the human situation with regard to microsatellite stability, changes in expression of beta-catenin, and/or changes in the sequence of the proto-oncogene Ki-ras. Colon cancer was induced by administration of four weekly doses of AOM (15 mg/kg of body weight per week) separated by a one-week break between the second and third injections. As the histopathologic characteristics of this model resemble those of the human counterpart, further characterization of the genetic changes was undertaken. The animals were euthanized 28 to 29 weeks after the first AOM injection, and tumor specimens were taken for histologic and DNA analyses. Since microsatellite variation was found in only a few (< 2%) specimens, the model can be considered as having stable microsatellites. This result is in accordance with those of similar studies in other rat models and with most human colorectal cancers. Immunohistochemical analyses of beta-catenin did not reveal loss of gene activity, nor did the sequencing of Ki-ras reveal mutations. These results are in contrast to most findings in comparable rat studies. The deviations may be due to differences in exposure to the carcinogen or difference in strain and/or age. The lack of beta-catenin and Ki-ras alterations in this colon cancer model is unlike human sporadic colorectal cancers where these genetic changes are common findings.

  1. Gene expression studies demonstrate that the K-ras/Erk MAP kinase signal transduction pathway and other novel pathways contribute to the pathogenesis of cumene-induced lung tumors.

    Wakamatsu, Nobuko; Collins, Jennifer B; Parker, Joel S; Tessema, Mathewos; Clayton, Natasha P; Ton, Thai-Vu T; Hong, Hue-Hua L; Belinsky, Steven; Devereux, Theodora R; Sills, Robert C; Lahousse, Stephanie A


    National Toxicology Program (NTP) inhalation studies demonstrated that cumene significantly increased the incidence of alveolar/bronchiolar adenomas and carcinomas in B6C3F1 mice. Cumene or isopropylbenzene is a component of crude oil used primarily in the production of phenol and acetone. The authors performed global gene expression analysis to distinguish patterns of gene regulation between cumene-induced tumors and normal lung tissue and to look for patterns based on the presence or absence of K-ras and p53 mutations in the tumors. Principal component analysis segregated the carcinomas into groups with and without K-ras mutations, but failed to separate the tumors based on p53 mutation status. Expression of genes associated with the Erk MAP kinase signaling pathway was significantly altered in carcinomas with K-ras mutations compared to tumors without K-ras mutations or normal lung. Gene expression analysis also suggested that cumene-induced carcinomas with K-ras mutations have greater malignant potential than those without mutations. In addition, significance analysis of function and expression (SAFE) demonstrated expression changes of genes regulated by histone modification in carcinomas with K-ras mutations. The gene expression analysis suggested the formation of alveolar/bronchiolar carcinomas in cumene-exposed mice typically involves mutation of K-ras, which results in increased Erk MAP kinase signaling and modification of histones.

  2. Oncogenic Ras, but not (V600E)B-RAF, protects from cholesterol depletion-induced apoptosis through the PI3K/AKT pathway in colorectal cancer cells.

    Calleros, Laura; Sánchez-Hernández, Irene; Baquero, Pablo; Toro, María José; Chiloeches, Antonio


    Cholesterol is necessary for proliferation and survival of transformed cells. Here we analyse the effect of cholesterol depletion on apoptosis and the mechanisms underlying this effect in colorectal cancer cells carrying oncogenic Ras or (V600E)B-RAF mutations. We show that chronic cholesterol depletion achieved with lipoprotein-deficient serum (LPDS) and 25-hydroxycholesterol (25-HC) treatment results in a significant increase in apoptosis in HT-29 and Colo-205 cells containing the (V600E)B-RAF mutation, but not in HCT-116 and LoVo cells harbouring the (G13D)Ras mutation, or BE cells, which possess two mutations, (G13D)Ras and (G463V)B-RAF. We also demonstrate that oncogenic Ras protects from apoptosis induced by cholesterol depletion through constitutive activation of the phosphatidylinositol-3 kinase (PI3K)/AKT pathway. The specific activation of the PI3K/AKT pathway by overexpression of the (V12)RasC40 mutant or a constitutively active AKT decreases the LPDS plus 25-HC-induced apoptosis in HT-29 cells, whereas PI3K inhibition or abrogation of AKT expression renders HCT-116 sensitive to cholesterol depletion-induced apoptosis. Moreover, our data show that LPDS plus 25-HC increases the activity of c-Jun N-terminal kinase proteins only in HT-29 cells and that the inhibition of this kinase blocks the apoptosis induced by LPDS plus 25-HC. Finally, we demonstrate that AKT hyperactivation by oncogenic Ras protects from apoptosis, preventing the activation of c-Jun N-terminal kinase by cholesterol depletion. Thus, our data demonstrate that low levels of cholesterol induce apoptosis in colorectal cancer cells without oncogenic Ras mutations. These results reveal a novel molecular characteristic of colon tumours containing Ras or B-RAF mutations and should help in defining new targets for cancer therapy.

  3. Ifenprodil Attenuates Methamphetamine-Induced Behavioral Sensitization and Activation of Ras-ERK-∆FosB Pathway in the Caudate Putamen.

    Li, Lu; Liu, Xinshe; Qiao, Chuchu; Chen, Gang; Li, Tao


    Addiction is a debilitating, chronic psychiatric disorder that is difficult to cure completely owing to the high rate of relapse. Behavioral sensitization is considered to may underlie behavioral changes, such as relapse, caused by chronic abuse of psychomotor stimulants. Thus, its animal models have been widely used to explore the etiology of addiction. Recently, increasing evidence has demonstrated that N-methyl-D-aspartate receptors (NMDARs) play an important role in addiction to psychomotor stimulants. However, the role of GluN2B-containing receptors and their downstream signaling pathway(s) in behavioral sensitization induced by methamphetamine (METH) have not been investigated yet. In this study, we used different doses of ifenprodil (2.5, 5, 10 mg/kg), a selective antagonist of the GluN2B subunit, to investigate the role of GluN2B-containing NMDARs in METH-induced behavioral sensitization. We then examined changes in the levels of Ras, phosphorylated extracellular signal-regulated kinase (pERK)/ERK, and ∆FosB in the caudate putamen (CPu) by western blot. We found that 2.5 or 10 mg/kg ifenprodil significantly attenuated METH-induced behavioral sensitization, whereas the mice treated with a moderate dose of ifenprodil (5 mg/kg) displayed no significant changes. Further results of western blot experiments showed that repeated administration of METH caused the increases in the levels of Ras, pERK/ERK and ∆FosB in the CPu, and these changes were inhibited by only the 2.5 mg/kg dose of ifenprodil. In conclusion, these results demonstrated that 2.5 mg/kg ifenprodil could attenuate METH-induced behavioral sensitization. Moreover, GluN2B-containing NMDARs and their downstream Ras-ERK-∆FosB signaling pathway in the CPu might be involved in METH-induced behavioral sensitization.

  4. Flavopiridol Synergizes with Sorafenib to Induce Cytotoxicity and Potentiate Antitumorigenic Activity in EGFR/HER-2 and Mutant RAS/RAF Breast Cancer Model Systems

    Teddy S Nagaria


    Full Text Available Oncogenic receptor tyrosine kinase (RTK signaling through the Ras-Raf-Mek-Erk (Ras-MAPK pathway is implicated in a wide array of carcinomas, including those of the breast. The cyclin-dependent kinases (CDKs are implicated in regulating proliferative and survival signaling downstream of this pathway. Here, we show that CDK inhibitors exhibit an order of magnitude greater cytotoxic potency than a suite of inhibitors targeting RTK and Ras-MAPK signaling in cell lines representative of clinically recognized breast cancer (BC subtypes. Drug combination studies show that the pan-CDK inhibitor, flavopiridol (FPD, synergistically potentiated cytotoxicity induced by the Raf inhibitor, sorafenib (SFN. This synergy was most pronounced at sub-EC50 SFN concentrations in MDA-MB-231 (KRAS-G13D and BRAF-G464V mutations, MDA-MB-468 [epidermal growth factor receptor (EGFR overexpression], and SKBR3 [ErbB2/EGFR2 (HER-2 overexpression] cells but not in hormone-dependent MCF-7 and T47D cells. Potentiation of SFN cytotoxicity by FPD correlated with enhanced apoptosis, suppression of retinoblastoma (Rb signaling, and reduced Mcl-1 expression. SFN and FPD were also tested in an MDA-MB-231 mammary fat pad engraftment model of tumorigenesis. Mice treated with both drugs exhibited reduced primary tumor growth rates and metastatic tumor load in the lungs compared to treatment with either drug alone, and this correlated with greater reductions in Rb signaling and Mcl-1 expression in resected tumors. These findings support the development of CDK and Raf co-targeting strategies in EGFR/HER-2-overexpressing or RAS/RAF mutant BCs.

  5. RAS Initiative - Events

    The NCI RAS Initiative has organized multiple events with outside experts to discuss how the latest scientific and technological breakthroughs can be applied to discover vulnerabilities in RAS-driven cancers.

  6. RAS Initiative - Community Outreach

    Through community and technical collaborations, workshops and symposia, and the distribution of reference reagents, the RAS Initiative seeks to increase the sharing of knowledge and resources essential to defeating cancers caused by mutant RAS genes.

  7. Ifenprodil attenuates the acquisition and expression of methamphetamine-induced behavioral sensitization and activation of Ras-ERK1/2 cascade in the caudate putamen.

    Li, Lu; Qiao, Chuchu; Chen, Gang; Qian, Hongyan; Hou, Ying; Li, Tao; Liu, Xinshe


    Chronic discontinuous use of many psychomotor stimulants leads to behavioral sensitization and, owing to it shares common mechanisms with relapse, most researchers use its animal model to explore the neurobiological mechanisms of addiction. Recent studies have proved that N-methyl-d-aspartate receptors (NMDARs) are implicated in psychomotor stimulant-induced behavioral sensitization. However, the function of GluN2B-containing NMDARs and their potential downstream cascade(s) in the acquisition and expression of behavioral sensitization to methamphetamine (METH) have not been explored. In this study, 2.5, 5, and 10mg/kg ifenprodil, the specific inhibitor of GluN2B, was used to explore the function of these receptors in distinct phases of behavioral sensitization to METH in mice. Then, using western blot, Ras, pERK1/2/ERK1/2, and ΔFosB levels in the prefrontal cortex (PFc), nucleus accumbens (NAc), and caudate putamen (CPu) were detected. Behavioral results showed that low-dose ifenprodil attenuated the acquisition and expression of behavioral sensitization to METH significantly. Western blot analysis revealed that pre-injection of low-dose ifenprodil in the acquisition markedly attenuated METH-induced ascent of Ras, pERK1/2/ERK1/2, and ΔFosB protein levels in the CPu. However, pre-treatment in the expression only affected the alterations of Ras and pERK1/2/ERK1/2 levels in the CPu. Moreover, chronic METH administration increased pERK1/2/ERK1/2 level in the NAc. In conclusion, GluN2B-containing NMDARs contribute to both the acquisition and expression of behavioral sensitization to METH in mice. Furthermore, the acquisition phase might be mediated by the Ras-ERK1/2-ΔFosB cascade in the CPu while the expression phase may be regulated by the Ras-ERK1/2 cascade in the CPu.

  8. Liver tumors induced in B6C3F{sub 1} mice by benz[a]anthracene and two of its halogenated derivatives contain K-RAS oncogene mutations

    Xia, O.; Yi, P.; Zhan, D. [and others


    Polycyclic aromatic hydrocarbons (PAHs) and halogenated PAHs are genotoxic environmental contaminants. We previously examined the tumorigenicity of benz[a]anthracene (BA), 7-Cl-BA, and 7-Br-BA in the neonatal mouse tumorigenicity bioassay. Male B6C3F{sub 1} mice were administered i.p. injections at a total dose of 400 nmol per mouse on 1, 8, and 15 days after birth. BA, 7-Cl-BA, and 7-Br-BA induced hepatocellular adenoma in 67, 92, and 96% of the mice, respectively, and induced hepatocellular carcinoma in 15, 100 and 83% of the mice, respectively. In the present study, mRNA was isolated from each of the liver tumors induced by the three compounds, reversed-transcribed to cDNA, and portions of the K- and H-ras oncogene coding sequences were amplified and analyzed for DNA sequence alterations. 92% (11/12) of BA-induced, 79% (19/24) of 7-Cl-BA-induced and 86% (19/22) of 7-Br-BA-induced liver tumors had activated ras protooncogenes. In contrast to the general finding of H-ras mutations in B6C3F{sub 1} mouse liver tumors, all the mutations were at the first base of K-ras codon 13, resulting in a pattern of GGC{yields}CGC. No other ras oncogene mutations were detected. Our results clearly demonstrate that these chemicals induce a unique type of ras (K-ras) oncogene activation in the liver tumors of B6C3F{sub 1} mice.

  9. RAS - Target Identification - Informatics

    The RAS Informatics lab group develops tools to track and analyze “big data” from the RAS Initiative, as well as analyzes data from external projects. By integrating internal and external data, this group helps improve understanding of RAS-driven cancers.

  10. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway

    Zhang Dong


    Full Text Available Abstract Background Smoking and stress, pancreatic cancer (PanCa risk factors, stimulate nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK and catecholamines production respectively. NNK and catecholamine bind the β-adrenoceptors and induce PanCa cell proliferation; and we have previously suggested that β-adrenergic antagonists may suppress proliferation and invasion and stimulate apoptosis in PanCa. To clarify the mechanism of apoptosis induced by β2-adrenergic antagonist, we hypothesize that blockage of the β2-adrenoceptor could induce G1/S phase arrest and apoptosis and Ras may be a key player in PanCa cells. Results The β1 and β2-adrenoceptor proteins were detected on the cell surface of PanCa cells from pancreatic carcinoma specimen samples by immunohistochemistry. The β2-adrenergic antagonist ICI118,551 significantly induced G1/S phase arrest and apoptosis compared with the β1-adrenergic antagonist metoprolol, which was determined by the flow cytometry assay. β2-adrenergic antagonist therapy significantly suppressed the expression of extracellular signal-regulated kinase, Akt, Bcl-2, cyclin D1, and cyclin E and induced the activation of caspase-3, caspase-9 and Bax by Western blotting. Additionally, the β2-adrenergic antagonist reduced the activation of NFκB in vitro cultured PanCa cells. Conclusions The blockage of β2-adrenoceptor markedly induced PanCa cells to arrest at G1/S phase and consequently resulted in cell death, which is possibly due to that the blockage of β2-adrenoceptor inhibited NFκB, extracellular signal-regulated kinase, and Akt pathways. Therefore, their upstream molecule Ras may be a key factor in the β2-adrenoceptor antagonist induced G1/S phase arrest and apoptosis in PanCa cells. The new pathway discovered in this study may provide an effective therapeutic strategy for PanCa.

  11. Gastric cancer induced by N-methyl-N′-nitro-N-nitrosoguanidine in rat with ulcers and expressions of ras and c-erbB2 genes

    周本杰; 陈蔚文; 徐勤; 李茹柳; 王建华


    Objective: To observe the series of pathological changes during the development of gastric adenocarcinoma in ulcerative rats induced by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and the expression profile of related oncogenic protein.Methods: MNNG was administered in rats with ulcers due to acetic acid treatment to induce gastric cancer, and the protein expressions of ras and c-erbB2 genes in the ulcer were examined immunohistochemically along with pathological examination.Results: The incidence of gastric adenocarcinoma in the model group reaches 40% (6/15), while none of the rats developed cancer in the control group with ulcers.Positive expressions of the proteins of p21ras and c-erbB2 were observed in the tissues undergoing canceration in the 6 rats of model group, but were not observed in the 5 control rats; p53 protein expression, however, failed to be detected in both groups.Conclusion: A new animal model of gastric cancer has been established in rats with gastric ulcer after MNNG treatment, which may facilitate the pharmacological research of gastric cancer.

  12. The renaissance of Ras.

    Milroy, Lech-Gustav; Ottmann, Christian


    Increased signaling by the small G protein Ras is found in many human cancers and is often caused by direct mutation of this protein. Hence, small-molecule attenuation of pathological Ras activity is of utmost interest in oncology. However, despite nearly three decades of intense drug discovery efforts, no clinically viable option for Ras inhibition has been developed. Very recently, reports of a number of new approaches of addressing Ras activity have led to the revival of this molecular target with the prospect of finally fulfilling the therapy promises associated with this important protein.

  13. Ras-induced and extracellular signal-regulated kinase 1 and 2 phosphorylation-dependent isomerization of protein tyrosine phosphatase (PTP)-PEST by PIN1 promotes FAK dephosphorylation by PTP-PEST.

    Zheng, Yanhua; Yang, Weiwei; Xia, Yan; Hawke, David; Liu, David X; Lu, Zhimin


    Protein tyrosine phosphatase (PTP)-PEST is a critical regulator of cell adhesion and migration. However, the mechanism by which PTP-PEST is regulated in response to oncogenic signaling to dephosphorylate its substrates remains unclear. Here, we demonstrate that activated Ras induces extracellular signal-regulated kinase 1 and 2-dependent phosphorylation of PTP-PEST at S571, which recruits PIN1 to bind to PTP-PEST. Isomerization of the phosphorylated PTP-PEST by PIN1 increases the interaction between PTP-PEST and FAK, which leads to the dephosphorylation of FAK Y397 and the promotion of migration, invasion, and metastasis of v-H-Ras-transformed cells. These findings uncover an important mechanism for the regulation of PTP-PEST in activated Ras-induced tumor progression.

  14. Reversibility of dopamine receptor antagonist-induced hyperprolactinemia and associated histological changes in Tg RasH2 wild-type mice.

    Krishna, Gopala; Ganiger, Shivaputhrappa; Kannan, Kamala; Gopalakrishnan, Gopa; Goel, Saryu


    The purpose of this study was to better understand the biological effects of increased prolactin levels induced in mice by dopamine D2 receptor antagonist molindone treatment. Toxicokinetics, prolactin levels, and reproductive tissue histology were evaluated in Tg rasH2 wild-type mice treated orally with molindone at 0, 5, 15, and 50mg/kg/day for 6 months, followed by a 2-month posttreatment recovery period. A greater than dose-proportional increase in molindone exposure ([AUC]0‒24) was observed on Day 180 for both sexes. Statistically significant (Phyperprolactinemia, including corpora lutea enlargement and interstitial cell atrophy in the ovaries, and atrophy of the uterus and vagina were observed on Day 180. These changes were reversed during the recovery period in the 5- and 15-mg/kg/day treatment groups. Mice receiving molindone at 50mg/kg/day also showed signs of reversal on histologic examination.

  15. H-Ras Exerts Opposing Effects on Type I Interferon Responses Depending on Its Activation Status.

    Chen, Guann-An; Lin, Yun-Ru; Chung, Hai-Ting; Hwang, Lih-Hwa


    Using shRNA high-throughput screening, we identified H-Ras as a regulator of antiviral activity, whose depletion could enhance Sindbis virus replication. Further analyses indicated that depletion of H-Ras results in a robust increase in vesicular stomatitis virus infection and a decrease in Sendai virus (SeV)-induced retinoic acid-inducible gene-I-like receptor (RLR) signaling. Interestingly, however, ectopic expression of wild-type H-Ras results in a biphasic mode of RLR signaling regulation: while low-level expression of H-Ras enhances SeV-induced RLR signaling, high-level expression of H-Ras significantly inhibits this signaling. The inhibitory effects correlate with the activation status of H-Ras. As a result, oncogenic H-Ras, H-RasV12, strongly inhibits SeV-induced IFN-β promoter activity and type I interferon signaling. Conversely, the positive effects exerted by H-Ras on RLR signaling are independent of its signaling activity, as a constitutively inactive form of H-Ras, H-RasN17, also positively regulates RLR signaling. Mechanistically, we demonstrate that depletion of H-Ras reduces the formation of MAVS-TNF receptor-associated factor 3 signaling complexes. These results reveal that the H-Ras protein plays a role in promoting MAVS signalosome assembly in the mitochondria, whereas oncogenic H-Ras exerts a negative effect on type I IFN responses.

  16. DA-Raf-Mediated Suppression of the Ras--ERK Pathway Is Essential for TGF-β1-Induced Epithelial-Mesenchymal Transition in Alveolar Epithelial Type 2 Cells.

    Watanabe-Takano, Haruko; Takano, Kazunori; Hatano, Masahiko; Tokuhisa, Takeshi; Endo, Takeshi


    Myofibroblasts play critical roles in the development of idiopathic pulmonary fibrosis by depositing components of extracellular matrix. One source of lung myofibroblasts is thought to be alveolar epithelial type 2 cells that undergo epithelial-mesenchymal transition (EMT). Rat RLE-6TN alveolar epithelial type 2 cells treated with transforming growth factor-β1 (TGF-β1) are converted into myofibroblasts through EMT. TGF-β induces both canonical Smad signaling and non-canonical signaling, including the Ras-induced ERK pathway (Raf-MEK-ERK). However, the signaling mechanisms regulating TGF-β1-induced EMT are not fully understood. Here, we show that the Ras-ERK pathway negatively regulates TGF-β1-induced EMT in RLE-6TN cells and that DA-Raf1 (DA-Raf), a splicing isoform of A-Raf and a dominant-negative antagonist of the Ras-ERK pathway, plays an essential role in EMT. Stimulation of the cells with fibroblast growth factor 2 (FGF2), which activated the ERK pathway, prominently suppressed TGF-β1-induced EMT. An inhibitor of MEK, but not an inhibitor of phosphatidylinositol 3-kinase, rescued the TGF-β1-treated cells from the suppression of EMT by FGF2. Overexpression of a constitutively active mutant of a component of the Ras-ERK pathway, i.e., H-Ras, B-Raf, or MEK1, interfered with EMT. Knockdown of DA-Raf expression with siRNAs facilitated the activity of MEK and ERK, which were only weakly and transiently activated by TGF-β1. Although DA-Raf knockdown abrogated TGF-β1-induced EMT, the abrogation of EMT was reversed by the addition of the MEK inhibitor. Furthermore, DA-Raf knockdown impaired the TGF-β1-induced nuclear translocation of Smad2, which mediates the transcription required for EMT. These results imply that intrinsic DA-Raf exerts essential functions for EMT by antagonizing the TGF-β1-induced Ras-ERK pathway in RLE-6TN cells.

  17. Plasma membrane phosphatidylinositol 4-phosphate and 4,5-bisphosphate determine the distribution and function of K-Ras4B but not H-Ras proteins.

    Gulyás, Gergö; Radvánszki, Glória; Matuska, Rita; Balla, András; Hunyady, László; Balla, Tamas; Várnai, Péter


    Plasma membrane (PM) localization of Ras proteins is crucial for transmitting signals upon mitogen stimulation. Posttranslational lipid modification of Ras proteins plays an important role in their recruitment to the PM. Electrostatic interactions between negatively charged PM phospholipids and basic amino acids found in K-Ras4B (K-Ras) but not in H-Ras are important for permanent K-Ras localization to the PM. Here, we investigated how acute depletion of negatively charged PM polyphosphoinositides (PPIns) from the PM alters the intracellular distribution and activity of K- and H-Ras proteins. PPIns depletion from the PM was achieved either by agonist-induced activation of phospholipase C β or with a rapamycin-inducible system in which various PI phosphatases were recruited to the PM. Redistribution of the two Ras proteins was monitored with confocal microscopy or with a recently developed bioluminescent energy transfer (BRET)-based approach involving fusion of the Ras C-terminal targeting sequences or the entire Ras proteins to Venus fluorescent protein. We found that PM PPIns depletion caused rapid translocation of K-Ras but not H-Ras from the PM to the Golgi. PM depletion of either phosphatidylinositol 4-phosphate (PtdIns4P) or PtdIns(4,5)P2, but not PtdIns(3,4,5)P3, was sufficient to evoke K-Ras translocation. This effect was diminished by deltarasine, an inhibitor of the Ras-phosphodiesterase interaction, or by simultaneous depletion of the Golgi PtdIns4P. The PPIns depletion decreased incorporation of [3H]-Leucine in K-Ras-expressing cells, suggesting that Golgi-localized K-Ras is not as signaling competent as its PM-bound form. We conclude that PPIns in the PM are important regulators of K-Ras mediated signals. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  18. Functional overlap of the dictyostelium RasG, RasD and RasB proteins.

    Khosla, M; Spiegelman, G B; Insall, R; Weeks, G


    Disruption of the rasG gene in Dictyostelium discoideum results in several distinct phenotypes: a defect in cytokinesis, reduced motility and reduced growth. Reintroduction of the rasG gene restores all of the properties of the rasG(-) cells to those of the wild type. To determine whether the defects are due to impaired interactions with a single or multiple downstream effectors, we tested the ability of the highly related but non identical Dictyostelium ras genes, rasD and rasB, to rescue the defects. Introduction of the rasD gene under the control of the rasG promoter into rasG null (rasG(-)) cells corrected all phenotypes except the motility defect, suggesting that motility is regulated by a RasG mediated pathway that is different to those regulating growth or cytokinesis. Western blot analysis of RasD protein levels revealed that vegetative rasG(- )cells contained considerably more protein than the parental AX-3 cells, suggesting that RasD protein levels are negatively regulated in vegetative cells by RasG. The level of RasD was enhanced when the rasD gene was introduced under the control of the rasG promoter, and this increase in protein is presumably responsible for the reversal of the growth and cytokinesis defects of the rasG(- )cells. Thus, RasD protein levels are controlled by the level of RasG, but not by the level of RasD. Introduction of the rasB gene under the control of the rasG promoter into rasG(-) cells produced a complex phenotype. The transformants were extremely small and mononucleate and exhibited enhanced motility. However, the growth of these cells was considerably slower than the growth of the rasG(-) cells, suggesting the possibility that high levels of RasB inhibit an essential process. This was confirmed by expressing rasB in wild-type cells; the resulting transformants exhibited severely impaired growth. When RasB protein levels were determined by western blot analysis, it was found that levels were higher in the rasG(- )cells than they

  19. The C-terminus of H-Ras as a target for the covalent binding of reactive compounds modulating Ras-dependent pathways.

    Oeste, Clara L; Díez-Dacal, Beatriz; Bray, Francesca; García de Lacoba, Mario; de la Torre, Beatriz G; Andreu, David; Ruiz-Sánchez, Antonio J; Pérez-Inestrosa, Ezequiel; García-Domínguez, Carlota A; Rojas, José M; Pérez-Sala, Dolores


    Ras proteins are crucial players in differentiation and oncogenesis and constitute important drug targets. The localization and activity of Ras proteins are highly dependent on posttranslational modifications at their C-termini. In addition to an isoprenylated cysteine, H-Ras, but not other Ras proteins, possesses two cysteine residues (C181 and C184) in the C-terminal hypervariable domain that act as palmitoylation sites in cells. Cyclopentenone prostaglandins (cyPG) are reactive lipidic mediators that covalently bind to H-Ras and activate H-Ras dependent pathways. Dienone cyPG, such as 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) and Δ(12)-PGJ(2) selectively bind to the H-Ras hypervariable domain. Here we show that these cyPG bind simultaneously C181 and C184 of H-Ras, thus potentially altering the conformational tendencies of the hypervariable domain. Based on these results, we have explored the capacity of several bifunctional cysteine reactive small molecules to bind to the hypervariable domain of H-Ras proteins. Interestingly, phenylarsine oxide (PAO), a widely used tyrosine phosphatase inhibitor, and dibromobimane, a cross-linking agent used for cysteine mapping, effectively bind H-Ras hypervariable domain. The interaction of PAO with H-Ras takes place in vitro and in cells and blocks modification of H-Ras by 15d-PGJ(2). Moreover, PAO treatment selectively alters H-Ras membrane partition and the pattern of H-Ras activation in cells, from the plasma membrane to endomembranes. These results identify H-Ras as a novel target for PAO. More importantly, these observations reveal that small molecules or reactive intermediates interacting with spatially vicinal cysteines induce intramolecular cross-linking of H-Ras C-terminus potentially contributing to the modulation of Ras-dependent pathways.

  20. Therapeutic inhibition of TRF1 impairs the growth of p53-deficient K-RasG12V-induced lung cancer by induction of telomeric DNA damage.

    García-Beccaria, María; Martínez, Paula; Méndez-Pertuz, Marinela; Martínez, Sonia; Blanco-Aparicio, Carmen; Cañamero, Marta; Mulero, Francisca; Ambrogio, Chiara; Flores, Juana M; Megias, Diego; Barbacid, Mariano; Pastor, Joaquín; Blasco, Maria A


    Telomeres are considered anti-cancer targets, as telomere maintenance above a minimum length is necessary for cancer growth. Telomerase abrogation in cancer-prone mouse models, however, only decreased tumor growth after several mouse generations when telomeres reach a critically short length, and this effect was lost upon p53 mutation. Here, we address whether induction of telomere uncapping by inhibition of the TRF1 shelterin protein can effectively block cancer growth independently of telomere length. We show that genetic Trf1 ablation impairs the growth of p53-null K-Ras(G12V)-induced lung carcinomas and increases mouse survival independently of telomere length. This is accompanied by induction of telomeric DNA damage, apoptosis, decreased proliferation, and G2 arrest. Long-term whole-body Trf1 deletion in adult mice did not impact on mouse survival and viability, although some mice showed a moderately decreased cellularity in bone marrow and blood. Importantly, inhibition of TRF1 binding to telomeres by small molecules blocks the growth of already established lung carcinomas without affecting mouse survival or tissue function. Thus, induction of acute telomere uncapping emerges as a potential new therapeutic target for lung cancer.

  1. Mechanism of activation of an N-ras gene in the human fibrosarcoma cell line HT1080.

    Brown, R.; Marshall, C.J; Pennie, S G; Hall, A


    A full length N-ras gene has been cloned from both the human fibrosarcoma cell line HT1080 and from normal human DNA. N-ras isolated from HT1080 will efficiently induce morphological transformation of NIH/3T3 cells in a transfection assay, whereas N-ras isolated from normal human DNA has no effect on NIH/3T3 cells. The coding regions of the normal N-ras gene have been sequenced and the predicted amino acid sequence of the N-ras product is very similar to that of the c-Ha-ras1 and c-Ki-ras2 pr...

  2. ras activation in human tumors and in animal model systems

    Corominas, M.; Sloan, S.R.; Leon, J.; Kamino, Hideko; Newcomb, E.W.; Pellicer, A. (New York Univ. Medical Center, New York (United States))


    Environmental agents such as radiation and chemicals are known to cause genetic damage. Alterations in a limited set of cellular genes called proto-oncogenes lead to unregulated proliferation and differentiation. The authors have studied the role of the ras gene family in carcinogenesis using two different animal models. In one case, thymic lymphomas were induced in mice by either gamma or neutron radiation, and in the other, keratoacanthomas were induced in rabbit skin with dimethylbenzanthracene. Human keratoacanthomas similar to the ones induced in rabbits were also analyzed. They found that different types of radiation such as gamma rays and neutrons, induced different point mutations in ras genes. A novel K-ras mutation in codon 146 has been found in thymic lymphomas induced by neutrons. Keratoacanthomas induced in rabbit skin by dimethylbenzanthracene show a high frequency of H-ras-activated genes carrying a mutation in codon 61. The same is observed in human keratoacanthomas, although mutations are in both the 12th and the 61st codons of the H-ras gene. H-ras activation is less frequent in human squamous cell carcinomas than in keratoacanthomas, suggesting that ras genes could play a role in vivo in differentiation as well as in proliferation.

  3. RAS - Screens & Assays - Drug Discovery

    The RAS Drug Discovery group aims to develop assays that will reveal aspects of RAS biology upon which cancer cells depend. Successful assay formats are made available for high-throughput screening programs to yield potentially effective drug compounds.

  4. Protein kinase C alpha-CARMA3 signaling axis links Ras to NF-kappa B for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells.

    Mahanivong, C; Chen, H M; Yee, S W; Pan, Z K; Dong, Z; Huang, S


    We reported previously that a signaling pathway consisting of G(i)-Ras-NF-kappaB mediates lysophosphatidic acid (LPA)-induced urokinase plasminogen activator (uPA) upregulation in ovarian cancer cells. However, it is not clear what signaling components link Ras to nuclear factor (NF)-kappaB for this LPA-induced event. In the present study, we found that treatment of protein kinase C (PKC) inhibitors including conventional PKC (cPKC) inhibitor Gö6976 abolished LPA-induced uPA upregulation in ovarian cancer cell lines tested, indicating the importance of cPKC activity in this LPA-induced event. Indeed, LPA stimulation led to the activation of PKCalpha and Ras-PKCalpha interaction. Although constitutively active mutants of PKCalpha (a cPKC), PKCtheta (a novel PKC (nPKC)) and PKCzeta (an atypical PKC (aPKC)) were all able to activate NF-kappaB and upregulate uPA expression, only dominant-negative PKCalpha mutant attenuated LPA-induced NF-kappaB activation and uPA upregulation. These results suggest that PKCalpha, rather than PKC isoforms in other PKC classes, participates in LPA-induced NF-kappaB activation and uPA upregulation in ovarian cancer cells. To determine the signaling components downstream of PKCalpha mediating LPA-induced uPA upregulation, we showed that forced expression of dominant-negative CARMA3 or silencing CARMA3, Bcl10 and MALT1 with specific siRNAs diminished these LPA-induced events. Furthermore, we demonstrated that PKCalpha/CARMA3 signaling axis is important in LPA-induced ovarian cancer cell in vitro invasion.

  5. Ras activation by SOS

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen;


    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual ...

  6. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs.

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P


    Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management.

  7. Regulation of H-Ras-driven MAPK signaling, transformation and tumorigenesis, but not PI3K signaling and tumor progression, by plasma membrane microdomains.

    Michael, J V; Wurtzel, J G T; Goldfinger, L E


    In this study, we assessed the contributions of plasma membrane (PM) microdomain targeting to the functions of H-Ras and R-Ras. These paralogs have identical effector-binding regions, but variant C-terminal targeting domains (tDs) which are responsible for lateral microdomain distribution: activated H-Ras targets to lipid ordered/disordered (Lo/Ld) domain borders, and R-Ras to Lo domains (rafts). We hypothesized that PM distribution regulates Ras-effector interactions and downstream signaling. We used tD swap mutants, and assessed effects on signal transduction, cell proliferation, transformation and tumorigenesis. R-Ras harboring the H-Ras tD (R-Ras-tH) interacted with Raf, and induced Raf and ERK phosphorylation similar to H-Ras. R-Ras-tH stimulated proliferation and transformation in vitro, and these effects were blocked by both MEK and PI3K inhibition. Conversely, the R-Ras tD suppressed H-Ras-mediated Raf activation and ERK phosphorylation, proliferation and transformation. Thus, Ras access to Raf at the PM is sufficient for MAPK activation and is a principal component of Ras mitogenesis and transformation. Fusion of the R-Ras extended N-terminal domain to H-Ras had no effect on proliferation, but inhibited transformation and tumor progression, indicating that the R-Ras N-terminus also contributes negative regulation to these Ras functions. PI3K activation was tD independent; however, H-Ras was a stronger activator of PI3K than R-Ras, with either tD. PI3K inhibition nearly ablated transformation by R-Ras-tH, H-Ras and H-Ras-tR, whereas MEK inhibition had a modest effect on Ras-tH-driven transformation but no effect on H-Ras-tR transformation. R-Ras-tH supported tumor initiation, but not tumor progression. While H-Ras-tR-induced transformation was reduced relative to H-Ras, tumor progression was robust and similar to H-Ras. H-Ras tumor growth was moderately suppressed by MEK inhibition, which had no effect on H-Ras-tR tumor growth. In contrast, PI3K inhibition

  8. Mechanism of E1A-mediated escape from ras-induced senescence in human fibraobIasts%E1A阻断ras诱导人成纤维细胞衰老机制的研究

    李亦蕾; 余乐


    Objective To study the effect of binding activities of the NH2 terminus of E1A to the proteins regulating cell growth on ras-induced cell senescence and explore the mechanism of ElA-mediated escape from ras-induced senescence by E1A in human fibroblast. Methods In primary human fibroblasts, the proteins regulating cell growth in association with E1A NH2 terminus, including the Rb family proteins, p300/CBP, and p400, were inactivated or interfered. The effect of alterations in the binding activities of these proteins on cell senescence bypass mediated by E1A was evaluated by cell growth curve. Results Inactivation of Rb family proteins alone was not sufficient to rescue ras-induced cell senescence, whereas inactivation of both the Rb proteins and p300/CBP blocked ras-induced senescence of human fibroblasts. Conclusion Rb and p300/CBP binding activities are both required for E1A to bypass ras-induced senescence in human fibroblasts.%目的 通过研究ElA氨基端细胞生长调节蛋白结合活性对其阻断ras诱导的细胞衰老的影响,以明确在人类成纤维细胞ElA阻断ras诱导的细胞衰老的机制.方法 采用原代培养的人类成纤维细胞,通过灭活或干扰与ElA氨基端相关的细胞生长调节蛋白,包括Rb家族蛋白、p300/CBP、p400,利用细胞生长曲线确定这些蛋白结合活性对于ElA阻断ras诱导的细胞衰老的作用.结果 单纯灭活Rb家族蛋白不能阻断ras诱导的细胞衰老,而同时灭活Rb和p300/CBP即可阻断r弱诱导的细胞衰老.结论 Rb和p300/CBP的结合活性均是EIA阻断ras诱导的人成纤维细胞细胞衰老所必需的.

  9. Loss of p19(Arf facilitates the angiogenic switch and tumor initiation in a multi-stage cancer model via p53-dependent and independent mechanisms.

    Danielle B Ulanet

    Full Text Available The Arf tumor suppressor acts as a sensor of oncogenic signals, countering aberrant proliferation in large part via activation of the p53 transcriptional program, though a number of p53-independent functions have been described. Mounting evidence suggests that, in addition to promoting tumorigenesis via disruptions in the homeostatic balance between cell proliferation and apoptosis of overt cancer cells, genetic alterations leading to tumor suppressor loss of function or oncogene gain of function can also incite tumor development via effects on the tumor microenvironment. In a transgenic mouse model of multi-stage pancreatic neuroendocrine carcinogenesis (PNET driven by inhibition of the canonical p53 and Rb tumor suppressors with SV40 large T-antigen (Tag, stochastic progression to tumors is limited in part by a requirement for initiation of an angiogenic switch. Despite inhibition of p53 by Tag in this mouse PNET model, concomitant disruption of Arf via genetic knockout resulted in a significantly accelerated pathway to tumor formation that was surprisingly not driven by alterations in tumor cell proliferation or apoptosis, but rather via earlier activation of the angiogenic switch. In the setting of a constitutional p53 gene knockout, loss of Arf also accelerated tumor development, albeit to a lesser degree. These findings demonstrate that Arf loss of function can promote tumorigenesis via facilitating angiogenesis, at least in part, through p53-independent mechanisms.

  10. Qingfei Xiaoyan Wan, a traditional Chinese medicine formula, ameliorates Pseudomonas aeruginosa–induced acute lung inflammation by regulation of PI3K/AKT and Ras/MAPK pathways

    Yuanyuan Hou


    Full Text Available Gram-negative pathogen–induced nosocomial infections and resistance are a most serious menace to global public health. Qingfei Xiaoyan Wan (QF, a traditional Chinese medicine (TCM formula, has been used clinically in China for the treatment of upper respiratory tract infections, acute or chronic bronchitis and pulmonary infection. In this study, the effects of QF on Pseudomonas aeruginosa–induced acute pneumonia in mice were evaluated. The mechanisms by which four typical anti-inflammatory ingredients from QF, arctigenin (ATG, cholic acid (CLA, chlorogenic acid (CGA and sinapic acid (SPA, regulate anti-inflammatory signaling pathways and related targets were investigated using molecular biology and molecular docking techniques. The results showed that pretreatment with QF significantly inhibits the release of cytokines (TNF-α and IL-6 and chemokines (IL-8 and RANTES, reduces leukocytes recruitment into inflamed tissues and ameliorates pulmonary edema and necrosis. In addition, ATG was identified as the primary anti-inflammatory agent with action on the PI3K/AKT and Ras/MAPK pathways. CLA and CGA enhanced the actions of ATG and exhibited synergistic NF-κB inactivation effects possibly via the Ras/MAPK signaling pathway. Moreover, CLA is speculated to target FGFR and MEK firstly. Overall, QF regulated the PI3K/AKT and Ras/MAPK pathways to inhibit pathogenic bacterial infections effectively.

  11. Qingfei Xiaoyan Wan, a traditional Chinese medicine formula, ameliorates Pseudomonas aeruginosa–induced acute lung inflammation by regulation of PI3K/AKT and Ras/MAPK pathways

    Hou, Yuanyuan; Nie, Yan; Cheng, Binfeng; Tao, Jin; Ma, Xiaoyao; Jiang, Min; Gao, Jie; Bai, Gang


    Gram-negative pathogen–induced nosocomial infections and resistance are a most serious menace to global public health. Qingfei Xiaoyan Wan (QF), a traditional Chinese medicine (TCM) formula, has been used clinically in China for the treatment of upper respiratory tract infections, acute or chronic bronchitis and pulmonary infection. In this study, the effects of QF on Pseudomonas aeruginosa–induced acute pneumonia in mice were evaluated. The mechanisms by which four typical anti-inflammatory ingredients from QF, arctigenin (ATG), cholic acid (CLA), chlorogenic acid (CGA) and sinapic acid (SPA), regulate anti-inflammatory signaling pathways and related targets were investigated using molecular biology and molecular docking techniques. The results showed that pretreatment with QF significantly inhibits the release of cytokines (TNF-α and IL-6) and chemokines (IL-8 and RANTES), reduces leukocytes recruitment into inflamed tissues and ameliorates pulmonary edema and necrosis. In addition, ATG was identified as the primary anti-inflammatory agent with action on the PI3K/AKT and Ras/MAPK pathways. CLA and CGA enhanced the actions of ATG and exhibited synergistic NF-κB inactivation effects possibly via the Ras/MAPK signaling pathway. Moreover, CLA is speculated to target FGFR and MEK firstly. Overall, QF regulated the PI3K/AKT and Ras/MAPK pathways to inhibit pathogenic bacterial infections effectively. PMID:27175332

  12. Qingfei Xiaoyan Wan, a traditional Chinese medicine formula, ameliorates Pseudomonas aeruginosa-induced acute lung inflammation by regulation of PI3K/AKT and Ras/MAPK pathways.

    Hou, Yuanyuan; Nie, Yan; Cheng, Binfeng; Tao, Jin; Ma, Xiaoyao; Jiang, Min; Gao, Jie; Bai, Gang


    Gram-negative pathogen-induced nosocomial infections and resistance are a most serious menace to global public health. Qingfei Xiaoyan Wan (QF), a traditional Chinese medicine (TCM) formula, has been used clinically in China for the treatment of upper respiratory tract infections, acute or chronic bronchitis and pulmonary infection. In this study, the effects of QF on Pseudomonas aeruginosa-induced acute pneumonia in mice were evaluated. The mechanisms by which four typical anti-inflammatory ingredients from QF, arctigenin (ATG), cholic acid (CLA), chlorogenic acid (CGA) and sinapic acid (SPA), regulate anti-inflammatory signaling pathways and related targets were investigated using molecular biology and molecular docking techniques. The results showed that pretreatment with QF significantly inhibits the release of cytokines (TNF-α and IL-6) and chemokines (IL-8 and RANTES), reduces leukocytes recruitment into inflamed tissues and ameliorates pulmonary edema and necrosis. In addition, ATG was identified as the primary anti-inflammatory agent with action on the PI3K/AKT and Ras/MAPK pathways. CLA and CGA enhanced the actions of ATG and exhibited synergistic NF-κB inactivation effects possibly via the Ras/MAPK signaling pathway. Moreover, CLA is speculated to target FGFR and MEK firstly. Overall, QF regulated the PI3K/AKT and Ras/MAPK pathways to inhibit pathogenic bacterial infections effectively.

  13. Lack of noncanonical RAS mutations in cytogenetically normal acute myeloid leukemia.

    Reuter, Christoph W M; Krauter, Jürgen; Onono, Fredrick O; Bunke, Tania; Damm, Frederik; Thol, Felicitas; Wagner, Katharina; Göhring, Gudrun; Schlegelberger, Brigitte; Heuser, Michael; Ganser, Arnold; Morgan, Michael A


    Transforming mutations in RAS genes are commonly found in human malignancies, including myeloid leukemias. To investigate the incidence, spectrum, and distribution of activating K- and N-RAS mutations in cytogenetically normal acute myeloid leukemia (CN-AML) patients, 204 CN-AML patients were screened. Activating K- and N-RAS mutations were detected in 3 of 204 (1.5 %) and 22 of 204 (10.8 %) CN-AML samples, respectively. RAS mutated patients presented with a lower percentage of bone marrow blasts (65 vs 80 %, P = 0.022). RAS mutations tended to occur with nucleophosmin-1 (NPM1) mutations (P = 0.079), and all three samples containing K-RAS mutations had concomitant NPM1 mutations. There was no significant overlap between K-RAS mutations and N-RAS, FLT3, CEBPA, IDH1/2, WT1 or MLL mutations. RAS mutation status did not impact relapse-free or overall survival of CN-AML patients. In contrast to reports of noncanonical RAS mutations in other cancers, including some leukemia subtypes, we only observed K- and N-RAS mutations in codons 12, 13, or 61 in CN-AML samples. Our findings suggest that while K-RAS mutations are infrequent in CN-AML, activating K-RAS mutations may cooperate with mutated NPM1 to induce leukemia.

  14. Ras and Rheb Signaling in Survival and Cell Death

    Ehrkamp, Anja [Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum (Germany); Herrmann, Christian [Department of Physical Chemistry1, Protein Interaction, Ruhr University of Bochum, 44780 Bochum (Germany); Stoll, Raphael [Biomolecular NMR, Ruhr University of Bochum, 44780 Bochum (Germany); Heumann, Rolf, E-mail: [Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum (Germany)


    One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively.

  15. Alternative prophylaxis/disinfection in aquaculture - Adaptable stress induced by peracetic acid at low concentration and its application strategy in RAS

    Liu, Dibo; Pedersen, Lars-Flemming; Straus, David L.


    •Stress was monitored by measuring cortisol in water instead of in blood.•Fish adapted to regular prophylaxis/disinfection with peracetic acid by showing reduced stress.•A mathematic model was established to improve understanding of substance distribution in RAS.......•Stress was monitored by measuring cortisol in water instead of in blood.•Fish adapted to regular prophylaxis/disinfection with peracetic acid by showing reduced stress.•A mathematic model was established to improve understanding of substance distribution in RAS....

  16. Oncogenicity of human N-ras oncogene and proto-oncogene introduced into retroviral vectors

    Souyri, M.; Vigon, I.; Charon, M.; Tambourin, P. (Hopital Cochin, Paris (France))


    The N-ras gene is the only member of the ras family which has never been naturally transduced into a retrovirus. In order to study the in vitro and in vivo oncogenicity of N-ras and to compare its pathogenicity to that of H-ras, the authors have inserted an activated or a normal form of human N-ras cDNA into a slightly modified Harvey murine sarcoma virus-derived vector in which the H-ras p21 coding region had been deleted. The resulting constructions were transfected into NIH 3T3 cells. The activated N-ras-containing construct (HSN) induced 10{sup 4} foci per {mu}g of DNA and was found to be as transforming as H-ras was. After infection of the transfected cells by either the ecotropic Moloney murine leukemia virus or the amphotropic 4070A helper viruses, rescued transforming viruses were injected into newborn mice. Both pseudotypes of HSN virus containing activated N-ras induced the typical Harvey disease with similar latency. However, they found that the virus which contained normal N-ras p21 (HSn) was also pathogenic and induced splenomegaly, lymphadenopathies, and sarcoma in mice after a latency of 3 to 7 weeks. In addition, Moloney murine leukemia virus pseudotypes of N-ras caused neurological disorders in 30% of the infected animals. These results differed markedly from those of previous experiments in which the authors had inserted the activated form of N-ras in the pSV(X) vector: the resulting SVN-ras virus was transforming on NIH 3T3 cells but was poorly oncogenic in vivo. Altogether, these data demonstrated unequivocally that N-ras is potentially as oncogenic as H-ras and that such oncogenic effect could depend on the vector environment.

  17. Alternative prophylaxis/disinfection in aquaculture - Adaptable stress induced by peracetic acid at low concentration and its application strategy in RAS

    The application of peracetic acid (PAA) at low concentrations has been proven to be a broad-functioning and eco-friendly prophylaxis/disinfection method against various fish pathogens. However, there is lack of knowledge on how to apply PAA in a recirculating aquaculture system (RAS), and whether th...

  18. Identification of H-Ras-Specific Motif for the Activation of Invasive Signaling Program in Human Breast Epithelial Cells

    Hae-Young Yong


    Full Text Available Increased expression and/or activation of H-Ras are often associated with tumor aggressiveness in breast cancer. Previously, we showed that H-Ras, but not N-Ras, induces MCF10A human breast epithelial cell invasion and migration, whereas both H-Ras and N-Ras induce cell proliferation and phenotypic transformation. In an attempt to determine the sequence requirement directing the divergent phenotype induced by H-Ras and N-Ras with a focus on the induction of human breast cell invasion, we investigated the structural and functional relationships between H-Ras and N-Ras using domain-swap and site-directed mutagenesis approaches. Here, we report that the hypervariable region (HVR, consisting of amino acids 166 to 189 in H-Ras, determines the invasive/migratory signaling program as shown by the exchange of invasive phenotype by swapping HVR sequences between H-Ras and N-Ras. We also demonstrate that the H-Ras-specific additional palmitoylation site at Cys184 is not responsible for the signaling events that distinguish between H-Ras and N-Ras. Importantly, this work identifies the C-terminal HVR, especially the flexible linker domain with two consecutive proline residues Pro173 and Pro174, as a critical domain that contributes to activation of H-Ras and its invasive potential in human breast epithelial cells. The present study sheds light on the structural basis for the Ras isoform-specific invasive program of breast epithelial cells, providing information for the development of agents that specifically target invasion-related H-Ras pathways in human cancer.

  19. Liposomal encapsulation of deguelin: evidence for enhanced antitumor activity in tobacco carcinogen-induced and oncogenic K-ras-induced lung tumorigenesis.

    Woo, Jong K; Choi, Dong Soon; Tran, Hai T; Gilbert, Brian E; Hong, Waun Ki; Lee, Ho-Young


    Deguelin has shown promising chemopreventive and therapeutic activities in diverse types of cancers. However, the potential side effect of deguelin over a certain dose could be the substantial hurdle in the practical application of the drug. One of the successful strategies for the use of deguelin in clinical trials could be lung-specific delivery of the drug. The present study evaluates the efficacy of liposome-encapsulated deguelin with a dose of 0.4 mg/kg, which is 10 times less than the dose (4 mg/kg) for preventive and therapeutic activities validated in previous in vivo studies. Liposomal deguelin revealed cytotoxic activity in vitro in premalignant and malignant human bronchial epithelial cells and non-small cell lung cancer cells through the same mechanistic pathway previously reported for deguelin (i.e., suppression of the heat shock protein 90 chaperone function and induction of apoptosis). Delivery of liposomal deguelin at a dose of 0.4 mg/kg by intranasal instillation resulted in markedly increased drug partitioning to the lungs compared with that of 4 mg/kg deguelin or 0.4 mg/kg liposomal deguelin administered by oral gavage. Lung-specific delivery of deguelin (0.4 mg/kg) via nasal or intratracheal instillation in a liposomal formulation also showed significant chemopreventive and therapeutic activities in 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone/benzo(a)pyrene-treated A/J mice and K-rasLAC57Bl6/129/sv F1 mice with no detectable toxicity. Our findings support the potential use of deguelin in a liposomal formulation via lung-specific delivery to improve efficacy and to reduce the potential side effects of the agent.

  20. Structure of the G60A mutant of Ras: Implications for the Dominant Negative Effect.

    Ford,B.; Skowronek, K.; Boykevisch, S.; Bar-Sagi, D.; Nassar, N.


    Substituting alanine for glycine at position 60 in v-H-Ras generated a dominant negative mutant that completely abolished the ability of v-H-Ras to transform NIH 3T3 cells and to induce germinal vesicle breakdown in Xenopus oocytes. The crystal structure of the GppNp-bound form of RasG60A unexpectedly shows that the switch regions adopt an open conformation reminiscent of the structure of the nucleotide-free form of Ras in complex with Sos. Critical residues that normally stabilize the guanine nucleotide and the Mg{sup 2+} ion have moved considerably. Sos binds to RasG60A but is unable to catalyze nucleotide exchange. Our data suggest that the dominant negative effect observed for RasG60A{center_dot}GTP could result from the sequestering of Sos in a non-productive Ras-GTP-guanine nucleotide exchange factor ternary complex.

  1. Absence of K-Ras Reduces Proliferation and Migration But Increases Extracellular Matrix Synthesis in Fibroblasts.

    Muñoz-Félix, José M; Fuentes-Calvo, Isabel; Cuesta, Cristina; Eleno, Nélida; Crespo, Piero; López-Novoa, José M; Martínez-Salgado, Carlos


    The involvement of Ras-GTPases in the development of renal fibrosis has been addressed in the last decade. We have previously shown that H- and N-Ras isoforms participate in the regulation of fibrosis. Herein, we assessed the role of K-Ras in cellular processes involved in the development of fibrosis: proliferation, migration, and extracellular matrix (ECM) proteins synthesis. K-Ras knockout (KO) mouse embryonic fibroblasts (K-ras(-/-) ) stimulated with transforming growth factor-β1 (TGF-β1) exhibited reduced proliferation and impaired mobility than wild-type fibroblasts. Moreover, an increase on ECM production was observed in K-Ras KO fibroblasts in basal conditions. The absence of K-Ras was accompanied by reduced Ras activation and ERK phosphorylation, and increased AKT phosphorylation, but no differences were observed in TGF-β1-induced Smad signaling. The MEK inhibitor U0126 decreased cell proliferation independently of the presence of K-ras but reduced migration and ECM proteins expression only in wild-type fibroblasts, while the PI3K-AKT inhibitor LY294002 decreased cell proliferation, migration, and ECM synthesis in both types of fibroblasts. Thus, our data unveil that K-Ras and its downstream effector pathways distinctively regulate key biological processes in the development of fibrosis. Moreover, we show that K-Ras may be a crucial mediator in TGF-β1-mediated effects in this cell type. J. Cell. Physiol. 231: 2224-2235, 2016. © 2016 Wiley Periodicals, Inc.

  2. Ras- ERK signaling in behavior: old questions and new perspectives

    Stefania eFasano


    Full Text Available The role of Ras-ERK signaling in behavioral plasticity is well established. Inhibition studies using the blood-brain barrier permeable drug SL327 have conclusively demonstrated that this neuronal cell signaling cascade is a crucial component of the synaptic machinery implicated in the formation of various forms of long-term memory, from spatial learning to fear and operant conditioning. However, abnormal Ras-ERK signaling has also been linked to a number of neuropsychiatric conditions, including mental retardation syndromes (RASopathies, drug addiction and L-DOPA induced Dyskinesia (LID. The work recently done on these brain disorders has pointed to previously underappreciated roles of Ras-ERK in specific subsets of neurons, like GABAergic interneurons of the hippocampus or the cortex, as well as in the medium spiny neurons of the striatum. Here we will highlight the open questions related to Ras-ERK signaling in these behavioral manifestations and propose crucial experiments for the future.

  3. Curcumin induces apoptosis of pancreatic cancer cells by inhibiting Ras-ERK and Shh-GLI1 signal pathways%姜黄素通过抑制Ras-ERK和Shh-GLI1信号诱导胰腺癌细胞凋亡

    孙晓东; 刘杏娥


    AIM; To invesligale the effects of curcumin on pancreatic cancer cells and the possible molecular mechanisms. METHODS; The pancrealic cancer PANC - 1 cells were trealed with curcumin. Growlh inhibitory rale of the cells was measured by MTT assay. Apoplosis of the cells was delecled by flow cylomelry. The expression levels of K - Ras, extracellular signal - regulaled kinase 1/2 ( ERK1/2 ) , phosphorylaled ERK1/2 ( p - ERK1/2 ) , Sonic hedgehog ( Shh ) and glioma - associated oncogene homolog 1 ( GLI1) were determined by Western blotting. RESULTS; The growth inhibitory rate of the cells in 30 mmol/L curcumin group was significantly different from that in other groups. Apoptotic rate in 30 mmol/L curcumin group (37. 57% ) was significantly higher than that in control group (4. 62% ) . The expression levels of K - Ras, p - ERK1/2, Shh and GLI1 in curcumin groups were significantly lower than those in control group. CONCLUSION ; Curcumin inhibits proliferation and induces apoptosis of pancreatic cancer cells by inhibiting Ras - ERK and Shh - GLI1 signal pathways.%目的:探讨姜黄素对胰腺癌PANC-1细胞的影响及可能机制.方法:不同浓度的姜黄素作用于PANC-1细胞后,采用MTT法检测细胞增殖,流式细胞术检测细胞凋亡,Western blotting检测K-Ras、细胞外信号调节激酶1/2(ERK1/2)、磷酸化细胞外信号调节激酶(p-ERK1/2)、Sonic hedgehog(Shh)和胶质瘤相关癌基因同系物1(GLI1)的表达水平.结果:不同浓度的姜黄素与PANC-1细胞共培养后,浓度为30 mmol/L的姜黄素组能明显抑制PANC-1细胞的增殖,与其余各组相比,差异显著(P<0.01).PANC-1细胞经30 mmol/L姜黄素处理后,其细胞凋亡率(37.57%)明显高于对照组(4.62%)(P<0.01).经姜黄素处理的PANC-1细胞,其K-Ras、p-ERK、Shh和GLI1表达明显低于对照组(均P<0.01).结论:姜黄素通过抑制Ras-ERK和Shh-GLI1信号通路的活化,抑制胰腺癌PANC-1细胞增殖,并诱导细胞凋亡.

  4. Mutant K-ras-specific siRNA inhibits proliferation, migration and induces apoptosis of lung cancer A549 cells%突变型K-ras siRNA抑制肺癌A549细胞的增殖和迁移并诱导细胞凋亡

    王启钊; 刁勇; 吕颖慧; 李招发; 许瑞安


    目的:构建靶向K-ras的siRNA,研究K-ras siRNA对K-ras基因突变型肺癌细胞A549及K-ras野生型小细胞肺癌细胞NCI-H446生长和迁移的抑制作用.方法:设计并人工合成4条K-ras siRNA(针对野生型K-ras基因的K-ras siRNAl~K-ras siRNA3;针对突变型K-ras基因的K-ras siRNA4),并分别转入A549和NCI-H446细胞.RT-PCR和Western blotting检测不同K-ras siRNA对K-ras mRNA和蛋白表达的影响,MTT法检测不同K-ras siRNA对A549和NCI-H446细胞增殖的抑制作用,Transwell实验和Hoechst 33258染色检测K-ras siRNA对细胞迁移和凋亡的影响.结果:靶向突变型K-ras的K-ras siR-NA4能特异性抑制A549细胞中K-ras的表达,但时N-ras和H-ras的表达没有影响.K-ras siRNA4抑制A549细胞的增殖,但不影响含野生型K-ras基因的NCI-H446细胞的增殖.K-ras siRNA4还能诱导A549细胞凋亡、抑制A549细胞迁移.结论:针对突变型K-ras基因的siRNA可特异性抑制K-ras突变型肺癌细胞的增殖和迁移,并诱导该细胞凋亡,K-ras siRNA可望用于K-ras突变型肿瘤特别是肺癌的个体化治疗.

  5. A novel role for flotillin-1 in H-Ras-regulated breast cancer aggressiveness.

    Koh, Minsoo; Yong, Hae-Young; Kim, Eun-Sook; Son, Hwajin; Jeon, You Rim; Hwang, Jin-Sun; Kim, Myeong-Ok; Cha, Yujin; Choi, Wahn Soo; Noh, Dong-Young; Lee, Kyung-Min; Kim, Ki-Bum; Lee, Jae-Seon; Kim, Hyung Joon; Kim, Haemin; Kim, Hong-Hee; Kim, Eun Joo; Park, So Yeon; Kim, Hoe Suk; Moon, Woo Kyung; Choi Kim, Hyeong-Reh; Moon, Aree


    Elevated expression and aberrant activation of Ras have been implicated in breast cancer aggressiveness. H-Ras, but not N-Ras, induces breast cell invasion. A crucial link between lipid rafts and H-Ras function has been suggested. This study sought to identify the lipid raft protein(s) responsible for H-Ras-induced tumorigenicity and invasiveness of breast cancer. We conducted a comparative proteomic analysis of lipid raft proteins from invasive MCF10A human breast epithelial cells engineered to express active H-Ras and non-invasive cells expressing active N-Ras. Here, we identified a lipid raft protein flotillin-1 as an important regulator of H-Ras activation and breast cell invasion. Flotillin-1 was required for epidermal growth factor-induced activation of H-Ras, but not that of N-Ras, in MDA-MB-231 triple-negative breast cancer (TNBC) cells. Flotillin-1 knockdown inhibited the invasiveness of MDA-MB-231 and Hs578T TNBC cells in vitro and in vivo. In xenograft mouse tumor models of these TNBC cell lines, we showed that flotillin-1 played a critical role in tumor growth. Using human breast cancer samples, we provided clinical evidence for the metastatic potential of flotillin-1. Membrane staining of flotillin-1 was positively correlated with metastatic spread (p = 0.013) and inversely correlated with patient disease-free survival rates (p = 0.005). Expression of flotillin-1 was associated with H-Ras in breast cancer, especially in TNBC (p < 0.001). Our findings provide insight into the molecular basis of Ras isoform-specific interplay with flotillin-1, leading to tumorigenicity and aggressiveness of breast cancer.

  6. 饥饿条件下 RasRas 突变与p53协同作用对结肠癌细胞自噬影响的研究%Study on effects of Ras and Ras mutation under starvation and p53 synergistic action for colon cancer cell autophagy

    王俊伟; 石英; 陈德喜; 郭洪亮


    Objective to study effects of Ras and its mutation under starvation and p53 synergistic action for colon cancer cell autophagy by HCT116 p53-/- colon cancer cell model. Methods ① blank control group; ② Ras+ tAd-GFP; ③ Ras single transfection group; ④ Ras V12 single transfection group; ⑤ RAS N17 single transfection group; ⑥ Ras+Ad-p53 group; ⑦ RAS V12+Ad-p53 group; ⑧ RAS N17+Ad-p53 group; all 8 groups were in hunger for 24h. Detect autophagy level of each group with immunofluorescence, Real-time PCR and Western Blot. Results immunofluorescence showed autophagy rate of RAS V12 single transfection group was (34.00±3.90)%, which was significantly higher than (9,17±1.60% of blank control group(P < 0.01), and (16.40±2.40)% of RAS single transfection group (P < 0.01) and (3.56±0.58)% of N17 single transfection group (P < 0.01). Among which, autophagy level of Ras N17 transfection group was the lowest. And autophagy level of three groups treated by p53 adenovirus significantly increased, and that of Ras V12+Ad-p53 group was the highest, (57.20±1.70)%, and Ras N17+Ad-p53 group the lowest, (7.80±1.20). Real-time PCR and Western Blot showed, regardless of presence of p53, Atg5, Atg7, Beclin-1mRNA and LC3 protein level of Ras V12 transfection group was significantly higher than Ras and RasN17 transfection group. Conclusion compared with mutant Ras N17, overexpression of wild Ras and its mutant Ras V12 can induce autophagy increase under starvation, and p53 and Ras has synergistic action, which can enhance promoting autophagy role of Ras.%目的:利用 HCT116 p53-/-结肠癌细胞模型研究饥饿条件下 Ras 及其突变与 p53协同作用对结肠癌细胞自噬的影响。方法①空白对照组;② Ras+ tAd-GFP;③ Ras 单转染组;④ Ras V12单转染组;⑤ Ras N17单转染组;⑥ Ras+Ad-p53组;⑦ Ras V12+Ad-p53组;⑧ Ras N17+Ad-p53组;随后8组都饥饿24h。用免疫荧光、Real-time PCR、Western Blot 检测各组自噬

  7. p21-ras effector domain mutants constructed by "cassette" mutagenesis

    Stone, J C; Vass, W C; Willumsen, B M;


    A series of mutations encoding single-amino-acid substitutions within the v-rasH effector domain were constructed, and the ability of the mutants to induce focal transformation of NIH 3T3 cells was studied. The mutations, which spanned codons 32 to 40, were made by a "cassette" mutagenesis...... technique that involved replacing this portion of the v-rasH effector domain with a linker carrying two BspMI sites in opposite orientations. Since BspMI cleaves outside its recognition sequence, BspMI digestion of the plasmid completely removed the linker, creating a double-stranded gap whose missing ras...... sequences were reconstructed as an oligonucleotide cassette. Based upon the ability of the mutants to induce focal transformation of NIH 3T3 cells, a range of phenotypes from virtually full activity to none (null mutants) was seen. Three classes of codons were present in this segment: one which could...

  8. Regulation of p21ras activity

    Lowy, D R; Zhang, K; DeClue, J E


    The ras genes encode GTP/GDP-binding proteins that participate in mediating mitogenic signals from membrane tyrosine kinases to downstream targets. The activity of p21ras is determined by the concentration of GTP-p21ras, which is tightly regulated by a complex array of positive and negative control...... mechanisms. GAP and NF1 can negatively regulate p21ras activity by stimulating hydrolysis of GTP bound to p21ras. Other cellular factors can positively regulate p21ras by stimulating GDP/GTP exchange....

  9. Ras proteins have multiple functions in vegetative cells of Dictyostelium.

    Bolourani, Parvin; Spiegelman, George; Weeks, Gerald


    During the aggregation of Dictyostelium cells, signaling through RasG is more important in regulating cyclic AMP (cAMP) chemotaxis, whereas signaling through RasC is more important in regulating the cAMP relay. However, RasC is capable of substituting for RasG for chemotaxis, since rasG⁻ cells are only partially deficient in chemotaxis, whereas rasC⁻/rasG⁻ cells are totally incapable of chemotaxis. In this study we have examined the possible functional overlap between RasG and RasC in vegetative cells by comparing the vegetative cell properties of rasG⁻, rasC⁻, and rasC⁻/rasG⁻ cells. In addition, since RasD, a protein not normally found in vegetative cells, is expressed in vegetative rasG⁻ and rasC⁻/rasG⁻ cells and appears to partially compensate for the absence of RasG, we have also examined the possible functional overlap between RasG and RasD by comparing the properties of rasG⁻ and rasC⁻/rasG⁻ cells with those of the mutant cells expressing higher levels of RasD. The results of these two lines of investigation show that RasD is capable of totally substituting for RasG for cytokinesis and growth in suspension, whereas RasC is without effect. In contrast, for chemotaxis to folate, RasC is capable of partially substituting for RasG, but RasD is totally without effect. Finally, neither RasC nor RasD is able to substitute for the role that RasG plays in regulating actin distribution and random motility. These specificity studies therefore delineate three distinct and none-overlapping functions for RasG in vegetative cells.

  10. Keratinocyte p38δ loss inhibits Ras-induced tumor formation, while systemic p38δ loss enhances skin inflammation in the early phase of chemical carcinogenesis in mouse skin.

    Kiss, Alexi; Koppel, Aaron C; Anders, Joanna; Cataisson, Christophe; Yuspa, Stuart H; Blumenberg, Miroslav; Efimova, Tatiana


    p38δ expression and/or activity are increased in human cutaneous malignancies, including invasive squamous cell carcinoma (SCC) and head and neck SCC, but the role of p38δ in cutaneous carcinogenesis has not been well-defined. We have reported that mice with germline loss of p38δ exhibited a reduced susceptibility to skin tumor development compared with wild-type mice in the two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical skin carcinogenesis model. Here, we report that p38δ gene ablation inhibited the growth of tumors generated from v-ras(Ha) -transformed keratinocytes in skin orthografts to nude mice, indicating that keratinocyte-intrinsic p38δ is required for Ras-induced tumorigenesis. Gene expression profiling of v-ras(Ha) -transformed p38δ-null keratinocytes revealed transcriptional changes associated with cellular responses linked to tumor suppression, such as reduced proliferation and increased differentiation, cell adhesion, and cell communications. Notably, a short-term DMBA/TPA challenge, modeling the initial stages of chemical skin carcinogenesis treatment, elicited an enhanced inflammation in p38δ-null skin compared with skin of wild-type mice, as assessed by measuring the expression of pro-inflammatory cytokines, including IL-1β, IL-6, IL-17, and TNFα. Additionally, p38δ-null skin and p38δ-null keratinocytes exhibited increased p38α activation and signaling in response to acute inflammatory challenges, suggesting a role for p38α in stimulating the elevated inflammatory response in p38δ-null skin during the initial phases of the DMBA/TPA treatment compared with similarly treated p38δ(+/+) skin. Altogether, our results indicate that p38δ signaling regulates skin carcinogenesis not only by keratinocyte cell-autonomous mechanisms, but also by influencing the interaction between between the epithelial compartment of the developing skin tumor and its stromal microenvironment.

  11. Specificity in Ras and Rap signaling

    Raaijmakers, J.H.; Bos, Johannes L.


    Ras and Rap proteins are closely related small GTPases. Whereas Ras is known for its role in cell proliferation and survival, Rap1 is predominantly involved in cell adhesion and cell junction formation. Ras and Rap are regulated by different sets of guanine nucleotide exchange factors and GTPase-act

  12. Specificity in Ras and Rap signaling

    Raaijmakers, J.H.; Bos, Johannes L.


    Ras and Rap proteins are closely related small GTPases. Whereas Ras is known for its role in cell proliferation and survival, Rap1 is predominantly involved in cell adhesion and cell junction formation. Ras and Rap are regulated by different sets of guanine nucleotide exchange factors and

  13. Transfer of PCBs via lactation simultaneously induces the expression of P450 isoenzymes and the protooncogenes c-Ha-ras and c-raf in neonates.

    Borlak, J T; Scott, A; Henderson, C J; Jenke, H J; Wolf, C R


    At the first day of lactation, maternal rats were injected with a single i.p. dose of 100 or 250 mg/kg body weight of a mixture of polychlorinated biphenyls (Aroclor 1254). This treatment caused significant increases in both material and neonatal hepatic cytochrome P-450, cytochrome b5, and cytochrome-c-(P-450) reductase. Transfer of PCBs via lactation resulted in significant increases in hepatic enzyme activities catalysed by neonatal CYP1A1, CYP1A2, CYP2B1, CYP3A1, and CYP2E1 using a variety of substrates. In contrast, the metabolism of dimethylnitrosamine and aminopyrine was only marginally (up to 2-fold) increased in maternal animals four days post treatment. Further measurements showed significant increases in maternal and neonatal epoxide hydrolase, glutathione-S-transferase, and UDP-glucuronyl transferase activities, thus suggesting a coordinated response for an induction of CYP1A1, CYP1A2, CYP2A1, CYP2B1, CYP2E1, CYP3A1, and CYP4A1 in both maternal and neonatal CYP2C6, and at the higher dose the expression of neonatal CYP2E1 was significantly reduced. Northern blot analysis provided further evidence for significant increases in maternal and neonatal hepatic CYP1A1, CYP1A2, CYP2B1, and CYP2E1 mRNA, but reduced amounts of CYP2C7 and CYP4A1 mRNA. Additional Northern blot hybridization experiments may suggest an increased expression of the protooncogenes c-Ha-ras and c-raf in the mother and the neonate upon treatment of maternal rats with Aroclor 1254. Lactation itself may result in an increased expression of the latter protooncogenes, but the mRNA of the protooncogenes c-erb A and c-erb B was not detected in any of the tissues examined.

  14. Altered expression of retinoic acid (RA) receptor mRNAs in the fetal mouse secondary palate by all-trans and 13-cis RAs: implications for RA-induced teratogenesis.

    Naitoh, H; Mori, C; Nishimura, Y; Shiota, K


    Retinoic acid (RA) is mandatory for various biological processes and normal embryonic development but is teratogenic at high concentrations. In rodents, one of the major malformations induced by RA is cleft palate (CP). RA mediates its effects by RA receptors (RARs), but the expression patterns of RARs in the developing palate are still unclear. We investigated the normal expression of RAR alpha, beta, and gamma messenger RNAs (mRNAs) in the fetal mouse secondary palate and the effects of all-trans and 13-cis RAs on the expression of RAR mRNAs by Northern blot analysis. RAR alpha (2.8, 3.8 kb), RAR beta (3.3 kb), and RAR gamma (3.7 kb) mRNAs were detected in the fetal palate on gestational days (GD) 12.5-14.5. The expression of RAR alpha and gamma mRNAs did not show apparent sequential changes, but that of RAR beta mRNA increased at GD 13.5. Treatment of pregnant mice with 100 mg/kg all-trans RA induced CP in 94% of the fetuses and elevated the levels of RAR beta and gamma mRNAs in the fetal palate. The up-regulation of RAR beta mRNA by all-trans RA was more marked than that of RAR gamma mRNA. Treatment with 100 mg/kg 13-cis RA induced CP in only 19% of the fetuses. Although 13-cis RA elevated the RAR beta and gamma mRNA levels in fetal palates, its up-regulation was slower and less marked than that induced by all-trans RA. These findings indicate that the induction of RAR beta mRNA in the fetal palate correlates well with the tissue concentration of all-trans RA after RA treatment, and RAR beta may be one of the most influential candidate molecules for RA-induced teratogenesis.


    Ni Putu Sriwidyani


    Full Text Available Karsinogenesis kanker kolorektal merupakan proses multi-step, melibatkan berbagai abnormalitasgenetik. Mutasi gen K RAS sering ditemukan pada tumor ini. K RAS adalah gen yang menyandi proteinK ras, suatu produk proto-onkogen yang merupakan komponen penting pada jalur pensignalan darireseptor permukaan sel untuk mengontrol proliferasi, diferensiasi, dan kematian sel. Kebanyakanmutasi terjadi pada kodon 12 dan 13 dari ekson 1. Protein K ras mutan akan menyebabkan aktivasipersisten dari banyak signal downstream dari pertumbuhan dan survival sel. Pemeriksaan adanyamutasi pada gen K RAS memegang peranan penting pada prognosis dan terapi dari kanker kolorektal.[MEDICINA 2013;44:97-100].

  16. PAQR10 and PAQR11 mediate Ras signaling in the Golgi apparatus.

    Jin, Ting; Ding, Qiurong; Huang, Heng; Xu, Daqian; Jiang, Yuhui; Zhou, Ben; Li, Zhenghu; Jiang, Xiaomeng; He, Jing; Liu, Weizhong; Zhang, Yixuan; Pan, Yi; Wang, Zhenzhen; Thomas, Walter G; Chen, Yan


    Ras plays a pivotal role in many cellular activities, and its subcellular compartmentalization provides spatial and temporal selectivity. Here we report a mode of spatial regulation of Ras signaling in the Golgi apparatus by two highly homologous proteins PAQR10 and PAQR11 of the progestin and AdipoQ receptors family. PAQR10 and PAQR11 are exclusively localized in the Golgi apparatus. Overexpression of PAQR10/PAQR11 stimulates basal and EGF-induced ERK phosphorylation and increases the expression of ERK target genes in a dose-dependent manner. Overexpression of PAQR10/PAQR11 markedly elevates Golgi localization of HRas, NRas and KRas4A, but not KRas4B. PAQR10 and PAQR11 can also interact with HRas, NRas and KRas4A, but not KRas4B. The increased Ras protein at the Golgi apparatus by overexpression of PAQR10/PAQR11 is in an active state. Consistently, knockdown of PAQR10 and PAQR11 reduces EGF-stimulated ERK phosphorylation and Ras activation at the Golgi apparatus. Intriguingly, PAQR10 and PAQR11 are able to interact with RasGRP1, a guanine nucleotide exchange protein of Ras, and increase Golgi localization of RasGRP1. The C1 domain of RasGRP1 is both necessary and sufficient for the interaction of RasGRP1 with PAQR10/PAQR11. The simulation of ERK phosphorylation by overexpressed PAQR10/PAQR11 is abrogated by downregulation of RasGRP1. Furthermore, differentiation of PC12 cells is significantly enhanced by overexpression of PAQR10/PAQR11. Collectively, this study uncovers a new paradigm of spatial regulation of Ras signaling in the Golgi apparatus by PAQR10 and PAQR11.

  17. PAQR10 and PAQR11 mediate Ras signaling in the Golgi apparatus

    Ting Jin; Weizhong Liu; Yixuan Zhang; Yi Pan; Zhenzhen Wang; Walter G Thomas; Yan Chen; Qiurong Ding; Heng Huang; Daqian Xu; Yuhui Jiang; Ben Zhou; Zhenghu Li; Xiaomeng Jiang; Jing He


    Ras plays a pivotal role in many cellular activities,and its subcellular compartmentalization provides spatial and temporal selectivity.Here we report a mode of spatial regulation of Ras signaling in the Golgi apparatus by two highly homologous proteins PAQR10 and PAQR11 of the progestin and AdipoQ receptors family.PAQR10 and PAQR11 are exclusively localized in the Golgi apparatus.Overexpression of PAQR10/PAQR11 stimulates basal and EGF-induced ERK phosphorylation and increases the expression of ERK target genes in a dose-dependent manner.Overexpression of PAQR10/PAQR11 markedly elevates Golgi localization of HRas,NRas and KRas4A,but not KRas4B.PAQR10 and PAQR11 can also interact with HRas,NRas and KRas4A,but not KRas4B.The increased Ras protein at the Golgi apparatus by overexpression of PAQR10/PAQR11 is in an active state.Consistently,knockdown of PAQR10 and PAQR11 reduces EGF-stimulated ERK phosphorylation and Ras activation at the Golgi apparatus.Intriguingly,PAQR10 and PAQR11 are able to interact with RasGRP1,a guanine nucleotide exchange protein of Ras,and increase Golgi localization of RasGRP1.The C1 domain of RasGRP1 is both necessary and sufficient for the interaction of RasGRP1 with PAQR10/PAQR11.The simulation of ERK phosphorylation by overexpressed PAQR10/PAQR11 is abrogated by downregulation of RasGRP1.Furthermore,differentiation of PC12 cells is significantly enhanced by overexpression of PAQR10/PAQR11.Collectively,this study uncovers a new paradigm of spatial regulation of Ras signaling in the Golgi apparatus by PAQR10 and PAQR11.

  18. Evidence for adenylate cyclase as a scaffold protein for Ras2-Ira interaction in Saccharomyces cerevisie.

    Colombo, Sonia; Paiardi, Chiara; Pardons, Katrien; Winderickx, Joris; Martegani, Enzo


    Data in literature suggest that budding yeast adenylate cyclase forms a membrane-associated complex with the upstream components of the cAMP/PKA pathway. Here we provide evidences that adenylate cyclase (Cyr1p) acts as a scaffold protein keeping Ras2 available for its regulatory factors. We show that in a strain with deletion of the CYR1 gene (cyr1Δ pde2Δ msn2Δ msn4Δ) the basal Ras2-GTP level is very high and this is independent on the lack of feedback inhibition that could result from the absence of adenylate cyclase activity. Moreover, strains effected either in the intrinsic adenylate cyclase activity (fil1 strain) or in the stimulation of adenylate cyclase activity by active G-proteins (lcr1 strain) had a normal basal and glucose-induced Ras2-GTP level, indicating that adenylate cyclase activity does not influence the Ras2 activation state and suggesting that Cyr1 protein is required for the proper interaction between Ras2 and the Ira proteins. We also provide evidence that the two Ras-binding sites mapped on Cyr1p are required for the signalling complex assembly. In fact, we show that the cyr1Δ strain expressing CYR1 alleles lacking either the LRR region or the C-terminal domain still have a high basal and glucose-induced Ras2-GTP level. In contrast, a mutant expressing a Cyr1 protein only missing the N-terminal domain showed a normal Ras2 activation pattern. Likewise, the Ras2-GTP levels are comparable in the wild type strain and the srv2Δ strain, supporting the hypothesis that Cap is not essential for the Ras-adenylate cyclase interaction.

  19. K-RAS and N-RAS mutations in testicular germ cell tumors

    Bekir Muhammet Hacioglu


    Full Text Available Testicular cancer is a relatively rare tumor type, accounting for approximately 1% of all cancers in men. However, among men aged between 15 and 40 years, testicular cancer is the most commonly diagnosed malignancy. Testicular germ cell tumors (TGCTs are classified as seminoma and non-seminoma. The RAS oncogene controls several cellular functions, including cell proliferation, apoptosis, migration, and differentiation. Thus, RAS signaling is important for normal germ cell development. Mutations of the Kirsten RAS (K-RAS gene are present in over 20% of all cancers. RAS gene mutations have also been reported in TGCTs. We investigated K-RAS and N-RAS mutations in seminoma and non-seminoma TGCT patients. A total of 24 (55% pure seminoma cases and 19 (45% non-seminoma cases were included in the study. K-RAS and N-RAS analyses were performed in our molecular pathology laboratory, using K-RAS and N-RAS Pyro Kit 24 V1 (Qiagen. In total, a RAS mutation was present in 12 patients (27%: 7 seminoma (29% and 5 non-seminoma cases (26% [p = 0.55]. A K-RAS mutation was present in 4 pure seminoma tumors (16% and 3 non-seminoma tumors (15% [p = 0.63], and an N-RAS mutation was observed in 4 seminoma tumors (16% and 3 non-seminoma tumors (15% [p = 0.63]. Both, K-RAS and N-RAS mutations were present in two patients: one with seminoma tumor and the other with non-seminoma tumor. To date, no approved targeted therapy is available for the treatment of TGCTs. The analysis of K-RAS and N-RAS mutations in these tumors may provide more treatment options, especially in platinum-resistant tumors.

  20. Inhibitors of Ras-SOS Interactions.

    Lu, Shaoyong; Jang, Hyunbum; Zhang, Jian; Nussinov, Ruth


    Activating Ras mutations are found in about 30 % of human cancers. Ras activation is regulated by guanine nucleotide exchange factors, such as the son of sevenless (SOS), which form protein-protein interactions (PPIs) with Ras and catalyze the exchange of GDP by GTP. This is the rate-limiting step in Ras activation. However, Ras surfaces lack any evident suitable pockets where a molecule might bind tightly, rendering Ras proteins still 'undruggable' for over 30 years. Among the alternative approaches is the design of inhibitors that target the Ras-SOS PPI interface, a strategy that is gaining increasing recognition for treating Ras mutant cancers. Herein we focus on data that has accumulated over the past few years pertaining to the design of small-molecule modulators or peptide mimetics aimed at the interface of the Ras-SOS PPI. We emphasize, however, that even if such Ras-SOS therapeutics are potent, drug resistance may emerge. To counteract this development, we propose "pathway drug cocktails", that is, drug combinations aimed at parallel (or compensatory) pathways. A repertoire of classified cancer, cell/tissue, and pathway/protein combinations would be beneficial toward this goal.

  1. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling

    Zhou, Yong; Wong, Ching-On; Cho, Kwang-jin; van der Hoeven, Dharini; Liang, Hong; Thakur, Dhananiay P.; Luo, Jialie; Babic, Milos; Zinsmaier, Konrad E.; Zhu, Michael X.; Hu, Hongzhen; Venkatachalam, Kartik; Hancock, John F.


    Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras–dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits. PMID:26293964

  2. Regulation of Raf-1 and Raf-1 mutants by Ras-dependent and Ras-independent mechanisms in vitro.

    Dent, P; Reardon, D B; Morrison, D K; Sturgill, T W


    The serine/threonine kinase Raf-1 functions downstream from Ras to activate mitogen-activated protein kinase kinase, but the mechanisms of Raf-1 activation are incompletely understood. To dissect these mechanisms, wild-type and mutant Raf-1 proteins were studied in an in vitro system with purified plasma membranes from v-Ras- and v-Src-transformed cells (transformed membranes). Wild-type (His)6- and FLAG-Raf-1 were activated in a Ras- and ATP-dependent manner by transformed membranes; however, Raf-1 proteins that are kinase defective (K375M), that lack an in vivo site(s) of regulatory tyrosine (YY340/341FF) or constitutive serine (S621A) phosphorylation, that do not bind Ras (R89L), or that lack an intact zinc finger (CC165/168SS) were not. Raf-1 proteins lacking putative regulatory sites for an unidentified kinase (S259A) or protein kinase C (S499A) were activated but with apparently reduced efficiency. The kinase(s) responsible for activation by Ras or Src may reside in the plasma membrane, since GTP loading of plasma membranes from quiescent NIH 3T3 cells (parental membranes) induced de novo capacity to activate Raf-1. Wild-type Raf-1, possessing only basal activity, was not activated by parental membranes in the absence of GTP loading. In contrast, Raf-1 Y340D, possessing significant activity, was, surprisingly, stimulated by parental membranes in a Ras-independent manner. The results suggest that activation of Raf-1 by phosphorylation may be permissive for further modulation by another membrane factor, such as a lipid. A factor(s) extracted with methanol-chloroform from transformed membranes or membranes from Sf9 cells coexpressing Ras and SrcY527F significantly enhanced the activity of Raf-1 Y340D or active Raf-1 but not that of inactive Raf-1. Our findings suggest a model for activation of Raf-1, wherein (i) Raf-1 associates with Ras-GTP, (ii) Raf-1 is activated by tyrosine and/or serine phosphorylation, and (iii) Raf-1 activity is further increased by a

  3. Identification of cancer initiating cells in K-Ras driven lung adenocarcinoma.

    Mainardi, Sara; Mijimolle, Nieves; Francoz, Sarah; Vicente-Dueñas, Carolina; Sánchez-García, Isidro; Barbacid, Mariano


    Ubiquitous expression of a resident K-Ras(G12V) oncogene in adult mice revealed that most tissues are resistant to K-Ras oncogenic signals. Indeed, K-Ras(G12V) expression only induced overt tumors in lungs. To identify these transformation-permissive cells, we induced K-Ras(G12V) expression in a very limited number of adult lung cells (0.2%) and monitored their fate by X-Gal staining, a surrogate marker coexpressed with the K-Ras(G12V) oncoprotein. Four weeks later, 30% of these cells had proliferated to form small clusters. However, only SPC(+) alveolar type II (ATII) cells were able to form hyperplastic lesions, some of which progressed to adenomas and adenocarcinomas. In contrast, induction of K-Ras(G12V) expression in lung cells by intratracheal infection with adenoviral-Cre particles generated hyperplasias in all regions except the proximal airways. Bronchiolar and bronchioalveolar duct junction hyperplasias were primarily made of CC10(+) Clara cells. Some of them progressed to form benign adenomas. However, only alveolar hyperplasias, exclusively made up of SPC(+) ATII cells, progressed to yield malignant adenocarcinomas. Adenoviral infection induced inflammatory infiltrates primarily made of T and B cells. This inflammatory response was essential for the development of K-Ras(G12V)-driven bronchiolar hyperplasias and adenomas, but not for the generation of SPC(+) ATII lesions. Finally, activation of K-Ras(G12V) during embryonic development under the control of a Sca1 promoter yielded CC10(+), but not SPC(+), hyperplasias, and adenomas. These results, taken together, illustrate that different types of lung cells can generate benign lesions in response to K-Ras oncogenic signals. However, in adult mice, only SPC(+) ATII cells were able to yield malignant adenocarcinomas.

  4. Ras-mediated deregulation of the circadian clock in cancer.

    Angela Relógio

    Full Text Available Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock.

  5. Butylhydroxytoluene (BHT) increases susceptibility of transgenic rasH2 mice to lung carcinogenesis.

    Umemura, T; Kodama, Y; Hioki, K; Inoue, T; Nomura, T; Kurokawa, Y


    Transgenic mice carrying the human prototype c-Ha-ras gene (rasH2 mice) are highly susceptible to lung carcinogens. In order to investigate the possibility of developing a rapid in vivo assay for lung carcinogens, we examined whether the tumor-promoting activity of butylhydroxytoluene (BHT) is efficacious in rasH2 mice. rasH2 mice and wild littermates of both genders were pre-treated with carcinogens [urethane (UR), 4-nitroquinoline 1-oxide (4NQO) or diethylnitrosamine (DEN)], and, one day later, given a 400 mg/kg dose of BHT. Six weeks after the initiation treatment, evidence of carcinogenicity could be detected in male and female rasH2 mice that had received UR doses of > or = 250 mg/kg and > or = 125 mg/kg, respectively, prior to exposure to BHT, whereas only 500 mg/kg of UR was sufficient to induce tumors in female rasH2 mice given the carcinogen alone. The carcinogenicity of 15 mg/kg of 4NQO could be detected after 9 weeks in male rasH2 mice given the carcinogen followed by BHT. Similarly, the carcinogenicity of 60 mg/kg of DEN could be detected after 9 weeks and 6 weeks, respectively, in male and female rasH2 mice given the carcinogen followed by BHT. No carcinogenicity could be demonstrated through the experimental period with doses of 4NQO or DEN given alone. These results indicate that BHT administration increases the susceptibility of rasH2 mice to lung carcinogens, and suggest that the use of BHT in rasH2 mice might lead to the establishment of a rapid in vivo assay for lung carcinogens.

  6. Blocking of p53-Snail Binding, Promoted by Oncogenic K-Ras, Recovers p53 Expression and function

    Sun-Hye Lee


    Full Text Available Differentially from other kinds of Ras, oncogenic K-Ras, which is mutated approximately 30% of human cancer, does not induce apoptosis and senescence. Here, we provide the evidence that oncogenic K-Ras abrogates p53 function and expression through induction of Ataxia telangiectasia-mutated and Rad3-related mediated Snail stabilization. Snail directly binds to DNA binding domain of p53 and diminishes the tumor-suppressive function of p53. Thus, elimination of Snail through si-RNA can induce p53 in K-Ras-mutated cells, whereas Snail and mutant K-Ras can suppress p53 in regardless of K-Ras status. Chemicals, isolated from inhibitor screening of p53-Snail binding, can block the Snail-mediated p53 suppression and enhance the expression of p53 as well as the transcriptional activity of p53 in an oncogenic K-Ras-dependent manner. Among the chemicals, two are very similar in structure. These results can answer why K-Ras can coexist with wild type p53 and propose the Snail-p53 binding as the new therapeutic target for K-Ras-mutated cancers including pancreatic, lung, and colon cancers.

  7. Radiation Promotes Colorectal Cancer Initiation and Progression by Inducing Senescence-Associated Inflammatory Responses

    Kim, Sang Bum; Bozeman, Ronald; Kaisani, Aadil; Kim, Wanil; Zhang, Lu; Richardson, James A.; Wright, Woodring E.; Shay, Jerry W.


    Proton radiotherapy is becoming more common since protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared to conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIR) which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence associated gene (P19Arf) are markedly increased. Following these changes loss of Casein kinase Iα (CKIα) and induction of chronic DNA damage and TP53 mutations are increased compared to x-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, CDDO-EA, reduces proton irradiation associated SIR and tumorigenesis. Thus, exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA. PMID:26477319

  8. Suppression of integrin activation by activated Ras or Raf does not correlate with bulk activation of ERK MAP kinase.

    Hughes, Paul E; Oertli, Beat; Hansen, Malene; Chou, Fan-Li; Willumsen, Berthe M; Ginsberg, Mark H


    The rapid modulation of ligand-binding affinity ("activation") is a central property of the integrin family of cell adhesion receptors. The Ras family of small GTP-binding proteins and their downstream effectors are key players in regulating integrin activation. H-Ras can suppress integrin activation in fibroblasts via its downstream effector kinase, Raf-1. In contrast, to H-Ras, a closely related small GTP-binding protein R-Ras has the opposite activity, and promotes integrin activation. To gain insight into the regulation of integrin activation by Ras GTPases, we created a series of H-Ras/R-Ras chimeras. We found that a 35-amino acid stretch of H-Ras was required for full suppressive activity. Furthermore, the suppressive chimeras were weak activators of the ERK1/2 MAP kinase pathway, suggesting that the suppression of integrin activation may be independent of the activation of the bulk of ERK MAP kinase. Additional data demonstrating that the ability of H-Ras or Raf-1 to suppress integrin activation was unaffected by inhibition of bulk ERK1/2 MAP kinase activation supported this hypothesis. Thus, the suppression of integrin activation is a Raf kinase induced regulatory event that can be mediated independently of bulk activation of the ERK MAP-kinase pathway.

  9. Optimizing depuration of salmon in RAS

    Fish cultured within water recirculating aquaculture systems (RAS) can acquire "earthy" or "musty" off-flavors due to bioaccumulation of the compounds geosmin and 2-methylisoborneol (MIB), respectively, which are produced by certain bacterial species present in RAS biosolids and microbial biofilms. ...

  10. Molecular interaction between K-Ras and H-REV107 in the Ras signaling pathway.

    Han, Chang Woo; Jeong, Mi Suk; Jang, Se Bok


    Ras proteins are small GTPases that serve as master moderators of a large number of signaling pathways involved in various cellular processes. Activating mutations in Ras are found in about one-third of cancers. H-REV107, a K-Ras binding protein, plays an important role in determining K-Ras function. H-REV107 is a member of the HREV107 family of class II tumor suppressor genes and a growth inhibitory Ras target gene that suppresses cellular growth, differentiation, and apoptosis. Expression of H-REV107 was strongly reduced in about 50% of human carcinoma cell lines. However, the specific molecular mechanism by which H-REV107 inhibits Ras is still unknown. In the present study, we suggest that H-REV107 forms a strong complex with activating oncogenic mutation Q61H K-Ras from various biochemical binding assays and modeled structures. In addition, the interaction sites between K-Ras and H-REV107 were predicted based on homology modeling. Here, we found that some structure-based mutants of the K-Ras disrupted the complex formation with H-REV107. Finally, a novel molecular mechanism describing K-Ras and H-REV107 binding is suggested and insights into new K-Ras effector target drugs are provided. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Isolation of two novel ras genes in Dictyostelium discoideum; evidence for a complex, developmentally regulated ras gene subfamily.

    Daniel, J; Bush, J; Cardelli, J; Spiegelman, G B; Weeks, G


    In Dictyostelium discoideum, three ras genes (rasD, rasG and rasB) and one ras-related gene (rap1) have been previously isolated and characterized, and the deduced amino acid sequence of their predicted protein products share at least 50% sequence identity with the human H-Ras protein. We have now cloned and characterized two additional members of the ras gene subfamily in Dictyostelium, rasC and rasS. These genes are developmentally regulated and unlike the previously isolated Dictyostelium ras genes, maximum levels of their transcripts were detected during aggregation, suggesting that the encoded proteins have distinct functions during aggregation. The rasC cDNA encodes a 189 amino acid protein that is 65% identical to the Dictyostelium RasD and RasG proteins and 56% identical to the human H-Ras protein. The predicted 194 amino acid gene product encoded by rasS is 60% identical to the Dictyostelium RasD and RasG proteins and 54% identical to the human H-Ras protein. Whereas RasD, RasG, RasB and Rap1 are totally conserved in their putative effector domains relative to H-Ras, RasC and RasS have single amino acid substitutions in their effector domains, consistent with the idea that they have unique functions. In RasC, aspartic acid-38 has been replaced by asparagine (D38N), and in RasS, isoleucine-36 has been replaced by leucine (I36L). In addition, both proteins have several differences in the effector-proximal domain, a domain which is believed to play a role in Ras target activation. In RasC, there is a single conservative amino acid change in the canonical sequence of the binding site for the Ras-specific monoclonal antibody Y13-259, and consequently, RasC is less immunoreactive with the antibody than either of the Dictyostelium RasD or RasG proteins. In contrast, RasS, which has three substitutions in the Y13-259 binding site, does not react with the Y13-259 antibody.

  12. Two ras genes in Dictyostelium minutum show high sequence homology, but different developmental regulation from Dictyostelium discoideum rasD and rasG genes.

    van Es, S; Kooistra, R A; Schaap, P


    The social amoeba Dictyostelium discoideum expresses five ras genes at different stages of development. One of them, DdrasD is expressed during postaggregative development and transcription is induced by extracellular cAMP. A homologue of DdrasD, the DdrasG gene, is expressed exclusively during vegetative growth. We cloned two ras homologues Dmras1 and Dmras2 from the primitive species D. minutum, which show high homology to DdrasD and DdrasG and less homology to the other Ddras genes. In contrast to the DdrasD and DdrasG genes, both the Dmras1 and Dmras2 genes are expressed during the entire course of development. The expression levels are low during growth, increase at the onset of starvation and do not decrease until fruiting bodies have formed. Expression of neither Dmras1 or Dmras2 is regulated by cAMP. So even though the high degree of homology between the ras genes of different species suggests conservation of function, this function is apparently not associated with a specific developmental stage.

  13. Oncogenic K-ras confers SAHA resistance by up-regulating HDAC6 and c-myc expression.

    Wang, Qun; Tan, Rong; Zhu, Xin; Zhang, Yi; Tan, Zhiping; Su, Bing; Li, Yu


    Histone deacetylase inhibitors (HDIs) represent a new class of anticancer drugs. Suberoylanilide hydroxamic acid (SAHA), the first HDI approved for the treatment of cutaneous T cell lymphoma (CTCL), is currently being tested in clinical trials for other cancers. However, SAHA has been ineffective against solid tumors in many clinical trials. A better understanding of molecular mechanisms of SAHA resistance may provide the basis for improved patient selection and the enhancement of clinical efficacy. Here we demonstrate that oncogenic K-ras contributes to SAHA resistance by upregulating HDAC6 and c-myc expression. We find that the high levels of HDAC6 expression are associated with activated K-ras mutant in colon cancer patients. And expressions of HDAC6 and c-myc are increased in fibroblasts transformed with activated K-ras. Surprisingly, we find that activated K-ras transformed cells are more resistant to SAHA inhibition on cell growth and anchorage-independent colony formation. We show that a K-ras inhibitor sensitizes K-ras mutated lung cancer cells to SAHA induced growth inhibition. We also find that mutant K-ras induces HDAC6 expression by a MAP kinase dependent pathway. Our study suggests that combined treatment with SAHA and K-ras inhibitors may represent an effective strategy to overcome SAHA resistance.

  14. A WXW motif is required for the anticancer activity of the TAT-RasGAP317-326 peptide.

    Barras, David; Chevalier, Nadja; Zoete, Vincent; Dempsey, Rosemary; Lapouge, Karine; Olayioye, Monilola A; Michielin, Olivier; Widmann, Christian


    TAT-RasGAP317-326, a cell-permeable 10-amino acid-long peptide derived from the N2 fragment of p120 Ras GTPase-activating protein (RasGAP), sensitizes tumor cells to apoptosis induced by various anticancer therapies. This RasGAP-derived peptide, by targeting the deleted in liver cancer-1 (DLC1) tumor suppressor, also hampers cell migration and invasion by promoting cell adherence and by inhibiting cell movement. Here, we systematically investigated the role of each amino acid within the RasGAP317-326 sequence for the anticancer activities of TAT-RasGAP317-326. We report here that the first three amino acids of this sequence, tryptophan, methionine, and tryptophan (WMW), are necessary and sufficient to sensitize cancer cells to cisplatin-induced apoptosis and to reduce cell migration. The WMW motif was found to be critical for the binding of fragment N2 to DLC1. These results define the interaction mode between the active anticancer sequence of RasGAP and DLC1. This knowledge will facilitate the design of small molecules bearing the tumor-sensitizing and antimetastatic activities of TAT-RasGAP317-326.

  15. A WXW Motif Is Required for the Anticancer Activity of the TAT-RasGAP317–326 Peptide*

    Barras, David; Chevalier, Nadja; Zoete, Vincent; Dempsey, Rosemary; Lapouge, Karine; Olayioye, Monilola A.; Michielin, Olivier; Widmann, Christian


    TAT-RasGAP317–326, a cell-permeable 10-amino acid-long peptide derived from the N2 fragment of p120 Ras GTPase-activating protein (RasGAP), sensitizes tumor cells to apoptosis induced by various anticancer therapies. This RasGAP-derived peptide, by targeting the deleted in liver cancer-1 (DLC1) tumor suppressor, also hampers cell migration and invasion by promoting cell adherence and by inhibiting cell movement. Here, we systematically investigated the role of each amino acid within the RasGAP317–326 sequence for the anticancer activities of TAT-RasGAP317–326. We report here that the first three amino acids of this sequence, tryptophan, methionine, and tryptophan (WMW), are necessary and sufficient to sensitize cancer cells to cisplatin-induced apoptosis and to reduce cell migration. The WMW motif was found to be critical for the binding of fragment N2 to DLC1. These results define the interaction mode between the active anticancer sequence of RasGAP and DLC1. This knowledge will facilitate the design of small molecules bearing the tumor-sensitizing and antimetastatic activities of TAT-RasGAP317–326. PMID:25008324

  16. H-Ras Oncogene Expression and Angiogenesis in Experimental Liver Cirrhosis

    Gülsüm Özlem Elpek


    Full Text Available Background. Proto-oncogenes, particularly ras, may not only affect cell proliferation but also contribute to angiogenesis by influencing both proangiogenic and antiangiogenic mediators. The aim of this study was to investigate whether any relationship exists between ras expression and angiogenesis during diethylnitrosamine- (DEN- induced experimental liver fibrosis. Materials and Methods. Liver cirrhosis was induced in rats by intraperitoneal injections of DEN. The animals were sacrificed 2 weeks after the last administrations and a hepatectomy was performed. Masson’s trichrome staining was used in the evaluation of the extent of liver fibrosis. The vascular density in portal and periportal areas was assessed by determining the count of CD34 labeled vessel sections. For quantitative evaluation of H-ras expression, in each section positive and negative cells were counted. Results. In fibrotic group H-ras expression was higher than that in nonfibrotic group and was more widespread in cirrhotic livers. Friedman’s test showed that there was a significant correlation between H-ras expression and VD (P<0.01. Conclusion. The results of this descriptive study reveal that H-ras expression gradually increases according to the severity of fibrosis and strongly correlates with angiogenesis.

  17. Activated Ras alters lens and corneal development through induction of distinct downstream targets

    Reneker Lixing


    Full Text Available Abstract Background Mammalian Ras genes regulate diverse cellular processes including proliferation and differentiation and are frequently mutated in human cancers. Tumor development in response to Ras activation varies between different tissues and the molecular basis for these variations are poorly understood. The murine lens and cornea have a common embryonic origin and arise from adjacent regions of the surface ectoderm. Activation of the fibroblast growth factor (FGF signaling pathway induces the corneal epithelial cells to proliferate and the lens epithelial cells to exit the cell cycle. The molecular mechanisms that regulate the differential responses of these two related tissues have not been defined. We have generated transgenic mice that express a constitutively active version of human H-Ras in their lenses and corneas. Results Ras transgenic lenses and corneal epithelial cells showed increased proliferation with concomitant increases in cyclin D1 and D2 expression. This initial increase in proliferation is sustained in the cornea but not in the lens epithelial cells. Coincidentally, cdk inhibitors p27Kip1 and p57Kip2 were upregulated in the Ras transgenic lenses but not in the corneas. Phospho-Erk1 and Erk2 levels were elevated in the lens but not in the cornea and Spry 1 and Spry 2, negative regulators of Ras-Raf-Erk signaling, were upregulated more in the corneal than in the lens epithelial cells. Both lens and corneal differentiation programs were sensitive to Ras activation. Ras transgenic embryos showed a distinctive alteration in the architecture of the lens pit. Ras activation, though sufficient for upregulation of Prox1, a transcription factor critical for cell cycle exit and initiation of fiber differentiation, is not sufficient for induction of terminal fiber differentiation. Expression of Keratin 12, a marker of corneal epithelial differentiation, was reduced in the Ras transgenic corneas. Conclusions Collectively, these

  18. Subcellular Distribution of S-Nitrosylated H-Ras in Differentiated and Undifferentiated PC12 Cells during Hypoxia.

    Barbakadze, Tamar; Goloshvili, Galina; Narmania, Nana; Zhuravliova, Elene; Mikeladze, David


    Hypoxia or exposure to excessive reactive oxygen or nitrogen species could induce S-nitrosylation of various target proteins, including GTPases of the Ras-superfamily. Under hypoxic conditions, the Ras-protein is translocated to the cytosol and interacts with the Golgi complex, endoplasmic reticulum, mitochondria. The mobility/translocation of Ras depend on the cells oxidative status. However, the importance of relocated Snitrosylated- H-Ras (NO-H-Ras) in proliferation/differentiation processes is not completely understood. We have determined the content of soluble- and membrane-bound-NO-HRas in differentiated (D) and undifferentiated (ND) rat pheochromocytoma (PC12) cells under hypoxic and normoxic conditions. In our experimental study, we analyzed NO-H-Ras levels under hypoxic/normoxic conditions in membrane and soluble fractions of ND and D PC12 cells with/without nitric oxide donor, sodium nitroprusside (SNP) treatment. Cells were analyzed by the S-nitrosylated kit, immunoprecipitation, and Western blot. We assessed the action of NO-H-Ras on oxidative metabolism of isolated mitochondria by determining mitochondrial hydrogen peroxide generation via the scopoletin oxidation method and ATPproduction as estimated by the luminometric method. Hypoxia did not influence nitrosylation of soluble H-Ras in ND PC12 cells. Under hypoxic conditions, the nitrosylation of soluble-H-Ras greatly decreased in D PC12 cells. SNP didn't change the levels of nitrosylation of soluble-H-Ras, in either hypoxic or normoxic conditions. On the other hand, hypoxia, per se, did not affect the nitrosylation of membrane-bound-H-Ras in D and ND PC12 cells. SNP-dependent nitrosylation of membrane-bound-H-Ras greatly increased in D PC12 cells. Both unmodified normal and mutated H-Ras enhanced the mitochondrial synthesis of ATP, whereas the stimulatory effects on ATP synthesis were eliminated after S-nitrosylation of H-Ras. According to the results, it may be proposed that hypoxia can decrease S

  19. Developmental lineage priming in Dictyostelium by heterogeneous Ras activation.

    Chattwood, Alex; Nagayama, Koki; Bolourani, Parvin; Harkin, Lauren; Kamjoo, Marzieh; Weeks, Gerald; Thompson, Christopher R L


    In cell culture, genetically identical cells often exhibit heterogeneous behavior, with only 'lineage primed' cells responding to differentiation inducing signals. It has recently been proposed that such heterogeneity exists during normal embryonic development to allow position independent patterning based on 'salt and pepper' differentiation and sorting out. However, the molecular basis of lineage priming and how it leads to reproducible cell type proportioning are poorly understood. To address this, we employed a novel forward genetic approach in the model organism Dictyostelium discoideum. These studies reveal that the Ras-GTPase regulator gefE is required for normal lineage priming and salt and pepper differentiation. This is because Ras-GTPase activity sets the intrinsic response threshold to lineage specific differentiation signals. Importantly, we show that although gefE expression is uniform, transcription of its target, rasD, is both heterogeneous and dynamic, thus providing a novel mechanism for heterogeneity generation and position-independent differentiation. DOI:

  20. NAM: The 2004 RAS National Astronomy Meeting

    Jones, Barrie; Norton, Andrew


    This year's RAS National Astronomy Meeting was held at the Open University's Milton Keynes campus from 29 March to 2 April. The event was organized by members of the OU Physics & Astronomy Department and Planetary & Space Science Research Institute. Around 450 people attended the meeting, at which more than 220 talks were presented, along with around 90 posters. Co-chairs of RAS NAM04, Barrie Jones and Andrew Norton, summarize.

  1. Characterization of a third ras gene, rasB, that is expressed throughout the growth and development of Dictyostelium discoideum.

    Daniel, J; Spiegelman, G B; Weeks, G


    Previous reports have indicated that the cellular slime mold Dictyostelium discoideum possesses two ras genes (rasG and rasD) and one rap gene (rap1). All three genes are developmentally regulated, with each showing a different pattern of transcription during the Dictyostelium life cycle. To establish whether there are additional ras or rap genes in Dictyostelium, we used degenerate oligonucleotide primers to the highly conserved GTP-binding domains and both ras- and rap-unique sequences to amplify products from cDNA using the polymerase chain reaction (PCR). No additional rap genes were amplified, but a fragment whose nucleotide sequence predicted a novel ras gene was isolated. Using this PCR product as a probe, a full-length cDNA clone was isolated and sequenced. Its deduced amino acid sequence predicted a 197 amino acid protein that is 71% and 68% identical to RasG and RasD respectively. The new ras gene contains the conserved Ras-specific effector domain, the conserved binding site for the Ras-specific Y13-259 monoclonal antibody, and shows greater sequence similarity to the human H-Ras protein than to any other mammalian Ras protein. In view of this high level of identity to the ras gene subfamily, we have designated this gene rasB. Northern blot analysis has shown that rasB is developmentally regulated with maximum levels of a single 950-bp message detected during vegetative growth and the first 8 h of development.

  2. Gamma band activity in the reticular activating system (RAS

    Francisco J Urbano


    Full Text Available This review considers recent evidence showing that cells in three regions of the reticular activating system (RAS exhibit gamma band activity, and describes the mechanisms behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN, intralaminar parafascicular nucleus (Pf, and pontine Subcoeruleus nucleus dorsalis (SubCD all fire in the beta/gamma band range when maximally activated, but no higher. The mechanisms behind this ceiling effect have been recently elucidated. We describe recent findings showing that every cell in the PPN have high threshold, voltage-dependent P/Q-type calcium channels that are essential, while N-type calcium channels are permissive, to gamma band activity. Every cell in the Pf also showed that P/Q-type and N-type calcium channels are responsible for this activity. On the other hand, every SubCD cell exhibited sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on well-known transmitter interactions, electrical coupling, and gamma band activity is described. The data presented here on inherent gamma band activity demonstrates the global nature of sleep-wake oscillation that is orchestrated by brainstem-thalamic mechanism, and questions the undue importance given to the hypothalamus for regulation of sleep-wakefulness. The discovery of gamma band activity in the RAS follows recent reports of such activity in other subcortical regions like the hippocampus and cerebellum. We hypothesize that, rather than participating in the temporal binding of sensory events as seen in the cortex, gamma band activity manifested in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking and paradoxical sleep. Most of our thoughts and actions are driven by preconscious processes. We speculate that continuous sensory input will induce gamma band activity in the RAS that could participate in the

  3. Maternal RAS influence on the ontogeny of thirst.

    Perillan, C; Costales, M; Vijande, M; Arguelles, J


    Perillan, C., Costales, M., Vijande, M., and J. Arguelles. Maternal RAS influence on the ontogeny of thirst. Physiol Behav XX (X) 000-000, 2006. The main objective of this study was to investigate the effect of an altered ambiance in utero, on the development of thirst mechanisms in the offspring. Female rats underwent a partial ligature of the aorta (PAL), which induces an intrinsic activation of the renin angiotensin system (RAS), thirst and sodium appetite. A second group of female rats was treated with desoxycorticosterone (DOCA) which depresses the RAS. The offspring of these two groups were tested for their responses to several thirst stimuli at 2, 4 and 6 days of age. The offspring from PAL mothers responded like their controls to cellular dehydration (NaCl hypertonic injection) at 2 days of age, and also did to extracellular dehydration by polyethyleneglycol at 4 days. Nevertheless, they responded more to isoproterenol at 6 days of age in comparison to their control group. The offspring from DOCA treated mothers did not show statistically significant responses (in comparison with vehicle injected pups) to hypertonic NaCl at two days nor to polyethyleneglycol at four days. Water intake at 6 days of age after isoproterenol administration in DOCA was statistically enhanced, but not differently from the response obtained from pseudo-DOCA treated pups. In particular, rats developed in a hypereninemic ambiance (O-PAL) during gestation, responded with higher water intake when treated with a strong RAS and thirst activator (isoproterenol) but responded normally to a more gentle and complex stimulus (PG). Therefore it seems that in utero conditions can determine the chronology and intensity of thirst responses in offspring.

  4. Reciprocal regulatory interactions between the Notch and Ras signaling pathways in the Drosophila embryonic mesoderm.

    Carmena, Ana; Buff, Eugene; Halfon, Marc S; Gisselbrecht, Stephen; Jiménez, Fernando; Baylies, Mary K; Michelson, Alan M


    Convergent intercellular signals must be precisely integrated in order to elicit specific biological responses. During specification of muscle and cardiac progenitors from clusters of equivalent cells in the Drosophila embryonic mesoderm, the Ras/MAPK pathway--activated by both epidermal and fibroblast growth factor receptors--functions as an inductive cellular determination signal, while lateral inhibition mediated by Notch antagonizes this activity. A critical balance between these signals must be achieved to enable one cell of an equivalence group to segregate as a progenitor while its neighbors assume a nonprogenitor identity. We have investigated whether these opposing signals directly interact with each other, and we have examined how they are integrated by the responding cells to specify their unique fates. Our findings reveal that Ras and Notch do not function independently; rather, we have uncovered several modes of cross-talk between these pathways. Ras induces Notch, its ligand Delta, and the epidermal growth factor receptor antagonist, Argos. We show that Delta and Argos then synergize to nonautonomously block a positive autoregulatory feedback loop that amplifies a fate-inducing Ras signal. This feedback loop is characterized by Ras-mediated upregulation of proximal components of both the epidermal and fibroblast growth factor receptor pathways. In turn, Notch activation in nonprogenitors induces its own expression and simultaneously suppresses both Delta and Argos levels, thereby reinforcing a unidirectional inhibitory response. These reciprocal interactions combine to generate the signal thresholds that are essential for proper specification of progenitors and nonprogenitors from groups of initially equivalent cells.

  5. Point mutations of K-ras and H-ras genes in forestomach neoplasms from control B6C3F1 mice and following exposure to 1,3-butadiene, isoprene or chloroprene for up to 2-years.

    Sills, R C; Hong, H L; Boorman, G A; Devereux, T R; Melnick, R L


    1,3 Butadiene (BD), isoprene (IP) and chloroprene (CP) are structural analogs. There were significantly increased incidences of forestomach neoplasms in B6C3F1 mice exposed to BD, IP or CP by inhalation for up to 2-years. The present study was designed to characterize genetic alterations in K- and H-ras proto-oncogenes in a total of 52 spontaneous and chemically induced forestomach neoplasms. ras mutations were identified by restriction fragment length polymorphism, single strand conformational polymorphism analysis, and cycle sequencing of PCR-amplified DNA isolated from paraffin-embedded forestomach neoplasms. A higher frequency of K- and H-ras mutations was identified in BD-, IP- and CP-induced forestomach neoplasms (83, 70 and 57%, respectively, or combined 31/41, 76%) when compared to spontaneous forestomach neoplasms (4/11, 36%). Also a high frequency of H-ras codon 61 CAA-->CTA transversions (10/41, 24%) was detected in chemically induced forestomach neoplasms, but none were present in the spontaneous forestomach neoplasms examined. Furthermore, an increased frequency (treated 13/41, 32% versus untreated 1/11, 9%) of GGC-->CGC transversion at K-ras codon 13 was seen in BD-, and IP-induced forestomach neoplasms, similar to the predominant K-ras mutation pattern observed in BD-induced mouse lung neoplasms. These data suggest that the epoxide intermediates of the structurally related chemicals (BD, IP, and CP) may cause DNA damage in K-ras and H-ras proto-oncogenes of B6C3F1 mice following inhalation exposure and that mutational activation of these genes may be critical events in the pathogenesis of forestomach neoplasms induced in the B6C3F1 mouse.

  6. Inhibition of thyrotropin-stimulated DNA synthesis by microinjection of inhibitors of cellular Ras and cyclic AMP-dependent protein kinase.

    Kupperman, E; Wen, W; Meinkoth, J L


    Microinjection of a dominant interfering mutant of Ras (N17 Ras) caused a significant reduction in thyrotropin (thyroid-stimulating hormone [TSH])-stimulated DNA synthesis in rat thyroid cells. A similar reduction was observed following injection of the heat-stable protein kinase inhibitor of the cyclic AMP-dependent protein kinase. Coinjection of both inhibitors almost completely abolished TSH-induced DNA synthesis. In contrast to TSH, overexpression of cellular Ras protein did not stimulate the expression of a cyclic AMP response element-regulated reporter gene. Similarly, injection of N17 Ras had no effect on TSH-stimulated reporter gene expression. Moreover, overexpression of cellular Ras protein stimulated similar levels of DNA synthesis in the presence or absence of the heat-stable protein kinase inhibitor. Together, these results suggest that in Wistar rat thyroid cells, a full mitogenic response to TSH requires both Ras and cyclic APK-dependent protein kinase.

  7. Galectin-3 mediates cross-talk between K-Ras and Let-7c tumor suppressor microRNA.

    Ran Levy

    Full Text Available BACKGROUND: Galectin-3 (Gal-3 and active (GTP-bound K-Ras contribute to the malignant phenotype of many human tumors by increasing the rate of cell proliferation, survival, and migration. These Gal-3-mediated effects result from a selective binding to K-Ras.GTP, causing increased nanoclustering in the cell membrane and leading to robust Ras signaling. Regulation of the interactions between Gal-3 and active K-Ras is not fully understood. METHODS AND FINDINGS: To gain a better understanding of what regulates the critical interactions between these two proteins, we examined the role of Gal-3 in the regulation of K-Ras by using Gal-3-knockout mouse embryonic-fibroblasts (Gal-3-/- MEFs and/or Gal-3/Gal-1 double-knockout MEFs. We found that knockout of Gal-3 induced strong downregulation (∼60% of K-Ras and K-Ras.GTP. The downregulation was somewhat more marked in the double-knockout MEFs, in which we also detected robust inhibition(∼50% of ERK and Akt activation. These additional effects are probably attributable to inhibition of the weak interactions of K-Ras.GTP with Gal-1. Re-expression of Gal-3 reversed the phenotype of the Gal-3-/- MEFs and dramatically reduced the disappearance of K-Ras in the presence of cycloheximide to the levels seen in wild-type MEFs. Furthermore, phosphorylation of Gal-3 by casein kinase-1 (CK-1 induced translocation of Gal-3 from the nucleus to the cytoplasm and the plasma membrane, leading to K-Ras stabilization accompanied by downregulation of the tumor suppressor miRNA let-7c, known to negatively control K-Ras transcription. CONCLUSIONS: Our results suggest a novel cross-talk between Gal-3-mediated downregulation of let 7c microRNA (which in turn negatively regulates K-Ras transcription and elucidates the association among Gal-3 let-7c and K-Ras transcription/translation, cellular compartmentalization and activity.

  8. The role of wild type RAS isoforms in cancer.

    Zhou, Bingying; Der, Channing J; Cox, Adrienne D


    Mutationally activated RAS proteins are critical oncogenic drivers in nearly 30% of all human cancers. As with mutant RAS, the role of wild type RAS proteins in oncogenesis, tumour maintenance and metastasis is context-dependent. Complexity is introduced by the existence of multiple RAS genes (HRAS, KRAS, NRAS) and protein "isoforms" (KRAS4A, KRAS4B), by the ever more complicated network of RAS signaling, and by the increasing identification of numerous genetic aberrations in cancers that do and do not harbour mutant RAS. Numerous mouse model carcinogenesis studies and examination of patient tumours reveal that, in RAS-mutant cancers, wild type RAS proteins are likely to serve as tumour suppressors when the mutant RAS is of the same isoform. This evidence is particularly robust in KRAS mutant cancers, which often display suppression or loss of wild type KRAS, but is not as strong for NRAS. In contrast, although not yet fully elucidated, the preponderance of evidence indicates that wild type RAS proteins play a tumour promoting role when the mutant RAS is of a different isoform. In non-RAS mutant cancers, wild type RAS is recognized as a mediator of oncogenic signaling due to chronic activation of upstream receptor tyrosine kinases that feed through RAS. Additionally, in the absence of mutant RAS, activation of wild type RAS may drive cancer upon the loss of negative RAS regulators such as NF1 GAP or SPRY proteins. Here we explore the current state of knowledge with respect to the roles of wild type RAS proteins in human cancers.

  9. PP6 Disruption Synergizes with Oncogenic Ras to Promote JNK-Dependent Tumor Growth and Invasion.

    Ma, Xianjue; Lu, Jin-Yu; Dong, Yongli; Li, Daming; Malagon, Juan N; Xu, Tian


    RAS genes are frequently mutated in cancers, yet an effective treatment has not been developed, partly because of an incomplete understanding of signaling within Ras-related tumors. To address this, we performed a genetic screen in Drosophila, aiming to find mutations that cooperate with oncogenic Ras (Ras(V12)) to induce tumor overgrowth and invasion. We identified fiery mountain (fmt), a regulatory subunit of the protein phosphatase 6 (PP6) complex, as a tumor suppressor that synergizes with Ras(V12) to drive c-Jun N-terminal kinase (JNK)-dependent tumor growth and invasiveness. We show that Fmt negatively regulates JNK upstream of dTAK1. We further demonstrate that disruption of PpV, the catalytic subunit of PP6, mimics fmt loss-of-function-induced tumorigenesis. Finally, Fmt synergizes with PpV to inhibit JNK-dependent tumor progression. Our data here further highlight the power of Drosophila as a model system to unravel molecular mechanisms that may be relevant to human cancer biology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. PP6 Disruption Synergizes with Oncogenic Ras to Promote JNK-Dependent Tumor Growth and Invasion

    Xianjue Ma


    Full Text Available RAS genes are frequently mutated in cancers, yet an effective treatment has not been developed, partly because of an incomplete understanding of signaling within Ras-related tumors. To address this, we performed a genetic screen in Drosophila, aiming to find mutations that cooperate with oncogenic Ras (RasV12 to induce tumor overgrowth and invasion. We identified fiery mountain (fmt, a regulatory subunit of the protein phosphatase 6 (PP6 complex, as a tumor suppressor that synergizes with RasV12 to drive c-Jun N-terminal kinase (JNK-dependent tumor growth and invasiveness. We show that Fmt negatively regulates JNK upstream of dTAK1. We further demonstrate that disruption of PpV, the catalytic subunit of PP6, mimics fmt loss-of-function-induced tumorigenesis. Finally, Fmt synergizes with PpV to inhibit JNK-dependent tumor progression. Our data here further highlight the power of Drosophila as a model system to unravel molecular mechanisms that may be relevant to human cancer biology.

  11. Ras Proteins Have Multiple Functions in Vegetative Cells of Dictyostelium ▿

    Bolourani, Parvin; Spiegelman, George; Weeks, Gerald


    During the aggregation of Dictyostelium cells, signaling through RasG is more important in regulating cyclic AMP (cAMP) chemotaxis, whereas signaling through RasC is more important in regulating the cAMP relay. However, RasC is capable of substituting for RasG for chemotaxis, since rasG− cells are only partially deficient in chemotaxis, whereas rasC−/rasG− cells are totally incapable of chemotaxis. In this study we have examined the possible functional overlap between RasG and RasC in vegetative cells by comparing the vegetative cell properties of rasG−, rasC−, and rasC−/rasG− cells. In addition, since RasD, a protein not normally found in vegetative cells, is expressed in vegetative rasG− and rasC−/rasG− cells and appears to partially compensate for the absence of RasG, we have also examined the possible functional overlap between RasG and RasD by comparing the properties of rasG− and rasC−/rasG− cells with those of the mutant cells expressing higher levels of RasD. The results of these two lines of investigation show that RasD is capable of totally substituting for RasG for cytokinesis and growth in suspension, whereas RasC is without effect. In contrast, for chemotaxis to folate, RasC is capable of partially substituting for RasG, but RasD is totally without effect. Finally, neither RasC nor RasD is able to substitute for the role that RasG plays in regulating actin distribution and random motility. These specificity studies therefore delineate three distinct and none-overlapping functions for RasG in vegetative cells. PMID:20833893

  12. Reduced signaling of PI3K-Akt and RAS-MAPK pathways is the key target for weight-loss-induced cancer prevention by dietary calorie restriction and/or physical activity.

    Standard, Joseph; Jiang, Yu; Yu, Miao; Su, Xiaoyu; Zhao, Zhihui; Xu, Jianteng; Chen, Jie; King, Brenee; Lu, Lizhi; Tomich, John; Baybutt, Richard; Wang, Weiqun


    Weight control through either dietary calorie restriction (DCR) or exercise has been associated with cancer prevention in animal models. However, the underlying mechanisms are not fully defined. Bioinformatics using genomics, proteomics and lipidomics was employed to elucidate the molecular targets of weight control in a mouse skin cancer model. SENCAR mice were randomly assigned into four groups for 10 weeks: ad-libitum-fed sedentary control, ad-libitum-fed exercise (AE), exercise but pair-fed isocaloric amount of control (PE) and 20% DCR. Two hours after topical TPA treatment, skin epidermis was analyzed by Affymetrix for gene expression, DIGE for proteomics and lipidomics for phospholipids. Body weights were significantly reduced in both DCR and PE but not AE mice versus the control. Among 39,000 transcripts, 411, 67 and 110 genes were significantly changed in DCR, PE and AE, respectively. The expression of genes relevant to PI3K-Akt and Ras-MAPK signaling was effectively reduced by DCR and PE but not AE as measured through GenMAPP software. Proteomics analysis identified ~120 proteins, with 27 proteins significantly changed by DCR, including up-regulated apolipoprotein A-1, a key antioxidant protein that decreases Ras-MAPK activity. Of the total 338 phospholipids analyzed by lipidomics, 57 decreased by PE including 5 phophatidylinositol species that serve as PI3K substrates. Although a full impact has not been determined yet, it appears that the reduction of both Ras-MAPK and PI3K-Akt signaling pathways is a cancer preventive target that has been consistently demonstrated by three bioinformatics approaches.

  13. Ras activation in Hirudo medicinalis angiogenic process

    R Valvassori


    Full Text Available In some leeches like Hirudo medicinalis, any kind of stimulation (surgical wound or growth factor injection provokes the botryoidal tissue response. This peculiar tissue, localized in the loose connective tissue between gut and body wall, is formed by granular botryoidal cells and flattened endothelial-like cells. Under stimulation, the botryoidal tissue changes its shape to form new capillaries. In mammals, the molecular regulation of the angiogenic phenotype requires coordinated input from a number of signalling molecules: among them the GTPase Ras is one of the major actor. In our current study, we determine whether Ras activation alone would be sufficient to drive vessels formation from leech botryoidal tissue. Our findings indicate that assembly and disassembly of actin filaments regulated by Ras protein is involved in morphological modification of botryoidal tissue cells during leech angiogenic process.

  14. K-Ras and mitochondria: Dangerous liaisons

    Jiri Neuzil; Jakub Rohlena; Lan-Feng Dong


    It is well documented that the KRAS oncogene efficiently transforms non-malignant cells,and there is some evidence for the role of mitochondria in this process.Now Peng Huang and colleagues show that K-Ras induction results early on in mitochondria assuming the phenotype consistent with the so-called Warburg effect,i.e.,increased glycolysis and attenuated oxidative phosphorylation.Thus the K-Ras protein capable of swift induction of phenotypic changes typical of cancer cells,yet these changes are reversible,and for cells to irreversibly reach their full malignant potential a much longer K-Ras expression is required,implicating mitochondria in the longer-term effects of the oncogene.

  15. A transforming ras gene can provide an essential function ordinarily supplied by an endogenous ras gene

    Papageorge, A G; Willumsen, B M; Johnsen, M;


    Microinjection of monoclonal antibody Y13-259, which reacts with all known mammalian and yeast ras-encoded proteins, has previously been shown to prevent NIH 3T3 cells from entering the S phase (L. S. Mulcahy, M. R. Smith, and D. W. Stacey, Nature [London] 313:241-243, 1985). We have now found...... several transformation-competent mutant v-rasH genes whose protein products in transformed NIH 3T3 cells are not immunoprecipitated by this monoclonal antibody. These mutant proteins are, however, precipitated by a different anti-ras antibody. Each of these mutants lacks Met-72 of v-rasH. In contrast...... to the result for cells transformed by wild-type v-rasH, Y13-259 microinjection of NIH 3T3 cells transformed by these mutant ras genes did not prevent the cells from entering the S phase. These results imply that a transformation-competent ras gene can supply a normal essential function for NIH 3T3 cells. When...

  16. Expression of an activated rasD gene changes cell fate decisions during Dictyostelium development.

    Louis, S A; Spiegelman, G B; Weeks, G


    It has been previously demonstrated that the expression of an activated rasD gene in wild-type Dictyostelium cells results in formation of aggregates with multitips, instead of the normal single tips, and a block in further development. In an attempt to better understand the role of activated RasD development, we examined cell-type-specific gene expression in a strain stably expressing high levels of RasD[G12T]. We found that the expression of prestalk cell-specific genes ecmA and tagB was markedly enhanced, whereas the expression of the prespore cell-specific gene cotC was reduced to very low levels. When the fate of cells in the multitipped aggregate was monitored with an ecmA/lacZ fusion, it appeared that most of the cells eventually adopted prestalk gene expression characteristics. When mixtures of the [G12T]rasD cells and Ax3 cells were induced to differentiate, chimeric pseudoplasmodia were not formed. Thus, although the [G12T]rasD transformant had a marked propensity to form prestalk cells, it could not supply the prestalk cell population when mixed with wild-type cells. Both stalk and spore cell formation occurred in low cell density monolayers of the [G12T]rasD strain, suggesting that at least part of the inhibition of stalk and spore formation during multicellular development involved inhibitory cell interactions within the cell mass. Models for the possible role of rasD in development are discussed.

  17. Cadmium modulates H-ras expression and caspase-3 apoptotic cell death in breast cancer epithelial MCF-7 cells.

    Petanidis, Savvas; Hadzopoulou-Cladaras, Margarita; Salifoglou, Athanasios


    Cadmium (Cd) is a well-known metal carcinogen associated with tumor formation and carcinogenesis. It has been shown to induce cancer through various cellular mechanisms involving inhibition of DNA repair, abnormal gene expression, induction of oxidative stress, and triggering apoptosis. It is well-established that the H-ras oncogene is involved in the process of carcinogenesis with direct effects on cellular proliferation and tumorigenesis. Given the biotoxicity of cadmium and its association with carcinogenesis, the effect of that metal ion (Cd(II)) was investigated, in a concentration-dependent fashion, on cell viability, cell proliferation, caspase-3 mediated apoptosis and H-ras gene expression in human breast cancer epithelial MCF-7 cells transfected with the H-ras oncogene (wild type and G12V mutation). The findings show a significant modulation effect of cadmium on H-ras gene expression accompanied by up-regulation of caspase-3-related apoptosis in the concentration range of 100-1000 nΜ cadmium. Concurrently, there is a decrease in MCF-7 proliferation. Collectively, the results a) indicate an interplay of cadmium with H-ras(wt and G12V), with cadmium exhibiting a significant concentration-dependent effect on the modulation of H-ras expression, cell viability and proliferation, and b) project distinctly interwoven roles for both cadmium and H-ras in aberrant physiologies in cancer cells.

  18. Effect of Angiotensin II and Small GTPase Ras Signaling Pathway Inhibition on Early Renal Changes in a Murine Model of Obstructive Nephropathy

    Ana B. Rodríguez-Peña


    Full Text Available Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI L-744,832, or chaetomellic acid A (ChA. Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis.

  19. Byzantine seals from the Ras fortress

    Ivanišević Vujadin


    Full Text Available In this paper, seals found at the location of the Ras fortress (Tvrđava Ras have been published. Inscriptions on these seals show that they used to belong to persons which could be identified with certain military commanders who served under Alexios I Komnenos. The seals in question are: the seals of protonobelissimos Eustathios Kamytzes, Constantine Dalassenos Doukas, protoproedros and doux Constantine Kekaumenos and a certain person called Alexios. [Projekat Ministarstva nauke Republike Srbije, br. 177021 i br. 177032

  20. RAS in Pregnancy and Preeclampsia and Eclampsia

    M. Rodriguez


    Full Text Available Preeclampsia is a common disease of pregnancy characterized by the presence of hypertension and commitment of many organs, including the brain, secondary to generalized endothelial dysfunction. Its etiology is not known precisely, but it involved several factors, highlighting the renin angiotensin system (RAS, which would have an important role in the origin of multisystem involvement. This paper reviews the evidence supporting the involvement of RAS in triggering the disease, in addition to the components of this system that would be involved and how it eventually produces brain engagement.

  1. Experimenting with Request Assignment Simulator (RAS

    R. Arokia Paul Rajan


    Full Text Available There is no existence of dedicated simulators on the Internet that studies the impact of load balancing principles of the cloud architectures. Request Assignment Simulator (RAS is a customizable, visual tool that helps to understand the request assignment to the resources based on the load balancing principles. We have designed this simulator to fit into Infrastructure as a Service (IaaS cloud model. In this paper, we present a working manual useful for the conduct of experiment with RAS. The objective of this paper is to instill the user to understand the pertinent parameters in the cloud, their metrics, load balancing principles, and their impact on the performance.

  2. Expression of oncogenic K-ras from its endogenous promoter leads to a partial block of erythroid differentiation and hyperactivation of cytokine-dependent signaling pathways.

    Zhang, Jing; Liu, Yangang; Beard, Caroline; Tuveson, David A; Jaenisch, Rudolf; Jacks, Tyler E; Lodish, Harvey F


    When overexpressed in primary erythroid progenitors, oncogenic Ras leads to the constitutive activation of its downstream signaling pathways, severe block of terminal erythroid differentiation, and cytokine-independent growth of primary erythroid progenitors. However, whether high-level expression of oncogenic Ras is required for these phenotypes is unknown. To address this issue, we expressed oncogenic K-ras (K-ras(G12D)) from its endogenous promoter using a tetracycline-inducible system. We show that endogenous K-ras(G12D) leads to a partial block of terminal erythroid differentiation in vivo. In contrast to results obtained when oncogenic Ras was overexpressed from retroviral vectors, endogenous levels of K-ras(G12D) fail to constitutively activate but rather hyperactivate cytokine-dependent signaling pathways, including Stat5, Akt, and p44/42 MAPK, in primary erythroid progenitors. This explains previous observations that hematopoietic progenitors expressing endogenous K-ras(G12D) display hypersensitivity to cytokine stimulation in various colony assays. Our results support efforts to modulate Ras signaling for treating hematopoietic malignancies.

  3. Quantitative Assays for RAS Pathway Proteins and Phosphorylation States

    The NCI CPTAC program is applying its expertise in quantitative proteomics to develop assays for RAS pathway proteins. Targets include key phosphopeptides that should increase our understanding of how the RAS pathway is regulated.

  4. The RAS Problem: Turning Off a Broken Switch

    The RAS gene is commonly mutated in cancer and researchers are working to better understand how to develop drugs that can target the RAS protein, which for many years has been considered to be “undruggable.”

  5. Molecular cloning and chromosome assignment of murine N-ras.

    Ryan, J.; Hart, C P; Ruddle, F H


    The murine N-ras gene was cloned by screening an EMBL-3 recombinant phage library with a human N-ras specific probe. Hybridization of two separate unique sequence N-ras probes, isolated from the 5' and 3' flanking sequences of the murine gene, to a mouse-Chinese hamster hybrid mapping panel assigns the N-ras locus to mouse chromosome three.

  6. Active Erk Regulates Microtubule Stability in H-ras-Transformed Cells

    Rene E. Harrison


    Full Text Available Increasing evidence suggests that activated erk regulates cell functions, at least in part, by mechanisms that do not require gene transcription. Here we show that the map kinase, erk, decorates microtubules (MTs and mitotic spindles in both parental and mutant active rastransfected 10T1 /2 fibroblasts and MCF10A breast epithelial cells. Approximately 20% of total cellular erk decorated MTs in both cell lines. A greater proportion of activated erk was associated with MTs in the presence of mutant active H-ras than in parental cells. Activation of erk by the ras pathway coincided with a decrease in the stability of MT, as detected by a stability marker. The MKK1 inhibitor, PD98059 and transfection of a dominant negative MKK1 blocked ras-induced instability of MTs but did not modify the association of erk with MTs or affect MT stability of the parental cells. These results indicate that the subset of active erk kinase that associates with MTs contributes to their instability in the presence of a mutant active ras. The MT-associated subset of active erk likely contributes to the enhanced invasive and proliferative abilities of cells containing mutant active H-ras.

  7. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress.

    Maya-Mendoza, Apolinar; Ostrakova, Jitka; Kosar, Martin; Hall, Arnaldur; Duskova, Pavlina; Mistrik, Martin; Merchut-Maya, Joanna Maria; Hodny, Zdenek; Bartkova, Jirina; Christensen, Claus; Bartek, Jiri


    Both Myc and Ras oncogenes impact cellular metabolism, deregulate redox homeostasis and trigger DNA replication stress (RS) that compromises genomic integrity. However, how are such oncogene-induced effects evoked and temporally related, to what extent are these kinetic parameters shared by Myc and Ras, and how are these cellular changes linked with oncogene-induced cellular senescence in different cell context(s) remain poorly understood. Here, we addressed the above-mentioned open questions by multifaceted comparative analyses of human cellular models with inducible expression of c-Myc and H-RasV12 (Ras), two commonly deregulated oncoproteins operating in a functionally connected signaling network. Our study of DNA replication parameters using the DNA fiber approach and time-course assessment of perturbations in glycolytic flux, oxygen consumption and production of reactive oxygen species (ROS) revealed the following results. First, overabundance of nuclear Myc triggered RS promptly, already after one day of Myc induction, causing slow replication fork progression and fork asymmetry, even before any metabolic changes occurred. In contrast, Ras overexpression initially induced a burst of cell proliferation and increased the speed of replication fork progression. However, after several days of induction Ras caused bioenergetic metabolic changes that correlated with slower DNA replication fork progression and the ensuing cell cycle arrest, gradually leading to senescence. Second, the observed oncogene-induced RS and metabolic alterations were cell-type/context dependent, as shown by comparative analyses of normal human BJ fibroblasts versus U2-OS sarcoma cells. Third, the energy metabolic reprogramming triggered by Ras was more robust compared to impact of Myc. Fourth, the detected oncogene-induced oxidative stress was due to ROS (superoxide) of non-mitochondrial origin and mitochondrial OXPHOS was reduced (Crabtree effect). Overall, our study provides novel

  8. Status of neutron complex of INR RAS

    Grachev, M.I.; Koptelov, E.A.; Kravchuk, L.V.; Matveev, V.A.; Perekrestenko, A.D.; Sidorkin, S.F. [Institute for Nuclear Research of Russian Academy of Sciences, Prospekt, Moscow (Russian Federation); Stavissky, Y.Y.


    The neutron complex of INR RAS consists of two sources of neutrons, beam stop, lead slowing down spectrometer and solid state spectrometers. The description of objects and their condition, the program of planned researches, co-operation with other institutes of the Moscow Region, progress reached for last two years are introduced in the article. (author)

  9. H-ras transformation sensitizes volume-activated anion channels and increases migratory activity of NIH3T3 fibroblasts

    Schneider, Linda; Klausen, Thomas K; Stock, Christian;


    The expression of the H-ras oncogene increases the migratory activity of many cell types and thereby contributes to the metastatic behavior of tumor cells. Other studies point to an involvement of volume-activated anion channels (VRAC) in (tumor) cell migration. In this paper, we tested whether...... VRACs are required for the stimulation of cell migration upon expression of the H-ras oncogene. We compared VRAC activation and migration of wild-type and H-ras-transformed NIH3T3 fibroblasts by means of patch-clamp techniques and time-lapse video microscopy. Both cell types achieve the same degree...... of VRAC activation upon maximal stimulation, induced by reducing extracellular osmolarity from 300 to 190 mOsm/l. However, upon physiologically relevant reductions in extracellular osmolarity (275 mOsm/l), the level of VRAC activation is almost three times higher in H-ras-transformed compared to wild...

  10. VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking

    Wiener, Heidi; Su, Wenjuan; Liot, Caroline; Hancock, John F.


    Ras guanosine triphosphatases (GTPases) regulate signaling pathways only when associated with cellular membranes through their C-terminal prenylated regions. Ras proteins move between membrane compartments in part via diffusion-limited, fluid phase transfer through the cytosol, suggesting that chaperones sequester the polyisoprene lipid from the aqueous environment. In this study, we analyze the nature of the pool of endogenous Ras proteins found in the cytosol. The majority of the pool consists of farnesylated, but not palmitoylated, N-Ras that is associated with a high molecular weight (HMW) complex. Affinity purification and mass spectrographic identification revealed that among the proteins found in the HMW fraction is VPS35, a latent cytosolic component of the retromer coat. VPS35 bound to N-Ras in a farnesyl-dependent, but neither palmitoyl- nor guanosine triphosphate (GTP)–dependent, fashion. Silencing VPS35 increased N-Ras’s association with cytoplasmic vesicles, diminished GTP loading of Ras, and inhibited mitogen-activated protein kinase signaling and growth of N-Ras–dependent melanoma cells. PMID:27502489

  11. NF1 Is a Direct G Protein Effector Essential for Opioid Signaling to Ras in the Striatum.

    Xie, Keqiang; Colgan, Lesley A; Dao, Maria T; Muntean, Brian S; Sutton, Laurie P; Orlandi, Cesare; Boye, Sanford L; Boye, Shannon E; Shih, Chien-Cheng; Li, Yuqing; Xu, Baoji; Smith, Roy G; Yasuda, Ryohei; Martemyanov, Kirill A


    It is well recognized that G-protein-coupled receptors (GPCRs) can activate Ras-regulated kinase pathways to produce lasting changes in neuronal function. Mechanisms by which GPCRs transduce these signals and their relevance to brain disorders are not well understood. Here, we identify a major Ras regulator, neurofibromin 1 (NF1), as a direct effector of GPCR signaling via Gβγ subunits in the striatum. We find that binding of Gβγ to NF1 inhibits its ability to inactivate Ras. Deletion of NF1 in striatal neurons prevents the opioid-receptor-induced activation of Ras and eliminates its coupling to Akt-mTOR-signaling pathway. By acting in the striatal medium spiny neurons of the direct pathway, NF1 regulates opioid-induced changes in Ras activity, thereby sensitizing mice to psychomotor and rewarding effects of morphine. These results delineate a novel mechanism of GPCR signaling to Ras pathways and establish a critical role of NF1 in opioid addiction.

  12. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.

    Mazhab-Jafari, Mohammad T; Marshall, Christopher B; Smith, Matthew J; Gasmi-Seabrook, Geneviève M C; Stathopulos, Peter B; Inagaki, Fuyuhiko; Kay, Lewis E; Neel, Benjamin G; Ikura, Mitsuhiko


    K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery.

  13. SodC modulates ras and PKB signaling in Dictyostelium.

    Castillo, Boris; Kim, Seon-Hee; Sharief, Mujataba; Sun, Tong; Kim, Lou W


    We have previously reported that the basal RasG activity is aberrantly high in cells lacking Superoxide dismutase C (SodC). Here we report that other Ras proteins such as RasC and RasD activities are not affected in sodC(-) cells and mutagenesis studies showed that the presence of the Cys(118) in the Ras proteins is essential for the superoxide-mediated activation of Ras proteins in Dictyostelium. In addition to the loss of SodC, lack of extracellular magnesium ions increased the level of intracellular superoxide and active RasG proteins. Aberrantly active Ras proteins in sodC(-) cells persistently localized at the plasma membrane, but those in wild type cells under magnesium deficient medium exhibited intracellular vesicular localization. Interestingly, the aberrantly activated Ras proteins in wild type cells were largely insulated from their normal downstream events such as Phosphatidylinositol-3,4,5-P3 (PIP3) accumulation, Protein Kinase B (PKB) activation, and PKBs substrates phosphorylation. Intriguingly, however, aberrantly activated Ras proteins in sodC(-) cells were still engaged in signaling to their downstream targets, and thus excessive PKBs substrates phosphorylation persisted. In summary, we suggest that SodC and RasG proteins are essential part of a novel inhibitory mechanism that discourages oxidatively stressed cells from chemotaxis and thus inhibits the delivery of potentially damaged genome to the next generation.

  14. The RAS-Effector Interaction as a Drug Target.

    Keeton, Adam B; Salter, E Alan; Piazza, Gary A


    About a third of all human cancers harbor mutations in one of the K-, N-, or HRAS genes that encode an abnormal RAS protein locked in a constitutively activated state to drive malignant transformation and tumor growth. Despite more than three decades of intensive research aimed at the discovery of RAS-directed therapeutics, there are no FDA-approved drugs that are broadly effective against RAS-driven cancers. Although RAS proteins are often said to be "undruggable," there is mounting evidence suggesting it may be feasible to develop direct inhibitors of RAS proteins. Here, we review this evidence with a focus on compounds capable of inhibiting the interaction of RAS proteins with their effectors that transduce the signals of RAS and that drive and sustain malignant transformation and tumor growth. These reports of direct-acting RAS inhibitors provide valuable insight for further discovery and development of clinical candidates for RAS-driven cancers involving mutations in RAS genes or otherwise activated RAS proteins. Cancer Res; 77(2); 221-6. ©2017 AACR.

  15. Prostate cancer ETS rearrangements switch a cell migration gene expression program from RAS/ERK to PI3K/AKT regulation.

    Selvaraj, Nagarathinam; Budka, Justin A; Ferris, Mary W; Jerde, Travis J; Hollenhorst, Peter C


    The RAS/ERK and PI3K/AKT pathways induce oncogenic gene expression programs and are commonly activated together in cancer cells. Often, RAS/ERK signaling is activated by mutation of the RAS or RAF oncogenes, and PI3K/AKT is activated by loss of the tumor suppressor PTEN. In prostate cancer, PTEN deletions are common, but, unlike other carcinomas, RAS and RAF mutations are rare. We have previously shown that over-expression of "oncogenic" ETS transcription factors, which occurs in about one-half of prostate tumors due to chromosome rearrangement, can bypass the need for RAS/ERK signaling in the activation of a cell migration gene expression program. In this study we test the role of RAS/ERK and PI3K/AKT signaling in the function of oncogenic ETS proteins. We find that oncogenic ETS expression negatively correlates with RAS and RAF mutations in prostate tumors. Furthermore, the oncogenic ETS transcription factors only increased cell migration in the absence of RAS/ERK activation. In contrast to RAS/ERK, it has been reported that oncogenic ETS expression positively correlates with PI3K/AKT activation. We identified a mechanistic explanation for this finding by showing that oncogenic ETS proteins required AKT signaling to activate a cell migration gene expression program through ETS/AP-1 binding sequences. Levels of pAKT correlated with the ability of oncogenic ETS proteins to increase cell migration, but this process did not require mTORC1. Our findings indicate that oncogenic ETS rearrangements cause a cell migration gene expression program to switch from RAS/ERK control to PI3K/AKT control and provide a possible explanation for the high frequency of PTEN, but not RAS/RAF mutations in prostate cancer.

  16. The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling

    Chiara Sandri; Guido Serini; Francesca Caccavari; Donatella Valdembri; Chiara Camillo; Stefan Veltel; Martina Santambrogio; Letizia Lanzetti; Fedenco Bussolino; Johanna Ivaska


    During developmental and tumor angiogenesis,semaphorins regulate blood vessel navigation by signaling through plexin receptors that inhibit the R-Ras subfamily of small GTPases.R-Ras is mainly expressed in vascular cells,where it induces adhesion to the extracellular matrix (ECM) through unknown mechanisms.We identify the Ras and Rab5 interacting protein RIN2 as a key effector that in endothelial cells interacts with and mediates the pro-adhesive and-angiogenic activity of R-Ras.Both R-Ras-GTP and RIN2 localize at nascent ECM adhesion sites associated with lamellipodia.Upon binding,GTP-loaded R-Ras converts RIN2 from a Rab5 guanine nucleotide exchange factor (GEF)to an adaptor that first interacts at high affinity with Rab5-GTP to promote the selective endocytosis of ligand-bound/active β1 integrins and then causes the translocation of R-Ras to early endosomes.Here,the R-Ras/RIN2/Rab5 signaling module activates Racl-dependent cell adhesion via TIAM1,a Rac GEF that localizes on early endosomes and is stimulated by the interaction with both Ras proteins and the vesicular lipid phosphatidylinositol 3-monophosphate.In conclusion,the ability of R-Ras-GTP to convert RIN2 from a GEF to an adaptor that preferentially binds Rab5-GTP allows the triggering of the endocytosis of ECM-bound/active β1 integrins and the ensuing funneling of R-Ras-GTP toward early endosomes to elicit the pro-adhesive and TIAM1-mediated activation of Racl.

  17. Genetic analysis of Ras genes in epidermal development and tumorigenesis.

    Drosten, Matthias; Lechuga, Carmen G; Barbacid, Mariano


    Proliferation and differentiation of epidermal keratinocytes are tightly controlled to ensure proper development and homeostasis of the epidermis. The Ras family of small GTPases has emerged as a central node in the coordination of cell proliferation in the epidermis. Recent genetic evidence from mouse models has revealed that the intensity of Ras signaling modulates the proliferative capacity of epidermal keratinocytes. Interfering with Ras signaling either by combined elimination of the 3 Ras genes from the basal layer of the epidermis or by overexpression of dominant-negative Ras isoforms caused epidermal thinning due to hypoproliferation of keratinocytes. In contrast, overexpression of oncogenic Ras mutants in different epidermal cell layers led to hyperproliferative phenotypes including the development of papillomas and squamous cell carcinomas. Here, we discuss the value of loss- and gain-of-function studies in mouse models to assess the role of Ras signaling in the control of epidermal proliferation.

  18. Genetic analysis of Ras genes in epidermal development and tumorigenesis

    Drosten, Matthias; Lechuga, Carmen G; Barbacid, Mariano


    Proliferation and differentiation of epidermal keratinocytes are tightly controlled to ensure proper development and homeostasis of the epidermis. The Ras family of small GTPases has emerged as a central node in the coordination of cell proliferation in the epidermis. Recent genetic evidence from mouse models has revealed that the intensity of Ras signaling modulates the proliferative capacity of epidermal keratinocytes. Interfering with Ras signaling either by combined elimination of the 3 Ras genes from the basal layer of the epidermis or by overexpression of dominant-negative Ras isoforms caused epidermal thinning due to hypoproliferation of keratinocytes. In contrast, overexpression of oncogenic Ras mutants in different epidermal cell layers led to hyperproliferative phenotypes including the development of papillomas and squamous cell carcinomas. Here, we discuss the value of loss- and gain-of-function studies in mouse models to assess the role of Ras signaling in the control of epidermal proliferation. PMID:24150175

  19. Coherence and frequency in the reticular activating system (RAS).

    Garcia-Rill, Edgar; Kezunovic, Nebojsa; Hyde, James; Simon, Christen; Beck, Paige; Urbano, Francisco J


    This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit (1) electrical coupling mainly in GABAergic cells, and (2) gamma band activity in virtually all of the cells. Specifically, cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine dorsal subcoeruleus nucleus dorsalis (SubCD) (1) show electrical coupling, and (2) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanism behind electrical coupling is important because the stimulant modafinil was shown to increase electrical coupling. We also provide recent findings demonstrating that all cells in the PPN and Pf have high threshold, voltage-dependent P/Q-type calcium channels that are essential to gamma band activity. On the other hand, all SubCD, and some PPN, cells manifested sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on transmitter interactions, electrical coupling, and gamma band activity is described. We speculate that continuous sensory input will modulate coupling and induce gamma band activity in the RAS that could participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions.

  20. Clinico-pathological features and somatic gene alterations in refractory ceramic fibre-induced murine mesothelioma reveal mineral fibre-induced mesothelioma identities.

    Andujar, Pascal; Lecomte, Céline; Renier, Annie; Fleury-Feith, Jocelyne; Kheuang, Laurence; Daubriac, Julien; Janin, Anne; Jaurand, Marie-Claude


    Although human malignant mesothelioma (HMM) is mainly caused by asbestos exposure, refractory ceramic fibres (RCFs) have been classified as possibly carcinogenic to humans on the basis of their biological effects in rodents' lung and pleura and in cultured cells. Hence, further investigations are needed to clarify the mechanism of fibre-induced carcinogenicity and to prevent use of harmful particles. In a previous study, mesotheliomas were found in hemizygous Nf2 (Nf2(+/-)) mice exposed to asbestos fibres, and showed similar alterations in genes at the Ink4 locus and in Trp53 as described in HMM. Here we found that Nf2(+/-) mice developed mesotheliomas after intra-peritoneal inoculation of a RCF sample (RCF1). Clinical features in exposed mice were similar to those observed in HMM, showing association between ascite and mesothelioma. Early passages of 12 mesothelioma cell cultures from ascites developed in RCF1-exposed Nf2(+/-) mice demonstrated frequent inactivation by deletion of genes at the Ink4 locus, and low rate of Trp53 point and insertion mutations. Nf2 gene was inactivated in all cultures. In most cases, co-inactivation of genes at the Ink4 locus and Nf2 was found and, at a lower rate, of Trp53 and Nf2. These results are the first to identify mutations in RCF-induced mesothelioma. They suggest that nf2 mutation is complementary of p15(Ink4b), p16(Ink4a) and p19(Arf) or p53 mutations and show similar profile of gene alterations resulting from exposure to ceramic or asbestos fibres in Nf2(+/-) mice, also consistent with the one found in HMM. These somatic genetic changes define different pathways of mesothelial cell transformation.

  1. Chemotaxis: new role for Ras revealed

    Jianshe Yan; Dale Hereld; Tian Jin


    @@ A recent study of chemotaxis revealed a new role for the proto-oncogene Ras in the social ameba Dictyostelium discoideum.Chemotaxis,the directional movement of cells toward chemokines and other chemoattractants,plays critical roles in diverse physiological processes,such as mobilization of immune cells to fight invading microorganisms,targeting of metastatic cancer cells to specific tissues,and guidance of sperm cells to ova during fertilization.This work,published in the July 26 issue of The Journal of Cell Biology,was conducted in Dr.Devreotes' lab at John Hopkins University and Dr.Parent's lab at National Cancer Institute.This research team demonstrated that RasC functions as an upstream regulator of TORC2 and thereby governs the effects of TORC2-PKB signaling on the cytoskeleton and cell migration.

  2. An orthosteric inhibitor of the RAS-SOS interaction.

    Nickerson, Seth; Joy, Stephen T; Arora, Paramjit S; Bar-Sagi, Dafna


    Rat sarcoma (RAS) proteins are signaling nodes that transduce extracellular cues into precise alterations in cellular physiology by engaging effector pathways. RAS signaling thus regulates diverse cell processes including proliferation, migration, differentiation, and survival. Owing to this central role in governing mitogenic signals, RAS pathway components are often dysregulated in human diseases. Targeted therapy of RAS pathways has generally not been successful, largely because of the robust biochemistry of the targets and their multifaceted network of molecular regulators. The rate-limiting step of RAS activation is Son of Sevenless (SOS)-mediated nucleotide exchange involving a single evolutionarily conserved catalytic helix from SOS. Structure function data of this mechanism provided a strong platform to design an SOS-derived, helically constrained peptide mimic as an inhibitor of the RAS-SOS interaction. In this chapter, we review RAS-SOS signaling dynamics and present evidence supporting the novel paradigm of inhibiting their interaction as a therapeutic strategy. We then describe a method of generating helically constrained peptide mimics of protein surfaces, which we have employed to inhibit the RAS-SOS active site interaction. The biochemical and functional properties of this SOS mimic support the premise that inhibition of RAS-nucleotide exchange can effectively block RAS activation and downstream signaling.

  3. Co-dependency of PKCδ and K-Ras: inverse association with cytotoxic drug sensitivity in KRAS mutant lung cancer.

    Ohm, A M; Tan, A-C; Heasley, L E; Reyland, M E


    Recent studies suggest that the presence of a KRAS mutation may be insufficient for defining a clinically homogenous molecular group, as many KRAS mutant tumors lose reliance on K-Ras for survival. Identifying pathways that support K-Ras dependency may define clinically relevant KRAS subgroups and lead to the identification of new drug targets. We have analyzed a panel of 17 KRAS mutant lung cancer cell lines classified as K-Ras-dependent or -independent for co-dependency on protein kinase C δ (PKCδ). We show that functional dependency on K-Ras and PKCδ co-segregate, and that dependency correlates with a more epithelial-like phenotype. Furthermore, we show that the pro-apoptotic and pro-tumorigenic functions of PKCδ also segregate based on K-Ras dependency, as K-Ras-independent cells are more sensitive to topoisomerase inhibitors, and depletion of PKCδ in this subgroup suppresses apoptosis through increased activation of extracellular signal-regulated kinase (ERK). In contrast, K-Ras-dependent lung cancer cells are largely insensitive to topoisomerase inhibitors, and depletion of PKCδ can increase apoptosis and decrease activation of ERK in this subgroup. We have previously shown that nuclear translocation of PKCδ is necessary and sufficient for pro-apoptotic signaling. Our current studies show that K-Ras-dependent cells are refractive to PKCδ-driven apoptosis. Analysis of this subgroup showed increased PKCδ expression and an increase in the nuclear:cytoplasmic ratio of PKCδ. In addition, targeting PKCδ to the nucleus induces apoptosis in K-Ras-independent, but not K-Ras-dependent non-small-cell lung cancer (NSCLC) cells. Our studies provide tools for identification of the subset of patients with KRAS mutant tumors most amenable to targeting of the K-Ras pathway, and identify PKCδ as a potential target in this tumor population. These subgroups are likely to be of clinical relevance, as high PKCδ expression correlates with increased overall survival and

  4. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells

    Herrero, Ana; Casar, Berta; Colón-Bolea, Paula; Agudo-Ibáñez, Lorena; Crespo, Piero


    Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane–disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals. PMID:27099370

  5. Differential effects of bryostatin 1 and 12-O-tetradecanoylphorbol-13-acetate on the regulation and activation of RasGRP1 in mouse epidermal keratinocytes.

    Tuthill, Matthew C; Oki, Carolyn E; Lorenzo, Patricia S


    The antitumor agent bryostatin 1 and the tumor-promoting phorbol esters function as structural mimetics of the second lipid messenger diacylglycerol (DAG) by binding to the C1 domain of DAG receptors. However, bryostatin 1 and the phorbol esters often differ in their cellular actions. In mouse skin, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) is a potent tumor promoter, whereas bryostatin 1 lacks this activity and antagonizes the tumor-promoting effects of TPA. Although protein kinase C mediates many of the effects of DAG on skin, the exact mechanisms responsible for the biology of bryostatin 1 and TPA in the epidermis have not been elucidated. We recently reported that the novel DAG receptor RasGRP1 is expressed in mouse keratinocytes and mediates TPA-induced Ras activation. This finding prompted us to examine the regulation of RasGRP1 by bryostatin 1. We found that whereas TPA induced translocation of RasGRP1 to both the plasma and internal membranes of the keratinocytes, bryostatin 1 recruited RasGRP1 only to internal membranes and the nuclear envelope. In addition, TPA led to a concentration-dependent down-regulation of RasGRP1, whereas bryostatin 1 failed to induce full RasGRP1 down-regulation. Interestingly, bryostatin 1 was less effective than TPA at activating Ras. The results presented here suggest the possibility that a differential modulation of RasGRP1 by bryostatin 1 compared with TPA could participate in the disparate responses of the epidermal cells to both DAG analogues. This result may have implications in the understanding of the antitumor effects of bryostatin 1 in the skin.

  6. Combination of a Selective HSP90α/β Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells.

    Rikio Suzuki

    Full Text Available Heat shock protein (HSP90 inhibitors have shown significant anti-tumor activities in preclinical settings in both solid and hematological tumors. We previously reported that the novel, orally available HSP90α/β inhibitor TAS-116 shows significant anti-MM activities. In this study, we further examined the combination effect of TAS-116 with a RAS-RAF-MEK-ERK signaling pathway inhibitor in RAS- or BRAF-mutated MM cell lines. TAS-116 monotherapy significantly inhibited growth of RAS-mutated MM cell lines and was associated with decreased expression of downstream target proteins of the RAS-RAF-MEK-ERK signaling pathway. Moreover, TAS-116 showed synergistic growth inhibitory effects with the farnesyltransferase inhibitor tipifarnib, the BRAF inhibitor dabrafenib, and the MEK inhibitor selumetinib. Importantly, treatment with these inhibitors paradoxically enhanced p-C-Raf, p-MEK, and p-ERK activity, which was abrogated by TAS-116. TAS-116 also enhanced dabrafenib-induced MM cytotoxicity associated with mitochondrial damage-induced apoptosis, even in the BRAF-mutated U266 MM cell line. This enhanced apoptosis in RAS-mutated MM triggered by combination treatment was observed even in the presence of bone marrow stromal cells. Taken together, our results provide the rationale for novel combination treatment with HSP90α/β inhibitor and RAS-RAF-MEK-ERK signaling pathway inhibitors to improve outcomes in patients with in RAS- or BRAF-mutated MM.

  7. Combination of a Selective HSP90α/β Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells.

    Suzuki, Rikio; Kikuchi, Shohei; Harada, Takeshi; Mimura, Naoya; Minami, Jiro; Ohguchi, Hiroto; Yoshida, Yasuhiro; Sagawa, Morihiko; Gorgun, Gullu; Cirstea, Diana; Cottini, Francesca; Jakubikova, Jana; Tai, Yu-Tzu; Chauhan, Dharminder; Richardson, Paul G; Munshi, Nikhil; Ando, Kiyoshi; Utsugi, Teruhiro; Hideshima, Teru; Anderson, Kenneth C


    Heat shock protein (HSP)90 inhibitors have shown significant anti-tumor activities in preclinical settings in both solid and hematological tumors. We previously reported that the novel, orally available HSP90α/β inhibitor TAS-116 shows significant anti-MM activities. In this study, we further examined the combination effect of TAS-116 with a RAS-RAF-MEK-ERK signaling pathway inhibitor in RAS- or BRAF-mutated MM cell lines. TAS-116 monotherapy significantly inhibited growth of RAS-mutated MM cell lines and was associated with decreased expression of downstream target proteins of the RAS-RAF-MEK-ERK signaling pathway. Moreover, TAS-116 showed synergistic growth inhibitory effects with the farnesyltransferase inhibitor tipifarnib, the BRAF inhibitor dabrafenib, and the MEK inhibitor selumetinib. Importantly, treatment with these inhibitors paradoxically enhanced p-C-Raf, p-MEK, and p-ERK activity, which was abrogated by TAS-116. TAS-116 also enhanced dabrafenib-induced MM cytotoxicity associated with mitochondrial damage-induced apoptosis, even in the BRAF-mutated U266 MM cell line. This enhanced apoptosis in RAS-mutated MM triggered by combination treatment was observed even in the presence of bone marrow stromal cells. Taken together, our results provide the rationale for novel combination treatment with HSP90α/β inhibitor and RAS-RAF-MEK-ERK signaling pathway inhibitors to improve outcomes in patients with in RAS- or BRAF-mutated MM.

  8. Comparison of the Dictyostelium rasD and ecmA genes reveals two distinct mechanisms whereby an mRNA may become enriched in prestalk cells.

    Jermyn, K; Wiliams, J


    The Dictyostelium ras gene, rasD, encodes an mRNA that is more abundant in prestalk than prespore cells in the migratory slug. Its expression is inducible by extracellular cAMP but is not inducible by the prestalk and stalk cell morphogen differentiation inducing factor (DIF). We show that a rasD-lacZ fusion gene is first expressed in approximately one half of the cells in the aggregate, including some cells that also express a prespore-specific marker. The amount of rasD-lacZ fusion protein in prespore cells then diminishes as the slug is formed. Analysis of a rasD-lacZ fusion protein with an N terminal substitution that reduces protein stability within the cell provides strong confirmatory evidence that the ras gene product becomes enriched in prestalk cells by selective repression of gene expression in prespore cells. In contrast, the DIF-inducible ecmA gene is expressed only in those cells that will become prestalk cells in the migratory slug. These results show that there are two different ways in which an mRNA may become enriched in prestalk cells and support the view that DIF is the inducer of prestalk cell differentiation.

  9. Ras Proteins Have Multiple Functions in Vegetative Cells of Dictyostelium ▿

    Bolourani, Parvin; Spiegelman, George; Weeks, Gerald


    During the aggregation of Dictyostelium cells, signaling through RasG is more important in regulating cyclic AMP (cAMP) chemotaxis, whereas signaling through RasC is more important in regulating the cAMP relay. However, RasC is capable of substituting for RasG for chemotaxis, since rasG− cells are only partially deficient in chemotaxis, whereas rasC−/rasG− cells are totally incapable of chemotaxis. In this study we have examined the possible functional overlap between RasG and RasC in vegetat...

  10. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression.

    DeSmet, Marsha L; Fleet, James C


    High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH)2D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH)2D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH)2D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH)2D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Increased Association of Dynamin Ⅱ with Myosin Ⅱ in Ras Transformed NIH3T3 Cells

    Soon-Jeong JEONG; Su-Gwan KIM; Jiyun YOO; Mi-Young HAN; Joo-Cheol PARK; Heung-Joong KIM; Seong Soo KANG; Baik-Dong CHOI; Moon-Jin JEONG


    Dynamin has been implicated in the formation of nascent vesicles through both endocytic and secretory pathways. However, dynamin has recently been implicated in altering the cell membrane shape during cell migration associated with cytoskeleton-related proteins. Myosin Ⅱ has been implicated in maintaining cell morphology and in cellular movement. Therefore, reciprocal immunoprecipitation was carried out to identify the potential relationship between dynamin Ⅱ and myosin Ⅱ. The dynamin Ⅱ expression level was higher when co-expressed with myosin Ⅱ in Ras transformed NIH3T3 cells than in normal NIH3T3 cells.Confocal microscopy also confirmed the interaction between these two proteins. Interestingly, exposing the NIH3T3 cells to platelet-derived growth factor altered the interaction and localization of these two proteins.The platelet-derived growth factor treatment induced lamellipodia and cell migration, and dynamin Ⅱ interacted with myosin Ⅱ. Grb2, a 24 kDa adaptor protein and an essential element of the Ras signaling pathway,was found to be associated with dynamin Ⅱ and myosin Ⅱ gene expression in the Ras transformed NIH3T3 cells. These results suggest that dynamin Ⅱ acts as an intermediate messenger in the Ras signal transduction pathway leading to membrane ruffling and cell migration.

  12. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis

    Ren, Zhonghai


    Soil salinity limits agricultural production and is a major obstacle for feeding the growing world population. We used natural genetic variation in salt tolerance among different Arabidopsis accessions to map a major quantitative trait locus (QTL) for salt tolerance and abscisic acid (ABA) sensitivity during seed germination and early seedling growth. A recombinant inbred population derived from Landsberg erecta (Ler; salt and ABA sensitive) x Shakdara (Sha; salt and ABA resistant) was used for QTL mapping. High-resolution mapping and cloning of this QTL, Response to ABA and Salt 1 (RAS1), revealed that it is an ABA- and salt stress-inducible gene and encodes a previously undescribed plant-specific protein. A premature stop codon results in a truncated RAS1 protein in Sha. Reducing the expression of RAS1 by transfer-DNA insertion in Col or RNA interference in Ler leads to decreased salt and ABA sensitivity, whereas overexpression of the Ler allele but not the Sha allele causes increased salt and ABA sensitivity. Our results suggest that RAS1 functions as a negative regulator of salt tolerance during seed germination and early seedling growth by enhancing ABA sensitivity and that its loss of function contributes to the increased salt tolerance of Sha.

  13. C. elegans EOR-1/PLZF and EOR-2 positively regulate Ras and Wnt signaling and function redundantly with LIN-25 and the SUR-2 Mediator component

    Howard, Robyn M.; Sundaram, Meera V.


    In Caenorhabditis elegans, Ras/ERK and Wnt/β-catenin signaling pathways cooperate to induce P12 and vulval cell fates in a Hox-dependent manner. Here we describe eor-1 and eor-2, two new positively acting nuclear components of the Ras and Wnt pathways. eor-1 and eor-2 act downstream or in parallel to ERK and function redundantly with the Mediator complex gene sur-2 and the functionally related gene lin-25, such that removal of both eor-1/eor-2 and sur-2/lin-25 mimics the removal of a main Ras...

  14. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    Kolkova, K; Novitskaya, V; Pedersen, N


    transfected with expression plasmids encoding constitutively active forms of Ras, Raf, MAP kinase kinases MEK1 and 2, dominant negative forms of Ras and Raf, and the FAK-related nonkinase. Alternatively, PC12-E2 cells were submitted to treatment with antibodies to the fibroblast growth factor (FGF) receptor....... Arachidonic acid rescued cells treated with antibodies to the FGF receptor or the PLC inhibitor, but not cells in which the activity of PKC, p59(fyn), FAK, Ras, or MEK was inhibited. Interaction of NCAM with a synthetic NCAM peptide ligand, known to induce neurite outgrowth, was shown to stimulate...

  15. Genetic Alterations in K-ras and p53 Cancer Genes in Lung Neoplasms From B6C3F1 Mice Exposed to Cumene

    Hong, Hue-Hua L.; Ton, Thai-Vu T.; Kim, Yongbaek; Wakamatsu, Nobuko; Clayton, Natasha P.; Chan, Po-Chuen; Sills, Robert C.; Lahousse, Stephanie A.


    The incidences of alveolar/bronchiolar adenomas and carcinomas in cumene-treated B6C3F1 mice were significantly greater than those of the controls. We evaluated these lung neoplasms for point mutations in the K-ras and p53 genes that are often mutated in humans. K-ras and p53 mutations were detected by cycle sequencing of PCR-amplified DNA isolated from paraffin-embedded neoplasms. K-ras mutations were detected in 87 % cumene-induced lung neoplasms, and the predominant mutations were exon 1 c...

  16. Latest Advances Towards Ras Inhibition: A Medicinal Chemistry Perspective.

    Sautier, Brice; Nising, Carl F; Wortmann, Lars


    Owing to their high occurrence rate across many human cancers and their lack of druggability so far, mutant forms of the signaling protein Ras are currently among the most attractive (and elusive) oncology targets. This strong appeal explains the sustained effort in the field, and the ensuing progress has rekindled optimism regarding the discovery of Ras inhibitors. In this Minireview, we discuss the most recent advances towards irreversible inhibitors, and highlight approaches to inhibitors of Ras-effector interactions that have been overshadowed by the current focus on direct Ras inhibition. At the same time, we provide a critical assessment from a medicinal chemistry perspective.

  17. OA01.48. Prativish chincha ras in the management of Dhatura poising

    Singh, Babita


    causes gastric irritation and thus induces vomiting. 5) Chincha patra ras and Chincha pakwa phal ras have flavonoids (Vit. P. and Citrin) which strengthens the blood vessels and lowers blood pressure and works as anti-inflammatoryagent. 6) The Chincha patra ras and Chincha pakwa phal ras have vit. ‘C’ which lead the blood circulation towards the heart which prevent the cardiac arrest produced in the Dhatura poisoning. 7) Chincha patra ras aqueous extract 1% and 10% has the pH of 5.91 and 5.45 and the pH of chincha pakwa phal ras aqueous extract of 1% and 10% has pH of 4.72 and 4.50. Both are acidic but the pH of Dhatura in aqueous extract of 1% is 8.19 and 8.00. Therefore, they neurtralize each other and reduce the toxic effect of dhatura. Similarly, the action of chincha rasa can be explained through the concepts of Ayurveda.

  18. Angelica Sinensis Polysaccharide Prevents Hematopoietic Stem Cells Senescence in D-Galactose-Induced Aging Mouse Model

    Xinyi Mu


    Full Text Available Age-related regression in hematopoietic stem/progenitor cells (HSC/HPCs limits replenishment of the blood and immune system and hence contributes to hematopoietic diseases and declined immunity. In this study, we employed D-gal-induced aging mouse model and observed the antiaging effects of Angelica Sinensis Polysaccharide (ASP, a major active ingredient in dong quai (Chinese Angelica Sinensis, on the Sca-1+ HSC/HPCs in vivo. ASP treatment prevents HSC/HPCs senescence with decreased AGEs levels in the serum, reduced SA-β-Gal positive cells, and promoted CFU-Mix formation in the D-gal administrated mouse. We further found that multiple mechanisms were involved: (1 ASP treatment prevented oxidative damage as total antioxidant capacity was increased and levels of reactive oxygen species (ROS, 8-OHdG, and 4-HNE were declined, (2 ASP reduced the expression of γ-H2A.X which is a DNA double strand breaks (DSBs marker and decreased the subsequent ectopic expressions of effectors in p16Ink4a-RB and p19Arf-p21Cip1/Waf senescent pathways, and (3 ASP inhibited the excessive activation of Wnt/β-catenin signaling in aged HSC/HPCs, as the expressions of β-catenin, phospho-GSK-3β, and TCF-4 were decreased, and the cyto-nuclear translocation of β-catenin was inhibited. Moreover, compared with the positive control of Vitamin E, ASP exhibited a better antiaging effect and a weaker antioxidation ability, suggesting a novel protective role of ASP in the hematopoietic system.

  19. Active N-Ras and B-Raf inhibit anoikis by downregulating Bim expression in melanocytic cells.

    Goldstein, Nathaniel B; Johannes, Widya U; Gadeliya, Agnessa V; Green, Matthew R; Fujita, Mayumi; Norris, David A; Shellman, Yiqun G


    B-Raf and N-Ras proteins are often activated in melanoma, yet their roles in producing inherent survival signals are not fully understood. In this study, we investigated how N-RAS(Q61K) and B-RAF(V600E) contribute to melanoma's resistance to apoptosis induced by detachment from the extracellular matrix (anoikis). We found that expression of constitutively active N-RAS(Q61K) and B-RAF(V600E) downregulated the proapoptotic Bim protein in an immortalized melanocyte cell line. Bim is one of the main proapoptotic mediators of anoikis. Western blot analysis showed that detachment increased Bim expression in melanocytes, and Annexin V staining indicated that detachment induced cell death significantly in melanocytes. Blocking Bim expression by using RNAi vectors or by expressing N-RAS(Q61K) significantly inhibited anoikis in melanocytes. In summary, this report indicates that N-RAS(Q61K) and B-RAF(V600E) contribute to melanoma's resistance to apoptosis in part by downregulating Bim expression, suggesting that Bim is a possible treatment target for overriding melanoma's inherent defenses against cell death.

  20. Small molecule binding sites on the Ras:SOS complex can be exploited for inhibition of Ras activation.

    Winter, Jon J G; Anderson, Malcolm; Blades, Kevin; Brassington, Claire; Breeze, Alexander L; Chresta, Christine; Embrey, Kevin; Fairley, Gary; Faulder, Paul; Finlay, M Raymond V; Kettle, Jason G; Nowak, Thorsten; Overman, Ross; Patel, S Joe; Perkins, Paula; Spadola, Loredana; Tart, Jonathan; Tucker, Julie A; Wrigley, Gail


    Constitutively active mutant KRas displays a reduced rate of GTP hydrolysis via both intrinsic and GTPase-activating protein-catalyzed mechanisms, resulting in the perpetual activation of Ras pathways. We describe a fragment screening campaign using X-ray crystallography that led to the discovery of three fragment binding sites on the Ras:SOS complex. The identification of tool compounds binding at each of these sites allowed exploration of two new approaches to Ras pathway inhibition by stabilizing or covalently modifying the Ras:SOS complex to prevent the reloading of Ras with GTP. Initially, we identified ligands that bound reversibly to the Ras:SOS complex in two distinct sites, but these compounds were not sufficiently potent inhibitors to validate our stabilization hypothesis. We conclude by demonstrating that covalent modification of Cys118 on Ras leads to a novel mechanism of inhibition of the SOS-mediated interaction between Ras and Raf and is effective at inhibiting the exchange of labeled GDP in both mutant (G12C and G12V) and wild type Ras.

  1. K-ras mutations in lung carcinomas from nonsmoking women exposed to unvented coal smoke in China

    Keohavong, P.; Lan, Q.; Gao, W.M.; DeMarini, D.M.; Mass, M.J.; Li, X.M.; Roop, B.C.; Weissfeld, J.; Tian, D.; Mumford, J.L. [University of Pittsburgh, Pittsburgh, PA (United States). Dept. of Environmental and Occupational Health


    Lung cancer mortality rate in nonsmoking women in Xuan Wei (XW) County is the highest in China. The XW lung cancer rate is associated with exposure to coal smoke, containing high concentrations of polycyclic aromatic hydrocarbons (PAHs), in unvented homes. Here we investigated codon 12 K-ras mutations in lung tumors or sputum samples from 102 XW lung cancer patients (41 nonsmoking women and 61 smoking men). In addition, we analyzed specimens from 50 lung cancer patients (14 nonsmoking women, 33 smoking men and three nonsmoking men), from Beijing and Henan (B&H), where natural gas is the main domestic fuel. K-ras mutations were found in nine women (21.9%) and 14 men (22.9%) from XW, with G to T transversions accounting for 66.7 and 85.7%, respectively. Among B&H patients, one woman (7.1%) and six men (16.7%) had K-ras mutations, with G to T transversions accounting for 66.7% of the mutations in the men. Therefore, the frequency and type of K-ras mutations in XW nonsmoking women are similar to those of K-ras mutations found in both XW and B&H smoking men. On the other hand, the mutation frequency in XW women is higher than, although not statistically significant from, that in the B&H nonsmoking women (P = 0.28, two-sided Fisher's Exact Test). These results suggest an association between exposure to coal smoke and the increased K-ras mutation frequency in XW nonsmoking female lung cancer patients. They also suggest that the mutagens and/or mechanisms of mutations in these nonsmoking women are similar to those responsible for K-ras mutations in cigarette smoking lung cancer patients, which are probably induced largely by chemicals such as PAHs.

  2. The Ras antagonist, farnesylthiosalicylic acid (FTS, decreases fibrosis and improves muscle strength in dy/dy mouse model of muscular dystrophy.

    Yoram Nevo

    Full Text Available The Ras superfamily of guanosine-triphosphate (GTP-binding proteins regulates a diverse spectrum of intracellular processes involved in inflammation and fibrosis. Farnesythiosalicylic acid (FTS is a unique and potent Ras inhibitor which decreased inflammation and fibrosis in experimentally induced liver cirrhosis and ameliorated inflammatory processes in systemic lupus erythematosus, neuritis and nephritis animal models. FTS effect on Ras expression and activity, muscle strength and fibrosis was evaluated in the dy(2J/dy(2J mouse model of merosin deficient congenital muscular dystrophy. The dy(2J/dy(2J mice had significantly increased RAS expression and activity compared with the wild type mice. FTS treatment significantly decreased RAS expression and activity. In addition, phosphorylation of ERK, a Ras downstream protein, was significantly decreased following FTS treatment in the dy(2J/dy(2J mice. Clinically, FTS treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter. Significant reduction of fibrosis was demonstrated in the treated group by quantitative Sirius Red staining and lower muscle collagen content. FTS effect was associated with significantly inhibition of both MMP-2 and MMP-9 activities. We conclude that active RAS inhibition by FTS was associated with attenuated fibrosis and improved muscle strength in the dy(2J/dy(2J mouse model of congenital muscular dystrophy.

  3. The effect of forced expression of mutated K-RAS gene on gastrointestinal cancer cell lines and the IGF-1R targeting therapy.

    Matsunaga, Yasutaka; Adachi, Yasushi; Sasaki, Yasushi; Koide, Hideyuki; Motoya, Masayo; Nosho, Katsuhiko; Takagi, Hideyasu; Yamamoto, Hiroyuki; Sasaki, Shigeru; Arimura, Yoshiaki; Tokino, Takashi; Carbone, David P; Imai, Kohzoh; Shinomura, Yasuhisa


    Mutation in K-RAS (K-RAS-MT) plays important roles in both cancer progression and resistance to anti-epidermal growth factor receptor (EGFR) therapy in gastrointestinal tumors. Insulin-like growth factor-1 receptor (IGF-1R) signaling is required for carcinogenicity and progression of many tumors as well. We have previously shown successful therapy for gastrointestinal cancer cell lines bearing a K-RAS mutation using an anti-IGF-1R monoclonal antibody. In this study, we sought to evaluate effects of forced K-RAS-MT expression on gastrointestinal cancer cell lines representing a possible second resistance mechanism for anti-EGFR therapy and IGF-1R-targeted therapy for these transfectants. We made stable transfectants of K-RAS-MT in two gastrointestinal cancer cell lines, colorectal RKO and pancreatic BxPC-3. We assessed the effect of forced expression of K-RAS-MT on proliferation, apoptosis, migration, and invasion in gastrointestinal cancer cells. Then we assessed anti-tumor effects of dominant negative IGF-1R (IGF-1R/dn) and an IGF-1R inhibitor, picropodophyllin, on the K-RAS-MT transfectants. Overexpression of K-RAS-MT in gastrointestinal cancer cell lines led to more aggressive phenotypes, with increased proliferation, decreased apoptosis, and increased motility and invasion. IGF-1R blockade suppressed cell growth, colony formation, migration, and invasion, and up-regulated chemotherapy-induced apoptosis of gastrointestinal cancer cells, even when K-RAS-MT was over-expressed. IGF-1R blockade inhibited the Akt pathway more than the extracellular signal-regulated kinase (ERK) pathway in the K-RAS-MT transfectants. IGF-1R/dn, moreover, inhibited the growth of murine xenografts expressing K-RAS-MT. Thus, K-RAS-MT might be important for progressive phonotype observed in gastrointestinal cancers. IGF-1R decoy is a candidate molecular therapeutic approach for gastrointestinal cancers even if K-RAS is mutated. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals

  4. CREBBP knockdown enhances RAS/RAF/MEK/ERK signaling in Ras pathway mutated acute lymphoblastic leukemia but does not modulate chemotherapeutic response.

    Dixon, Zach A; Nicholson, Lindsay; Zeppetzauer, Martin; Matheson, Elizabeth; Sinclair, Paul; Harrison, Christine J; Irving, Julie A E


    Relapsed acute lymphoblastic leukemia is the most common cause of cancer-related mortality in young people and new therapeutic strategies are needed to improve outcome. Recent studies have shown that heterozygous inactivating mutations in the histone acetyl transferase, CREBBP, are particularly frequent in relapsed childhood acute lymphoblastic leukemia and associated with a hyperdiploid karyotype and KRAS mutations. To study the functional impact of CREBBP haploinsufficiency in acute lymphoblastic leukemia, RNA interference was used to knock down expression of CREBBP in acute lymphoblastic leukemia cell lines and various primagraft acute lymphoblastic leukemia cells. We demonstrate that attenuation of CREBBP results in reduced acetylation of histone 3 lysine 18, but has no significant impact on cAMP-dependent target gene expression. Impaired induction of glucocorticoid receptor targets was only seen in 1 of 4 CREBBP knockdown models, and there was no significant difference in glucocorticoid-induced apoptosis, sensitivity to other acute lymphoblastic leukemia chemotherapeutics or histone deacetylase inhibitors. Importantly, we show that CREBBP directly acetylates KRAS and that CREBBP knockdown enhances signaling of the RAS/RAF/MEK/ERK pathway in Ras pathway mutated acute lymphoblastic leukemia cells, which are still sensitive to MEK inhibitors. Thus, CREBBP mutations might assist in enhancing oncogenic RAS signaling in acute lymphoblastic leukemia but do not alter response to MEK inhibitors. Copyright© Ferrata Storti Foundation.

  5. Roc, a Ras/GTPase domain in complex proteins

    Bosgraaf, Leonard; Haastert, Peter J.M. van


    We identified a novel group of the Ras/GTPase superfamily, termed Roc, that is present as domain in complex proteins together with other domains, including leucine-rich repeats (LRRs), ankyrin repeats, WD40 repeats, kinase domains, RasGEF and RhoGAP domains. Roc is always succeeded by a novel 300–40

  6. K-Ras protein as a drug target.

    McCormick, Frank


    K-Ras proteins are major drivers of human cancers, playing a direct causal role in about one million cancer cases/year. In cancers driven by mutant K-Ras, the protein is locked in the active, GTP-bound state constitutively, through a defect in the off-switch mechanism. As such, the mutant protein resembles the normal K-Ras protein from a structural perspective, making therapeutic attack extremely challenging. K-Ras is a member of a large family of related proteins, which share very similar GDP/GTP-binding domains, making specific therapies more difficult. Furthermore, Ras proteins lack pockets to which small molecules can bind with high affinity, with a few interesting exceptions. However, new insights into the structure and function of K-Ras proteins reveal opportunities for intervention that were not appreciated many years ago, when efforts were launched to develop K-Ras therapies. Furthermore, K-Ras undergoes post-translational modification and interactions with cellular signaling proteins that present additional therapeutic opportunities, such as specific binding to calmodulin and regulation of non-canonical Wnt signaling.

  7. Ras chaperones: new targets for cancer and immunotherapy.

    Kloog, Yoel; Elad-Sfadia, Galit; Haklai, Roni; Mor, Adam


    The Ras inhibitor S-trans,trans-farnesylthiosalicylic acid (FTS, Salirasib®) interferes with Ras membrane interactions that are crucial for Ras-dependent signaling and cellular transformation. FTS had been successfully evaluated in clinical trials of cancer patients. Interestingly, its effect is mediated by targeting Ras chaperones that serve as key coordinators for Ras proper folding and delivery, thus offering a novel target for cancer therapy. The development of new FTS analogs has revealed that the specific modifications to the FTS carboxyl group by esterification and amidation yielded compounds with improved growth inhibitory activity. When FTS was combined with additional therapeutic agents its activity toward Ras was significantly augmented. FTS should be tested not only in cancer but also for genetic diseases associated with abnormal Ras signaling, as well as for various inflammatory and autoimmune disturbances, where Ras plays a major role. We conclude that FTS has a great potential both as a safe anticancer drug and as a promising immune modulator agent. © 2013 Elsevier Inc. All rights reserved.

  8. TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae

    Welch, Aaron Z.; Gibney, Patrick A.; Botstein, David; Koshland, Douglas E.


    Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000–fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance. PMID:23171550

  9. Comparison of the Conformations of KRAS Isoforms, K-Ras4A and K-Ras4B, Points to Similarities and Significant Differences.

    Chakrabarti, Mayukh; Jang, Hyunbum; Nussinov, Ruth


    Human HRAS, KRAS, and NRAS genes encode four isoforms of Ras, a p21 GTPase. Mutations in KRAS account for the majority of RAS-driven cancers. The KRAS has two splice variants, K-Ras4A and K-Ras4B. Due to their reversible palmitoylation, K-Ras4A and N-Ras have bimodal signaling states. K-Ras4A and K-Ras4B differ in four catalytic domain residues (G151R/D153E/K165Q/H166Y) and in their disordered C-terminal hypervariable region (HVR). In K-Ras4A, the HVR is not as strongly positively charged as in K-Ras4B (+6e vs +9e). Here, we performed all-atom molecular dynamics simulations to elucidate isoform-specific differences between the two splice variants. We observe that the catalytic domain of GDP-bound K-Ras4A has a more exposed nucleotide binding pocket than K-Ras4B, and the dynamic fluctuations in switch I and II regions also differ; both factors may influence guanine-nucleotide exchange. We further observe that like K-Kas4B, full-length K-Ras4A exhibits nucleotide-dependent HVR fluctuations; however, these fluctuations differ between the GDP-bound forms of K-Ras4A and K-Ras4B. Unlike K-Ras4B where the HVR tends to cover the effector binding region, in K-Ras4A, autoinhibited states are unstable. With lesser charge, the K-Ras4A HVR collapses on itself, making it less available for binding the catalytic domain. Since the HVRs of N- and H-Ras are weakly charged (+1e and +2e, respectively), autoinhibition may be a unique feature of K-Ras4B.

  10. Endogenous K-ras signaling in erythroid differentiation.

    Zhang, Jing; Lodish, Harvey F


    K-ras is one of the most frequently mutated genes in virtually all types of human cancers. Using mouse fetal liver erythroid progenitors as a model system, we studied the role of endogenous K-ras signaling in erythroid differentiation. When oncogenic K-ras is expressed from its endogenous promoter, it hyperactivates cytokine-dependent signaling pathways and results in a partial block in erythroid differentiation. In erythroid progenitors deficient in K-ras, cytokine-dependent Akt activation is greatly reduced, leading to delays in erythroid differentiation. Thus, both loss- and gain-of-Kras functions affect erythroid differentiation through modulation of cytokine signaling. These results support the notion that in human cancer patients oncogenic Ras signaling might be controlled by antagonizing essential cytokines.

  11. Multivalent Small-Molecule Pan-RAS Inhibitors.

    Welsch, Matthew E; Kaplan, Anna; Chambers, Jennifer M; Stokes, Michael E; Bos, Pieter H; Zask, Arie; Zhang, Yan; Sanchez-Martin, Marta; Badgley, Michael A; Huang, Christine S; Tran, Timothy H; Akkiraju, Hemanth; Brown, Lewis M; Nandakumar, Renu; Cremers, Serge; Yang, Wan Seok; Tong, Liang; Olive, Kenneth P; Ferrando, Adolfo; Stockwell, Brent R


    Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, may provide chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small-molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. MicroRNA 17-92 Cluster Mediates ETS1 and ETS2-Dependent RAS-Oncogenic Transformation

    Mohamed Kabbout; Duaa Dakhlallah; Sudarshana Sharma; Agnieszka Bronisz; Ruchika Srinivasan; Melissa Piper; Marsh, Clay B.; Michael C Ostrowski


    The ETS-family transcription factors Ets1 and Ets2 are evolutionarily conserved effectors of the RAS/ERK signaling pathway, but their function in Ras cellular transformation and biology remains unclear. Taking advantage of Ets1 and Ets2 mouse models to generate Ets1/Ets2 double knockout mouse embryonic fibroblasts, we demonstrate that deletion of both Ets1 and Ets2 was necessary to inhibit HrasG12V induced transformation both in vitro and in vivo. HrasG12V expression in mouse embryonic fibrob...

  13. Transforming p21 ras protein: flexibility in the major variable region linking the catalytic and membrane-anchoring domains

    Willumsen, B M; Papageorge, A G; Hubbert, N


    that is required for post-translational processing, membrane localization and transforming activity of the proteins. We have now used the viral oncogene (v-rasH) of Harvey sarcoma virus to study the major variable region by deleting or duplicating parts of the gene. Reducing this region to five amino acids...... or increasing it to 50 amino acids has relatively little effect on the capacity of the gene to induce morphological transformation of NIH 3T3 cells. Assays of GTP binding, GTPase and autophosphorylating activities of such mutant v-rasH-encoded proteins synthesized in bacteria indicated that the sequences...

  14. RASAL3, a novel hematopoietic RasGAP protein, regulates the number and functions of NKT cells.

    Saito, Suguru; Kawamura, Toshihiko; Higuchi, Masaya; Kobayashi, Takahiro; Yoshita-Takahashi, Manami; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Kanda, Yasuhiro; Kawamura, Hiroki; Jiang, Shuying; Naito, Makoto; Yoshizaki, Takumi; Takahashi, Masahiko; Fujii, Masahiro


    Ras GTPase-activating proteins negatively regulate the Ras/Erk signaling pathway, thereby playing crucial roles in the proliferation, function, and development of various types of cells. In this study, we identified a novel Ras GTPase-activating proteins protein, RASAL3, which is predominantly expressed in cells of hematopoietic lineages, including NKT, B, and T cells. We established systemic RASAL3-deficient mice, and the mice exhibited a severe decrease in NKT cells in the liver at 8 weeks of age. The treatment of RASAL3-deficient mice with α-GalCer, a specific agonist for NKT cells, induced liver damage, but the level was less severe than that in RASAL3-competent mice, and the attenuated liver damage was accompanied by a reduced production of interleukin-4 and interferon-γ from NKT cells. RASAL3-deficient NKT cells treated with α-GalCer in vitro presented augmented Erk phosphorylation, suggesting that there is dysregulated Ras signaling in the NKT cells of RASAL3-deficient mice. Taken together, these results suggest that RASAL3 plays an important role in the expansion and functions of NKT cells in the liver by negatively regulating Ras/Erk signaling, and might be a therapeutic target for NKT-associated diseases.

  15. Poly(ADP-ribosyl)ation enhances H-RAS protein stability and causes abnormal cell cycle progression in human TK6 lymphoblastoid cells treated with hydroquinone.

    Liu, Linhua; Ling, Xiaoxuan; Tang, Huanwen; Chen, Jialong; Wen, Qiaosheng; Zou, Fei


    Hydroquinone (HQ), one of the most important benzene-derived metabolites, can induce aberrant cell cycle progression; however, the mechanism of this induction remains unclear. Poly(ADP-ribosyl)ation (PARylation), which is catalysed primarily by poly(ADP-ribose) polymerase-1 (PARP-1), participates in various biological processes, including cell cycle control. The results of the present study show an accumulation in G1 phase versus S phase of TK6 human lymphoblast cells treated with HQ for 48h compared with PBS-treated cells; after 72h of HQ treatment, the cells transitioned from G1 arrest to S phase arrest. We examined the expression of six genes related to the cell cycle or leukaemia to further explore the reason for this phenomenon. Among these genes, H-RAS was found to be associated with this phenomenon because its mRNA and protein expression decreased at 48h and increased at 72h. Experiments for PARP activity induction and inhibition revealed that the observed PARylation was positively associated with H-RAS expression. Moreover, in cells treated with HQ in conjunction with PARP-1 knockdown, expression of the H-RAS protein decreased and the number of cells in G1 phase increased. The degree of poly(ADP-ribosyl) modification of the H-RAS protein increased in cells treated with HQ for 72h, further supporting that changes in PARylation contributed to the rapid alteration of H-RAS protein expression, followed by abnormal progression of the cell cycle. Co-immunoprecipitation (co-IP) assays were employed to determine whether protein complexes were formed by PARP-1 and H-RAS proteins, and the direct interaction between these proteins indicated that PARylation regulated H-RAS expression. As detected by confocal microscopy, the H-RAS protein was found in the nucleus and cytoplasm. To our knowledge, this study is the first to reveal that H-RAS protein can be modified by PARylation.

  16. Enhanced therapeutic effects for human pancreatic cancer by application K-ras and IGF-IR antisense oligodeoxynucleotides

    Yong-Mei Shen; Xiao-Chun Yang; Chen Yang; Jun-Kang Shen


    AIM:To investigate the combined effects of K-ras antisense oligodeoxynucleotide(K-ras ASODN)specific to GTT point mutation at codon 12 and type I insulin-like growth factor receptor(IGF-IR)antisense oligodeoxynucleotide(IGF-IR ASODN)on proliferation and apoptosis of human pancreatic cancer Patu8988 cells in vitro and in vivo.METHODS:K-ras gene point mutation and its style at codon 12 of human pancreatic cancer cell line Patu8988 were detected by using polymerase chain reaction with special sequence primers(PCR-SSP)and sequence analysis.According to the mutation style,K-ras mutation ASODN specific to K-ras point mutation at codon 12 was designed and composed.After K-ras ASODN and IGF-IR ASODN treated on Patu8988 cells respectively or cooperatively,the proliferation and morphological change of Patu8988 cells were analyzed by 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide(MTT)assay,colony forming assay and transmission electron microscopy;the expression of K-ras and IGF-IR mRNA and protein in the treated cells was measured by reverse-transcript polymerase chain reaction(RT-PCR)and flow cytometry respectively;apoptosis was determined by flow cytometry.The combined antitumor activity of K-ras ASODN and IGFIR ASODN was evaluated in BALB/C nude mice bearing human pancreatic cancer inoculated with Patu8988 cells.RESULTS:The results of PCR-SSP and sequence analysis showed that the human Dancreatic cancer cell line Patu8988 had point mutation at coclon 12,and the mutation style was GGT→GTT.2-32 μg/mL K-ras ASODN and 2-32 μg/mL IGF-IR ASODN could inhibit Patu8988 cells' growth,induce apoptosis and decrease the expression of K-ras and IGF-IR mRNA and protein alone.However,there was much more effective inhibition of growth and induction of apoptosis by their combination than by each one alone.In tumor bearing mice,the combination of K-ras ASODN and IGF-IR ASODN showed a significant inhibitory effect on the growth of transplanted pancreatic cancer,resulting in

  17. Molecular analysis of the Ink4a/Rb1-Arf/Tp53 pathways in radon-induced rat lung tumors

    Bastide, K.; Guilly, M.N.; Lectard, B.; Levalois, C.; Chevillard, S. [CEA, DSV, IRCM, SREIT, Laboratoire de Cancerologie Experimentale, BP6, Fontenay-aux-Roses Cedex F-92265 (France); Bernaudin, J.F. [Service d' Histologie-Biologie Tumorale, Unite Propre de Recherche de l' Enseignement Superieur EA 3499, Universite Paris 6, Hopital Tenon, Paris F-75020 (France); Joubert, Ch. [CEA, DSV, I2BM, MIRCEN, Laboratoire de Biologie Appliquee, BP6, Fontenay-aux-Roses Cedex F-92265 (France); Malfoy, B. [Institut Curie, Centre de Recherche, Paris F-75248 (France); CNRS, UMR 7147, Paris F-75248 (France); Universite Paris VI, Paris F-75248 (France)


    Inhalation of radon is closely associated with an increased risk of lung cancers. While the involvement of Ink4a in lung tumor development has been widely described, the tumor suppressor gene has not been studied in radon-induced lung tumors. In this study, loss of heterozygosity (LOH) analysis of the Cdkn2a locus, common to the Ink4a and Arf genes, was performed on 33 radon-induced rat lung tumors and showed a DNA loss in 50% of cases. The analysis of p16Ink4a protein expression by immunohistochemistry revealed that 50% of the tumors were negative for this protein. Looking for the origin of this lack of expression, we observed a low frequency of homozygous deletion (6%), a lack of mutation, an absence of correlation between promoter methylation and Ink4a mRNA expression and no correlation between LOH and protein expression. However, a tendency for an inverse correlation between p16Ink4a and pRb protein expression was observed. The expressions of p19Arf, Mmd2 and Mdm4 were not deregulated and only 14% of the tumors were mutated for Tp53. These results indicated that Ink4a/Cdk4/Rb1 pathway deregulation, more than Arf/Mdm2/Tp53 pathway, has a major role in the development of these tumors through p16Ink4a deregulation. However, all known mechanisms of inactivation of the pathway do not play a recurrent role in these tumors and the actual origin of the lack of p16Ink4a protein expression remains to be established. (author)

  18. Qingfei Xiaoyan Wan, a traditional Chinese medicine formula, ameliorates Pseudomonas aeruginosa–induced acute lung inflammation by regulation of PI3K/AKT and Ras/MAPK pathways


    Gram-negative pathogen–induced nosocomial infections and resistance are a most serious menace to global public health. Qingfei Xiaoyan Wan (QF), a traditional Chinese medicine (TCM) formula, has been used clinically in China for the treatment of upper respiratory tract infections, acute or chronic bronchitis and pulmonary infection. In this study, the effects of QF on Pseudomonas aeruginosa–induced acute pneumonia in mice were evaluated. The mechanisms by which four typical anti-inflammatory ...

  19. Loss of RASAL1:a new mechanism of ras activation in cancers%RASAL1蛋白丢失——恶性肿瘤中ras活化的新机制

    杨晴; 钱程佳


    ras 是一类与恶性肿瘤密切相关的蛋白,其持续活化可促进肿瘤的发生发展.RASAL1蛋白是一种钙离子介导的 ras GTP 酶活化蛋白,其表达下降或缺失,可使 ras 活化,从而导致肿瘤的发生发展.本文综述 ras 活性调节机制、RASAL1 与恶性肿瘤的关系以及RASAL1的表达下调的相关机制.%Ras is a kind of protein closely related to neoplasms,the persistent activation of which would induce tumorigenesis and progression.RASAL1 is a Ca~(2+) regulated ras GTPase-activating-like protein, the loss or decreased expression of RASAL1 induces ras activation, then results in tumongenesis and progression.In this review we sum up the mechanism of ras activation, the relationship between neoplasms and RASAL1 and the mechanism of RASAL1 expression decreasing.

  20. [The role of platelet-derived growth factor and ras P21 in experimental hepatocarcinogenesis].

    Zheng, J; Ruan, Y; Liu, B


    In order to explore whether platelet-derived growth factor (PDGF) is involved in hepatocarcinogenesis, expression of PDGF-beta chain and ras P21 were investigated using immunohistochemical method in hepatocarcinoma induced with diethylnitrosamine (DENA). Elevated PDGF-beta chain and P21 protein levels were found in hepatocytes in the early stages after DENA administration. Along with the progression of hepatocarcinogenesis, immunopositive cells were increased with the formation of various foci and nodules and the staining was usually stronger in the peripheral parts of nodules. In addition, PDGF-beta and P21 often expressed simultaneously in the smae lesions, where the cells were also positive for AFP expression. The results suggest that abnormal expression of PDGF might be an early specific event during hepatocarcinogenesis and might be involved in the malignant transformation of the hepatocytes by autocrine as well through ras P21 signal pathways.

  1. Spectrum of K ras mutations in Pakistani colorectal cancer patients

    Murtaza, B.N.; Bibi, A. [School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore (Pakistan); Rashid, M.U.; Khan, Y.I. [Shaukat Khanum Memorial Cancer Hospital and Research Centre, Johar Town, Lahore (Pakistan); Chaudri, M.S. [Services Institute of Medical Sciences, Lahore (Pakistan); Shakoori, A.R. [School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore (Pakistan)


    The incidence of colorectal cancer (CRC) is increasing daily worldwide. Although different aspects of CRC have been studied in other parts of the world, relatively little or almost no information is available in Pakistan about different aspects of this disease at the molecular level. The present study was aimed at determining the frequency and prevalence of K ras gene mutations in Pakistani CRC patients. Tissue and blood samples of 150 CRC patients (64% male and 36% female) were used for PCR amplification of K ras and detection of mutations by denaturing gradient gel electrophoresis, restriction fragment length polymorphism analysis, and nucleotide sequencing. The K ras mutation frequency was found to be 13%, and the most prevalent mutations were found at codons 12 and 13. A novel mutation was also found at codon 31. The dominant mutation observed was a G to A transition. Female patients were more susceptible to K ras mutations, and these mutations were predominant in patients with a nonmetastatic stage of CRC. No significant differences in the prevalence of K ras mutations were observed for patient age, gender, or tumor type. It can be inferred from this study that Pakistani CRC patients have a lower frequency of K ras mutations compared to those observed in other parts of the world, and that K ras mutations seemed to be significantly associated with female patients.

  2. Regulation of Ras signaling and function by plasma membrane microdomains.

    Goldfinger, Lawrence E; Michael, James V


    Together H-, N- and KRAS mutations are major contributors to ~30% of all human cancers. Thus, Ras inhibition remains an important anti-cancer strategy. The molecular mechanisms of isotypic Ras oncogenesis are still not completely understood. Monopharmacological therapeutics have not been successful in the clinic. These disappointing outcomes have led to attempts to target elements downstream of Ras, mainly targeting either the Phosphatidylinositol 3-Kinase (PI3K) or Mitogen-Activated Protein Kinase (MAPK) pathways. While several such approaches are moderately effective, recent efforts have focused on preclinical evaluation of combination therapies to improve efficacies. This review will detail current understanding of the contributions of plasma membrane microdomain targeting of Ras to mitogenic and tumorigenic signaling and tumor progression. Moreover, this review will outline novel approaches to target Ras in cancers, including targeting schemes for new drug development, as well as putative re-purposing of drugs in current use to take advantage of blunting Ras signaling by interfering with Ras plasma membrane microdomain targeting and retention.

  3. Spectrum of K ras mutations in Pakistani colorectal cancer patients

    B.N. Murtaza


    Full Text Available The incidence of colorectal cancer (CRC is increasing daily worldwide. Although different aspects of CRC have been studied in other parts of the world, relatively little or almost no information is available in Pakistan about different aspects of this disease at the molecular level. The present study was aimed at determining the frequency and prevalence of K ras gene mutations in Pakistani CRC patients. Tissue and blood samples of 150 CRC patients (64% male and 36% female were used for PCR amplification of K ras and detection of mutations by denaturing gradient gel electrophoresis, restriction fragment length polymorphism analysis, and nucleotide sequencing. The K ras mutation frequency was found to be 13%, and the most prevalent mutations were found at codons 12 and 13. A novel mutation was also found at codon 31. The dominant mutation observed was a G to A transition. Female patients were more susceptible to K ras mutations, and these mutations were predominant in patients with a nonmetastatic stage of CRC. No significant differences in the prevalence of K ras mutations were observed for patient age, gender, or tumor type. It can be inferred from this study that Pakistani CRC patients have a lower frequency of K ras mutations compared to those observed in other parts of the world, and that K ras mutations seemed to be significantly associated with female patients.



    Objective: To investigate the possible interaction between the ras and p53 genes over-expression in thyroid carcinoma, and whether there is a correlation between the ras and p53 over-expression and clinicopathological criteria. Methods: Eighty patients with thyroid lesions were examined for expression of ras and p53 genes by the labeled streptavidin biotin peroxidase (LSAB) method. Of these patients, 54 were diagnosed (average age: 39.9± 15.9 years) with malignant lesions. Of those included in the study, 31 has papillary carcinoma, 13 had follicular carcinoma, 7 had medullary carcinoma, 3 had undifferentiated carcinoma and 19 were stratified to stage I, 28 to stage II, 2 to stage III and 5 to stage IV according to TNM staging system. Twenty-six benign nodular thyroid disorders were studied as control. Results: Positive immunostain results for ras and p53 genes were statistically significant between thyroid carcinomas and benign disorders (90.7% vs 23%, 55.5% vs 30.7%, P<0.05). Both p53 and ras overexpressions coexisted in 30 thyroid carcinomas, and of these, 3 died and 5 had recurrences within 4 years. Conclusions: Activation of ras gene and inactivation of p53 gene were cooperatively associated in thyroid tumorigenesis. The concurrent overexpressions of ras and p53 could result in a poor prognosis.

  5. Deconstruction of the Ras switching cycle through saturation mutagenesis

    Bandaru, Pradeep; Shah, Neel H; Bhattacharyya, Moitrayee; Barton, John P; Kondo, Yasushi; Cofsky, Joshua C; Gee, Christine L; Chakraborty, Arup K; Kortemme, Tanja; Ranganathan, Rama; Kuriyan, John


    Ras proteins are highly conserved signaling molecules that exhibit regulated, nucleotide-dependent switching between active and inactive states. The high conservation of Ras requires mechanistic explanation, especially given the general mutational tolerance of proteins. Here, we use deep mutational scanning, biochemical analysis and molecular simulations to understand constraints on Ras sequence. Ras exhibits global sensitivity to mutation when regulated by a GTPase activating protein and a nucleotide exchange factor. Removing the regulators shifts the distribution of mutational effects to be largely neutral, and reveals hotspots of activating mutations in residues that restrain Ras dynamics and promote the inactive state. Evolutionary analysis, combined with structural and mutational data, argue that Ras has co-evolved with its regulators in the vertebrate lineage. Overall, our results show that sequence conservation in Ras depends strongly on the biochemical network in which it operates, providing a framework for understanding the origin of global selection pressures on proteins. DOI: PMID:28686159

  6. Oncogenic K-Ras Signals through Epidermal Growth Factor Receptor and Wild-Type H-Ras to Promote Radiation Survival in Pancreatic and Colorectal Carcinoma Cells

    Keith A. Cengel


    Full Text Available Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor o was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFRactivated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers.

  7. Oncogenic K-Ras Signals through Epidermal Growth Factor Receptor and Wild-Type H-Ras to Promote Radiation Survival in Pancreatic and Colorectal Carcinoma Cells1

    Cengel, Keith A.; Voong, K. Rahn; Chandrasekaran, Sanjay; Maggiorella, Laurence; Brunner, Thomas B.; Stanbridge, Eric; Kao, Gary D.; McKenna, W. Gillies; Bernhard, Eric J.


    Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor α was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers. PMID:17460778

  8. Oncogenic K-Ras signals through epidermal growth factor receptor and wild-type H-Ras to promote radiation survival in pancreatic and colorectal carcinoma cells.

    Cengel, Keith A; Voong, K Rahn; Chandrasekaran, Sanjay; Maggiorella, Laurence; Brunner, Thomas B; Stanbridge, Eric; Kao, Gary D; McKenna, W Gillies; Bernhard, Eric J


    Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor alpha was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers.

  9. Diagnostic RAS mutation analysis by polymerase chain reaction (PCR

    Ian A. Cree


    Full Text Available RAS mutation analysis is an important companion diagnostic test. Treatment of colorectal cancer with anti-Epidermal Growth Factor Receptor (EGFR therapy requires demonstration of RAS mutation status (both KRAS and NRAS, and it is good practice to include BRAF. In Non-Small Cell Lung Cancer (NSCLC and melanoma, assessment of RAS mutation status can be helpful in triaging patient samples for more extensive testing. This mini-review will discuss the role of PCR methods in providing rapid diagnostic information for cancer patients.

  10. The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways.

    Vasseur, Romain; Skrypek, Nicolas; Duchêne, Belinda; Renaud, Florence; Martínez-Maqueda, Daniel; Vincent, Audrey; Porchet, Nicole; Van Seuningen, Isabelle; Jonckheere, Nicolas


    The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.

  11. Sensitivity of wild type and mutant ras alleles to Ras specific exchange factors: Identification of factor specific requirements.

    Nielsen, K H; Gredsted, L; Broach, J R; Willumsen, B M


    We have investigated the productive interaction between the four mammalian Ras proteins (H-, N-, KA- and KB-Ras) and their activators, the mammalian exchange factors mSos1, GRF1 and GRP, by using a modified Saccharomyces cerevisiae whose growth is dependent on activation of a mammalian Ras protein by its activator. All four mammalian Ras proteins were activated with similar efficiencies by the individual exchange factors. The H-Ras mutant V103E, which is competent for membrane localization, nucleotide binding, intrinsic and stimulated GTPase activity as well as intrinsic exchange, was defective for activation by all factors tested, suggesting that the integrity of this residue is necessary for catalyzed exchange. However, when other H-Ras mutants were studied, some distinct sensitivities to the exchange factors were observed. GRP-mediated, but not mSos1-mediated, exchange was blocked in additional mutants, suggesting different structural requirements for GRP. Analysis of Ras-mediated gene activation in murine fibroblasts confirmed these results.

  12. Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy

    Ramos-Kuri, Manuel; Rapti, Kleopatra; Mehel, Hind; Zhang, Shihong; Dhandapany, Perundurai S.; Liang, Lifan; García-Carrancá, Alejandro; Bobe, Regis; Fischmeister, Rodolphe; Adnot, Serge; Lebeche, Djamel; Hajjar, Roger J.; Lipskaia, Larissa; Chemaly, Elie R.


    The importance of the oncogene Ras in cardiac hypertrophy is well appreciated. The hypertrophic effects of the constitutively active mutant Ras-Val12 are revealed by clinical syndromes due to the Ras mutations and experimental studies. We examined the possible anti-hypertrophic effect of Ras inhibition in vitro using rat neonatal cardiomyocytes (NRCM) and in vivo in the setting of pressure-overload left ventricular (LV) hypertrophy (POH) in rats. Ras functions were modulated via adenovirus directed gene transfer of active mutant Ras-Val12 or dominant negative mutant N17-DN-Ras (DN-Ras). Ras-Val12 expression in vitro activates NFAT resulting in pro-hypertrophic and cardio-toxic effects on NRCM beating and Z-line organization. In contrast, the DN-Ras was antihypertrophic on NRCM, inhibited NFAT and exerted cardio-protective effects attested by preserved NRCM beating and Z line structure. Additional experiments with silencing H-Ras gene strategy corroborated the antihypertrophic effects of siRNA-H-Ras on NRCM. In vivo, with the POH model, both Ras mutants were associated with similar hypertrophy two weeks after simultaneous induction of POH and Ras-mutant gene transfer. However, LV diameters were higher and LV fractional shortening lower in the Ras-Val12 group compared to control and DN-Ras. Moreover, DN-Ras reduced the cross-sectional area of cardiomyocytes in vivo, and decreased the expression of markers of pathologic cardiac hypertrophy. In isolated adult cardiomyocytes after 2 weeks of POH and Ras-mutant gene transfer, DN-Ras improved sarcomere shortening and calcium transients compared to Ras-Val12. Overall, DN-Ras promotes a more physiological form of hypertrophy, suggesting an interesting therapeutic target for pathological cardiac hypertrophy. PMID:26260012

  13. The Neural Cell Adhesion Molecule (NCAM) Promotes Clustering and Activation of EphA3 Receptors in GABAergic Interneurons to Induce Ras Homolog Gene Family, Member A (RhoA)/Rho-associated protein kinase (ROCK)-mediated Growth Cone Collapse.

    Sullivan, Chelsea S; Kümper, Maike; Temple, Brenda S; Maness, Patricia F


    Establishment of a proper balance of excitatory and inhibitory connectivity is achieved during development of cortical networks and adjusted through synaptic plasticity. The neural cell adhesion molecule (NCAM) and the receptor tyrosine kinase EphA3 regulate the perisomatic synapse density of inhibitory GABAergic interneurons in the mouse frontal cortex through ephrin-A5-induced growth cone collapse. In this study, it was demonstrated that binding of NCAM and EphA3 occurred between the NCAM Ig2 domain and EphA3 cysteine-rich domain (CRD). The binding interface was further refined through molecular modeling and mutagenesis and shown to be comprised of complementary charged residues in the NCAM Ig2 domain (Arg-156 and Lys-162) and the EphA3 CRD (Glu-248 and Glu-264). Ephrin-A5 induced co-clustering of surface-bound NCAM and EphA3 in GABAergic cortical interneurons in culture. Receptor clustering was impaired by a charge reversal mutation that disrupted NCAM/EphA3 association, emphasizing the importance of the NCAM/EphA3 binding interface for cluster formation. NCAM enhanced ephrin-A5-induced EphA3 autophosphorylation and activation of RhoA GTPase, indicating a role for NCAM in activating EphA3 signaling through clustering. NCAM-mediated clustering of EphA3 was essential for ephrin-A5-induced growth cone collapse in cortical GABAergic interneurons, and RhoA and a principal effector, Rho-associated protein kinase, mediated the collapse response. This study delineates a mechanism in which NCAM promotes ephrin-A5-dependent clustering of EphA3 through interaction of the NCAM Ig2 domain and the EphA3 CRD, stimulating EphA3 autophosphorylation and RhoA signaling necessary for growth cone repulsion in GABAergic interneurons in vitro, which may extend to remodeling of axonal terminals of interneurons in vivo.

  14. Diet, lifestyle and risk of K-ras mutation-positive and -negative colorectal adenomas.

    Wark, P.A.; Kuil, W. van der; Ploemacher, J.; Muijen, G.N.P. van; Mulder, C.J.J.; Weijenberg, M.P.; Kok, F.J.; Kampman, E.


    K-ras mutation-positive (K-ras+) and -negative (K-ras-) colorectal adenomas may differ clinically and pathologically. As environmental compounds may cause mutations in the growth-related K-ras oncogene or affect clonal selection depending on mutational status, we evaluated whether the aetiology of K

  15. A Genetic Screen Identifies PITX1 as a Suppressor of RAS Activity and Tumorigenicity

    Kolfschoten, I.G.M.; Leeuwen, Bart van; Berns, K.; Mullenders, J.; Beijersbergen, R.L.; Bernards, R.A.; Voorhoeve, P.M.; Agami, R.


    Activating mutations of RAS frequently occur in subsets of human cancers, indicating that RAS activation is important for tumorigenesis. However, a large proportion of these cancers still retain wild-type RAS alleles, suggesting that either the RAS pathway is activated in a distinct manner or anothe

  16. Diet, Lifestyle and risk of K-ras mutation-positive and -negative colorectal adenomas

    Wark, P.A.; Kuil, van der W.; Ploemacher, J.; Muijen, van G.N.P.; Mulder, Ch.J.J.; Weijenberg, M.P.; Kok, F.J.; Kampman, E.


    K-ras mutation-positive (K-ras+) and -negative (K-ras-) colorectal adenomas may differ clinically and pathologically. As environmental compounds may cause mutations in the growth-related K-ras oncogene or affect clonal selection depending on mutational status, we evaluated whether the aetiology of K

  17. The mouse rasH2/BHT model as an in vivo rapid assay for lung carcinogens.

    Umemura, Takashi; Kodama, Yukio; Hioki, Kyoji; Nomura, Tatsuji; Nishikawa, Akiyoshi; Hirose, Masao; Kurokawa, Yuji


    We have demonstrated the utility of a 9-week in vivo two-stage assay for lung cancer initiating agents, using transgenic mice carrying the human prototype c-Ha-ras gene (rasH2 mice) and butylhydroxytoluene (BHT) as a potent lung promoter (rasH2/BHT model). In the present study, to ascertain appropriate conditions for BHT administration in this model, the effects of exposure on proliferation of alveolar type II cells in male rasH2 mice were examined. Additionally, use of BHT was validated for promotion of urethane (UR) carcinogenesis in male and female rasH2 mice. In a time-course study of a single intragastric administration of BHT at a dose of 400 mg/kg, increased bromodeoxyuridine-labeling index (LI) reached a maximum 3 days after treatment and was still observed after 7 days. In a dose-response study, effects were dose-dependent, the dose of 400 mg/kg causing eight-fold elevation as compared to the control. With repeated administration, whereas the LI was increased dramatically at first, effects gradually diminished with further exposure, and finally six BHT treatments failed to induce cell proliferation. In a two-stage model using UR as the initiator, although up to five consecutive doses of BHT were able to exert continued enhancing effects in terms of adenoma yield, no increment was evident with further treatments. The data overall indicate that a rasH2/BHT model with five weekly administrations of BHT at a dose of 400 mg/kg is most efficacious.

  18. Chemical biology tools for regulating RAS signaling complexity in space and time.

    van Hattum, Hilde; Waldmann, Herbert


    Rat sarcoma (RAS) family members are small GTPases that control a number of signaling pathways important for normal cellular proliferation. Therefore, it is no surprise that a significant portion of human tumors express constitutively active mutated RAS proteins, which leads to deregulation of RAS signaling pathways, resulting in pathological perturbations of cell growth and death. Although the molecular details of RAS signaling cascades are well understood, there is still a largely unmet need for small molecule probes to control RAS signaling in space and time. More broadly, given the prevalence of mutated RAS in cancer, the need to translate the insights obtained from using small molecule probes into clinically useful drugs is also significant. In this review, we introduce RAS proteins and the signaling pathways they are involved in, and discuss some of the innovative chemical biology approaches to regulate RAS signaling, which include the exploitation of newly identified binding pockets, covalent inhibitors for mutated RAS, and RAS localization impairment.

  19. From Ras to Rap and Back, a Journey of 35 Years.

    Bos, Johannes L


    Our laboratory has studied Ras and Ras-like proteins since the discovery of the Ras oncogene 35 years ago. In this review, I will give an account of what we have done in these 35 years and indicate the main papers that have guided our research. Our efforts started with the early analysis of mutant Ras in human tumors followed by deciphering of the role of Ras in signal transduction pathways. In an attempt to interfere in Ras signaling we turned to Rap proteins. These proteins are the closest relatives of Ras and were initially identified as Ras antagonists. However, our studies revealed that the Rap signaling network primarily is involved in spatiotemporal control of cell adhesion, in part through regulation of the actin cytoskeleton. More recently we returned to Ras, trying to interfere in Ras signaling by combinatorial drug testing using the organoid technology. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Chaperone-mediated specificity in Ras and Rap signaling.

    Azoulay-Alfaguter, Inbar; Strazza, Marianne; Mor, Adam


    Ras and Rap proteins are closely related small guanosine triphosphatase (GTPases) that share similar effector-binding domains but operate in a very different signaling networks; Ras has a dominant role in cell proliferation, while Rap mediates cell adhesion. Ras and Rap proteins are regulated by several shared processes such as post-translational modification, phosphorylation, activation by guanine exchange factors and inhibition by GTPase-activating proteins. Sub-cellular localization and trafficking of these proteins to and from the plasma membrane are additional important regulatory features that impact small GTPases function. Despite its importance, the trafficking mechanisms of Ras and Rap proteins are not completely understood. Chaperone proteins play a critical role in trafficking of GTPases and will be the focus of the discussion in this work. We will review several aspects of chaperone biology focusing on specificity toward particular members of the small GTPase family. Understanding this specificity should provide key insights into drug development targeting individual small GTPases.

  1. What makes Ras an efficient molecular switch: a computational, biophysical, and structural study of Ras-GDP interactions with mutants of Raf.

    Filchtinski, Daniel; Sharabi, Oz; Rüppel, Alma; Vetter, Ingrid R; Herrmann, Christian; Shifman, Julia M


    Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (Ras(GTP)) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (Ras(GDP)) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with Ras(GDP). Most of our designed mutations narrow the gap between the affinity of Raf for Ras(GTP) and Ras(GDP), producing the desired shift in binding specificity towards Ras(GDP). A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards Ras(GDP). The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of Ras(GDP) bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the Ras(GDP).Raf mutant complex is found in a conformation similar to that of Ras(GTP) and not Ras(GDP). Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in Ras(GTP) is likely to explain the natural low affinity of Raf and other Ras effectors to Ras(GDP). Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch. Copyright 2010 Elsevier Ltd

  2. K-rasG12V transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis

    Yumin Hu; Helene Pelicano; Paul J Chiao; Michael J Keating; Guillermo Garcia-Manero; Peng Huang; Weiqin Lu; Gang Chen; Peng Wang; Zhao Chen; Yan Zhou; Marcia Ogasawara; Dunyaporn Trachootham; Li Feng


    Increased aerobic glycolysis and oxidative stress are important features of cancer cell metabolism,but the underlying biochemical and molecular mechanisms remain elusive.Using a tetracycline inducible model,we show that activation of K-rasG12V causes mitochondrial dysfunction,leading to decreased respiration,elevated glycolysis,and increased generation of reactive oxygen species.The K-RAS protein is associated with mitochondria,and induces a rapid suppression of respiratory chain complex-I and a decrease in mitochondrial transmembrane potential by affecting the cyclosporin-sensitive permeability transition pore.Furthermore,pre-induction of K-rasG12V expression in vitro to allow metabolic adaptation to high glycolytic metabolism enhances the ability of the transformed cells to form tumor in vivo.Our study suggests that induction of mitochondrial dysfunction is an important mechanism by which K-rasG12V causes metabolic changes and ROS stress in cancer cells,and promotes tumor development.

  3. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels.

    Yagoda, Nicholas; von Rechenberg, Moritz; Zaganjor, Elma; Bauer, Andras J; Yang, Wan Seok; Fridman, Daniel J; Wolpaw, Adam J; Smukste, Inese; Peltier, John M; Boniface, J Jay; Smith, Richard; Lessnick, Stephen L; Sahasrabudhe, Sudhir; Stockwell, Brent R


    Therapeutics that discriminate between the genetic makeup of normal cells and tumour cells are valuable for treating and understanding cancer. Small molecules with oncogene-selective lethality may reveal novel functions of oncoproteins and enable the creation of more selective drugs. Here we describe the mechanism of action of the selective anti-tumour agent erastin, involving the RAS-RAF-MEK signalling pathway functioning in cell proliferation, differentiation and survival. Erastin exhibits greater lethality in human tumour cells harbouring mutations in the oncogenes HRAS, KRAS or BRAF. Using affinity purification and mass spectrometry, we discovered that erastin acts through mitochondrial voltage-dependent anion channels (VDACs)--a novel target for anti-cancer drugs. We show that erastin treatment of cells harbouring oncogenic RAS causes the appearance of oxidative species and subsequent death through an oxidative, non-apoptotic mechanism. RNA-interference-mediated knockdown of VDAC2 or VDAC3 caused resistance to erastin, implicating these two VDAC isoforms in the mechanism of action of erastin. Moreover, using purified mitochondria expressing a single VDAC isoform, we found that erastin alters the permeability of the outer mitochondrial membrane. Finally, using a radiolabelled analogue and a filter-binding assay, we show that erastin binds directly to VDAC2. These results demonstrate that ligands to VDAC proteins can induce non-apoptotic cell death selectively in some tumour cells harbouring activating mutations in the RAS-RAF-MEK pathway.

  4. Coordinating ERK signaling via the molecular scaffold Kinase Suppressor of Ras [version 1; referees: 2 approved

    Danielle Frodyma


    Full Text Available Many cancers, including those of the colon, lung, and pancreas, depend upon the signaling pathways induced by mutated and constitutively active Ras. The molecular scaffolds Kinase Suppressor of Ras 1 and 2 (KSR1 and KSR2 play potent roles in promoting Ras-mediated signaling through the Raf/MEK/ERK kinase cascade. Here we summarize the canonical role of KSR in cells, including its central role as a scaffold protein for the Raf/MEK/ERK kinase cascade, its regulation of various cellular pathways mediated through different binding partners, and the phenotypic consequences of KSR1 or KSR2 genetic inactivation. Mammalian KSR proteins have a demonstrated role in cellular and organismal energy balance with implications for cancer and obesity. Targeting KSR1 in cancer using small molecule inhibitors has potential for therapy with reduced toxicity to the patient. RNAi and small molecule screens using KSR1 as a reference standard have the potential to expose and target vulnerabilities in cancer. Interestingly, although KSR1 and KSR2 are similar in structure, KSR2 has a distinct physiological role in regulating energy balance. Although KSR proteins have been studied for two decades, additional analysis is required to elucidate both the regulation of these molecular scaffolds and their potent effect on the spatial and temporal control of ERK activation in health and disease.

  5. High-density growth arrest in Ras-transformed cells: low Cdk kinase activities in spite of absence of p27(Kip) Cdk-complexes.

    Groth, Anja; Willumsen, Berthe M


    The ras oncogene transforms immortalized, contact-inhibited non-malignant murine fibroblasts into cells that are focus forming, exhibit increased saturation density, and are malignant in suitable hosts. Here, we examined changes in cell cycle control complexes as normal and Ras-transformed cells ceased to grow exponentially, to reveal the molecular basis for Ras-dependent focus formation. As normal cells entered density-dependent arrest, cyclin D1 decreased while cyclin D2 was induced and replaced D1 in Cdk4 complexes. Concomitantly, p27(Kip1) levels rose and the inhibitor accumulated in both Cdk4 and Cdk2 complexes, as these kinases were inactivated. Ras-transformed cells failed to arrest at normal saturation density and showed no significant alterations in cell control complexes at this point. Yet, at an elevated density the Ras-transformed cells ceased to proliferate and entered a quiescent-like state with low Cdk4 and Cdk2 activity. Surprisingly, this delayed arrest was molecularly distinct from contact inhibition of normal cells, as it occurred in the absence of p27(Kip1) induction and cyclin D1 levels remained high. This demonstrates that although oncogenic Ras efficiently disabled the normal response to contact inhibition, a separate back-up mechanism enforced cell cycle arrest at higher cell density.

  6. KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer.

    Yu, T; Chen, X; Zhang, W; Liu, J; Avdiushko, R; Napier, D L; Liu, A X; Neltner, J M; Wang, C; Cohen, D; Liu, C


    Lung cancer is the leading cause of cancer-related mortality in both men and women worldwide. To identify novel factors that contribute to lung cancer pathogenesis, we analyzed a lung cancer database from The Cancer Genome Atlas and found that Krüppel-like Factor 4 (KLF4) expression is significantly lower in patients' lung cancer tissue than in normal lung tissue. In addition, we identified seven missense mutations in the KLF4 gene. KLF4 is a transcription factor that regulates cell proliferation and differentiation as well as the self-renewal of stem cells. To understand the role of KLF4 in the lung, we generated a tamoxifen-induced Klf4 knockout mouse model. We found that KLF4 inhibits lung cancer cell growth and that depletion of Klf4 altered the differentiation pattern in the developing lung. To understand how KLF4 functions during lung tumorigenesis, we generated the K-ras(LSL-G12D/+);Klf4(fl/fl) mouse model, and we used adenovirus-expressed Cre to induce K-ras activation and Klf4 depletion in the lung. Although Klf4 deletion alone or K-ras mutation alone can trigger lung tumor formation, Klf4 deletion combined with K-ras mutation significantly enhanced lung tumor formation. We also found that Klf4 deletion in conjunction with K-ras activation caused lung inflammation. To understand the mechanism whereby KLF4 is regulated during lung tumorigenesis, we analyzed KLF4 promoter methylation and the profiles of epigenetic factors. We found that Class I histone deacetylases (HDACs) are overexpressed in lung cancer and that HDAC inhibitors induced expression of KLF4 and inhibited proliferation of lung cancer cells, suggesting that KLF4 is probably repressed by histone acetylation and that HDACs are valuable drug targets for lung cancer treatment.

  7. Ras, Raf, and MAP kinase in melanoma.

    Solus, Jason F; Kraft, Stefan


    A growing understanding of the biology and molecular mechanisms of melanoma has led to the identification of a number of driver mutations for this aggressive tumor. The most common mutations affect signaling of the Ras/Raf/MAPK (mitogen-activated protein kinase) pathway. This review will focus on mutations in genes encoding proteins that play a role in the MAPK pathway and that have been implicated in melanoma biology, such as BRAF, NRAS, and MEK (MAPK kinase), and detail the current understanding of their role in melanoma progression from a molecular biology perspective. Furthermore, this review will also consider some additional mutations in genes such as KIT, GNAQ, and GNA11, which can be seen in certain subtypes of melanoma and whose gene products interact with the MAPK pathway. In addition, the association of these molecular changes with clinical and classical histopathologic characteristics of melanoma will be outlined and their role in diagnosis of melanocytic lesions discussed. Finally, a basic overview of the current targeted therapy landscape, as far as relevant to the pathologist, will be provided.

  8. Ras and Rap signaling in synaptic plasticity and mental disorders.

    Stornetta, Ruth L; Zhu, J Julius


    The Ras family GTPases (Ras, Rap1, and Rap2) and their downstream mitogen-activated protein kinases (ERK, JNK, and p38MAPK) and PI3K signaling cascades control various physiological processes. In neuronal cells, recent studies have shown that these parallel cascades signal distinct forms of AMPA-sensitive glutamate receptor trafficking during experience-dependent synaptic plasticity and adaptive behavior. Interestingly, both hypo- and hyperactivation of Ras/ Rap signaling impair the capacity of synaptic plasticity, underscoring the importance of a "happy-medium" dynamic regulation of the signaling. Moreover, accumulating reports have linked various genetic defects that either up- or down-regulate Ras/Rap signaling with several mental disorders associated with learning disability (e.g., Alzheimer's disease, Angelman syndrome, autism, cardio-facio-cutaneous syndrome, Coffin-Lowry syndrome, Costello syndrome, Cowden and Bannayan-Riley-Ruvalcaba syndromes, fragile X syndrome, neurofibromatosis type 1, Noonan syndrome, schizophrenia, tuberous sclerosis, and X-linked mental retardation), highlighting the necessity of happy-medium dynamic regulation of Ras/Rap signaling in learning behavior. Thus, the recent advances in understanding of neuronal Ras/Rap signaling provide a useful guide for developing novel treatments for mental diseases.

  9. Activation of overexpressed receptors for insulin and epidermal growth factor interferes in mitogenic signaling without affecting the activation of p21ras

    Osterop, A.P.R.M.; Medema, R.H.; Ouwens, D.M.; Zon, G.C.M. van der; Möller, W.; Maassen, J.A.


    Activated receptors with a tyrosine kinase activity induce a variety of responses like changes in the differentiation and mitogenic status of cells. These responses are mediated in part by p21ras. Some of these activated receptors induce in certain cell types a pronounced, but transient, increase in

  10. The Ras guanine nucleotide exchange factor RasGRF1 promotes matrix metalloproteinase-3 production in rheumatoid arthritis synovial tissue

    de Abreu, J.R.F.; de Launay, D.; Sanders, M.E.; Grabiec, A.M.; van de Sande, M.G.; Tak, P.P.; Reedquist, K.A.


    Introduction Fibroblast-like synoviocytes (FLS) from rheumatoid arthritis ( RA) patients share many similarities with transformed cancer cells, including spontaneous production of matrix metalloproteinases ( MMPs). Altered or chronic activation of proto-oncogenic Ras family GTPases is thought to

  11. A Cardiac-enriched MicroRNA, miR-378, Blocks Cardiac Hypertrophy by Targeting Ras Signaling*

    Nagalingam, Raghu S.; Sundaresan, Nagalingam R.; Gupta, Mahesh P.; Geenen, David L.; Solaro, R. John; Gupta, Madhu


    Understanding the regulation of cardiomyocyte growth is crucial for the management of adverse ventricular remodeling and heart failure. MicroRNA-378 (miR-378) is a newly described member of the cardiac-enriched miRNAs, which is expressed only in cardiac myocytes and not in cardiac fibroblasts. We have previously shown that miR-378 regulates cardiac growth during the postnatal period by direct targeting of IGF1R (Knezevic, I., Patel, A., Sundaresan, N. R., Gupta, M. P., Solaro, R. J., Nagalingam, R. S., and Gupta, M. (2012) J. Biol. Chem. 287, 12913–12926). Here, we report that miR-378 is an endogenous negative regulator of cardiac hypertrophy, and its levels are down-regulated during hypertrophic growth of the heart and during heart failure. In primary cultures of cardiomyocytes, overexpression of miR-378 blocked phenylephrine (PE)-stimulated Ras activity and also prevented activation of two major growth-promoting signaling pathways, PI3K-AKT and Raf1-MEK1-ERK1/2, acting downstream of Ras signaling. Overexpression of miR-378 suppressed PE-induced phosphorylation of S6 ribosomal kinase, pERK1/2, pAKT, pGSK-3β, and nuclear accumulation of NFAT. There was also suppression of the fetal gene program that was induced by PE. Experiments carried out to delineate the mechanism behind the suppression of Ras, led us to identify Grb2, an upstream component of Ras signaling, as a bona fide direct target of miR-378-mediated regulation. Deficiency of miR-378 alone was sufficient to induce fetal gene expression, which was prevented by knocking down Grb2 expression and blocking Ras activation, thus suggesting that miR-378 interferes with Ras activation by targeting Grb2. Our study demonstrates that miR-378 is an endogenous negative regulator of Ras signaling and cardiac hypertrophy and its deficiency contributes to the development of cardiac hypertrophy. PMID:23447532

  12. Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells.

    Lin, Shu; Yang, Junhua; Elkahloun, Abdel G; Bandyopadhyay, Abhik; Wang, Long; Cornell, John E; Yeh, I-Tien; Agyin, Joseph; Tomlinson, Gail; Sun, Lu-Zhe


    The molecular mechanisms that drive triple-negative, basal-like breast cancer progression are elusive. Few molecular targets have been identified for the prevention or treatment of this disease. Here we developed a series of isogenic basal-like human mammary epithelial cells (HMECs) with altered transforming growth factor-β (TGF-β) sensitivity and different malignancy, resembling a full spectrum of basal-like breast carcinogenesis, and determined the molecular mechanisms that contribute to oncogene-induced transformation of basal-like HMECs when TGF-β signaling is attenuated. We found that expression of a dominant-negative type II receptor (DNRII) of TGF-β abrogated autocrine TGF-β signaling in telomerase-immortalized HMECs and suppressed H-Ras-V12-induced senescence-like growth arrest (SLGA). Furthermore, coexpression of DNRII and H-Ras-V12 rendered HMECs highly tumorigenic and metastatic in vivo in comparison with H-Ras-V12-transformed HMECs that spontaneously escaped H-Ras-V12-induced SLGA. Microarray analysis revealed that p21 was the major player mediating Ras-induced SLGA, and attenuated or loss of p21 expression contributed to the escape from SLGA when autocrine TGF-β signaling was blocked in HMECs. Furthermore, knockdown of p21 also suppressed H-Ras-V12-induced SLGA. Our results identify that autocrine TGF-β signaling is an integral part of the cellular anti-transformation network by suppressing the expression of a host of genes, including p21-regulated genes, that mediate oncogene-induced transformation in basal-like breast cancer.

  13. Association of yeast adenylyl cyclase with cyclase-associated protein CAP forms a second Ras-binding site which mediates its Ras-dependent activation.

    Shima, F; Okada, T; Kido, M; Sen, H; Tanaka, Y; Tamada, M; Hu, C D; Yamawaki-Kataoka, Y; Kariya, K; Kataoka, T


    Posttranslational modification, in particular farnesylation, of Ras is crucial for activation of Saccharomyces cerevisiae adenylyl cyclase (CYR1). Based on the previous observation that association of CYR1 with cyclase-associated protein (CAP) is essential for its activation by posttranslationally modified Ras, we postulated that the associated CAP might contribute to the formation of a Ras-binding site of CYR1, which mediates CYR1 activation, other than the primary Ras-binding site, the leucine-rich repeat domain. Here, we observed a posttranslational modification-dependent association of Ras with a complex between CAP and CYR1 C-terminal region. When CAP mutants defective in Ras signaling but retaining the CYR1-binding activity were isolated by screening of a pool of randomly mutagenized CAP, CYR1 complexed with two of the obtained three mutants failed to be activated efficiently by modified Ras and exhibited a severely impaired ability to bind Ras, providing a genetic evidence for the importance of the physical association with Ras at the second Ras-binding site. On the other hand, CYR1, complexed with the other CAP mutant, failed to be activated by Ras but exhibited a greatly enhanced binding to Ras. Conversely, a Ras mutant E31K, which exhibits a greatly enhanced binding to the CYR1-CAP complex, failed to activate CYR1 efficiently. Thus, the strength of interaction at the second Ras-binding site appears to be a critical determinant of CYR1 regulation by Ras: too-weak and too-strong interactions are both detrimental to CYR1 activation. These results, taken together with those obtained with mammalian Raf, suggest the importance of the second Ras-binding site in effector regulation.

  14. Genetic alterations in K-ras and p53 cancer genes in lung neoplasms from B6C3F1 mice exposed to cumene.

    Hong, Hue-Hua L; Ton, Thai-Vu T; Kim, Yongbaek; Wakamatsu, Nobuko; Clayton, Natasha P; Chan, Po-Chuen; Sills, Robert C; Lahousse, Stephanie A


    The incidences of alveolar/bronchiolar adenomas and carcinomas in cumene-treated B6C3F1 mice were significantly greater than those of the control animals. We evaluated these lung neoplasms for point mutations in the K-ras and p53 genes that are often mutated in humans. K-ras and p53 mutations were detected by cycle sequencing of PCR-amplified DNA isolated from paraffin-embedded neoplasms. K-ras mutations were detected in 87% of cumene-induced lung neoplasms, and the predominant mutations were exon 1 codon 12 G to T transversions and exon 2 codon 61 A to G transitions. P53 protein expression was detected by immunohistochemistry in 56% of cumene-induced neoplasms, and mutations were detected in 52% of neoplasms. The predominant mutations were exon 5, codon 155 G to A transitions, and codon 133 C to T transitions. No p53 mutations and one of seven (14%) K-ras mutations were detected in spontaneous neoplasms. Cumene-induced lung carcinomas showed loss of heterozygosity (LOH) on chromosome 4 near the p16 gene (13%) and on chromosome 6 near the K-ras gene (12%). No LOH was observed in spontaneous carcinomas or normal lung tissues examined. The pattern of mutations identified in the lung tumors suggests that DNA damage and genomic instability may be contributing factors to the mutation profile and development of lung cancer in mice exposed to cumene.

  15. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis

    Huang, Jia-Lin; Jiang, Gan; Song, Qing-Xiang; Gu, Xiao; Hu, Meng; Wang, Xiao-Lin; Song, Hua-Hua; Chen, Le-Pei; Lin, Ying-Ying; Jiang, Di; Chen, Jun; Feng, Jun-Feng; Qiu, Yong-Ming; Jiang, Ji-Yao; Jiang, Xin-Guo; Chen, Hong-Zhuan; Gao, Xiao-Ling


    Hyperactivated Ras regulates many oncogenic pathways in several malignant human cancers including glioblastoma and it is an attractive target for cancer therapies. Ras activation in cancer cells drives protein internalization via macropinocytosis as a key nutrient-gaining process. By utilizing this unique endocytosis pathway, here we create a biologically inspired nanostructure that can induce cancer cells to `drink drugs' for targeting activating transcription factor-5 (ATF5), an overexpressed anti-apoptotic transcription factor in glioblastoma. Apolipoprotein E3-reconstituted high-density lipoprotein is used to encapsulate the siRNA-loaded calcium phosphate core and facilitate it to penetrate the blood-brain barrier, thus targeting the glioblastoma cells in a macropinocytosis-dependent manner. The nanostructure carrying ATF5 siRNA exerts remarkable RNA-interfering efficiency, increases glioblastoma cell apoptosis and inhibits tumour cell growth both in vitro and in xenograft tumour models. This strategy of targeting the macropinocytosis caused by Ras activation provides a nanoparticle-based approach for precision therapy in glioblastoma and other Ras-activated cancers.

  16. v-Ha-ras oncogene insertion: A model for tumor progression of human small cell lung cancer

    Mabry, M.; Nakagawa, Toshitaro; Nelkin, B.D.; McDowell, E.; Gesell, M.; Eggleston, J.C.; Casero, R.A. Jr.; Baylin, S.B.


    Small cell lung cancer (SCLC) manifests a range of phenotypes in culture that may be important in understanding its relationship to non-SCLCs and to tumor progression events in patients. Most SCLC-derived cell lines, termed classic SCLC lines, have properties similar to SCLC tumors in patients. To delineate further the relationships between these phenotypes and the molecular events involved, the authors inserted the v-Ha-ras gene in SCLC cell lines with (biochemical variant) and without (classic) an amplified c-myc gene. These two SCLC subtypes had markedly different phenotypic responses to similar levels of expression of v-Ha-ras RNA. No biochemical or morphologic changes were observed in classic SCLC cells. In contrast, in biochemical variant SCLC cells, v-Ha-ras expression induced features typical of large cell undifferentiated lung carcinoma. Expression of v-Ha-ras in biochemical variant SCLC cells directly demonstrates that important transitions can occur between phenotypes of human lung cancer cells and that these may play a critical role in tumor progression events in patients. The finding provide a model system to study molecular events involved in tumor progression steps within a series of related tumor types.

  17. OSBP-related protein 3 (ORP3) coupling with VAMP-associated protein A regulates R-Ras activity.

    Weber-Boyvat, Marion; Kentala, Henriikka; Lilja, Johanna; Vihervaara, Terhi; Hanninen, Raisa; Zhou, You; Peränen, Johan; Nyman, Tuula A; Ivaska, Johanna; Olkkonen, Vesa M


    ORP3 is an R-Ras interacting oxysterol-binding protein homolog that regulates cell adhesion and is overexpressed in several cancers. We investigated here a novel function of ORP3 dependent on its targeting to both the endoplasmic reticulum (ER) and the plasma membrane (PM). Using biochemical and cell imaging techniques we demonstrate the mechanistic requirements for the subcellular targeting and function of ORP3 in control of R-Ras activity. We show that hyperphosphorylated ORP3 (ORP3-P) selectively interacts with the ER membrane protein VAPA, and ORP3-VAPA complexes are targeted to PM sites via the ORP3 pleckstrin homology (PH) domain. A novel FFAT (two phenylalanines in an acidic tract)-like motif was identified in ORP3; only disruption of both the FFAT-like and canonical FFAT motif abolished the phorbol-12-myristate-13-acetate (PMA) stimulated interaction of ORP3-P with VAPA. Co-expression of ORP3 and VAPA induced R-Ras activation, dependent on the interactions of ORP3 with VAPA and the PM. Consistently, downstream AktS473 phosphorylation and β1-integrin activity were enhanced by ORP3-VAPA. To conclude, phosphorylation of ORP3 controls its association with VAPA. Furthermore, we present evidence that ORP3-VAPA complexes stimulate R-Ras signaling.

  18. Genetic analysis of the Kirsten-ras-revertant 1 gene: Potentiation of its tumor suppressor activity by specific point mutations

    Kitayama, Hitoshi (Institute of Physical and Chemical Research, Ibaraki (Japan) Univ. of Tsukuba, Ibaraki (Japan)); Matsuzaki, Tomoko; Ikawa, Yoji; Noda, Makoto (Institute of Physical and Chemical Research, Ibaraki (Japan))


    Kirsten-ras-revertant 1 (Krev-1) cDNA encodes a ras-related protein and exhibits an activity of inducing flat revertants at certain frequencies (2-5% of total transfectants) when introduced into a v-K-ras-transformed mouse NIH 3T3 cell line, DT. Toward understanding the mechanism of action of Krev-1 protein, the authors constructed a series of point mutants of Krev-1 cDNA and tested their biological activities in DT cells and HT1080 human fibrosarcoma cells harboring the activated N-ras gene. Substitutions of the amino acid residues in the putative guanine nucleotide-binding regions (Asp{sup 17} and Asn{sup 116}), in the putative effector-binding domain (residue 38), at the putative acylation site (Cys{sup 181}), and at the unique Thr{sup 61} all decreased the transformation suppressor activity. On the other hand, substitutions such as Gly{sup 12} to Val{sup 12} and Gln{sup 63} to Glu{sup 63} were found to significantly increase the transformation suppressor/tumor suppressor activity of Krev-1. These findings are consistent with the idea that Krev-1 protein is regulated like many other G proteins by the guanine triphosphate/guanine diphosphate-exchange mechanism probably in response to certain negative growth-regulatory signals.

  19. Anti-tumor effect of CTLs activated by dendritic cells pulsed with K-ras mutant peptide and whole tumor antigen on pancreatic cancer%K-ras突变多肽与全细胞抗原致敏DCs诱导CTLs对胰腺癌的杀伤活性研究

    Guang Tan; Zhongyu Wang; Xin Zhang; Zhengang Cai; Junkai Zhang


    Objective:We studied the role of specific cytotoxic T lymphocytes(CTLs)activated by dendritic cells(DCs)presenting cationic nanoparticles with the K-ras(12-Val)mutant peptide and whole tumor antigen in the killing of different pancreatic cancer cell lines in vitro and in vitro.Methods:Peripheral blood DCs were induced by rhGM-CSF and IL-4 and cultured.DCs were sensitized by whole antigen of a pancreatic cancer cell line(PANC-1)with expression of K-ras mutant,K-ras mutant peptide(K-ras+peptide)and cationic nanoparticles with K-ras mutant peptide(K-ras+peptide-CNP),respectively.Cell surface markers were measured by flow cytometry.Lymphocyte proliferation was detected by the 3H-TdR test,and ELISA was performed to detect IFN-γ secretion.125I-UdR was used to measure the killing effect of CTLs.We also evaluated the antitumor activity of CTLs in vivo in a tumor-bearing nude mouse model prepared with the PANC-1(K-ras+)and SW1990(K-ras-)cell lines.Results:Compared with K-ras+peptide,low concentration K-ras+peptide-CNP can be effectively presented by DCs(P0.05)on SW1990 cell lines(P>0.05).Conclusion:Cationic nanoparticles with K-res(12-Val)mutant peptide can be effectively presented by DCs at a low concentration in a short time.CTLs induced by K-ras+peptide-CNP had specific killing activity for the pancreatic cancer cell line with the K-ras(12-Val)mutant and could significantly inhibit tumor growth and increase the survival time of tumor-bearing nude mice.

  20. Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters.

    Zhou, Yong; Liang, Hong; Rodkey, Travis; Ariotti, Nicholas; Parton, Robert G; Hancock, John F


    Lipid-anchored Ras GTPases form transient, spatially segregated nanoclusters on the plasma membrane that are essential for high-fidelity signal transmission. The lipid composition of Ras nanoclusters, however, has not previously been investigated. High-resolution spatial mapping shows that different Ras nanoclusters have distinct lipid compositions, indicating that Ras proteins engage in isoform-selective lipid sorting and accounting for different signal outputs from different Ras isoforms. Phosphatidylserine is a common constituent of all Ras nanoclusters but is only an obligate structural component of K-Ras nanoclusters. Segregation of K-Ras and H-Ras into spatially and compositionally distinct lipid assemblies is exquisitely sensitive to plasma membrane phosphatidylserine levels. Phosphatidylserine spatial organization is also modified by Ras nanocluster formation. In consequence, Ras nanoclusters engage in remote lipid-mediated communication, whereby activated H-Ras disrupts the assembly and operation of spatially segregated K-Ras nanoclusters. Computational modeling and experimentation reveal that complex effects of caveolin and cortical actin on Ras nanoclustering are similarly mediated through regulation of phosphatidylserine spatiotemporal dynamics. We conclude that phosphatidylserine maintains the lateral segregation of diverse lipid-based assemblies on the plasma membrane and that lateral connectivity between spatially remote lipid assemblies offers important previously unexplored opportunities for signal integration and signal processing.

  1. Cellular and subcellular localization of Ras guanyl nucleotide-releasing protein in the rat hippocampus.

    Pierret, P; Vallée, A; Mechawar, N; Dower, N A; Stone, J C; Richardson, P M; Dunn, R J


    Ras guanyl nucleotide-releasing protein (RasGRP) is a recently discovered Ras guanyl nucleotide exchange factor that is expressed in selected regions of the rodent CNS, with high levels of expression in the hippocampus. Biochemical studies suggest that RasGRP can activate the Ras signal pathway in response to changes in diacylglycerol and possibly calcium. To investigate potential sites for RasGRP signaling, we have determined the cellular and subcellular localization of RasGRP protein in adult rat hippocampus, and have also examined the appearance of RasGRP mRNA and protein during hippocampal development. RasGRP immunoreactivity is predominately localized to those neurons participating in the direct cortico-hippocampo-cortical loop. In both hippocampal and entorhinal neurons, RasGRP protein appeared to be localized to both dendrites and somata, but not to axons. Electron microscopy of hippocampal pyramidal cells confirmed RasGRP immunoreactivity in neuronal cell bodies and dendrites, where it appeared to be associated with microtubules. The localization of RasGRP to dendrites suggests a role for this pathway in the regulation of dendritic function. Examination of developing hippocampal structures indicated that RasGRP mRNA and protein appear synchronously during the first 2 weeks of postnatal development as these neurons become fully mature. This result indicates that the RasGRP signal transduction pathway is not required during early hippocampal development, but is a feature of mature neurons during the later stages of development.

  2. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation.

    Li, Yanping; Takahashi, Maho; Stork, Philip J S


    The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.

  3. Novel molecular targets for kRAS downregulation: promoter G-quadruplexes


    quadruplex DNA and down-regulation of oncogene c-myc by quindoline derivatives. Journal of medicinal chemistry 50, 1465–1474 (2007). 9 Brown , R. V., Danford...KCl, the DMS cleavage pat - tern for the induced G-quadruplex in the WT sequence revealed a Fig. 2. Predominant G4 isoforms formedwithin the near kRAS...41 (2013) 4049–4064. [37] R.V. Brown , V.C. Gaerig, T. Simmons, T.A. Brooks, Helping Eve overcome ADAM: G-quadruplexes in the ADAM-15 promoter as new

  4. BTB-Zinc Finger Oncogenes Are Required for Ras and Notch-Driven Tumorigenesis in Drosophila.

    Karen Doggett

    Full Text Available During tumorigenesis, pathways that promote the epithelial-to-mesenchymal transition (EMT can both facilitate metastasis and endow tumor cells with cancer stem cell properties. To gain a greater understanding of how these properties are interlinked in cancers we used Drosophila epithelial tumor models, which are driven by orthologues of human oncogenes (activated alleles of Ras and Notch in cooperation with the loss of the cell polarity regulator, scribbled (scrib. Within these tumors, both invasive, mesenchymal-like cell morphology and continual tumor overgrowth, are dependent upon Jun N-terminal kinase (JNK activity. To identify JNK-dependent changes within the tumors we used a comparative microarray analysis to define a JNK gene signature common to both Ras and Notch-driven tumors. Amongst the JNK-dependent changes was a significant enrichment for BTB-Zinc Finger (ZF domain genes, including chronologically inappropriate morphogenesis (chinmo. chinmo was upregulated by JNK within the tumors, and overexpression of chinmo with either RasV12 or Nintra was sufficient to promote JNK-independent epithelial tumor formation in the eye/antennal disc, and, in cooperation with RasV12, promote tumor formation in the adult midgut epithelium. Chinmo primes cells for oncogene-mediated transformation through blocking differentiation in the eye disc, and promoting an escargot-expressing stem or enteroblast cell state in the adult midgut. BTB-ZF genes are also required for Ras and Notch-driven overgrowth of scrib mutant tissue, since, although loss of chinmo alone did not significantly impede tumor development, when loss of chinmo was combined with loss of a functionally related BTB-ZF gene, abrupt, tumor overgrowth was significantly reduced. abrupt is not a JNK-induced gene, however, Abrupt is present in JNK-positive tumor cells, consistent with a JNK-associated oncogenic role. As some mammalian BTB-ZF proteins are also highly oncogenic, our work suggests that

  5. Altered expression of Bcl-2, c-Myc, H-Ras, K-Ras, and N-Ras does not influence the course of mycosis fungoides

    Maj, Joanna; Jankowska-Konsur, Alina; Plomer-Niezgoda, Ewa; Sadakierska-Chudy, Anna


    Introduction Data about genetic alterations in mycosis fungoides (MF) are limited and their significance not fully elucidated. The aim of the study was to explore the expression of various oncogenes in MF and to assess their influence on the disease course. Material and methods Skin biopsies from 27 MF patients (14 with early MF and 13 with advanced disease) and 8 healthy volunteers were analyzed by real-time polymerase chain reaction (PCR) to detect Bcl-2, c-Myc, H-Ras, K-Ras and N-Ras expression. All PCR reactions were performed using an Applied Biosystems 7900HT Fast Real-Time PCR System and interpreted using Sequence Detection Systems software which utilizes the comparative delta Ct method. The level of mRNA was normalized to GAPDH expression. All data were analyzed statistically. Results All evaluated oncogenes were found to be expressed in the skin from healthy controls and MF patients. Bcl-2 (–4.2 ±2.2 vs. –2.2 ±1.1; p = 0.01), H-Ras (–3.0 ±3.3 vs. 0.6 ±2.6; p = 0.01) and N-Ras (–3.6 ±2.0 vs. –1.1 ±2.4; p = 0.03) were expressed at significantly lower levels in MF. No relationships between oncogene expression and disease stage, presence of distant metastases and survival were observed (p > 0.05 for all comparisons). Conclusions The pathogenic role and prognostic significance of analyzed oncogenes in MF seem to be limited and further studies are needed to establish better prognostic factors for patients suffering from MF. PMID:24273576

  6. Fibroblast growth factor 2 causes G2/M cell cycle arrest in ras-driven tumor cells through a Src-dependent pathway.

    Jacqueline Salotti

    Full Text Available We recently reported that paracrine Fibroblast Growth Factor 2 (FGF2 triggers senescence in Ras-driven Y1 and 3T3(Ras mouse malignant cell lines. Here, we show that although FGF2 activates mitogenic pathways in these Ras-dependent malignant cells, it can block cell proliferation and cause a G2/M arrest. These cytostatic effects of FGF2 are inhibited by PD173074, an FGF receptor (FGFR inhibitor. To determine which downstream pathways are induced by FGF2, we tested specific inhibitors targeting mitogen-activated protein kinase (MEK, phosphatidylinositol 3 kinase (PI3K and protein kinase C (PKC. We show that these classical mitogenic pathways do not mediate the cytostatic activity of FGF2. On the other hand, the inhibition of Src family kinases rescued Ras-dependent malignant cells from the G2/M irreversible arrest induced by FGF2. Taken together, these data indicate a growth factor-sensitive point in G2/M that likely involves FGFR/Ras/Src pathway activation in a MEK, PI3K and PKC independent manner.

  7. CD117+ Dendritic and Mast Cells Are Dependent on RasGRP4 to Function as Accessory Cells for Optimal Natural Killer Cell-Mediated Responses to Lipopolysaccharide.

    Saijun Zhou

    Full Text Available Ras guanine nucleotide-releasing protein-4 (RasGRP4 is an evolutionarily conserved calcium-regulated, guanine nucleotide exchange factor and diacylglycerol/phorbol ester receptor. While an important intracellular signaling protein for CD117+ mast cells (MCs, its roles in other immune cells is less clear. In this study, we identified a subset of in vivo-differentiated splenic CD117+ dendritic cells (DCs in wild-type (WT C57BL/6 mice that unexpectedly contained RasGRP4 mRNA and protein. In regard to the biologic significance of these data to innate immunity, LPS-treated splenic CD117+ DCs from WT mice induced natural killer (NK cells to produce much more interferon-γ (IFN-γ than comparable DCs from RasGRP4-null mice. The ability of LPS-responsive MCs to cause NK cells to increase their expression of IFN-γ was also dependent on this intracellular signaling protein. The discovery that RasGRP4 is required for CD117+ MCs and DCs to optimally induce acute NK cell-dependent immune responses to LPS helps explain why this signaling protein has been conserved in evolution.

  8. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    Copp& #233; , Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith


    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  9. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor.

    Jean-Philippe Coppé


    Full Text Available Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  10. Ras signalling regulates differentiation and UCP1 expression in models of brown adipogenesis

    Murholm, Maria; Dixen, Karen; Hansen, Jacob B


    on two unrelated models of mouse brown adipocyte differentiation. RESULTS: A constitutively active H-Ras mutant (Ras V12) caused a complete block of adipose conversion, as manifested by a lack of both lipid accumulation and induction of adipocyte gene expression. The Ras V12-mediated impediment......-Ras mutant (Ras N17) did not inhibit differentiation, but led to increased expression of genes important for energy dissipation in brown fat cells, including UCP1. GENERAL SIGNIFICANCE: These data suggest that the intensity of Ras signalling is important for differentiation and UCP1 expression in models...

  11. The Protective Arm of the Renin Angiotensin System (RAS)

    The Protective Arm of the Renin Angiotensin System: Functional Aspects and Therapeutic Implications is the first comprehensive publication to signal the protective role of a distinct part of the renin-angiotensin system (RAS), providing readers with early insight into a complex system which...... will become of major medical importance in the near future. Focusing on recent research, The Protective Arm of the Renin Angiotensin System presents a host of new experimental studies on specific components of the RAS, namely angiotensin AT2 receptors (AT2R), the angiotensin (1-7) peptide with its receptor...... understanding of the protective side of the Renin Angiotensin System (RAS) involving angiotensin AT2 receptor, ACE2, and Ang(1-7)/Mas receptor Combines the knowledge of editors who pioneered research on the protective renin angiotensin system including; Dr. Thomas Unger, one of the founders of AT2 receptor...

  12. Influence of feed ingredients on water quality parameters in RAS


    Although feed by far is providing the major input to RAS, relatively little is published about the correlation between feed composition and the resulting water quality in such systems. In a set-up with 6 identical RAS, each consisting of a fish tank (0.5 m3), a swirl separator, a submerged...... had impact on water quality in the systems as well as on matter removed by the swirl separators. In the RAS water, phosphorous (Ptot and Pdiss) concentrations were reduced by guar gum. Organic matter content (CODdiss) in the water was also reduced. Corresponding to this, more dry matter, more COD...... to the systems for 49 consecutive days. Each week, 24h-water samples (1 sample/hour) were collected from each system. The sludge collected in the swirl separator that day was also collected. Water and sludge were subsequently analysed for nitrogen, phosphorous and organic matter content. Inclusion of guar gum...

  13. Prolonged sulforaphane treatment does not enhance tumorigenesis in oncogenic K-ras and xenograft mouse models of lung cancer

    Ponvijay Kombairaju


    Full Text Available Background: Sulforaphane (SFN, an activator of nuclear factor erythroid-2 related factor 2 (Nrf2, is a promising chemopreventive agent which is undergoing clinical trial for several diseases. Studies have indicated that there is gain of Nrf2 function in lung cancer and other solid tumors because of mutations in the inhibitor Kelch-like ECH-associated protein 1 (Keap1. More recently, several oncogenes have been shown to activate Nrf2 signaling as the main prosurvival pathway mediating ROS detoxification, senescence evasion, and neoplastic transformation. Thus, it is important to determine if there is any risk of enhanced lung tumorigenesis associated with prolonged administration of SFN using mouse models of cancer. Materials and Methods: We evaluated the effect of prolonged SFN treatment on oncogenic K-ras (K-ras LSL-G12D -driven lung tumorigenesis. One week post mutant-K-ras expression, mice were treated with SFN (0.5 mg, 5 d/wk for 3 months by means of a nebulizer. Fourteen weeks after mutant K-ras expression (K-ras LSL-G12D , mice were sacrificed, and lung sections were screened for neoplastic foci. Expression of Nrf2-dependent genes was measured using real time RT-PCR. We also determined the effect of prolonged SFN treatment on the growth of preclinical xenograft models using human A549 (with mutant K-ras and Keap1 allele and H1975 [with mutant epidermal growth factor receptor (EGFR allele] nonsmall cell lung cancer cells. Results: Systemic SFN administration did not promote the growth of K-ras LSL-G12D -induced lung tumors and had no significant effect on the growth of A549 and H1975 established tumor xenografts in nude mice. Interestingly, localized delivery of SFN significantly attenuated the growth of A549 tumors in nude mice, suggesting an Nrf2-independent antitumorigenic activity of SFN. Conclusions: Our results demonstrate that prolonged SFN treatment does not promote lung tumorigenesis in various mouse models of lung cancer.

  14. Identification of a provirally activated c-Ha-ras oncogene in an avian nephroblastoma via a novel procedure: cDNA cloning of a chimaeric viral-host transcript.

    Westaway, D; Papkoff, J; Moscovici, C; Varmus, H E


    Retrovirus without oncogenes often exert their neoplastic potential as insertional mutagens of cellular proto-oncogenes. This may be associated with the production of chimaeric viral-host transcripts; in these cases; activated cellular genes can be identified by obtaining cDNA clones of bipartite RNAs. This approach was used in the analysis of chicken nephroblastomas induced by myeloblastosis-associated virus (MAV). One tumor contained a novel mRNA species initiated within a MAV LTR. cDNA cloning revealed that this mRNA encodes a protein of 189 amino acids, identical to that of normal human Ha-ras-1 at 185 positions, including positions implicated in oncogenic activation of ras proto-oncogenes; there are no differences between the coding sequences of presumably normal Ha-ras cDNA clones from chicken lymphoma RNA and the tumor-derived cDNAs. The chimaeric mRNA in the nephroblastoma is at least 25-fold more abundant than c-Ha-ras mRNA in normal kidney tissue, and a 21-kd ras-related protein is present in relatively large amounts in the tumor. We conclude that a quantitative change in c-Ha-ras gene expression results from an upstream insertion mutation and presumably contributes to tumorigenesis in this single case. Little or no increase in c-Ha-ras RNA or protein was observed in other nephroblastomas. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 10. PMID:3011401

  15. Ras Umm Sidd Oxygen Isotope (delta 18O) Data for 1750 to 1995

    National Oceanic and Atmospheric Administration, Department of Commerce — Ras Umm Sidd bimonthly coral oxygen isotope data (coral core RUS-95). Notes on the data: File (Ras Umm Sidd d18O.txt.) includes columns for Year AD (bimonthly...

  16. C-terminal sequences in R-Ras are involved in integrin regulation and in plasma membrane microdomain distribution.

    Hansen, Malene; Prior, Ian A; Hughes, Paul E; Oertli, Beat; Chou, Fan-Li; Willumsen, Berthe M; Hancock, John F; Ginsberg, Mark H


    The small GTPases R-Ras and H-Ras are highly homologous proteins with contrasting biological properties, for example, they differentially modulate integrin affinity: H-Ras suppresses integrin activation in fibroblasts whereas R-Ras can reverse this effect of H-Ras. To gain insight into the sequences directing this divergent phenotype, we investigated a panel of H-Ras/R-Ras chimeras and found that sequences in the R-Ras hypervariable C-terminal region including amino acids 175-203 are required for the R-Ras ability to increase integrin activation in CHO cells; however, the proline-rich site in this region, previously reported to bind the adaptor protein Nck, was not essential for this effect. In addition, we found that the GTPase TC21 behaved similarly to R-Ras. Because the C-termini of Ras proteins can control their subcellular localization, we compared the localization of H-Ras and R-Ras. In contrast to H-Ras, which migrates out of lipid rafts upon activation, we found that activated R-Ras remained localized to lipid rafts. However, functionally distinct H-Ras/R-Ras chimeras containing different C-terminal R-Ras segments localized to lipid rafts irrespective of their integrin phenotype.

  17. Rasputin, the Drosophila homologue of the RasGAP SH3 binding protein, functions in ras- and Rho-mediated signaling.

    Pazman, C; Mayes, C A; Fanto, M; Haynes, S R; Mlodzik, M


    The small GTPase Ras plays an important role in many cellular signaling processes. Ras activity is negatively regulated by GTPase activating proteins (GAPs). It has been proposed that RasGAP may also function as an effector of Ras activity. We have identified and characterized the Drosophila homologue of the RasGAP-binding protein G3BP encoded by rasputin (rin). rin mutants are viable and display defects in photoreceptor recruitment and ommatidial polarity in the eye. Mutations in rin/G3BP genetically interact with components of the Ras signaling pathway that function at the level of Ras and above, but not with Raf/MAPK pathway components. These interactions suggest that Rin is required as an effector in Ras signaling during eye development, supporting an effector role for RasGAP. The ommatidial polarity phenotypes of rin are similar to those of RhoA and the polarity genes, e.g. fz and dsh. Although rin/G3BP interacts genetically with RhoA, affecting both photoreceptor differentiation and polarity, it does not interact with the gain-of-function genotypes of fz and dsh. These data suggest that Rin is not a general component of polarity generation, but serves a function specific to Ras and RhoA signaling pathways.


    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  19. Dictyostelium RasD is required for normal phototaxis, but not differentiation

    Wilkins, Andrew; Khosla, Meenal; Fraser, Derek J; Spiegelman, George B.; Fisher, Paul R.; Weeks, Gerald; Insall, Robert H.


    RasD, a Dictyostelium homolog of mammalian Ras, is maximally expressed during the multicellular stage of development. Normal Dictyostelium aggregates are phototactic and thermotactic, moving towards sources of light and heat with great sensitivity. We show that disruption of the gene for rasD causes a near-total loss of phototaxis and thermotaxis in mutant aggregates, without obvious effects on undirected movement. Previous experiments had suggested important roles for RasD in development and...

  20. Zoledronic acid inhibits the pentose phosphate pathway through attenuating the Ras-TAp73-G6PD axis in bladder cancer cells.

    Wang, Xiaolin; Wu, Guang; Cao, Guangxin; Yang, Lei; Xu, Haifei; Huang, Jian; Hou, Jianquan


    Zoledronic acid (ZA) is the current standard of care for the therapy of patients with bone metastasis or osteoporosis. ZA inhibits the prenylation of small guanosine‑5'-triphosphate (GTP)‑binding proteins, such as Ras, and thus inhibit Ras signaling. The present study demonstrated that ZA inhibited cell proliferation and the pentose phosphate pathway (PPP) in bladder cancer cells. In addition, the expression of glucose‑6‑phosphate dehydrogenase (G6PD, the rate‑limiting enzyme of the PPP) was found to be inhibited by ZA. Furthermore, the stability of TAp73, which activates the expression G6PD was decreased in zoledronic acid treated cells. Decreased levels of Ras‑GTP and phosphorylated‑extracellular signal-regulated kinase 1/2 were also observed following treatment with ZA. This may be due to the fact that activated Ras was reported to stabilize TAp73 inducing its accumulation. The inhibition of Ras activity by PT inhibitor II also significantly reduced the levels of TAp73 and G6PD and the PPP flux. Moreover, knockdown of TAp73, attenuated the PPP flux and eliminated the affection of ZA on the PPP flux. In conclusion, it was proposed that ZA can inhibit stability of TAp73 and attenuate the PPP via blocking Ras signaling in bladder cancer cells.

  1. Restoration of E-cadherin Cell-Cell Junctions Requires Both Expression of E-cadherin and Suppression of ERK MAP Kinase Activation in Ras-Transformed Breast Epithelial Cells

    Quanwen Li


    Full Text Available E-cadherin is a main component of the cell-cell adhesion junctions that play a principal role in maintaining normal breast epithelial cell morphology. Breast and other cancers that have up-regulated activity of Ras are often found to have down-regulated or mislocalized E-cadherin expression. Disruption of E-cadherin junctions and consequent gain of cell motility contribute to the process known as epithelial-to-mesenchymal transition (EMT. Enforced expression of E-cadherin or inhibition of Ras-signal transduction pathway has been shown to be effective in causing reversion of EMT in several oncogene-transformed and cancer-derived cell lines. In this study, we investigated MCF10A human breast epithelial cells and derivatives that were transformed with either activated H-Ras or N-Ras to test for the reversion of EMT by inhibition of Ras-driven signaling pathways. Our results demonstrated that inhibition of mitogen-activated protein kinase (MAPK kinase, but not PI3-kinase, Rac, or myosin light chain kinase, was able to completely restore E-cadherin cell-cell junctions and epithelial morphology in cell lines with moderate H-Ras expression. In MCF10A cells transformed by a high-level expression of activated H-Ras or N-Ras, restoration of E-cadherin junction required both the enforced reexpression of E-cadherin and suppression of MAPK kinase. Enforced expression of E-cadherin alone did not induce reversion from the mesenchymal phenotype. Our results suggest that Ras transformation has at least two independent actions to disrupt E-cadherin junctions, with effects to cause both mislocalization of E-cadherin away from the cell surface and profound decrease in the expression of E-cadherin.

  2. Silencing of SPRY1 Triggers Complete Regression of Rhabdomyosarcoma Tumors Carrying a Mutated RAS Gene

    G. Schaaf; M. Hamdi; D. Zwijnenburg; A. Lakeman; D. Geerts; R. Versteeg; M. Kool


    RAS oncogenes are among the most frequently mutated genes in human cancer, but effective strategies for therapeutic inhibition of the RAS pathway have been elusive. Sprouty1 (SPRY1) is an upstream antagonist of RAS that is activated by extracellular signal-related kinase (ERK), providing a negative

  3. RAS testing in metastatic colorectal cancer: excellent reproducibility amongst 17 Dutch pathology centers

    Boleij, A.; Tops, B.B.; Rombout, P.D.; Dequeker, E.M.; Ligtenberg, M.J.; Krieken, J.H.J.M. van


    In 2013 the European Medicine Agency (EMA) restricted the indication for anti-EGFR targeted therapy to metastatic colorectal cancer (mCRC) with a wild-type RAS gene, increasing the need for reliable RAS mutation testing. We evaluated the completeness and reproducibility of RAS-testing in the Netherl

  4. Eerste resultaten onderzoek naar meest geschikte ras-onderstamcombinaties

    Maas, F.M.; Beurskens, Stan


    In 2008 is in samenspraak met het Wijngaardiersgilde en met subsidie van het ministerie van LNV een onderzoek gestart om verspreid over Nederland en voor verschillende bodemtypen te onderzoeken hoe de verschillende druiven ras-onderstamcombinaties zich ontwikkelen. 14 Rode en 14 witte druivenrassen

  5. On the Accuracy of RAS Method in an Emergent Economy

    Emilian Dobrescu


    Full Text Available The goal of this paper is to check the applicability of RAS procedure (in its conventional definition on statistical series of an emergent economy, as the Romanian one. As it is known, during transition from centrally planned system to market mechanisms, the society passes through deep restructuration, consisting in complex institutional changes, technological shifts, sectoral reallocation of productive factors, which continuously affected the input-output technical coefficients. Testing the RAS algorithm on such a volatile framework is a notable search challenge. Our empirical experiment is based on annual input-output tables for two decades (1989- 2008. In order to easier manipulate the available data base, the extended classification of economic activities containing 105 branches has been aggregated into 10 sectors. For each year, two (10x10 matrices: aij (statistically recorded technical coefficients and raij (the same coefficients estimated using RAS method were computed. The paper is organized in three sections. The first discusses several methodological issues of this algorithm. It also evaluates the differences between matrices aij and raij, involving both categories of accuracy measures - either the “cell-by-cell” comparison or the aggregated indicators. The second section extensively examines these measures, the presentation being systematized sectorally. Such an approach allows revealing specificities of different branches in their inter-industry co-operation. The third section sketches an overview of the obtained results and extracts some conclusions related to the problems that arise in the application of RAS method.


    BAN Ke-chen; SU Jian-jia; YANG Chun; QIN Liu-liang; LI Yuan; HUANG Guo-hua; LUO Xiao-ling; DUAN Xiao-xian; YAN Rui-qi


    Objective: In order to investigate the relationship between the expression of ras gene and the development of hepatocellular carcinoma (HCC). Materials and Methods: The experimental tree shrews were divided into four groups: group A, infected human hepatitis B virus (HBV) and exposed to aflatoxin B1 (AFB1); group B, infected human HBV alone; group C, only exposed to AFB1; group D, use as controls. The serial bioptic liver tissues were detected for ras p21 protein using immunohistochemical method. Results: The total p21protein positive rates in group A, B, C and D were 35.3%, 5.3%, 13.3%, 0, respectively, thus the significant difference were showed between group A and group B (P<0.05); The HCC incidences in group A, B, C and D were 47.1%, 0, 13.3%, 0, respectively, and there was a significant difference between group A and C (P<0.05).The incidences of HCC in the animals with and without p21 protein positive in group A were 100% and 18.2%,respectively, and there was a significant difference among them (P<0.01). Conclusion: HBV and AFB1 play a remarkable synergistic role in the development of HCC; they can enhance the expression of ras gene. The over-expression of ras gene is closely related to pathogenesis of HCC in tree shrews.

  7. Dual RAS Therapy Not on Target, but Fully Alive

    Lambers Heerspink, H. J.; de Zeeuw, D.


    Inhibitors of the renin-angiotensin system (RAS) form a cornerstone in the treatment of kidney disease. These drugs lower blood pressure and albuminuria, and afford renal protection. Dual therapy with an angiotensin-converting enzyme inhibitor and angiotensin receptor blocker have been shown to be m

  8. RAS/RAF/MEK/ERK and PI3K/PTEN/AKT Signaling in Malignant Melanoma Progression and Therapy

    Ichiro Yajima


    Full Text Available Cutaneous malignant melanoma is one of the most serious skin cancers and is highly invasive and markedly resistant to conventional therapy. Melanomagenesis is initially triggered by environmental agents including ultraviolet (UV, which induces genetic/epigenetic alterations in the chromosomes of melanocytes. In human melanomas, the RAS/RAF/MEK/ERK (MAPK and the PI3K/PTEN/AKT (AKT signaling pathways are two major signaling pathways and are constitutively activated through genetic alterations. Mutations of RAF, RAS, and PTEN contribute to antiapoptosis, abnormal proliferation, angiogenesis, and invasion for melanoma development and progression. To find better approaches to therapies for patients, understanding these MAPK and AKT signaling mechanisms of melanoma development and progression is important. Here, we review MAPK and AKT signaling networks associated with melanoma development and progression.

  9. Killing effect of CIKs on pancreatic cancer cells enhanced by DCs loaded with K-ras mutant peptide%K-ras突变多肽负载的DC细胞增强CIK细胞对胰腺癌细胞的杀伤作用

    窦春鹏; 李奎武; 谭广


    Objective:To observe the killing effect of the cytokine induced killer cells (CIKs) atfer co-culture with dendritic cells (DCs) harboring K-ras (12-Val) mutant peptide on pancreatic cancer PANC-1 cells. Methods:DCs and CIKs were induced and enriched from peripheral blood of healthy donors, respectively. DCs were loaded with the K-ras mutant epitope peptide (K-ras-DCs), and CIKs were co-cultured with un-loaded DCs or K-ras-DCs to obtain the DC-CIKs and K-ras-DC-CIKs, respectively. hTe proliferative activities between CIKs and K-ras-DC-CIKs were compared, the difference in immunophenotype between DCs and K-ras-DCs as well as between CIKs and K-ras-DC-CIKs were analyzed, the IFN-γand IL-12 levels in the culture supernatants from CIKs, DC-CIKs and K-ras-DC-CIKs were measured, and the killing abilities of CIKs, DC-CIKs and K-ras-DC-CIKs on PANC-1 cells in vitro were determined. Results:The proliferative ability of K-ras-DC-CIKs was significantly greater than that of the untreated CIKs (P Conclusion:K-ras mutant peptide can promote DCs maturation, and DCs harboring K-ras mutant peptide can increase the proliferation of CIKs and killing effect on pancreatic cancer cells.%目的:观察经K-ras(12-Val)突变多肽负载的树突状细胞(DC)与细胞因子诱导的杀伤细胞(CIK)共培养以后对胰腺癌PANC-1细胞的杀伤作用。  方法:取健康人外周血体外诱导分别扩增出DC和CIK;用K-ras突变体抗原表位肽负载DC(K-ras-DC),将单纯DC或K-ras-DC与CIK共培养,获得DC-CIK或K-ras-DC-CIK。比较CIK与K-ras-DC-CIK的增殖活性;分别分析DC与K-ras-DC以及CIK与K-ras-DC-CIK的免疫表型差异;检测CIK、DC-CIK、K-ras-DC-CIK上清液中IFN-γ、IL-12的水平;检测K-ras-DC-CIK、DC-CIK、CIK对PANC-1细胞的体外杀伤力。  结果:K-ras-DC-CIK的增殖能力明显强于单纯CIK(P  结论:K-ras突变多肽负载后能促进DC的成熟,负载K-ras突变多肽后的DC能增加CIK

  10. Selective killing of K-ras-transformed pancreatic cancer cells by targeting NAD(P)H oxidase

    Peng Wang; Yi-Chen Sun; Wen-Hua Lu; Peng Huang; and Yumin Hu


    Introduction:Oncogenic activation of the K-ras gene occurs in>90%of pancreatic ductal carcinoma and plays a critical role in the pathogenesis of this malignancy. Increase of reactive oxygen species (ROS) has also been observed in a wide spectrum of cancers. This study aimed to investigate the mechanistic association between K-ras–induced transformation and increased ROS stress and its therapeutic implications in pancreatic cancer. Methods:ROS level, NADPH oxidase (NOX) activity and expression, and cel invasion were examined in human pancreatic duct epithelial E6E7 cel s transfected with K-rasG12V compared with parental E6E7 cel s. The cytotoxic effect and antitumor effect of capsaicin, a NOX inhibitor, were also tested in vitro and in vivo. Results:K-ras transfection caused activation of the membrane-associated redox enzyme NOX and elevated ROS generation through the phosphatidylinositol 3′-kinase (PI3K) pathway. Importantly, capsaicin preferential y inhibited the enzyme activity of NOX and induced severe ROS accumulation in K-ras–transformed cel s compared with parental E6E7 cel s. Furthermore, capsaicin effectively inhibited cel proliferation, prevented invasiveness of K-ras–transformed pancreatic cancer cel s, and caused minimum toxicity to parental E6E7 cel s. In vivo, capsaicin exhibited antitumor activity against pancreatic cancer and showed oxidative damage to the xenograft tumor cel s. Conclusions:K-ras oncogenic signaling causes increased ROS stress through NOX, and abnormal ROS stress can selectively kil tumor cel s by using NOX inhibitors. Our study provides a basis for developing a novel therapeutic strategy to effectively kil K-ras–transformed cel s through a redox-mediated mechanism.

  11. A constitutive effector region on the C-terminal side of switch I of the Ras protein.

    Fujita-Yoshigaki, J; Shirouzu, M; Ito, Y; Hattori, S; Furuyama, S; Nishimura, S; Yokoyama, S


    The "switch I" region (Asp30-Asp38) of the Ras protein takes remarkably different conformations between the GDP- and GTP-bound forms and coincides with the so-called "effector region." As for a region on the C-terminal side of switch I, the V45E and G48C mutants of Ras failed to promote neurite outgrowth of PC12 cells (Fujita-Yoshigaki, J., Shirouzu, M., Koide, H., Nishimura, S., and Yokoyama, S. (1991) FEBS Lett. 294, 187-190). In the present study, we performed alanine-scanning mutagenesis within the region Lys42-Ile55 of Ras and found that the K42A, I46A, G48A, E49A, and L53A mutations significantly reduced the neurite-inducing activity. This is an effector region by definition, but its conformation is known to be unaffected by GDP-->GTP exchange. So, this region is referred to as a "constitutive" effector (Ec) region, distinguished from switch I, a "switch" effector (Es) region. The Ec region mutants exhibiting no neurite-inducing activity were found to be correlatably unable to activate mitogen-activated protein (MAP) kinase in PC12 cells. Therefore, the Ec region is essential for the MAP kinase activation in PC12 cells, whereas mutations in this region only negligibly affect the binding of Ras to Raf-1 (Shirouzu, M., Koide, H., Fujita-Yoshigaki, J., Oshio, H., Toyama, Y., Yamasaki, K., Fuhrman, S. A., Villafranca, E., Kaziro, Y., and Yokoyama, S. (1994) Oncogene 9, 2153-2157).

  12. Ras protein participated in histone acetylation-mediated cell cycle control in Physarum polycephalum

    LI Xiaoxue; LU Jun; ZHAO Yanmei; WANG Xiuli; HUANG Baiqu


    In this paper, we demonstrate that in Physarum polycephalum, a naturally synchronized slime mold, histone deacetylase (HDAC) inhibitor Trichostatin A (TSA), arrestes the cell cycle at the checkpoints of S/G2, G2/M and mitosis exit, and influences the transcription of two ras genes Ppras1 and Pprap1, as well as the Ras protein level. Antibody neutralization experiment using anti-Ras antibody treatment showed that Ras protein played an important role in cell cycle checkpoint control through regulation of the level of Cyclin B1, suggesting that Ras protein might be a key factor for histone acetylation-mediated cell cycle regulation in P. polycephalum.

  13. The transcription factor Gfi1 regulates G-CSF signaling and neutrophil development through the Ras activator RasGRP1

    de la Luz Sierra, Maria; Sakakibara, Shuhei; Gasperini, Paola; Salvucci, Ombretta; Jiang, Kan; McCormick, Peter J.; Segarra, Marta; Stone, Jim; Maric, Dragan; Zhu, Jinfang; Qian, Xiaolan; Lowy, Douglas R.


    The transcription factor growth factor independence 1 (Gfi1) and the growth factor granulocyte colony-stimulating factor (G-CSF) are individually essential for neutrophil differentiation from myeloid progenitors. Here, we provide evidence that the functions of Gfi1 and G-CSF are linked in the regulation of granulopoiesis. We report that Gfi1 promotes the expression of Ras guanine nucleotide releasing protein 1 (RasGRP1), an exchange factor that activates Ras, and that RasGRP1 is required for G-CSF signaling through the Ras/mitogen–activated protein/extracellular signal-regulated kinase (MEK/Erk) pathway. Gfi1-null mice have reduced levels of RasGRP1 mRNA and protein in thymus, spleen, and bone marrow, and Gfi1 transduction in myeloid cells promotes RasGRP1 expression. When stimulated with G-CSF, Gfi1-null myeloid cells are selectively defective at activating Erk1/2, but not signal transducer and activator of transcription 1 (STAT1) or STAT3, and fail to differentiate into neutrophils. Expression of RasGRP1 in Gfi1-deficient cells rescues Erk1/2 activation by G-CSF and allows neutrophil maturation by G-CSF. These results uncover a previously unknown function of Gfi1 as a regulator of RasGRP1 and link Gfi1 transcriptional control to G-CSF signaling and regulation of granulopoiesis. PMID:20203268

  14. Beta1 integrin promotes but is not essential for metastasis of ras-myc transformed fibroblasts

    Brakebusch, C; Wennerberg, K; Krell, H W


    , tumors induced by the high expressing clones 1A10 and 2F2 were markedly smaller, suggesting an inverse correlation of tumor growth and beta1 integrin expression. The metastasis potential of all three beta1 integrin-expressing GERM 11 sublines tested was significantly higher than that of the beta1......To investigate the role of beta1 integrin during tumor metastasis, we established a ras-myc transformed fibroblastoid cell line with a disrupted beta1 integrin gene on both alleles (GERM 11). Stable transfection of this cell line with an expression vector encoding beta1A integrin resulted in beta1A...... integrin-expressing sublines. Tumors were induced by subcutaneous injection of GERM 11 cells and 3 independent beta1 integrin expressing sublines (GERM 116, 1A10, 2F2) into syngeneic mice. After 10 days tumors were surgically removed. While average weights of GERM 11 and GERM 116 tumors were similar...

  15. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange.

    Burns, Michael C; Sun, Qi; Daniels, R Nathan; Camper, DeMarco; Kennedy, J Phillip; Phan, Jason; Olejniczak, Edward T; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W


    Aberrant activation of the small GTPase Ras by oncogenic mutation or constitutively active upstream receptor tyrosine kinases results in the deregulation of cellular signals governing growth and survival in ∼30% of all human cancers. However, the discovery of potent inhibitors of Ras has been difficult to achieve. Here, we report the identification of small molecules that bind to a unique pocket on the Ras:Son of Sevenless (SOS):Ras complex, increase the rate of SOS-catalyzed nucleotide exchange in vitro, and modulate Ras signaling pathways in cells. X-ray crystallography of Ras:SOS:Ras in complex with these molecules reveals that the compounds bind in a hydrophobic pocket in the CDC25 domain of SOS adjacent to the Switch II region of Ras. The structure-activity relationships exhibited by these compounds can be rationalized on the basis of multiple X-ray cocrystal structures. Mutational analyses confirmed the functional relevance of this binding site and showed it to be essential for compound activity. These molecules increase Ras-GTP levels and disrupt MAPK and PI3K signaling in cells at low micromolar concentrations. These small molecules represent tools to study the acute activation of Ras and highlight a pocket on SOS that may be exploited to modulate Ras signaling.

  16. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain

    Adari, H; Lowy, D R; Willumsen, B M;


    A cytoplasmic protein that greatly enhances the guanosine triphosphatase (GTPase) activity of N-ras protein but does not affect the activity of oncogenic ras mutants has been recently described. This protein (GAP) is shown here to be ubiquitous in higher eukaryotes and to interact with H-ras as w......A cytoplasmic protein that greatly enhances the guanosine triphosphatase (GTPase) activity of N-ras protein but does not affect the activity of oncogenic ras mutants has been recently described. This protein (GAP) is shown here to be ubiquitous in higher eukaryotes and to interact with H......-ras as well as with N-ras proteins. To identify the region of ras p21 with which GAP interacts, 21 H-ras mutant proteins were purified and tested for their ability to undergo stimulation of GTPase activity by GAP. Mutations in nonessential regions of H-ras p21 as well as mutations in its carboxyl....... Transforming mutations at positions 12, 59, and 61 (the phosphoryl binding region) abolished GTPase stimulation by GAP. Point mutations in the putative effector region of ras p21 (amino acids 35, 36, and 38) were also insensitive to GAP. However, a point mutation at position 39, shown previously not to impair...

  17. Orchestration of Morphogenesis in Filamentous Fungi: Conserved Roles for Ras Signaling Networks

    Fortwendel, Jarrod R.


    Filamentous fungi undergo complex developmental programs including conidial germination, polarized morphogenesis, and differentiation of sexual and asexual structures. For many fungi, the coordinated completion of development is required for pathogenicity, as specialized morphological structures must be produced by the invading fungus. Ras proteins are highly conserved GTPase signal transducers and function as major regulators of growth and development in eukaryotes. Filamentous fungi typically express two Ras homologues, comprising distinct groups of Ras1-like and Ras2-like proteins based on sequence homology. Recent evidence suggests shared roles for both Ras1 and Ras2 homologues, but also supports the existence of unique functions in the areas of stress response and virulence. This review focuses on the roles played by both Ras protein groups during growth, development, and pathogenicity of a diverse array of filamentous fungi. PMID:26257821

  18. Expression of activated Ras during Dictyostelium development alters cell localization and changes cell fate.

    Jaffer, Z M; Khosla, M; Spiegelman, G B; Weeks, G


    There is now a body of evidence to indicate that Ras proteins play important roles in development. Dictyostelium expresses several ras genes and each appears to perform a distinct function. Previous data had indicated that the overexpression of an activated form of the major developmentally regulated gene, rasD, caused a major aberration in morphogenesis and cell type determination. We now show that the developmental expression of an activated rasG gene under the control of the rasD promoter causes a similar defect. Our results indicate that the expression of activated rasG in prespore cells results in their transdifferentiation into prestalk cells, whereas activated rasG expression in prestalk causes gross mislocalization of the prestalk cell populations.

  19. Differential role of gp130-dependent STAT and Ras signalling for haematopoiesis following bone-marrow transplantation.

    Daniela C Kroy

    Full Text Available INTRODUCTION: Bone marrow transplantation (BMT is a complex process regulated by different cytokines and growth factors. The pleiotropic cytokine IL-6 (Interleukin-6 and related cytokines of the same family acting on the common signal transducer gp130 are known to play a key role in bone marrow (BM engraftment. In contrast, the exact signalling events that control IL-6/gp130-driven haematopoietic stem cell development during BMT remain unresolved. METHODS: Conditional gp130 knockout and knockin mice were used to delete gp130 expression (gp130(ΔMx, or to selectively disrupt gp130-dependent Ras (gp130(ΔMxRas or STAT signalling (gp130(ΔMxSTAT in BM cells. BM derived from the respective strains was transplanted into irradiated wildtype hosts and repopulation of various haematopoietic lineages was monitored by flow cytometry. RESULTS: BM derived from gp130 deficient donor mice (gp130(ΔMx displayed a delayed engraftment, as evidenced by reduced total white blood cells (WBC, marked thrombocytopenia and anaemia in the early phase after BMT. Lineage analysis unravelled a restricted development of CD4(+ and CD8(+ T-cells, CD19(+ B-cells and CD11b(+ myeloid cells after transplantation of gp130-deficient BM grafts. To further delineate the two major gp130-induced signalling cascades, Ras-MAPK and STAT1/3-signalling respectively, we used gp130(ΔMxRas and gp130(ΔMxSTAT donor BM. BMT of gp130(ΔMxSTAT cells significantly impaired engraftment of CD4(+, CD8(+, CD19(+ and CD11b(+ cells, whereas gp130(ΔMxRas BM displayed a selective impairment in early thrombopoiesis. Importantly, gp130-STAT1/3 signalling deficiency in BM grafts severely impaired survival of transplanted mice, thus demonstrating a pivotal role for this pathway in BM graft survival and function. CONCLUSION: Our data unravel a vital function of IL-6/gp130-STAT1/3 signals for BM engraftment and haematopoiesis, as well as for host survival after transplantation. STAT1/3 and ras

  20. Differential Role of gp130-Dependent STAT and Ras Signalling for Haematopoiesis Following Bone-Marrow Transplantation

    Kroy, Daniela C.; Hebing, Lisa; Sander, Leif E.; Gassler, Nikolaus; Erschfeld, Stephanie; Sackett, Sara; Galm, Oliver; Trautwein, Christian; Streetz, Konrad L.


    Introduction Bone marrow transplantation (BMT) is a complex process regulated by different cytokines and growth factors. The pleiotropic cytokine IL-6 (Interleukin-6) and related cytokines of the same family acting on the common signal transducer gp130 are known to play a key role in bone marrow (BM) engraftment. In contrast, the exact signalling events that control IL-6/gp130-driven haematopoietic stem cell development during BMT remain unresolved. Methods Conditional gp130 knockout and knockin mice were used to delete gp130 expression (gp130ΔMx), or to selectively disrupt gp130-dependent Ras (gp130ΔMxRas) or STAT signalling (gp130ΔMxSTAT) in BM cells. BM derived from the respective strains was transplanted into irradiated wildtype hosts and repopulation of various haematopoietic lineages was monitored by flow cytometry. Results BM derived from gp130 deficient donor mice (gp130ΔMx) displayed a delayed engraftment, as evidenced by reduced total white blood cells (WBC), marked thrombocytopenia and anaemia in the early phase after BMT. Lineage analysis unravelled a restricted development of CD4(+) and CD8(+) T-cells, CD19(+) B-cells and CD11b(+) myeloid cells after transplantation of gp130-deficient BM grafts. To further delineate the two major gp130-induced signalling cascades, Ras-MAPK and STAT1/3-signalling respectively, we used gp130ΔMxRas and gp130ΔMxSTAT donor BM. BMT of gp130ΔMxSTAT cells significantly impaired engraftment of CD4(+), CD8(+), CD19(+) and CD11b(+) cells, whereas gp130ΔMxRas BM displayed a selective impairment in early thrombopoiesis. Importantly, gp130-STAT1/3 signalling deficiency in BM grafts severely impaired survival of transplanted mice, thus demonstrating a pivotal role for this pathway in BM graft survival and function. Conclusion Our data unravel a vital function of IL-6/gp130-STAT1/3 signals for BM engraftment and haematopoiesis, as well as for host survival after transplantation. STAT1/3 and ras-dependent pathways thereby exert

  1. 1,25-Dihydroxyvitamin D inhibits glutamine metabolism in Harvey-ras transformed MCF10A human breast epithelial cell.

    Zhou, Xuanzhu; Zheng, Wei; Nagana Gowda, G A; Raftery, Daniel; Donkin, Shawn S; Bequette, Brian; Teegarden, Dorothy


    Breast cancer is the second most common cancer among women in the US. The active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D), is proposed to inhibit cellular processes and to prevent breast cancer. The current studies investigated the effect of 1,25(OH)2D on glutamine metabolism during cancer progression employing Harvey-ras oncogene transformed MCF10A human breast epithelial cells (MCF10A-ras). Treatment with 1,25(OH)2D significantly reduced intracellular glutamine and glutamate levels measured by nuclear magnetic resonance (NMR) by 23±2% each. Further, 1,25(OH)2D treatment reduced glutamine and glutamate flux, determined by [U-(13)C5] glutamine tracer kinetics, into the TCA cycle by 31±0.2% and 17±0.4%, respectively. The relative levels of mRNA and protein abundance of the major glutamine transporter, solute linked carrier family 1 member A5 (SLC1A5), was significantly decreased by 1,25(OH)2D treatment in both MCF10A-ras cells and MCF10A which overexpress ErbB2 (HER-2/neu). Consistent with these results, glutamine uptake was reduced by 1,25(OH)2D treatment and the impact was eliminated with the SLC1A5 inhibitor L-γ-Glutamyl-p-nitroanilide (GPNA). A consensus sequence to the vitamin D responsive element (VDRE) was identified in silico in the SLC1A5 gene promoter, and site-directed mutagenesis analyses with reporter gene studies demonstrate a functional negative VDRE in the promoter of the SLC1A5 gene. siRNA-SLC1A5 transfection in MCF10A-ras cells significantly reduced SLC1A5 mRNA expression as well as decreased viable cell number similar to 1,25(OH)2D treatment. SLC1A5 knockdown also induced an increase in apoptotic cells in MCF10A-ras cells. These results suggest 1,25(OH)2D alters glutamine metabolism in MCF10A-ras cells by inhibiting glutamine uptake and utilization, in part through down-regulation of SLC1A5 transcript abundance. Thus, 1,25(OH)2D down-regulation of the glutamine transporter, SLC1A5, may facilitate vitamin D prevention of breast

  2. The accumulation of substances in Recirculating Aquaculture Systems (RAS) affects embryonic and larval development in common carp Cyprinus carpio

    Martins, C.I.; Pristin, M.G.; Ende, S.S.W.; Eding, E.H.; Verreth, J.A.J.


    The accumulation of substances in Recirculating Aquaculture Systems (RAS) may impair the growth and welfare of fish. To test the severity of contaminants accumulated in RAS, early-life stages of fish were used. Ultrafiltered water from two Recirculating Aquaculture Systems (RAS), one RAS with a high

  3. Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging.

    Jiahong Zhu

    Full Text Available Neurogenesis continues throughout the lifetime in the hippocampus, while the rate declines with brain aging. It has been hypothesized that reduced neurogenesis may contribute to age-related cognitive impairment. Ginsenoside Rg1 is an active ingredient of Panax ginseng in traditional Chinese medicine, which exerts anti-oxidative and anti-aging effects. This study explores the neuroprotective effect of ginsenoside Rg1 on the hippocampus of the D-gal (D-galactose induced aging rat model. Sub-acute aging was induced in male SD rats by subcutaneous injection of D-gal (120 mg/kg·d for 42 days, and the rats were treated with ginsenoside Rg1 (20 mg/kg·d, intraperitoneally or normal saline for 28 days after 14 days of D-gal injection. In another group, normal male SD rats were treated with ginsenoside Rg1 alone (20 mg/kg·d, intraperitoneally for 28 days. It showed that administration of ginsenoside Rg1 significantly attenuated all the D-gal-induced changes in the hippocampus, including cognitive capacity, senescence-related markers and hippocampal neurogenesis, compared with the D-gal-treated rats. Further investigation showed that ginsenoside Rg1 protected NSCs/NPCs (neural stem cells/progenitor cells shown by increased level of SOX-2 expression; reduced astrocytes activation shown by decrease level of Aeg-1 expression; increased the hippocampal cell proliferation; enhanced the activity of the antioxidant enzymes GSH-Px (glutathione peroxidase and SOD (Superoxide Dismutase; decreased the levels of IL-1β, IL-6 and TNF-α, which are the proinflammatory cytokines; increased the telomere lengths and telomerase activity; and down-regulated the mRNA expression of cellular senescence associated genes p53, p21Cip1/Waf1 and p19Arf in the hippocampus of aged rats. Our data provides evidence that ginsenoside Rg1 can improve cognitive ability, protect NSCs/NPCs and promote neurogenesis by enhancing the antioxidant and anti-inflammatory capacity in the

  4. RasGRP1, but not RasGRP3, is required for efficient thymic β-selection and ERK activation downstream of CXCR4.

    Dominic P Golec

    Full Text Available T cell development is a highly dynamic process that is driven by interactions between developing thymocytes and the thymic microenvironment. Upon entering the thymus, the earliest thymic progenitors, called CD4(-CD8(- 'double negative' (DN thymocytes, pass through a checkpoint termed "β-selection" before maturing into CD4(+CD8(+ 'double positive' (DP thymocytes. β-selection is an important developmental checkpoint during thymopoiesis where developing DN thymocytes that successfully express the pre-T cell receptor (TCR undergo extensive proliferation and differentiation towards the DP stage. Signals transduced through the pre-TCR, chemokine receptor CXCR4 and Notch are thought to drive β-selection. Additionally, it has long been known that ERK is activated during β-selection; however the pathways regulating ERK activation remain unknown. Here, we performed a detailed analysis of the β-selection events in mice lacking RasGRP1, RasGRP3 and RasGRP1 and 3. We report that RasGRP1 KO and RasGRP1/3 DKO deficient thymi show a partial developmental block at the early DN3 stage of development. Furthermore, DN3 thymocytes from RasGRP1 and RasGRP1/3 double knock-out thymi show significantly reduced proliferation, despite expression of the TCRβ chain. As a result of impaired β-selection, the pool of TCRβ(+ DN4 is significantly diminished, resulting in inefficient DN to DP development. Also, we report that RasGRP1 is required for ERK activation downstream of CXCR4 signaling, which we hypothesize represents a potential mechanism of RasGRP1 regulation of β-selection. Our results demonstrate that RasGRP1 is an important regulator of proliferation and differentiation at the β-selection checkpoint and functions downstream of CXCR4 to activate the Ras/MAPK pathway.

  5. A component of the transcriptional mediator complex inhibits RAS-dependent vulval fate specification in C. elegans.

    Moghal, Nadeem; Sternberg, Paul W


    Negative regulation of receptor tyrosine kinase (RTK)/RAS signaling pathways is important for normal development and the prevention of disease in humans. We have used a genetic screen in C. elegans to identify genes that antagonize the activity of activated LET-23, a member of the EGFR family of RTKs. We identified two loss-of-function mutations in dpy-22, previously cloned as sop-1, that promote the ability of activated LET-23 to induce ectopic vulval fates. DPY-22 is a glutamine-rich protein that is most similar to human TRAP230, a component of a transcriptional mediator complex. DPY-22 has previously been shown to regulate WNT responses through inhibition of the beta-catenin-like protein BAR-1. We provide evidence that DPY-22 also inhibits RAS-dependent vulval fate specification independently of BAR-1, and probably regulates the activities of multiple transcription factors during development. Furthermore, we demonstrate that although inhibition of BAR-1-dependent gene expression has been shown to require the C-terminal glutamine-rich region, this region is dispensable for inhibition of RAS-dependent cell differentiation. Thus, the glutamine-rich region contributes to specificity of this class of mediator protein.

  6. YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells.

    Dubois, Fanny; Leroy, Cédric; Simon, Valérie; Benistant, Christine; Roche, Serge


    Members of the SRC family of tyrosine kinases (SFK) display important functions in human cancer, but their specific role in tumorigenesis remains unclear. We previously demonstrated that YES regulates a unique oncogenic signaling important for colorectal cancer (CRC) progression that is not shared with SRC. Here, we addressed the underlying mechanism involved in this process. We show that YES oncogenic signaling relies on palmitoylation of its SH4 domain that controls YES localization in cholesterol-enriched membrane micro-domains. Specifically, deletion of the palmitoylation site compromised YES transforming activity, while addition of a palmitoylation site in the SH4 domain of SRC was sufficient for SRC to restore the transforming properties of cells in which YES had been silenced. Subsequently, SILAC phosphoproteomic analysis revealed that micro-domain-associated cell adhesive components and receptor tyrosine kinases are major YES substrates. YES also phosphorylates upstream regulators of RAS/MAPK signaling, including EGFR, SHC and SHP2, which were not targeted by SRC due to the absence of palmitoylation. Accordingly, EGFR-induced MAPK activity was attenuated by YES down-regulation, while increased RAS activity significantly restored cell transformation that was lost upon YES silencing. Collectively, these results uncover a critical role for the SH4 domain in the specification of SFK oncogenic activity and a selective role for YES in the induction of RAS/MAPK signaling in CRC cells.

  7. Ras transformation uncouples the kinesin-coordinated cellular nutrient response

    Zaganjor, Elma; Weil, Lauren M.; Gonzales, Joshua X.; Minna, John D.; Cobb, Melanie H.


    The kinesin family members (KIFs) KIF2A and KIF2C depolymerize microtubules, unlike the majority of other kinesins, which transport cargo along microtubules. KIF2A regulates the localization of lysosomes in the cytoplasm, which assists in activation of the mechanistic target of rapamycin complex 1 (mTORC1) on the lysosomal surface. We find that the closely related kinesin KIF2C also influences lysosomal organization in immortalized human bronchial epithelial cells (HBECs). Expression of KIF2C and, to a lesser extent, KIF2A in untransformed and mutant K-Ras–transformed cells is regulated by ERK1/2. Prolonged inhibition of ERK1/2 activation with PD0325901 mimics nutrient deprivation by disrupting lysosome organization and decreasing mTORC1 activity in HBEC, suggesting a long-term mechanism for optimization of mTORC1 activity by ERK1/2. We tested the hypothesis that up-regulation of KIF2C and KIF2A by ERK1/2 caused aberrant lysosomal positioning and mTORC1 activity in a mutant K-Ras–dependent cancer and cancer model. In Ras-transformed cells, however, mTORC1 activity and lysosome organization appear independent of ERK1/2 and these kinesins although ERK1/2 activity and the kinesins are required for Ras-dependent proliferation and migration. We conclude that mutant K-Ras repurposes these signaling and regulatory proteins to support the transformed phenotype. PMID:25002494

  8. Ras diffusion is sensitive to plasma membrane viscosity.

    Goodwin, J Shawn; Drake, Kimberly R; Remmert, Catha L; Kenworthy, Anne K


    The cell surface contains a variety of barriers and obstacles that slow the lateral diffusion of glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins below the theoretical limit imposed by membrane viscosity. How the diffusion of proteins residing exclusively on the inner leaflet of the plasma membrane is regulated has been largely unexplored. We show here that the diffusion of the small GTPase Ras is sensitive to the viscosity of the plasma membrane. Using confocal fluorescence recovery after photobleaching, we examined the diffusion of green fluorescent protein (GFP)-tagged HRas, NRas, and KRas in COS-7 cells loaded with or depleted of cholesterol, a well-known modulator of membrane bilayer viscosity. In cells loaded with excess cholesterol, the diffusional mobilities of GFP-HRas, GFP-NRas, and GFP-KRas were significantly reduced, paralleling the behavior of the viscosity-sensitive lipid probes DiIC(16) and DiIC(18). However, the effects of cholesterol depletion on protein and lipid diffusion in cell membranes were highly dependent on the depletion method used. Cholesterol depletion with methyl-beta-cyclodextrin slowed Ras diffusion by a viscosity-independent mechanism, whereas overnight cholesterol depletion slightly increased both protein and lipid diffusion. The ability of Ras to sense membrane viscosity may represent a general feature of proteins residing on the cytoplasmic face of the plasma membrane.

  9. The efficacy of Raf kinase recruitment to the GTPase H-ras depends on H-ras membrane conformer-specific nanoclustering.

    Guzmán, Camilo; Šolman, Maja; Ligabue, Alessio; Blaževitš, Olga; Andrade, Débora M; Reymond, Luc; Eggeling, Christian; Abankwa, Daniel


    Solution structures and biochemical data have provided a wealth of mechanistic insight into Ras GTPases. However, information on how much the membrane organization of these lipid-modified proteins impacts on their signaling is still scarce. Ras proteins are organized into membrane nanoclusters, which are necessary for Ras-MAPK signaling. Using quantitative conventional and super-resolution fluorescence methods, as well as mathematical modeling, we investigated nanoclustering of H-ras helix α4 and hypervariable region mutants that have different bona fide conformations on the membrane. By following the emergence of conformer-specific nanoclusters in the plasma membrane of mammalian cells, we found that conformers impart distinct nanoclustering responses depending on the cytoplasmic levels of the nanocluster scaffold galectin-1. Computational modeling revealed that complexes containing H-ras conformers and galectin-1 affect both the number and lifetime of nanoclusters and thus determine the specific Raf effector recruitment. Our results show that mutations in Ras can affect its nanoclustering response and thus allosterically effector recruitment and downstream signaling. We postulate that cancer- and developmental disease-linked mutations that are associated with the Ras membrane conformation may exhibit so far unrecognized Ras nanoclustering and therefore signaling alterations.

  10. Behaviour Study of The Ras-GRF1 Gene knockout Mice%Ras-GRF1基因敲除小鼠的行为学研究

    段巍鹤; 郑宏亮; 陆美林; 万家余; 何秀霞


    The Ras genes widely exist in nature, Ras-GRF1 proteins in cell signal transduction, cell differentiation and growth play a very important role. Previous researchs have shown that the Ras genes are closely associated with signal-ing pathways and learning and memory function. This research was study to companed the differences between the gene knockout Ras-GRF1 and will rats on learning and memory by the behavior experiments. It was found that Ras-GRF1 knockout mice learning memory ability weak in wild type mice by Morris water maze,etc.%Ras基因广泛存在于自然界中,其控制的Ras-GRF1蛋白在细胞信号传导,在细胞分化与生长过程中起着极其重要的作用。已有研究表明,Ras基因与信号通路和学习记忆功能密切相关。本实验利用行为学研究敲除Ras-GRF1基因的小鼠在学习记忆上与野生老鼠的差异,通过Morris水迷宫等实验发现Ras-GRF1基因敲除小鼠的学习记忆能力弱于野生型小鼠。

  11. K-ras/PI3K-Akt signaling is essential for zebrafish hematopoiesis and angiogenesis.

    Lihui Liu

    Full Text Available The RAS small GTPases orchestrate multiple cellular processes. Studies on knock-out mice showed the essential and sufficient role of K-RAS, but not N-RAS and H-RAS in embryonic development. However, many physiological functions of K-RAS in vivo remain unclear. Using wild-type and fli1:GFP transgenic zebrafish, we showed that K-ras-knockdown resulted in specific hematopoietic and angiogenic defects, including the impaired expression of erythroid-specific gene gata1 and sse3-hemoglobin, reduced blood circulation and disorganized blood vessels. Expression of either K-rasC40 that links to phosphoinositide 3-kinase (PI3K activation, or Akt2 that acts downstream of PI3K, could rescue both hematopoietic and angiogenic defects in the K-ras knockdown. Consistently, the functional rescue by k-ras mRNA was significantly suppressed by wortmannin, a PI3K-specific inhibitor. Our results provide direct evidence that PI3K-Akt plays a crucial role in mediating K-ras signaling during hematopoiesis and angiogenesis in vivo, thus offering new targets and alternative vertebrate model for studying these processes and their related diseases.

  12. Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent.

    Morgan, Michael J; Gamez, Graciela; Menke, Christina; Hernandez, Ariel; Thorburn, Jacqueline; Gidan, Freddi; Staskiewicz, Leah; Morgan, Shellie; Cummings, Christopher; Maycotte, Paola; Thorburn, Andrew


    Chloroquine (CQ) is an antimalarial drug and late-stage inhibitor of autophagy currently FDA-approved for use in the treatment of rheumatoid arthritis and other autoimmune diseases. Based primarily on its ability to inhibit autophagy, CQ and its derivative, hydroxychloroquine, are currently being investigated as primary or adjuvant therapy in multiple clinical trials for cancer treatment. Oncogenic RAS has previously been shown to regulate autophagic flux, and cancers with high incidence of RAS mutations, such as pancreatic cancer, have been described in the literature as being particularly susceptible to CQ treatment, leading to the hypothesis that oncogenic RAS makes cancer cells dependent on autophagy. This autophagy "addiction" suggests that the mutation status of RAS in tumors could identify patients who would be more likely to benefit from CQ therapy. Here we show that RAS mutation status itself is unlikely to be beneficial in such a patient selection because oncogenic RAS does not always promote autophagy addiction. Moreover, oncogenic RAS can have opposite effects on both autophagic flux and CQ sensitivity in different cells. Finally, for any given cell type, the positive or negative effect of oncogenic RAS on autophagy does not necessarily predict whether RAS will promote or inhibit CQ-mediated toxicity. Thus, although our results confirm that different tumor cell lines display marked differences in how they respond to autophagy inhibition, these differences can occur irrespective of RAS mutation status and, in different contexts, can either promote or reduce chloroquine sensitivity of tumor cells.

  13. Biophysical mechanism for ras-nanocluster formation and signaling in plasma membrane.

    Thomas Gurry

    Full Text Available Ras GTPases are lipid-anchored G proteins, which play a fundamental role in cell signaling processes. Electron micrographs of immunogold-labeled Ras have shown that membrane-bound Ras molecules segregate into nanocluster domains. Several models have been developed in attempts to obtain quantitative descriptions of nanocluster formation, but all have relied on assumptions such as a constant, expression-level independent ratio of Ras in clusters to Ras monomers (cluster/monomer ratio. However, this assumption is inconsistent with the law of mass action. Here, we present a biophysical model of Ras clustering based on short-range attraction and long-range repulsion between Ras molecules in the membrane. To test this model, we performed Monte Carlo simulations and compared statistical clustering properties with experimental data. We find that we can recover the experimentally-observed clustering across a range of Ras expression levels, without assuming a constant cluster/monomer ratio or the existence of lipid rafts. In addition, our model makes predictions about the signaling properties of Ras nanoclusters in support of the idea that Ras nanoclusters act as an analog-digital-analog converter for high fidelity signaling.

  14. B- and C-RAF display essential differences in their binding to Ras: the isotype-specific N terminus of B-RAF facilitates Ras binding.

    Fischer, Andreas; Hekman, Mirko; Kuhlmann, Jürgen; Rubio, Ignacio; Wiese, Stefan; Rapp, Ulf R


    Recruitment of RAF kinases to the plasma membrane was initially proposed to be mediated by Ras proteins via interaction with the RAF Ras binding domain (RBD). Data reporting that RAF kinases possess high affinities for particular membrane lipids support a new model in which Ras-RAF interactions may be spatially restricted to the plane of the membrane. Although the coupling features of Ras binding to the isolated RAF RBD were investigated in great detail, little is known about the interactions of the processed Ras with the functional and full-length RAF kinases. Here we present a quantitative analysis of the binding properties of farnesylated and nonfarnesylated H-Ras to both full-length B- and C-RAF in the presence and absence of lipid environment. Although isolated RBD fragments associate with high affinity to both farnesylated and nonfarnesylated H-Ras, the full-length RAF kinases revealed fundamental differences with respect to Ras binding. In contrast to C-RAF that requires farnesylated H-Ras, cytosolic B-RAF associates effectively and with significantly higher affinity with both farnesylated and nonfarnesylated H-Ras. To investigate the potential farnesyl binding site(s) we prepared several N-terminal fragments of C-RAF and found that in the presence of cysteine-rich domain only the farnesylated form of H-Ras binds with high association rates. The extreme N terminus of B-RAF turned out to be responsible for the facilitation of lipid independent Ras binding to B-RAF, since truncation of this region resulted in a protein that changed its kinase properties and resembles C-RAF. In vivo studies using PC12 and COS7 cells support in vitro results. Co-localization measurements using labeled Ras and RAF documented essential differences between B- and C-RAF with respect to association with Ras. Taken together, these data suggest that the activation of B-RAF, in contrast to C-RAF, may take place both at the plasma membrane and in the cytosolic environment.

  15. A Central Role for Ras1 in Morphogenesis of the Basidiomycete Schizophyllum commune

    Knabe, Nicole; Jung, Elke-Martina; Freihorst, Daniela; Hennicke, Florian; Horton, J. Stephen


    Fungi have been used as model systems to define general processes in eukaryotes, for example, the one gene-one enzyme hypothesis, as well as to study polar growth or pathogenesis. Here, we show a central role for the regulator protein Ras in a mushroom-forming, filamentous basidiomycete linking growth, pheromone signaling, sexual development, and meiosis to different signal transduction pathways. ras1 and Ras-specific gap1 mutants were generated and used to modify the intracellular activation state of the Ras module. Transformants containing constitutive ras1 alleles (ras1G12V and ras1Q61L), as well as their compatible mating interactions, did show strong phenotypes for growth (associated with Cdc42 signaling) and mating (associated with mitogen-activated protein kinase signaling). Normal fruiting bodies with abnormal spores exhibiting a reduced germination rate were produced by outcrossing of these mutant strains. Homozygous Δgap1 primordia, expected to experience increased Ras signaling, showed overlapping phenotypes with a block in basidium development and meiosis. Investigation of cyclic AMP (cAMP)-dependent protein kinase A indicated that constitutively active ras1, as well as Δgap1 mutant strains, exhibit a strong increase in Tpk activity. Ras1-dependent, cAMP-mediated signal transduction is, in addition to the known signaling pathways, involved in fruiting body formation in Schizophyllum commune. To integrate these analyses of Ras signaling, microarray studies were performed. Mutant strains containing constitutively active Ras1, deletion of RasGap1, or constitutively active Cdc42 were characterized and compared. At the transcriptome level, specific regulation highlighting the phenotypic differences of the mutants is clearly visible. PMID:23606288

  16. Frequency of K-RAS and N-RAS Gene Mutations in Colorectal Cancers in Southeastern Iran

    Mohsen, Naseri; Ahmadreza, Sebzari; Fatemeh, Haghighi; Fatemeh, Hajipoor; Fariba, Emadian Razavi


    Background: K-RAS and N-RAS gene mutations cause resistance to treatment in patients with colorectal cancer. Based on this, awareness of mutation of these genes is considered a clinically important step towards better diagnosis and appropriate treatment. Materials and Methods: Fifty paraffin-embedded blocks of colorectal cancer were obtained from Imam Reza Hospital of Birjand, Iran. Following DNA extraction, the samples were analyzed for common mutations of exons 2, 3 and 4 of KRAS and NRAS genes using real time PCR and pyrosequencing. Results: According to this study, the prevalence of mutations was respectively 28% (14 out of 50) and 2% (1 out of 50) in KRAS and NRAS genes. All the mutations were observed in patients >50 years old. Conclusions: Mutations were found in both KRAS and NRAS genes in colorectal cancers in Iranian patients. Determining the frequency of these mutations in each geographical region may be necessary to benefit from targeted cancer therapy.

  17. Mutation of ras Genes Induced by 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H] - furanone in Human Fetal Hepatocytes%3-氯-4-二氯甲基-5-羟基-2(5氢)-呋喃酮诱导人胚胎肝细胞ras基因突变

    周利红; 刘爱林; 鲁文清


    背景与目的: 研究饮水氯化消毒副产物 3-氯 -4-二氯甲基 -5-羟基 -2(5氢 )-呋喃酮 (3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone, MX)对体外培养的人胚胎肝细胞 (L-02细胞 )ras基因突变的诱导. 材料与方法: MX染毒剂量为 300μ mol/L,以二甲基亚砜 (DMSO)做溶剂对照,将 L-02细胞连续染毒培养12d后,收获细胞提取基因组 DNA,应用 PCR-克隆测序法检测 ras基因 (K-ras、 H-ras、 N-ras) 12、13、61密码子是否存在突变. 结果: MX染毒组 H-ras基因 57密码子的 GAT置换成 GGT,未检测到K-ras、N-ras及H-ras12、13、61密码子突变,DMSO溶剂对照组相应的 ras基因目的片段均未检测到突变.结论:MX可能诱导L-02细胞ras基因突变.

  18. Ras GTPases modulate morphogenesis, sporulation and cellulase gene expression in the cellulolytic fungus Trichoderma reesei.

    Jiwei Zhang

    Full Text Available BACKGROUND: The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2(G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. CONCLUSIONS/SIGNIFICANCE: Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute

  19. Dictyostelium RasD is required for normal phototaxis, but not differentiation.

    Wilkins, A; Khosla, M; Fraser, D J; Spiegelman, G B; Fisher, P R; Weeks, G; Insall, R H


    RasD, a Dictyostelium homolog of mammalian Ras, is maximally expressed during the multicellular stage of development. Normal Dictyostelium aggregates are phototactic and thermotactic, moving towards sources of light and heat with great sensitivity. We show that disruption of the gene for rasD causes a near-total loss of phototaxis and thermotaxis in mutant aggregates, without obvious effects on undirected movement. Previous experiments had suggested important roles for RasD in development and cell-type determination. Surprisingly, rasD(-) cells show no obvious changes in these processes. These cells represent a novel class of phototaxis mutant, and indicate a role for a Ras pathway in the connections between stimuli and coordinated cell movement.

  20. Cloning and characterization of the Dictyostelium discoideum rasG genomic sequences.

    Robbins, S M; Williams, J G; Spiegelman, G B; Weeks, G


    A Dictyostelium discoideum genomic DNA clone containing the ras-related gene, rasG was isolated using the rasG cDNA as a probe. The genomic clone encompasses the entire coding region of the gene and 1.5 kb of 5' flanking region. The rasG gene contains a single intron as determined by sequence comparison with the cDNA, whereas the highly related rasD gene contains three introns. Primer extension analysis showed that transcription of the rasG gene initiates at multiple sites. Sequence analysis of the 5' flanking region of the gene revealed a stretch of thymine residues upstream from the transcription start sites but there is no evidence for a TATA box sequence.

  1. The association between expressions of Ras and CD68 in the angiogenesis of breast cancers


    Objective Angiogenesis is a critical step of breast cancer metastasis. Oncogenic Ras promotes the remodeling of cancer microenviroment. Tumor-associated macrophages (TAMs) are a prominent inflammatory cell population emerging in the microenviroment and facilitating the angiogenesis and metastasis. In the present study, we tried to investigate the relationship between the expression of Ras and infiltration of TAM, both of which could further promote angiogenesis. Methods Expressions of Ras, CD...

  2. Formation of the Ras dimer is essential for Raf-1 activation.

    Inouye, K; Mizutani, S; Koide, H; Kaziro, Y


    Although it is well established that Ras requires membrane localization for activation of its target molecule, Raf-1, the reason for this requirement is not fully understood. In this study, we found that modified Ras, which is purified from Sf9 cells, could activate Raf-1 in a cell-free system, when incorporated into liposome. Using a bifunctional cross-linker and a protein-fragmentation complementation assay, we detected dimer formation of Ras in the liposome and in the intact cells, respectively. These results suggest that dimerization of Ras in the lipid membrane is essential for activation of Raf-1. To support this, we found that, when fused to glutathione S-transferase (GST), unprocessed Ras expressed in Escherichia coli could bypass the requirement for liposome. A Ras-dependent Raf-1 activator, which we previously reported (Mizutani, S., Koide, H., and Kaziro, Y. (1998) Oncogene 16, 2781-2786), was still required for Raf-1 activation by GST-Ras. Furthermore, an enforced dimerization of unmodified oncogenic Ras mutant in human embryonic kidney (HEK) 293 cells, using a portion of gyrase B or estrogen receptor, also resulted in activation of Raf-1. From these results, we conclude that membrane localization allows Ras to form a dimer, which is essential, although not sufficient, for Raf-1 activation.

  3. A primary cardiac leiomyosarcoma with mutation at H-ras codon 12.

    Parissis, J; Arvanitis, D; Sourvinos, G; Spandidos, D


    The presence of activating ras mutations in a cardiac leiomyosarcoma which occurred in the right atrium of the heart of a female patient was examined. The tumor had the appearance of leiomyosarcoma in rutine histopathological examination and the definite diagnosis was confirmed by a positive immunohistochemical reaction to smooth muscle actin. Molecular analysis by polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) technique showed a point mutation of H-ras gene at codon 12. To the best of our knowledge, this is the first report describing ras gene mutation in a cardiac leiomyosarcoma implying a role for the ras oncogenes in the development of this tumor.

  4. Detecting N-RAS Q61R Mutated Thyroid Neoplasias by Immunohistochemistry.

    Crescenzi, A; Fulciniti, F; Bongiovanni, M; Giovanella, L; Trimboli, Pierpaolo


    Recently, the immunohistochemistry (IHC) for N-RAS Q61R has been developed and commercialized for clinical practice. Here, we investigated the reliability of IHC to identify N-RAS Q61R mutated thyroid neoplasia. A series of 24 consecutive thyroid lesions undergone surgery following indeterminate cytology were enrolled. Paraffin sections were stained for IHC using the rabbit monoclonal anti-human N-RAS Q61R, clone SP174. N-RAS mutations in codon 61 were also investigated by automated sequencing. At histology, 12 cases of follicular carcinoma, cytologically defined as follicular lesions, 1 papillary cancer, 7 follicular adenomas, and 4 hyperplastic nodules were found. Of these, 4 showed a positive IHC for anti N-RAS antibody where N-RAS expression was detected mainly at cytoplasmic level with similar intensity of reaction. The remaining cases had negative IHC. A 100% concordance between IHC and molecular analysis for N-RAS Q61R was observed. In conclusion, this study shows high reliability of IHC to identify N-RAS Q61R mutated thyroid lesions with high cost-effectiveness. These data indicate the reliability of IHC to identify N-RAS Q61R mutated thyroid neoplasia and suggest to adopt this approach for a more accurate management of patients, when indicated.

  5. PP2A/B56 and GSK3/Ras suppress PKB activity during Dictyostelium chemotaxis.

    Rodriguez Pino, Marbelys; Castillo, Boris; Kim, Bohye; Kim, Lou W


    We have previously shown that the Dictyostelium protein phosphatase 2A regulatory subunit B56, encoded by psrA, modulates Dictyostelium cell differentiation through negatively affecting glycogen synthase kinase 3 (GSK3) function. Our follow-up research uncovered that B56 preferentially associated with GDP forms of RasC and RasD, but not with RasG in vitro, and psrA(-) cells displayed inefficient activation of multiple Ras species, decreased random motility, and inefficient chemotaxis toward cAMP and folic acid gradient. Surprisingly, psrA(-) cells displayed aberrantly high basal and poststimulus phosphorylation of Dictyostelium protein kinase B (PKB) kinase family member PKBR1 and PKB substrates. Expression of constitutively active Ras mutants or inhibition of GSK3 in psrA(-) cells increased activities of both PKBR1 and PKBA, but only the PKBR1 activity was increased in wild-type cells under the equivalent conditions, indicating that either B56- or GSK3-mediated suppressive mechanism is sufficient to maintain low PKBA activity, but both mechanisms are necessary for suppressing PKBR1. Finally, cells lacking RasD or RasC displayed normal PKBR1 regulation under GSK3-inhibiting conditions, indicating that RasC or RasD proteins are essential for GSK3-mediated PKBR1 inhibition. In summary, B56 constitutes inhibitory circuits for PKBA and PKBR1 and thus heavily affects Dictyostelium chemotaxis.

  6. Exploration of Aspergillus fumigatus Ras pathways for novel antifungal drug targets

    Qusai eAl Abdallah


    Full Text Available Ras pathway signaling is a critical virulence determinant for pathogenic fungi. Localization of Ras to the plasma membrane (PM is required for Ras network interactions supporting fungal growth and virulence. For example, loss of A. fumigatus RasA signaling at the PM via inhibition of palmitoylation leads to decreased growth, altered hyphal morphogenesis, decreased cell wall integrity and loss of virulence. In order to be properly localized and activated, Ras proteins must transit a series of post-translational modification (PTM steps. These steps include farnesylation, proteolytic cleavage of terminal amino acids, carboxymethylation, and palmitoylation. Because Ras activation drives tumor development, Ras pathways have been extensively studied in mammalian cells as a potential target for anti-cancer therapy. Inhibitors of mammalian Ras interactions and PTM components have been, or are actively being, developed. This review will focus on the potential for building upon existing scaffolds to exploit fungal Ras proteins for therapy, synthesizing data from studies employing both mammalian and fungal systems.

  7. Monoclonal antibodies of predefined specificity detect activated ras gene expression in human mammary and colon carcinomas.

    Hand, P H; Thor, A.; Wunderlich, D.; Muraro, R; CARUSO, A.; Schlom, J


    Monoclonal antibodies (MAbs) of predefined specificity have been generated by utilizing a synthetic peptide reflecting amino acid positions 10-17 of the Hu-rasT24 gene product as immunogen. These MAbs, designated RAP-1 through RAP-5 (RA, ras; P, peptide), have been shown to react with the ras gene product p21. Since the Hu-ras reactive determinants (positions 10-17) have been predicted to be within the tertiary structure of the p21 molecule, it was not unexpected that denaturation of cell ext...

  8. Requirement for Plk2 in orchestrated ras and rap signaling, homeostatic structural plasticity, and memory.

    Lee, Kea Joo; Lee, Yeunkum; Rozeboom, Aaron; Lee, Ji-Yun; Udagawa, Noriko; Hoe, Hyang-Sook; Pak, Daniel T S


    Ras and Rap small GTPases are important for synaptic plasticity and memory. However, their roles in homeostatic plasticity are unknown. Here, we report that polo-like kinase 2 (Plk2), a homeostatic suppressor of overexcitation, governs the activity of Ras and Rap via coordination of their regulatory proteins. Plk2 directs elimination of Ras activator RasGRF1 and Rap inhibitor SPAR via phosphorylation-dependent ubiquitin-proteasome degradation. Conversely, Plk2 phosphorylation stimulates Ras inhibitor SynGAP and Rap activator PDZGEF1. These Ras/Rap regulators perform complementary functions to downregulate dendritic spines and AMPA receptors following elevated activity, and their collective regulation by Plk2 profoundly stimulates Rap and suppresses Ras. Furthermore, perturbation of Plk2 disrupts Ras and Rap signaling, prevents homeostatic shrinkage and loss of dendritic spines, and impairs proper memory formation. Our study demonstrates a critical role of Plk2 in the synchronized tuning of Ras and Rap and underscores the functional importance of this regulation in homeostatic synaptic plasticity. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. A component of the transcriptional mediator complex inhibits RAS-dependent vulval fate specification in C. elegans

    Moghal, Nadeem; Sternberg, Paul W.


    Negative regulation of receptor tyrosine kinase (RTK)/RAS signaling pathways is important for normal development and the prevention of disease in humans. We have used a genetic screen in C. elegans to identify genes that antagonize the activity of activated LET-23, a member of the EGFR family of RTKs. We identified two loss-of-function mutations in dpy-22, previously cloned as sop-1, that promote the ability of activated LET-23 to induce ectopic vulval fates. DPY-22 is a glutamine-rich protei...


    B. Srinivasulu*, P. Bhadra Dev, P.H.C. Murthy


    Full Text Available Analytical monitoring of Pharmaceutical products is necessary to ensure its safety and efficacy throughout all phases of the drug. A systematic approach should be adapted to the presentation and evaluation of stable information, which should include, as necessary, physical, chemical, biological and microbiological test characteristics. Indian System of Medicine (ISM frequently uses metal/mineral drugs. It is mandatory to standardize the preparatory procedures. For the Pharmaceutical standardization, three batches of the Panchavaktra ras were prepared and analytical study of final product carried out. Panchavaktra ras consist equal parts of Parada (Mercury, Gandhaka (Sulphur, Tankana (Borax Pippali (Piper longum L. and Marica (Piper nigrum L., and Mardhana (Grinding was done carefully with sufficient quantity of juice of Datura metel leaves for 24 hours and a final product was obtained in the form of Vati (tablet form. It is one of the formulations mentioned in Amavata (Rheumatoid Arthritis disease. The final products were subjected to Powder X-Ray Diffraction (XRD studies and values of XRD peaks of particular Panchavaktra ras were observed. This study revealed that high peaks of HgS (Metacinnabar, free S (Sulfur, Chabazite (Ca- exchanged, dehydrated Ca (structure- Rhombohedral in the final products. The structural and chemical characterization of the HgS (Metacinnabar found as cubic, free S (Sulphur as Orthorhombic in all the samples. The 50% strongest peaks of HgS were present at 2-Theta scale between 26-31, 43-44, 51-55, 70-72 degrees. This paper points out the importance of XRD, as a standard tool for further studies and research of Herbo-mineral formulations.

  11. Genetic and Molecular Analysis of Suppressors of Ras Mutations


    fication of vulval cell fates have defined many of the genes necessary for normal vulval differentiation (Korn- feld 1997; Stemberg and Han 1998... Stemberg . 1993. C. e]- egans Un-45 raf gene participates in let-60 ros-stimulated vulval differentiation. Nature 363: 133-140. Horvitz, H.R. and P.W... Stemberg , P.W. and M. Han. 1998. Genetics of Ras signaling in C. elegazss. Tiettds Genet. 14:466-472. Stewart, S., M. Sundaram, Y. Zhang, J. Lee, Y

  12. Research advances of K-ras mutation in the prognosis and targeted therapy of gastric cancer%K-ras 突变在胃癌预后及靶向治疗中的研究进展

    黄荧; 魏嘉; 刘宝瑞


    约30%的人类肿瘤均可发生 K-ras 突变,其中在胰腺癌、结直肠癌和肺癌中尤其常见。近年的研究表明,胃癌中也存在一定的 K-ras 突变,人们还对 K-ras 突变展开了一系列的功能研究。文章介绍了 K-ras 突变在胃癌中的研究现状,尤其是 K-ras 突变在胃癌中的发生情况、K-ras 突变与胃癌临床病理特点及预后的相关性、靶向 K-ras 突变的小分子抑制剂、K-ras 信号通路上相关靶点的靶向药物治疗,提出了未来有潜力的研究方向。%K-ras mutations have been described in 30% of human cancers with significantly different mutation frequencies.High K-ras mutation frequency is found in many cancers such as pancreas and lung cancers, whereas, gastric cancer has a relatively low K-ras mutation frequency.In recent years, numerous researches have focused on the K-ras mutation in gastric cancer.This review summarizes the K-ras mutation frequency in gastric cancer, the relationship of K-ras mutation with clinicopathologic features and prognosis of gastric cancer patients, targeted therapy for K-ras mutated gastric cancer, some small-molecular inhibitors of K-ras, and development of targeted therapy drugs for K-ras signaling pathway in gastric cancer.

  13. K-Ras突变对表皮生长因子受体抑制剂敏感细胞株的影响%The influence of K-Ras mutation on epidermal growth factor receptor inhibitor sensitive cell lines

    杨帆; 陈克终; 隋锡朝; 李剑锋; 王俊; 姜冠潮


    目的 观察K-Ras突变对于携带表皮生长因子受体(EGFR)突变细胞的EGFR抑制剂敏感性的影响.方法 构建K-Ras突变真核表达质粒,采用脂质体转染技术转染肺癌细胞HCC827(EGFR突变,K-Ras野生)和H292(EGFR、K-Ras均野生),噻唑蓝(MTT)比色法测定转染K-Pas突变质粒和空白质粒后各细胞对EGFR抑制剂的半数抑制浓度(IC_(50)).结果 真核表达质粒构建成功.细胞HCC827未转染K-ras突变质粒对吉非替尼(Iressa)的IC_(50)为0.007,转染后对Iressa的IC_(50)为12.3,差异有统计学意义(P0.05).结论 野生型或突变型EGFR出现K-Ras突变均可引起吉非替尼耐药,其程度与K-Ras突变的细胞株相当.%Objective By comparing the sensitivity of gefitinib in different cell lines affected by K-Ras mutation,to investigate the change of epidermal growth factor receptor(EGFR)inhibitors sensitivity on EGFR mutation cells with K-Ras mutation.Methods The eukaryotic expression plasmid pcDNA3.1 (-)K-Ras(+)was constyructed,transfected into lung cancer cells HCC827(EGFR mutation,K-Ras Wild-type)and H292(EGFR Wild-type,K-Ras Wild-type)by liposome respectively.MTT was used to measured the semitivity and median lethal concentration IC_(50) of EGFR inhibitors gefitinib after K-Ras or blank plasmid was induced to ceils.Results The sequencing results confirmed the success of eukaryotic expression plasmid.IC_(50) H of gefitinib for HCC827(K-Ras mutation)and HCC827(K-Ras Wild-type)was 12.3,and 0.007(P0.05).Conclusion Whether with EGFR mutations or not,the sensitivity to gefitinib waft significantly decreased with K-Ras mutant transfection,and the extent of resistance Was close to cells carrying K-Ras mutation.

  14. HOP expression is regulated by p53 and RAS and characteristic of a cancer gene signature.

    Mattison, Stacey A; Blatch, Gregory L; Edkins, Adrienne L


    The Hsp70/Hsp90 organising protein (HOP) is a co-chaperone essential for client protein transfer from Hsp70 to Hsp90 within the Hsp90 chaperone machine. Although HOP is upregulated in various cancers, there is limited information from in vitro studies on how HOP expression is regulated in cancer. The main objective of this study was to identify the HOP promoter and investigate its activity in cancerous cells. Bioinformatic analysis of the -2500 to +16 bp region of the HOP gene identified a large CpG island and a range of putative cis-elements. Many of the cis-elements were potentially bound by transcription factors which are activated by oncogenic pathways. Luciferase reporter assays demonstrated that the upstream region of the HOP gene contains an active promoter in vitro. Truncation of this region suggested that the core HOP promoter region was -855 to +16 bp. HOP promoter activity was highest in Hs578T, HEK293T and SV40- transformed MEF1 cell lines which expressed mutant or inactive p53. In a mutant p53 background, expression of wild-type p53 led to a reduction in promoter activity, while inhibition of wild-type p53 in HeLa cells increased HOP promoter activity. Additionally, in Hs578T and HEK293T cell lines containing inactive p53, expression of HRAS increased HOP promoter activity. However, HRAS activation of the HOP promoter was inhibited by p53 overexpression. These findings suggest for the first time that HOP expression in cancer may be regulated by both RAS activation and p53 inhibition. Taken together, these data suggest that HOP may be part of the cancer gene signature induced by a combination of mutant p53 and mutated RAS that is associated with cellular transformation.

  15. Plasma membrane localization is required for RasA-mediated polarized morphogenesis and virulence of Aspergillus fumigatus.

    Fortwendel, Jarrod R; Juvvadi, Praveen R; Rogg, Luise E; Asfaw, Yohannes G; Burns, Kimberlie A; Randell, Scott H; Steinbach, William J


    Ras is a highly conserved GTPase protein that is essential for proper polarized morphogenesis of filamentous fungi. Localization of Ras proteins to the plasma membrane and endomembranes through posttranslational addition of farnesyl and palmitoyl residues is an important mechanism through which cells provide specificity to Ras signal output. Although the Aspergillus fumigatus RasA protein is known to be a major regulator of growth and development, the membrane distribution of RasA during polarized morphogenesis and the role of properly localized Ras signaling in virulence of a pathogenic mold remain unknown. Here we demonstrate that Aspergillus fumigatus RasA localizes primarily to the plasma membrane of actively growing hyphae. We show that treatment with the palmitoylation inhibitor 2-bromopalmitate disrupts normal RasA plasma membrane association and decreases hyphal growth. Targeted mutations of the highly conserved RasA palmitoylation motif also mislocalized RasA from the plasma membrane and led to severe hyphal abnormalities, cell wall structural changes, and reduced virulence in murine invasive aspergillosis. Finally, we provide evidence that proper RasA localization is independent of the Ras palmitoyltransferase homolog, encoded by erfB, but requires the palmitoyltransferase complex subunit, encoded by erfD. Our results demonstrate that plasma membrane-associated RasA is critical for polarized morphogenesis, cell wall stability, and virulence in A. fumigatus.

  16. Combined blocked of Ras and mTOR signaling inhibit HCC cell growth%联合靶向Ras和mTOR信号抑制HCC细胞生长

    杨件新; 施超; 施海辉


    Objective: To investigate the value of combined blockade Ras and mTOR signaling in the therapy of HCC. Methods: Specific Ras and/or mTOR inhibitors were used to inhibit Ras and mTOR relatively. Cell proliferation was assessed by using the MTT assay. Early apoptosis was detected by Annexin-V-FITC/propidium iodide double staining assay. The ef-fects of the two drugs on HCC were also assessed in xenograft models. Results:Ras inhibitor FTS and mTOR inhibitor all in-hibited HepG2 and Huh-7 cell growth, induced cell apoptosis. Conclusion: Con-target Ras and mTOR could markedly in-hibited HCC cell growth in vitro and in vivo.%目的:探讨联合靶向Ras和mTOR信号在肝细胞癌(hepatocellular carcinoma,HCC)治疗中的价值。方法:四甲基偶氮唑盐(methylthiazolyl tetrazolium,MTT)检测不同浓度Ras抑制剂(farnesylthiosalicylic acid,FTS)和(或)mTOR抑制剂雷帕霉素对肝癌细胞增殖的影响;流式细胞仪检测细胞凋亡;进一步研究两种药物联合对Balb/c小鼠肝癌移植瘤生长的影响。结果:FTS联合雷帕霉素更能抑制HepG2细胞增殖、抑制小鼠肝癌移植瘤的生长,诱导肝癌细胞凋亡。结论:Ras和mTOR信号在HCC治疗中具有联合靶向价值。

  17. Shift in the equilibrium between on and off states of the allosteric switch in Ras-GppNHp affected by small molecules and bulk solvent composition.

    Holzapfel, Genevieve; Buhrman, Greg; Mattos, Carla


    Ras GTPase cycles between its active GTP-bound form promoted by GEFs and its inactive GDP-bound form promoted by GAPs to affect the control of various cellular functions. It is becoming increasingly apparent that subtle regulation of the GTP-bound active state may occur through promotion of substates mediated by an allosteric switch mechanism that induces a disorder to order transition in switch II upon ligand binding at an allosteric site. We show with high-resolution structures that calcium acetate and either dithioerythritol (DTE) or dithiothreitol (DTT) soaked into H-Ras-GppNHp crystals in the presence of a moderate amount of poly(ethylene glycol) (PEG) can selectively shift the equilibrium to the "on" state, where the active site appears to be poised for catalysis (calcium acetate), or to what we call the "ordered off" state, which is associated with an anticatalytic conformation (DTE or DTT). We also show that the equilibrium is reversible in our crystals and dependent on the nature of the small molecule present. Calcium acetate binding in the allosteric site stabilizes the conformation observed in the H-Ras-GppNHp/NOR1A complex, and PEG, DTE, and DTT stabilize the anticatalytic conformation observed in the complex between the Ras homologue Ran and Importin-β. The small molecules are therefore selecting biologically relevant conformations in the crystal that are sampled by the disordered switch II in the uncomplexed GTP-bound form of H-Ras. In the presence of a large amount of PEG, the ordered off conformation predominates, whereas in solution, in the absence of PEG, switch regions appear to remain disordered in what we call the off state, unable to bind DTE.

  18. Shift in the Equilibrium between On and Off States of the Allosteric Switch in Ras-GppNHp Affected by Small Molecules and Bulk Solvent Composition

    Holzapfel, Genevieve; Buhrman, Greg; Mattos, Carla (NCSU)


    Ras GTPase cycles between its active GTP-bound form promoted by GEFs and its inactive GDP-bound form promoted by GAPs to affect the control of various cellular functions. It is becoming increasingly apparent that subtle regulation of the GTP-bound active state may occur through promotion of substates mediated by an allosteric switch mechanism that induces a disorder to order transition in switch II upon ligand binding at an allosteric site. We show with high-resolution structures that calcium acetate and either dithioerythritol (DTE) or dithiothreitol (DTT) soaked into H-Ras-GppNHp crystals in the presence of a moderate amount of poly(ethylene glycol) (PEG) can selectively shift the equilibrium to the 'on' state, where the active site appears to be poised for catalysis (calcium acetate), or to what we call the 'ordered off' state, which is associated with an anticatalytic conformation (DTE or DTT). We also show that the equilibrium is reversible in our crystals and dependent on the nature of the small molecule present. Calcium acetate binding in the allosteric site stabilizes the conformation observed in the H-Ras-GppNHp/NOR1A complex, and PEG, DTE, and DTT stabilize the anticatalytic conformation observed in the complex between the Ras homologue Ran and Importin-{beta}. The small molecules are therefore selecting biologically relevant conformations in the crystal that are sampled by the disordered switch II in the uncomplexed GTP-bound form of H-Ras. In the presence of a large amount of PEG, the ordered off conformation predominates, whereas in solution, in the absence of PEG, switch regions appear to remain disordered in what we call the off state, unable to bind DTE.

  19. Raft protein clustering alters N-Ras membrane interactions and activation pattern

    Eisenberg, Sharon; Beckett, Alison J; Prior, Ian A; Dekker, Frank J; Hedberg, Christian; Waldmann, Herbert; Ehrlich, Marcelo; Henis, Yoav I; Dekker, Frank


    The trafficking, membrane localization, and lipid raft association of Ras proteins, which are crucial oncogenic mediators, dictate their isoform-specific biological responses. Accordingly, their spatiotemporal dynamics are tightly regulated. While extensively studied for H- and K-Ras, such informati

  20. Immunohistochemical analysis of ras oncogene p21 product in human gastric carcinomas and their adjacent mucosas.

    Carneiro, F; David, L; Sunkel, C; Lopes, C; Sobrinho-Simões, M


    In an attempt to clarify the relationship between ras oncogene expression and the clinico-pathological features of malignant and pre-malignant lesions of the stomach we undertook the immunohistochemical study of the expression of ras gene p21 product in a series of eighty gastric carcinomas and their respective adjacent mucosas. In two cases the mRNA of Ha-ras was also studied by in situ hybridization. The majority of gastric carcinomas as well as their adjacent non-neoplastic mucosas expressed ras gene product. There was a significant relationship between the expression of ras gene p21 product and the morphologic pattern of the tumours. An enhanced ras expression was found in several conditions regarded as precursor lesions of intestinal and/or diffuse types of gastric carcinoma (dysplasia, foveolar hyperplasia and even the neck zone of normal-appearing gastric glands, namely in the mucosa adjacent to diffuse carcinomas). Ras expression was actually more prominent in most of these conditions than in their respective adjacent carcinomas. No significant relationship was found between ras expression and invasiveness of the wall, nodal metastases and venous invasion.

  1. The Ras mutant D119N is both dominant negative and activated

    Cool, RH; Schmidt, G; Lenzen, CU; Prinz, H; Vogt, D; Wittinghofer, A


    The introduction of mutation D119N (or its homolog) in the NKxD nucleotide binding motif of various Ras-like proteins produces constitutively activated or dominant-negative effects, depending on the system and assay. Here we show that Ras(D119N) has an inhibitory effect at a cell-specific concentrat

  2. Studying the Immunomodulatory Effects of Small Molecule Ras-Inhibitors in Animal Models of Rheumatoid Arthritis


    Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person...plasma membrane ( PM ) localization and signaling dynamics of Ras- GTPases, and indeed FTS dislodges the classical H/N/K-Ras GTPases from the PM and

  3. The effects of expression of an activated rasG mutation on the differentiation of Dictyostelium.

    Thiery, R; Robbins, S; Khosla, M; Spiegelman, G B; Weeks, G


    Dictyostelium discoideum contains two ras genes, rasG and rasD, that are expressed during growth and differentiation, respectively. It was shown previously that Dictyostelium transformants expressing an activated rasD gene (a mutation producing a change in amino acid 12 from glycine to threonine) developed abnormally. When developed on filters these transformants formed multitipped aggregates, which did not go on to produce final fruiting bodies, but in a submerged culture assay on a plastic surface they either formed small aggregates or did not aggregate. In this study we transformed cells with the rasG gene, mutated to change amino acid 12 from glycine to threonine. The resulting transformants developed normally on filters, but aggregation under other conditions was impaired. In particular, in submerged culture on a plastic surface they either produced very small aggregates or did not aggregate, one of the phenotypes exhibited by the activated rasD transformants. Molecular analysis of the transformants revealed the presence of high copy numbers of the mutated rasG gene, but the level of expression of the mutant gene never exceeded the level of expression of the endogenous gene. These results indicate a powerful dominant effect of a relatively small amount of the activated RasG protein in Dictyostelium.

  4. RasGRP1 stimulation enhances ubiquitination and endocytosis of the sodium-chloride cotransporter.

    Ko, B.; Kamsteeg, E.J.; Cooke, L.L.; Moddes, L.N.; Deen, P.M.T.; Hoover, R.S.


    The sodium-chloride cotransporter (NCC) is the principal salt-absorptive pathway in the distal convoluted tubule. Recently, we described a novel pathway of NCC regulation in which phorbol esters (PE) stimulate Ras guanyl-releasing protein 1 (RasGRP1), triggering a cascade ultimately activating ERK1/

  5. Small molecule inhibition of protein depalmitoylation as a new approach towards downregulation of oncogenic Ras signalling

    Dekker, Frank J.; Hedberg, Christian


    The H- and N-Ras GTPases are prominent examples of proteins, whose localizations and signalling capacities are regulated by reversible palmitoylations and depalmitoylations. Recently, the novel small molecule inhibitor palmostatin B has been described to inhibit Ras depalmitoylation and to revert th

  6. Targeted expression of oncogenic K-ras in intestinal epithelium causes spontaneous tumorigenesis in mice

    Janssen, KP; El Marjou, F; Pinto, D; Sastre, X; Rouillard, D; Fouquet, C; Soussi, T; Louvard, D; Robine, S


    Background & Aims: Ras oncoproteins are mutated in about 50% of human colorectal cancers, but their precise role in tumor initiation or progression is still unclear. Methods: This study presents transgenic mice that express K-ras(V12G), the most frequent oncogenic mutation in human tumors, under con

  7. Increased conversion of phosphatidylinositol to phosphatidylinositol phosphate in Dictyostelium cells expressing a mutated ras gene

    Kaay, Jeroen van der; Draijer, Richard; Haastert, Peter J.M. van


    Dictyostelium discoideum cells that overexpress a ras gene with a Gly12 → Thr12 mutation (Dd-ras-Thr12) have an altered phenotype. These cells were labeled with [3H]inositol and the incorporation of radioactivity into inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] was analyzed and found to be higher th

  8. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1

    Evelyn, Chris R.; Duan, Xin; Biesiada, Jacek; Seibel, William L.; Meller, Jaroslaw; Zheng, Yi


    Summary Ras GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine-nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, is found to bind to SOS1, competitively suppresses SOS1-Ras interaction, and dose-dependently inhibits SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity. PMID:25455859

  9. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1.

    Evelyn, Chris R; Duan, Xin; Biesiada, Jacek; Seibel, William L; Meller, Jaroslaw; Zheng, Yi


    Ras GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, was found to bind to SOS1, competitively suppress SOS1-Ras interaction, and dose-dependently inhibit SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity.

  10. Study Illuminates K-Ras4B Activation, Which May Help Predict Drug Resistance | Poster

    Until recently, researchers studying RAS, a family of proteins involved in transmitting signals within cells, believed that the exchange of guanosine 5’-diphosphate (GDP) by guanosine triphosphate (GTP) was sufficient to activate the protein. Once activated, RAS can cause unintended and overactive signaling in cells, which can lead to cell division and, ultimately, cancer.

  11. A RAS renaissance: emerging targeted therapies for KRAS-mutated non-small cell lung cancer.

    Vasan, Neil; Boyer, Julie L; Herbst, Roy S


    Of the numerous oncogenes implicated in human cancer, the most common and perhaps the most elusive to target pharmacologically is RAS. Since the discovery of RAS in the 1960s, numerous studies have elucidated the mechanism of activity, regulation, and intracellular trafficking of the RAS gene products, and of its regulatory pathways. These pathways yielded druggable targets, such as farnesyltransferase, during the 1980s to 1990s. Unfortunately, early clinical trials investigating farnesyltransferase inhibitors yielded disappointing results, and subsequent interest by pharmaceutical companies in targeting RAS waned. However, recent advances including the identification of novel regulatory enzymes (e.g., Rce1, Icmt, Pdeδ), siRNA-based synthetic lethality screens, and fragment-based small-molecule screens, have resulted in a "Ras renaissance," signified by new Ras and Ras pathway-targeted therapies that have led to new clinical trials of patients with Ras-driven cancers. This review gives an overview of KRas signaling pathways with an emphasis on novel targets and targeted therapies, using non-small cell lung cancer as a case example.

  12. Coexistence of K-ras mutations and HPV infection in colon cancer

    Tezol Ayda


    Full Text Available Abstract Background Activation of the ras genes or association with human papillomavirus infection have been extensively studied in colorectal cancer. However, the correlation between K-ras mutations and HPV in colorectal cancer has not been investigated yet. In this study we aimed to investigate the presence of K-ras mutations and their correlation with HPV infection in colon cancer. Methods K-ras mutations were analyzed by a mutagenic PCR assay and digestion with specific restriction enzymes to distinguish the wild-type and mutant codons. HPV infection was analyzed by PCR amplification and hybridization with specific probes by Southern blotting. Stattistical analyses were performed by the chi-square and Fisher's exact tests Results HPV gene fragments were detected in 43 tumors and 17 normal tissue samples. HPV 18 was the prevalent type in the tumor tissue. A mutation at codon 12 of the K-ras gene was present in 31 patients. 56% of the HPV-positive tumors also harbored a K-ras mutation. Codon 13 mutations were not observed. These data indicate that infection with high risk HPV types and mutational activation of the K-ras gene are frequent events in colorectal carcinogenesis. Conclusion Our findings suggest that mutational activation of the K-ras gene is a common event in colon carcinogenesis and that HPV infection may represent an important factor in the development of the premalignant lesions leading to the neoplastic phenotype.

  13. RasGRP1 stimulation enhances ubiquitination and endocytosis of the sodium-chloride cotransporter.

    Ko, B.; Kamsteeg, E.J.; Cooke, L.L.; Moddes, L.N.; Deen, P.M.T.; Hoover, R.S.


    The sodium-chloride cotransporter (NCC) is the principal salt-absorptive pathway in the distal convoluted tubule. Recently, we described a novel pathway of NCC regulation in which phorbol esters (PE) stimulate Ras guanyl-releasing protein 1 (RasGRP1), triggering a cascade ultimately activating

  14. Society News: PhD theses could win prizes; Last chance for IYA2009 grants; New Fellows; RAS Fellows win prizes; Need a job? Need staff? RAS Library Saturdays


    Fellows who are PhD student supervisors should be on the lookout for exceptionally good work from research students submitting their theses this year, for nomination for the RAS Michael Penston Astronomy Prize and the RAS Keith Runcorn Prize. The RAS is offering one last chance to apply for grants towards International Year of Astronomy activities, but you'll have to apply soon. The Society sends congratulations to Fellows of the RAS who have recently received prestigious awards for their work.

  15. Alterations in metastatic properties of hepatocellular carcinoma cell following H-ras oncogene transfection

    Qing Wang; Zhi Ying Lin; Xiao Li Feng


    AIM To demonstrate the relationship betweenH-ras oncogene and hepatocellular carcinoma(HCC) metastasis.METHODS Activated H-ras oncogene wastransfected into SMMC 7721, a cell line derivedfrom human HCC, by calcium phosphatetransfection method. Some metastasis-relatedparameters were detected in vitro, includingadhesion assay, migration assay, expression ofcollagenase ⅣV (c ⅣV ase) and epidermal growthfactor receptor (EGFR).RESULTS The abilities of H-ras-transfected cellclones in adhesion to laminin (LN) or fibronectin(FN), migration, c Ⅳ ase secretion increasedmarkedly, and the expression of EGFR elevatedmoderately. More importantly, these alterationswere consistent positively with the expressionof p21, the protein product of H-ras oncogene.CONCLUSION H-ras oncogene could inducethe metastatic phenotype of HCC cell in vitro toraise its metastatic potential.


    刘世喜; 林代诚; 洪邦泰; 黄光琦


    In order to study the ahered molecular events during laryngeal carcinogenesis and elucidate the role of Ha-ras oncogene amplification and mutation, we have examined their profile by polymerase chain reaction (PCR) and selective oligonucleoride hybridization. We analyzed the mutational status of codon 12 of Ha-ras in 22 laryngeal carcinomas and 10 normal tissues, and found that 7 of 22 laryngeal carcinomas con-tained a Ha-ras mutation at codon 12. The frequency of mutation was 32%. None of the normal tissues re-vealed mutation. Moreover, no amplification was found in cancers when compared to the normal. Our findings indicated that the aefivmed Ha-ras gene existed in laryngeal carcinoma, and activation of the Ha-ras gene by mutation at codon 12 might play a key role in laryngeal carcinogenesis.

  17. Activating Ras mutations fail to ensure efficient replication of adenovirus mutants lacking VA-RNA

    Schümann, Michael; Dobbelstein, Matthias


    Adenoviruses lacking their PKR-antagonizing VA RNAs replicate poorly in primary cells. It has been suggested that these virus recombinants still replicate efficiently in tumor cells with Ras mutations and might therefore be useful in tumor therapy. The ability of interferon-sensitive viruses...... to grow in Ras-mutant tumor cells is generally ascribed to a postulated inhibitory effect of mutant Ras on PKR. We have constructed a set of isogenic adenoviruses that lack either or both VA RNA species, and tested virus replication in a variety of cell species with different Ras status. In tendency, VA...... mutational status, upon infection with VA-less adenoviruses in the presence of interferon, but also upon addition of the PKR activator polyIC to cells. When comparing two isogenic cell lines that differ solely with regard to the presence or absence of mutant Ras, no difference was observed concerning...

  18. Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP.

    Leonardy, Simone; Miertzschke, Mandy; Bulyha, Iryna; Sperling, Eva; Wittinghofer, Alfred; Søgaard-Andersen, Lotte


    The rod-shaped cells of the bacterium Myxococcus xanthus move uni-directionally and occasionally undergo reversals during which the leading/lagging polarity axis is inverted. Cellular reversals depend on pole-to-pole relocation of motility proteins that localize to the cell poles between reversals. We show that MglA is a Ras-like G-protein and acts as a nucleotide-dependent molecular switch to regulate motility and that MglB represents a novel GTPase-activating protein (GAP) family and is the cognate GAP of MglA. Between reversals, MglA/GTP is restricted to the leading and MglB to the lagging pole defining the leading/lagging polarity axis. For reversals, the Frz chemosensory system induces the relocation of MglA/GTP to the lagging pole causing an inversion of the leading/lagging polarity axis. MglA/GTP stimulates motility by establishing correct polarity of motility proteins between reversals and reversals by inducing their pole-to-pole relocation. Thus, the function of Ras-like G-proteins and their GAPs in regulating cell polarity is found not only in eukaryotes, but also conserved in bacteria.

  19. MicroRNA 17-92 cluster mediates ETS1 and ETS2-dependent RAS-oncogenic transformation.

    Mohamed Kabbout

    Full Text Available The ETS-family transcription factors Ets1 and Ets2 are evolutionarily conserved effectors of the RAS/ERK signaling pathway, but their function in Ras cellular transformation and biology remains unclear. Taking advantage of Ets1 and Ets2 mouse models to generate Ets1/Ets2 double knockout mouse embryonic fibroblasts, we demonstrate that deletion of both Ets1 and Ets2 was necessary to inhibit HrasG12V induced transformation both in vitro and in vivo. HrasG12V expression in mouse embryonic fibroblasts increased ETS1 and ETS2 expression and binding to cis-regulatory elements on the c-Myc proximal promoter, and consequently induced a robust increase in MYC expression. The expression of the oncogenic microRNA 17-92 cluster was increased in HrasG12V transformed cells, but was significantly reduced when ETS1 and ETS2 were absent. MYC and ETS1 or ETS2 collaborated to increase expression of the oncogenic microRNA 17-92 cluster in HrasG12V transformed cells. Enforced expression of exogenous MYC or microRNA 17-92 rescued HrasG12V transformation in Ets1/Ets2-null cells, revealing a direct function for MYC and microRNA 17-92 in ETS1/ETS2-dependent HrasG12V transformation.

  20. Analysis of Binding Site Hot Spots on the Surface of Ras GTPase

    Buhrman, Greg; O; #8242; Connor, Casey; Zerbe, Brandon; Kearney, Bradley M.; Napoleon, Raeanne; Kovrigina, Elizaveta A.; Vajda, Sandor; Kozakov, Dima; Kovrigin, Evgenii L.; Mattos, Carla (NCSU); (MCW); (BU)


    We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the 'off' and 'on' allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond the active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target.

  1. Identification of Differentially Expressed K-Ras Transcript Variants in Patients With Leiomyoma.

    Zolfaghari, Nooshin; Shahbazi, Shirin; Torfeh, Mahnaz; Khorasani, Maryam; Hashemi, Mehrdad; Mahdian, Reza


    Molecular studies have demonstrated a wide range of gene expression variations in uterine leiomyoma. The rat sarcoma virus/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase (RAS/RAF/MAPK) is the crucial cellular pathway in transmitting external signals into nucleus. Deregulation of this pathway contributes to excessive cell proliferation and tumorigenesis. The present study aims to investigate the expression profile of the K-Ras transcripts in tissue samples from patients with leiomyoma. The patients were leiomyoma cases who had no mutation in mediator complex subunit 12 ( MED12) gene. A quantitative approach has been applied to determine the difference in the expression of the 2 main K-Ras messenger RNA (mRNA) variants. The comparison between gene expression levels in leiomyoma and normal myometrium group was performed using relative expression software tool. The expression of K-Ras4B gene was upregulated in leiomyoma group ( P = .016), suggesting the involvement of K-Ras4B in the disease pathogenesis. Pairwise comparison of the K-Ras4B expression between each leiomyoma tissue and its matched adjacent normal myometrium revealed gene upregulation in 68% of the cases. The expression of K-Ras4A mRNA was relatively upregulated in leiomyoma group ( P = .030). In addition, the mean expression of K-Ras4A gene in leiomyoma tissues relative to normal samples was 4.475 (95% confidence interval: 0.10-20.42; standard error: 0.53-12.67). In total, 58% of the cases showed more than 2-fold increase in K-Ras4A gene expression. Our results demonstrated increased expression of both K-Ras mRNA splicing variants in leiomyoma tissue. However, the ultimate result of KRAS expression on leiomyoma development depends on the overall KRAS isoform balance and, consequently, on activated signaling pathways.

  2. R-Ras regulates migration through an interaction with filamin A in melanoma cells.

    Joanna E Gawecka

    Full Text Available BACKGROUND: Changes in cell adhesion and migration in the tumor microenvironment are key in the initiation and progression of metastasis. R-Ras is one of several small GTPases that regulate cell adhesion and migration on the extracellular matrix, however the mechanism has not been completely elucidated. Using a yeast two-hybrid approach we sought to identify novel R-Ras binding proteins that might mediate its effects on integrins. METHODS AND FINDINGS: We identified Filamin A (FLNa as a candidate interacting protein. FLNa is an actin-binding scaffold protein that also binds to integrin beta1, beta2 and beta7 tails and is associated with diverse cell processes including cell migration. Indeed, M2 melanoma cells require FLNa for motility. We further show that R-Ras and FLNa interact in co-immunoprecipitations and pull-down assays. Deletion of FLNa repeat 3 (FLNaDelta3 abrogated this interaction. In M2 melanoma cells active R-Ras co-localized with FLNa but did not co-localize with FLNa lacking repeat 3. Thus, activated R-Ras binds repeat 3 of FLNa. The functional consequence of this interaction was that active R-Ras and FLNa coordinately increased cell migration. In contrast, co-expression of R-Ras and FLNaDelta3 had a significantly reduced effect on migration. While there was enhancement of integrin activation and fibronectin matrix assembly, cell adhesion was not altered. Finally, siRNA knockdown of endogenous R-Ras impaired FLNa-dependent fibronectin matrix assembly. CONCLUSIONS: These data support a model in which R-Ras functionally associates with FLNa and thereby regulates integrin-dependent migration. Thus in melanoma cells R-Ras and FLNa may cooperatively promote metastasis by enhancing cell migration.

  3. Across the universe of K-RAS mutations in non-small-cell-lung cancer.

    Piva, Sheila; Ganzinelli, Monica; Garassino, Marina Chiara; Caiola, Elisa; Farina, Gabriella; Broggini, Massimo; Marabese, Mirko


    RAS family proteins are important signaling molecules that regulate cell growth, survival and differentiation by coupling receptor activation to downstream effector pathways. Three distinct genes encode for the three different proteins H-, K-, and N- RAS. These proteins share high sequence homology, particularly at the N-Terminal domain. Among them, K-RAS is one of the most frequently mutated in human cancer. The majority of the mutations present in K-RAS are at codon 12 (from 80 to 100%) followed by codon 13 and 61. In all cases, aminoacid change leads to a constitutively activated protein. K-RAS mutations have a role in tumor development as well as in tumor progression and resistance. Despite the various studies which have been published, the prognostic and predictive role of K-RAS mutations is still under debate. Keeping in mind that the glycine present at position 12 can be substituted by valine, aspartic acid or cysteine, it could be well understood that each different substitution plays a different role in K-RAS-dependent processes. The present article focuses on the molecular and biological characteristics of K-RAS protein, its role in NSCLC tumor development and progression. We also present an overview of the preclinical models both in vitro and in vivo available to determine the role of K-RAS in tumor progression and response to treatment and on the recent results obtained in this field. Finally, we have considered the impact of KRAS mutations in clinical practice, analyzing the different recent trials that have taken into consideration K-RAS.

  4. Expression of renin–angiotensin system (RAS) components in endometrial cancer

    Delforce, Sarah J; Lumbers, Eugenie R; Corbisier de Meaultsart, Celine; Wang, Yu; Proietto, Anthony; Otton, Geoffrey; Scurry, Jim; Verrills, Nicole M; Scott, Rodney J


    A dysfunctional endometrial renin–angiotensin system (RAS) could aid the growth and spread of endometrial cancer. To determine if the RAS is altered in endometrial cancer, we measured RAS gene expression and protein levels in 30 human formalin-fixed, paraffin-embedded (FFPE) endometrioid carcinomas and their adjacent endometrium. All components of the RAS were expressed in most tumours and in adjacent endometrium; mRNA levels of (pro)renin receptor (ATP6AP2), angiotensin II type 1 receptor (AGTR1), angiotensin-converting enzyme (ACE1) and angiotensin-converting enzyme 2 (ACE2) mRNA levels were greater in tumour tissue than adjacent non-cancerous endometrium (P = 0.023, 0.008, 0.004 and 0.046, respectively). Prorenin, ATP6AP2, AGTR1, AGTR2 and ACE2 proteins were abundantly expressed in both cancerous and adjacent non-cancerous endometrium. Staining was most intense in cancerous glandular epithelium. One potential target of the endometrial RAS, transforming growth factor beta-1 (TGFB1), which is essential for epithelial-to-mesenchymal transition, was also upregulated in endometrial cancer tissue (P = 0.001). Interestingly, TGFB1 was strongly correlated with RAS expression and was upregulated in tumour tissue. This study is the first to characterise the mRNA and protein expression of all RAS components in cancerous and adjacent non-cancerous endometrium. The greater expression of ATP6AP2, AGTR1 and ACE1, key elements of the pro-angiogenic/proliferative arm of the RAS, suggests that the RAS plays a role in the growth and spread of endometrial cancer. Therefore, existing drugs that inhibit the RAS and which are used to treat hypertension may have potential as treatments for endometrial cancer. PMID:27956412

  5. Expression of renin–angiotensin system (RAS components in endometrial cancer

    Sarah J Delforce


    Full Text Available A dysfunctional endometrial renin–angiotensin system (RAS could aid the growth and spread of endometrial cancer. To determine if the RAS is altered in endometrial cancer, we measured RAS gene expression and protein levels in 30 human formalin-fixed, paraffin-embedded (FFPE endometrioid carcinomas and their adjacent endometrium. All components of the RAS were expressed in most tumours and in adjacent endometrium; mRNA levels of (prorenin receptor (ATP6AP2, angiotensin II type 1 receptor (AGTR1, angiotensin-converting enzyme (ACE1 and angiotensin-converting enzyme 2 (ACE2 mRNA levels were greater in tumour tissue than adjacent non-cancerous endometrium (P = 0.023, 0.008, 0.004 and 0.046, respectively. Prorenin, ATP6AP2, AGTR1, AGTR2 and ACE2 proteins were abundantly expressed in both cancerous and adjacent non-cancerous endometrium. Staining was most intense in cancerous glandular epithelium. One potential target of the endometrial RAS, transforming growth factor beta-1 (TGFB1, which is essential for epithelial-to-mesenchymal transition, was also upregulated in endometrial cancer tissue (P = 0.001. Interestingly, TGFB1 was strongly correlated with RAS expression and was upregulated in tumour tissue. This study is the first to characterise the mRNA and protein expression of all RAS components in cancerous and adjacent non-cancerous endometrium. The greater expression of ATP6AP2, AGTR1 and ACE1, key elements of the pro-angiogenic/proliferative arm of the RAS, suggests that the RAS plays a role in the growth and spread of endometrial cancer. Therefore, existing drugs that inhibit the RAS and which are used to treat hypertension may have potential as treatments for endometrial cancer.

  6. Variational data assimilation system "INM RAS - Black Sea"

    Parmuzin, Eugene; Agoshkov, Valery; Assovskiy, Maksim; Giniatulin, Sergey; Zakharova, Natalia; Kuimov, Grigory; Fomin, Vladimir


    Development of Informational-Computational Systems (ICS) for Data Assimilation Procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The problems discussed above are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for Personal Computers (PC). Special problems and questions arise while effective ICS versions for PC are being developed. These problems and questions can be solved with applying modern methods of numerical mathematics and by solving "parallelism problem" using OpenMP technology and special linear algebra packages. In this work the results on the ICS development for PC-ICS "INM RAS - Black Sea" are presented. In the work the following problems and questions are discussed: practical problems that can be studied by ICS; parallelism problems and their solutions with applying of OpenMP technology and the linear algebra packages used in ICS "INM - Black Sea"; Interface of ICS. The results of ICS "INM RAS - Black Sea" testing are presented. Efficiency of technologies and methods applied are discussed. The work was supported by RFBR, grants No. 13-01-00753, 13-05-00715 and by The Ministry of education and science of Russian Federation, project 8291, project 11.519.11.1005 References: [1] V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 5-31 [2] E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 69-94 [3] V.B. Zalesny, N.A. Diansky, V

  7. Genetic Validation of Cell Proliferation via Ras-Independent Activation of the Raf/Mek/Erk Pathway.

    Lechuga, Carmen G; Simón-Carrasco, Lucía; Jacob, Harrys K C; Drosten, Matthias


    Signaling transmitted by the Ras family of small GTPases (H-, N-, and K-Ras) is essential for proliferation of mouse embryonic fibroblasts (MEFs). However, constitutive activation of the downstream Raf/Mek/Erk pathway can bypass the requirement for Ras proteins and allow cells to proliferate in the absence of the three Ras isoforms. Here we describe a protocol for a colony formation assay that permits evaluating the role of candidate proteins that are positive or negative regulators of cell proliferation mediated via Ras-independent Raf/Mek/Erk pathway activation. K-Ras(lox) (H-Ras (-/-), N-Ras (-/-), K-Ras (lox/lox), RERT(ert/ert)) MEFs are infected with retro- or lentiviral vectors expressing wild-type or constitutively activated candidate cDNAs, shRNAs, or sgRNAs in combination with Cas9 to ascertain the possibility of candidate proteins to function either as an activator or inhibitor of Ras-independent Raf/Mek/Erk activation. These cells are then seeded in the absence or presence of 4-Hydroxytamoxifen (4-OHT), which activates the resident CreERT2 alleles resulting in elimination of the conditional K-Ras alleles and ultimately generating Rasless cells. Colony formation in the presence of 4-OHT indicates cell proliferation via Ras-independent Raf/Mek/Erk activation.

  8. The bovine papillomavirus E5 oncogene can cooperate with ras: identification of p21 amino acids critical for transformation by c-rasH but not v-rasH

    Willumsen, B M; Vass, W C; Velu, T J;


    We have previously used a series of insertion-deletion mutants of the mutationally activated v-rasH gene to identify several regions of the encoded protein that are dispensable for cellular transformation (B. M. Willumsen, A. G. Papageorge, H.-F. Kung, E. Bekesi, T. Robins, M. Johnsen, W. C. Vass......, and D. R. Lowy, Mol. Cell. Biol. 6:2646-2654, 1986). To determine if some of these amino acids are more important for the biological activity of c-rasH, we have now tested many of the same insertion-deletion mutants in the c-rasH form for their ability to transform NIH 3T3 cells. Since the transforming...... activity of c-rasH is low, we have used cotransfection with the bovine papillomavirus (BPV) genome to develop a more sensitive transformation assay for c-rasH mutants. The increased sensitivity of the assay, which is seen both in focal transformation and in anchorage-independent growth, is mediated...

  9. Regulation of the Ras Pathway by Neurofibromin in Dendritic Spines

    Oliveira, Ana Isabel Ferreira Martins de


    Tese de doutoramento em Biologia, na especialidade de Biologia Celular, apresentada à Faculdade de Ciências da Universidade de Coimbra Diversas evidências experimentais têm sugerido que a plasticidade sináptica desempenha um papel importante na formação de memórias e na aprendizagem. A via de sinalização da Ras é um elemento importante em muitas formas de plasticidade sináptica, incluindo a potenciação sináptica de longa duração (LTP) e a morfogénese das espículas dendríticas. Em consonânc...

  10. Activating FGFR2-RAS-BRAF mutations in ameloblastoma.

    Brown, Noah A; Rolland, Delphine; McHugh, Jonathan B; Weigelin, Helmut C; Zhao, Lili; Lim, Megan S; Elenitoba-Johnson, Kojo S J; Betz, Bryan L


    Ameloblastoma is an odontogenic neoplasm whose overall mutational landscape has not been well characterized. We sought to characterize pathogenic mutations in ameloblastoma and their clinical and functional significance with an emphasis on the mitogen-activated protein kinase (MAPK) pathway. A total of 84 ameloblastomas and 40 non-ameloblastoma odontogenic tumors were evaluated with a combination of BRAF V600E allele-specific PCR, VE1 immunohistochemistry, the Ion AmpliSeq Cancer Hotspot Panel, and Sanger sequencing. Efficacy of a BRAF inhibitor was evaluated in an ameloblastoma-derived cell line. Somatic, activating, and mutually exclusive RAS-BRAF and FGFR2 mutations were identified in 88% of cases. Somatic mutations in SMO, CTNNB1, PIK3CA, and SMARCB1 were also identified. BRAF V600E was the most common mutation, found in 62% of ameloblastomas and in ameloblastic fibromas/fibrodentinomas but not in other odontogenic tumors. This mutation was associated with a younger age of onset, whereas BRAF wild-type cases arose more frequently in the maxilla and showed earlier recurrences. One hundred percent concordance was observed between VE1 immunohistochemistry and molecular detection of BRAF V600E mutations. Ameloblastoma cells demonstrated constitutive MAPK pathway activation in vitro. Proliferation and MAPK activation were potently inhibited by the BRAF inhibitor vemurafenib. Our findings suggest that activating FGFR2-RAS-BRAF mutations play a critical role in the pathogenesis of most cases of ameloblastoma. Somatic mutations in SMO, CTNNB1, PIK3CA, and SMARCB1 may function as secondary mutations. BRAF V600E mutations have both diagnostic and prognostic implications. In vitro response of ameloblastoma to a BRAF inhibitor suggests a potential role for targeted therapy. ©2014 American Association for Cancer Research.

  11. Investigation of medieval ceramics from Ras by physicochemical methods

    Zindović Nataša D.


    Full Text Available Although early medieval Serbian ceramic is well described by the archeologists and historians, knowledge of the Balkan ceramic production is still limited. Archaeometric study of ceramics provenance, technology of preparation and used pigments as well as influence of neighboring countries and specific characteristics of different workshops has never been performed so far. The detailed knowledge of the micro-chemical and micro-structural nature of an archaeological artifact is critical in finding solutions to problems of restoration, conservation, dating and authentication in the art world. In this work we present results of systematic investigation of pottery shards from archeological site Ras. The term Ras, which signifies both the fortress and the region encompassing the upper course of Raška River, used to be the center of the medieval Serbian state. Both the ceramic body and the polychromatic glaze of the artifacts were studied by a multianalitical approach combining optical microscopy (OM, FT-IR spectroscopy and X-ray fluorescence (XRF. Mineralogical composition of pottery shards has been determined combining results obtained by FT-IR spectroscopy, after deconvolution of the spectra, and XRPD analysis. Firing temperature has been estimated based on the mineralogical composition and positions of Si-O stretching (-1000 cm-1 and banding (-460 cm-1 vibrations. Investigated samples have been classified into two groups based on the mineralogical composition, cross sections and firing temperature. Larger group consists of samples of fine-grained, homogeneous ceramics with firing temperatures bellow 800 °C which indicates imported products. Second, smaller group consists of inhomogeneous ceramics with firing temperatures between 850 and 900 °C produced in the domestic workshops. The obtained results will be used to build up a national database for the compositions of bodies, glazes and pigments.

  12. Nucleotide binding switches the information flow in ras GTPases.

    Raimondi, Francesco; Portella, Guillem; Orozco, Modesto; Fanelli, Francesca


    The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins) that are essential to intracellular signal transduction. The guanine nucleotide-dependent intrinsic flexibility patterns of five G proteins were investigated in atomic detail through Molecular Dynamics simulations of the GDP- and GTP-bound states (S(GDP) and S(GTP), respectively). For all the considered systems, the intrinsic flexibility of S(GDP) was higher than that of S(GTP), suggesting that Guanine Exchange Factor (GEF) recognition and nucleotide switch require higher amplitude motions than effector recognition or GTP hydrolysis. Functional mode, dynamic domain, and interaction energy correlation analyses highlighted significant differences in the dynamics of small G proteins and Gα proteins, especially in the inactive state. Indeed, S(GDP) of Gα(t), is characterized by a more extensive energy coupling between nucleotide binding site and distal regions involved in GEF recognition compared to small G proteins, which attenuates in the active state. Moreover, mechanically distinct domains implicated in nucleotide switch could be detected in the presence of GDP but not in the presence of GTP. Finally, in small G proteins, functional modes are more detectable in the inactive state than in the active one and involve changes in solvent exposure of two highly conserved amino acids in switches I and II involved in GEF recognition. The average solvent exposure of these amino acids correlates in turn with the rate of GDP release, suggesting for them either direct or indirect roles in the process of nucleotide switch. Collectively, nucleotide binding changes the information flow through the conserved Ras-like domain, where GDP enhances the flexibility of mechanically distinct portions involved in nucleotide switch, and favors long distance allosteric communication (in Gα proteins), compared to GTP.

  13. Nucleotide binding switches the information flow in ras GTPases.

    Francesco Raimondi


    Full Text Available The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins that are essential to intracellular signal transduction. The guanine nucleotide-dependent intrinsic flexibility patterns of five G proteins were investigated in atomic detail through Molecular Dynamics simulations of the GDP- and GTP-bound states (S(GDP and S(GTP, respectively. For all the considered systems, the intrinsic flexibility of S(GDP was higher than that of S(GTP, suggesting that Guanine Exchange Factor (GEF recognition and nucleotide switch require higher amplitude motions than effector recognition or GTP hydrolysis. Functional mode, dynamic domain, and interaction energy correlation analyses highlighted significant differences in the dynamics of small G proteins and Gα proteins, especially in the inactive state. Indeed, S(GDP of Gα(t, is characterized by a more extensive energy coupling between nucleotide binding site and distal regions involved in GEF recognition compared to small G proteins, which attenuates in the active state. Moreover, mechanically distinct domains implicated in nucleotide switch could be detected in the presence of GDP but not in the presence of GTP. Finally, in small G proteins, functional modes are more detectable in the inactive state than in the active one and involve changes in solvent exposure of two highly conserved amino acids in switches I and II involved in GEF recognition. The average solvent exposure of these amino acids correlates in turn with the rate of GDP release, suggesting for them either direct or indirect roles in the process of nucleotide switch. Collectively, nucleotide binding changes the information flow through the conserved Ras-like domain, where GDP enhances the flexibility of mechanically distinct portions involved in nucleotide switch, and favors long distance allosteric communication (in Gα proteins, compared to GTP.

  14. Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts

    Tsurumi, Chizuko; Firat, Elke; Gaedicke, Simone [Department of Radiation Oncology, University Hospital Freiburg, Freiburg (Germany); Huai, Jisen [Institute of Molecular Medicine and Cell Research, Center for Biochemistry and Molecular Cell Research, Albert-Ludwig University, Freiburg (Germany); Mandal, Pankaj Kumar [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Clinical Molecular Biology and Tumor Genetics, Muenchen (Germany); Niedermann, Gabriele, E-mail: [Department of Radiation Oncology, University Hospital Freiburg, Freiburg (Germany)


    Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPII expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.

  15. Impact of RAS and BRAF mutations on carcinoembryonicantigen production and pattern of colorectal metastases


    AIM To investigate the impact of RAS and BRAFmutations on the pattern of metastatic disease andcarcinoembryonic antigen (CEA) production.METHODS: In this retrospective study, we investigatedthe impact of RAS and BRAF mutational status on patternof metastatic disease and CEA production. Only patientspresenting with a newly diagnosed metastatic colorectalcancer (CRC) were included. Patients' characteristics,primary tumor location, site of metastatic disease andCEA at presentation were compared between those withand without RAS and BRAF mutations.RESULTS: Among 174 patients, mutations in KRAS ,NRAS and BRAF were detected in 47%, 3% and 6%respectively. RAS mutations (KRAS and NRAS ) weremore likely to be found in African American patients(87% vs 13%; P value = 0.0158). RAS mutations wereassociated with a higher likelihood of a normal CEA (〈5 ng/mL) at presentation. BRAF mutations were morelikely to occur in females. We were not able to confirm any association between mutational status and site ofmetastatic disease at initial diagnosis.CONCLUSION: No association was found between RASand BRAF mutations and sites of metastatic disease atthe time of initial diagnosis in our cohort. Patients withRAS mutations were more likely to present with CEAlevels 〈 5 ng/mL. These findings may have clinical implicationson surveillance strategies for RAS mutant patientswith earlier stages of CRC.

  16. Genetic and pharmacological suppression of oncogenic mutations in RAS genes of yeast and humans

    Schafer, W.R.; Sterne, R.; Thorner, J.; Rine, J.; Kim, R.; Kim, S.H. (Lawrece Berkeley Lab., CA (USA))


    The activity of an oncoprotein and the secretion of a pheromone can be affected by an unusual protein modification. Specifically, posttranslational modification of yeast-a-factor and Ras protein requires an intermediate of the cholesterol biosynthetic pathway. This modification is apparently essential for biological activity. Studies of yeast mutants blocked in sterol biosynthesis demonstrated that the membrane association and biological activation of the yeast Ras2 protein require mevalonate, a precursor of sterols and other isoprenes such as farnesyl pyrophosphate. Furthermore, drugs that inhibit mevalonate biosynthesis blocked the in vivo action of oncogenic derivatives of human Ras protein in the Xenopus oocyte assay. The same drugs and mutations also prevented the posttranslational processing and secretion of yeast a-factor, a peptide that is farnesylated. Thus, the mevalonate requirement for Ras activation may indicate that attachment of a mevalonate-derived (isoprenoid) moiety to Ras proteins is necessary for membrane association and biological function. These observations establish a connection between the cholesterol biosynthetic pathway and transformation by the ras oncogene and offer a novel pharmacological approach to investigating, and possibly controlling, ras-mediated malignant transformations. 50 refs., 3 figs., 3 tabs.

  17. The Ras-Erk-ETS-Signaling Pathway Is a Drug Target for Longevity.

    Slack, Cathy; Alic, Nazif; Foley, Andrea; Cabecinha, Melissa; Hoddinott, Matthew P; Partridge, Linda


    Identifying the molecular mechanisms that underlie aging and their pharmacological manipulation are key aims for improving lifelong human health. Here, we identify a critical role for Ras-Erk-ETS signaling in aging in Drosophila. We show that inhibition of Ras is sufficient for lifespan extension downstream of reduced insulin/IGF-1 (IIS) signaling. Moreover, direct reduction of Ras or Erk activity leads to increased lifespan. We identify the E-twenty six (ETS) transcriptional repressor, Anterior open (Aop), as central to lifespan extension caused by reduced IIS or Ras attenuation. Importantly, we demonstrate that adult-onset administration of the drug trametinib, a highly specific inhibitor of Ras-Erk-ETS signaling, can extend lifespan. This discovery of the Ras-Erk-ETS pathway as a pharmacological target for animal aging, together with the high degree of evolutionary conservation of the pathway, suggests that inhibition of Ras-Erk-ETS signaling may provide an effective target for anti-aging interventions in mammals.

  18. Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism.

    Lambert, John M; Lambert, Que T; Reuther, Gary W; Malliri, Angeliki; Siderovski, David P; Sondek, John; Collard, John G; Der, Channing J


    Rac is a member of the Ras superfamily of GTPases and functions as a GDP/GTP-regulated switch. Formation of active Rac-GTP is stimulated by Dbl family guanine nucleotide exchange factors (GEFs), such as Tiam1 (ref. 2). Once activated, Rac stimulates signalling pathways that regulate actin organization, gene expression and cellular proliferation. Rac also functions downstream of the Ras oncoprotein in pathways that stimulate membrane ruffling, growth transformation, activation of the c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase, activation of the NF-kappa B transcription factor and promotion of cell survival. Although recent studies support phosphatidylinositol 3-OH kinase (PI(3)K)-dependent mechanisms through which Ras might activate Rac (refs 9,10), the precise mechanism remains to be determined. Here we demonstrate that Tiam1, a Rac-specific GEF, preferentially associates with activated GTP-bound Ras through a Ras-binding domain. Furthermore, activated Ras and Tiam1 cooperate to cause synergistic formation of Rac-GTP in a PI(3)K-independent manner. Thus, Tiam1 can function as an effector that directly mediates Ras activation of Rac.

  19. The greedy nature of mutant RAS: a boon for drug discovery targeting cancer metabolism?

    Lv, Jing; Wang, Jieqiong; Chang, Siyu; Liu, Mingyao; Pang, Xiufeng


    RAS oncogene mutations are frequently detected in human cancers. Among RAS-mediated tumorigenesis, KRAS-driven cancers are the most frequently diagnosed and resistant to current therapies. Despite more than three decades of intensive efforts, there are still no specific therapies for mutant RAS proteins. While trying to block those well-established downstream pathways, such as the RAF-MAPK pathway and the PI3K-AKT pathway, attentions have been paid to potential effects of RAS on metabolic pathways and the feasibility for targeting these pathways. Recent studies have proved that RAS not only promotes aerobic glycolysis and glutamine metabolism reprograming to provide energy, but it also facilitates branched metabolism pathways, autophagy, and macropinocytosis. These alterations generate building blocks for tumor growth and strengthen antioxidant defense in tumor cells. All of these metabolic changes meet different demands of RAS-driven cancers, making them distinct from normal cells. Indeed, some achievements have been made to inhibit tumor growth through targeting specific metabolism rewiring in preclinical models. Although there is still a long way to elucidate the landscape of altered metabolism, we believe that specific metabolic enzymes or pathways could be therapeutically targeted for selective inhibition of RAS-driven cancers.

  20. Methylation associated inactivation of RASSF1A and its synergistic effect with activated K-Ras in nasopharyngeal carcinoma

    Yu Jing


    Full Text Available Abstract Background Epigenetic silencing of tumor suppressor genes associated with promoter methylation is considered to be a hallmark of oncogenesis. RASSF1A is a candidate tumor suppressor gene which was found to be inactivated in many human cancers. Although we have had a prelimilary cognition about the function of RASSF1A, the exact mechanisms about how RASSF1A functions in human cancers were largely unknown. Moreover, the effect of mutated K-Ras gene on the function of RASSF1A is lacking. The aim of this study was to investigate the expression profile and methylation status of RASSF1A gene, and to explore its concrete mechanisms as a tumor suppressor gene in Nasopharyngeal Carcinoma. Methods We examined the expression profile and methylation status of RASSF1A in two NPC cell lines, 38 primary nasopharyngeal carcinoma and 14 normal nasopharyngeal epithelia using RT-PCR and methylated specific PCR(MSP respectively. 5-aza-dC was then added to confirm the correlation between hypermethylation status and inactivation of RASSF1A. The NPC cell line CNE-2 was transfected with exogenous pcDNA3.1(+/RASSF1A plasmid in the presence or absence of mutated K-Ras by liposome-mediated gene transfer method. Flow cytometry was used to examine the effect of RASSF1A on cell cycle modulation and apoptosis. Meanwhile, trypan blue dye exclusion assays was used to detect the effect of RASSF1A transfection alone and the co-transfection of RASSF1A and K-Ras on cell proliferation. Results Promoter methylation of RASSF1A could be detected in 71.05% (27/38 of NPC samples, but not in normal nasopharyngeal epithelia. RASSF1A expression in NPC primary tumors was lower than that in normal nasopharyngeal epithelial (p p p p Conclusion Expression of RASSF1A is down-regulated in NPC due to the hypermethylation of promoter. Exogenous expression of RASSF1A is able to induce growth inhibition effect and apoptosis in tumor cell lines, and this effect could be enhanced by activated

  1. Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis

    Aragon Robert J


    Full Text Available Abstract Background The Ras association domain family 1 (RASSF1 gene is a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, very little is known about the function of RASSF1C both in normal and transformed cells. Methods Gene silencing and over-expression techniques were used to modulate RASSF1C expression in human breast cancer cells. Affymetrix-microarray analysis was performed using T47D cells over-expressing RASSF1C to identify RASSF1C target genes. RT-PCR and western blot techniques were used to validate target gene expression. Cell invasion and apoptosis assays were also performed. Results In this article, we report the effects of altering RASSF1C expression in human breast cancer cells. We found that silencing RASSF1C mRNA in breast cancer cell lines (MDA-MB231 and T47D caused a small but significant decrease in cell proliferation. Conversely, inducible over-expression of RASSF1C in breast cancer cells (MDA-MB231 and T47D resulted in a small increase in cell proliferation. We also report on the identification of novel RASSF1C target genes. RASSF1C down-regulates several pro-apoptotic and tumor suppressor genes and up-regulates several growth promoting genes in breast cancer cells. We further show that down-regulation of caspase 3 via overexpression of RASSF1C reduces breast cancer cells' sensitivity to the apoptosis inducing agent, etoposide. Furthermore, we found that RASSF1C over-expression enhances T47D cell invasion/migration in vitro. Conclusion Together, our findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor, but instead may play a role in stimulating metastasis and survival in breast cancer cells.

  2. [Clinical relevance of the K-ras oncogene in colorectal cancer: experience in a Mexican population].

    Cabrera-Mendoza, F; Gainza-Lagunes, S; Castañeda-Andrade, I; Castro-Zárate, A


    Colorectal cancer is frequent in the developed countries, with a cancer-specific mortality rate of 33%. Different biomarkers are associated with overall survival and the prediction of monoclonal treatment effectiveness. The presence of mutations in the K-ras oncogene alters the response to target therapy with cetuximab and could be an independent prognostic factor. To analyze the difference in survival between patients with mutated K-ras and those with K-ras wild-type status. Thirty-one clinical records were retrospectively analyzed of patients presenting with colorectal cancer that underwent K-ras sequencing through real-time polymerase chain reaction within the time frame of 2009 to 2012 at the Hospital de Alta Especialidad de Veracruz of the Instituto para la Salud y Seguridad Social de los Trabajadores del Estado (HAEV-ISSSTE). Survival analysis for patients with and without K-ras mutation was performed using the Kaplan Meier method. Contrast of covariates was performed using logarithmic transformations. No statistically significant difference was found in relation to survival in the patients with mutated K-ras vs. those with K-ras wild-type (P=.416), nor were significant differences found when analyzing the covariants and survival in the patients with mutated K-ras: ECOG scale (P=.221); age (less than, equal to or greater than 65years, P=.441); clinical stage according to the AJCC (P=.057), and primary lesion site (P=.614). No relation was found between the K-ras oncogene mutation and reduced survival, in contrast to what has been established in the international medical literature. Further studies that include both a larger number of patients and those receiving monoclonal treatment, need to be conducted. There were only 5 patients in the present study that received cetuximab, resulting in a misleading analysis. Copyright © 2013 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  3. RasGRPs are targets of the anti-cancer agent ingenol-3-angelate.

    Xiaohua Song

    Full Text Available Ingenol-3-angelate (I3A is a non-tumor promoting phorbol ester-like compound identified in the sap of Euphoria peplus. Similar to tumor promoting phorbol esters, I3A is a diacylglycerol (DAG analogue that binds with high affinity to the C1 domains of PKCs, recruits PKCs to cellular membranes and promotes enzyme activation. Numerous anti-cancer activities have been attributed to I3A and ascribed to I3A's effects on PKCs. We show here that I3A also binds to and activates members of the RasGRP family of Ras activators leading to robust elevation of Ras-GTP and engagement of the Raf-Mek-Erk kinase cascade. In response to I3A, recombinant proteins consisting of GFP fused separately to full-length RasGRP1 and RasGRP3 were rapidly recruited to cell membranes, consistent with direct binding of the compound to RasGRP's C1 domain. In the case of RasGRP3, IA3 treatment led to positive regulatory phosphorylation on T133 and activation of the candidate regulatory kinase PKCδ. I3A treatment of select B non-Hodgkin's lymphoma cell lines resulted in quantitative and qualitative changes in Bcl-2 family member proteins and induction of apoptosis, as previously demonstrated with the DAG analogue bryostatin 1 and its synthetic analogue pico. Our results offer further insights into the anticancer properties of I3A, support the idea that RasGRPs represent potential cancer therapeutic targets along with PKC, and expand the known range of ligands for RasGRP regulation.


    Azieva Z. I.


    Full Text Available This article concerns the peculiarities of accounting of fixed assets according to RAS and IAS, because of unnecessarily increasing of number of companies experiencing the need for the preparation of financial statements for the 2nd standards. Despite the fact that RAS in recent years have made significant progress in convergence with IFRS in terms of fixed assets accounting, but still has the inherent differences with IFRS. Some organizations are faced with additional costs for parallel accounting or reporting transformation. Understanding the fundamental differences between the RAS, in terms of the assets, will maximize reconcile accounting and management accounting with IFRS in the industry and reduce the costs

  5. Effect of enalapril in cisplatin-induced nephrotoxicity in rats; gender-related difference

    Zohreh Zamani


    Conclusion: Enalapril as an ACE inhibitor failed to ameliorate nephrotoxicity induced by CP in both male and female rats. In addition, enalapril aggravated CP-induced nephrotoxicity in female possibly due to gender-dependent RAS response.

  6. NMR characterization of full-length farnesylated and non-farnesylated H-Ras and its implications for Raf activation.

    Thapar, Roopa; Williams, Jason G; Campbell, Sharon L


    The C terminus, also known as the hypervariable region (residues 166-189), of H-, N-, and K-Ras proteins has sequence determinants necessary for full activation of downstream effectors such as Raf kinase and PI-3 kinase as well as for the correct targeting of Ras proteins to lipid rafts and non-raft membranes. There is considerable interest in understanding how residues in the extreme C terminus of the different Ras proteins and farnesylation of the CaaX box cysteine affect Ras membrane localization and allosteric activation of Raf kinase. To provide insights into the structural and dynamic changes that occur in Ras upon farnesylation, we have used NMR spectroscopy to compare the properties of truncated H-Ras (1-166), to non-processed full-length H-Ras (residues 1-185) and full-length (1-189) farnesylated H-Ras. We report that the C-terminal helix alpha-5 extends to residue N172, and the remaining 17 amino acid residues in the C terminus are conformationally averaged in solution. Removal of either 23 or 18 amino acid residues from the C terminus of full length H-Ras generates truncated H-Ras (1-166) and H-Ras (1-171) proteins, respectively, that have been structurally characterized and are biochemical active. Here we report that C-terminal truncation of H-Ras results in minor structural and dynamic perturbations that are propagated throughout the H-Ras protein including increased flexibility of the central beta-sheet and the C-terminal helix alpha-5. Ordering of residues in loop-2, which is involved in Raf CRD binding is also observed. Farnesylation of full-length H-Ras at C186 does not result in detectable conformational changes in H-Ras. Chemical shift mapping studies of farnesylated and non-farnesylated forms of H-Ras with the Raf-CRD show that the farnesyl moiety, the extreme H-Ras C terminus and residues 23-30, contribute to H-Ras:Raf-CRD interactions, thereby increasing the affinity of H-Ras for the Raf-CRD.

  7. Levels of H-ras codon 61 CAA to AAA mutation: response to 4-ABP-treatment and Pms2-deficiency.

    Parsons, Barbara L; Delongchamp, Robert R; Beland, Frederick A; Heflich, Robert H


    DNA mismatch repair (MMR) deficiencies result in increased frequencies of spontaneous mutation and tumor formation. In the present study, we tested the hypothesis that a chemically-induced mutational response would be greater in a mouse with an MMR-deficiency than in the MMR-proficient mouse models commonly used to assay for chemical carcinogenicity. To accomplish this, the induction of H-ras codon 61 CAA-->AAA mutation was examined in Pms2 knockout mice (Pms2-/-, C57BL/6 background) and sibling wild-type mice (Pms2+/+). Groups of five or six neonatal male mice were treated with 0.3 micromol 4-aminobiphenyl (4-ABP) or the vehicle control, dimethylsulfoxide. Eight months after treatment, liver DNAs were isolated and analysed for levels of H-ras codon 61 CAA-->AAA mutation using allele-specific competitive blocker-PCR. In Pms2-proficient and Pms2-deficient mice, 4-ABP treatment caused an increase in mutant fraction (MF) from 1.65x10(-5) to 2.91x10(-5) and from 3.40x10(-5) to 4.70x10(-5), respectively. Pooling data from 4-ABP-treated and control mice, the approximately 2-fold increase in MF observed in Pms2-deficient as compared with Pms2-proficient mice was statistically significant (P=0.0207) and consistent with what has been reported previously in terms of induction of G:C-->T:A mutation in a Pms2-deficient background. Pooling data from both genotypes, the increase in H-ras MF in 4-ABP-treated mice, as compared with control mice, did not reach the 95% confidence level of statistical significance (P=0.0606). The 4-ABP treatment caused a 1.76-fold and 1.38-fold increase in average H-ras MF in Pms2-proficient and Pms2-deficient mice, respectively. Furthermore, the levels of induced mutation in Pms2-proficient and Pms2-deficient mice were nearly identical (1.26x10(-5) and 1.30x10(-5), respectively). We conclude that Pms2-deficiency does not result in an amplification of the H-ras codon 61 CAA-->AAA mutational response induced by 4-ABP.

  8. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen, E-mail:


    fractions from control, MVAL or propiconazole-treated cells revealed increased Ras protein in the cytoplasmic fraction of L-744,832-treated cells, while propiconazole or MVAL reversed these effects. Western blot analysis indicated that phosphorylation of Erk1/2, a protein downstream of Ras, was increased by propiconazole. These data indicate that propiconazole increases cell proliferation by increasing the levels of cholesterol biosynthesis intermediates presumably through a negative feedback mechanism within the pathway, a result of CYP51 inhibition. This feedback mechanism increases Erk1/2 signaling through mevalonate-mediated Ras activation. These results provide an explanation for the observed effects of propiconazole on hepatic cholesterol pathways and on the increased hepatic cell proliferation induced by propiconazole in mice. Highlights: ► Propiconazole increases cell proliferation in AML12 mouse hepatocytes. ► Propiconazole increases Ras farnesylation and alters Ras membrane localization. ► Propiconazole increases Erk1/2 phosphorylation. ► Dysregulation of the cholesterol biosynthesis pathway can explain these results. ► These results can explain similar effects induced by propiconazole in mice.

  9. Monitoring of (reactive) ion etching (RIE) with reflectance anisotropy spectroscopy (RAS) equipment

    Barzen, Lars; Richter, Johannes [Research Group Integrated Optoelectronics and Microoptics (IOE), Physics Department, Kaiserslautern University of Technology, PO Box 3049, D-67653 Kaiserslautern (Germany); Fouckhardt, Henning, E-mail: [Research Group Integrated Optoelectronics and Microoptics (IOE), Physics Department, Kaiserslautern University of Technology, PO Box 3049, D-67653 Kaiserslautern (Germany); Wahl, Michael; Kopnarski, Michael [Institut für Oberflächen- und Schichtanalytik (IFOS) GmbH, Trippstadter Str. 120, D-67663 Kaiserslautern (Germany)


    Experimental results on the application of reflectance anisotropy spectroscopy (RAS) to the monitoring of (reactive) ion etching of monocrystalline semiconductor samples are described. To show the potential of this technique RAS signals collected during etching of GaAs/Al{sub x}Ga{sub 1−x}As multilayer samples are compared to RAS data obtained before during molecular-beam epitaxial (MBE) growth of these very samples. A change of the RIE-RAS spectrum can be attributed to a change of material composition. And the current etch depth can be monitored with an accuracy at least down to several tens of nanometers – f. e. by recording the average reflected intensity.

  10. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T


    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.

  11. Ras1CA overexpression in the posterior silk gland improves silk yield

    Li Ma; Hanfu Xu; Jinqi Zhu; Sanyuan Ma; Yan Liu; Rong-Jing Jiang; Qingyou Xia; Sheng Li


    Sericulture has been greatly advanced by applying hybrid breeding techniques to the domesticated silkworm,Bombyx mori,but has reached a plateau during the last decades. For the first time,we report improved silk yield in a GAL4/UAS transgenic silkworm. Overexpression of the Ras1CA oncogene specifically in the posterior silk gland improved fibroin production and silk yield by 60%,while increasing food consumption by only 20%. Ras activation by Ras1CA overexpression in the posterior silk gland enhanced phosphorylation levels of Ras downstream effector proteins,up-regulated fibroin mRNA levels,increased total DNA content,and stimulated endoreplication. Moreover,Rasl activation increased cell and nuclei sizes,enriched subcellular organelles related to protein synthesis,and stimulated ribosome biogenesis for mRNA translation. We conclude that Rasl activation increases cell size and protein synthesis in the posterior silk gland,leading to silk yield improvement.

  12. Flow simulation and flood plain analysis using HEC-RAS model

    Samira Moradzadeh; Mohsen Irandoust


    .... This study is a combination of HEC-RAS hydrological modeling by GIS Software through HEC-GEORAS Amendment, which will estimate the flood zoning, and the due economical damages in the 10kms distance...

  13. Parallel imaging of Drosophila embryos for quantitative analysis of genetic perturbations of the Ras pathway

    Yogesh Goyal


    Full Text Available The Ras pathway patterns the poles of the Drosophila embryo by downregulating the levels and activity of a DNA-binding transcriptional repressor Capicua (Cic. We demonstrate that the spatiotemporal pattern of Cic during this signaling event can be harnessed for functional studies of mutations in the Ras pathway in human diseases. Our approach relies on a new microfluidic device that enables parallel imaging of Cic dynamics in dozens of live embryos. We found that although the pattern of Cic in early embryos is complex, it can be accurately approximated by a product of one spatial profile and one time-dependent amplitude. Analysis of these functions of space and time alone reveals the differential effects of mutations within the Ras pathway. Given the highly conserved nature of Ras-dependent control of Cic, our approach provides new opportunities for functional analysis of multiple sequence variants from developmental abnormalities and cancers.

  14. Paeonol Inhibits Proliferation of Vascular Smooth Muscle Cells Stimulated by High Glucose via Ras-Raf-ERK1/2 Signaling Pathway in Coculture Model

    Junjun Chen


    Full Text Available Paeonol (Pae has been previously reported to protect against atherosclerosis (AS by inhibiting vascular smooth muscle cell (VSMC proliferation or vascular endothelial cell (VEC injury. But studies lack how VSMCs and VECs interact when Pae plays a role. The current study was based on a coculture model of VSMCs and VECs to investigate the protective mechanisms of Pae on atherosclerosis (AS by determining the secretory function of VECs and proliferation of VSMCs focusing on the Ras-Raf-ERK1/2 signaling pathway. VECs were stimulated by high glucose. Our data showed that high concentration (35.5 mM of glucose induced damage in VECs. Injury of VECs stimulated VSMC proliferation in the coculture model. Pae (120 μM decreased vascular endothelial growth factor (VEGF and platelet derivative growth factor B (PDGF-B release from VECs and inhibited overexpression of Ras, P-Raf, and P-ERK proteins in VSMCs. The results indicate that diabetes modulates the inflammatory response in VECs to stimulate VSMC proliferation and promote the development of AS. Pae was beneficial by inhibiting the inflammatory effects of VECs on VSMC proliferation. This study suggests the inhibitory mechanism of Pae due to the inhibition of VEGF and PDGF-B secretion in VECs and Ras-Raf-ERK1/2 signaling pathway in VSMCs.

  15. NF1 regulation of RAS/ERK signaling is required for appropriate granule neuron progenitor expansion and migration in cerebellar development.

    Sanchez-Ortiz, Efrain; Cho, Woosung; Nazarenko, Inga; Mo, Wei; Chen, Jian; Parada, Luis F


    Cerebellar development is regulated by a coordinated spatiotemporal interplay between granule neuron progenitors (GNPs), Purkinje neurons, and glia. Abnormal development can trigger motor deficits, and more recent data indicate important roles in aspects of memory, behavior, and autism spectrum disorders (ASDs). Germline mutation in the NF1 tumor suppressor gene underlies Neurofibromatosis type 1, a complex disease that enhances susceptibility to certain cancers and neurological disorders, including intellectual deficits and ASD. The NF1 gene encodes for neurofibromin, a RAS GTPase-activating protein, and thus negatively regulates the RAS signaling pathway. Here, using mouse models to direct conditional NF1 ablation in either embryonic cerebellar progenitors or neonatal GNPs, we show that neurofibromin is required for appropriate development of cerebellar folia layering and structure. Remarkably, neonatal administration of inhibitors of the ERK pathway reversed the morphological defects. Thus, our findings establish a critical cell-autonomous role for the NF1-RAS-ERK pathway in the appropriate regulation of cerebellar development and provide a basis for using neonatal ERK inhibitor-based therapies to treat NF1-induced cerebellar disorders.

  16. RASOnD - A comprehensive resource and search tool for RAS superfamily oncogenes from various species

    Singh Tej P


    Full Text Available Abstract Background The Ras superfamily plays an important role in the control of cell signalling and division. Mutations in the Ras genes convert them into active oncogenes. The Ras oncogenes form a major thrust of global cancer research as they are involved in the development and progression of tumors. This has resulted in the exponential growth of data on Ras superfamily across different public databases and in literature. However, no dedicated public resource is currently available for data mining and analysis on this family. The present database was developed to facilitate straightforward accession, retrieval and analysis of information available on Ras oncogenes from one particular site. Description We have developed the RAS Oncogene Database (RASOnD as a comprehensive knowledgebase that provides integrated and curated information on a single platform for oncogenes of Ras superfamily. RASOnD encompasses exhaustive genomics and proteomics data existing across diverse publicly accessible databases. This resource presently includes overall 199,046 entries from 101 different species. It provides a search tool to generate information about their nucleotide and amino acid sequences, single nucleotide polymorphisms, chromosome positions, orthologies, motifs, structures, related pathways and associated diseases. We have implemented a number of user-friendly search interfaces and sequence analysis tools. At present the user can (i browse the data (ii search any field through a simple or advance search interface and (iii perform a BLAST search and subsequently CLUSTALW multiple sequence alignment by selecting sequences of Ras oncogenes. The Generic gene browser, GBrowse, JMOL for structural visualization and TREEVIEW for phylograms have been integrated for clear perception of retrieved data. External links to related databases have been included in RASOnD. Conclusions This database is a resource and search tool dedicated to Ras oncogenes. It has

  17. Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches

    Pathan AAK


    Full Text Available Akbar Ali Khan Pathan,1,2,* Bhavana Panthi,3,* Zahid Khan,1 Purushotham Reddy Koppula,4–6 Mohammed Saud Alanazi,1 Sachchidanand,3 Narasimha Reddy Parine,1 Mukesh Chourasia3,* 1Genome Research Chair (GRC, Department of Biochemistry, College of Science, King Saud University, 2Integrated Gulf Biosystems, Riyadh, Kingdom of Saudi Arabia; 3Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hajipur, India; 4Department of Internal Medicine, School of Medicine, 5Harry S. Truman Memorial Veterans Affairs Hospital, 6Department of Radiology, School of Medicine, Columbia, MO, USA *These authors contributed equally to this work Objective: Kirsten rat sarcoma (K-Ras protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods: In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results: Interestingly, the designed compounds exhibit a binding preference for the

  18. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway.

    Park, Y-H; Kim, S-U; Kwon, T-H; Kim, J-M; Song, I-S; Shin, H-J; Lee, B-K; Bang, D-H; Lee, S-J; Lee, D-S; Chang, K-T; Kim, B-Y; Yu, D-Y


    The current study was carried out to define the involvement of Peroxiredoxin (Prx) II in progression of hepatocellular carcinoma (HCC) and the underlying molecular mechanism(s). Expression and function of Prx II in HCC was determined using H-ras(G12V)-transformed HCC cells (H-ras(G12V)-HCC cells) and the tumor livers from H-ras(G12V)-transgenic (Tg) mice and HCC patients. Prx II was upregulated in H-ras(G12V)-HCC cells and H-ras(G12V)-Tg mouse tumor livers, the expression pattern of which highly similar to that of forkhead Box M1 (FoxM1). Moreover, either knockdown of FoxM1 or site-directed mutagenesis of FoxM1-binding site of Prx II promoter significantly reduced Prx II levels in H-ras(G12V)-HCC cells, indicating FoxM1 as a direct transcription factor of Prx II in HCC. Interestingly, the null mutation of Prx II markedly decreased the number and size of tumors in H-ras(G12V)-Tg livers. Consistent with this, knockdown of Prx II in H-ras(G12V)-HCC cells reduced the expression of cyclin D1, cell proliferation, anchorage-independent growth and tumor formation in athymic nude mice, whereas overexpression of Prx II increased or aggravated the tumor phenotypes. Importantly, the expression of Prx II was correlated with that of FoxM1 in HCC patients. The activation of extracellular signal-related kinase (ERK) pathway and the expression of FoxM1 and cyclin D1 were highly dependent on Prx II in H-ras(G12V)-HCC cells and H-ras(G12V)-Tg livers. Prx II is FoxM1-dependently-expressed antioxidant in HCC and function as an enhancer of Ras(G12V) oncogenic potential in hepatic tumorigenesis through activation of ERK/FoxM1/cyclin D1 cascade.

  19. Rhes, the Ras homolog enriched in striatum, is reduced under conditions of dopamine supersensitivity.

    Harrison, L M; LaHoste, G J


    Striatal dopamine receptors become supersensitive when dopaminergic input is removed through either surgical denervation or pharmacological depletion. Although alterations such as increased D2 receptor binding and increased receptor-G protein coupling have been described in supersensitive striatal tissue, their roles in the mechanism of supersensitivity remain uncertain. The Ras Homolog Enriched in Striatum (Rhes) is expressed in brain areas that receive dopaminergic input, and here we test whether alterations in its expression accompany treatments that promote dopamine receptor supersensitivity in rats. Removal of dopamine input to the striatum by surgical denervation with 6-hydroxydopamine resulted in a decrease in rhes mRNA expression throughout striatum, as measured with quantitative in situ hybridization. The decrease was detected as early as two weeks and as late as seven months after surgery. Furthermore, a decrease in rhes mRNA was evident after repeated or acute reserpine treatment. Chronic daily injection of rats with the D2 antagonist eticlopride, which is known to up-regulate D2 receptors without inducing profound receptor supersensitivity, did not alter the expression of rhes mRNA in striatum. Thus, changes in rhes mRNA expression are strictly correlated with receptor supersensitivity, perhaps as a result of continuous removal of dopaminergic input. These findings suggest that rhes mRNA expression is maintained by dopamine and may play a role in determining normal dopamine receptor sensitivity.

  20. Purification and characterization of Ras related protein, Rab5a from Tinospora cordifolia.

    Amir, Mohd; Wahiduzzaman; Dar, Mohammad Aasif; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz


    Ras related protein (Rab5a) is one of the most important member of the Rab family which regulates the early endosome fusion in endocytosis, and it also helps in the regulation of the budding process. Here, for the first time we report a simple and reproducible method for the purification of the Rab5a from a medicinal plant Tinospora cordifolia. We have used weak cation-exchange (CM-Sepharose-FF) followed by gel-filtration chromatography. A purified protein of 22-kDa was observed on SDS-PAGE which was identified as Rab5a using MALDI-TOF/MS. Our purification procedure is fast and simple with high yield. The purified protein was characterized using circular dichroism for the measurement of secondary structure followed by GdmCl- and urea-induced denaturation to calculate the values of Gibbs free energy change (ΔGD), ΔGD°, midpoint of the denaturation Cm, i.e. molar GdmCl [GdmCl] and molar urea [Urea] concentration at which ΔGD=0; and m, the slope (=∂ΔGD/∂[d]) values. Furthermore, thermodynamic properties of Rab5a were also measured by differential scanning calorimeter. Here, using isothermal calorimeteric measurements we further showed that Rab5a binds with the GTP. This is a first report on the purification and biophysical characterization of Rab5a protein from T. cordifolia.

  1. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases

    Larsen, Jannik Bruun; Jensen, Martin Borch; Bhatia, Vikram Kjøller;


    Trafficking and sorting of membrane-anchored Ras GTPases are regulated by partitioning between distinct membrane domains. Here, in vitro experiments and microscopic molecular theory reveal membrane curvature as a new modulator of N-Ras lipid anchor and palmitoyl chain partitioning. Membrane...... curvature was essential for enrichment in raft-like liquid-ordered phases; enrichment was driven by relief of lateral pressure upon anchor insertion and most likely affects the localization of lipidated proteins in general....

  2. Coupled excitable Ras and F-actin activation mediates spontaneous pseudopod formation and directed cell movement.

    van Haastert, Peter J M; Keizer-Gunnink, Ineke; Kortholt, Arjan


    Many eukaryotic cells regulate their mobility by external cues. Genetic studies have identified >100 components that participate in chemotaxis, which hinders the identification of the conceptual framework of how cells sense and respond to shallow chemical gradients. The activation of Ras occurs during basal locomotion and is an essential connector between receptor and cytoskeleton during chemotaxis. Using a sensitive assay for activated Ras, we show here that activation of Ras and F-actin forms two excitable systems that are coupled through mutual positive feedback and memory. This coupled excitable system leads to short-lived patches of activated Ras and associated F-actin that precede the extension of protrusions. In buffer, excitability starts frequently with Ras activation in the back/side of the cell or with F-actin in the front of the cell. In a shallow gradient of chemoattractant, local Ras activation triggers full excitation of Ras and subsequently F-actin at the side of the cell facing the chemoattractant, leading to directed pseudopod extension and chemotaxis. A computational model shows that the coupled excitable Ras/F-actin system forms the driving heart for the ordered-stochastic extension of pseudopods in buffer and for efficient directional extension of pseudopods in chemotactic gradients. © 2017 van Haastert et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (

  3. Prognostic implication of N-RAS gene mutations in Egyptian adult acute myeloid leukemia.

    Elghannam, Doaa M; Abousamra, Nashwa Khayrat; Shahin, Doaa A; Goda, Enas F; Azzam, Hanan; Azmy, Emad; El-Din, Manal Salah; El-Refaei, Mohamed F


    The pathogenesis of acute myeloid leukemia (AML) involves the cooperation of mutations promoting proliferation/survival and those impairing differentiation. Point mutations of the N-RAS gene are the most frequent somatic mutations causing aberrant signal-transduction in acute myeloid leukemia (AML). The aim of the present work is to study the frequency and prognostic significance of N-RAS gene mutations (N-RASmut) in de novo Egyptian adult AML. Bone marrow specimens from 150 patients with de novo acute myeloid leukemia and controls were analyzed by genomic PCR-SSCP at codons 12, 13 (exon 1), and 61 (exon 2) for N-RAS mutations. In 12.7% (19/150) AML cases, N-RAS gene mutations were found and were observed more frequently in the FAB subtype M4eo (P = 0.028) and with codon 12, 13 (14 of 19; 73.7%). Patients with N-RAS mutation had a significant lower peripheral and marrow blasts (P = 0.004, P = 0.03) and clinical outcome did not improve more than in patients without mutation. In patients with N-RAS gene mutation vs. those without, complete remission rate was (63.2% vs. 56.5%; P = 0.46), resistant disease (15.8% vs. 23.6%; P = 0.51), three years overall survival (44% vs 42%; P= 0.85) and disease free survival (42.1% vs. 38.9%, P = 0.74). Multivariate analysis showed that age was the strongest unfavorable factor for overall survival (relative risk [RR], 1.9; P = 0.002), followed by cytogenetics (P = 0.004). FAB types, N-RAS mutation and leukocytosis were the least important. In conclusion, the frequency and spectrum of N-RAS gene mutation differ between biologically distinct subtypes of AML but do not significantly influence prognosis and clinical outcome in patients with AML.

  4. Farming different species in RAS in Nordic countries: Current status and future perspectives

    Dalsgaard, Anne Johanne Tang; Lund, Ivar; Thorarinsdottir, Ragnheidur


    (Oncorhynchus mykiss), European eel (Anguilla anguilla), pike perch (Stizostedion lucioperca), Arctic char (Salvelinus alpinus), sturgeon (order Acipenseriformes), Nile tilapia (Oreochromis niloticus), and European lobster (Homarus gammarus). High capital costs are one of the biggest challenges to sustainable...... RAS calling for large scale intensive productions to reduce investment -and operation costs. Consistent with this, production of Atlantic salmon smolts in indoor RAS and rainbow trout in outdoor Model-Trout-Farms (MTFs) have been the commercially most successful productions so far. Aside from end...

  5. H-Ras Expression in Immortalized Keratinocytes Produces an Invasive Epithelium in Cultured Skin Equivalents

    Vaughan, Melville B.; Ruben D Ramirez; Andrews, Capri M.; Woodring E Wright; Jerry W Shay


    BACKGROUND: Ras proteins affect both proliferation and expression of collagen-degrading enzymes, two important processes in cancer progression. Normal skin architecture is dependent both on the coordinated proliferation and stratification of keratinocytes, as well as the maintenance of a collagen-rich basement membrane. In the present studies we sought to determine whether expression of H-ras in skin keratinocytes would affect these parameters during the establishment and maintenance of an in...

  6. Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant.

    Colombo, Emanuela; Martinelli, Paola; Zamponi, Raffaella; Shing, Danielle C; Bonetti, Paola; Luzi, Lucilla; Volorio, Sara; Bernard, Loris; Pruneri, Giancarlo; Alcalay, Myriam; Pelicci, Pier Giuseppe


    One third of acute myeloid leukemias (AMLs) are characterized by the aberrant cytoplasmic localization of nucleophosmin (NPM) due to mutations within its putative nucleolar localization signal. NPM mutations are mutually exclusive with major AML-associated chromosome rearrangements and are frequently associated with a normal karyotype, suggesting that they are critical during leukemogenesis. The underlying molecular mechanisms are, however, unknown. NPM is a nucleocytoplasmic shuttling protein that has been implicated in several cellular processes, including ribosome biogenesis, centrosome duplication, cell cycle progression, and stress response. It has been recently shown that NPM is required for the stabilization and proper nucleolar localization of the tumor suppressor p19(Arf). We report here that the AML-associated NPM mutant localizes mainly in the cytoplasm due to an alteration of its nucleus-cytoplasmic shuttling equilibrium, forms a direct complex with p19(Arf), but is unable to protect it from degradation. Consequently, cells or leukemic blasts expressing the NPM mutant have low levels of cytoplasmic Arf. Furthermore, we show that expression of the NPM mutant reduces the ability of Arf to initiate a p53 response and to induce cell cycle arrest. Inactivation of p19(Arf), a key regulator of the p53-dependent cellular response to oncogene expression, might therefore contribute to leukemogenesis in AMLs with mutated NPM.

  7. Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane.

    Chiu, C-F; Ho, M-Y; Peng, J-M; Hung, S-W; Lee, W-H; Liang, C-M; Liang, S-M


    Prohibitin (PHB) is indispensable for Ras-induced Raf-1 activation, cell migration and growth; however, the exact role of PHB in the molecular pathogenesis of cancer metastasis remains largely unexamined. Here, we found a positive correlation between plasma membrane-associated PHB and the clinical stages of cancer. The level of PHB phosphorylated at threonine 258 (T258) and tyrosine 259 (Y259) in human cancer-cell membranes correlated with the invasiveness of cancer cells. Overexpression of phosphorylated PHB (phospho-PHB) in the lipid-raft domain of the cell membrane enhanced cell migration/invasion through PI3K/Akt and Raf-1/ERK activation. It also enhanced epithelial-mesenchymal transition, matrix metalloproteinase-2 activity and invasiveness of cancer cells in vitro. Immunoprecipitation analysis demonstrated that phospho-PHB associated with Raf-1, Akt and Ras in the membrane and was essential for the activation of Raf-1 signaling by Ras. Mice implanted with cancer cells stably overexpressing PHB in the plasma membrane showed enlarged cervical tumors, enhanced metastasis and shorter survival time compared with mice implanted with cancer cells without PHB overexpression. Dephosphorylation of PHB at T258 by site-directed mutagenesis diminished the in vitro and in vivo effects of PHB. These results suggest that increase in phospho-PHB T258 in the raft domain of the plasma membrane has a role in the Ras-driven activation of PI3K/Akt and Raf-1/ERK-signaling cascades and results in the promotion of cancer metastasis.

  8. 1H, 15N and 13C backbone assignments of GDP-bound human H-Ras mutant G12V.

    Amin, Nader; Chiarparin, Elisabetta; Coyle, Joe; Nietlispach, Daniel; Williams, Glyn


    Harvey Ras (H-Ras) is a membrane-associated GTPase with critical functions in cell proliferation and differentiation. The G12V mutant of H-Ras is one of the most commonly encountered oncoproteins in human cancer. This mutation disrupts the GTPase activity of H-Ras, leading to constitutive activation and aberrant downstream signalling. Here we report the backbone resonance assignments of human H-Ras mutant G12V lacking the C-terminal membrane attachment domain.

  9. Caenorhabditis elegans SOS-1 is necessary for multiple RAS-mediated developmental signals

    Chang, Chieh; Hopper, Neil A.; Sternberg, Paul W.


    Vulval induction in Caenorhabditis elegans has helped define an evolutionarily conserved signal transduction pathway from receptor tyrosine kinases (RTKs) through the adaptor protein SEM-5 to RAS. One component present in other organisms, a guanine nucleotide exchange factor for Ras, has been missing in C.elegans. To understand the regulation of this pathway it is crucial to have all positive-acting components in hand. Here we describe the identification, cloning and genetic characterization of C.elegans SOS-1, a putative guanine nucleotide exchanger for LET-60 RAS. RNA interference experiments suggest that SOS-1 participates in RAS-dependent signaling events downstream of LET-23 EGFR, EGL-15 FGFR and an unknown RTK. We demonstrate that the previously identified let-341 gene encodes SOS-1. Analyzing vulval development in a let-341 null mutant, we find an SOS-1-independent pathway involved in the activation of RAS signaling. This SOS-1-independent signaling is not inhibited by SLI-1/Cbl and is not mediated by PTP-2/SHP, raising the possibility that there could be another RasGEF. PMID:10880441

  10. Atomic layer sensitive in-situ plasma etch depth control with reflectance anisotropy spectroscopy (RAS)

    Doering, Christoph; Kleinschmidt, Ann-Kathrin; Barzen, Lars; Strassner, Johannes; Fouckhardt, Henning


    Reflectance anisotropy spectroscopy (RAS) allows for in-situ monitoring of reactive ion etching (RIE) of monocrystalline III-V semiconductor surfaces. Upon use of RAS the sample to be etched is illuminated with broad-band linearly polarized light under nearly normal incidence. Commonly the spectral range is between 1.5 and 5.5 eV. Typically the spectrally resolved difference in reflectivity for light of two orthogonal linear polarizations of light is measured with respect to time - for example for cubic lattices (like the zinc blende structures of most III-V semiconductors) polarizations along the [110] and the [-110] direction. Local anisotropies on the etch front cause elliptical polarization of the reflected light resulting in the RAS signal. The time and photon energy resolved spectra of RAS include reflectometric as well as interferometric information. Light with wavelengths well above 100 nm (even inside the material) can be successfully used to monitor surface abrasion with a resolution of some tens of nanometers. The layers being thinned out act as optical interferometers resulting in Fabry-Perot oscillations of the RAS-signal. Here we report on RAS measurements assessing the surface deconstruction during dry etching. For low etch rates our experimental data show even better resolution than that of the (slow) Fabry-Perot oscillations. For certain photon energies we detect monolayer-etch-related oscillations in the mean reflectivity, which give the best possible resolution in etch depth monitoring and control, i.e. the atomic scale.

  11. Concurrent mutation in exons 1 and 2 of the K-ras oncogene in colorectal cancer

    Fiorella Guadagni


    Full Text Available The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine at codon 57. In addition, we found in the same patient’s sample a silent polymorphism at codon 11 (Ala11Ala of exon 1. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 729–733

  12. Concurrent mutation in exons 1 and 2 of the K-ras oncogene in colorectal cancer.

    Palmirotta, Raffaele; Savonarola, Annalisa; Ludovici, Giorgia; De Marchis, Maria Laura; Covello, Renato; Ettorre, Giuseppe Maria; Ialongo, Cristiano; Guadagni, Fiorella


    The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine) at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine) at codon 57. In addition, we found in the same patient's sample a silent polymorphism at codon 11 (Ala11Ala) of exon 1.

  13. Ras Oncogene-Mediated Progressive Silencing of Extracellular Superoxide Dismutase in Tumorigenesis

    Francesca Cammarota


    Full Text Available Extracellular superoxide dismutase (SOD3 is a secreted enzyme that uses superoxide anion as a substrate in a dismutase reaction that results in the formation of hydrogen peroxide. Both of these reactive oxygen species affect growth signaling in cells. Although SOD3 has growth-supporting characteristics, the expression of SOD3 is downregulated in epithelial cancer cells. In the current work, we studied the mechanisms regulating SOD3 expression in vitro using thyroid cell models representing different stages of thyroid cancer. We demonstrate that a low level of RAS activation increases SOD3 mRNA synthesis that then gradually decreases with increasing levels of RAS activation and the decreasing degree of differentiation of the cancer cells. Our data indicate that SOD3 regulation can be divided into two classes. The first class involves RAS–driven reversible regulation of SOD3 expression that can be mediated by the following mechanisms: RAS GTPase regulatory genes that are responsible for SOD3 self-regulation; RAS-stimulated p38 MAPK activation; and RAS-activated increased expression of the mir21 microRNA, which inversely correlates with sod3 mRNA expression. The second class involves permanent silencing of SOD3 mediated by epigenetic DNA methylation in cells that represent more advanced cancers. Therefore, the work suggests that SOD3 belongs to the group of ras oncogene-silenced genes.

  14. Loss of RASSF1A Expression in Colorectal Cancer and Its Association with K-ras Status

    Dan Cao


    Full Text Available Background. The RAS-association domain family 1 A (RASSF1A is a classical member of RAS effectors regulating cell proliferation and apoptosis. Loss of RASSF1A expression may shift the balance towards a growth-promoting effect without the necessity of activating K-ras mutations. Its potential association with K-ras mutations in colorectal cancer (CRC is unclear. Methods. RASSF1A expression was examined in normal mucosa, adenoma, and tumor tissues of colon and rectum, respectively. We examined the association of RASSF1A expression, mutations of K-ras, and EGFR status in 76 primary CRCs. The relationship between clinicopathological characteristics and RASSF1A expression was also analyzed. Results. RASSF1A expression level decreased progressively in normal mucosa, adenoma and, tumor tissues, and the loss of RASSF1A expression occurred more frequently in tumor tissues. Of 76 primary CRCs, loss of RASSF1A expression and/or K-ras mutations were detected in 77% cases. Loss of RASSF1A expression was more frequent in K-ras wild-type than in mutation cases (63% versus 32%, . Conclusions. Our study indicates that loss of RASSF1A may be involved in pathogenesis of CRC, its expression was found predominantly in K-ras wild-type CRCs, suggesting that it may be another way of affecting RAS signaling, in addition to K-ras mutations.

  15. Functional significance of the novel H-RAS gene mutation M72I in a patient with medullary thyroid cancer.

    Barollo, S; Pezzani, R; Cristiani, A; Bertazza, L; Rubin, B; Bulfone, A; Pelizzo, M R; Torresan, F; Mantero, F; Pennelli, G; Moro, S; Mian, C


    Medullary thyroid cancer (MTC) accounts for around 5-10% of all thyroid cancers. Though usually sporadic, 1 in 4 cases are of genetic origin, with germinal mutations in the RET proto-oncogene in familial forms and somatic mutations both in RET and in the RAS family genes in sporadic ones.This study aimed to characterize a rare H-RAS sequence variant -M72I- in a patient with sporadic MTC, focusing on its functional significance.Mutation analysis was performed for the RET, N-RAS, K-RAS and H-RAS genes by direct sequencing. Western blot analysis was done on 4 thyroid tissues from 1 patient carrying the M72I mutation in H-RAS, 1 with the Q61R mutation in H-RAS, 1 with no RET, H-RAS, K-RAS or N-RAS gene mutations, and 1 normal thyroid, using different antibodies against Erk1/2, phospho-Erk1/2 (Thr202/Tyr204), Akt and phospho-Akt (Ser473). Large-scale molecular dynamics simulations were completed for H-RAS wt and H-RAS M72I.Western blot analysis demonstrated that both MAPK and PI3K/Akt pathways were activated in the MTC patient carrying the M72I variant. In silico results showed conformational changes in H-RAS that could influence its activation by Sos and phosphate binding. Results of molecular dynamics were consistent with Western blot experiments.The M72I mutation may contribute effectively to proliferation and survival signaling throughout the MAPK and PI3K/Akt pathways. This work underscores the importance of studying genetic alterations that may lead to carcinogenesis.

  16. RAS testing practices and RAS mutation prevalence among patients with metastatic colorectal cancer: results from a Europe-wide survey of pathology centres

    Boleij, A.; Tack, V.; Taylor, A.; Kafatos, G.; Jenkins-Anderson, S.; Tembuyser, L.; Dequeker, E.; Krieken, J.H.J.M. van


    BACKGROUND: Treatment options for patients with metastatic colorectal cancer (mCRC) include anti-epithelial growth factor therapies, which, in Europe, are indicated in patients with RAS wild-type tumours only and require prior mutation testing of "hot-spot" codons in exons 2, 3 and 4 of KRAS and

  17. No mutations found in exons of TP53, H-RAS and K-RAS genes in liver of male Wistar rats submitted to a medium-term chemical carcinogenesis assay Ausência de mutações em éxons dos genes TP53, H-RAS e K-RAS em fígado de ratos wistar submetidos a ensaio de carcinogênese química de média duração

    Erick da Cruz Castelli


    Full Text Available The standard protocol to evaluate the carcinogenic potential of chemicals is the long-term bioassay in rodents, not performed in developing countries due to its high cost and complex operational procedures. Our laboratory has established an alternative medium-term bioassay in Wistar rats, also called DMBDD assay, based on the paradigm initiation/promotion of chemical carcinogenesis. This method was accepted by the Brazilian Environment Agency (IBAMA as an official source of evidence of carcinogenicity. The aim of this study was to evaluate alterations in exons 5 to 8 of the tumor suppressor gene TP53 and exons 1 and 2 of oncogenes K-RAS and H-RAS in neoplastic and preneoplastic hepatic lesions observed in DMBDD assay. The characterization of these alterations may contribute to the recognition of patterns of damage in critical genes, as well as to suggest mechanisms of action of the compounds tested in the protocol. Sixty male Wistar rats were separated into 3 groups: the first was treated with no chemicals; the second received five initiating agents and the third received initiation followed by phenobarbital. Liver DNA samples (obtained from formalin-fixed and paraffin-embedded tissues after histological analysis were evaluated by the non-isotopic PCR-SSCP technique. No changes in any analyzed exons were detected by the PCR-SSCP banding pattern in all experimental groups. This result suggests that liver mutations in exons 5 to 8 of TP53 and exons 1 and 2 of H-RAS and K-RAS are not among the early molecular alterations occurring in the hepatic carcinogenesis process induced by the DMBDD protocol in male Wistar rats.O teste padrão para identificar o potencial cancerígeno de compostos químicos é o estudo de longa duração em roedores, não realizado no Brasil. Nosso laboratório estabeleceu um teste alternativo de média duração (ensaio DMBDD, baseado no paradigma iniciação-promoção da carcinogênese química, adotado pelo Instituto

  18. The prognostic impact of K-RAS mutations in adult acute myeloid leukemia patients treated with high-dose cytarabine

    Ahmad EI


    Full Text Available Ebtesam I Ahmad, Heba H Gawish, Nashwa MA Al Azizi, Ashraf M ElhefniClinical Pathology Department, Hematology and Oncology Unit of Internal Medicine Department, Faculty of Medicine, Zagazig University, Sharkia, EgyptBackground: Activating point mutation of the RAS gene has been generally accepted as an oncogenic event in a variety of malignancies. It represents one of the most common genetic alterations in acute myeloid leukemia (AML. However, little is known about its clinical relevance in the treatment outcome for this leukemia.Objective: This study aimed to clarify the biologic and prognostic impact of K-RAS mutations in relation to the dose of cytarabine (ara-C used in postinduction consolidation chemotherapy in adult AML patients.Patients and methods: The study comprised of 71 de novo AML patients with male/female ratio 1.4:1; their ages ranged from 21–59 years with a median of 37 years. They were subjected to full clinical evaluation, routine laboratory investigations, cytogenetic studies by G-banding (Giemsa staining, and K-RAS mutation detection using real-time polymerase chain reaction. The patients were randomized into two groups according to the ara-C dose used in consolidation treatment, the high the dose ara-C (HDAC group receiving 400 mg ara-C and-low-dose ara-C (LDAC group receiving 100 mg ara-C; they were followed over a period of five years.Results: Mutations in the K-RAS gene (mutRAS were detected in 23 patients (32% with the remaining 48 patients (68% having wild-type RAS (wtRAS. The percent of blast cells was significantly lower in mutRAS compared to wtRAS patients (P ≤ 0.001 while M4 subtype of AML and Inv(16 frequencies were significantly higher in mutRAS compared to wtRAS patients (P = 0.015 and (P = 0.003, respectively. The patients were followed up for a median of 43 months (range 11–57 months. There was no significant difference in overall survival (OS between mutRAS and wtRAS (P = 0.326. Within the mutRAS

  19. Injection of an antibody against a p21 c-Ha-ras protein inhibits cleavage in axolotl eggs.

    Baltus, E; Hanocq-Quertier, J; Hanocq, F.; Brachet, J.


    The presence of a ras protein was demonstrated in cleaving axolotl eggs by selective immunoprecipitation with a polyclonal antibody against a peptide encoded by the c-Ha-ras oncogene, cellular homolog of the v-Ha-ras oncogene of Harvey rat sarcoma virus. Injection of this antibody into axolotl oocytes subjected to progesterone treatment does not prevent meiotic maturation. Injection of the same antibody into a blastomere of axolotl eggs at the 2- or 4-cell stage causes cleavage arrest in the ...

  20. p53 and H-ras mutations and microsatellite instability in renal pelvic carcinomas of NON / Shi mice treated with N-butyl-N-(4-hydroxybutyl)-nitrosamine: different genetic alteration from urinary bladder carcinoma.

    Gen, H; Yamamoto, S; Morimura, K; Min, W; Mitsuhashi, M; Murai, T; Mori, S; Hosono, M; Oohara, T; Makino, S; Wanibuchi, H; Fukushima, S


    We previously reported p53 mutations to be frequent (greater than 70%), whereas both H-ras mutations and microsatellite instability (MSI) were infrequent (about 10%), in urinary bladder carcinomas (UBCs) and their metastatic foci in the N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)-induced mouse urothelial carcinogenesis model. In the present study, an analysis of p53 and H-ras mutations as well as MSI was performed on 12 renal pelvic carcinomas (RPCs) and 8 metastatic or invading foci produced by the same experimental procedure. Histologically, 10 of the RPCs were transitional cell carcinomas and the remaining 2 were squamous cell carcinomas. p53 mutations were infrequent and only found in one primary RPC (8%), its metastatic foci and an invading lesion in another animal (in a total 2 of 12; 17%). H-ras mutations were slightly more frequent (found in 3 of 12 animals; 25%), 4 of 5 involving codon 44, GTG to GCG, not a hot-spot reported for human cancers. In two cases, H-ras mutations were confined to lung metastasis and not detectable in their primary RPCs. MSI analysis was available for 6 pairs of primary RPCs and their metastatic foci, and 4 animals (67%) had MSI at one or more microsatellite loci. Overall, the distribution of genetic alterations differed from that in UBCs produced by the same experimental protocol. The results thus suggest that different genetic pathways may participate in carcinogenesis of the upper and lower urinary tract due to BBN.

  1. Facilitated geranylgeranylation of shrimp ras-encoded p25 fusion protein by the binding with guanosine diphosphate.

    Huang, C F; Chuang, N N


    A cDNA was isolated from the shrimp Penaeus japonicus by homology cloning. Similar to the mammalian Ras proteins, this shrimp hepatopancreas cDNA encodes a 187-residue polypeptide whose predicted amino acid sequence shares 85% homology with mammalian KB-Ras proteins and demonstrates identity in the guanine nucleotide binding domains. Expression of the cDNA of shrimp in Escherichia coli yielded a 25-kDa polypeptide with positive reactivity toward the monoclonal antibodies against Ras of mammals. As judged by nitrocellulose filtration assay, the specific GTP binding activity of ras-encoded p25 fusion protein was approximately 30,000 units/mg of protein, whereas that of GDP was 5,000 units/mg of protein. In other words, the GTP bound form of ras-encoded p25 fusion protein prevails. Fluorography analysis demonstrated that the prenylation of both shrimp Ras-GDP and shrimp Ras-GTP by protein geranylgeranyltransferase I of shrimp Penaeus japonicus exceeded that of nucleotide-free form of Ras by 10-fold and four-fold, respectively. That is, the protein geranylgeranyl transferase I prefers to react with ras-encoded p25 fusion protein in the GDP bound form.

  2. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting.

    Jonckheere, Nicolas; Vasseur, Romain; Van Seuningen, Isabelle


    RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Bisphenol A analogue Bisphenol S binds to K-Ras4B--implications for 'BPA-free' plastics.

    Schöpel, Miriam; Herrmann, Christian; Scherkenbeck, Jürgen; Stoll, Raphael


    K-Ras4B is a small GTPase that belongs to the Ras superfamily of guanine nucleotide-binding proteins. GTPases function as molecular switches in cells and are key players in intracellular signalling. Ras has been identified as an oncogene and is mutated in more than 20% of human cancers. Here, we report that Bisphenol S binds into a binding pocket of K-Ras4B previously identified for various low molecular weight compounds. Our results advocate for more comprehensive safety studies on the toxicity of Bisphenol S, as it is frequently used for Bisphenol A-free food containers.

  4. A RAS oncogene imparts growth factor independence to myeloid cells that abnormally regulate protein kinase C: a nonautocrine transformation pathway.

    Boswell, H S; Nahreini, T S; Burgess, G S; Srivastava, A; Gabig, T G; Inhorn, L; Srour, E F; Harrington, M A


    The factor-dependent cell line FDC-P1 has been utilized as a model of interleukin 3 (IL-3)-dependent myeloid cell proliferation. However, it has been recently observed that active phorbol esters (e.g., phorbol 12-myristate 13-acetate) may entirely replace IL-3 to promote its proliferation. These observations reveal abnormal regulation of protein kinase C (pkC) (absence of downregulation or overexpression). This property allowed a test of the hypothesis that the T24 RAS (codon 12) oncogene acts by constitutive and persistent pkC activation, driving proliferation. FDC-P1 cells were transfected by electroporation with the T24 RAS-containing vector pAL 8, or with a control vector pSVX Zip Neo, and neomycin-resistant clones were selected. Multiple RAS-transfectant clones were categorized for their growth factor requirement and incorporation of the 6.6-kb human mutant H-RAS genome. IL-3-independent clones had incorporated multiple (more than two) copies of the entire 6.6-kb RAS genome. The incorporation of multiple 6.6-kb RAS genomes was correlated with high-level p21 RAS expression. No evidence for autostimulatory growth factor production by clones containing the RAS oncogene was observed. Thus, acquisition of growth factor independence in myeloid cells by abundant expression of a RAS oncogene is linked, in part, to abnormal regulation of pkC, which acts as a collaborating oncogene.

  5. mTOR activation in medullary thyroid carcinoma with RAS mutation.

    Lyra, Joana; Vinagre, João; Batista, Rui; Pinto, Vasco; Prazeres, Hugo; Rodrigues, Fernando; Eloy, Catarina; Sobrinho-Simões, Manuel; Soares, Paula


    Rearranged during transfection (RET) mutations are well-known genetic events in sporadic and familial medullary thyroid carcinoma (FMTC). The presence of RAS mutations in sporadic cases, challenging the RET paradigm in these tumors, has been recently reported. We intend to evaluate mTOR pathway activation in RET- and RAS-mutated MTC. In this study, we analysed the presence of RET, H-RAS, and K-RAS mutations in a series of 87 MTCs (82 apparently sporadic and five FMTCs; five apparently sporadic MTCs were eventually found to be familial). We also evaluated mTOR activation--using the expression of its downstream effector phospho-S6 ribosomal protein (p-S6) and the expression of the mTOR inhibitor, phosphatase and tensin homologue deleted on chromosome 10 (PTEN)--by immunohistochemistry. Our results revealed that RET mutations were present in 52.9% of the cases (46/87) and RAS mutations in 12.6% (11/87) of the whole series of MTCs and 14.3% of the 77 sporadic MTCs. The presence of RET and RAS mutations was mutually exclusive. RAS mutations were significantly associated with higher intensity of p-S6 expression (P=0.007), suggesting that the mTOR pathway is activated in such MTCs. We observed also an increased expression of p-S6 in invasive tumors (P=0.042) and in MTCs with lymph node metastases (P=0.046). Cytoplasmic PTEN expression was detected in 58.8% of the cases; cases WT for RAS showed a significantly lower expression of PTEN (P=0.045). We confirmed the presence of RAS mutation in 14.3% of sporadic MTCs and report, for the first time, an association between such mutations and the activation of the mTOR pathway. The evaluation of the mTOR activation by pS6 expression may serve as an indicator of invasive MTC. © 2014 European Society of Endocrinology.

  6. miR-11 regulates pupal size of Drosophila melanogaster via directly targeting Ras85D.

    Li, Yao; Li, Shengjie; Jin, Ping; Chen, Liming; Ma, Fei


    MicroRNAs play diverse roles in various physiological processes during Drosophila development. In the present study, we reported that miR-11 regulates pupal size during Drosophila metamorphosis via targeting Ras85D with the following evidences: pupal size was increased in the miR-11 deletion mutant; restoration of miR-11 in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant; ectopic expression of miR-11 in brain insulin-producing cells (IPCs) and whole body shows consistent alteration of pupal size; Dilps and Ras85D expressions were negatively regulated by miR-11 in vivo; miR-11 targets Ras85D through directly binding to Ras85D 3'-untranslated region in vitro; removal of one copy of Ras85D in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant. Thus, our current work provides a novel mechanism of pupal size determination by microRNAs during Drosophila melanogaster metamorphosis. Copyright © 2017 the American Physiological Society.

  7. Role of the YAP Oncoprotein in Priming Ras-Driven Rhabdomyosarcoma.

    Katherine K Slemmons

    Full Text Available Rhabdomyosarcoma (RMS, a cancer characterized by features of skeletal muscle histogenesis, is the most common soft tissue sarcoma of childhood and adolescence. Survival for high-risk groups is less than 30% at 5 years. RMS also occurs during adulthood, with a lower incidence but higher mortality. Recently, mutational profiling has revealed a correlation between activating Ras mutations in the embryonal (eRMS and pleomorphic (pRMS histologic variants of RMS, and a poorer outcome for those patients. Independently, the YAP transcriptional coactivator, an oncoprotein kept in check by the Hippo tumor suppressor pathway, is upregulated in eRMS. Here we show that YAP promotes cell proliferation and antagonizes apoptosis and myogenic differentiation of human RMS cells bearing oncogenic Ras mutations in cell culture studies in vitro and in murine xenografts in vivo. Pharmacologic inhibition of YAP by the benzoporphyrin derivative verteporfin decreased cell proliferation and tumor growth in vivo. To interrogate the temporal contribution of YAP in eRMS tumorigenesis, we used a primary human cell-based genetic model of Ras-driven RMS. Constitutively active YAP functioned as an early genetic lesion, permitting bypass of senescence and priming myoblasts to tolerate subsequent expression of hTERT and oncogenic Ras, which were necessary and sufficient to generate murine xenograft tumors mimicking RMS in vivo. This work provides evidence for cooperation between YAP and oncogenic Ras in RMS tumorigenesis, laying the foundation for preclinical co-targeting of these pathways.

  8. Programmed Cell-to-Cell Variability in Ras Activity Triggers Emergent Behaviors during Mammary Epithelial Morphogenesis

    Jennifer S. Liu


    Full Text Available Variability in signaling pathway activation between neighboring epithelial cells can arise from local differences in the microenvironment, noisy gene expression, or acquired genetic changes. To investigate the consequences of this cell-to-cell variability in signaling pathway activation on coordinated multicellular processes such as morphogenesis, we use DNA-programmed assembly to construct three-dimensional MCF10A microtissues that are mosaic for low-level expression of activated H-Ras. We find two emergent behaviors in mosaic microtissues: cells with activated H-Ras are basally extruded or lead motile multicellular protrusions that direct the collective motility of their wild-type neighbors. Remarkably, these behaviors are not observed in homogeneous microtissues in which all cells express the activated Ras protein, indicating that heterogeneity in Ras activity, rather than the total amount of Ras activity, is critical for these processes. Our results directly demonstrate that cell-to-cell variability in pathway activation within local populations of epithelial cells can drive emergent behaviors during epithelial morphogenesis.

  9. Role of neuronal Ras activity in adult hippocampal neurogenesis and cognition

    Martina eManns


    Full Text Available Hippocampal neurogenesis in the adult mammalian brain is modulated by various signals like growth factors, hormones, neuropeptides, and neurotransmitters. All of these factors can (but not necessarily do converge on the activation of the G protein p21Ras. We used a transgenic mouse model (synRas mice expressing constitutively activated G12V-Harvey Ras selectively in differentiated neurons to investigate the possible effects onto neurogenesis. Ras activation in neurons attenuates hippocampal precursor cell generation at an early stage of the proliferative cascade before neuronal lineage determination occurs. Therefore it is unlikely that the transgenically activated Ras in neurons mediates this effect by a direct, intracellular signaling mechanism. Voluntary exercise restores neurogenesis up to wild type level presumably mediated by brain derived neurotrophic factor. Reduced neurogenesis is linked to impairments in spatial short-term memory and object recognition, the latter can be rescued by voluntary exercise, as well. These data support the view that new cells significantly increase complexity that can be processed by the hippocampal network when experience requires high demands to associate stimuli over time and/or space.

  10. Detection of point mutation in K-ras oncogene at codon 12 in pancreatic diseases

    Yue-Xin Ren; Guo-Ming Xu; Zhao-Shen Li; Yu-Gang Song


    AIM: To investigate frequency and clinical significance of Kras mutations in pancreatic diseases and to identify its diagnostic values in pancreatic carcinoma. METHODS: 117 ductal lesions were identified in the available sections from pancreatic resection specimens of pancreatic ductal adenocarcinoma, comprising 24 pancreatic ductal adenocarcinoma, 19 peritumoral ductal atypical hyperplasia, 58 peritumoral ductal hyperplasia and 19 normal duct at the tumor free resection margin. 24 ductal lesions were got from 24 chronic pancreatitis. DNA was extracted. Codon 12 K-ras mutations were examined using the twostep polymerase chain reaction (PCR) combined with restriction enzyme digestion, followed by nonradioisotopic single-strand conformation polymorphism (SSCP) analysis and by means of automated DNA sequencing. RESULTS: K-ras mutation rate of the pancreatic carcinoma was 79%(19/24) which was significantly higher than that in the chronic pancreatitis 33%(8/24) (P<0.01). It was also found that K-ras mutation rate was progressively increased from normal duct at the tumor free resection margin, peritumoral ductal hyperplasia, peritumoral ductal atypical hyperplasia to pancreatic ductal adenocarcinoma. The mutation pattern of K ras 12 coclon of chronic pancreatitis was GGT→GAT, GGT and CGT, which is identical to that in pancreatic carcinoma.CONCLUSION: K-fas mutation may play a role in the malignant transformation of pancreatic ductal cell. K-ras mutation was not specific enough to diagnose pancreatic carcinoma.

  11. Nucleotide binding affects intrinsic dynamics and structural communication in Ras GTPases.

    Fanelli, Francesca; Raimondi, Francesco


    The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins) that are essential to intracellular signal transduction. These proteins act biologically as molecular switches, which, cycling between OFF and ON states, play fundamental role in cell biology. This review article summarizes the inferences from the widest computational analyses done so far on Ras GTPases aimed at providing a comprehensive structural/dynamic view of the trans-family and family-specific functioning mechanisms. These variegated comparative analyses could infer the evolutionary and intrinsic flexibilities as well as the structural communication features in the most representative G protein families in different functional states. In spite of the low sequence similarities, the members of the Ras superfamily share the topology of the Ras-like domain, including the nucleotide binding site. GDP and GTP make very similar interactions in all GTPases and differences in their binding modes are localized around the γ-phosphate of GTP. Remarkably, such subtle local differences result in significant differences in the functional dynamics and structural communication features of the protein. In Ras GTPases, the nucleotide plays a central and active role in dictating functional dynamics, establishing the major structure network, and mediating the communication paths instrumental in function retention and specialization. Collectively, the results of these studies support the speculation that an "extended conformational selection model" that embraces a repertoire of selection and adjustment processes is likely more suitable to describe the nucleotide behavior in these important molecular switches.

  12. CYP1B1 polymorphisms and k-ras mutations in patients with pancreatic ductal adenocarcinoma.

    Crous-Bou, Marta; De Vivo, Immaculata; Porta, Miquel; Pumarega, José A; López, Tomàs; Alguacil, Joan; Morales, Eva; Malats, Núria; Rifà, Juli; Hunter, David J; Real, Francisco X


    The frequency of CYP1B1 polymorphisms in pancreatic cancer has never been reported. There is also no evidence on the relationship between CYP1B1 variants and mutations in ras genes (K-, H- or N-ras) in any human neoplasm. We analyzed the following CYP1B1 polymorphisms in 129 incident cases of pancreatic ductal adenocarcinoma (PDA): the m1 allele (Val to Leu at codon 432) and the m2 allele (Asn to Ser at codon 453). The calculated frequencies for the m1 Val and m2 Asn alleles were 0.45 and 0.68, respectively. CYP1B1 genotypes were out of Hardy-Weinberg equilibrium; this was largely due to K-ras mutated PDA cases. The Val/Val genotype was over five times more frequent in PDA cases with a K-ras mutation than in wild-type cases (OR = 5.25; P = 0.121). In PDA, polymorphisms in CYP1B1 might be related with K-ras activation pathways.

  13. A novel K-ras mutation in colorectal cancer. A case report and literature review.

    Palmirotta, Raffaele; Savonarola, Annalisa; Formica, Vincenzo; Ludovici, Giorgia; Del Monte, Girolamo; Roselli, Mario; Guadagni, Fiorella


    Activating mutations in the K-ras oncogene mainly occur in codons 12 and 13 and may be predictive of response to drugs directly linked to the K-ras signaling pathway, such as panitumumab and cetuximab. K-ras analysis was carried out on DNA extracted from paraffin-embedded tumor samples after microdissection. Exons 1 and 2 were amplified by PCR and then sequenced. A never-reported K-ras mutation (CAG>TAG) determining a premature stop signal at codon 22 (Gln22Stop) was found in a patient with metastatic colorectal cancer. BRAF and p53 were not found to be modified and microsatellite instability was not present. The patient, however, was found to be unresponsive to an anti-EGFR MAb treatment. This study is the first report of a novel K-ras truncating mutation in a patient with metastatic colorectal cancer and is also suggestive for the evaluation of alternative pathways to better identify individuals who are likely to benefit from targeted therapies.

  14. Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation.

    Goodwin, Alice F; Tidyman, William E; Jheon, Andrew H; Sharir, Amnon; Zheng, Xu; Charles, Cyril; Fagin, James A; McMahon, Martin; Diekwisch, Thomas G H; Ganss, Bernhard; Rauen, Katherine A; Klein, Ophir D


    RASopathies are syndromes caused by gain-of-function mutations in the Ras signaling pathway. One of these conditions, Costello syndrome (CS), is typically caused by an activating de novo germline mutation in HRAS and is characterized by a wide range of cardiac, musculoskeletal, dermatological and developmental abnormalities. We report that a majority of individuals with CS have hypo-mineralization of enamel, the outer covering of teeth, and that similar defects are present in a CS mouse model. Comprehensive analysis of the mouse model revealed that ameloblasts, the cells that generate enamel, lacked polarity, and the ameloblast progenitor cells were hyperproliferative. Ras signals through two main effector cascades, the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) pathways. To determine through which pathway Ras affects enamel formation, inhibitors targeting either PI3K or MEK 1 and 2 (MEK 1/2), kinases in the MAPK pathway, were utilized. MEK1/2 inhibition rescued the hypo-mineralized enamel, normalized the ameloblast polarity defect and restored normal progenitor cell proliferation. In contrast, PI3K inhibition only corrected the progenitor cell proliferation phenotype. We demonstrate for the first time the central role of Ras signaling in enamel formation in CS individuals and present the mouse incisor as a model system to dissect the roles of the Ras effector pathways in vivo.

  15. Ribozyme对癌基因ki-rasG12V mRNA的剪切及其特异性%Cleavage of Oncogene ki-rasG12V mRNA by Ribozyme and It' s Specificity

    吴国祥; 方裕强; 许国铭; 李兆申; 陆德如


    目的:设计切割ki-rasG12vmRNA的特异性ribozyme(Rz217),明确其对癌基因ki-rasG12VmRNA的细胞内外切割活性,为以ki-rasG12VmRNA为特异性靶分子的基因治疗及癌基因ki-ras的功能研究提拱一种新的途径。方法:依Symons总结的"锤头结构"原理,设计一种能特异性切割ki-rasG12VmRNA的ribozyme,利用DNA重组技术构建ki-rasG12V外显子1和ri-bozyme Rz217的体外转录质粒及ribozyme Rz217的真核表达质粒,体外转录获得ribozyme Rz217及ki-rasG12V外显子1 mRNA,在含Mg2+溶液中ribozyme Rz217对其靶RNA分子进行切割。以RT-PCR对转染ribozyme Rz217真核表达质粒的细胞ki-rasG12VmRNA进行半定量分析。结果:ki-rasG12V外显子1体外转录mRNA分子,能被ribozyme Rz217定点切割而野生型ki-ras外显子1体外转录mRNA则不被切割;转染ribozyme Rz217的胰癌细胞ki-rasG12VmRNA含量减少,而转染ribozyme Re217的肝癌细胞其内源性ki-ras mRNA含量无明显变化。结论:ribozyme Rz217无论在细胞内外均能剪切突变型ki-ras mRNA(G12V)而且其切割作用为突变型ki-rasG12VmRNA特异性的。%Objective: To design and confirm the cleavage activity of ribozyme Rz217 to oncogene ki-rasG12V messenger RNA and search for a new method for gene therapy targeting oncogene ki-ras. Methods: According to Symon' s principle,design an ribozyme specific for ki-rasc12v mRNA, both the constructs for transcription in vitro of ribozyme Rz217 and ki-ras exonl and the mammalian expression constructs of ribozyme Rz217 were constructed by DNA recombinant technique,ribozyme Rz217 and ki-ras exonl mRNA was obtained by transcription in vitro with T7 and SP6 RNA polymerase. Pancre atic carcinoma cell line PaTu8988 and human hepatocellular carcinomacell line BEL7404 were transfected with Rz217 mammalian expression constructs and the level of endogenous ki-rasG12V mRNA or ki-ras mRNA was determined by semiquantitative RT-PCR. Results: Not only in vitro

  16. K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology.

    Sakamoto, Kotaro; Kamada, Yusuke; Sameshima, Tomoya; Yaguchi, Masahiro; Niida, Ayumu; Sasaki, Shigekazu; Miwa, Masanori; Ohkubo, Shoichi; Sakamoto, Jun-Ichi; Kamaura, Masahiro; Cho, Nobuo; Tani, Akiyoshi


    Amino-acid mutations of Gly(12) (e.g. G12D, G12V, G12C) of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras), the most promising drug target in cancer therapy, are major growth drivers in various cancers. Although over 30 years have passed since the discovery of these mutations in most cancer patients, effective mutated K-Ras inhibitors have not been marketed. Here, we report novel and selective inhibitory peptides to K-Ras(G12D). We screened random peptide libraries displayed on T7 phage against purified recombinant K-Ras(G12D), with thorough subtraction of phages bound to wild-type K-Ras, and obtained KRpep-2 (Ac-RRCPLYISYDPVCRR-NH2) as a consensus sequence. KRpep-2 showed more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D), both in SPR analysis and GDP/GTP exchange enzyme assay. KD and IC50 values were 51 and 8.9 nM, respectively. After subsequent sequence optimization, we successfully generated KRpep-2d (Ac-RRRRCPLYISYDPVCRRRR-NH2) that inhibited enzyme activity of K-Ras(G12D) with IC50 = 1.6 nM and significantly suppressed ERK-phosphorylation, downstream of K-Ras(G12D), along with A427 cancer cell proliferation at 30 μM peptide concentration. To our knowledge, this is the first report of a K-Ras(G12D)-selective inhibitor, contributing to the development and study of K-Ras(G12D)-targeting drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Bioinformatics of non small cell lung cancer and the ras proto-oncogene

    Kashyap, Amita; Babu M, Naresh


    Cancer is initiated by activation of oncogenes or inactivation of tumor suppressor genes. Mutations in the K-ras proto-oncogene are responsible for 10–30% of adenocarcinomas. Clinical Findings point to a wide variety of other cancers contributing to lung cancer incidence. Such a scenario makes identification of lung cancer difficult and thus identifying its mechanisms can contribute to the society. Identifying unique conserved patterns common to contributing proto-oncogenes may further be a boon to Pharmacogenomics and pharmacoinformatics. This calls for ab initio/de novo drug discovery that in turn will require a comprehensive in silico approach of Sequence, Domain, Phylogenetic and Structural analysis of the receptors, ligand screening and optimization and detailed Docking studies. This brief involves extensive role of the RAS subfamily that includes a set of proteins, which cause an over expression of cancer-causing genes like M-ras and initiate tumour formation in lungs. SNP Studies and Structure based ...

  18. Ets Factors Regulate Neural Stem Cell Depletion and Gliogenesis in Ras Pathway Glioma.

    Breunig, Joshua J; Levy, Rachelle; Antonuk, C Danielle; Molina, Jessica; Dutra-Clarke, Marina; Park, Hannah; Akhtar, Aslam Abbasi; Kim, Gi Bum; Hu, Xin; Bannykh, Serguei I; Verhaak, Roel G W; Danielpour, Moise


    As the list of putative driver mutations in glioma grows, we are just beginning to elucidate the effects of dysregulated developmental signaling pathways on the transformation of neural cells. We have employed a postnatal, mosaic, autochthonous glioma model that captures the first hours and days of gliomagenesis in more resolution than conventional genetically engineered mouse models of cancer. We provide evidence that disruption of the Nf1-Ras pathway in the ventricular zone at multiple signaling nodes uniformly results in rapid neural stem cell depletion, progenitor hyperproliferation, and gliogenic lineage restriction. Abolishing Ets subfamily activity, which is upregulated downstream of Ras, rescues these phenotypes and blocks glioma initiation. Thus, the Nf1-Ras-Ets axis might be one of the select molecular pathways that are perturbed for initiation and maintenance in glioma.

  19. Development of pyrosequencing methods for the rapid detection of RAS mutations in clinical samples.

    Cortes, Ulrich; Guilloteau, Karline; Rouvreau, Mélanie; Archaimbault, Céline; Villalva, Claire; Karayan-Tapon, Lucie


    In advanced colorectal carcinoma (CRC) patients, extended RAS mutations testing (KRAS exons 2 to 4 and NRAS exons 2 to 4) is a prerequisite for patient stratification to anti-EGFr therapy. Accurately distinguishing mutant patients from potential responders has a clinically critical impact, and thus effective and low cost methods are needed for identification of the mutation status. We have developed quantitative pyrosequencing assays for sensitive and rapid detection of mutant RAS alleles in formalin-fixed, paraffin-embedded tissues. Exons 2 to 4 of KRAS and NRAS genes were PCR amplified and analyzed by pyrosequencing. For validation, PCR products were sequenced by conventional Sanger sequencing. Analytical sensitivity of these assays was determined by calculating the limit of detection. The results showed that low levels of mutant RAS alleles (2-13%) can be detected with pyrosequencing assays.

  20. Preliminary Study on c-Ha-ras Oncogene Mutations in Hydatidiform Mole Tissues

    王芳; 谭运年; 陈碧; 李英勇; 康旭


    Objective To study the presence of c-Ha-fas oncogene mutations in hydatidiform mole (HM) tissues and to further explore its relationship with mole's malignancy Materials & methods c-Ha-ras codon 12 mutation was detected in invasive and noninvasive HM by using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP).Results c-Ha-fas codon 12 mutation was detected in 7 samples (53. 85%) of 13 invasive HM and 8 samples (26. 67%) in 30 non-invasive HM. c-Ha-ras mutations also showed loss of wild-type c-Ha-fas. No mutation in control group was observed.Conclusion The tendency of c-Ha-ras codon 12 mutation may be related with a higher invasive degree of HM.

  1. Assessment of alexithymia with the Rorschach Comprehensive System: the Rorschach Alexithymia Scale (RAS).

    Porcelli, Piero; Mihura, Joni L


    In this study, we developed the Rorschach Alexithymia Scale (RAS) to be used with protocols scored with the Comprehensive System (CS; Exner, 1993). A total of 92 patients with medical disease and 127 psychiatric outpatients were administered the Rorschach and the 20-item Toronto Alexithymia Scale (Bagby, Parker, & Taylor, 1994a, 1994b). We used a systematic approach, including cross-validation, to reduce a pool of 27 CS codes issued from an earlier investigation (Porcelli & Meyer, 2002) to 3 variables: Form%, CDI, and Pop. The RAS showed excellent diagnostic accuracy (hit rate of 92%, sensitivity of 88%, specificity of 94%, and area under the curve of .96). We suggest that the RAS can be used as a reliable integrative tool in a multimethod assessment approach to measuring alexithymia.

  2. A thirty-year quest for a role of R-Ras in cancer: from an oncogene to a multitasking GTPase.

    Liu, Wai Nam; Yan, Mingfei; Chan, Andrew M


    Since the identification of R-Ras, which is the first Ras-related GTPase isolated based on sequence similarity to the classical RAS oncogene, more than 160 members of the Ras superfamily of GTPases have been identified and classified into the Ras, Rho, Rap, Rab, Ran, Arf, Rheb, RGK, Rad, Rit, and Miro subfamilies. R-Ras belongs to the Ras subfamily of small G-proteins, which are frequently implicated in cell growth and differentiation. Although the roles of R-Ras in cellular transformation and integrin-mediated cell adhesion have been extensively studied, the physiological function of this enigmatic G-protein was only revealed when a mouse strain deficient in R-Ras was generated. In parallel, a plethora of research findings also linked R-Ras with processes including tumor angiogenesis, axon guidance, and immune cell trafficking. Several upstream factors that modulate R-Ras GTP-binding were identified including Notch, semaphorin, and chemokine C-C motif ligand 21. A review of our evolving understanding of the role of R-Ras in oncogenesis is timely, as this year marks the 30th anniversary of the publication describing the cloning of R-Ras. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Prognostic significance of K-Ras mutation rate in metastatic colorectal cancer patients

    Vincenzi, Bruno; Cremolini, Chiara; Sartore-Bianchi, Andrea; Russo, Antonio; Mannavola, Francesco; Perrone, Giuseppe; Pantano, Francesco; Loupakis, Fotios; Rossini, Daniele; Ongaro, Elena; Bonazzina, Erica; Dell'Aquila, Emanuela; Imperatori, Marco; Zoccoli, Alice; Bronte, Giuseppe; De Maglio, Giovanna; Fontanini, Gabriella; Natoli, Clara; Falcone, Alfredo; Santini, Daniele; Onetti-Muda, Andrea; Siena, Salvatore; Tonini, Giuseppe; Aprile, Giuseppe


    Introduction: Activating mutations of K-Ras gene have a well-established role as predictors of resistance to anti-EGFR monoclonal antibodies in metastatic colorectal cancer (mCRC) patients. Their prognostic value is controversial, and no data regarding the prognostic value of mutation rate, defined as the percentage of mutated alleles/tumor sample, are available. We aimed to evaluate the prognostic value of K-Rasmutation rate in a homogenous cohort of mCRC patients receiving first-line doublet plus bevacizumab. Patients and Methods: This retrospective study enrolled 397 K-Ras mutant mCRC patients from 6 Italian centers, and 263 patients were fully evaluable for our analysis. K-Ras mutation rate was assessed by pyrosequencing. Patients with less than 60% of cancer cells in tumor tissue were excluded. No patients received anti-EGFR containing anticancer therapy, at any time. Median mutation rate was 40% and was adopted as cut-off. The primary and secondary endpoints were PFS and OS respectively. Results: At univariate analysis, K-Ras mutation rate higher than 40% was significantly associated with lower PFS (7.3 vs 9.1 months; P < 0.0001) and OS (21 vs 31 months; P = 0.004). A multivariate model adjusted for age at diagnosis, site of origin of tumor tissue (primary vs metastases), referral center, number of metastatic sites, and first-line chemotherapy backbone, showed that K-Ras mutation rate remained a significant predictor of PFS and OS in the whole population. Discussion: Our data demonstrate an association between K-Ras mutation rate and prognosis in mCRC patients treated with bevacizumab-containing first-line therapy. These data deserve to be verified in an independent validation set. PMID:26384309

  4. The frequency and spectrum of K-ras mutations among Iraqi patients with sporadic colorectal carcinoma

    N A Al-Allawi


    Full Text Available Background: The epidemiology of colorectal cancers (CRC is well known to differ in different geographical regions. K-ras mutations have been implicated in CRC carcinogenesis and they were extensively studied in developed countries; however, such studies are scarce from developing countries, like Iraq. Aim: To determine the frequency and spectrum of K-ras mutations among CRC Iraqi patients, and their clinico-pathological associations, if any. Materials and Methods: Fifty consecutive surgically resected sporadic CRC were evaluated. The evaluation included screening for ten K-ras mutations in codon 12 and 13 by mutant enriched polymerase chain reaction followed by reverse hybridization to oligospecific probes. Results: Out of the 50 enrolled patients, 24 (48% had K-ras mutations. A total of 29 mutations were identified in the tumors of the latter 24 patients (20/24 tumors had single mutations, 3/24 had double mutations and 1/24 had triple mutations. The most frequently encountered mutations were the G>T transversions and G>A transitions (41.4% each. Codon 12 mutations constituted 89.7%, while codon 13 the remaining 10.3%. The most frequent mutation was GGT>GTT (Gly>Val of codon 12 documented in 31%. No significant clinico-pathological correlations with K-ras mutational status were identified. Conclusion : The K-ras mutations are frequently encountered among Iraqi sporadic CRC patients, with relative higher frequencies of G>T transversions and Gly>Val codon 12 substitutions than encountered in their counterparts in developed countries. The latter is most likely to be related to differences in local carcinogens exposure, an aspect which requires further scrutiny.

  5. Utilizing ras signaling pathway to direct selective replication of herpes simplex virus-1.

    Weihong Pan

    Full Text Available Re-engineering the tropism of viruses is an attractive translational strategy for targeting cancer cells. The Ras signal transduction pathway is a central hub for a variety of pro-oncogenic events with a fundamental role in normal and neoplastic physiology. In this work we were interested in linking Ras activation to HSV-1 replication in a direct manner in order to generate a novel oncolytic herpes virus which can target cancer cells. To establish such link, we developed a mutant HSV-1 in which the expression of ICP4 (infected cell protein-4, a viral protein necessary for replication is controlled by activation of ELK, a transcription factor down-stream of the Ras pathway and mainly activated by ERK (extracellular signal-regulated kinase, an important Ras effector pathway. This mutant HSV-1 was named as Signal-Smart 1 (SS1. A series of prostate cells were infected with the SS1 virus. Cells with elevated levels of ELK activation were preferentially infected by the SS1 virus, as demonstrated by increased levels of viral progeny, herpetic glycoprotein C and overall SS1 viral protein production. Upon exposure to SS1, the proliferation, invasiveness and colony formation capabilities of prostate cancer cells with increased ELK activation were significantly decreased (p<0.05, while the rate of apoptosis/necrosis in these cells was increased. Additionally, high Ras signaling cells infected with SS1 showed a prominent arrest in the G1 phase of the cell cycle as compared to cells exposed to parental HSV-1. The results of this study reveal the potential for re-modeling the host-herpes interaction to specifically interfere with the life of cancer cells with increased Ras signaling. SS1 also serves as a "prototype" for development of a family of signal-smart viruses which can target cancer cells on the basis of their signaling portfolio.

  6. H-ras expression in immortalized keratinocytes produces an invasive epithelium in cultured skin equivalents.

    Melville B Vaughan

    Full Text Available BACKGROUND: Ras proteins affect both proliferation and expression of collagen-degrading enzymes, two important processes in cancer progression. Normal skin architecture is dependent both on the coordinated proliferation and stratification of keratinocytes, as well as the maintenance of a collagen-rich basement membrane. In the present studies we sought to determine whether expression of H-ras in skin keratinocytes would affect these parameters during the establishment and maintenance of an in vitro skin equivalent. METHODOLOGY/PRINCIPAL FINDINGS: Previously described cdk4 and hTERT immortalized foreskin keratinocytes were engineered to express ectopically introduced H-ras. Skin equivalents, composed of normal fibroblast-contracted collagen gels overlaid with keratinocytes (immortal or immortal expressing H-ras, were prepared and incubated for 3 weeks. Harvested tissues were processed and sectioned for histology and antibody staining. Antigens specific to differentiation (involucrin, keratin-14, p63, basement-membrane formation (collagen IV, laminin-5, and epithelial to mesenchymal transition (EMT; e-cadherin, vimentin were studied. Results showed that H-ras keratinocytes produced an invasive, disorganized epithelium most apparent in the lower strata while immortalized keratinocytes fully stratified without invasive properties. The superficial strata retained morphologically normal characteristics. Vimentin and p63 co-localization increased with H-ras overexpression, similar to basal wound-healing keratinocytes. In contrast, the cdk4 and hTERT immortalized keratinocytes differentiated similarly to normal unimmortalized keratinocytes. CONCLUSIONS/SIGNIFICANCE: The use of isogenic derivatives of stable immortalized keratinocytes with specified genetic alterations may be helpful in developing more robust in vitro models of cancer progression.

  7. Conformational SERS Classification of K-Ras Point Mutations for Cancer Diagnostics.

    Morla-Folch, Judit; Gisbert-Quilis, Patricia; Masetti, Matteo; Garcia-Rico, Eduardo; Alvarez-Puebla, Ramon A; Guerrini, Luca


    Point mutations in Ras oncogenes are routinely screened for diagnostics and treatment of tumors (especially in colorectal cancer). Here, we develop an optical approach based on direct SERS coupled with chemometrics for the study of the specific conformations that single-point mutations impose on a relatively large fragment of the K-Ras gene (141 nucleobases). Results obtained offer the unambiguous classification of different mutations providing a potentially useful insight for diagnostics and treatment of cancer in a sensitive, fast, direct and inexpensive manner.

  8. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers.

    Filip Janku

    Full Text Available BACKGROUND: Oncogenic mutations of PIK3CA, RAS (KRAS, NRAS, and BRAF have been identified in various malignancies, and activate the PI3K/AKT/mTOR and RAS/RAF/MEK pathways, respectively. Both pathways are critical drivers of tumorigenesis. METHODS: Tumor tissues from 504 patients with diverse cancers referred to the Clinical Center for Targeted Therapy at MD Anderson Cancer Center starting in October 2008 were analyzed for PIK3CA, RAS (KRAS, NRAS, and BRAF mutations using polymerase chain reaction-based DNA sequencing. RESULTS: PIK3CA mutations were found in 54 (11% of 504 patients tested; KRAS in 69 (19% of 367; NRAS in 19 (8% of 225; and BRAF in 31 (9% of 361 patients. PIK3CA mutations were most frequent in squamous cervical (5/14, 36%, uterine (7/28, 25%, breast (6/29, 21%, and colorectal cancers (18/105, 17%; KRAS in pancreatic (5/9, 56%, colorectal (49/97, 51%, and uterine cancers (3/20, 15%; NRAS in melanoma (12/40, 30%, and uterine cancer (2/11, 18%; BRAF in melanoma (23/52, 44%, and colorectal cancer (5/88, 6%. Regardless of histology, KRAS mutations were found in 38% of patients with PIK3CA mutations compared to 16% of patients with wild-type (wtPIK3CA (p = 0.001. In total, RAS (KRAS, NRAS or BRAF mutations were found in 47% of patients with PIK3CA mutations vs. 24% of patients wtPIK3CA (p = 0.001. PIK3CA mutations were found in 28% of patients with KRAS mutations compared to 10% with wtKRAS (p = 0.001 and in 20% of patients with RAS (KRAS, NRAS or BRAF mutations compared to 8% with wtRAS (KRAS, NRAS or wtBRAF (p = 0.001. CONCLUSIONS: PIK3CA, RAS (KRAS, NRAS, and BRAF mutations are frequent in diverse tumors. In a wide variety of tumors, PIK3CA mutations coexist with RAS (KRAS, NRAS and BRAF mutations.

  9. Alkol Fermantasyonu Sırasında Oluşan Aroma Maddeleri

    Erten, Hüseyin; Canbaş, Ahmet


    Aroma maddeleri alkollü içkilerin kimyasal ve duyusal özellikleri üzerinde etkili olurlar. Aroma maddelerinin önemli bir kısmı alkol fermentasyonu sırasında maya tarafından oluşturulur. Bu maddelerden başhcaları yüksek alkoller, esterler, organik asitler ve karbonil bileşikleridir. Bu makalede, alkol fermentasyonu sırasında maya tarafından oluşturulan aroma maddelerinin üretim mekanizmaları ele alınmıştır.  

  10. A mechanism of catalyzed GTP hydrolysis by Ras protein through magnesium ion

    Lu, Qiang; Nassar, Nicolas; Wang, Jin


    The hydrolysis by Ras plays pivotal roles in the activation of signaling pathways that lead to cell growth, proliferation, and differentiation. Despite their significant role in human cancer, the hydrolysis mechanism remains unclear. In the present Letter, we propose a GTP hydrolysis mechanism in which the γ phosphate is cut off primarily by magnesium ion. We studied both normal and mutated Ras and the cause of the malfunction of these mutants, compared the effect of Mg2+ and Mn2+. The simulation results are consistent with the experiments and support the new hydrolysis mechanism. This work will benefit both GTPases and ATPases hydrolysis studies.

  11. Society News: RAS Fellows are honoured with awards; Patrick Moore Medal; Best theses win prizes; New Fellows


    Congratulations to several Fellows of the RAS who have received prestigious awards this year. Congratulations to the winners of the annual prizes for the best PhD theses in astronomy and geophysics, awarded by the RAS and sponsored by Wiley-Blackwell. Winners receive a cheque for £1000, runners-up £50.

  12. 辐射损伤导致造血干/祖细胞衰老的机理研究%Mechanism of hematopoietic stem/progenitor cell aging induced by radiation damage

    张琛; 孙可; 耿珊; 刘典锋; 张先平; 刘俊; 徐春燕; 王建伟; 王亚平


    Objective To explore the mechanism underlying the aging of hematopoietic stem/progenitor cells (HSC/ HPC) induced by radiation stress. Methods Male C57BL/6J mice were divided randomly into radiation group and control group. The radiation group were treated with total 6.5 Gy X-ray radiation for 24 h; the control group received the same treatment except radiation. Thereafter, Sca-1+ HSC/HPC were isolated by magnetic-activated cell sorting (MACS) from bone marrow of all the mice. The distributions of cell cycle were tested by flow cytometry. The percentage of aging cells was detected by SA-β-Gal staining. The potentials of self-renewal and multi-differentiation were measured by CFU-Mix assay. DNA damages of Sca-1+ HSC/HPC were analyzed by single cell gel electrophoresis technique (SCGE). The expressions of senescence-associated genes pl6INK4a, pl9Arf, p53, p2Cip1/Waf1 mRNA were detected by RT-PCR. Western blotting was performed to analyze the expressions of p16INK4a and p21Cip1/Waf1 proteins. Results The purity of Sca-1+ HSC/HPC reached 94% after MACS. Compared with control group cells, after radiation, the number of Sca-1+ HSC/HPC per femur and CFU-Mix sharply decreased (P<0.05), Sca-1+ HSC/HPC apparently showed G1 arrest and elevated percentage of SA-β-Gal positive cells (P<0.05), cell trailing had a prolonged time, and the expressions of senescence-associated genes (p16INK4a, p19Art, p53, p21Cip1/Waf1) and relevant proteins (p16INK4a, p21Cip1/Waf1) were up-regulated significantly (P<0.05). Conclusion DNA damage and senescence-associated biological changes of Sca-1+ HSC/HPC can be achieved by X-ray radiation, which may be involved in p16INK4a-Rb and p19Arf-p53-p21Cip1/Waf1 signal pathways.%目的 探讨辐射损伤导致骨髓造血干/祖细胞(HSC/HPC)衰老的可能机制.方法 雄性C57BL/6J小鼠随机分为辐照组和假辐照组,辐照组小鼠经6.5 Gy的X射线全身一次性辐照,假辐照组小鼠处理同辐照组,但不辐照.辐照后24 h免疫

  13. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    D' Ambrosio, Steven M. [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 (United States); Han, Chunhua [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Pan, Li; Douglas Kinghorn, A. [Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Ding, Haiming, E-mail: [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States)


    Highlights: {yields} The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). {yields} Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). {yields} Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. {yields} The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. {yields} Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like those found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not

  14. Alteration of glycerolipid and sphingolipid-derived second messenger kinetics in ras transformed 3T3 cells.

    Laurenz, J C; Gunn, J M; Jolly, C A; Chapkin, R S


    The effect of ras transformation (rasB fibroblasts) on basal and serum-stimulated diacylglycerol (DAG) composition and mass was examined over time with respect to changes in membrane phospholipid composition and ceramide mass. RasB cells vs. nontransformed control cells (rasD and NR6) had chronically elevated DAG levels (up to 240 min) following serum stimulation, indicating a defect in the recovery phase of the intracellular DAG pulse. Ras transformation also had a dramatic effect on DAG composition. Molecular species analysis revealed that DAG from unstimulated rasB cells was enriched in the delta 9 desaturase fatty acyl species (monoenoate 18:1(n - 7) and 18:1(n - 9)), and depleted in arachidonic acid (20:4(n - 6)). With the exception of glycerophosphoinositol (GPI), DAG remodeling paralleled the compositional alterations in individual phospholipid classes. Importantly, ras transformation altered the fatty acyl composition of sphingomyelin, a precursor to the ceramide second messenger. With the addition of serum, control cells (rasD) had a progressive increase in ceramide mass with levels approximately 5-fold higher by 240 min. In contrast, ceramide levels did not increase in rasB cells at either 4 or 240 min. These results demonstrate that ras-oncogene, in addition to its effects on DAG metabolism, can also abolish the cellular increase in ceramide mass in response to serum stimulation. Since DAG and ceramide may have opposing biological functions, the prolonged elevation of DAG and the suppression of ceramide levels would be consistent with an enhanced proliferative capacity.

  15. The linker domain of the Ha-Ras hypervariable region regulates interactions with exchange factors, Raf-1 and phosphoinositide 3-kinase.

    Jaumot, Montserrat; Yan, Jun; Clyde-Smith, Jodi; Sluimer, Judith; Hancock, John F


    Ha-Ras and Ki-Ras have different distributions across plasma membrane microdomains. The Ras C-terminal anchors are primarily responsible for membrane micro-localization, but recent work has shown that the interaction of Ha-Ras with lipid rafts is modulated by GTP loading via a mechanism that requires the hypervariable region (HVR). We have now identified two regions in the HVR linker domain that regulate Ha-Ras raft association. Release of activated Ha-Ras from lipid rafts is blocked by deleting amino acids 173-179 or 166-172. Alanine replacement of amino acids 173-179 but not 166-172 restores wild type micro-localization, indicating that specific N-terminal sequences of the linker domain operate in concert with a more C-terminal spacer domain to regulate Ha-Ras raft association. Mutations in the linker domain that confine activated Ha-RasG12V to lipid rafts abrogate Raf-1, phosphoinositide 3-kinase, and Akt activation and inhibit PC12 cell differentiation. N-Myristoylation also prevents the release of activated Ha-Ras from lipid rafts and inhibits Raf-1 activation. These results demonstrate that the correct modulation of Ha-Ras lateral segregation is critical for downstream signaling. Mutations in the linker domain also suppress the dominant negative phenotype of Ha-RasS17N, indicating that HVR sequences are essential for efficient interaction of Ha-Ras with exchange factors in intact cells.

  16. Immunohistochemical analysis of p53 and ras p21 expression in colorectal adenomas and early carcinomas.

    Ieda, S; Watatani, M; Yoshida, T; Kuroda, K; Inui, H; Yasutomi, M


    To further investigate whether multiple genetic changes are involved in the development of colorectal cancer, we performed an immunohistochemical analysis of p53 and ras p21 protein expression in 139 specimens of colorectal adenoma with varying degrees of dysplasia, 57 specimens of early cancer with an adenomatous component, and 12 specimens of superficial early cancer without any adenomatous component. Positive p53 staining was found in 15% of the adenomas