WorldWideScience

Sample records for rare earths thorium

  1. Recovery and purification of rare earth elements and thorium

    International Nuclear Information System (INIS)

    Sungur, A.; Saygi, Z.; Yildiz, H.

    1985-01-01

    Rare earth elements and thorium found in the low-grade Eskisehir-Beylikahir ore have been recovered by HCl leaching, Lanthanides and thorium were separated and purified from the leach solutions through the precipitation sequence as double sulphate, hydroxide and oxalate. The Ln 2 O 3 and Th(OH) 4 products, finally obtained contained 36% Ce and 65% Th. The analysis of rare earth elements, thorium and other present ingredients were carried out by instrumental neutron activation analysis, atomic absorption spectroscopy, vis-spectroscopy and gravimetry. (author)

  2. Determination of rare earth impurities in thorium by spectrographic methods

    Energy Technology Data Exchange (ETDEWEB)

    Wray, L W

    1957-08-15

    A method for determining rare earth impurities in thorium in the fractional ppm range is described. Before spectrographic examination is possible, the impurities must be freed from the thorium matrix. This is accomplished by removing the bulk of the thorium by extraction with TBP-CCl{sub 4} and the remainder by extraction with TTA-C{sub 6}H{sub 6}. This results in a consistent recovery of rare earths of about 85% with an average sensitivity of 0.2 ppm. The experimental error is within 10%. Details of the procedure are given together with working curves for the major neutron absorbing rare earths; i.e. dysprosium, europium, gadolinium and samarium. (author)

  3. Spectrographic determination of some rare earths in thorium compounds

    International Nuclear Information System (INIS)

    Brito, J. de.

    1977-01-01

    A method for spectrographic determination of Gd, Sm, Dy, Eu, Y, Yb, Tm and Lu in thorium compounds has been developed. Sensibilities of 0.01 μg rare earths/g Th02 were achieved. The rare earth elements were chromatographycally separated in a nitric acid-ether-cellulose system. The solvent mixture was prepared by dissolving 11% of concentrated nitric acid in ether. The method is based upon the sorption of the rare earths on activated cellulose, the elements being eluted together with 0.01 M HNO 3 . The retention of the 152 , 154 Eu used as tracer was 99,4%. The other elements showed recoveries varying from 95 to 99%. A direct carrier destillation procedure for the spectrochemical determination of the mentioned elements was used. Several concentrations of silver chloride were used to study the volatility behavior of the rare earths. 2%AgCl was added to the matrix as definite carrier, being lantanum selected as internal standard. The average coefficient of variation for this method was +- -+ 7%. The method has been appleid to the analysis of rare earths in thorium coumpounds prepared by Thorium Purification Pilot Plant at Atomic Energy Institute, Sao Paulo [pt

  4. Recovery of lead-208 radiogenic of residues of thorium with rare earth

    International Nuclear Information System (INIS)

    Ferreira, J.C.; Freitas, A.A. de; Seneda, J.A.F.; Carvalho, M.S. de; Abrao, A.

    2008-01-01

    In the middle of the years 1970 in IPEN, considerable work for the purification and conversion of uranium and thorium project, the production of thorium nitrate, a pilot scale from different compounds of Thorium was accomplished; This installation of thorium nitrate produced for national marketing, given the industry of incandescent lighting gas mangles.. The method used by this installation was the purification by solvent extraction with pulsed columns. The thorium was in the organic phase, which was reversed as of thorium nitrate with a high degree of purity. The aqueous phase of this chemical process, containing impurities, some not extracted thorium and virtually all rare earths was precipitated in the form of a hydroxide. This was called RETOTER hydroxide (residue of Thorium and Rare Earth). This residue containing thorium, rare earth and some impurities such as lead-208 product of the decay of thorium-232 were stored in the shed of safeguarding IPEN for further recovery of thorium and rare earth. In this work was studied the recovery of lead-208, nuclear material of interest, separating it by the technique of cementation , where it adds zinc metallic to an acid solution of RETOTER, holding up the lead on the surface of the metallic zinc. (author)

  5. Global recovery process of thorium and rare earths in a nitrate medium

    International Nuclear Information System (INIS)

    Cailly, F.; Mottot, Y.

    1993-01-01

    The aqueous solution of thorium and rare earth nitrates, obtained by leaching the ore with nitric acid, is extracted by an organic phosphorous compound (phosphate, phosphonate, phosphinate or phosphine oxide) and a cationic extractant chosen among phosphoric acid di-esters. Extraction of thorium and rare earths is possible even in presence of phosphate ions in the aqueous solution. Thorium and rare earths are separated by liquid-liquid extraction of the organic phase

  6. Recovery of thorium and rare earths by their peroxides precipitation from a residue produced in the thorium purification facility

    International Nuclear Information System (INIS)

    Freitas, Antonio Alves de

    2008-01-01

    As consequence of the operation of a Thorium purification facility, for pure Thorium Nitrate production, the IPEN (Instituto de Pesquisas Energeticas e Nucleares) has stored away a solid residue called RETOTER (REsiduo de TOrio e TErras Raras). The RETOTER is rich in Rare-Earth Elements and significant amount of Thorium-232 and minor amount of Uranium. Furthermore it contains several radionuclides from the natural decay series. Significant radioactivity contribution is generated by the Thorium descendent, mainly the Radium-228(T 1/2 =5.7y), known as meso thorium and Thorium-228(T 1/2 1.90y). An important thorium daughter is the Lead-208, a stable isotope present with an expressive quantity. After the enclosure of the operation of the Thorium purification facility, many researches have been developed for the establishment of methodologies for recovery of Thorium, Rare-Earth Elements and Lead-208 from the RETOTER. This work presents a method for RETOTER decontamination, separating and bordering upon some radioactive isotopes. The residue was digested with nitric acid and the Radium-228 was separated by the Barium Sulphate co-precipitation procedure. Finally, the Thorium was separated by the peroxide precipitation and the Rare-Earth Elements were also recovered by the Rare-Earth peroxide precipitation in the filtrate solution.(author)

  7. Creating a multi-national development platform: Thorium energy and rare earth value chain

    International Nuclear Information System (INIS)

    Kennedy, J.; Kutsch, J.

    2014-01-01

    Rare earths and thorium are linked at the mineralogical level. Changes in thorium regulations and liabilities resulted in the development of excessive market concentrations in the rare earth value chain. High value monazite rare earth resources, a by-product of heavy mineral sands mining, constituted a significant portion of global rare earth supply (and nearly 100% of heavy rare earths) until legislative changes, interpretation and enforcement regarding “source materials” in the early 1980s eliminated these materials from the supply chain.

  8. Study of treatment of a thorium and rare earths residue by extraction chromatography

    International Nuclear Information System (INIS)

    Zini, Josiane; Abrao, Alcidio; Carvalho, Fatima Maria Sequeira de; Freitas, Antonio Alves de; Scapin, Marcos Antonio

    2005-01-01

    In the 70's was established at IPEN the project of a thorium compounds purification pilot plant that had the goal of fulfilling the nuclear technology purity standards. The used method was the purification by extraction with solvents in pulsed columns. The thorium remaining in the organic phase was back extracted as thorium nitrate with a high degree of purity. Impurities, thorium non-extracted and practically all rare earths in aqueous phase of this chemical process were precipitated as hydroxide, generating a product containing thorium and rare earths, that was denominated RETOTER (residue of thorium and rare earths). This residue was accumulated and today there are 25 (twenty-five) metric tons of this by product stored in the safeguard storage shed at IPEN that must to be treated due to the radiation of the thorium and mainly his daughters. The average composition of this residue is, 68% in thorium oxide (ThO 2 ), 5% in rare earths oxides (R 2 O 3 ), 0,3% in uranium oxide (U 3 O 8 ) and common impurities such as phosphorus, iron, titanium, lead and sodium. In this work a new method is presented for separation and purification of thorium from this residue, obtaining a concentrate with high degree of purity for nuclear and non-nuclear use. This process will contribute to establish a decreasing of residue volumes, to have a mind to the minimization of environmental impacts, the reduction of worker's exposition and reduction of the storage costs. In this process the separation and purification of uranium and thorium is done by chromatography extraction, being used polymeric resins, that are previously functionalized with organic solvent (extractor agent). The effluent of this process is a concentrate of rare earths that can be reprocessed in a subsequent fractionating for to obtaining the individual fractions. (author)

  9. Creating a Multi-National Platform: Thorium Energy & Rare Earth Value Chain. Assessing Rare Earths and Global Imbalance: Chinese Industrial Policy vs. Adverse NRC/IAEA Policy = Market Failure Will Thorium Energy Systems be next?

    International Nuclear Information System (INIS)

    Kennedy, James; Kutsch, John

    2014-01-01

    Full Spectrum Rare Earth Production & fully integrated Value Chain: Developing low value rare earth deposits with high direct cost is not economically viable. High value, low-cost, byproduct resources are abundant and available. Thorium bearing Rare Earth Phosphates could meet 50% or more of global demand if the Thorium issue could be resolved. There is no need to develop any new RE mining operations – just fix the Thorium Problem. Fully Integrated Value Chain Capabilities are Paramount: All efforts must focus on developing a fully integrated value chain.

  10. Acid pressure leaching of a concentrate containing uranium, thorium and rare earth elements

    International Nuclear Information System (INIS)

    Lan Xinghua; Peng Ruqing.

    1987-01-01

    The acid pressure leaching of a concentrate containing rinkolite for recovering uranium, thorium and rare earth elements is described. The laboratory and the pilot plant test results are given. Under the optimum leaching conditions, the recovery of uranium, thorium and rare earth elements are 82.9%, 86.0% and 88.3% respectively. These results show that the acid pressure leaching process is a effective process for treating the concentrate

  11. Quantitative analysis of thorium in the presence of rare earth by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Jesus, Camila S. de; Taam, Isabel; Vianna, Claudio A.

    2013-01-01

    The occurrence of Thorium in ores is normally associated to other elements such as Uranium and Cerium, as well as some Rare-Earths (RE). The separation of these elements by traditional analytic chemistry techniques is both time and reagent consuming, thus increasing the analysis cost. The hereby proposed method consists in the direct determination of Thorium in rare earths ores and compounds by X-ray fluorescence spectroscopy without any prior chemical separation from other matrix elements. This non-destructive technique is used to determine which elements are present in solid and liquid samples, as well as their concentrations. The studied matrix contains Lanthanum, Cerium, Praseodymium, Neodymium, Samarium, Gadolinium and Yttrium. This study evaluated the analytical lines of radiation emission for each rare earth contained in the matrix, comparing it to the Thorium main analytical line. The Thorium quantification was measured through the Th L line, where there is no influence or interference from the rare earths analytical lines. The studied samples are certified standards and the obtained results have been compared to Ethylenediaminetetraacetic acid (EDTA) titration results, an already well-established and widely trusted method. We also measured the matrix effect thus using complex rare earths liquor. This liquor contains also elements commonly found in monazites sands: phosphates, aluminum, iron. Obtained results state the efficiency of X-ray Fluorescence to determine Thorium in the presence of rare earths without any prior chemical separation. (author)

  12. Stepwise hydrochloric acid extraction of monazite hydroxides for the recovery of cerium lean rare earths, cerium, uranium and thorium

    International Nuclear Information System (INIS)

    Swaminathan, T.V.; Nair, V.R.; John, C.V.

    1988-01-01

    Monazite sand is normally processed by the caustic soda route to produce mixed rare earth chloride, thorium hydroxide and trisodium phosphate. Bulk of the mixed rare earth chloride is used for the preparation of FC catalysts. Recently some of the catalyst producers have shown preference to cerium depleted (lanthanum enriched) rare earth chloride rather than the natural rare earth chloride obtained from monazite. Therefore, a process for producing cerium depleted rare earth chloride, cerium, thorium and uranium from rare earth + thorium hydroxide obtained by treating monazite, based on stepwise hydrochloric acid extraction, was developed in the authors laboratory. The process involves drying of the mixed rare earth-thorium hydroxide cake obtained by monazite-caustic soda process followed by stepwise extraction of the dried cake with hydrochloric acid under specified conditions

  13. Current extraction and separation of uranium, thorium and rare earths elements from monazite leach solution using organophosphorous extractants

    International Nuclear Information System (INIS)

    Biswas, Sujoy; Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.

    2014-01-01

    A new process based on solvent extraction has been developed for separation of uranium, thorium and rare earths from monazite leach solution using organophosphorous extractants. The Thorium cake coming from monazite source was dissolved in HNO 3 medium in presence of trace amount of HF for feed preparation. The separation of U(VI) was carried out by liquid-liquid extraction using tris-2-ethyl hexyl phosphoric acid (TEHP) in dodecane leaving thorium and rare earths elements in the raffinate. The thorium from raffinate was selectively extracted using 1M tri iso amyl phosphate (TiAP) in dodecane in organic phase leaving all rare earths elements in aqueous solution. The uranium and thorium from organic medium was quantitatively stripped using 0.05 M HNO 3 counter current mode. Results indicate the quantitative separation of uranium, thorium and rare earths from thorium cake (monazite source) using organophosphorous extractant in counter current mode

  14. Uses of extraction and ion exchange chromatography in the thorium and rare earths separation from industrial residue generated in thorium purification unity at IPEN. Application of rare earths as catalysts for generation of hydrogen

    International Nuclear Information System (INIS)

    Zini, Josiane

    2010-01-01

    In the 70's a pilot plant for studies of different concentrates processing obtained from the chemical processing of monazite was operated at IPEN / CNEN-SP, with a view to obtaining thorium of nuclear purity. This unity was operated on an industrial scale since 1985, generating around 25 metric tons of residue and was closed in 2002. This waste containing thorium and rare earths was named Retoter (Rejeito de Torio e Terras Raras, in portuguese) and stored in the IPEN Safeguards shed. This paper studies the treatment of the waste, aimed at environmental, radiological and technology. Were studied two cases for the chromatographic separation of thorium from rare earths. One of them was the chromatographic extraction, where the extracting agent tributyl phosphate was supported on polymeric resins Amberlite XAD16. The other method is studied for comparison purposes, since the material used in chromatographic extraction is unprecedented with regard to the separation of thorium, was the ion-exchange chromatography using DOWEX 1-X8 strong cationic resin. Was studied also the chromatographic process of extraction with the extracting agent DEHPA supported on Amberlite XAD16 for the fractionation in groups of rare earths elements. Thorium was separated with high purity for strategic purposes and rare earths recovered free from thorium, were tested as a catalyst for ethanol reforming to hydrogen obtaining which is used in fuel cells for power generation. (author)

  15. Rare earths, thorium, and other minor elements in sphene from some plutonic rocks in West-Central Alaska

    International Nuclear Information System (INIS)

    Staatz, M.H.; Conklin, N.M.; Brownfield, I.K.

    1977-01-01

    Sphene is an abundant accessory mineral in some abnormally radioactive plutonic rocks in west-central Alaska. Seven samples of sphene from four different areas in west-central Alaska contained from 20,350 to 39,180 parts per million total rare earths and 390 to 2000 ppM thorium. The lanthanide content in six of the seven sphenes is chiefly the light rare earths and is similar to that of crystal abundance; a seventh sphene from the Darby Mountains, however, contains above average amounts of the heavy rare earths. A comparison of the lanthanide distribution in sphene from several areas indicates that the structure of sphene will accommodate whatever lanthanides are available when the mineral crystallizes. The amount of thorium and rare earths in sphene is also affected by the presence of other accessory minerals. Sphene in rocks containing either allanite or zircon has a lower thorium content than in rocks that do not contain allanite or zircon. Sphene, because of its abundance, may contain the greater part of the rare earths and thorium in some of the plutonic rocks of west-central Alaska

  16. Solvent extraction of uranium, thorium, and rare earths with dialkyldithiophosphoric acids

    International Nuclear Information System (INIS)

    Haiduc, I.; Curtui, M.

    1986-01-01

    The separation conditions for throium (IV) in the presence of trivalent rare earths was investigated. The distribution ratios (D), extraction effectivity values (E%) and separation factor(S) were calculated for binary systems Th-La, Th-Ce, Th-Pr, Th-Sm. Di-(2-ethyl-hexyl)dithiophosphoric acid (HEhdtp) alone or mixtures of HEhdtp and trioctylphosphoshine oxide (TOPO) can be successfully used for separation of Thorium (IV) and rare earths

  17. Recovery of radiogenic lead-208 from a residue of thorium and rare earths obtained during the operation of a thorium purification pilot plant

    International Nuclear Information System (INIS)

    Seneda, Jose Antonio

    2006-01-01

    Brazil has a long tradition in thorium technology, from mineral dressing (monazite) to the nuclear grade thorium compounds. The estimate reserves are 1200,000. ton of ThO 2 . As a consequence from the work of thorium purification pilot plant at Instituto de Pesquisas Energeticas e Nucleares-CNEN/IPEN-SP, about 25 ton of a sludge containing thorium and rare earths was accumulated. It comes as a raffinate and washing solutions from thorium solvent extraction. This sludge, a crude hydroxide named RETOTER contains thorium, rare earths and minor impurities including the radiogenic lead-208, with abundance 88.34 %. This work discusses the results of the studies and main parameters for its recovery by anionic ion exchange technique in the hydrochloric system. The isotope abundance of this lead was analyzed by high resolution mass spectrometer (ICPMS) and thermoionic mass spectrometer (TIMS) and the data was used to calculate the thermal neutron capture cross section. The value of σγ 0 = 14.6±0.7 mb was found, quite different from the σγ 0 = 174.2 ± 7.0 mb measure cross section for the natural lead. Preliminary study for the thorium and rare earths separation and recovery was discussed as well. (author)

  18. Recovery of radiogenic lead-208 from a residue of thorium and rare earths obtained during the operation of a thorium nitrate purification pilot plant

    International Nuclear Information System (INIS)

    Seneda, Jose Antonio

    2006-01-01

    Brazil has a long tradition in thorium technology, from mineral dressing (monazite) to the nuclear grade thorium compounds. The estimate reserves are 1200,000. ton of ThO 2 . As a consequence from the work of thorium purification pilot plant at Instituto de Pesquisas Energeticas e Nucleares-CNEN/SP, about 25 ton of a sludge containing thorium and rare earths was accumulated. It comes as a raffinate and washing solutions from thorium solvent extraction. This sludge, a crude hydroxide named RETOTER contains thorium, rare earths and minor impurities including the radiogenic lead-208, with abundance 88.34 %. This work discusses the results of the studies and main parameters for its recovery by anionic ion exchange technique in the hydrochloric system. The isotope abundance of this lead was analyzed by high resolution mass spectrometer (ICPMS) and thermoionic mass spectrometer (TIMS) and the data was used to calculate the thermal neutron capture cross section. The value of s ? o = 14.6 +/- 0.7 mb was found, quite different from the s ? o = 174.2 +/- 7.0 mb measure cross section for the natural lead. Preliminary study for the thorium and rare earths separation and recovery was discussed as well. (author)

  19. Extraction of rare earth metals (3) from aqueous solutions containing thorium and uranyl nitrates

    International Nuclear Information System (INIS)

    Pyartman, A.K.; Kopyrin, A.A.; Berinskij, A.E.; Keskinov, V.A.

    2000-01-01

    Isotherms of extraction of rare earth metals (3) from aqueous solutions containing thorium and uranyl nitrates by solutions of tributylphosphate (TBP) and diisooctylmethylphosphonate (DIOMP) in kerosene at 298.15 Deg C and pH 1 are presented. Equations for description of interphase distribution of components of the systems considered are suggested. These equations describe distribution of components adequately in the systems of thorium nitrate (uranyl nitrate) - rare earth nitrates - (TBP, DIOMP) in the case of wide variation of phase compositions. Dependences of separation factors on composition of aqueous phase are considered [ru

  20. Analysis of Uranium and Thorium in Waste Water from Rare Earth Research and Development by ICP Spectrometry

    International Nuclear Information System (INIS)

    Pichestapong, Pipat; Injareon, Uthaiwan

    2007-08-01

    Full text: Waste water from Rare Earth Research and Development Center (RRDC) was analyzed to determine uranium and thorium concentration using ICP spectrometry. RRDC processes monazite ore to separate uranium, thorium and rare earth elements from the ore. Water samples from the ditch surrounding the center and from the canal nearby were also analyzed. Matrix spike technique was applied in this analysis. It was found that the highest concentration of uranium and thorium in the waste water samples were 3028±11 and 439±7 ppb, respectively. The concentration of uranium and thorium in the waste water samples were higher than those in water samples from the ditch and canal

  1. Neutron activation analysis in geological samples containing rare earths, uranium and thorium

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.; Figueiredo, A.M.G.; Berretta, J.R.; Soares, J.C.A.C.R.; Fratin, L.; Goncales, O.L.; Botelho, S.

    1990-01-01

    The neutron activation analysis method was used for determination of rare earths, uranium, thorium and other tracks in geological samples, under the geological standard JB-1 (Geological Survey of Japan) and S-8 and S-13 (IAEA). (L.C.J.A.)

  2. Symbiotic energy demand and supply system based on collaboration between rare-earth and thorium utilization

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    Progressive economic growth as well as prodigious consumption of energy are expected among Asian countries. Nuclear power has myriad advantages, among them particularly being its status as a low carbon technology and therefore nuclear power would make a significant contribution to curtailing CO 2 emissions. However, the prospects for nuclear power are hindered by some unresolved problems: perceived adverse safety, environmental, and health effects; potential security risks stemming from proliferation; and unresolved challenges in long-term management of nuclear wastes. Thorium utilization as a nuclear fuel will serve as a cornerstone of circumventing such problems, because thorium produces less radioactive waste (i.e. less plutonium) and thus safety, which is of paramount concern, will be enhanced. The deployment of electric vehicles (EVs) as an alternative to supplant gasoline engine cars in the transportation network, will significantly contribute in the reduction of global CO 2 emissions. Rare-earth materials such as neodymium and dysprosium will be essential as a new material for electric automobiles. Thorium is often obtained as a by-product of rare-earth metals, but it is still not utilized as a nuclear fuel currently due to the lack of its own fissionable isotopes and as such, it cannot be employed in the production of nuclear weapons. Recent trends of nuclear disarmament and accumulation of plutonium from uranium fuel cycle can propel the deployment of thorium. The implementation capacity of thorium nuclear power is estimated to be about 392 GWe at 2050. The utilization of thorium will both help to provide clean energy and to supply rare-earth materials for clean automobiles. In order for us to effect the commercial deployment of thorium resources, establishment of an international framework to supply resources from developing countries as well as to supply technology from developed countries is indeed imperative. Herein, the author propose 'The Bank

  3. Study of rare earth elements, uranium and thorium migration in rocks from Espinharas uranium deposit, Paraiba - Brazil

    International Nuclear Information System (INIS)

    Conceicao, Cirilo C.S.

    2009-01-01

    The determination of rare earth elements as natural analogue in patterns geologic has grown as a tool for predicting the long-term safety of nuclear disposal in geological formation. Migration of natural radionuclides is one of the most serious problems in the waste deposit from nuclear fuel cycle. Rare earth elements show the same kinetic behavior in rocks as natural radionuclides. This similar property of the analogues allows perform studies and models on the subject of radionuclides migration. The aim of this study was to determine the distribution of rare earth elements in rocks located at Espinharas - Paraiba - Brazil, uranium deposit. In this work are presented the results from the study above the distribution of rare earth elements in function of the degree of mineralized rocks, composition and the conditions of radioactive equilibrium of the uranium and thorium in some fractures on the rocks from radioactive occurrence of Espinharas-Brazil. The results show that there is a correlation of heavy rare earth elements, uranium and Thorium concentrations to oxidation factor of the rocks. However this correlation was not observed for light rare earth elements. It means that heavy rare earth elements follow the natural radionuclides in oxidation process of rocks. The samples were analyzed by ICP-MS, alpha and gamma spectrometry, X-ray diffraction and fluorimetry. (author)

  4. Recovery of thorium and rare earths by their peroxides precipitation from a residue produced in the thorium purification facility; Recuperacao de torio e terras raras via peroxido do residuo originado na unidade de purificacao de torio

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Antonio Alves de

    2008-07-01

    As consequence of the operation of a Thorium purification facility, for pure Thorium Nitrate production, the IPEN (Instituto de Pesquisas Energeticas e Nucleares) has stored away a solid residue called RETOTER (REsiduo de TOrio e TErras Raras). The RETOTER is rich in Rare-Earth Elements and significant amount of Thorium-232 and minor amount of Uranium. Furthermore it contains several radionuclides from the natural decay series. Significant radioactivity contribution is generated by the Thorium descendent, mainly the Radium-228(T{sub 1/2}=5.7y), known as meso thorium and Thorium-228(T{sub 1/2} 1.90y). An important thorium daughter is the Lead-208, a stable isotope present with an expressive quantity. After the enclosure of the operation of the Thorium purification facility, many researches have been developed for the establishment of methodologies for recovery of Thorium, Rare-Earth Elements and Lead-208 from the RETOTER. This work presents a method for RETOTER decontamination, separating and bordering upon some radioactive isotopes. The residue was digested with nitric acid and the Radium-228 was separated by the Barium Sulphate co-precipitation procedure. Finally, the Thorium was separated by the peroxide precipitation and the Rare-Earth Elements were also recovered by the Rare-Earth peroxide precipitation in the filtrate solution.(author)

  5. Qualitative microanalysis of rare earths (ceric and yttric), of thorium and uranium in minerals

    International Nuclear Information System (INIS)

    Agrinier, H.

    1955-01-01

    We propose in this study to give a general method of attack of the niobio-titanates, niobio-tantalates, oxides, phosphates or silicates containing rare earths (ceric or yttric), uranium or thorium, and to put in evidence these different elements by microchemical reactions giving crystallization or the characteristic colorations. (M.B.) [fr

  6. Radiological aspects in a monazite based rare earth production facility

    International Nuclear Information System (INIS)

    Harikumar, M.; Sujata, R.; Chinnaesakki, S.; Tripathi, R.M.; Puranik, V.D.; Nair, N.N.G.

    2011-01-01

    One of the largest reserves of monazite in the world is present in the Indian subcontinent. Monazite ore has around 8-9% thorium oxide and nearly 60% Rare earth oxides. Selective acid extraction is used to separate the composite rare earths. The main radiological hazard arises from the presence of thorium and its daughter products. Monitoring of the radiation field and air activity in the rare earths plant is done routinely to reduce the radiation exposure to plant personnel. The separation of uranium and rare earths from Thorium concentrate separated from Monazite is being done as a part of the THRUST (Thorium Retrieval, Recovery of Uranium and Re-storage of Thorium) project from 2004 at Indian Rare Earths Limited, Udyogamandal. The radiological aspect for this extraction of uranium and rare earths was studied. The general radiation field in the rare earth production plant was 0.3-5.0 μGyh -1 and the average short lived air activity was 46 ± 7 mWL. The long lived air activity arising from 232 Th is very insignificant radiologically. The occupational radiation exposure for the rare earths separation plant is only 6 % of the total dose and the estimated average individual dose is 1.6 mSv per year. Studies were also done to estimate the residual radioactivity in the separated rare earth compounds using gamma spectrometry and the results showed significant presence of 227 Ac arising due to the protactinium fraction in the thorium concentrate. This activity is not detectable in a freshly separated rare earth compound but can buildup with time. (author)

  7. Qualitative microanalysis of rare earths (ceric and yttric), of thorium and uranium in minerals; Microanalyse qualitative des terres rares (ceriques et yttriques), du thorium et de l'uranium dans les mineraux

    Energy Technology Data Exchange (ETDEWEB)

    Agrinier, H [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1955-07-01

    We propose in this study to give a general method of attack of the niobio-titanates, niobio-tantalates, oxides, phosphates or silicates containing rare earths (ceric or yttric), uranium or thorium, and to put in evidence these different elements by microchemical reactions giving crystallization or the characteristic colorations. (M.B.) [French] Nous nous proposons dans cette etude de donner une methode generale d'attaque des niobotitanates, niobotantalates, oxydes, phosphates ou silicates contenant des terres rares (ceriques ou yttriques), de l'uranium ou du thorium, et de mettre en evidence ces differents elements au moyen de reactiors microchimiques donnant des cristallisations ou des colorations caracteristiques. (MB)

  8. Study of chromosome aberrations on the workers occupationally exposed to thorium and rare earth mixed dust

    International Nuclear Information System (INIS)

    Zhang Wei; Wang Chunyan; Lv Huiming; Zhang Cuilan; Hao Shuxia; Su Xu; Jia Kejun; Liu Yufei

    2008-01-01

    Objective: To study the effect of thorium and rare earth mixed dust on chromosome aberrations in the lymphocytes of occupational exposed workers. Methods: Analyses of unstable chromosome aberrations on 53 occupational exposed workers and 58 control workers were carried out by the conventional Giemsa staining method. Fluorescence in situ hybridization method was performed to analyze the chromosome stable aberrations on 10 occupational exposed workers and l0 control workers. Results: The frequencies of chromosomal aberration cells, dicentrics plus rings, total aberrations in exposed workers were significantly higher than those in controls. No significant difference was found in the frequency of acentric aberrations between exposed and non-exposed workers. No significant difference was found in the frequency of translocations between exposed and non-exposed workers. Conclusions: Chronically occupational exposure to thorium and rare earth mixed dust can increase the induction of unstable chromosome aberration, but the increase of stable chromosome aberrations (translocation) can not be observed. (authors)

  9. Distribution of thorium in soils surrounding the rare-earth tailings reservoir in Baotou, China

    International Nuclear Information System (INIS)

    Rou-yu Li; Sheng Chen; De-zhi Sun; Feng-chang Wu; Hai-qing Liao

    2014-01-01

    Thorium distribution was investigated in the soils surrounding the rare-earth (RE) tailings reservoir near the Baotou grassland of Inner Mongolia, northern China. Totally 77 soil samples were collected from 8 different directions in the periphery of the RE tailings reservoir, and then were determined for 232 Th. The 232 Th activity degree ranges from 9.1 to 307.1 Bq kg -1 with an average value of 42.4 Bq kg -1 . In some samples, the degree is higher than that of global average, showing that these soils were polluted by thorium. There is a high linear correlation coefficient between the thorium diffusion coefficient parameter and the wind intensity parameter which indicates that the distribution of 232 Th is mainly correlated with wind speed and direction. The geo-accumulation index method was used to evaluate the level of thorium pollution, and the Kriging method was applied to estimate the land area at each level. By calculation, result shows that the area at each pollution level is 2.10 km 2 with medium-strong pollution, 38.29 km 2 with medium pollution, and 47.19 km 2 with slight pollution. The remaining 738.63 km 2 of land investigated is clear from thorium pollution. (author)

  10. Bioleaching of rare earth elements from monazite sand.

    Science.gov (United States)

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance. © 2015 Wiley Periodicals, Inc.

  11. Processing of monazite at the rare earth division,Udyogamandal

    International Nuclear Information System (INIS)

    Narayanan, N.S.; Thulasidoss, S.; Ramachandran, T.V.; Swaminathan, T.V.; Prasad, K.R.

    1988-01-01

    The processing techniques adopted at the Rare Earth Division of the Indian Rare Earths Limited at Udyogamandal, for the production of rare earth compounds of various compositions and purity grades are reviewed. Over 100 different compounds are produced and marketed, and these include mixed rare earths chloride, crude thorium concentrate, cerium oxide, cerium hydrate, rare earths carbonate, didymium salts and individual rare earth oxides and salts. Also, the trisodium phosphate obtained as byproduct in the processing of monazite, is recovered and marketed. The process scheme for monazite essentially involves alkaline digestion of ground monazite, removal of the by-product trisodium phosphate, separation of thorium through preferential dissolution of rare earths hydroxide in hydrochloric acid under controlled pH and temperature conditions followed by purification, and evaporation of the chloride solution to yield pure rare earths chloride. Part of the chloride is utilised for the production of individual rare earth compounds after separation by solvent extraction and ion exchange processes. Individual rare earth compounds of 99.99 %+ purity are regularly produced to cater to the demand within the country. (author) 8 figs., 1 tab

  12. Biogeochemical investigation in south eastern Andhra Pradesh: the distribution of rare earths, thorium and uranium in plants and soils

    International Nuclear Information System (INIS)

    Raju, K.K.; Raju, A.N.

    2000-01-01

    The concentration of rare earth elements (REE), thorium and uranium were determined by inductively coupled plasma mass spectrometry (ICP-MS) in the plant species, Pterocarpus santalinus, P. marsupium and P. dalbergioides, and the soils on which they were growing. Higher concentrations of lanthanum (La), cerium (Ce) were observed in both plants and soils. Large amounts of thorium and uranium were found in the soil. In all tree species, the concentration of REEs were higher in the heartwood than the leaves. The heartwood of P. santalinus accumulated larger quantities of uranium (average concentration of 1.22 ppm) and thorium (mean value of 2.57 ppm) than the other two species. (orig.)

  13. Dose-effect relationship between the thorium lung burden and the hepatic function of the miners at the Bayan Obo Rare-earth Iron Mine

    International Nuclear Information System (INIS)

    Cheng, Yong-e; Chen, Xing-an

    2008-01-01

    The purpose of this paper is to present the dose effect relationship between the thorium lung burden and the hepatic function of the miners at the Bayun Obo Rare-earth Iron Mine. The methods we used is to carry out the measurement of each miner.s exhaled thoron activity and the thorium lung burden along with the four hepatic functions (thymol turbidity test, glutamic pyruvic transaminase, thymol flocculation test and alkaline phosphatase)of the dust exposed miners in Bayun Obo Rare-earth Iron Mine. We have carried out three investigations in 1983, 1984-1987 and 1994 respectively. Results showed that during the period 1983-1994, 1158 measurements of thorium lung burden estimates and 1158 measurement of every four hepatic functions(altogether 4632 measurements) were performed on 638 dust-exposed miners. No adverse effects were observed. In the same time, none of the above-mentioned 638 exposed miners had a thorium lung burden higher than 11.11 Bq. It is concluded that if any miners. thorium lung burden not higher than 11.11 Bq, his four hepatic functions should not be affected. This first possible threshold for thorium lung burden affecting the hepatic functions was put forward by the authors and confirmed by the Information Center of Chinese Academy of Medical Science in 2003 after searching 23.6 million references. (author)

  14. Recovery of radiogenic lead-208 from a residue of thorium and rare earths obtained during the operation of a thorium purification pilot plant; Separacao e recuperacao de chumbo-208 dos residuos de torio terras raras gerados na unidade piloto de purificacao de nitrato de torio

    Energy Technology Data Exchange (ETDEWEB)

    Seneda, Jose Antonio

    2006-07-01

    Brazil has a long tradition in thorium technology, from mineral dressing (monazite) to the nuclear grade thorium compounds. The estimate reserves are 1200,000. ton of ThO{sub 2}. As a consequence from the work of thorium purification pilot plant at Instituto de Pesquisas Energeticas e Nucleares-CNEN/IPEN-SP, about 25 ton of a sludge containing thorium and rare earths was accumulated. It comes as a raffinate and washing solutions from thorium solvent extraction. This sludge, a crude hydroxide named RETOTER contains thorium, rare earths and minor impurities including the radiogenic lead-208, with abundance 88.34 %. This work discusses the results of the studies and main parameters for its recovery by anionic ion exchange technique in the hydrochloric system. The isotope abundance of this lead was analyzed by high resolution mass spectrometer (ICPMS) and thermoionic mass spectrometer (TIMS) and the data was used to calculate the thermal neutron capture cross section. The value of {sigma}{gamma}{sup 0} = 14.6{+-}0.7 mb was found, quite different from the {sigma}{gamma}{sup 0} = 174.2 {+-} 7.0 mb measure cross section for the natural lead. Preliminary study for the thorium and rare earths separation and recovery was discussed as well. (author)

  15. Radiochemical studies in chemical separation and spectrographic determination of rare earths in thorium oxide matrix (Preprint No. RA.06)

    International Nuclear Information System (INIS)

    Adya, V.C.; Dhawale, B.A.; Rajeshwari, B.; Bangia, T.R.; Sastry, M.D.

    1989-01-01

    A chemical separation procedure was standardised for the separation of traces of rare earths from ThO 2 matrix using HDEHP (Di 2-ethyl hexyl phosphoric acid). The studies were carried out using both nitric acid and hydrochloric acid medium in different concentrations. The extraction studies were also carried out using radioactive isotopes of rare earths viz. 141 Ce, 152-154 Eu, 153 Gd, 170 Tm etc. The extraction was effective in both media. In 0.1 M HDEHP/xylene and 3 M HNO 3 , Ce was partially extracted into organic phase. So HCl/xylene medium was chosen for extraction purposes. The recovery was confirmed by both gamma counting and emission spectropgraphic method. It was found to be quantitative within experimental error. The separation procedure development here was used for determination of rare earths in thorium oxide matrix by emission spectrographic method. (author)

  16. Rare earths: critical elements for various applications and challenges in their separation

    International Nuclear Information System (INIS)

    Singh, D.K.; Chakravartty, J.K.

    2015-01-01

    High purity rare earths oxides, metal and alloys find wide applications in high tech area such as nuclear energy, permanent magnets, materials for storing hydrogen, phosphors, laser, etc. Rare earths consists a group of 15 elements from La to Lu in the periodic table and it also includes Sc and Y. Due to similar chemical nature owing to common oxidation state of +3, rare earths are very difficult to separate from each other. They have very low separation factors with acidic extractants like D2EHPA and EHEHPA and hence require large number of stages in various cascade of extraction process. Monazite (a source of rare earths, thorium and uranium) is processed at IREL to separate rare earths from thorium and uranium. The rare earths are fractionated into three groups namely light rare earths (LRE), middle rare earths (MRE) and heavy rare earths (HRE) by solvent extraction method employing EHEHPA as extractant

  17. Preliminary Study of Development of the Organization of Rare-Earth Exportation Countries (OREEC

    Directory of Open Access Journals (Sweden)

    Takashi Kamei

    2013-03-01

    Full Text Available The largest two sectors emitting CO2 in the world are electricity generation and land-transportation. Therefore, nuclear power plays an important role in generating electricity with low CO2 emission. An important aspect needs to be considered to ensure environmental sustainability is nuclear non-proliferation and less amount of radioactive waste generated. Thus the use of "thorium" as nuclear fuel has received increasing interest because thorium produces little amount of plutonium and very little amount of long-lived minor actinide. However, thorium cannot be used immediately due to its lack of fissile isotope indispensable to start fission reaction. At the same time, electric vehicle and hybrid-vehicle become more popular as low-carbon automobiles. Rare-earth elements are indispensable for manufacturing these low-carbon automobiles. However the problem with rare-earth production is its radioactive by-product of "thorium". Since the largest potential of consuming thorium by nuclear power still needs several decades for commercializing, there becomes a discrepancy in consumption and production of thorium causing unused stockpile of thorium. Several countries have announced to supply rare-earth but this cannot be safely and economically done unless thorium problem is solved. In this paper, an international framework called the "OREEC: Organization of Rare-Earth Exportation Countries" is proposed as a solution to this issue. The OREEC has mainly three functions: (1 ThAX, which is a financial collecting method, (2 Th FREE label, which is certification of adequate treatment of thorium and (3 The Bank, which stores separated thorium.

  18. Inhalation exposures at a thorium refinery

    International Nuclear Information System (INIS)

    Mausner, L.F.

    1982-01-01

    There is a current interest in the metabolism and health effects of thorium due to its potential use in the 232 Th - 233 U nuclear fuel cycle. The airborne concentrations of thorium, thoron daughters and rare earths in a plant which produced thorium and rare earth chemicals from 1932 to 1973 were calculated from past records of alpha counting and air filter samples. This analysis showed that high airborne concentrations of 232 Th, 220 Rn, 212 Pb, 212 Bi and rare earth elements were sometimes reached during plant operations. Limited measurements on autopsy samples of former employees of the plant showed increased tissue concentrations of thorium and rare earths. (U.K.)

  19. Direct quantification of thorium, uranium and rare earth element concentration in natural waters by ICP-MS

    International Nuclear Information System (INIS)

    Palmieri, Helena E.L.; Knupp, Eliana A.N.; Auler, Lucia M.L.A.; Gomes, Luiza M.F.; Windmoeller, Claudia C.

    2011-01-01

    A direct quantification of the thorium, uranium and rare earth elements in natural water samples using inductively coupled plasma mass spectrometry (ICP-MS) was evaluated with respect to selection of isotopes, detection limits, accuracy, precision, matrix effects for each isotope and spectral interferences. Accuracy of the method was evaluated by analysis of Spectra pure Standards (SPS-SW1 Batch 116-Norway) for the rare earth elements (REEs), thorium, uranium, scandium and yttrium. The measurements were carried out for each of the following analytical isotopes: 139 La, 140 Ce, 141 Pr, 143 Nd, 147 Sm, 151 Eu, 160 Gd, 159 Tb, 163 Dy, 165 Ho, 167 Er, 16 9Tm, 174 Yb, 175 Lu, 45 Sc, 89 Y, 232 Th and 238 U. Recovery percentage values found in these certified samples varied between 95 and 107%. The method was applied to the analysis of spring water samples collected in fountains spread throughout the historical towns of Ouro Preto, Mariana, Sabara and Diamantina in the state of Minas Gerais, Brazil. In the past these fountains played an essential and strategic role in supplying these towns with potable water. Until today this water is used by both the local population and tourists who believe in its quality. REE were quantified at levels comparable to those found in estuarine waters, which are characterized by low REE concentrations. In two fountains analyzed the concentration of REEs presented high levels and thus possible health risks for humans may not be excluded. (author)

  20. Thorium: Issues and prospects in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman; Bahri, Che Nor Aniza Che Zainul [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia. walareqi@yahoo.com (Malaysia)

    2015-04-29

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This paper will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment.

  1. Thorium: Issues and prospects in Malaysia

    International Nuclear Information System (INIS)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman; Bahri, Che Nor Aniza Che Zainul

    2015-01-01

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This paper will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment

  2. Thorium: Issues and prospects in Malaysia

    Science.gov (United States)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman; Bahri, Che Nor Aniza Che Zainul

    2015-04-01

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This paper will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment.

  3. Rapid Evaluation of Radioactive Contamination in Rare Earth Mine Mining

    Science.gov (United States)

    Wang, N.

    2017-12-01

    In order to estimate the current levels of environmental radioactivity in Bayan Obo rare earth mine and to study the rapid evaluation methods of radioactivity contamination in the rare earth mine, the surveys of the in-situ gamma-ray spectrometry and gamma dose rate measurement were carried out around the mining area and living area. The in-situ gamma-ray spectrometer was composed of a scintillation detector of NaI(Tl) (Φ75mm×75mm) and a multichannel analyzer. Our survey results in Bayan Obo Mine display: (1) Thorium-232 is the radioactive contamination source of this region, and uranium-238 and potassium - 40 is at the background level. (2) The average content of thorium-232 in the slag of the tailings dam in Bayan Obo is as high as 276 mg/kg, which is 37 times as the global average value of thorium content. (3) We found that the thorium-232 content in the soil in the living area near the mining is higher than that in the local soil in Guyang County. The average thorium-232 concentrations in the mining areas of the Bayan Obo Mine and the living areas of the Bayan Obo Town were 18.7±7.5 and 26.2±9.1 mg/kg, respectively. (4) It was observed that thorium-232 was abnormal distributed in the contaminated area near the tailings dam. Our preliminary research results show that the in-situ gamma-ray spectrometry is an effective approach of fast evaluating rare earths radioactive pollution, not only can the scene to determine the types of radioactive contamination source, but also to measure the radioactivity concentration of thorium and uranium in soil. The environmental radioactive evaluation of rare earth ore and tailings dam in open-pit mining is also needed. The research was supported by National Natural Science Foundation of China (No. 41674111).

  4. Environmental aspects in the processing of rare earth ores and minerals

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2011-01-01

    In India, rare earths are extracted from the mineral monazite which occurs abundantly along with other heavy minerals in the coastal beach sands. Monazite, apart from rare earths, also contains uranium and thorium. Rare earths can be obtained from monazite either by acid digestion route or by alkaline digestion route. In India, although pilot scale studies have been carried out extraction of rare earths by acid digestion route, however, alkali digestion route has been predominantly followed for commercial extraction of rare earths

  5. Separation of Rare Earths from Uranium and Thorium

    International Nuclear Information System (INIS)

    Krebs, Damien

    2014-01-01

    Greenland Minerals and Energy - Key Highlights – A unique world class mining project: 1. World-class, large scale development project: • Economically robust, proven technology, large-scale, long life production of rare earths concentrate and uranium; • Large JORC resource base to produce ~7kt HREO, 37kt LREO & 3Mlbs U_3O_8 per annum over 30 year mine life; • Ideally located near international airport, existing towns and potential hydro-electric power source. 2. Very attractive commodity portfolio: • Heavy rare earths and uranium are both recognised as strategically important commodities for the future; • Rare earths market characterised by limited capacity and increasing demand (particularly Dy, Nd, Tb, Eu and Y). 3. Strong management and technical team: • Experienced management team with proven track record; • Well-respected and knowledgeable technical/project team in place with exceptional local expertise. 4. Highly advantageous ore-type, makes for simple cost-effective processing, highly scalable production: • High upgrade through beneficiation brings optionality to Kvanefjeld project; • Leaching can be done in Greenland, or owing to the high-grade concentrate, can be shipped to other locations; • Allows to single concentrator in Greenland, multiple refineries/partners globally. 5. Globally significant, long life, low cost, multi-commodity asset: • Company to become one of the largest producers of rare earths globally and a significant U_3O_8 mine; • Potential to supply >20% of global critical (including heavy) rare earth element demand; • Company has low cost of production due to multiple by-product opportunities. 6. Low political risk: • Stable, low-risk operating environment with government looking to develop new industries and employment; • GME fully permitted to evaluate the project, exploration licence now includes radioactive elements; • Management and board have a solid working relationship with the government and are

  6. Uranium, thorium and rare earth elements distribution from different iron quadrangle spring waters

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cláudia A.; Palmieri, Helena E.L.; Menezes, Maria A. de B.C.; Rodrigues, Paulo C.H., E-mail: cferreiraquimica@yahoo.com.br, E-mail: help@cdtn.br, E-mail: menezes@cdtn.br, E-mail: pchr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    This study was conducted to evaluate the concentrations of thorium, uranium and the rare earth elements (REE) in 26 spring waters, as well as the patterns of the REE of the samples from the Cercadinho, Moeda and Caue aquifers in different municipalities of the Iron Quadrangle (Quadrilatero Ferrifero), located in the central-southeast of Minas Gerais state. The pH value of the ground waters ranged from 3.8 to 7.0, indicating an acid nature of most of the spring waters. The investigation of REE speciation showed that all the REEs exist in the free X{sup 3+} ionic forms, under the prevailing Eh and pH conditions. In the studied samples the uranium concentrations (<2.3-1176 ng L{sup -1}) were below the guideline level set by Brazilian legislation (Ministry of Health 518- 03/2004). Thorium concentrations ranged from <0.39-11.0 ng L{sup -1} and the sum of the REE ranged from 6.0 to 37657 ng L{sup -1}. As there are no permissible limits related for the REE and thorium for different water quality standards in Brazil, more attention must be paid to the local residents' health risk caused by spring waters (REEs were > 1000 ng L{sup -1}) originating from aquifers located in Sabara, Barao de Cocais, Santa Barbara, Mario Campos, Congonhas and Lavras Novas. The REEs patterns in the spring waters from the Cercadinho, Caue and Moeda aquifers are characterized by middle REE (MREE) enrichment compared to light REE (LREE) and heavy REEs (HREE), negative Ce anomalies (except for one sample) and positive Eu anomalies in all three aquifers studied. (author)

  7. Titration of thorium and rare earths with ethylenediaminetetraacetic acid using semimethylthymol blue by visual end-point indication

    International Nuclear Information System (INIS)

    Hafez, M.A.H.; Kenawy, I.M.M.; Ramadan, M.A.M.

    1994-01-01

    The precision and accuracy attainable in direct complexometric titrations of Thsup(4+) consecutively with either lighter (La 3+ , Nd 3+ , Sm 3+ , Eu 3+ or Gd 3+ ) or heavier lanthanides (Dy 3+ ) in different proportions using Semimethylthymol Blue (SMTB) as a metallochromic indicator and disodium dihydrogen ethylenediaminetetraacetate were studied. Thorium (IV) was titrated at pH 2, the Ph was adjusted to 5.5-6.0 by adding hexamethylenetetramine (hexamine) buffer and acetylacetone-acetone solution and La 3+ (or Nd 3+ , Sm 3+ , Eu 3+ , Gd 3+ or Dy 3+ ) was then titrated. A comparison of the indicators SMTB and Methylthymol Blue (MTB) for successive titrations of Th 4+ and any of the rare earth ions was carried out. The proposed titration method was applied successfully to some naturally occurring ores and minerals containing thorium and some lanthanides and the results were satisfactory. (Author)

  8. Thorium and rare earth elements in crystal and brown sugar consumed in Brazil and Argentina

    International Nuclear Information System (INIS)

    Salles, Paula M.B. de; Campos, Tarcisio P. R. de

    2015-01-01

    Human exposure to contaminants in foods is a matter of general health concern. There is a growing interest in determine and quantify contaminants in food chain including natural radionuclides and rare earth elements (REE). Irradiation effects of radioactive nuclides and REE may cause lesions from their interaction with the human body. This study aimed to identify the presence of thorium and rare earth elements in crystal and brown sugar samples available for consumption in Brazil and Argentina. To determine the chemical elements, the 5g-sample methodology established at CDTN/CNEN, in Belo Horizonte, using the neutron activation technique, k 0 -method, was applied. The element Sm was determined in crystal sugar samples analyzed that were available to consumption in both countries. Similarly to the brown sugar samples which presented La, Sc and Sm. The elements Ce and Th were found in brown sugar sample available to consumption in Brazil. Thus, the detection of these elements in sugar samples is important insofar as the increasing consumption of sugar around the world. The presence of impurities and its concentration may contribute to health issues to consumers. (author)

  9. Thorium and rare earth elements in crystal and brown sugar consumed in Brazil and Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Salles, Paula M.B. de; Campos, Tarcisio P. R. de, E-mail: pauladesalles@yahoo.com.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Human exposure to contaminants in foods is a matter of general health concern. There is a growing interest in determine and quantify contaminants in food chain including natural radionuclides and rare earth elements (REE). Irradiation effects of radioactive nuclides and REE may cause lesions from their interaction with the human body. This study aimed to identify the presence of thorium and rare earth elements in crystal and brown sugar samples available for consumption in Brazil and Argentina. To determine the chemical elements, the 5g-sample methodology established at CDTN/CNEN, in Belo Horizonte, using the neutron activation technique, k{sub 0}-method, was applied. The element Sm was determined in crystal sugar samples analyzed that were available to consumption in both countries. Similarly to the brown sugar samples which presented La, Sc and Sm. The elements Ce and Th were found in brown sugar sample available to consumption in Brazil. Thus, the detection of these elements in sugar samples is important insofar as the increasing consumption of sugar around the world. The presence of impurities and its concentration may contribute to health issues to consumers. (author)

  10. Thorium, uranium and rare earth elements concentration in weathered Japanese soil samples

    International Nuclear Information System (INIS)

    Sahoo, Sarata Kumar; Hosoda, Masahiro; Kamagata, Sadatoshi; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Uchida, Shigeo

    2011-01-01

    The geochemical behavior of thorium, uranium and rare earth elements (REEs) are relatively close to one another while compared to other elements in a geological environment. Radioactive elements like 232 Th and 238 U along with their decay products (e.g. 226 Ra) are present in most environmental matrices and can be transferred to living bodies by different pathways which can lead to the sources of exposure to man. For these reasons, it has been necessary to monitor those natural radionuclides in weathered soil samples to assess the possible hazards. It has been observed that granitic rocks contain higher amounts of U, Th and light REEs compared to other igneous rocks such as basalt and andesites. To better understand the interaction between REEs and soils, the nature of soils must be considered. In this paper, we discussed the distribution pattern of 232 Th and 238 U along with REEs in soil samples of weathered acid rock (granite and ryolite) collected from two prefectures of Japan: (1) Kobe city in Hyogo prefecture and (2) Mutsu city and Higashidori village in Aomori prefecture. (author)

  11. An investigation on the thorium lung burden and its health effects on the workers in a rare-earth refinery factory, Baotou, China

    International Nuclear Information System (INIS)

    Chen, Xing-an; Chen, Yong-e

    2008-01-01

    The purpose of this paper is to present the thorium lung burden and its health effects among the workers of Huamei Rare-earth Refinery Factory, Baotou, China. The methods used is a combination between exhaled thoron activity measurement and the physical examination (peripheral blood counts, hepatic function tests, lung function tests, chest X-ray radiograph) as well as the measurement of dust concentrations, radon and thoron short lived progeny concentration in the air of the workshops. The results showed that the four workshops are thought to be the radiological workplaces. The dust air concentrations in different workshops range from 1.34∼8.17 mg/m 3 . The average a potential energy value of radon short-lived progeny are in the range from 24 to 285 MeV/L; while the average a-progeny are in the range from 159 to 5972 MeV/L. The thorium lung burdens of 9 dust-exposed workers are higher than one investigation level (2.22 Bq) and the highest one is 3.33 Bq. The results of radiography, hematological parameters and hepatic parameters for the dust exposed workers examined are all within the normal range, while the lung function of 27 cases among the 91 dust exposed workers are abnormal. Our conclusion is that the radiological protection problems are existed in rare-earth refinery factory, mainly the high thorium-containing dust air concentration and the high a potential energy of the thoron short-lived progeny in the air of different workshops. Ventilation should be improved. Long-term follow-up study is necessary. (author)

  12. Status and future possibilities for the recovery of uranium, thorium, and rare earths from Canadian ores, with emphasis on the problem of radium: Pt. 1

    International Nuclear Information System (INIS)

    Phillips, C.R.; Poon, Y.C.

    1980-01-01

    Canadian uranium resources and processing practices are described, following which the special problems and potential associated with the recovery of uranium World-wide are examined in the context of a bibliographical review of the leaching of uranium, radium, thorium, and the rare earths. Particular attention is devoted to the problem of radium

  13. Viability utilization of one Se sup(75) source in the analysis of uranium, thorium and rare earths for use on energy dispersive x-ray fluorescence

    International Nuclear Information System (INIS)

    Nova Mussel, W. da.

    1989-01-01

    This work is a study about the viable utilization of one Se sup(75) source as an excitation source for the use of Energy Dispersive X-Ray Fluorescence (EDXRF), in the analysis of Uranium, Thorium and the Rare Earths. The following arrangement was build up: a HPGE detector, two Se sup(75) sources in 30 sup(0) positions of castle, deadtime of 5%. Using this arrangement the calibration curve for U and Th was measured and the angular correlation coeficient was r+ 0,999, and for the Rare Earths was superior r+ 0,960. The answer given for this system was considered very fine. (author)

  14. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    Science.gov (United States)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-02-01

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) & 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) &29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  15. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    International Nuclear Information System (INIS)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-01-01

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232 Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted

  16. Thorium, Uranium and Rare Earth Elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas Advanced Materials Plant (LAMP)

    International Nuclear Information System (INIS)

    Al-Areqi, W.M.; Amran Abdul Majid; Sukiman Sarmani

    2013-01-01

    Full-text: Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6 Bq/ kg) whereas the Th and U concentrations in WLP were determined to be 1952.9 ± 17.6 ppm (7987.4 ± 71.9 Bq/ kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/ kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/ kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232 Th compared to Malaysian soil natural background (63 - 110 Bq/ kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6 % and 4.7 ± 0.1 % respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04 %, 1.6 %, 0.22 % and 0.06 % respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be re

  17. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    Energy Technology Data Exchange (ETDEWEB)

    AL-Areqi, Wadeeah M., E-mail: walareqi@yahoo.com; Majid, Amran Ab., E-mail: walareqi@yahoo.com; Sarmani, Sukiman, E-mail: walareqi@yahoo.com [Nuclear Science Programme, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi (Malaysia)

    2014-02-12

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of {sup 232}Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  18. Uranium, thorium and rare earth elements distribution from different iron quadrangle spring waters

    International Nuclear Information System (INIS)

    Ferreira, Cláudia A.; Palmieri, Helena E.L.; Menezes, Maria A. de B.C.; Rodrigues, Paulo C.H.

    2017-01-01

    This study was conducted to evaluate the concentrations of thorium, uranium and the rare earth elements (REE) in 26 spring waters, as well as the patterns of the REE of the samples from the Cercadinho, Moeda and Caue aquifers in different municipalities of the Iron Quadrangle (Quadrilatero Ferrifero), located in the central-southeast of Minas Gerais state. The pH value of the ground waters ranged from 3.8 to 7.0, indicating an acid nature of most of the spring waters. The investigation of REE speciation showed that all the REEs exist in the free X"3"+ ionic forms, under the prevailing Eh and pH conditions. In the studied samples the uranium concentrations ( 1000 ng L"-"1) originating from aquifers located in Sabara, Barao de Cocais, Santa Barbara, Mario Campos, Congonhas and Lavras Novas. The REEs patterns in the spring waters from the Cercadinho, Caue and Moeda aquifers are characterized by middle REE (MREE) enrichment compared to light REE (LREE) and heavy REEs (HREE), negative Ce anomalies (except for one sample) and positive Eu anomalies in all three aquifers studied. (author)

  19. Precipitation of the rare earth double sodium and rare earths from the sulfuric liquor and the conversion into rare earth hydroxides through meta ethic reaction

    International Nuclear Information System (INIS)

    Abreu, Renata D.; Oliveira, Ester F.; Brito, Walter de; Morais, Carlos A.

    2007-01-01

    This work presents the purification study of the rare earths through precipitation of rare earth and sodium (Na TR (SO 4 ) 2 . x H 2 O)) double sulfate and his conversion to rare earths hydroxide TR(OH) 3 by meta ethic reaction through the addition of sodium hydroxide solution to the solid double sulfate. The study used the sulfuric liquor as rare earth sample, generated in the chemical processing of the monazite with sulfuric acid by the Industrias Nucleares do Brasil - INB, Brazil, after the thorium and uranium extraction. The work investigated the influence of the main variables involved in the precipitation of Na TR(SO 4 ) 2 .xH 2 O and in the conversion for the TR(OH) 3 , as follows: type and excess of the precipitation agent, temperature and time reaction. The obtained solid composites were characterized by X-ray diffraction, infrared and chemical analysis. The double sulfate diffractogram indicated the Na TR(SO 4 ) 2 mono-hydrated. The characterization of the metatese products has shown that, for obtaining the complete conversion of NaTR(SO 4 ) 2 .H 2 O into TR(OH) 3 , the reaction must be hot processed (∼70 deg C) and with small excess of Na OH (≤ 5 percent). (author)

  20. Chromatographic behavior of carbonate complexes of lanthanides and of thorium in alumina

    International Nuclear Information System (INIS)

    Tomida, E.K.

    1977-01-01

    The chromatographic behavior of some rare earth elements and thorium on alumina is studied in order to evaluate the possibility of separation from concentration of trace rare earths from high-purity thorium compounds. The effect of some factors on complex thorium carbonate formation and the extent of thorium solubility in sodium and potassium carbonate solutions investigated. The sorption of rare earth elements and thoriuum on alumina from alkali carbonate solution is observed, despite the reports that alumina acts as a cation exchanger in alkali media and that thorium and rare earths form stable anionic carbonate complexes. The formation of these elements between alumina and potassium carbonate solutions is studied as a function of pH, carbonate concentration and metal ion concentration. Also the elution of rare earths from alumina is studied and the best results are obtained with mineral acids and EDTA plus alkali carbonate solutions. The effect of some parameters as column aging, mixed solvents, column treatment with organic solvents, temperature, aluant concentration is investigated. Attempting to understand this sorption mechanism, some experiments with strongly basic anion exchanger and cation exchangers of strongly acid and weakly acid type are accomplished. It is observed that there are significant differences, in some conditions, between the behavior of rare earths and of thorium, pointing our the possibility of separation of one lanthanide from others and of these from thorium [pt

  1. Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China.

    Science.gov (United States)

    Wang, Lingqing; Zhong, Buqing; Liang, Tao; Xing, Baoshan; Zhu, Yifang

    2016-12-01

    Exposure to radionuclide thorium (Th) has generated widespread public concerns, mainly because of its radiological effects on human health. Activity levels of airborne 232 Th in total suspended particulate (TSP) were measured in the vicinity of the largest rare earth mine in China in August 2012 and March 2013. The mean activity concentrations of 232 Th in TSP ranged from 820μBqm -3 in a mining area in August 2012 to 39,720μBqm -3 in a smelting area in March 2013, much higher than the world reference of 0.5μBqm -3 . Multistatistical analysis and Kohonen's self-organizing maps suggested that 232 Th in TSP was mainly derived from rare earth mining and smelting practices. In addition, personal inhalation exposures to 232 Th associated with respirable particulate (PM 10 ) were also measured among local dwellers via personal monitoring. The mean dose values for different age groups in the smelting and mining areas ranged from 97.86 to 417μSvyear - 1 and from 101.03 to 430.83μSvyear -1 , respectively. These results indicate that people living in the study areas are exposed to high levels of widespread 232 Th. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Biosorption of rare earth elements, thorium and uranium using Buccinum tenuissimum shell biomass

    International Nuclear Information System (INIS)

    Wang, Yudan; Koto, Yusuke; Sakamoto, Nobuo; Kano, Naoki; Imaizumi, Hiroshi

    2010-01-01

    In order to evaluate the efficiency of shell biomass as sorbent for rare earth elements (REEs), thorium (Th) and uranium (U), sorption experiment from multi-element solutions containing known amount of REEs, Th and U using Buccinum tenuissimum shell was explored. Furthermore, to confirm the characteristics of the shell biomass, the surface morphology, the crystal structure, and the specific surface area of the shell (both original sample and the heat-treatment (480degC, 6h) sample) was determined. Consequently, the following matters have been mainly clarified. (1) By heat-treatment (480degC, 6h), the crystal structure of the shell biomass was transformed from aragonite (CaCO 3 ) into calcite (CaCO 3 ) phase, and the specific surface area of the biomass have decreased remarkably (i.e., by a factor of less than one eighth). (2) The shell biomass (both original sample and the heat-treated sample) showed excellent sorption capacity for REEs, although the sorption capacity decreases slightly after heat-treatment. (3) Adsorption isotherms using the shell biomass can be described by Langmuir and Freundlich isotherms satisfactorily for REEs, but not for Th and U in this work. (4) Shell biomass (usually treated as waste material) could be an efficient sorbent for REEs in future. (author)

  3. Instrumental neutron activation analysis of the spatial distribution of uranium, thorium and rare earth elements of surficial sediments from Black sea coast nearby Istanbul

    International Nuclear Information System (INIS)

    Akyuz, T; Bolcal, C.; Akyuz, S.; Mukhamedshina, N.M.; Mirsagatova, A.A

    2006-01-01

    Full text: The Black Sea is an inland sea between south-eastern Europe and Asia minor. It is the largest anoxic marine basin in the word and connected to the Mediterranean Sea by the Bosporus and the Sea of Marmara, to the Sea of Azov by the Strait of Kerch. One of the most useful approaches to long-term monitoring of aquatic systems is the analysis of marine sediments. In this study the abundance of uranium, thorium and some rare earth elements was analysed in surface sediments of the Southern part of the Black Sea using instrumental neutron activation analysis. The spatial distribution patterns of the elements studied were investigated. The surficial sediment samples (0-4 cm) were collected during 1999-2005, from 18 sampling stations of the Turkish Coast of the Black Sea, by using a Lenz Bottom Sampler and were deposited into plastic bags. The samples were dried at 40 degrees Celcius for 24 hours, crushed and homogenised prior to the analysis and were irradiated simultaneously with reference materials at a fission spectra neutron flux of the density of 5.10 1 3 cm - 2.s - 1 (WWR-SM) nuclear reactor of Institute of Nuclear Physics, Tashkent, Uzbekistan. The gamma-spectra were measured in a gamma-spectrometer. A linear regression correlation test was performed to investigate the correlation between the elemental concentrations of our sediment samples. Correlation analysis revealed close relationships between Th and U (r=0.82), Th and La (r=0.87), Th and Ce (r=0.89). In nature, rare earth elements are often associated to thorium, thus the results indicate that Th and Lanthanides have a natural origin. The mean values of thorium (8.38) to uranium (3.80) is found to be Th/U= 2.20

  4. Adaptive responses on chromosome aberration and DNA breakage of peripheral lymphocytes from workers exposed to thorium and rare earth mixed dust in Baotou steel plant

    International Nuclear Information System (INIS)

    Liu Qingjie; Feng Jiangbing; Lu Xue; Chen Deqing; Lv Huimin; Su Xu; Liu Yufei; Jia Kejun

    2008-01-01

    Objective: To explore if the occupational exposure to low dose thorium could induce adaptive response in peripheral lymphocytes. Methods: 40 individuals, who exposed to thorium and rare earth mixed dust (exposure group) or control in Baotou Steel Plant, were selected, and chromosome aberrations were analyzed. Then the peripheral blood samples were irradiated in vitro with 2 Gy 60 Co γ-rays, and unstable chromosome aberration or DNA stand breakage analysis using single cell gel electrophoresis was performed. Results: The dicentrics before 2 Gy exposure in exposure group was higher than that in control (P>0.05). But the dicentrics after 2 Gy exposure in exposure group was lower than that in control, but not significantly (P >0.05). The tricentrics in exposure group was significantly lower than that in control (U=3.1622, 0.001< P<0.002). The DNA strand breakage in control group was significantly higher than that in exposure group (t=25, P<0.001). Conclusions: Occupational exposure to low dose thorium could induce the adaptive response on chromosome aberration and DNA strand breakage in peripheral lymphocytes. (authors)

  5. Environmental Defects And Economic Impact On Global Market Of Rare Earth Metals

    Science.gov (United States)

    Charalampides, G.; Vatalis, K.; Karayannis, V.; Baklavaridis, A.

    2016-11-01

    Rare earth elements include the 14 lanthanides as well as lanthanium and often yttrium. Actually, most of them are not very rare and occur widely dispersed in a variety of rocks. Rare earth metals are vital to some of the world's faster growing industries: catalysts, Nd-magnets, ceramics, glass, metallurgy, battery alloys, electronics and phosphors. Worldwide, the main countries for distribution of rare earths deposits include China, USA, Russia, Brasil, India, Australia, Greenland and Malaysia. The mining and processing of rare earth metals usually result in significant environmental defects. Many deposits are associated with high concentrations of radioactive elements such as uranium and thorium, which requires separate treatment and disposal. The accumulation of rare earth elements in soils has occurred due to pollution caused by the exploitation of rare earth resources and the wide use of rare earths as fertilizers in agriculture. This accumulation has a toxic effect on the soil microfauna community. However, there are large differences in market prices due to the degree of purity determined by the specifications in the applications. The main focus of this article is to overview Rare Earth Metals’ overall impact on global economy and their environmental defects on soils during processing techniques and as they are used as fertilizers.

  6. Processing of Indian monazite for the recovery of thorium and uranium values

    International Nuclear Information System (INIS)

    Mukherjee, T.K.

    2004-01-01

    The mineral monazite, a phosphate of rare earths and thorium with significant quantity of uranium is one of the six heavy minerals present in the beach sands of specific coastal areas of India. Indian Rare Earths Ltd is mining and processing monazite at its Rare Earths Division for the last many decades with an aim of building up enough stock of thorium concentrate for its future use in the three stage nuclear power programme of the country. The present paper briefly describes the monazite resource position of he country, the past and present modified processing schemes and the future programme commensurate with the requirement of the country for quality thorium and uranium bearing nuclear materials

  7. Minerals yearbook, 1991: Thorium. Annual report

    International Nuclear Information System (INIS)

    Hedrick, J.B.

    1992-10-01

    Domestic mine production data for thorium-bearing monazite are developed by the U.S. Bureau of Mines from a voluntary survey of U.S. operations entitled, 'Rare Earths, Thorium, and Scandium.' The one mine to which a survey form was sent responded, representing 100% of domestic production. Mine production data for thorium are withheld to avoid disclosing company proprietary data. Statistics on domestic thorium consumption are developed by surveying various processors and end users, evaluating import-export data, and analyzing Government stockpile shipments

  8. Effect of rare-earth dopants on the growth and structural, optical, electrical and mechanical properties of L-arginine phosphate single crystals

    International Nuclear Information System (INIS)

    Arjunan, S.; Bhaskaran, A.; Kumar, R. Mohan; Mohan, R.; Jayavel, R.

    2010-01-01

    Research highlights: → Thorium, Lanthanum and Cerium rare-earth ions were doped with L-arginine phosphate material and the crystals were grown by slow evaporation technique. → The transparency of the rare-earth doped LAP crystals has enhanced compared to pure LAP. → The powder SHG measurements revealed that the SHG output of rare-earth doped LAP crystals increases considerably compared to that of LAP. → Vicker's hardness number of as-grown crystal of LAP is higher than that of rare-earth doped LAP crystals. - Abstract: Effect of Thorium, Lanthanum and Cerium rare-earth ions on the growth and properties of L-arginine phosphate single crystals has been reported. The incorporation of rare-earth dopants into the L-arginine phosphate crystals is confirmed by Inductively Coupled Plasma-Mass Spectroscopy analysis. The unit cell parameters for pure and rare-earth doped L-arginine phosphate crystals have been estimated by powder X-ray diffraction studies. UV-visible studies revealed the transmittance percentage and cut-off wavelengths of the grown crystals. Powder second harmonic generation measurement has been carried out for pure and doped L-arginine phosphate crystals. The dielectric behavior of the grown crystals was analyzed for different frequencies at room temperature. The mechanical properties have been determined for pure and the doped L-arginine phosphate crystals.

  9. Thorium and uranium separation from Rare Earth complex minerals in Turkey

    International Nuclear Information System (INIS)

    Uzmen, R.

    2014-01-01

    Conclusion: • Thorium and uranium separation from a REEs solution is possible in by using simple traditional methods. • Main advantage of this method is to separate with high recovery yield uraniumand almost completely thorium which is an undesirable element due to its radioactive property in the different REEs group or individual REE. • Separation of thorium before any other step of REE’s group or individual element separation is crucial. • By using this flowsheet it would be possible to obtain uranium and other valuable elements (Zr, Ti, etc.) as coproducts of REEs. • Another important point, during REEs production, it is avoided to accumalate U and Th contaminated process wastes. • Thus, in the contrary, radioactive elements are refined and contained for safe storage.

  10. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  11. Effect of rare-earth dopants on the growth and structural, optical, electrical and mechanical properties of L-arginine phosphate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, S., E-mail: arjunan_hce@yahoo.co.i [Department of Physics, Sri Ramachandra University, Porur, Chennai (India); Bhaskaran, A. [Department of Physics, Dr. Ambedkar Government College, Chennai (India); Kumar, R. Mohan; Mohan, R. [Department of Physics, Presidency College, Chennai (India); Jayavel, R. [Crystal Growth Centre, Anna University, Chennai (India)

    2010-09-17

    Research highlights: {yields} Thorium, Lanthanum and Cerium rare-earth ions were doped with L-arginine phosphate material and the crystals were grown by slow evaporation technique. {yields} The transparency of the rare-earth doped LAP crystals has enhanced compared to pure LAP. {yields} The powder SHG measurements revealed that the SHG output of rare-earth doped LAP crystals increases considerably compared to that of LAP. {yields} Vicker's hardness number of as-grown crystal of LAP is higher than that of rare-earth doped LAP crystals. - Abstract: Effect of Thorium, Lanthanum and Cerium rare-earth ions on the growth and properties of L-arginine phosphate single crystals has been reported. The incorporation of rare-earth dopants into the L-arginine phosphate crystals is confirmed by Inductively Coupled Plasma-Mass Spectroscopy analysis. The unit cell parameters for pure and rare-earth doped L-arginine phosphate crystals have been estimated by powder X-ray diffraction studies. UV-visible studies revealed the transmittance percentage and cut-off wavelengths of the grown crystals. Powder second harmonic generation measurement has been carried out for pure and doped L-arginine phosphate crystals. The dielectric behavior of the grown crystals was analyzed for different frequencies at room temperature. The mechanical properties have been determined for pure and the doped L-arginine phosphate crystals.

  12. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  13. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  14. Transformation using peroxide of a crude thorium hydroxide in nitrate for mantle grade

    International Nuclear Information System (INIS)

    Freitas, Antonio Alves de; Carvalho, Fatima Maria Sequeira de; Ferreira, Joao Coutinho; Abrao, Alcidio

    2002-01-01

    An alternative process for the recovery and purification of thorium starting from a crude thorium hydroxide as the precursor is outlined in this paper. Its composition is 60.1% thorium oxide (ThO 2 ), 18.6% rare earth oxides (TR 2 O 3 ), and common impurities like silicium, iron, titanium, lead and sodium. This material was produced industrially from the monazite processing in Brazil and has been stocked since several years. The crude thorium hydroxide is treated with hot nitric acid and after the digestion and addition of floculant it is filtered for the separation of the insoluble fraction. Using this nitrate solution, the thorium peroxide is precipitated after adjustment of pH and controlled addition of hydrogen peroxide. The final thorium peroxide is dissolved with nitric acid and the resulting thorium nitrate is mantle grade quality. Rare earth elements are recovered from the thorium peroxide filtrate. The main process parameters for the peroxide precipitation, like pH and temperature and main the results are presented and discussed. (author)

  15. Determination of Barium and selected rare-earth elements in geological materials employing a HpGe detector by radioisotope excited x-ray fluorescence

    International Nuclear Information System (INIS)

    LaBrecque, J.J.; Preiss, I.L.

    1984-01-01

    The laterite material (geological) from Cerro Impacto was first studied by air radiometric techniques in the 1970's and was found to have an abnormally high radioactive background. Further studies showed this deposit to be rich in thorium, columbium, barium and rare-earth elements (mostly La, Ce, Pr and Nd). A similar work has been reported for the analysis of Brazil's lateritic material from Morro do Ferro to determine elemental compositions (including barium and rare-earth elements) and its relationship to the mobilization of thorium from the deposit using a Co-57 radioisotope source. The objective of this work was to develop an analytical method to determine barium and rare-earth element present in Venezuelan lateritic material from Cerro Impacto. We have employed a method before, employing a Si(Li) detector, but due to the low detection efficiencies in the rare-earth K-lines region (about 30 KeV - 40 KeV), we have decided to study the improvement in sensitivities and detection limits using an hyperpure germanium detector

  16. Thinking about Thoron and Thoron daughters: radiation studies and interpretations for a rare earths project

    International Nuclear Information System (INIS)

    Sonter, Mark; Hondros, Jim

    2016-01-01

    The emerging rare earths mining and processing industry involves projects which will invariably handle ores containing some levels of thorium, and to a lesser extent, uranium. The thorium levels which can be encountered range from tens of ppm up to percent levels. (Thorium content of pure monazite is in the range 5% to 8% or so.) This technical note focuses on the understanding of thoron releases into the air from thorium- bearing ores in situ and in process, and subsequent generation of thoron decay products in air, and the Potential Alpha Energy Concentration levels and dose estimations that result. It presents some theory, literature search results and a description of test work done on Nolans ore at Arafura's Darwin facility and in the field at Nolans Bore.

  17. A comparative study between the dissolution and the leaching methods for the separation of rare earths, uranium and thorium from hydrous metal oxide cake obtained by the alkaline digestion of monazite

    International Nuclear Information System (INIS)

    Chayavadhanangkur, C.; Busamongkol, A.; Hongsirinirachorn, S.; Rodthongkom, C.; Sirisena, K.

    1986-12-01

    Methods for the group-separation of rare-earths, thorium and uranium from hydrous metal oxide cake obtained by the alkaline digestion of monazite were studied. Leaching of the hydrous metal oxide cake at pH between 4-5 separates the elements under investigation into 3 major groups which are suitable to be used as feed materials for further purification. Total dissolution and gradient precipitation at pH 4-5 yields a poorer separation in comparison to the leaching method

  18. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    Science.gov (United States)

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  19. Separation, preconcentration and estimation of rare earth and trace elements by inductively coupled plasma-atomic emission spectrometry (ICP-AES) in thorium matrices

    International Nuclear Information System (INIS)

    Chakraborty, Prithwish; Kumar Vijay; Durani, Smeer; Satyanarayana, K.

    2007-01-01

    A simple, sensitive and efficient method is developed for the separation of Rare earth elements (REEs) La-Lu, and Y and some trace elements Cd, Co, Cr, Cu, Ni,V, Zn from thorium matrix and their subsequent estimations by ICP-AES. In thorium-rich geological samples, the estimation of REE's by ICP-AES suffers from the spectral interferences due to the presence of excess of Th. In the proposed method, thorium is separated from the matrix by the solvent extraction. To optimize the separation, of REEs and trace elements from Th matrix, synthetic mixture solutions was prepared containing Th, REEs and trace elements maintaining different acidic conditions (1M, 2M, 4M, 6M, 8M and 10M HNO 3 and 2M, 4M, 6M and 8M HCl) and each solution was subjected to solvent extraction. The solvent extraction was carried out using a mixture of di-2-ethylhexyl phosphoric acid (in 30 % Toluene) and 1- pentanol in the ratio of 5:1. The aqueous phase containing the required elements was evaporated to dryness and an acidity of 5% HCl is maintained in final volume. Solutions were analysed by ICP-AES and the quantitative recovery of REEs and trace elements were obtained at 6M HNO 3 acidity. The developed method was applied to the certified standard reference material: IGS-36 and the values obtained were comparable with the certified values. The method was also applied to the real time monazite sample and the recovery was quantitative. Corrections have been applied for the REEs inter-elemental interferences in ICP-AES. (author)

  20. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  1. Separation of thorium, uranium and rare-earth elements with 2-[(2-arsenophenyl)-azo]-1,8-dihydroxy-7-[(2,4,6-tribromophenyl)azo]-naphthalene-3,6-disulfonic acid by capillary electrophoresis

    International Nuclear Information System (INIS)

    Liu, Bi-feng; Liu, Liang-bin; Cheng, Jie-ke

    1998-01-01

    The separation of thorium, uranium and rare-earth elements (RE) as their 2-[(2-arsenophenyl)-azo]-1,8-dihydroxy-7-[(2,4,6-tribromophenyl)azo]-naphthalene-3,6-disulfonic acid complexes by capillary electrophoresis with direct UV-Vis detection is presented in this paper. The influences of pH value and concentration of electrolyte, voltage and surfactant on separation were investigated and optimized. Under the selected conditions (30mM NaAc-HCl buffer containing 0.5mM cetyltrimethylammonium bromide and 0.2mM chelating reagent, pH 4.30, 12KV, 635nm as detection wavelength), the coexisted ions were separated within 4min, and limits of detection of 37, 39, 199μgl -1 for RE, thorium, uranium with a linear dynamic range of over 2 orders of magnitude were achieved, respectively

  2. Emerging trends in separation science and technology as practised by Indian Rare Earths Ltd

    International Nuclear Information System (INIS)

    Mukherjee, T.K.

    2004-01-01

    Although the core business of Indian Rare Earths Ltd. (IREL) is mining of Indian Beach Sand deposits and separation of associated six heavy minerals, the Company is also engaged in a strategic activity like recovery of the mineral monazite from the sand and its chemical processing to recover two important nuclear materials and the rare earths. Separation science and technology plays an important role in this particular activity of IREL to produce, in commercial scale, the mineral monazite in desired purity and its chemical processing to recover products like thorium oxalate concentrate, nuclear grade ammonium diuranate, tri sodium phosphate and host of rare earths salts both mixed and separated. This paper to start with, will deal with bulk separation of monazite itself, which has an important bearing on down stream chemical separation process to be discussed in the later half

  3. Behavior and distribution of rare earth elements, thorium and uranium in soil environment

    International Nuclear Information System (INIS)

    Kano, Naoki; Ogura, Daichi; Imaizumi, Hiroshi; Tsuchida, Toshiyuki; Sakamoto, Nobuo; Lu, He; Nishimura, Yoshikazu; Gao Lidi

    2009-01-01

    In order to investigate the behavior of rare earth elements (REEs), thorium (Th) and uranium (U) in soil environment, these elements in agricultural soils were partitioned and determined by a sequential extraction procedure into 6 fractions: water soluble (F (ws)), exchangeable (F (ec)), bound to carbonates (F (cb)), bound to organic matter (F (om)), bound to Fe-Mn oxides (F (fm)) and residual (F (rd)) fractions. Soil samples were collected from the agricultural field (paddy and upland field) and non-agricultural field in Sakata City in Yamagata Prefecture, and Nagaoka City in Niigata Prefecture on April 2005, October 2005 and April 2006. In addition, REEs, Th and U in crops grown on the soils and those in fertilizers used in the agricultural field were also determined. Consequently, the following matters have been mainly clarified. (1) REEs in soils mainly exists in the form of F (rd) fraction (i.e., silicate), although F (om) or F (fm) was relatively large proportion fraction (F (om) : 8-28% ; F (fm) : 6-20%) ; while U in soils may be present as the fraction bound to carbonate (15%) in addition to as F (rd) (60-70%). (2) The total concentrations of U in soil in agricultural field is remarkably larger (about 2 times) than that in non-agricultural field, although the concentrations of REEs and Th are not greatly varied regardless of soil utilizations (i.e., paddy field, upland field or no plow). (3) The value of pH(H 2 O)-pH(KCl) in soil of the upland field is smallest. Moreover, EC (electric conductivity) in soil of the upland field is much higher than that of the paddy field or of the non-agricultural field. (4) REE patten of the crops and fertilizers is generally similar to that of soils, although the order of the concentration of REEs is soils'>'fertilizers'>'crops'. (author)

  4. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  5. Recovery of thorium from monazite

    International Nuclear Information System (INIS)

    Karve, V.M.; Mukherjee, T.K.

    1997-01-01

    The process practised in the monazite processing plant involves caustic soda digestion of finely ground monazite followed by aqueous processing to recover mixed rare earth chloride solution, thorium and uranium values in the form of hydroxide cake and tri sodium phosphate as a byproduct

  6. Radiological safety in extraction of rare earths in India: regulatory control

    International Nuclear Information System (INIS)

    Sinha, S.; Bhattacharya, R.

    2011-01-01

    The term 'rare earths' refers to a group of f-block elements in the periodic table including those with atomic numbers 57 (Lanthanum) to 71 (Lutetium), as well as the transition metals Yttrium (39) and Scandium (21). Economically extractable concentrations of rare earths are found in minerals such as monazite, bastnaesite, cerites, xenotime etc. Of these, monazite forms the main source for rare earths in India, which along with other heavy minerals is found abundantly in the coastal beach sands. However, in addition to rare earths, monazite also contains 0.35% U 3 O 8 and 8-9% ThO 2 . Hence, extraction of rare earths involves chemical separation of the rare earths from thorium and uranium which are radioactive. The processing and extraction of rare earths from monazite therefore invariably results in occupational radiation exposure to the workers involved in these operations. In addition, in the process of removal of radioactivity from rare earths, radioactive solid waste gets generated which has 2 2 8Ra concentration in the range 2000-5000 Bq/g. Unregulated disposal of such high active waste would not only result in contamination of the soil but the radionuclides would eventually enter the food chain and lead to internal exposure of the general public. Therefore such facilities involved in recovery of rare earths from monazite attract the provisions of radiological safety regulations. Atomic Energy Regulatory Board of India has been enforcing the provisions of The Atomic Energy (Radiation Protection) Rules, 2004 and The Atomic Energy (Safe Disposal of Radioactive Waste) Rules, 1987 in these facilities. This paper shall discuss the associated radiological hazard involved in recovery of rare earths from monazite. It shall also highlight the regulatory requirements for controlling the occupational exposure of workers during design stage such as requirements on lay out of the building, ventilation, containment of radioactivity, etc and also the during operational

  7. Radium, thorium, and the light rare earth elements in soils and vegetables grown in an area of high natural radioactivity

    International Nuclear Information System (INIS)

    Linsalata, P.; Franca, E.P.; Sachett, I.

    1987-01-01

    A study is in progress in Brazil to assess the soil-to-plant concentration ratios (CR) of the naturally occurring radionuclides 226 Ra, 228 Ra, 232 Th, 230 Th, and 228 Th and the light rare earth elements (REE) La, Ce, and Nd. Thorium serves as an analog for Pu(IV) and La or Nd as analogs for Am and Cm(III). A near-surface deposit of Th (∼30,000 tons) and REE (>100,000 tons) exists at the center of the plateau near the summit of a small hill. No trends have been observed between farm soil concentrations and proximity to the ore body, substantiating earlier conclusions of the relative immobility of these elements from the deposit. New analytical procedures are presented for the sequential determination of isotopic thorium and the light REE in large biological samples. Typical radiochemical yields are 50 to 70% for Th and 80 to 100% for the REE. Preliminary analyses of seven vegetable types indicate that concentrations of Th, La, Nd, Ce, and Sm are quite variable between and among species. Average concentrations in plant tissues generally reflect soil abundances as: Ce > La > Nd > Sm ∼ Th. Mean CRs are 604, 270, 24, 17, 8 and 1 for 228 Ra, 226 Ra, La, Nd, Ce, and Th, respectively. Plant uptake of elements with stable oxidation states of II, III, and IV decreases as Ra(II) > REE(III) > Th(IV), which may reflect the availability of these elements in soil. 33 references, 4 figures, 4 tables

  8. Health status and body radioactivity of former thorium workers

    International Nuclear Information System (INIS)

    Stehney, A.F.; Polednak, A.P.; Rundo, J.; Brues, A.M.; Lucas, H.F. Jr.; Patten, B.C.; Rowland, R.E.

    1981-01-01

    The objectives of the study are: (1) to assess possible health effects of employment in the thorium milling industry by comparison of mortality and morbidity characteristics of former thorium workers with those of suitable general populations; (2) to examine disease outcomes by estimated exposure levels of thorium and thoron daughter products for possible radiation-related effects; and (3) to determine the body distribution of inhaled thorium (and daughters) and rare earths in humans by radioactivity measurements in vivo and by analysis of autopsy samples. The principal end points for investigation are respiratory disease and cancers of lung, liver, bone, and bone marrow

  9. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  10. Concentration levels of rare-earth elements and thorium on plants from the Morro de Ferro environment as an indicator for the biological availability of transuranium elements

    International Nuclear Information System (INIS)

    Miekeley, N.; Casartelli, E.A.; Dotto, R.M.

    1994-01-01

    Plants and soils from a natural thorium and rare-earth element occurrence (Morro do Ferro, Brazil) were analyzed by alpha spectrometry (Th) and ICP-AES (REE), after pre-concentration of the elements by solvent extraction, co-precipitation and ion exchange procedures. Leaching experiments with humic acid solutions and different soils were performed to estimate the fraction of elements biologically available. High concentrations of the light rare-earth elements (LREE) and of Th, reaching some hundreds of μg/g-ash, were measured in plant leaves from the areas of the highest concentration of these elements in soil and in near-surface waters. Chondrite normalized REE plots of plant leaves and corresponding soils are very similar, suggesting that there is no significant fractionation between the REE during uptake from the soil solution and incorporation into the leaves. However, Ce-depletion was observed for some plant species, increasing for Solanum ciliatum in the sequence: leaves -3 to 10 -2 . Leaching experiments confirmed the importance of humic acid complexation for the bio-uptake of Th and REE and further showed that only a very small fraction of these elements in soil is leachable. The implications of these results on the calculated CR's will be discussed. (author) 26 refs.; 5 figs.; 5 tabs

  11. Separation of thorium (IV) from lanthanide concentrate (LC) and water leach purification (WLP) residue

    International Nuclear Information System (INIS)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-01-01

    Thorium (IV) content in industrial residue produced from rare earth elements production industry is one of the challenges to Malaysian environment. Separation of thorium from the lanthanide concentrate (LC) and Water Leach Purification (WLP) residue from rare earth elements production plant is described. Both materials have been tested by sulphuric acid and alkaline digestions. Th concentrations in LC and WLP were determined to be 1289.7 ± 129 and 1952.9±17.6 ppm respectively. The results of separation show that the recovery of Th separation from rare earth in LC after concentrated sulphuric acid dissolution and reduction of acidity to precipitate Th was found 1.76-1.20% whereas Th recovery from WLP was less than 4% after concentrated acids and alkali digestion processes. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) was used to determine Th concentrations in aqueous phase during separation stages. This study indicated that thorium maybe exists in refractory and insoluble form which is difficult to separate by these processes and stays in WLP residue as naturally occurring radioactive material (NORM)

  12. Standardization of NaI gamma spectrometer using a newly developed standard for the estimation of 228Ra in rare earth chloride solution

    International Nuclear Information System (INIS)

    Sahu, A.; Patra, R.P.; Jha, S.K.; Tripathi, R.M.; Patro, P.

    2018-01-01

    Monazite is a naturally occurring mineral which is a phosphate of various rare earths and thorium with traces of uranium. Indian Rare Earths Limited has set up a Monazite Processing Plant (MoPP) at Orissa Sand Complex (OSCOM), Odisha for recovery of various elements from Monazite. The finely ground monazite is processed with hot NaOH to separate the phosphate component as Tri-Sodium Phosphate from the mixed hydroxide. Then the mixed hydroxide is treated with HCl at controlled pH to separate rare earth as rare earth chloride solution. The rare earth chloride solution also contains 228 Ra which is generated in the 232 Th decay series. The rare earth chloride solution is then treated with BaCl 2 , MgSO 4 and Na 2 S; 228 Ra gets co-precipitated with Ba as Lead-Barium Sulfate. To meet the regulatory requirement, 228 Ra activity is reduced to below 1 Bq/g limit

  13. Extraction of rare earths from iron-rich rare earth deposits

    OpenAIRE

    Bisaka, K.; Thobadi, I.C.; Pawlik, C.

    2017-01-01

    Rare earth metals are classified as critical metals by the United Nations, as they have found wide application in the fabrication of magnets, particularly those used in green energy technologies which mitigate global warming. Processing of ores containing rare earth elements is complex, and differs according to the nature of each ore. In the conventional process, run of mine (ROM) ores are processed in a physical separation plant to produce a concentrate from which rare earth elements are ext...

  14. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  15. A deposit model for carbonatite and peralkaline intrusion-related rare earth element deposits: Chapter J in Mineral deposit models for resource assessment

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.; Seal, Robert R.; McCafferty, Anne E.

    2014-01-01

    Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. A wide variety of other commodities have been exploited from carbonatites and alkaline igneous rocks including niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other elements enriched in these deposits include manganese, strontium, tantalum, thorium, vanadium, and uranium. Carbonatite and peralkaline intrusion-related rare earth element deposits are presented together in this report because of the spatial, and potentially genetic, association between carbonatite and alkaline rocks. Although these rock types occur together at many locations, carbonatite and peralkaline intrusion-related rare earth element deposits are not generally found together.

  16. The Brazilian nuclear industries - INB - in the field of the rare earth

    International Nuclear Information System (INIS)

    Blatt, Victoria

    1996-01-01

    The Brazilian Nuclear Industries - INB is responsible for the execution of part of the cycle of uranium as nuclear reactor fuel for alternative energy generation. Soon INB shall increase the participation in this cycle, through the implantation of the line of powder and pastille. INB is also the successor of the monazite processing industries. The last one was NUCLEMON that was incorporated by INB. The connection of INB with this area is due to the presence of the strategic elements uranium and thorium in the monazite. The know-how was and continues to be developed by a chemical team of the National Commission of Nuclear Energy (CNEN) with the collaboration of the technical team of INB. The ever wider applications of the individual Rare Earth in the most different fields of the electrical, electronics, communication, optical, metallurgical, catalysis and other industries, as well as INB incessant inquire for the economical workability, brought INB to appraise the position regarding to the industrial production of the Rare Earth. The choice is bringing to the separation and commercialization of the individual elements and/or in groups containing a reduced number of Rare Earth, instead of the production and commercialization of the mixture of monazitic Rare Earth. This paper illustrates through quantitative information some aspects regarding to reserves, mining and physical separations of the monazite, as well as projections about INB resuming its industrial activities with insertion of technical improvements in both, the chemical treatment of the monazite and the Rare Earth separation. In this field, there will be presented in this paper the qualitative and quantitative results recently reached in a large dimension pilot plant. These results add to the technical conquest reached in the late years by the foregoers of INB, and that will be also presented. The paper contains also some appreciations regarding to the perspectives of INB's ingression in the field of

  17. Determination of the total nitrate content of thorium nitrate solution with a selective electrode

    International Nuclear Information System (INIS)

    Wirkner, F.M.

    1979-01-01

    The nitrate content of thorium nitrate solutions is determined with a liquid membrane nitrate selective electrode utilizing the known addition method in 0.1 M potassium fluoride medium as ionic strength adjustor. It is studied the influence of pH and the presence of chloride, sulphate, phosphate, meta-silicate, thorium, rare earths, iron, titanium, uranium and zirconium at the same concentrations as for the aqueous feed solutions in the thorium purification process. The method is tested in synthetic samples and in samples proceeding from nitric dissolutions of thorium hidroxide and thorium oxicarbonate utilized as thorium concentrates to be purified [pt

  18. Rare earth octacyanomolybdates(4)

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Sergeeva, A.N.; Pisak, Yu.V.

    1980-01-01

    Optimal conditions for synthesis of rare-earth octacyanomolybdates(4) of the Ln 4 [Mo(CN) 8 ] 3 xnH 2 O composition (where Ln is a rare-earth element, other than Pr, Pm, Lu, Tb) have been worked out. The synthesis has been accomplished by neutralization with octacianomolybdic acid with rare-earth carbonates. The composition and structure of the compounds synthesized have been studied by infrared-spectroscopy. It has been established that rare-earth octacyanomolybdates(4) form three isostructural groups

  19. Rare earths and rare earth alloys electrolytic preparation process and device for this process

    International Nuclear Information System (INIS)

    Seon, F.; Barthole, G.

    1986-01-01

    Electrolysis of a molten salt of rare earth or rare earth alloy for preparation of the metal or alloy is described. The molten salt bath comprises at least a rare earth chloride, at least an alkaline or alkaline earth chloride and at least an alkaline or alkaline earth fluoride [fr

  20. Environmental and radiological aspects of thorium processing in India

    International Nuclear Information System (INIS)

    Rudran, Kamala; Paul, A.C.; Pillai, P.M.B.; Saha, S.C.; Vidyasagar, D.; Sawant, Pramilla D.

    1997-01-01

    India has an active programme for using thorium as third stage self- sustaining nuclear fuel. A significant amount of thorium is also used in the gas mantle industry. The presently estimated monazite deposits amounting to five million tonnes are distributed in the beach sands of south western and eastern coasts and some areas in Andhra Pradesh. The sands are processed for recovery of rare earth minerals and thorium. The mineral processing and thorium separation involves hazards to workers from exposure to radiation, radioactive and silica bearing dusts as well as from conventional chemicals used in the processing. Releases of wastes from the plants may necessitate environmental surveillance. The present paper reviews the hazards envisaged, steps taken to mitigate such hazards and achievements in this regard in the thorium industry in India. (author)

  1. Thorium research and development in Turkey

    International Nuclear Information System (INIS)

    Güngör, Görkem

    2015-01-01

    Turkey has a great potential regarding thorium resources. Thorium exploration activities have been done in the past mainly by state organizations for determining the thorium resources in Turkey. Thorium occurs as complex mineral together with barite, fluorite and rare earth elements (REE). The increase in global demand for REE creates the opportunity for REE production which will also produce thorium as a by-product. The development of nuclear energy program in Turkey provides the stimulus for research and development activities in nuclear technologies. The final declaration of the workshop emphasizes the importance of thorium reserves in Turkey and the necessity for thorium exploration and development activities in order to determine the feasibility of thorium mining and fuel cycle in Turkey. These activities should be conducted together with the development of technologies for separation of these complex minerals and purification of thorium, REE and other minerals to be utilized as commercial products. There are advanced academic research studies on thorium fuel cycle which should be supported by the industry in order to commercialize the results of these studies. Turkey should be integrated to international R and D activities on ADS which is expected to commercialize on medium term. The legislative framework should be developed in order to provide the industrial baseline for nuclear technologies independent from nuclear regulatory activities

  2. Rare earths as a future resource

    International Nuclear Information System (INIS)

    Cornell, D.H.

    1988-01-01

    The fourteen rare earth or lanthanide elements have recently emerged as an important natural resource because of the rapidly growing demand in the electronic, chemical and metallurgical industries. The Symposium on rare earth elements as a future resource presented a multidisciplinary review of rare earth chemistry, geology, beneficiation, industrial applications and marketing. Papers by experts in many fields were presented on the following topics: chemical properties of the rare earth elements; the analysis of rare earth elements and minerals; beneficiation and extraction of rare earth elements; economic geochemistry and mineralogy of rare earths; present industrial uses of rare earth elements; the role of rare earth elements in high-temperature superconductors; the technical application of high-temperature superconductors; supply and demand for rare earth products - now and in the future, and the geology of rare earth deposits

  3. Precipitation of the rare earth double sodium and rare earths from the sulfuric liquor and the conversion into rare earth hydroxides through meta ethic reaction; Precipitacao do sulfato duplo de terras raras e sodio a partir de licor sulfurico e sua conversao em hidroxido de terras raras mediante reacao metatetica

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Renata D.; Oliveira, Ester F.; Brito, Walter de; Morais, Carlos A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: rda@cdtn.br; esterfo@cdtn.br; britow@cdtn.br; cmorais@cdtn.br

    2007-07-01

    This work presents the purification study of the rare earths through precipitation of rare earth and sodium (Na TR (SO{sub 4}){sub 2}. x H{sub 2}O)) double sulfate and his conversion to rare earths hydroxide TR(OH){sub 3} by meta ethic reaction through the addition of sodium hydroxide solution to the solid double sulfate. The study used the sulfuric liquor as rare earth sample, generated in the chemical processing of the monazite with sulfuric acid by the Industrias Nucleares do Brasil - INB, Brazil, after the thorium and uranium extraction. The work investigated the influence of the main variables involved in the precipitation of Na TR(SO{sub 4}){sub 2}.xH{sub 2}O and in the conversion for the TR(OH){sub 3}, as follows: type and excess of the precipitation agent, temperature and time reaction. The obtained solid composites were characterized by X-ray diffraction, infrared and chemical analysis. The double sulfate diffractogram indicated the Na TR(SO{sub 4}){sub 2} mono-hydrated. The characterization of the metatese products has shown that, for obtaining the complete conversion of NaTR(SO{sub 4}){sub 2}.H{sub 2}O into TR(OH){sub 3}, the reaction must be hot processed ({approx}70 deg C) and with small excess of Na OH ({<=} 5 percent). (author)

  4. Torium partition and rare earths studies in particles from Morro de Ferro region, Pocos de Caldas, MG

    International Nuclear Information System (INIS)

    Carlos, M.T.

    1988-01-01

    The researchs made in Radioisotopes Laboratory of IB - UFRJ (Biophysics Institute - Federal Rio de Janeiro University) during 1986 that included in the research program the geochemical transport in Morro de Ferro project was related. The thorium and rare earths elements association was characterized in the geochemical aspect using chemical fractionation methods through the experiments of selective lixiviation. (L.M.J.) [pt

  5. Radiological issues in monazite processing for rare earth extraction: regulatory approach

    International Nuclear Information System (INIS)

    Mohandas, P.V.; Sinha, Soumen; Bhattacharya, R.

    2014-01-01

    Rare earth minerals quite often contain Naturally Occurring Radioactive Materials (NORM) in varying concentrations resulting in occupational and environmental radiation exposures during their mining, milling and chemical processing for the extraction of rare earth elements and their compounds. NORMs such as Uranium, Thorium and their decay products in the mineral result in enhanced natural background radiation fields in their areas of occurrence. The mining of the mineral ores and further processing results in concentration/redistribution of the NORM in the process streams, product intermediaries, products and effluents. Monazite which is available in plenty in India is one of the most important resources for Rare Earths (RE). Monazite is chemically processed by subjecting it to alkali digestion and selective extraction with hydrochloric acid. During the above process radium ( 228 Ra) and lead present in the monazite appear in the RE composite chloride (RECl3) fraction. These are removed from the product by a process known as 'deactivation' and 'lead elimination' to obtain deactivated and lead free composite RE chloride. The solid waste obtained from the deactivation and lead elimination, referred to as 'mixed cake' is suitably contained and disposed off as radioactive waste. Radioactive wastes/effluents generated during the processing of monazite is another source of concern with respect to occupational and public exposure. This requires adequate attention from the waste management considerations

  6. Leaching of complex ores with radioactive impurities, e.g. monazite, followed by rare earth solvent extraction

    International Nuclear Information System (INIS)

    Ballhorn, R.; Brodt, P.

    1987-01-01

    Pre-crushing plays a decisive role in the chemical development of monazite, the orthophosphate of the rare earth elements. Various mineralogical investigation methods - mineral-optical investigations, diffractometric surveys, thermoluminescence investigations - were applied in accordance with various grinding methods, with the aim of studying the possible effect of physically produced grid flows on the effectiveness of leaching. To obtain 95% of the rare earth elements, individual parameters such as grinding intensity, HNO 3 concentration, acid-concentrate ratio, temperature, duration of leaching and foreign ion admixture were varied, and the whole process was optimized. The recently developed method is compared with older methods with regard to profitability, the extraction of marketable uranium and thorium, etc., with a low accumulation of radioactive residues. (RB) [de

  7. Rare earths 1998 market update

    International Nuclear Information System (INIS)

    Tourre, J.M.

    1998-01-01

    The rare earth industry has always been a world of rapid change with the emergence of new markets, new ores and new players, as well as the disappearance of old applications. Rare earth based products are used in a great diversity of applications such as hard disk drives, CD drives, batteries, capacitors, pigments, ceramics, polishing powders, fuel cells, flints, catalyst converter, fluid cracking catalysts, etc. South East Asia holds the largest share of the known reserve of rare earth ores and is one of the major markets for rare earth compounds; in the last ten years, China has become the largest producer of rare earth intermediates as well as an important exporter of separated rare earth elements. Today, China has approximately 150 factories producing rare earth compounds, most of which are experiencing financial difficulties due to the lack of knowledge of true market needs, lack of control of their distribution channels and production over-capacity. Recently the Chinese rare earth producers have recognized the situation and efforts are underway to rationalize rare earth production. Japan has dominated many of the major application markets, and is by far the largest market for metal and alloy products. This will remain the case for the next five years; however, new countries are emerging as significant users of rare earth products such as Korea, Taiwan and Malaysia. During the last ten years rare earth producers adjusted to several radical changes that affected the raw materials, the application mix and the price structure. New producers have emerged, especially from China; some have subsequently stopped their activities while others have focused their efforts in a specific market segment

  8. Rare earths: occurrence, production and applications

    International Nuclear Information System (INIS)

    Murthy, T.K.S.; Mukherjee, T.K.

    2002-01-01

    The mining and processing of rare earth minerals, particularly of monazite, began in a modest way in 1880s for commercialized production of mantle for gas lighting. For all major applications up to mid-twentieth century- production of lighter flints, misch metal as a metallurgical alloying agent, colouring, decolourizing and polishing agents for glass, petroleum cracking catalysts and arc-carbons, unseparated or partially separated rare earths were adequate. These applications continue till today. With the development and industrial application of powerful techniques like ion exchange and solvent extraction for the separation of rare earths, the decades after 1960 saw increasing utilization of the specific properties of the individual rare earths. Some of these advanced technological applications include: special glass for optical systems including camera lenses, phosphors for colour television, cathode ray tubes and fluorescent lighting, X-ray intensification screens, high intensity permanent magnets, electro optical devices, lasers, hydrogen storage materials, hydride rechargeable batteries, photomagnetic data storage systems, autoexhaust catalysts, special ceramics of unusual toughness, artificial diamonds and nonpoisonous plastic colorants. The topics covered in the book include rare earths: their story identity, rare earth resources, processing of ores and recovery of mixed rare earths products, separation and purification of rare earths, nonmetallic applications of rare earths, rare earth metals: production and applications, rare earth alloys and their applications, analysis of rare earth, processing of rare earth resources in India by Indian Rare Earth Ltd. and availability and market conditions

  9. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  10. Determination of traces of thorium in ammonium/sodium diuranate by ICP-AES method

    International Nuclear Information System (INIS)

    Nair, V.R.; Kartha, K.N.M.

    1999-01-01

    Full text: Indian Rare Earths Ltd., Alwaye, produces ammonium diuranate from the thorium concentrate, obtained during monazite processing. This process involves a series of steps. The final uranium product obtained always contains microgram amounts of thorium as impurity. An analytical procedure has been standardised for the estimation of microgram amounts of thorium in ammonium/sodium diuranate. The method involves solvent extraction of uranium by using a tertiary amine followed by the determination of thorium by ICP-AES method in the raffinate. The recoveries of thorium were checked by standard addition to the uranium matrix. Limit of detection is adequate for the analysis of nuclear grade material

  11. Distribution of rare earths, thorium and uranium in bryophytes and soils in Tripui Ecological Station, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Palmieri, Helena E.L.; Nalini Junior, Herminio A.; Friese, Kurt

    2007-01-01

    The concentrations of rare earth elements (REEs), thorium and uranium were determined in liverworts (Noteroclada confluens (Tayl.) and Dumortirea hirsute (Sw.) Nees), in mosses (Leucobryum martianum (Hornsh.) Hampe, Vesicularia vesicularis (Schwaegr.) Broth., Pyrrhobruym spiniforme (Hedw.) Mitt. and Sematophyllum subsimplex (Hedw.) Mitt.) and in the soil upon which they were growing. The samples were collected on the margins of the main streams of the Tripui Ecological Station, located in the valley of the Tripui stream near the town of Ouro Preto, Minas Gerais State, Brazil. For decades, this Station has been the object of interest of many studies due to its historical, ecological and environmental importance. Analyses in bryophytes (mosses and liverworts) were determined by inductively coupled plasma mass spectrometry (ICP-MS) and in the soil samples by using neutron activation analysis (NAA), specifically the k 0 -standardization method and the energy dispersive spectrometry technique (EDS). Lanthanum (La), cerium (Ce) and neodymium (Nd) were present in higher concentrations in soils and bryophytes than other REEs. It was observed that in all the collected bryophytes species the elements Th, U, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er and Yb were transferred from the soil water to these plants. These bryophytes presented different capacities of accumulating these elements with the liverworts (Noteroclada confluens and Dumortirea hirsute) and the moss Leucobryum martianum showing a more efficient accumulation capacity than the other bryophyte species. (author)

  12. The recovery of rare earth elements (REE) from beach sands

    International Nuclear Information System (INIS)

    Petrache, Cristina A.; Santos, Gabriel P. Jr.; Fernandez, Lourdes G.; Castillo, Marilyn K.; Tabora, Estrellita U; Intoy, Socorro P.; Reyes, Rolando Y.

    2005-01-01

    This preliminary study describes a metallurgical process that will extract, recover and produce REE oxides from beach sands obtained from Ombo, San Vicente, northern Palawan. The beach sands contain REE minerals of allanite and small amounts of monazite. Allanite is a sorosilicate mineral containing rare earths, thorium and uranium. Monazite is the anhydrous phosphate of cerium and the lanthanum group of rare earths with thorium commonly present in replacement for cerium and lanthanum. Collected beach sand were first pan-concentrated in-situ to produce heavy mineral concentrates. Screening using a 32 mesh (0.500 mm) sieve was done at the Nuclear Materials Research Laboratory to remove oversize sand particles. The -32 mesh fraction was treated with bromoform (sp. gr. 2.89) to separate the heavy minerals from siliceous gangue. Grinding to -325 mesh size (0.044mm) followed to liberate the minerals prior to leaching. Two acids leachants were used - concentrated HCl for the first trial and a mixture of concentrated HCl and HNO 3 (10:1 volume ratio) for the second trial. Both leaching trials were carried out at 180 o C for 7 hours or until dry. The resulting leached residues were re-dissolved in concentrated HCl and filtered. Ionquest R 801, an organophosphorous extractant, was added to the filtrate to separate the radioactive thorium from REE. Sodium hydroxide was added to the aqueous phase to precipitate the REE. After filtering the precipitate, it was dissolved in HCl. The acid solution was repeatedly extracted three (3) times with Ionquest R 801 to remove iron and other contaminants. Ammonium hydroxide was added to the final solution to precipitate the REE, which was then dried in the oven. The precipitate was calcined/roasted in the furnace at two different temperatures for different periods of time to burn off the organic matter and to form oxides. Results of the XRD analysis showed peaks of the calcined precipitate matching with the peaks of lanthanum oxide

  13. Mechanical structure and problem of thorium molten salt reactor

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    After Fukushima Daiichi accident, there became great interest in Thorium Molten Salt Reactor (MSR) for the safety as station blackout leading to auto drainage of molten salts with freeze valve. This article described mechanical structure of MSR and problems of materials and pipes. Material corrosion problem by molten salts would be solved using modified Hastelloy N with Ti and Nb added, which should be confirmed by operation of an experimental reactor. Trends in international activities of MSR were also referred including China declaring MSR development in January 2011 to solve thorium contamination issues at rare earth production and India rich in thorium resources. (T. Tanaka)

  14. The Chinese Society of Rare Earth is Studying The Feasibility of Marketing Rare Earth Futures

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Lin Donglu,secretary-general of the Chinese Society of Rare Earth recently said,the Chinese Society of Rare Earth undertook the research on subject of the National Social Science Fund Foundation on the reform of Chinese rare earth trading pricing mechanism on promoting RMB globalization,and is focusing on studying the feasibility of marketing rare earth futures variety.

  15. Extraction spectrophotometric determination of rare earth with trioctylethylammonium bromide and Xylenol Orange

    International Nuclear Information System (INIS)

    Shijo, Yoshio

    1976-01-01

    A spectrophotometric method of determination of the rare earth was studied by the solvent extraction of rare earth-Xylenol Orange chelate into xylene solution of trioctylethylammonium bromide(TOEA). The rare earth-XO-TOEA complexes are extracted into aromatic hydrocarbons such as benzene, toluene, and xylene, but not into polar solvents such as n-butanol ethylacetate, methylisobutylketone, and nitrobenzene. The optimum pH range for the extraction were 6.3 -- 6.7, 6.3 -- 6.5, 5.8 -- 6.9, 5.7 -- 6.9, and 5.5 -- 6.8 for lanthanum, praseodymium, cerium, gadolinium, and dysprosium, respectively. The absorption maximum of the complexes extracted into xylene were found at 605 nm for lanthanum, praseodymium, and cerium, 596 nm for gadolinium, and 590 nm for dysprosium. Beer's law held for about 0 -- 4.5 μg of rare earth per 5 ml of xylene. The molar absorptivity of the extracted species were 1.53x10 5 , 1.42x10 5 , 1.35x10 5 , 8.5x10 4 , 8.2x10 4 cm -1 mol -1 l for lanthanum, praseodymium, cerium, gadolinium, and dysprosium, respectively. The composition of the ternary complexes were estimated to be M:XO:TOEA=1:1:2 for gadolinium and dysprosium, whereas 1:2:n for lanthanum, praseodymium and cerium. Combination ratio n of TOEA to metal-XO chelates in the latters could not be estimated by the commonly available methods. Thorium, vanadium, uranium, bismuth, aluminum, zirconium, chromium, nitrate, perchlorate and iodide interfered when triethylenetetramine and 1,10-phenanthroline were added as masking agent. (auth.)

  16. Rare earths and actinides

    International Nuclear Information System (INIS)

    Coqblin, B.

    1982-01-01

    This paper reviews the different properties of rare-earths and actinides, either as pure metals or as in alloys or compounds. Three different cases are considered: (i) First, in the case of 'normal' rare-earths which are characterized by a valence of 3, we discuss essentially the magnetic ordering, the coexistence between superconductivity and magnetism and the properties of amorphous rare-earth systems. (ii) Second, in the case of 'anomalous' rare-earths, we distinguish between either 'intermediate-valence' systems or 'Kondo' systems. Special emphasis is given to the problems of the 'Kondo lattice' (for compounds such as CeAl 2 ,CeAl 3 or CeB 6 ) or the 'Anderson lattice' (for compounds such as TmSe). The problem of neutron diffraction in these systems is also discussed. (iii) Third, in the case of actinides, we can separate between the d-f hybridized and almost magnetic metals at the beginning of the series and the rare-earth like the metals after americium. (orig.)

  17. Safety aspects in rare earths recovery

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2014-01-01

    Recovery of rare earths involves mining of beach sands, mineral separation to obtain monazite and its chemical processing to obtain rare earth composites. The composites are then subjected to further chemical treatment to obtain individual rare earths. Although the separated out rare earths are not radioactive, the process for recovery of rare earths involve both radiological as well as conventional hazards. This paper highlights the safety aspects in the mining, mineral separation and chemical processing of monazite to obtain rare earths

  18. Status of thorium technology

    International Nuclear Information System (INIS)

    Garg, R.K.; Raghavan, R.V.; Karve, V.M.; Narayandas, G.R.

    1977-01-01

    Although a number of studies have been conducted in various countries to evolve reactor systems based on thorium fuel cycle, its use, so far, is limited to only a few reactors. However, for countries having large reserves of thorium, its utilization is of great significance for their nuclear power programmes. Reasonably assured world resources of thorium in the lower price range have been estimated at more than 500,000 tons of ThO 2 . While most of these resources are in placer deposits in various parts of the world, some vein deposits and uranium ores are other important sources of thorium. Monazite, the most important mineral of thorium, is found in the beach sand deposits along with other heavy minerals like ilmenite, rutile, zircon, and sillimanite etc. Mining of these deposits is usually carried out by suction dredging and separation of monazite from other minerals is effected by a combination of magnetic, electrostatic and gravity separation techniques. Chemical processing of monazite is carried out either by sulphuric acid or caustic treatment, followed by separation of the rare earths and thorium by partial precipitation or leaching. The thorium concentrate is further processed to obtain mantle grade thorium nitrate by chemical purification steps whereas solvent extraction using TBP is adopted for making nuclear-grade material. The purified thorium nitrate is converted to the oxide usually by precipitation as oxalate followed by calcination. The oxide is reduced directly with calcium or converted to the chloride or fluoride and then reduced by calcium or magnesium to obtain thorium metal. Various fuel designs based on the metal or its alloys, mixed oxides or carbides, and dispersed type fuel elements have been developed and accordingly, different fabrication techniques have been employed. Work on irradiation of thorium containing fuel elements and separation of U 233 is being carried out. This paper reviews the status of thorium technology in the world with

  19. The behaviour of radionuclides in the processing of rare earth minerals

    International Nuclear Information System (INIS)

    Hart, K.P.; Brown, S.A.; Levins, D.M.

    1993-01-01

    In recent years the presence of thorium in monazites has been seen as significant economic obstacle to utilisation of this resource. In particular, the environmental problems encountered with disposal of the radioactive wastes in France, China and Malaysia have led to a decline in the use of monazite as rare earth feed stock. The price of monazite has consequently fallen from $800 per tonne to the present price of $250 per tonne and significant quantities of monazite are now being ploughed back into the tailings from mineral sands processing. The environmental problems experienced overseas with disposal of monazite wastes have resulted mainly from poor waste disposal practices and/or inappropriate siting of plants rather than an insoluble waste management problem. Nevertheless, it is important to understand the behaviour of radionuclides during the processing of monazite so that appropriate measures can be undertaken to minimise the environmental impact. This paper discusses the potential hazards associated with radionuclides in the thorium and uranium decay chain. The partitioning of radioactivity during the processing of monazite is described and results of experimental work are presented on the behaviour of radionuclides during the chemical processing of beach sand monazite and the supergene monazite from Mt Weld which contains far lower levels of thorium and uranium. 5 refs., 7 tabs., 2 figs

  20. Production of rare earth polishing powders in Russia

    International Nuclear Information System (INIS)

    Kosynkin, V.D.; Ivanov, E.N.; Kotrekhov, V.A.; Shtutza, M.G.; Grabko, A.I.

    1998-01-01

    in a suspension; polishing powder Ftoropol with addition of fluorine and higher contents of cerium dioxide (at least 70% by mass) that has a higher polishing ability and is attrition-proof, used for high-speed treatment of optical lenses, mirrors, TV screens and eyeglasses. The rare earth polishing powders made in Russia possess the following physico-chemical properties and performance characteristics; cerium dioxide content in solid REE solution - 50-90% by mass; F-ion content (in Ftoropol powder) - 8-14% by mass; non-REE content of sodium, calcium, strontium and iron impurities - at most 0.1% by mass of each element; natural radionuclide content of thorium, uranium, actinium, potassium-40 series, total standard specific activity - 0.45-0.85 Bq/g; - average particle size, 2.0-3.5 μm; density - 6.3-6.8 g/cm 3 ; pH of aqueous extract, 6-7; sedimentary stability - 10-20 minutes; polishing ability - 45-60 mg per 31 minutes (for polishing resin); abrasive inclusions - none. The report gives analysis of the. Russian powders compared against the best world analogues such as Cerox (Rhone Poulenc Company, France), Regipol (London and Scandinavian Division Chemical Company, England), etc. The analysis results imply, that the chief characteristics (granulometric composition, polishing ability and service life) of the Russian samples do not yield to the best foreign analogues, and in some properties (radionuclide content, sedimentary stability and scratching inclusions quantity) even surpass them

  1. Raman scattering of rare earth hexaborides

    International Nuclear Information System (INIS)

    Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru

    2009-01-01

    Raman scattering spectra were measured for the rare-earth hexaborides RB 6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B 6 vibrations were observed in the range 600 - 1400 cm -1 . Anomalous peaks were detected below 200 cm -1 , which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.

  2. Uranium and thorium recovery from a sub-product of monazite industrial processing

    International Nuclear Information System (INIS)

    Gomiero, L.A.; Ribeiro, J.S.; Scassiotti Filho, W.

    1994-01-01

    In the monazite alkaline leaching industrial process for the production of rare earth elements, a by-product is formed, which has a high concentration of thorium and a lower but significant one of uranium. A procedure for recovery of the thorium and uranium contents in this by-product is presented. The first step of this procedure is the leaching with sulfuric acid, followed by uranium extraction from the acid liquor with a tertiary amine, stripping with a Na Cl solutions and precipitation as ammonium diuranate with N H 4 O H. In order to obtain thorium concentrates with higher purity, it is performed by means of the extraction of thorium from the acid liquor, with a primary amine, stripping by a Na Cl solution and precipitation as thorium hydroxide or oxalate. (author)

  3. Metallothermic reduction of rare earth oxides

    International Nuclear Information System (INIS)

    Sharma, R.A.

    1986-01-01

    Rare earth oxides can be reduced to rare earth metals by a novel, high yield, metallothermic process. The oxides are dispersed in a suitable, molten, calcium chloride bath along with sodium metal. The sodium reacts with the calcium chloride to produce calcium metal which reduces the rare earth oxides to rare earth metals. The metals are collected in a discrete layer in the reaction vessel

  4. Rare earth industries: Downstream business

    International Nuclear Information System (INIS)

    2011-01-01

    The value chain of the rare earths business involves mining, extraction, processing, refining and the manufacture of an extensive range of downstream products which find wide applications in such industries including aerospace, consumer electronics, medical, military, automotive, renewable wind and solar energy and telecommunications. In fact the entire gamut of the high-tech industries depends on a sustainable supply of rare earths elements. The explosive demand in mobile phones is an excellent illustration of the massive potential that the rare earths business offers. In a matter of less than 20 years, the number of cell phones worldwide has reached a staggering 5 billion. Soon, going by the report of their growth in sales, the world demand for cell phones may even exceed the global population. Admittedly, the rare earths business does pose certain risks. Top among the risks are the health and safety risks. The mining, extraction and refining of rare earths produce residues and wastes which carry health and safety risks. The residues from the extraction and refining are radioactive, while their effluent waste streams do pose pollution risks to the receiving rivers and waterways. But, as clearly elaborated in a recent report by IAEA experts, there are technologies and systems available to efficiently mitigate such risks. The risks are Rare Earth manageable. However, it is crucial that the risk and waste management procedures are strictly followed and adhered to. This is where effective monitoring and surveillance throughout the life of all such rare earths facilities is crucial. Fortunately, Malaysia's regulatory standards on rare earths follow international standards. In some areas, Malaysia's regulatory regime is even more stringent than the international guidelines. (author)

  5. Rare earth industries: Strategies for Malaysia

    International Nuclear Information System (INIS)

    2011-01-01

    Evidently, many reports cite Malaysia as having reasonably substantial amounts of rare earths elements. In fact, based on the rare earths found in the residual tin deposits alone, Malaysia has about 30,000 tonnes. This does not take into account unmapped deposits which experts believe may offer more tonnages of rare earths. Brazil which is reported to have about 48,000 tonnes has announced plans to invest aggressively in the rare earths business. China has on record the largest reserves with about 36 million tonnes. This explains why China has invested heavily in the entire value chain of the rare earths business. Chinas committed investment in rare earths started many years ago when the country's foremost leaders proclaimed the strategic position of rare earths in the world economy. That forecast is now a reality where the rise in the green high-tech economy is seen driving global demand for rare earths in a big way. Malaysia needs to discover and venture into new economic growth areas. This will help fuel the country's drive to achieve a high income status by 2020 as articulated in the New Economic Model (NEM) and the many supporting Economic Transformation Plans that the Government has recently launched. Rare earths may be the new growth area for Malaysia. However, the business opportunities should not just be confined to the mining, extraction and production of rare earths elements alone if Malaysia is to maximise benefits from this industry. The industry's gold mine is in the downstream products. This is also the sector that China wants to expand. Japan which now controls about 50 % of the global market for downstream rare earths-based high-tech components is desperately looking for partners to grow their stake in the business. Malaysia needs to embark on the right strategies in order to build the rare earths industry in the country. What are the strategies? (author)

  6. Comprehensive health protection measures and its effects at the Bayun Obo Rare-earth Iron mine in China

    International Nuclear Information System (INIS)

    Chen, Xing-an; Cheng, Yong-e

    2008-01-01

    The purpose of this paper is to present the comprehensive sanitary protection methods carried out by the authors at Bayun Obo Rare-earth Iron Mine. The methods are as follows. First, comprehensive measures to prevent dusts in the air. Second, enhancement of the individual protection measures; Third, promoting long-distance running and the establishment a workers. club; Fourth, the establishment of job rotation system; Fifth, increasing the transparency of the medical examination results, paying more attention to the health of the miners; Sixth, publicizing the value of stopping smoking. Results showed that the above-mentioned six aspects of comprehensive sanitary protection methods which we instituted brought about predominant effects. For example, the average dust concentrations in the air at 7 locations in the crushing workshop and 6 in the mining workshop decreased from 1143.67 mg.m -3 in January to June 1983 to 47.617 mg.m -3 in January to June 1991, and to 13.4 mg.m -3 in 2001. In 1983 the average thorium lung burden of 130 dust exposed miners selected by random stratification was 0.85 Bq, while the average thorium lung burden of 135 dust-exposed miners, similarly selected in 1991 was 0.25 Bq, a decrease by a factor of 3.4. It is concluded that the comprehensive health protection measures carried out by the authors for about 20 years in Bayun Obo Mine were proved very effective and should be continued and improved. It is also valuable to recommend our experience to other rare-earth mines and factories as well as thorium dusty units both in China and abroad. (author)

  7. Rare earth-iron-boron premanent magnets

    International Nuclear Information System (INIS)

    Ghendehari, M.H.

    1988-01-01

    This patent describes a method for producing rare earth-iron-boron permanent magnets containing added rare earth oxide, comprising the steps of: (a) mixing a particulate alloy containing at least one rare earth metal, iron, and boron with at least one particulate rare earth oxide; (b) aligning magnetic domains of the mixture in a magnetic field; (c) compacting the aligned mixture to form a shape; and (d) sintering the compacted shape

  8. Experiences in running solvent extraction plant for thorium compounds [Paper No. : V-5

    International Nuclear Information System (INIS)

    Gopalkrishnan, C.R.; Bhatt, J.P.; Kelkar, G.K.

    1979-01-01

    Indian Rare Earths Ltd. operates a Plant using thorium concentrates as raw material, employing hydrocarbonate route, for the manufacture of thorium compounds. A small demonstration solvent extraction plant designed by the Chemical Engineering Division, B.A.R.C. is also being operated for the same purpose using a partly purified thorium hydrocarbonate as raw material. In the solvent extraction process, separation of pure thorium is done in mixer settlers using 40% mixture of tri-butyl phosphate in kerosene. Though a comparatively purer raw material of hydrocarbonate than thorium concentrate is used, heavy muck formation is encountered in the extraction stage. Production of nuclear grade thorium oxide has been successful so far as quality is concerned. The quality of thorium nitrate suffers in the yellow colouration and high phosphate content, the former being only partly controlled through the use of pretreated kerosene. When a larger solvent extraction plant is to be designed to use thorium concentrates as raw material, some of the problems encountered will be considered. (author)

  9. Chemical analysis of rare earth elements

    International Nuclear Information System (INIS)

    Tsukahara, Ryoichi; Sakoh, Takefumi; Nagai, Iwao

    1994-01-01

    Recently attention has been paid to ICP-AES or ICP-MS, and the reports on the analysis of rare earth elements by utilizing these methods continue to increase. These reports have become to take about 30% of the reports on rare earth analysis, and this is because these methods are highly sensitive to rare earth elements, and also these methods have spread widely. In ICP-AES and ICP-MS, mostly solution samples are measured, therefore, solids must be made into solution. At the time of quantitatively determining the rare earth elements of low concentration, separation and concentration are necessary. Referring to the literatures reported partially in 1990 and from 1991 to 1993, the progress of ICP-AES and ICP-MS is reported. Rare earth oxides and the alloys containing rare earth elements are easily decomposed with acids, but the decomposition of rocks is difficult, and its method is discussed. The separation of the rare earth elements from others in geochemical samples, cation exchange process is frequently utilized. Also solvent extraction process has been studied. For the separation of rare earth elements mutually, chromatography is used. The spectral interference in spectral analysis was studied. The comparison of these methods with other methods is reported. (K.I)

  10. Thorium Occurrences, Geological Deposits and Resources

    International Nuclear Information System (INIS)

    Barthel, F.H.; Tulsidas, H.

    2014-01-01

    Availability of Thorium: • Monazite production can be used as a measure for Th availability. • Without commercial rare earth requirements recovery of Th from monazite is not economic. • Extraction of Th from deposits containing e.g. Nb,Ta, may become economic by-product once commercial Th requirements progress.• Monazite is extracted in India, Brazil, Malaysia. • Annually 6 300 to 7 400 t monazite between 2004 and 2008. • Largest producer: India, ~5 000 t monazite /a. • Later figures are not available (Chinese competition on the rare earth market?). • Other monazite producers (unknown amounts): China, Indonesia, Nigeria, North and South Korea, CIS. • Theoretical content of Th in the above reported monazite: 300 to 600 t Th. • Th production reported: Brazil, Canada, India and others, details are not available.

  11. The industry of metallic rare earths (R.E.)

    International Nuclear Information System (INIS)

    Poirier, P.

    1979-01-01

    The following subjects are discussed: rare earths resources (rare earths abondance and world reserves, main ores). Rare earths separation and purification (ionic exchange, solvent extraction). Metallic rare earths and their mixtures, metallothermic reduction of oxides or fluorides (Ca, Mg, Al, Si or rare earth metals), Co-reduction process for intermetallic compounds (SmCo 5 ). Industrial applications of metallic rare earths (traditional applications such as flints, nodular cast iron, steel refining, magnesium industrie, applications under development such as rare earths/cobalt magnets, LaNi 5 for hydrogen storage, special alloys (automotive post combustion), magnetostrictive alloys). Economical problems: rare earth are elements relatively abundant and often at easily accessible prices. However, this group of 15 elements are liable to certain economical restraints. It is difficult to crack ore for only one rare earth. Availability of one given rare earth must be associated with the other corresponding rare earths to absorb all the other rare earths in other applications. Rare-earth industry has a strong expanding rate. 20% per year average for 6 years with Rhone-Poulenc. Thanks to their exceptional, specific characteristics rare earths have a bright future particularly for their metals

  12. Rare earth elements: end use and recyclability

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  13. Selective separation of uranium and thorium from lanthanides on sulphonic ion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Hubicki, Z; Hubicka, H; Jusiak, S [Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland)

    1977-01-01

    Separation of uranium and thorium from rare earth elements was studied on sulphonic ion exchangers of various types. Ammonium acetate, ammonium salicylate, aliphatic amine acetates, metaphosphoric acid and others were used as eluants. The most effective separation was attained by using metaphosphoric acid as eluant.

  14. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  15. Influence of plant activity and phosphates on thorium bioavailability in soils from Baotou area, Inner Mongolia

    International Nuclear Information System (INIS)

    Guo Pengran; Jia Xiaoyu; Duan Taicheng; Xu Jingwei; Chen Hangting

    2010-01-01

    Harm of thorium to living organisms is governed by its bioavailability. Thorium bioavailability in the soil-plant system of Baotou rare earth industrial area was studied using pot experiments of wheat and single extraction methods. The effects of wheat growth stage and phosphate on thorium bioavailability were also investigated. Based on extractabilities of various extraction methods (CaCl 2 , NH 4 NO 3 , EDTA, HOAc) and correlation analysis of thorium uptake by wheat plant and extractable thorium, a mixture of 0.02 M EDTA + 0.5 M NH 4 OAc (pH 4.6) was found suitable for evaluation of thorium bioavailability in Baotou soil, which could be predicted quantitatively by multiple regression models. Because of differences of wheat root activities, thorium bioavailability in rhizosphere soil was higher than in bulk soil at tillering stage, but the reverse occurred at jointing stage. Phosphate addition induced the mineralization of soluble thorium by forming stable thorium phosphate compounds, and reduced thorium bioavailability in soil.

  16. Influence of plant activity and phosphates on thorium bioavailability in soils from Baotou area, Inner Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Guo Pengran [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, Jilin 130022 (China); School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Jia Xiaoyu; Duan Taicheng; Xu Jingwei [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, Jilin 130022 (China); Chen Hangting, E-mail: guopengran@gmail.co [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, Jilin 130022 (China)

    2010-09-15

    Harm of thorium to living organisms is governed by its bioavailability. Thorium bioavailability in the soil-plant system of Baotou rare earth industrial area was studied using pot experiments of wheat and single extraction methods. The effects of wheat growth stage and phosphate on thorium bioavailability were also investigated. Based on extractabilities of various extraction methods (CaCl{sub 2}, NH{sub 4}NO{sub 3}, EDTA, HOAc) and correlation analysis of thorium uptake by wheat plant and extractable thorium, a mixture of 0.02 M EDTA + 0.5 M NH{sub 4}OAc (pH 4.6) was found suitable for evaluation of thorium bioavailability in Baotou soil, which could be predicted quantitatively by multiple regression models. Because of differences of wheat root activities, thorium bioavailability in rhizosphere soil was higher than in bulk soil at tillering stage, but the reverse occurred at jointing stage. Phosphate addition induced the mineralization of soluble thorium by forming stable thorium phosphate compounds, and reduced thorium bioavailability in soil.

  17. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  18. HfO2 - rare earth oxide systems in the region with high content of rare earth oxide

    International Nuclear Information System (INIS)

    Shevchenko, A.V.; Lopato, L.M.

    1982-01-01

    Using the methods of annealing and hardenings (10 2 -10 4 deg/s cooling rate) and differential thermal analysis elements of state diagrams of HfO 2 - rare earth oxide (rare earths-La, Pr, Nd, Sm, Gd, Tb, Dy, Y, Er, Yb, Lu, Sc) systems from 1800 deg C up to melting in the range of 60-100 mol% rare earth oxide concentration were constructed. Regularities of HfQ 2 addition effect on high-temperature polymorphic transformations of rare earth oxides were studied. Results of investigation were discussed from viewpoint of crystal chemistry

  19. Production of rare earth-silicon-iron alloys

    International Nuclear Information System (INIS)

    Mehra, O.K.; Bose, D.K.; Gupta, C.K.

    1987-01-01

    At Metallurgy Division, BARC, improved procedures for producing rare earth-silicon alloys have been investigated. In these methods, reduction of mixed rare earth oxide by a ferro-silicon and aluminium mixture in combination with CaO-MgO flux/CaO-CaF 2 flux have been tried to prepare an alloy product with a higher rare earth recovery at a higher rare earth content than the present commercial production method. The rare earth recovery using CaO-CaF 2 was 85 per cent while in the case of CaO-MgO flux it was 76 per cent. The corresponding rare earth contents in the alloy correspond to 40 per cent and 55 per cent by weight respectively. (author)

  20. Rare earth mobility in hydrothermal ore-forming systems

    International Nuclear Information System (INIS)

    Cornell, D.H.; Schade, J.; Scheepers, R.; Watkeys, M.K.

    1988-01-01

    Rocks and ores which form by magmatic processes display a range of chondrite-normalised rare earth profiles. One REE (rare earth elements) profile feature which seems unrelated to magmatic processes is the birdwing profile, in which both heavy and light rare earths are enriched relative to the middle rare earths. Birdwing rare earth profiles are an easily identified geochemical anomaly. It is proposed that rare earth geochemistry could be applied in geochemical prospecting for ore formed by hydrothermal processes. 5 figs

  1. The Rare Earth Magnet Industry and Rare Earth Price in China

    Directory of Open Access Journals (Sweden)

    Ding Kaihong

    2014-07-01

    Full Text Available In the past four years, the price of rare earth metal fluctuates sharply for many reasons. Currently, it has become more stable and more reasonable. This presentation is focused on the effect about the rare earth metal price. Some motor manufacturers have shifted from rare earth permanent magnet to ferrite magnet. Many motor manufacturers changed the design for the motor cooling system to make the motor function at a lower temperature. Thus the consumption of Dy can be markedly reduced. As for manufacturer of NdFeB magnet, we are also trying to optimize our process to reduce to dependence of HREE such as Dy and Tb. HS process have been introduced to solve the problem. With more and more people focusing and engaging on the REE industry, the price of REE will be more transparent without too many fluctuations. China is considering the problems of balancing the environment, energy sources, and labor sources. The application field about NdFeB such as wind turbine generator, HEV/EV, FA /OA is flourishing.

  2. The Rare Earth Magnet Industry and Rare Earth Price in China

    Science.gov (United States)

    Ding, Kaihong

    2014-07-01

    In the past four years, the price of rare earth metal fluctuates sharply for many reasons. Currently, it has become more stable and more reasonable. This presentation is focused on the effect about the rare earth metal price. Some motor manufacturers have shifted from rare earth permanent magnet to ferrite magnet. Many motor manufacturers changed the design for the motor cooling system to make the motor function at a lower temperature. Thus the consumption of Dy can be markedly reduced. As for manufacturer of NdFeB magnet, we are also trying to optimize our process to reduce to dependence of HREE such as Dy and Tb. HS process have been introduced to solve the problem. With more and more people focusing and engaging on the REE industry, the price of REE will be more transparent without too many fluctuations. China is considering the problems of balancing the environment, energy sources, and labor sources. The application field about NdFeB such as wind turbine generator, HEV/EV, FA /OA is flourishing.

  3. Rare earth elements behavior in Peruibe black mud

    International Nuclear Information System (INIS)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da

    2015-01-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  4. Rare earth elements behavior in Peruibe black mud

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da, E-mail: jeffkoy@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  5. Sc, Y, La-Lu - Rare Earth Elements

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    At present extensive efforts are being made in completing work on system number Rare Earth Elements. Part A is devoted to the occurrence of these elements on the earth and in the universe. Part B deals with the pure metals; the 7 volumes published cover the description of the separation from the raw materials, the preparation of pure metals,their uses and toxicology, the physical properties of nuclei, atoms, molecules, and isotopes; in addition the behavior of ions in solution and the electrochemical behavior of rare earth elements are described. The compounds are described in Part C. Part D with 6 volumes has been devoted to the description of coordination compounds and is completed. The volume ''Rare Earth Elements C 10'' deals with the rare earth tellurides, oxide tellurides, tellurates, telluride halides, tellurate halides, sulfide tellurides, selenide tellurides, and alkali rare earth tellurates. Another topic of this volume are the compounds of the rare earth elements with polonium. So far as meaningful and in accordance with all earlier volumes of ''Rare Earth Elements'' Series C, comparative data are presented in sections preceding treatment of the individual compounds and systems

  6. Rare Earth Metals: Resourcefulness and Recovery

    Science.gov (United States)

    Wang, Shijie

    2013-10-01

    When we appreciate the digital revolution carried over from the twentieth century with mobile communication and the Internet, and when we enjoy our high-tech lifestyle filled with iDevices, hybrid cars, wind turbines, and solar cells in this new century, we should also appreciate that all of these advanced products depend on rare earth metals to function. Although there are only 136,000 tons of annual worldwide demand, (Cho, Rare Earth Metals, Will We Have Enough?)1 rare earth metals are becoming such hot commodities on international markets, due to not only to their increasing uses, including in most critical military hardware, but also to Chinese growth, which accounts for 95% of global rare earth metal production. Hence, the 2013 technical calendar topic, planned by the TMS/Hydrometallurgy and Electrometallurgy Committee, is particularly relevant, with four articles (including this commentary) contributed to the JOM October Issue discussing rare earth metals' resourcefulness and recovery.

  7. Targeting heavy rare earth elements in carbonatite complexes

    Science.gov (United States)

    Broom-Fendley, S.; Wall, F.; Gunn, A. G.; Dowman, E.

    2012-04-01

    The world's main sources of the rare earth elements (REE) are concentrated in carbonatite complexes. These have the advantages of high grade and tonnage, combined with low thorium contents, yet they are generally enriched in light rare earths (LREE). The heavy rare earths (HREE, which include Eu-Lu and Y) are more highly sought after because of their role in new and green technologies. HREE are predominantly extracted from ion-adsorption clays in China. These are small, low grade deposits, which are often illegally mined by artisans. Increased government control, environmental legislation and local demand for REE in China have led to high prices and global concerns about the security of supply of the HREE. Alternative sources of the HREE are poorly documented. We present a review of such targets, including: (1) 'abnormal' carbonatites; (2) areas around LREE-rich complexes such as breccia, fenite and latter stage veins; and (3) weathered carbonatites. At Lofdal, Namibia, carbonatite dykes contain xenotime-(Y) together with LREE minerals. The original chemistry of the carbonatite magma, coupled with late-stage magma and fluid evolution, seem to be controlling factors [1, 2]. The Khibina carbonatite, Kola Peninsula, Russia, is an example of where early LREE carbonatites become increasing HREE-enriched as magmas evolve to carbo-hydrothermal fluids [3]. Around carbonatite complexes in Malawi HREE enrichment can be found in breccia and in fenite. Breccia around Songwe shows areas with high Y/La ratios within the matrix caused by narrow zones of xenotime enrichment. Fenite around Kangankunde and Chilwa Island has higher HREE:LREE ratios than the carbonatite [4]. At weathered complexes, such as at Mount Weld in Western Australia, changes in both HREE concentration and LREE:HREE ratios are observed. In currently unworked sections of the deposit, the HREE mineral churchite (YPO4.H2O) has formed concentrations due to groundwater flow [5]. These areas of enrichment are

  8. Preparation of rare earth fluorides from apatite concentrate

    International Nuclear Information System (INIS)

    Mulyarchuk, I.F.; Voloshchenko, M.V.; Zen'kovich, E.G.; Sumenkova, V.V.; AN Ukrainskoj SSR, Kiev. Inst. Problem Lit'ya)

    1980-01-01

    The processes of preparation of the rare earths element sum from apatite concentrate of the Khibins, connected with preliminary extraction of rare earth phosphates from nitric acid extract using solvent extraction or direct precipitation from the extract by solution of potassium and ammonium fluorides. The sequence of the processes of the first variant is the following: solvent extraction of rare earths by tributylphosphate from clarified nitric acid extract of apatite with subsequent reextraction of rare earths with water and precipitation of rare earth phosphates from aqueous solution during neutralization by ammonia. In case of fluoride preparation from rare earth phosphate the main attention is paid to precipitation and filtration of fluorides. Technological scheme and cost price of industry for the production of 1800 t of rare earth trifluorides a year are calculated. When taking account of TBP losses according to its solubility the industry cost price is 1O times lower the modern cost of rare earth fluorides

  9. Thermochemistry of rare-earth trifluorides

    International Nuclear Information System (INIS)

    Kim, K.Y.; Johnson, C.E.

    1981-01-01

    Using the most recent crystallographic data, the Born-Lande equation was employed to calculate lattice energies of the rare-earth trifluorides. The excellent agreement ( 0 sub(f)(MX 3 ,c,298.15K) can be estimated. The magnitude of the monotonic change of ΔH 0 sub(f)(MX 3 ) for the rare-earth trihalides series (14 4f electrons) is comparable to the energy change between Sc and Ti in which only one 3d electron is added. This energy change is consistent with the chemical evidence that the electrons in the f-orbitals of rare earths contribute negligibly to the bonding. (author)

  10. Rare Earth Polyoxometalates.

    Science.gov (United States)

    Boskovic, Colette

    2017-09-19

    Longstanding and important applications make use of the chemical and physical properties of both rare earth metals and polyoxometalates of early transition metals. The catalytic, optical, and magnetic features of rare earth metal ions are well-known, as are the reversible multielectron redox and photoredox capabilities of polyoxomolybdates and polyoxotungstates. The combination of rare earth ions and polyoxometalates in discrete molecules and coordination polymers is of interest for the unique combination of chemical and physical properties that can arise. This Account surveys our efforts to synthesize and investigate compounds with rare earth ions and polyoxometalates (RE-POMs), sometimes with carboxylate-based organic coligands. Our general synthetic approach is "bottom-up", which affords well-defined nanoscale molecules, typically in crystalline form and amenable to single-crystal X-ray diffraction for structure determination. Our particular focus is on elucidation of the physical properties conferred by the different structural components with a view to ultimately being able to tune these properties chemically. For this purpose, we employ a variety of spectroscopic, magnetochemical, electrochemical, and scattering techniques in concert with theoretical modeling and computation. Studies of RE-POM single-molecule magnets (SMMs) have utilized magnetic susceptibility, inelastic neutron scattering, and ab initio calculations. These investigations have allowed characterization of the crystal field splitting of the rare earth(III) ions that is responsible for the SMM properties of slow magnetic relaxation and magnetization quantum tunneling. Such SMMs are promising for applications in quantum computing and molecular spintronics. Photophysical measurements of a family of hybrid RE-POMs with organic ligands have afforded insights into sensitization of Tb(III) and Eu(III) emission through both organic and polyoxometalate chromophores in the same molecule. Detailed

  11. Thermodynamics of rare earths in steelmaking

    International Nuclear Information System (INIS)

    Vahed, A.; Kay, D.A.R.

    1976-01-01

    The standard free energies of formation of the oxides, sulfides and oxysulfides of cerium and lanthanum under steelmaking conditions have been calculated and used to predict the behavior of rare earths in steelmaking. Deoxidation and desulfurization constants, expressed in terms of Henrian activities, have been used to construct a precipitation diagram which indicates the sequence of rare earth inclusion formation. An enrichment of lanthanum in (RE)-oxysulfide and cerium in (RE)-sulfide is predicted. It is also predicted that rare earths should be able to reduce the soluble oxygen and sulfur contents of liquid steel well below the contents presently found in most industrial and laboratory practices. A simple method of calculating steelmaking additions for complete rare earth control of inclusion composition is presented

  12. Theory of Rare-Earth Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A mean-field random alloy theory combined with a simple calculation of the exchange interaction J(c,Q) is shown to quantitatively account for the phase diagrams for alloys of rare-earth metals with Y, Lu, Sc, and other rare-earth metals. A concentration-dependent J(c,Q) explains the empirical 2...

  13. Enhanced pinning in mixed rare earth-123 films

    Science.gov (United States)

    Driscoll, Judith L [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2009-06-16

    An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.

  14. Rare earths production and marketing opportunities

    International Nuclear Information System (INIS)

    Falconnet, P.G.

    1988-01-01

    The rare earths (RE) market is relatively small. The total production during 1968 was only 10000 tons (REO) which rose to 27000 tons (REO) during 1985. The three major areas of application, which are volume market for ceric rare earths are catalysts, glass ceramics and metallurgy. Among the other uses of rare earths, the permanent magnets, lamp phosphors and fine ceramics have registered significant growth in RE consumption. Monazite and bastnasite are the main natural source for rare earths and processing of these for one of the rare earths in high demand leads to over production of some others not in demand, thus creating a balance problem. The growth in RE market has always been influenced by the technology shifts and product substitution. For example, the RE consumption during 1974/76 for desulfurization of steel had substantially decreased due to the usage of calcium. Similarly, 1985 had witnessed a drastic cut in the use of REs in fluid cracking due to the introduction of stabilized zeolites which contain less REO. Thus, the overall compound growth rate of demand was only 3.9 % per year during the period 1970-1985. At present, 37 % of the rare earths production goes to the glass/ceramics industry, 33 % for catalyst and 25 % to metallurgy. The price of REs constantly shows a downward trend. This trend coupled with the rapid changes taking place in the various technological fields, demands greater flexibility and high marketing skills from the RE producers. The key factor for future expansion of RE market will be the development of 'high volume' application of ceric rare earths. (author) 2 figs., 8 tabs

  15. Investigation and analytical application of thorium and uranium complexes with amino acids

    International Nuclear Information System (INIS)

    Korenman, I.M.; Sergeev, G.M.

    1979-01-01

    The coordination is investigated of thorium (4) and uranium (6) with aminoacids, particularly, with aspartic acid. With the latter the metals form chelates, which have a particular structure and a stationary inner sphere. A description is made of the composition, conditions of formation (gr H), and a stability of some asparaginate complexes of actinoids, the coordination methods of aspartic acid. An asparaginatometric method is proposed for a direct complexometric titration of microgram amounts of thorium in the presence of uranium, zirconium and rare earth elements with photometric indication. As metal-chromic indicators the sulfophthaleins are applied. The given procedure allows measurement of impurities of accompanying elements, viz., beryllium (up to 1%) in thorium preparations. Application of aspartic acid and arsenazo 1 indicator permits us to define Be(2) with a relative error not higher than 5% in thorium compounds, which exclude the analysis by other methods

  16. Afganistan and rare earths

    Directory of Open Access Journals (Sweden)

    Emilian M. Dobrescu

    2013-05-01

    Full Text Available On our planet, over a quarter of new technologies for the economic production of industrial goods, are using rare earths, which are also called critical minerals and industries that rely on these precious items being worth of an estimated nearly five trillion dollars, or 5 percent of world gross domestic product. In the near future, competition will increase for the control of rare earth minerals embedded in high-tech products. Rare minerals are in the twenty-first century what oil accounted for in the twentieth century and coal in the nineteenth century: the engine of a new industrial revolution. Future energy will be produced increasingly by more sophisticated technological equipment based not just on steel and concrete, but incorporating significant quantities of metals and rare earths. Widespread application of these technologies will result in an exponential increase in demand for such minerals, and what is worrying is that minerals of this type are almost nowhere to be found in Europe and in other industrialized countries in the world, such as U.S. and Japan, but only in some Asian countries, like China and Afghanistan.

  17. Preparing rare earth-silicon-iron-aluminum alloys

    International Nuclear Information System (INIS)

    Marchant, J.D.; Morrice, E.; Herve, B.P.; Wong, M.M.

    1980-01-01

    As part of its mission to assure the maximum recovery and use of the Nation's mineral resources, the Bureau of Mines, investigated an improved procedure for producing rare earth-silicon alloys. For example, a charge consisting of 681 grams of mixed rare-earth oxides, 309 grams of ferrosilicon (75 wt-pct Si), and 182 grams of aluminum metal along with a flux consisting of 681 grams of CaO and 45 grams of MgO was reacted at 1500 0 C in an induction furnace. Good slag-metal separation was achieved. The alloy product contained, in weight-percent, 53 RE, 28 Si, 11 Fe, and 4 Al with a rare earth recovery of 80 pct. In current industrial practice rare earth recoveries are usually about 60 pct in alloy products that contain approximately 30 wt-pct each of rare earths and silicon. Metallurgical evaluations showed the alloys prepared in this investigation to be as effective in controlling the detrimental effect of sulfur in steel and cast iron as the commercial rare earth-silicon-iron alloys presently used in the steel industry

  18. Rare Earth Garnet Selective Emitter

    Science.gov (United States)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  19. Alaska's rare earth deposits and resource potential

    Science.gov (United States)

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  20. Rare earth metal alloy magnets

    International Nuclear Information System (INIS)

    Harris, I.R.; Evans, J.M.; Nyholm, P.S.

    1979-01-01

    This invention relates to rare earth metal alloy magnets and to methods for their production. The technique is based on the fact that rare earth metal alloys (for e.g. cerium or yttrium) which have been crumbled to form a powder by hydride formation and decomposition can be used for the fabrication of magnets without the disadvantages inherent in alloy particle size reduction by mechanical milling. (UK)

  1. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  2. Application of the Alternative Traditional and Selective Precipitation Routes for Recovery of High Grade Thorium Concentrates from Egyptian Crude Monazite Sand

    International Nuclear Information System (INIS)

    Helaly, O.S.

    2017-01-01

    Process flow sheet selection for thorium separation in relatively high grade concentrate from Egyptian crude monazite sand was carried out. Traditional selective leaching and precipitation routes were applied after sulfuric acid digestion upon Egyptian crude monazite for this purpose. The resultant hot grey sulfate paste from monazite digestion was firstly cooled to ambient temperature then leached by normal water into two successive stages. The first leach solution contained most of the thorium which represents about 88% of the present thorium and its concentration in the liquor reached 4.5 g Th/l. This liquor also contains most of the free acids and major of impurities especially iron (more than 6.3 g Fe/l). Different routes were tested to evaluate the suitable conditions that verify maximum recovery of thorium from such monazite sulfate solution and producing relatively high grade concentrate. Two different possible traditional and selective methods were involved, namely; thorium initial precipitation with rare earth elements as double sulfate or its precipitation as phosphate through acidity control at ph 1.1 which seems to be the simple, brief and convenient route to accomplish this purpose. Further separation and/or upgrading of thorium from these precipitates (after conversion to hydroxides or without) were conducted through re-dissolution in hydrochloric acid and re-precipitation with different selective reagents in the form of hydroxide, oxalate or fluoride was also included. The target was accomplished through thorium co-precipitation with light rare earth elements as double sulfate, followed by its recovery from this fraction, where a concentrate of grade 68.3% was produced

  3. Rare earth impact on glass structure and alteration kinetics

    International Nuclear Information System (INIS)

    Molieres, E.

    2012-01-01

    This work is related to the question of the geological deep repository of high-level waste glass. These wastes include fission products and minor actinides, elements which can be simulated by rare earths. As new glass compositions could enable increased rare earth concentrations, it is crucial to know and understand rare earth impact on glass structure on the one hand, and on glass alteration kinetics or their incorporation into an altered layer. This work studied simplified borosilicate glasses in order to limit synergetic effects between rare earths and other elements. Various complementary techniques were used to characterize pristine and altered glasses (solid-high resolution NMR, Raman spectroscopy, fluorescence, SIMS, SAXS). Firstly, the structural role of a rare earth is discussed and is compared to a calcium cation. The local environment of rare earths is also probed. Secondly, rare earth (nature and concentration) impact on several alteration regimes was studied (initial rate, rate drop). Then, after alteration, rare earth elements being retained within the altered layer, the structural impact of rare earth elements (and their local environment) in this alteration layer was also investigated. (author) [fr

  4. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  5. Process for lead removal from rare earth

    International Nuclear Information System (INIS)

    Bollat, A.; Sabot, J.L.

    1987-01-01

    An aqueous solution of rare earth chlorides and lead chlorides, with a chloride concentration of at least 2 moles/liter and a pH between 2 and 4, is extracted by an alkylphosphonic acid ester and rare earth(s) is (are) recovered from the organic phase [fr

  6. Long-term health effects of thorium compounds on exposed workers: the complete blood count

    International Nuclear Information System (INIS)

    Conibear, S.A.

    1981-01-01

    Two hundred seventy-three men exposed to thorium and other rare earths between 1940 and 1973 at a plant which refined monazite sand were studied at Argonne National Laboratory from 1976 to 1980. In vivo measurements of body burden were made by counting gamma rays emitted by daughter products of retained thorium and by measuring exhaled thoron. Health status was ascertained through questionnaire, physical examination, and clinical laboratory tests. Measured body burden was found to be higher in those with a history of longer exposure. All parameters of the complete blood count were examined for evidence of an effect due to thorium. Comparisons of high and low body burden groups showed that only age and cigarette smoking had an effect on complete blood count parameters

  7. Distribution of rare earths in liver of mice administered with chloride compounds of 12 rare earths

    International Nuclear Information System (INIS)

    Shinohara, A.; Chiba, M.; Inaba, Y.

    1998-01-01

    Full text: Rare earths are used in high technology field, however, the information on their biological effects are not sufficient. The behaviour of rare earths in biology is of interest in connection with their toxicity. In the present study, the distribution of rare earths in liver of mice administered with these elements was investigated. The effects on Ca and other biological essential elements were also determined. Male mice (5 weeks old) were injected with one of 12 kinds of rare earths (chlorides of Y, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er and Yb) at the dose of 25 mg/KXg body weight. After 20 hours of administration, mice were sacrificed, then liver and other organs were taken out. Liver was homogenized and separated by centrifugation. The concentrations of rare earths administered were measured by microwave-induced plasma-mass spectrometry (MIP-MS) after acid digestion. The concentrations of administered elements in whole liver were about 100μg/g (wet weight), where the difference between elements was few. Distribution amounts of elements administered in four fractions were following order; 700μg precipitate > mitocondrial fraction > microsomal fraction > cytosol. The relative contents in these fractions, however, was different depending on the element administered. Calcium concentrations in liver of administered mice were higher than those of control mice. Increase of Ca concentrations were observed in all four fractions and the increase ratio was also dependent on the elements administered

  8. Red-emitting alkaline-earth rare-earth pentaoxometallates powders ...

    Indian Academy of Sciences (India)

    Moisture-insensitive metal carboxylates that are mostly liquids at room temperature have been first applied to ... alkaline-earth ion, or possibly even a rare-earth ion and alkali metal ... sion spectra of the powders were recorded on a fluorescent.

  9. Rare metal and rare earth pegmatites of Western India

    International Nuclear Information System (INIS)

    Maithani, P.B.; Nagar, R.K.

    1999-01-01

    Rajasthan Mica Belt in western India is one of the three major mica-producing Proterozoic pegmatite belts of India, the others being in Bihar and Andhra Pradesh. The pegmatites of these mica belts, in general, are associated with the rare metal (RM) and rare earth element (REE)-bearing minerals like columbite-tantalite, beryl, lepidolite and other multiple oxides. RM-REE pegmatites of Gujarat are devoid of commercially workable mica. These pegmatites are geologically characterised in this paper, based on their association with granite plutons geochemistry, and RM and REE potential. In addition to RM and RE-bearing pegmatites, granites of the Umedpur area, Gujarat also show anomalous concentration (0.97 wt%) of rare metals (6431 ppm Nb, 1266 ppm Ta, 454 ppm Sn, 173 ppm W), (1098 ppm Ce 1.36% Y 2 O 3 ) rare earths, and uranium (0.40% eU 3 O 8 ). Eluvial concentrations in the soil and panned concentrate (0.04-0.28 wt%) analysed up to 7.4%Nb 2 O 5 , 836 ppm Ta, and 1.31% Y. Discrete columbite-tantalite and betafite have been identified in these concentrates in addition to other minerals like zircon, rutile, sphene and xenotime. This area with discrete RM R EE mineral phases could be significant as a non-pegmatite source for rare metal and rare earths. (author)

  10. Rare earth industries: Upstream business

    International Nuclear Information System (INIS)

    2011-01-01

    Evidently, many factors contribute to the rush to invest in the unprecedented revival of rare earths. One major reason has to do with the rapidly growing world demand. The other reason relates to the attractive price of rare earths which is projected to stay strong in the coming years. This is because supply is predicted to have difficulty keeping pace with demand. Experts believe a major driver of global rare earths demand is the forecasted expansion in the green economy. Climate change is a major driver of the green economy. With climate change, there is concern that the uncontrolled emission of the greenhouse gases, especially carbon dioxide, can lead to catastrophic consequences for the world. This has been documented in countless studies and reports. Another important driver of the green economy is the growing shortfall in many resources. The world is now experiencing declines in key resources to meet a growing global demand. With more than 6 billion people now in the world and growing, the pressure exerted on global resources including energy, water and food is a major concern. Recent demand surge in China and India has dented the supply position of major world resources. The much quoted Stern Report from the UK has warned that, unless immediate steps are taken to reduce greenhouse gas emissions, it may be a costly exercise to undertake the corrections later. Since energy use, especially fossil fuels, is a major contributor to climate change, greener options are being sought. Add to that the fact that the fossil energy resources of the world are declining, the need to seek alternatives becomes even more urgent. One option is to change to renewable energy sources. These include such potentials as solar, wind and biomass. Rare earths have somehow become a critical feature of the technologies in such renewable. Another option is to improve the efficient use of energy in transport, buildings and all the other energy intensive industries. Again the technologies in

  11. Rare earth - no case for government intervention

    OpenAIRE

    Georg Zachmann

    2010-01-01

    China has officially restricted exports of rare earth for several years and announced this year it will further tighten exports. Rare earth is a group of 17 different metals, usually found clustered together. These metals have hundreds of different industry applications. For example, they are used in certain high capacity magnets, batteries and lasers. As the rare earth elements are used in sectors that are assumed to have an over-proportionate growth potential (eg. green-technology), policy ...

  12. Effects of radioactive by-products along the extraction of rare earth elements on aquatic and terrestrial organisms

    International Nuclear Information System (INIS)

    Findeiss, Matthias

    2016-01-01

    Lanthanides, also called rare earth elements (REE) are key elements in modern technologies and especially in green technologies such as energy generation through wind power. Thus, they are of considerable economic importance with a global production of around 124 000 t REE per year. A detailed environmental assessment with identification of all risks is the foundation to assess the sustainability of mining, processing and separation processes. Rare earth elements usually are found together with actinides such as uranium and thorium. Therefore, actinides and their decay products are simultaneously enriched during the processing of REE. In addition to conventional REE minerals such as monazite or bastnasite, the mineral eudialyte can be used as a REE source. Even though, the total share of REE is low, the most important REE needed for industrial usages are strongly represented in eudialyte. Furthermore, the proportion of radioactive impurities is very low. Eudialyte is currently not used as source mineral, but might play a bigger role on the global market in the future.Little information about the environmental impacts of REE-production is available to the public, in particular with regard to its radioactive by-products. Thorium is the most prominent of these and has therefore been characterized in detail for its ecotoxicity. A first goal of this work was to evaluate the a- emitter thorium and its impact on the environment. To this aim, an intensive literature search was conducted and results were prepared including the long-term effects of thorium dust and gaseous emissions. Therefore and because ecotoxicological testing of gaseous emissions was technically difficult and environmentally less relevant - unlike its immense impact for exposed industrial workers and bystanders - the water effluent und solid waste streams were investigated with aquatic and terrestrial toxicological experiments. The knowledge gained is meant to supplement the missing data for thorium. A

  13. Effects of radioactive by-products along the extraction of rare earth elements on aquatic and terrestrial organisms

    Energy Technology Data Exchange (ETDEWEB)

    Findeiss, Matthias

    2016-12-13

    Lanthanides, also called rare earth elements (REE) are key elements in modern technologies and especially in green technologies such as energy generation through wind power. Thus, they are of considerable economic importance with a global production of around 124 000 t REE per year. A detailed environmental assessment with identification of all risks is the foundation to assess the sustainability of mining, processing and separation processes. Rare earth elements usually are found together with actinides such as uranium and thorium. Therefore, actinides and their decay products are simultaneously enriched during the processing of REE. In addition to conventional REE minerals such as monazite or bastnasite, the mineral eudialyte can be used as a REE source. Even though, the total share of REE is low, the most important REE needed for industrial usages are strongly represented in eudialyte. Furthermore, the proportion of radioactive impurities is very low. Eudialyte is currently not used as source mineral, but might play a bigger role on the global market in the future.Little information about the environmental impacts of REE-production is available to the public, in particular with regard to its radioactive by-products. Thorium is the most prominent of these and has therefore been characterized in detail for its ecotoxicity. A first goal of this work was to evaluate the a- emitter thorium and its impact on the environment. To this aim, an intensive literature search was conducted and results were prepared including the long-term effects of thorium dust and gaseous emissions. Therefore and because ecotoxicological testing of gaseous emissions was technically difficult and environmentally less relevant - unlike its immense impact for exposed industrial workers and bystanders - the water effluent und solid waste streams were investigated with aquatic and terrestrial toxicological experiments. The knowledge gained is meant to supplement the missing data for thorium. A

  14. A study on dehydration of rare earth chloride hydrate

    International Nuclear Information System (INIS)

    Cho, Yong Zun; Eun, Hee Chul; Son, Sung Mo; Lee, Tae Kyo; Hwang, Taek Sung

    2012-01-01

    The dehydration schemes of rare earth (La, Ce, Nd, Pr, Sm. Eu, Gd, Y) chloride hydrates was investigated by using a dehydration apparatus. To prevent the formation of the rare earth oxychlorides, the operation temperature was changed step by step (80→150→230 degree C) based on the TGA (thermo-gravimetric analysis) results of the rare earth chloride hydrates. A vacuum pump and preheated Ar gas were used to effectively remove the evaporated moisture and maintain an inert condition in the dehydration apparatus. The dehydration temperature of the rare earth chloride hydrate was increased when the atomic number of the rare earth nuclide was increased. The content of the moisture in the rare earth chloride hydrate was decreased below 10% in the dehydration apparatus.

  15. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  16. An Overview of Rare Earth Science and Technology

    Science.gov (United States)

    Gschneidner, Karl, Jr.

    2012-02-01

    Currently rare earth science and technology is robust: this includes all the major branches of science -- biochemistry, chemistry, materials and physics. There are, however, currently some anomalies and distortions especially in the technology and applications sector of the rare earth field, which is caused by the dominance of China on the sales of rare earths and rare earth containing products. For the past 5 to 10 years ˜95% of rare earths utilized in commerce came from China. Although Chinese actions have lead to sudden and large price spikes and export embargoes, the rare earths are still available but at a higher cost. The start up of production in 2011 at mines in the USA and Australia will alleviate this situation in about two years. Basic and applied research on the condensed matter physics/materials science has hardly been impacted by these events, but new research opportunities are opening up especially with regard to the USA's military and energy security. Magnets seems to be the hottest topic, but research on battery materials, phosphors and catalysts are also (or should be) strongly considered.

  17. Determination of rare earths in their extraction processing

    International Nuclear Information System (INIS)

    You Jiannan; Zhang Yuqin

    1989-01-01

    A method for determination of rare earths in ores, ion-exchange resins and solution samples has been developed. The ore is molten with sodium peroxide and the molten sample is leached with triethenol amine and sodium citrate. In weak acid medium, the rare earths can be extracted by PMBP-phenol solution, and stripped with formic acid. In the acetic acidsodium acetate buffer medium of pH3, the spectrophotometric determination of rare earths with arsenazo M has been made. The rare earths in ion-exchange resins can be directly determined by spectrophotometry after being leached with hydrochloric acid and at heated condition. The rare earths with arsenazo M or a red complex. The maximum absorption of the complex is at 640 nm, and the molar absorption is 8.0 x 10 4 L centre dot mol -1 centre dot cm -1 . While the range of determination is 0.005%-0.5% and 0.001-1.0 g/L, the relative standard deviation is less than 5%, and recovery of rare earths is 98.5-105%. The method is rather simple and rapid

  18. State of rare earth impurities in gallium and indium antimonides

    International Nuclear Information System (INIS)

    Evgen'ev, S.B.; Kuz'micheva, G.M.

    1990-01-01

    State of rare earth impurities in indium and gallium antimonides was studied. Results of measuring density and lattice parameter of samples in GaSb-rare earth and InSb-rare earth systems are presented. It is shown that during rare earth dissolution in indium and gallium antimonides rare earth atoms occupy interstitial positions or, at least, are displaced from lattice points

  19. Monazite upgradation and production of high pure rare earths

    International Nuclear Information System (INIS)

    Asnani, C.K.; Mohanty, D.; Kumar, S.S.

    2014-01-01

    Rare earth extraction from monazite and further processing of mixed rare earth chlorides for producing individual high pure rare earths involves a complex flowsheet based on solvent extraction process. Apart from involving multiple extractions, scrubbing and stripping operations, the flowsheet requires optimization of critical parameters such as solvent molarity, solvent saponification level and recycling of product solutions as reflux to ensure preferential upload of required rare earths to generate high purity product. This paper tracks monazite flow from the raw sand feed through to the monazite product and its processing to generate rare earths of internationally acceptable quality

  20. Rare earth oxyhydrides and preparation process

    International Nuclear Information System (INIS)

    Diaz, H.

    1986-01-01

    Rare earth oxyhydrides of formula RE 1-q Th q Ni 5-p M p O x H y are claimed. RE is a rare earth, Th can be replaced by Yt, M is Cu, Mn, Al, Fe, Cr or Co, o O C and the hydrides are oxidized. They are catalysts for various chemical reactions [fr

  1. Rare Earth Elements Distribution in Beryl

    International Nuclear Information System (INIS)

    El Gawish, H.K.; Nada, N.; Ghaly, W.A.; Helal, A.I.

    2012-01-01

    Laser ablation method is applied to a double focusing inductively coupled plasma mass spectrometer to determine the rare earth element distribution in some selected beryl samples. White, green and blue beryl samples are selected from the Egyptian eastern desert. Distributions of chondrite- normalized plot for the rare earth element in the selected beryl samples are investigated

  2. Rare Earth-Activated Silica-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    C. Armellini

    2007-01-01

    Full Text Available Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented.

  3. Rare earth intermetallic compounds produced by a reduction-diffusion process

    International Nuclear Information System (INIS)

    Cech, R.E.

    1975-01-01

    A reduction-diffusion process is given for producing novel rare earth intermetallic compounds, such as cobalt--rare earth intermetallic compounds, especially compounds useful in preparing permanent magnets. A particulate mixture of rare earth metal halide, cobalt and calcium hydride is heated to effect reduction of the rare earth metal halide and to diffuse the resulting rare earth metal into the cobalt to form the intermetallic compound

  4. Rare earth elements materials production from apatite ores

    International Nuclear Information System (INIS)

    Anufrieva, A V; Buynovskiy, A S; Makaseev, Y N; Mazov, I N; Nefedov, R A; Sachkov, V I; Valkov, A V; Andrienko, O S; Stepanova, O B

    2016-01-01

    The paper deals with the study of processing apatite ores with nitric acid and extraction of the rare earth elements. The rare earth elements can be successfully separated and recovered by extraction from the nitrate- phosphate solution, being an tributyl phosphate as extraction agent. The developed scheme of the processing apatite concentrate provides obtaining rare earth concentrates with high qualitative characteristics. (paper)

  5. Rare earth industries; Moving Malaysia's Green Economy Forward

    International Nuclear Information System (INIS)

    2011-08-01

    There is a famous saying, Where there is risk, there is opportunity. Rare earths present both health and environmental risks as well as potential economic opportunities. However, the risks are manageable thanks to improved technologies and a better understanding of the implications on health and the environment. This explains why there is a rush by many countries to reopen old mines and increase investment in the production of rare earths concentrate and their high value downstream products. Why is there such a scramble to risk money on rare earths? What have ignited global demand? Where are the opportunities? How are the risks associated with rare earths managed? Can Malaysia benefit from this new growth industry? What should be our strategies? This report, produced by the joint Working Group of the Academy of Sciences Malaysia (ASM) and the Majlis Professor Negara (MPN), discusses the science of rare earths and their business prospects; and proposes some strategic directions for Malaysia. The analysis is based on information culled from various secondary sources as well as the groups engagement with experts from the Rare Earths Society of China. (author)

  6. Enzymatic determination of rare earth elements using pyrophosphatases

    International Nuclear Information System (INIS)

    Shekhovtsova, T.N.; Pirogova, S.V.; Fedorova, O.M.; Dolmanova, I.F.; Bajkov, A.A.

    1993-01-01

    A highly sensitive(determination limit 8x10 -6 -4x10 -4 μ g/m) and selective enzymatic method for determination of rare earth elements has been developed. The method is based on inhibition action of rare earths on the catalytic activity of pyrophosphates isolated from bakery geast and E.Coli. The mechanism of the rare earth element action, corresponding to competitive inhibition, has been established

  7. Determination of rare earth elements, thorium and uranium by inductively coupled plasma mass spectrometry and strontium isotopes by thermal ionization mass spectrometry in soil samples of Bryansk region contaminated due to Chernobyl accident

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Yonehara, H.; Kurotaki, K.; Shiraishi, K.; Ramzaev, V.; Barkovski, A.

    2001-01-01

    Inductively coupled plasma mass spectrometric (ICP-MS) determination of rare earth elements (REEs), thorium and uranium in forest, pasture, field and kitchen garden soils from a Russian territory and in certified reference materials (JLK-1, JSD-2 and BCR-1) is described. In addition to concentration data, strontium isotopic composition of the soil samples were measured by thermal ionization mass spectrometry. The measurements contributed to the understanding of the background levels of these elements in an area contaminated due to Chernobyl accident. There was not a significant variation in the concentration of REEs at different depth levels in forest soil samples, however, the ratio of Th/U varied from 3.32 to 3.60. Though concentration of U and Th varied to some extent, the ratio did not show much variation. The value of 87 Sr/ 86 Sr ratio, was in the top layer soil sample relatively higher than in the lower layers. (author)

  8. Determination of thorium and uranium isotopes in the mining lixiviation liquor samples

    International Nuclear Information System (INIS)

    Reis Júnior, Aluísio de Souza; Monteiro, Roberto Pellacani Guedes

    2017-01-01

    The alpha spectrometric analysis refers to determination of thorium and uranium isotopes in the mining lixiviation liquor samples. The analytical procedure involves sample preparation steps for rare earth elements, thorium and uranium separation using selective etching with hydrofluoric acid and further radiochemical separation of these using TRU chromatographic resins (Eichrom Industries Inc. USA) besides electroplating of the isolated radionuclides. An isotopic tracer is used to determine the overall chemical yield and to ensure traceability to a national standard. The results are compared to results obtained for the same samples by Becquerel laboratory. We improved the method looking for reproducibility and isotopes isolation as required by alpha spectrometry and the method showing effective in analysis of mining liquor. (author)

  9. Determination of thorium and uranium isotopes in the mining lixiviation liquor samples

    Energy Technology Data Exchange (ETDEWEB)

    Reis Júnior, Aluísio de Souza; Monteiro, Roberto Pellacani Guedes, E-mail: reisas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The alpha spectrometric analysis refers to determination of thorium and uranium isotopes in the mining lixiviation liquor samples. The analytical procedure involves sample preparation steps for rare earth elements, thorium and uranium separation using selective etching with hydrofluoric acid and further radiochemical separation of these using TRU chromatographic resins (Eichrom Industries Inc. USA) besides electroplating of the isolated radionuclides. An isotopic tracer is used to determine the overall chemical yield and to ensure traceability to a national standard. The results are compared to results obtained for the same samples by Becquerel laboratory. We improved the method looking for reproducibility and isotopes isolation as required by alpha spectrometry and the method showing effective in analysis of mining liquor. (author)

  10. Determination of rare earth elements, hafnium and cadmium in sintered pellets of mixed thorium and uranium oxides by neutron activation

    International Nuclear Information System (INIS)

    Cardoso, S.N.M.

    1987-01-01

    This work shows the development of a method for determination of the rare-earth elements (Eu, Sm, Dy and Gd), Hf and Cd contents in sinterized U and Th mixed oxides by neutron activation analysis. The sample is dissolved in nitric/fluoridric (0,1% HF) medium, to dryness and redissolved in 6N HCl solution. The Hf is extracted into organic phase (0,5 M TTA/benzene), irradiated and analysed through 181 Hf isotope energy peak. The aqueous phase is treated with NH 4 OH for the precipitation of hidroxides. Then, these are dissolved in 6N HNO 3 solution. The extraction of U and Th is made in two steps, one with TBP/CCl 4 and another with 0,5 M TTA/C 6 H 6 . Then the rare-earth elements and Cd are irradiated and determined by gamma spectrometry. (author) [pt

  11. 12 Ministries Control Rare Earth Exports

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>"It is very natural to reserve rare earth as a strategic resource.Many countries do this,including China."On April 8,Sun Lihui,Vice Director of Metal Section of Chemicals Import & Export Commerce Chamber of China Minmetals Corporation told a reporter that as early as 2006,China has launched a strategic plan for rare earth,"but it was interrupted by the subsequent financial crisis."

  12. Emerging industrial processes for low grade rare earth mineral concentrates

    International Nuclear Information System (INIS)

    Soldenhoff, Karin; Ho, Elizabeth

    2015-01-01

    Historically rare earth recovery has mainly been derived from the processing of monazite, bastnasite and xenotime containing ores amenable to beneficiation, yielding high grade mineral concentrates. A notable exception is the recovery of heavy rare earths from ionic clays in Southern China. Recently, projects are being proposed to treat a range of mineral concentrates which tend to be lower grade with wide ranging modal mineralogy for rare earths and associated gangue minerals. This has a significant impact on processing routes. This paper discusses processes proposed for emerging rare earth producers and how different projects have responded to particular challenges including: Control of phosphorous due to the presence of xenotime or monazite type minerals; Control of phosphorous due to the presence of rare earth containing apatite; Rare earth recovery from polymetallic ores; Control of radionuclides in rare earth processing, etc.

  13. Application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) of the rare earth elements (REEs) in beneficiation rare earth waste from the gold processing: case study

    Science.gov (United States)

    Bieda, Bogusław; Grzesik, Katarzyna

    2017-11-01

    The study proposes an stochastic approach based on Monte Carlo (MC) simulation for life cycle assessment (LCA) method limited to life cycle inventory (LCI) study for rare earth elements (REEs) recovery from the secondary materials processes production applied to the New Krankberg Mine in Sweden. The MC method is recognizes as an important tool in science and can be considered the most effective quantification approach for uncertainties. The use of stochastic approach helps to characterize the uncertainties better than deterministic method. Uncertainty of data can be expressed through a definition of probability distribution of that data (e.g. through standard deviation or variance). The data used in this study are obtained from: (i) site-specific measured or calculated data, (ii) values based on literature, (iii) the ecoinvent process "rare earth concentrate, 70% REO, from bastnäsite, at beneficiation". Environmental emissions (e.g, particulates, uranium-238, thorium-232), energy and REE (La, Ce, Nd, Pr, Sm, Dy, Eu, Tb, Y, Sc, Yb, Lu, Tm, Y, Gd) have been inventoried. The study is based on a reference case for the year 2016. The combination of MC analysis with sensitivity analysis is the best solution for quantified the uncertainty in the LCI/LCA. The reliability of LCA results may be uncertain, to a certain degree, but this uncertainty can be noticed with the help of MC method.

  14. Thermogravimetric study of rare earth concentrates

    International Nuclear Information System (INIS)

    Delyagejd, V.V.; Anisimova, V.N.; Eremenko, Z.V.; Kutsev, V.S.

    1974-01-01

    Methods of thermogravimetric, chemical and phase analysis were used in measuring the concentration of rare-earth elements of different origins. At temperatures 400-800 deg C a gradual decomposition of fluorocarbonates takes place leading to the formation of derivatives of corresponding oxides and oxyfluorides. For concentrates containing siderite the process takes place at 550-600 deg C followed by oxidation of bivalent iron into trivalent state. Reaction of rare-earth elements with sodium carbonate and the increase in the concentration of the latter results in a narrowing down of the interval of temperatures at which decomposition takes place. Under these conditions an intense reaction and a fusion take place leading to the formation of eutectic at 500-600 deg C and further synthesis of sodium fluoride and oxyfluoride derivatives of calcium and rare-earth elements

  15. Cermets based on rhenium and rare earth element oxides

    International Nuclear Information System (INIS)

    Varfolomeev, M.B.; Velichko, A.V.; Zajtseva, L.L.; Shishkov, N.V.

    1977-01-01

    The reduction of perrhenates of rare earth elements and of yttrium by hydrogen and the subsequent sintering have yielded cermets based on rhenium and rare earth element oxides inherent in which are more disperse and homogeneous structures than those of the ''molecular'' rare earth element-Tc cermets. The dispersity of cermets increases in the rare earth elements series from La to Lu. The microhardness of the Re phase in cermets is 490 kgf/mm 2 ; the total microhardness of a cermet is substantially higher

  16. Micromagnetics of rare-earth efficient permanent magnets

    Science.gov (United States)

    Fischbacher, Johann; Kovacs, Alexander; Gusenbauer, Markus; Oezelt, Harald; Exl, Lukas; Bance, Simon; Schrefl, Thomas

    2018-05-01

    The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet’s microstructure is optimized.

  17. ICP-MS determination of rare earth elements, yttrium, uranium and thorium in niobium-tantalum rich samples

    International Nuclear Information System (INIS)

    Sunilkumar, Beena; Padmasubashini, V.

    2013-01-01

    ICP-MS is a powerful and extremely sensitive technique which has been applied successfully for the determination of REEs in diverse geological samples. In the present work, ICP-MS has been applied for the rapid determination of REEs, yttrium as well as uranium and thorium in niobium and tantalum rich samples, using a fluoride fusion method for sample dissolution

  18. Research On Technology Of Making Rare Earth Alloy Having Rare Earth Content ≽30% From Ore (≽40% REO) Using Aluminum Thermal Technology In Arc Furnace

    International Nuclear Information System (INIS)

    Ngo Xuan Hung; Ngo Trong Hiep; Tran Duy Hai; Nguyen Huu Phuc

    2014-01-01

    Arc furnace was used to smelt materials consisting of rare earth ore having rare earth content of ≽40% REO, aluminum as the reducing agent and additives. Rare earth alloy was obtained with rare earth metal content of more than 30%. (author)

  19. Rare earth industry in India

    International Nuclear Information System (INIS)

    Singh, D.S.

    2016-01-01

    Rare Earths (RE) comprises of 17 elements i.e. elements from atomic No. 57-71 (lanthanide series) along with yttrium (atomic No. 39) and scandium (atomic No. 21). They exhibit special electronic, magnetic, optical and catalytic properties. The first 7 elements in the lanthanide series from atomic Nos. 57 to 63 (La to Eu) are called Light Rare Earths (LRE), while the remaining elements from atomic Nos. 64 to 71 (Gd to Lu) are grouped as Heavy Rare Earths (HRE). Scandium and Yttrium have properties similar to HRE. The concentration of the REs in the earth's crust is as high as some other elements including that of copper. The only difference is that REs do not occur as separate minerals amenable for easy exploration and mining and are widely distributed across the earth's surface, hence they are called as REs. Resources In India, monazite has been the principal source of RE. It occurs in association with other heavy minerals, such as ilmenite, rutile, zircon etc. in the beach sands and inland placer deposits. The monazite content in this assemblage varies from negligible quantity to as high as 5%. As per AMD resource estimation, the reported resource of monazite in India is about 11.93 million tons which corresponds with about 6.9 million tons of RE oxides. Although India possesses large deposits of monazite, the heavier RE are not present in sufficient quantities in this mineral. (author)

  20. Leaching of rare earth elements from bentonite clay

    OpenAIRE

    van der Watt, J.G; Waanders, F.B

    2012-01-01

    Due to increasing concerns of global rare earth element shortfalls in the near future, possible alternative sources of rare earth elements have recently become of economic interest. One such alternative is decanting acid mine water originating primarily from abandoned old mines in the Witwatersrand region of the Republic of South Africa. In this study, a novel way of rare earth element removal from the acid mine drainage was employed, making use of bentonite clay, which has very good adsorben...

  1. Recovery of rare earths from red mud

    International Nuclear Information System (INIS)

    Bautista, R.G.

    1992-01-01

    The prospect for the recovery of rare earths from red mud, the bauxite tailings from the production of alumina is examined. The Jamaican red mud by far has the higher trace concentrations of lanthanum, cerium, neodymium, and yttrium. Scandium is also present. The dissolution of the rare earth is a major extraction problem because of the large volume of other materials. The recovery processes that have been proposed include the production of co-products such as iron, alumina, and titanium concentrates, with the rare earths going with the titanium. In this paper a critical examination of the possible processes are presented with the recommended research projects to be carried out

  2. On solubility of rare earth chlorides in water at different temperatures

    International Nuclear Information System (INIS)

    Nikolaev, A.V.; Sorokina, A.A.; Sokolova, N.P.; Kotlyar-Shapirov, G.S.; Bagryantseva, L.I.

    1978-01-01

    Solubility of rare earth chlorides at -5, -10 and -15 deg C is studied. Rare earth chloride solubility dependences on the temperature in the interval from -15 to 50 deg C are presented. Decrease of solubility temperature coefficient to a zero is observed at temperature drop almost for all rare earth chlorides. Solubility temperature coefficient at the same temperature but for different rare earth chlorides reduces appreciably with the growth of rare earth chloride serial number. This testifies to the corresponding decrease of integral solution heat of rare earth chloride crystallohydrates

  3. Rare earth elements and permanent magnets (invited)

    Science.gov (United States)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  4. Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 250C. I. The rare earth chlorides

    International Nuclear Information System (INIS)

    Spedding, F.H.; Weber, H.O.; Saeger, V.W.; Petheram, H.H.; Rard, J.A.; Habenschuss, A.

    1976-01-01

    The osmotic coefficients of the aqueous trichlorides of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y were determined from 0.1 M to saturation at 25 0 C. Semiempirical least-squares equations were obtained for the osmotic coefficients as a function of molality and these equations were used to calculate water activities and mean molal activity coefficients. The water activities of the light rare earth chlorides at constant molalities are higher than for the heavy rare earths, while the mean molal activity coefficients are larger for the heavy rare earths than for the light ones. The above effects are discussed in terms of changes in the cationic radii and hydration of the rare earth ions

  5. China’s Rare Earths Production Forecasting and Sustainable Development Policy Implications

    Directory of Open Access Journals (Sweden)

    Xibo Wang

    2017-06-01

    Full Text Available Because of their unique physical and chemical properties, Rare earth elements (REEs perform important functions in our everyday lives, with use in a range of products. Recently, the study of China’s rare earth elements production has become a hot topic of worldwide interest, because of its dominant position in global rare earth elements supply, and an increasing demand for rare earth elements due to the constant use of rare earth elements in high-tech manufacturing industries. At the same time, as an exhaustible resource, the sustainable development of rare earth elements has received extensive attention. However, most of the study results are based on a qualitative analysis of rare earth elements distribution and production capacity, with few studies using quantitative modeling. To achieve reliable results with more factors being taken into consideration, this paper applies the generic multivariant system dynamics model to forecast China’s rare earth elements production trend and Hubbert peak, using Vensim software based on the Hubbert model. The results show that the peak of China’s rare earth elements production will appear by 2040, and that production will slowly decline afterwards. Based on the results, the paper proposes some policy recommendations for the sustainable development of China’s—and the world’s—rare earth elements market and rare earth-related industries.

  6. Sequential determination of environmental levels of isotopic thorium, uranium and the light rare earth elements within the terrestrial food chain by induced coupled plasma (ICP) and alpha spectrometry

    International Nuclear Information System (INIS)

    Linsalata, P.; Morse, R.; Ford, H.

    1986-01-01

    A radioecological study designed to measure soil to plant and soil to animal (livestock) transfer of Th, U, Ra and the light rare earth elements (REE) in typical and naturally-enhanced radiation environments required the development of radiochemical methods suitable for low-level determinations in a broad suite of environmental matrices including soil, edible vegetables and vegetation, and the major organs and tissues of various livestock. Earlier work has demonstrate the reliability of the methods summarized here for measuring the isotopic thorium and REE content of human feces, and that in the edible portions of various vegetables grown under field conditions. The very high degree of biological discrimination against Th and REE uptake in plants as well as in animal soft tissues necessitated the analysis of typical sample masses of 1-4 kg (fresh weight) to insure reasonably precise (eg., 10-20%) concentration estimates for most of the elements and isotopes of interest. As a result of the ''bone-seeking'' nature and relatively long retention times for these elements in skeletal tissue, typical analytical masses required for analysis of bone range from 40 to 70 g (fresh weight) except for the REE's in which a larger aliquot is recommended when determination is by induced coupled plasma spectrometry

  7. Determination of active oxygen content in rare earth peroxides

    International Nuclear Information System (INIS)

    Queiroz, Carlos A.S.; Abrao, Alcidio

    1993-01-01

    The content of active oxygen in rare earth peroxides have been determined after the dissolution of the samples with hydrocloridic acid in the presence of potassium iodide. The free generated iodine is titrated with sodium thiosulfate using starch as indicator. The oxidation of iodide to the free iodine indicates the presence of a higher valence state rare earth oxide, until now specifically recognized for the oxides of cerium (Ce O 2 ), praseodymium (Pr 6 O 1 1) and terbium (TB 4 O 7 ). recently the authors synthesized a new series of rare earth compounds, the peroxides. These new compounds were prepared by precipitating the rare earth elements complexed with carbonate ion by addition of hydrogen peroxide. the authors demonstrated that all rare earth elements, once solubilized by complexing with carbonate ion, are quantitatively precipitated as peroxide by addition of hydrogen peroxide. (author)

  8. Distribution characteristics of rare earth elements in plants from a rare earth ore area

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; Wang, Y.Q.; Li, F.L.; Xiao, H.Q.; Chai, Z.F.

    2002-01-01

    The contents of eight rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in various plant species taken from a rare earth ore area were determined by instrumental neutron activation analysis. For a given plant, the REE patterns in root, leaf and host soil are different from each other. The REE distribution characteristics in roots of various species are very similar and resemble those in the surface water. The results of this study suggest that there is no significant fractionation between the REEs during their uptake by the plant roots from soil solution. However, the variation of the relative abundance of individual REE occurs in the process of transportation and deposition of REEs in plants. (author)

  9. Mammography with rare earth intensifying screens

    International Nuclear Information System (INIS)

    Maurer, H.J.; Goos, F.

    1987-01-01

    Screens basing on rare earth phosphors with suitable films green or blue sensitive may be used in mammography with grids without diagnostic losses. Highest definition will be obtained with medium densities on film. High-speed screens may reduce dose, but definition is poor. Best compromise between speed and high definition may be reached with relative low thickness of phosphor layers. A system of high definition films (Medichrome) and special rare earth screens give best results. (orig.) [de

  10. Hydrochloric acid leaching of uranium, thorium, radium and rare-earth elements, from an Elliot lake radioactive ore

    International Nuclear Information System (INIS)

    Mahdy, M.A.

    1988-01-01

    Extraction of uranium by commercial methods using sulphuric acid developed a lot of environmental problems. To avoid such problems, other uranium extraction techniques have been adopted including fluorination, chlorination, chlorine assisted leaching, hydrochloric acid leaching, etc. This work is oriented towards the study of the factors controlling the hydrochloric acid leaching. The target of the study is to extract the total amount of U, Th, Ra-226 and rare earth elements. By using a suitable combination of the leaching factors, it was possible to achieve the designed target

  11. Replacing critical rare earth materials in high energy density magnets

    Science.gov (United States)

    McCallum, R. William

    2012-02-01

    High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.

  12. On fluorozirconates and fluorohafnates of rare earths

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Antipov, P.I.; Novoselova, A.V.

    1980-01-01

    It has been shown by the method of X-ray phase analysis that on interaction between rare-earth fluorides and zirconium and hafnium tetrafluorides, compounds with 1:1, 1:2, 1:3 molar ratios of components are formed. Compounds of the LnHfF 4 type are prepared for all rare-earths. Fluoro-metals of the LnHf 2 F 11 composition are typical only of light lanthanides from lanthanum to neodymium, while pentafluorated salts Ln(EF 5 ) 3 are formed in the reaction between EF 4 with fluorides of heavy rare-earth elements from samarium to lutecium, as well as with yttrium trifluoride. Parameters of unit cells of heptafluohafnates and pentafluometallates are determined

  13. Spectral determination of individual rare earths in different classes of inorganic compounds

    International Nuclear Information System (INIS)

    Karpenko, L.I.; Fadeeva, L.A.; Shevchenko, L.D.

    1979-01-01

    The conditions are found allowing to analyze various inorganic compounds for rare-earth elements without separation from non-rare-earth components. The influence of the plasma composition on the intensity of spectral lines of rare-earth elements is studied. The relative intensity of homologous spectral lines of various rare-earth elements remains constant regardless of the plasma composition. The conditions are found for the determination of individual rare-earth elements acting as both alloying additives (Csub(n) -- n x 10 -1 -n x 10 -3 %), and basic components (up to tens of per cent) in different classes of inorganic compounds of 1-7 elements. The general method is developed for the determination of individual rare-earth elements in mixtures of oxides of rare-earth elements, complex fluorides of rare-earth elements and elements of group 2, gallates, borates, germanates, vanadates of rare-earth elements and aluminium; zirconates-titanates of lead and barium, containing modifying additives of rare-earth elements, complex chalcogenides of rare-earth elements and elements of group 5

  14. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis

    International Nuclear Information System (INIS)

    Smith Stegen, Karen

    2015-01-01

    This article sounds the alarm that a significant build-out of efficient lighting and renewable energy technologies may be endangered by shortages of rare earths and rare earth permanent magnets. At the moment, China is the predominant supplier of both and its recent rare earth industrial policies combined with its own growing demand for rare earths have caused widespread concern. To diversify supplies, new mining—outside of China—is needed. But what many observers of the “rare earth problem” overlook is that China also dominates in (1) the processing of rare earths, particularly the less abundant heavy rare earths, and (2) the supply chains for permanent magnets. Heavy rare earths and permanent magnets are critical for many renewable energy technologies, and it will require decades to develop new non-Chinese deposits, processing capacity, and supply chains. This article clarifies several misconceptions, evaluates frequently proposed solutions, and urges policy makers outside of China to undertake measures to avert a crisis, such as greater support for research and development and for the cultivation of intellectual capital. - Highlights: • Rare earths are needed for many efficient lighting and renewable energy technologies. • The industries for rare earths and permanent magnets are dominated by China. • China's reliability is compromised, necessitating non-Chinese mining and processing. • Recycling, substitution and reducing rare earth content are long-term solutions only. • Policy makers should support development of supply chains and intellectual capital

  15. The indispensable role of thorium for creating a sustainable society

    International Nuclear Information System (INIS)

    Kamei, T.

    2012-01-01

    Several approaches are required in parallel for constructing a sustainable society. One of them is to fight against global warming. The other one is to make this world nuclear weapon free. Nuclear power has been used for peaceful purpose because nuclear power produces electricity without emitting CO 2 . Nearly 15% of world electricity is produced by nuclear power. Through nuclear power plant has a possibility of severe accident such as Fukushima Daiichi, its advantage is still valuable for the world. President Obama's speech in Prague in 2009 brought a impact to the world to move toward the world without nuclear weapon. The remaining subject is how to treat dismantled fissionable materials. Existing nuclear power plants utilize uranium because only uranium contains natural occurring fissionable material, uranium-235. The spent uranium fuel contains fissionable plutonium-239. Thus, uranium fuel cycle always accompanies possibility of nuclear proliferation. Thorium plays an important role for both solving global warming and nuclear weapon. Fertile thorium can be used as nuclear fuel by support of fissionable plutonium-239 from spent uranium fuel or weapon head. Preliminary calculation indicates that the USA's and Russia's dismantle nuclear weapon enable to start more than 10 GWe of thorium nuclear power plants. In addition, plutonium-239 obtained from uranium fuel is available of 392 GWe of thorium nuclear power. Uranium-233 coming from thorium is also a fissionable but it is hard to be used for weapon because of its accompanied gamma-ray. Thorium itself is now obtained as by-product of rare-earth mining, which is used for high-tech products including photovoltaic cell, wind-mill, and hybrid-vehicle. However, thorium is not taken care adequately and becomes environmental hazard. Both to take care of environment, to support implementation of high-tech product and to make the world without nuclear weapon, a comprehensive role of thorium will be presented

  16. Handbook on the physics and chemistry of rare earths

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Eyring, L.

    1982-01-01

    This handbook is a six-volume work which covers the entire rare earth field in an integrated manner. Each chapter is a comprehensive, up-to-date, critical review of a particular segment of the field. The first volume is devoted to the rare earth metals, the second to rare earth alloys and intermetallics, and the third and fourth volumes to the non-metallic rare earth materials, including solutions, complexes and bioinorganic substances, in addition to solid inorganic compounds. The electronic structure of these unique elements is the primary basis of understanding their physical, metallurgical and chemical natures. The interrelationship of the 4f and valence electrons and the observed optical, electrical, magnetic, crystallographic, elastic, thermal, mechanical, chemical, geochemical and biological behaviors is brought forth time and again throughout the chapters. Also discussed are the preparative, separation and solution chemistry of the elements and their compounds and the various chemical and physical analytical methods for determining the rare earths in various materials and impurities in a rare earth matrix. Vol. 5 is a update complement of the previous volumes. Volume 6 is concerned with ternary and higher order materials. (Auth.)

  17. Geochemistry of rare earths in main media of clay formation and sedimentation

    International Nuclear Information System (INIS)

    Bonnot-Courtois, C.

    1981-01-01

    This work aims i) at a better knowledge of rare earth behavior in surface conditions and ii) possible use of rare earth as a marker for argilaceous mineral genesis. Chemical properties of rare earths and geochemistry of these elements in main rocks are recalled. Rare earth behaviour during continental alteration process, experimental hydrolysis of various magmatic materials and rare earth geochemistry in argilaceous minerals in continental shelf are examined. Then some aspects of rare earth behaviour in oceans are studied: alteration of sea bed and hydrothermalism rare earth distribution in pelagic sediments red clays of deep seas and manganese nodules. In conclusion rare earth behaviour in sedimentary processes of the exogenous cycle is summarized [fr

  18. Rare earths in iron and steelmaking and gaseous desulphurisation

    International Nuclear Information System (INIS)

    Kay, D.A.R.; Subramanian, S.V.; Meng, V.; Kumar, R.V.

    1985-01-01

    Rare earth (RE) additions, either as mischmetal or rare earth silicide, are used in many ladle treatment processes in modern ferrous metallurgy. In ironmaking they provide the basis for the control of graphite morphology in cast irons and in steelmaking additions are made to aluminum-killed steels for desulphurisation and the control of inclusion composition and morphology. Rare earth oxides may also be used in the desulphurisation of medium calorific value gaseous fuels and stack gases. In this paper, Ce-S-O and La-S-O phase stability diagrams are used to determine the role of the rare earths in the external processing of iron and steel, and gaseous desulphurisation

  19. PROCESS FOR SEPARATING AMERICIUM AND CURIUM FROM RARE EARTH ELEMENTS

    Science.gov (United States)

    Baybarz, R.D.; Lloyd, M.H.

    1963-02-26

    This invention relates to methods of separating americium and curium values from rare earth values. In accordance with the invention americium, curium, and rare earth values are sorbed on an anion exchange resin. A major portion of the rare earth values are selectively stripped from the resin with a concentrated aqueous solution of lithium chloride, and americium, curium, and a minor portion of rare earth values are then stripped from the resin with a dilute aqueous solution of lithium chloride. The americium and curium values are further purified by increasing the concentration of lithium chloride in the solution to at least 8 molar and selectively extracting rare earth values from the resulting solution with a monoalkylphosphoric acid. (AEC)

  20. Squeezing clathrate cages to host trivalent rare-earth guests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Iowa State Univ., Ames, IA (United States). Department of Chemistry; Ames Lab., Ames, IA (United States); He, Yuping [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Mordvinova, Natalia E. [Laboratoire CRISMAT, ENSICAEN, CNRS UMR (France); Lebedev, Oleg [Laboratoire CRISMAT, ENSICAEN, CNRS UMR (France); Kovnir, Kirill [Iowa State Univ., Ames, IA (United States). Department of Chemistry; Ames Lab., Ames, IA (United States)

    2017-11-01

    Strike difference of the trivalent rare-earth cations from their alkali and alkaline-earth peers is in the presence of localized 4f-electrons and strong spin-orbit coupling. Placing trivalent rare-earth cations inside the fullerene molecules or in between the blocks of itinerant magnetic intermetallics gave rise to plethora of fascinating properties and materials. A long-time missing but hardly desired piece is the semiconducting or metallic compound where rare-earth cations are situated inside the oversized polyhedral cages of three-dimensional framework. In this work we present a synthesis of such compounds, rare-earth containing clathrates Ba8-xRxCu16P30. The unambiguous proofs of their composition and crystal structure were achieved by a combination of synchrotron powder diffraction, time-of-flight neutron powder diffraction, scanning-transmission electron microscopy, and electron energy-loss spectroscopy. Our quantum-mechanical calculations and experimental characterizations show that the incorporation of the rare-earth cations significantly enhances the hole mobility and concentration which results in the drastic increase in the thermoelectric performance.

  1. Rare earths: harvesting basic research for technology

    International Nuclear Information System (INIS)

    Jagatap, B.N.

    2014-01-01

    In recent years, rare earths are increasingly becoming a versatile platform for basic research that presents enormous technological potentials. A variety of nano-sized inorganic matrices varying from oxides, phosphates, gallates and aluminates, tungstates, stannates, vanadates to fluorides doped with different lanthanide ions have been synthesized and their optical properties have been investigated in the Chemistry Group, BARC. Another interesting application is laser cooling of solids using rare earth doped glasses with potential applications in remote cooling of electronic devices. Combining the luminescence properties of rare earths with photonic crystals is yet another potent area with wide ranging applications. In this presentation we provide an overview of these developments with examples from the R and D programs of the Chemistry Group, BARC

  2. Contributions to the rare earths to science and technology

    International Nuclear Information System (INIS)

    Spedding, F.H.

    1975-01-01

    This is a brief summary of some areas of science where the rare earths have already played an important role and of other areas where they are almost certain to be helpful. The discovery, abundance, separation, and properties of rare earths are discussed. It is pointed out that the rare earths comprise almost one-fourth of the known metals, and their alloys a third of the possible alloys

  3. Separation of rare earths by liquid-liquid extraction

    International Nuclear Information System (INIS)

    Helgorsky, M.; Leveque, M.

    1978-01-01

    The elements of the rare earth family are characterised by very similar chemical properties connected with their special electronic structure. The purification of the rare earths sold by RHONE-POULENC is now done by the liquid-liquid extraction technique. The development of different extracting agents and also counter-current techniques have led to solvent extraction replacing the other fractionation techniques because of its efficiency and low cost. There are usually several possible solutions to the main problem of choosing the extracting agent and its mode of use. The difficulty is to find the most economical one taking account of the thermodynamic and hydrodynamic constraints of the solvent. It is shown how ideas about the separation have changed over the course of the development of the uses of the rare earths, ending finally in an integrated scheme that makes RHONE-POULENC a world leader of manufacturers of separated rare earths [fr

  4. Rare-earth metal prices in the USA ca. 1960 to 1994

    Science.gov (United States)

    Hedrick, James B.

    1997-01-01

    Rare-earth metal prices were compiled from the late 1950s and early 1960s through 1994. Although commercial demand for rare-earth metals began in 1908, as the alloy mischmetal, commercial quantities of a wide range of individual rare-earth metals were not available until the late 1950s. The discovery of a large, high-grade rare-earth deposit at Mountain Pass. CA, USA, in 1949, was significant because it led to the production of commercial quantities or rare-earth elements that reduced prices and encouraged wider application of the materials. The availability of ore from Mountain Pass, and other large rare-earth deposits, especially those in Australia and China, has provided the world with abundant resources for rare-earth metal production. This availability, coupled with improved technology from Government and private-sector metallurgical research, has resulted in substantial decreases in rare-earth metal prices since the late 1950s and early 1960s. Price series for the individual rare-earth metals (except promethium) are quoted on a kilogram basis from the late 1950s and early 1960s through 1994. Prices are given in US dollars on an actual and constant dollar basis. Industrial and economic factors affecting prices during this time period are examined.

  5. Rare earth niobate coordination polymers

    Science.gov (United States)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May

    2018-03-01

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.

  6. Mutual solubility between hexane and three-n-butyl phosphate solvates of lanthanide(III) and thorium(IV) nitrates at various temperatures

    International Nuclear Information System (INIS)

    Keskinov, V.A.; Lishuk, V.V.; Pyartman, A.K.

    2007-01-01

    Phase diagrams of binary liquid systems of hexane-rare earth(III) nitrates solvates (rare earth - neodymium, gadolinium, yttrium, ytterbium, lutetium) and thorium(IV) with tri-n-butylphosphate are studied at different temperatures. Phase diagrams of binary systems consist of fields of homogeneous solutions and field of stratification into two liquid phases (I, II): phase I is enriched by hexane, and phase II - [Ln(NO 3 ) 3 (TBP) 3 ] (Ln=Nd, Gd, Y, Yb and Lu) or [Th(NO 3 ) 4 (TBP) 2 ]. Field of stratification into two liquid phases are decreased with growing temperature in binary systems [ru

  7. Remarks on the thorium cycle

    International Nuclear Information System (INIS)

    Teller, E.

    1978-01-01

    The use of thorium and neutrons to make 233 U would provide energy for many thousands of years. Thorium is more abundant than uranium and 233 U is the best fissile material for thermal neutron reactors. Four approaches to the use of thorium are worth developing: heavy water moderated reactors with conversion ratios greater than 0.9, such as modified CANDU with lower cost of separating D 2 O and 235 U; molten salt breeder reactors, from which fission products and excess fuel may be continuously removed; fusion-fission hybrids that produce adequate tritium and excess neutrons for sustenance and 233 U production in a subcritical thorium 233 U blanket; and by fission-initiated thermo-nuclear explosions in cavities in salt beds one mile below the earth's surface, yielding 233 U from the excess neutrons and thorium and decontaminated steam for power production. (author)

  8. Coprecipitation of rare earth elements with hydroxyapatite

    International Nuclear Information System (INIS)

    Fujino, Osamu

    1979-01-01

    The distribution behavior of trace rare earth elements between an aqueous phase and hydroxyapatite crystals was investigated. The apatite prepared by adding phosphate ion extremely slowly to an aqueous solution containing calcium, rare earth elements, ethylenediamine and nitrilotriacetate ion at 80 0 C. Apparently the coprecipitation reaction seems to be anomalous, because the apparent distribution coefficient did not have a constant value through the reaction. But when the true distribution coefficient was calculated by using the thermodynamic data at 80 0 C, it was revealed that rare earth ions were coprecipitated obeying logarithmic distribution law. The true distribution coefficient values of trivalent yttrium, scandium, europium and cerium ions were about 10sup(7.3), 10sup(9.8), 10sup(7.4) and 10sup(6.5) respectively. (author)

  9. Iron corrosion inhibition by phosphonate complexes of rare earth metals

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.I.; Raskol'nikov, A.F.; Starobinskaya, I.V.; Alekseev, V.N.

    1993-01-01

    Capability is shown of trivalent rare earth nitrilotrimethylphosphonates (R= Ce, Pr, Nd, Eu, Lu, Y) to retard steel corrosion in soft water due to the formation of slightly soluble hydroxides on steel surface. The protective film is produced as a result of electrophilic substitution of nascent iron cations for rare earth ions in near the surface layer. The introduction of rare earth cations into the protective film is ascertained by Auger spectroscopy in combination with the argon spraying. A quantitative interrelation between the protective effectiveness and solubility product of rare earth hydroxides is revealed

  10. Rare earth ion controlled crystallization of mica glass-ceramics

    International Nuclear Information System (INIS)

    Garai, Mrinmoy; Karmakar, Basudeb

    2016-01-01

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO_2, Nd_2O_3, Sm_2O_3 and Gd_2O_3 doped K_2O−MgO−B_2O_3−Al_2O_3−SiO_2−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm"−"3) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T_g) and crystallization temperature (T_c). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg_3(AlSi_3O_1_0)F_2 by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10"−"6/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque fluorophlogopite mica glass-ceramics by single-step heat treatment. • Nanocrystalline glass

  11. Rare earths refining by vacuum sublimation method

    International Nuclear Information System (INIS)

    Rytus, N.N.

    1983-01-01

    The process of rare earths refining by the sUblimation; method in high and superhigh oil-free vacuum, is investigated. The method is effective for rare earths obtaining and permits to prepare metal samples with a high value of electric resistance ratio γ=RsUb(298 K)/Rsub(4.2 K). The estimation of general purity is performed for Sm, Eu, Yb, Tm, Dy, Ho, Er and Se

  12. Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering

    International Nuclear Information System (INIS)

    Ahn, Byung Gil; Park, Hwan Seo; Kim, Hwan Young; Lee, Han Soo; Kim, In Tae

    2010-01-01

    In the pyroprocessing of spent nuclear fuels, LiCl-KCl waste salt containing radioactive rare earth chlorides are generated. The radioactive rare earth oxides are recovered by co-oxidative precipitation of rare earth elements. The powder phase of rare earth oxide waste must be immobilized to produce a monolithic wasteform suitable for storage and ultimate disposal. The immobilization of these waste developed in this study involves a solid state sintering of the waste with host borosilicate glass and zinc titanate based ceramic matrix (ZIT). And the rare-earth monazite which synthesised by reaction of ammonium di-hydrogen phosphate with the rare earth oxides waste, were immobilized with the borosilicate glass. It is shown that the developed ZIT ceramic wasteform is highly resistant the leaching process, high density and thermal conductivity.

  13. Crystalline and amorphous rare-earth metallic compounds

    International Nuclear Information System (INIS)

    Burzo, E.

    1975-01-01

    During the last years the study of magnetic behaviour of rare-earth (or yttrium) compounds with cobalt and iron has growth of interest. This interest of justified by a large area of experimental and theoretical problems coming into being in the study of some rare-earth materials as well as in their technical applications. In the last three years a great number of new rare earth materials were studied and also new models explaining the magnetic behaviour of these systems have been used. In this paper we refer especially to some typical systems in order to analyse the magnetic behaviour of iron and cobalt and also the part played by the magnetic interactions in the values of the cobalt or iron moments. The model used will be generally the molecular field model. In the second chapter we present comparatively the structure of crystalline and amorphous compounds for further correlation with the magnetic properties. In chapter III we analyse the magnetic interactions in some crystalline and amorphous rare-earth alloys. Finally, we exemplify the ways in which we ensure better requried characteristics by the technical utilizations of these materials. These have in view the modifications of the magnetic interactions and are closely related with the analysis made in chapter III

  14. Rare earth point defects in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, S.

    2007-12-14

    In this work we investigate rare earth doped GaN, by means of theoretical simulations. The huge unit cells necessary to model the experimental system, where dilute amount of rare earth ions are used, are handled with the charge self consistent density-functional based-tight binding (SCC-DFTB) calculational scheme. The method has been extended to include LDA+U and simplified self interaction corrected (SIC)-like potentials for the simulation of systems with localised and strongly correlated electrons. A set of tight-binding parameters has been created to model the interaction of GaN with some dopants, including a selection of lanthanide ions interesting due to their optical or magnetic properties (Pr, Eu, Gd, Er and Tm). The f-electrons were treated as valence electrons. A qualitatively correct description of the band gap is crucial for the simulation of rare earth doped GaN, because the luminescence intensity of the implanted samples depends on the size of the host band gap and because the rare earths could introduce charge transition levels near the conduction band. In this work these levels are calculated with the Slater-Janak (SJ) transition state model, which allows an approximate calculation of the charge transition levels by analysing the Kohn-Sham eigenvalues of the DFT. (orig.)

  15. Thorium and health: state of the art; Thorium et sante: etat de l'art

    Energy Technology Data Exchange (ETDEWEB)

    Leiterer, A.; Berard, Ph.; Menetrier, F.

    2010-07-01

    This report reviews data available in the literature on the subject: 'thorium and health'. Thorium is a natural radioactive element of the actinide series. It is widely distributed in the earth's crust and 99% is found as isotope thorium-232. Its various uses are explained by its chemical, physical, and nuclear properties. As a potential nuclear fuel, thorium is still in demonstration in pilot scale reactors. But thorium has already multiple and sometimes unknown industrial uses. Some mass market products are concerned like light bulb. This raises the issue of wastes, and of exposures of workers and public. Environmental exposure via food and drink of the general population is low, where as workers can be exposed to significant doses, especially during ore extraction. Data on bio-monitoring of workers and biokinetic of thorium, in particular those provided by ICRP, are gathered here. Studies on health effects and toxicity of thorium are scarce and mostly old, except outcomes of its previous medical use. Studies on other forms of thorium should be undertaken to provide substantial data on its toxicity. Concerning treatment, Ca-DTPA is the recommended drug even if its efficacy is moderate. LiHOPO molecule shows interesting results in animals, and further research on chelating agents is needed. (authors)

  16. Rare earth element abundances and distribution patterns in plant materials

    International Nuclear Information System (INIS)

    Aidid, S.B.

    1994-01-01

    Eight out of the fourteen rare earth elements were estimated from the leaves of Pelthophorum pterocarpum, the leaves and roots of Impatiens balsamina, and the soils from four sampling sites by instrumental neutron activation analysis. The chondrite normalized rare earth element abundances and distribution patterns in the plant materials were found to be significantly correlated to the abundances of the rare earth elements occurring in the soils. The extent of accumulation of the rare earth elements in some plant materials was also governed by the age of the plants and the plant organs. (author) 16 refs.; 4 figs.; 3 tabs

  17. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  18. Kinetics studies of solvent extraction of rare earths into DEHPA

    International Nuclear Information System (INIS)

    Lim, T.M.; Tran, T.

    1996-01-01

    The kinetics of rare earth solvent extraction into di(2-ethylhexyl) phosphoric acid have been studied using radiotracers ( 141 Ce, 152 Eu, 153 Gd, 160 Tb and 88 Y) in a modified Lewis cell. The experimental procedure involved continuous monitoring of both aqueous and organic phases using an automated γ- counting system. Using this method, highly reproducible results were obtained without chemical analysis or disturbance of the system. The initial rate extraction was first order with respect to individual rare earth concentration. At low acidities ([H+] < 0.01 M), the extraction rates of rare earths were equal and independent of pH. However, at high acidities, the extraction rate was strongly dependent on pH and varied between the rare earths. Similarly, differences in the extraction rate of individual rare earths were apparent at low DEHPA concentration. (authors)

  19. Solvent Extraction of Rare Earths by Di-2 Ethylhexyl Phosphoric Acid

    International Nuclear Information System (INIS)

    Srinuttrakul, Wannee; Kranlert, Kannika; Kraikaew, Jarunee; Pongpansook, Surasak; Chayavadhanangkur, Chavalek; Kranlert, Kannika

    2004-10-01

    Solvent extraction has been widely applied for individual rare earth separation because the separation time is rapid and a large quantity of products is obtained. In this work, this technique was utilized to extract mixed rare earths, obtained from monazite digestion process. Di-2-ethylhexyl phosphoric acid (D2EHPA) was used as an extractant. The factors affected the extraction including HNO 3 concentration in mixed rare earth nitrate solution and the amount of D2EHPA were studied. The appropriate concentrations of HNO 3 and D2EHPA were found to be 0.01 and 1.5 M, respectively. From the result of equilibrium curve study, it was observed that heavy rare earths were extracted more efficient than light rare earths. A 6-stage continuous countercurrent solvent extraction was simulated for rare earth extraction. The optimum ratio of solvent to feed solution (S/F) was 2. Because of the high cost of D2EHPA, 1.0 M of D2EHPA was suitable for the rare earth extraction by the continuous countercurrent solvent extraction

  20. Extraction-differential-photometric method to determine rare earths of cerium subgroup

    International Nuclear Information System (INIS)

    Askerov, D.N.; Gusejnov, I.K.; Melikov, A.A.

    1985-01-01

    The extraction - photometric method to determine great quantities of rare earths of the cerium subgroup as a complex with antipyrine A and diphenylguanidine is developed. Isobutyl and n-butyl alcohols are used as extractants. It is established that proportional dependence between relative optical density and concentration of rare earths of the cerium subgroup in the solution takes place in the concentration interval of 10.3-14.7 μg of rare earths in 1 ml of the solution. Determination error is+-1.12%. The technique is used to determine rare earths of the cerium subgroup in rare earth oxides of a mixed composition, as well as in monozite and loparite

  1. 2004 Top 10 Chinese Rare Earth Events

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1. Management to the Investment in Rare Earth IndustryConfirmedIn July 2004, "Decision on the Reform in Investment System" was formally publicized by the State Council of the People's Republic of China. The fifth item in the Decision stipulates that ore exploitation, smelting & separation and rare earth deep-processed projects with total investment over RMB¥100 million should be approved by the investment governing department of the State Council, and that other

  2. Rare Earths and Clean Energy: analyzing China's upper hand

    International Nuclear Information System (INIS)

    Seaman, J.

    2010-01-01

    An ominous but avoidable resource crunch in the so-called 'rare earth elements' is now threatening the development of a number of key industries from energy to defense to consumer electronics. As key components in the latest generation of technologies, including specialized magnets for windmills and hybrid cars, lasers for range finders and 'smart' munitions, and phosphors for LCD screens, demand for these rare metals is expected to grow rapidly in the years to come. But decades of under-investment in the mining and separation of these elements across the globe has left the industry ill-prepared to meet thi s growing demand. Over the years, only China has recognized the strategic significance of these resources and has succeeded in gaining a near monopoly on production, currently churning out 97% of the world' s rare earth oxides. Faced with problems of its own, and eager to use its resource advantage to master higher levels of value-added production of rare earth-dependent products, China has increasingly limited the rest of the world's access to these raw materials. This only complicates what was already projected to be a problematic resource shortage. This issue demands a higher quality of public debate. Rare earth consuming countries outside of China have only recently become aware of their dependence and started to take stock of the risks. Time is of the essence. Bringing new supplies online to meet growing demand is a long, complicated and risky process but is nevertheless necessary to ensure the development of high tech industries, notably clean energy. Accessible reserves of rare earths do exist outside of China and mitigating the effects of the looming shortage requires opening up these reserves to production. Yet, as the Chinese experience attests, there are substantial risks to the environment associated with mining and separating rare earths. Care must be taken to ensure responsible mining practices across the globe. Longer-term solutions, such as

  3. Preparation and characteristics of various rare earth nitrides

    International Nuclear Information System (INIS)

    Imamura, H.; Imahashi, T.; Zaimi, M.; Sakata, Y.

    2008-01-01

    Active nanocrystalline nitrides of EuN and YbN with high surface areas were successfully prepared by the thermal decomposition of the rare earth amides (Eu(NH 2 ) 2 , Yb(NH 2 ) 2 and Yb(NH 2 ) 3 ). For the preparation of CeN, PrN and NdN, the direct reaction of the rare earth metals with ammonia was extensively studied to determine optimal conditions. In the reaction of rare earth metals with ammonia, hydrides besides the nitrides were competitively formed. The reaction conditions such as temperatures and ratios of ammonia to rare earth metal were crucial in preferential formation of nitride. The nanocrystalline YbN and EuN readily absorbed large amounts of ammonia even at room temperature upon contact with ammonia (13.3 kPa). The absorbed ammonia existed in at least two forms on/in the nitride; the one was surface-adsorbed ammonia and the other ammonia absorbed in the nitride in a decomposed state. The properties of ammonia absorbed by the nitride were further evaluated by temperature-programmed desorption (TPD), FT-IR and XRD techniques

  4. Redox reactions in rare earth chloride molten electrolytes

    International Nuclear Information System (INIS)

    Khokhlov, V.A.; Novoselova, A.V.; Nikolaeva, E.V.; Tkacheva, O.Yu.; Salyulev, A.B.

    2007-01-01

    Rare earth (REM, Ln) solutions in chloride melts including MCI+LnCl 3 mixtures, where M - alkali metals, were investigated by potentiometry, voltammetry, conductometry in wide concentration and temperature intervals. Findings present complete and trusty information on the valent state of rare earths, structure and composition of complex ions affecting essentially on properties of electrolytes. It is demonstrated that the coexistence of rare earth ions with different oxidation level formed as a result of possible redox reactions: 2Ln 3+ + Ln ↔3Ln 2+ , Ln 2+ + Ln↔2Ln + and nM + + Ln↔nM + Ln n+ appears sharply in thermodynamic and transport properties of molten Ln-LnCl 3 and Ln-LnCl 3 -MCl systems [ru

  5. Rare earth ion controlled crystallization of mica glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garai, Mrinmoy; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in

    2016-09-05

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO{sub 2}, Nd{sub 2}O{sub 3}, Sm{sub 2}O{sub 3} and Gd{sub 2}O{sub 3} doped K{sub 2}O−MgO−B{sub 2}O{sub 3}−Al{sub 2}O{sub 3}−SiO{sub 2}−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm{sup −3}) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T{sub g}) and crystallization temperature (T{sub c}). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg{sub 3}(AlSi{sub 3}O{sub 10})F{sub 2} by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10{sup −6}/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque

  6. Reversed-phase thin-layer chromatography of the rare earth elements

    International Nuclear Information System (INIS)

    Kuroda, R.; Adachi, M.; Oguma, K.

    1988-01-01

    Partition chromatographic behaviour of the rare earth elements on C 18 bonded silica reversed-phase material has been investigated by thin-layer chromatography in methanol - lactate media. The rare earth lactato complexes are distributed and fractionated on bonded silica layers without ion-interaction reagents. The concentration and pH of lactate solution, methanol concentration and temperature have effects on the migration and resolution of the rare earth elements. The partition system is particularly suited to separate adjacent rare earths of middle atomic weight groups, allowing the separation of gadolinium, terbium, dysprosium, holmium, erbium and thulium to be achieved by development to 18 cm distance. (orig.)

  7. Rapid separation of individual rare-earth elements from fission products

    International Nuclear Information System (INIS)

    Baker, J.D.; Gehrke, R.J.; Greenwood, R.C.; Meikrantz, D.H.

    1980-01-01

    A microprocessor-controlled radiochemical separation system has been developed to rapidly separate rare-earth elements from gross fission products. The system is composed of two high performance liquid chromatography columns coupled in series by a stream-splitting injection valve. The first column separates the rare-earth group by extraction chromatography using dihexyldiethylcarbamylmethylenephosphonate (DHDECMP) adsorbed on Vydac C 8 resin. The second column isolates the individual rare-earth elements by cation exchange using Aminex A-9 resin with α-hydroxyisobutyric acid (α-HIBA) as the eluent. With this system, fission-product rare-earth isotopes with half-lives as short as three minutes have been studied

  8. Partitioning of the rare earths and actinides between R7T7 nuclear glass alteration products and solution according to disposal conditions

    International Nuclear Information System (INIS)

    Menard, O.

    1995-01-01

    The alteration of nuclear glass by water is liable to release radionuclides into the environment. Determining the release kinetics of these elements and their aqueous chemical forms are therefore essential steps in establishing the safety of a geological repository site. Leach tests were conducted with a nonradioactive specimen of the French ''R7T7'' light water containment glass spiked with U and Th, and with two R7T7 specimens spiked with 237 Np and 239 Pu, respectively. The alteration solution compositions were representative of deep groundwater and contained carbonate, sulfate, phosphate, fluorine and chlorine ions. The release of U, Th, Np and Pu, as well as of the rare earths La, Ce and Nd were monitored by ICP mass spectrometry and by α spectrometry. Scanning and transmission electron microscopic examination of the nonradioactive altered glass surfaces was also performed to assess the partitioning balance for the rare earths, U and Th between the glass alteration products and solution. The mobility of these elements depends on two competing mechanisms. The rare earths and thorium are incorporated in the alteration products (gel); the retention process is assumed to involve chemisorption or coprecipitation, enhanced in the gel layer by the presence of phosphate ions in particular. Conversely, the aqueous species in the alteration solutions (mainly anions) form complexes with the actinides and rare earths; this phenomenon is particularly evident with U and Np. The presence of carbonate ions favors this mobility. Plutonium differs from U and Np in that it is adsorbed mainly on colloids formed by glass dissolution, the principal factors governing its chemical evolution in solution. (author). refs., 122 figs., 185 tabs

  9. Enzymatic determination of rare earth elements by use of pyrophosphotases

    International Nuclear Information System (INIS)

    Shekhovtseva, T.N.; Pirogova, S.V.; Fedorova, O.M.; Dolmanova, I.F.; Bajkov, A.A.

    1993-01-01

    A highly sensitive (determination limit 8 x 10 -6 - 4 x 10 -4 μg/ml) and selective enzymatic method for determination of rare earth elements has been developed. The method is based on inhibition action of rare earths on the catalytic activity of pyrophosphates isolated from bakery geast and E. Coli. The mechanism of the rare earth element action, corresponding to competitive inhibition, has been established

  10. Rapid analysis of some rare earth magnets

    Energy Technology Data Exchange (ETDEWEB)

    Raoot, K N; Raoot, S; Rukmani Desikan, N [Defence Metallurgical Research Lab., Hyderabad (India)

    1978-12-01

    A simple complexometric method for the quick analysis of the constituent elements in some quaternary rare earth magnets of the type RE-Co-Cu-Fe and RE-Ni-Cu-Fe is described. The technique is based on a total titration, subsequent release of EDTA from rare earth with ammonium fluoride and that from copper (II) with ascorbic acid and thiourea followed by determination of the excess and liberated EDTA by lead nitrate in a weak acid medium using xylenol orange indicator. In another, aliquot iron (III) and rare earth are first masked with sodium fluoride, and copper (II) with ascorbic acid and thiourea before cobalt (II) or nickel (II) is estimated by back titration. Iron is calculated by difference. The new method yields accurate and reproducible results with error not exceeding 1%. A set of three samples can conveniently be analysed in two hours.

  11. Rapid analysis of some rare earth magnets

    International Nuclear Information System (INIS)

    Raoot, K.N.; Raoot, Sarala; Rukmani Desikan, N.

    1978-01-01

    A simple complexometric method for the quick analysis of the constituent elements in some quaternary rare earth magnets of the type RE-Co-Cu-Fe and RE-Ni-Cu-Fe is described. The technique is based on a total titration, subsequent release of EDTA from rare earth with ammonium fluoride and that from copper (II) with ascorbic acid and thiourea followed by determination of the excess and liberated EDTA by lead nitrate in a weak acid medium using xylenol orange indicator. In another, aliquot iron (III) and rare earth are first masked with sodium fluoride, and copper (II) with ascorbic acid and thiourea before cobalt (II) or nickel (II) is estimated by back titration. Iron is calculated by difference. The new method yields accurate and reproducible results with error not exceeding 1%. A set of three samples can conveniently be analysed in two hours. (author)

  12. Corrosion resistance of chromium-nickel steel containing rare earths

    International Nuclear Information System (INIS)

    Asatiani, G.N.; Mandzhgaladze, S.N.; Tavadze, L.F.; Chuvatina, S.N.; Saginadze, D.I.

    1983-01-01

    Effect of additional out-of-furnace treatment with complex alloy (foundry alloy) calcite-silicon-magnesium-rare earth metal on corrosion resistance of the 03Kh18N20M3D3C3B steel has been studied. It is shown that introduction of low additions of rare earths improves its corrosion resistance improves its corrosion resistance in agressive media (in 70% - sulfuric acid) in the range of transition from active to passive state. Effect of additional introduction of rare earth metals is not considerable, if potential of steel corrosion is in the range of stable passive state (32% - sulfuric acid). Additional out-of-furnace treatment with complex foundry alloy, containing rare earth metals, provides a possibility to use a steel with a lower content of Cr, Ni, Mo, than in conventional acid-resistant steels in highly agressive media

  13. Forced-flow chromatography of rare earths using sensitive spectrophometry

    International Nuclear Information System (INIS)

    Matsui, Masakazu; Aoki, Toru; Kumagai, Tetsu.

    1981-01-01

    The sensitive spectrophotometric method for the rare earth elements with xylenol orange in the presence of cetylpyridinium bromide was applied to the continuous detection system of liquid chromatography. Fourteen rare earth elements were completely separated within 130 min cation-exchange chromatography using 2-hydroxy-iso-butylic acid. The eluted ions were determined with absorption maxima of their complexes at around 610 nm. A linear relationship between the peak height and the amounts of rare earth elements was also obtained over the range 0.04 to 0.5 MU g. (author)

  14. Thermochemistry of certain rare earth and ammonium double chlorides

    International Nuclear Information System (INIS)

    Usubaliev, D.U.; Abramtsev, V.A.; Kydynov, M.K.; Vilyaev, A.N.

    1987-01-01

    In a calorimeter with isothermal casing at 25 deg C dissolution enthalpies of double chlorides of rare earths and ammonium LnCl 3 x2NH 4 Cl (Ln=La, Sm) and LnCl 3 x3NH 4 Cl (Ln=Gd, Tb, Ho) in water, as well as dissolution enthalpy of rare earth chlorides in solution of ammonium chloride and NH 4 Cl in solution of rare earth chloride, have been measured. Formation enthalpies, standard formation enthalpies, dissociation enthalpies of the above-mentioned double chlorides are calculated

  15. Tetracyanidoborates with triply charged rare earth metal cations and their optical properties

    International Nuclear Information System (INIS)

    Hackbarth, Liisa

    2015-01-01

    The aim of this thesis is the description of the synthesis and characterization of a new group of tetracyanidoborates: tetracyanidoborates with trivalent rare earth metal cations. Their optical properties in the ultraviolet and visible range are also discussed. Common synthetic routes for tetracyanidoborates are adapted and applied to the preparation of the rare earth tetracyanidoborate hydrates. They are accessible with high yields and high purity through a reaction between the tetracyanidoboronic acid and rare earth hydroxides. It is shown that the rare earth tetracyanidoborates form isostructural groups, like the [LRE(H_2O)_5][B(CN)_4]_3.0.5 H_2O, where LRE"3"+ is La, Ce, Pr, Nd, Sm, Eu and Gd, the [HRE(H_2O)_7][B(CN)_4]_3 and the [HRE(H_2O)_8][B(CN)_4]_3.3 H_2O, where HRE"3"+ is Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. Furthermore, the coordination number 9 is noticed to be common among the light rare earth cations, whereas the minor coordination number 8 is prevalent for the heavy rare earth cations in their tetracyanidoborates. This different construction of the coordination spheres between light and heavy rare earth cations leads to different structures depending on the energetic efficiency of the structural arrangement. Generally, the rare earth tetracyanidoborate hydrates are found to crystallize in the monoclinic crystal system. Moreover, other different crystal structures are observed depending on the crystallization temperature and the type of coordinated ligands and co-crystallized solvent molecules. The tetracyanidoborate hydrates with triply charged rare earth cations are characterized comprehensively by X-ray diffraction, vibrational spectroscopy, NMR-spectroscopy as well as by thermal analysis. Furthermore, the optical properties of some dehydrated rare earth tetracyanidoborates are investigated by UV-spectroscopy and luminescence measurements. The results of the optical measurements indicate that the tetracyanidoborates with rare earth metal cations

  16. Neutron activation analysis of rare earths in uranium containing rocks

    International Nuclear Information System (INIS)

    May, S.; Pinte, G.

    1984-01-01

    The determination of rare earths by activation analysis in uranium rocks is disturbed either by fission-produced rare earths, or by neptunium-239 originating from uranium-238. In order to eliminate these interferencies, the chemical separation of rare earths from uranium prior to activation should be performed. The chemical process is as follows: the rock sample is fused with sodium borate, then, after addition of hydrochloric acid, the resulting solution is passed through a Dowex 1x8 column. Uranium is retained on the resin, and rare earths and scandium are eluted. Aluminium is added as a carrier to the solution, and rare earths and scandium are coprecipitated with aluminium hydroxide. This precipitate is irradiated in the nuclear reactor. Gamma spectrometry is used for the determination of earth radionuclide. Activity measurements are performed in successive steps during one month. The following elements are determined: Pr, La, Sm, Nd, Yb, Lu, Ce, Tb, Eu and Sc. The chemical yield is measured by using scandium as an internal standard. (author)

  17. Separation of rare earths from solutions of phosphoric acid

    International Nuclear Information System (INIS)

    Jones, E.A.

    1977-01-01

    Rare earths are separated from 6M phosphoric acid by adsorption onto cation resin BIORAD AG50W-X8. The phosphoric acid is then washed from the column, and the rare earths are eluted with 4M hydrochloric acid

  18. Rare-earth-free high energy product manganese-based magnetic materials.

    Science.gov (United States)

    Patel, Ketan; Zhang, Jingming; Ren, Shenqiang

    2018-06-14

    The constant drive to replace rare-earth metal magnets has initiated great interest in an alternative. Manganese (Mn) has emerged to be a potential candidate as a key element in rare-earth-free magnets. Its five unpaired valence electrons give it a large magnetocrystalline energy and the ability to form several intermetallic compounds. These factors have led Mn-based magnets to be a potential replacement for rare-earth permanent magnets for several applications, such as efficient power electronics, energy generators, magnetic recording and tunneling applications, and spintronics. For past few decades, Mn-based magnets have been explored in many different forms, such as bulk magnets, thin films, and nanoparticles. Here, we review the recent progress in the synthesis and structure-magnetic property relationships of Mn-based rare-earth-free magnets (MnBi, MnAl and MnGa). Furthermore, we discuss their potential to replace rare-earth magnetic materials through the control of their structure and composition to achieve the theoretically predicted magnetic properties.

  19. Influence of rare-earth ions on fluorogallate glass formation and properties

    International Nuclear Information System (INIS)

    Zhang Guoyin; Poulain, M.J.

    1998-01-01

    Various rare earths have been incorporated in a lead fluorogallate glass with the following chemical composition: 30PbF 2 -20GaF 3 -15InF 3 -20CdF 2 -15ZnF 2 (PGICZ). Selected rare earths are La, Ce, Pr, Nd, Gd, Er, Yb and Lu, and the doping level varies between 1 and 10 mol%. The influence of rare earth fluorides on glass forming ability and on physical properties is investigated. At low concentration ( 3 in a modified PGCIZ glass have been cast. Experimental results suggest that rare earths act as modifiers rather than vitrifies in this fluorogallate system. The effect of rare earths on the values of glass transition temperature, refractive index, density and thermal expansion is reported. (orig.)

  20. Resistivity and magnetoresistivity of amorphous rare-earth alloys

    Science.gov (United States)

    Borchi, E.; Poli, M.; De Gennaro, S.

    1982-05-01

    The resistivity and magnetoresistivity of amorphous rare-earth alloys are studied starting from the general approach of Van Peski-Tinbergen and Dekker. The random axial crystal-field and the magnetic correlations between the rare-earth ions are consistently taken into account. The characteristic features of the available experimental data are explained both of the case of random ferromagnetic and antiferromagnetic order.

  1. Naturally Occurring Radionuclides and Rare Earth Elements Pattern in Weathered Japanese Soil Samples

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Hosoda, M.; Takahashi, H.; Sorimachi, A.; Ishikawa, T.; Tokonami, S.; Uchida, S.

    2011-01-01

    From the viewpoint of radiation protection, determination of natural radionuclides e.g. thorium and uranium in soil samples are important. Accurate methods for determination of Th and U is gaining importance. The geochemical behavior of Th, U and rare earth elements (REEs) are relatively close to one another while compared to other elements in geological environment. Radioactive elements like 232 Th and 238 U along with their decay products (e.g. 226 Ra) are present in most of the environmental matrices and can be transferred to living bodies by different pathways that can lead to sources of exposure of man. Therefore, it is necessary to monitor these natural radionuclides in weathered soil samples to assess the possible hazards. The activity concentrations of 226 Ra, 228 Th, and 40 K in soils have been measured using a g γ-ray spectroscopy system with high purity germanium detector. The thorium, uranium and REEs were determined from the same sample using inductively coupled plasma mass spectrometry (ICP-MS). Granitic rocks contain higher amounts of Th, U and light REEs compared to other igneous rocks such as basalt and andesites. Therefore, it is necessary to understand the interaction between REEs and nature of soils, as soils are complex heterogeneous mixture of organic and inorganic solids, water and gases. In this paper, we have discussed about distribution pattern of 226 Ra, 232 Th and 238 U along with REEs in soil samples of weathered acid rock (granite and ryolite) collected from two prefectures in Japan: 1. Gifu and 2. Okinawa. (author)

  2. Thermal Oxidation Resistance of Rare Earth-Containing Composite Elastomer

    Institute of Scientific and Technical Information of China (English)

    邱关明; 张明; 周兰香; 中北里志; 井上真一; 冈本弘

    2001-01-01

    The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found that its retention rate of mechanical properties is far higher than that of the control sample. The results of thermogravimetric analysis show that its thermal-decomposing temperature rises largely. The analysis of oxidation mechanisms indicates that the main reasons for thermal oxidation resistance are that rare earth elements are of the utility to discontinue autoxidation chain reaction and that the formed complex structure has steric hindrance effect on oxidation.

  3. Membrane assisted solvent extraction for rare earth element recovery

    Science.gov (United States)

    Bhave, Ramesh R.; Kim, Daejin; Peterson, Eric S.

    2018-05-15

    Systems and methods for the recovery of rare earth elements are provided. The systems and methods generally include membrane assisted solvent extraction using permeable hollow fibers having an immobilized organic phase within the pores of the hollow fibers. The permeable hollow fibers are generally in contact with an acidic aqueous feed on one side thereof and a strip solution on another side thereof. The systems and methods generally include the simultaneous extraction and stripping of rare earth elements as a continuous recovery process that is well suited for post-consumer products, end-of-life products, and other recovery sources of rare earth elements.

  4. Thermodynamics and kinetics of the formation of rare earth intermetallics

    International Nuclear Information System (INIS)

    Deodhar, S.S.

    1975-01-01

    Heats of reaction of rare earth intermetallics with iron, cobalt and nickel were determined using Differential Thermal Analysis technique. The intermetallic compounds studied were of MgCu 2 type Laves phases and the rare earth elements studied were praseodymium, gadolinium, dyprosium and erbium. The reactions were exothermic and the heats of reaction were generally high. They varied from the low of -2.5 kcal/g mole for Fe 2 Gd to the high of -35.3 kcal/g mole for Ni 2 Er. The magnitudes of heats of reaction were always greater for the intermetallics of heavy rare earth elements. The rare earth intermetallics studied were either ferromagnetic or antiferromagnetic. The variations in the magnetic moments and the heats of reaction with respect to the atomic number of the rare earth elements followed certain trends. The similarities were observed in the trends of two properties. Electronic configuration for the MgCu 2 type rare earth intermetallics is proposed using Engel--Brewer correlation for metallic structures and the structural features of the Laves phase compounds. Kinetics of the reactions between the rare earth elements and iron, cobalt, and nickel was studied. The rate of reaction was diffusion controlled in each case. The Valensi--Carter equation for the diffusion mechanism satisfactorily described the kinetic behavior. The magnitudes of activation energies and frequency factors were determined. The reactions can be characterized by their reaction temperatures since they always begin at definite temperatures. It was observed that the reaction began at a higher temperature if the activation energy for the reaction was high

  5. Computational search for rare-earth free hard-magnetic materials

    Science.gov (United States)

    Flores Livas, José A.; Sharma, Sangeeta; Dewhurst, John Kay; Gross, Eberhard; MagMat Team

    2015-03-01

    It is difficult to over state the importance of hard magnets for human life in modern times; they enter every walk of our life from medical equipments (NMR) to transport (trains, planes, cars, etc) to electronic appliances (for house hold use to computers). All the known hard magnets in use today contain rare-earth elements, extraction of which is expensive and environmentally harmful. Rare-earths are also instrumental in tipping the balance of world economy as most of them are mined in limited specific parts of the world. Hence it would be ideal to have similar characteristics as a hard magnet but without or at least with reduced amount of rare-earths. This is the main goal of our work: search for rare-earth-free magnets. To do so we employ a combination of density functional theory and crystal prediction methods. The quantities which define a hard magnet are magnetic anisotropy energy (MAE) and saturation magnetization (Ms), which are the quantities we maximize in search for an ideal magnet. In my talk I will present details of the computation search algorithm together with some potential newly discovered rare-earth free hard magnet. J.A.F.L. acknowledge financial support from EU's 7th Framework Marie-Curie scholarship program within the ``ExMaMa'' Project (329386).

  6. Tetracyanidoborates with triply charged rare earth metal cations and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hackbarth, Liisa

    2015-11-24

    The aim of this thesis is the description of the synthesis and characterization of a new group of tetracyanidoborates: tetracyanidoborates with trivalent rare earth metal cations. Their optical properties in the ultraviolet and visible range are also discussed. Common synthetic routes for tetracyanidoborates are adapted and applied to the preparation of the rare earth tetracyanidoborate hydrates. They are accessible with high yields and high purity through a reaction between the tetracyanidoboronic acid and rare earth hydroxides. It is shown that the rare earth tetracyanidoborates form isostructural groups, like the [LRE(H{sub 2}O){sub 5}][B(CN){sub 4}]{sub 3}.0.5 H{sub 2}O, where LRE{sup 3+} is La, Ce, Pr, Nd, Sm, Eu and Gd, the [HRE(H{sub 2}O){sub 7}][B(CN){sub 4}]{sub 3} and the [HRE(H{sub 2}O){sub 8}][B(CN){sub 4}]{sub 3}.3 H{sub 2}O, where HRE{sup 3+} is Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. Furthermore, the coordination number 9 is noticed to be common among the light rare earth cations, whereas the minor coordination number 8 is prevalent for the heavy rare earth cations in their tetracyanidoborates. This different construction of the coordination spheres between light and heavy rare earth cations leads to different structures depending on the energetic efficiency of the structural arrangement. Generally, the rare earth tetracyanidoborate hydrates are found to crystallize in the monoclinic crystal system. Moreover, other different crystal structures are observed depending on the crystallization temperature and the type of coordinated ligands and co-crystallized solvent molecules. The tetracyanidoborate hydrates with triply charged rare earth cations are characterized comprehensively by X-ray diffraction, vibrational spectroscopy, NMR-spectroscopy as well as by thermal analysis. Furthermore, the optical properties of some dehydrated rare earth tetracyanidoborates are investigated by UV-spectroscopy and luminescence measurements. The results of the optical

  7. Geochemistry of Thorium and Uranium in Soils of the Southern Urals

    Science.gov (United States)

    Asylbaev, I. G.; Khabirov, I. K.; Gabbasova, I. M.; Rafikov, B. V.; Lukmanov, N. A.

    2017-12-01

    Specific features of the horizontal and vertical distribution of uranium and thorium in soils and parent materials of the Southern Urals within the Bashkortostan Republic have been studied with the use of mass spectrometry with inductively coupled plasma. The dependence of distribution patterns of these elements on the local environmental conditions is shown. A scale for soil evaluation according to the concentrations of uranium and thorium (mg/kg) is suggested: the low level, up to 3; medium, up to 9; high, up to 15; and very high, above 15 mg/kg. On the basis of to this scale, the ecological state of the soils is evaluated, and the schematic geochemical map of the region is compiled. The territory of Bashkortostan is subdivided into two parts according to the contents of radioactive elements in soils: the western part with distinct accumulation of uranium and the eastern part with predominant thorium accumulation. This finding supports the charriage (thrust fault) nature of the fault zone of the Southern Urals. The vertical distribution patterns of uranium and thorium in soils of the region are of the same character. The dependence between the contents of these two elements and rare-earth elements has been established. The results of this study are applied for assessing the ecological state of soils in the region.

  8. Bench scale studies on separation of rare earths by ion exchange

    International Nuclear Information System (INIS)

    Aroonrung-Areeya, A.

    1976-01-01

    The method of ion exchange was applied to the separation of mixtures of rare earth oxides into the pure components. The method consists of eluting a band of mixed rare earths adsorbed on a cation-exchange resin through a second cation-exchange bed in the copper II state. The eluent consists of an ammonia buffered solution of ethylenediamine tetraacetic acid. The mixed rare earth oxide used as testing material was obtained from the digestion of Thai monazite. The amounts varied from 1, 5 to 50 grams. The purity of the rare earth fractions were analyzed either by neutron activation of X-ray fluorescence. The Cu.EDTA was recovered by the addition of lime. It was found that gram quantities of pure rare earths could be obtained by this method

  9. Chromates (3) and chromates (5) of rare earths

    International Nuclear Information System (INIS)

    Suponitskij, Yu.L.

    1986-01-01

    Data on preparation methods, structure and properties of chromates (3, 5) and mixed chromates (3) of rare earths, scandium and yttrium are generalized. Phase diagrams of systems Ln 2 O 3 -Cr 2 O 3 (Ln - rare earths, Sc, Y), chemical and thermodynamic properties of chromates (3, 5), their crystal structure and character of thermal decomposition are considered. Application fields of the compounds mentioned are suggested

  10. Preliminary geological assessment for rare earths at Ombo Area, San Vicente, Northern Palawan

    International Nuclear Information System (INIS)

    Ramos, Angelito F.; Santos, Gabriel Jr.; Magsambol, Wilfred N.; Castillo, Marilyn K.; Tabora, Estrelita U.

    2001-04-01

    A preliminary geological assessment for rare earths was conducted along Ombo beach area, San Vicente, northern Palawan to evaluate the potential geologic reserve and to determine the relative concentration of REE, thorium and uranium. This investigation also aims to establish the distribution of heavy minerals. The study area, covering, about 6500 m 2 is comprised of the undisturbed beach sand deposits confined between the high tide line and the base of the mountains that borders the coastline. The investigation involved the establishment of shallow test pits with depths varying from one meter ot less than three meters. A total of 23 heavy mineral panned concentrates were collected. All the samples were analyzed for REE, Th and U using the portable X-MET 820 x-ray fluorescence and GR-320 gamma ray spectrometer. Radiometric measurements were also taken along the stretch of Ombo beach to establish the natural background radioactivity. The radiometric values vary from 27 cps to 420 cps. The high readings could be attributed to the presence of radioactive rare earth bearing minerals, principally allanite. This initial investigation indicates a positive geologic reserve of approximately 19,000 metric tons beach sand deposits, containing an average grade of 22.19% REE (Ce, La), 0.85% Th and 0.55% U. The average distribution of heavy minerals is 3600 gm heavies per cubic meter. Moreover, a probable geologic reserve of about 41,000 metric tons with an average grade of 22.13% REE (Ce, La), 0.85% Th and 0.55% U was also determined. The average distribution of heavy minerals is about 3300 gm heavies per cubic meter. (Author)

  11. Study of nuclear environment and material strategy

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    There is a concern about the environmental hazard caused by radioactive materials coming with the expansion of nuclear power and even by renewable energies, which are used as countermeasures against global warming to construct a sustainable society. A concept to internalize the pollution caused by radioactive materials, which are directly or indirectly related to nuclear power, to economical activities by adopting externality is proposed. Energy and industrial productions are strongly related to the supply of material. Therefore material flow is also part of this internalization concept. The concept is named 'NEMS (Nuclear Environment and Material Strategy)'. Fission products and transuranic isotopes from nuclear power such as plutonium are considered in this concept. Thorium, which comes from the material flow of rare-earth production to support the elaboration of renewable energies including electric vehicles on the consumer side, is considered as an externality of the non-nuclear power field. Fission products contain some rare-earth materials. Thus, these rare-earth materials, which are extracted by the advanced ORIENT (Optimization by Recycling Instructive Elements) cycle, are internalized as rare-earth supplier in economy. However, the supply quantity is limited. Therefore rare-earth production itself is still needed. The externality of rare-earth production is thorium and is internalized by using it as nuclear fuel. In this case, the demand of thorium is still small within these few decades compared to the production of thorium as byproduct of the rare-earth production. A thorium energy bank (The Bank) is advanced to regulate the storage of the excess amount of thorium inside of an international framework in order to prevent environmental hazard resulting from the illegal disposal of thorium. In this paper, the material flows of thorium and rare-earth are outlined. Their material balance are demonstrated based on the prediction of rare-earth mining and an

  12. Study on lowering the specific radioactivity of rare earth chlorides

    International Nuclear Information System (INIS)

    Shinhuor, Y.; Jyuung, J.; Shyuerjung, T.; Xiangping, L.

    1985-01-01

    In this paper, the source of radioactivity in rare earth chlorides and the chemical behaviour of its main radionuclides in metallurgy processing are investigated. It is pointed out that the radioactivity in rare earths comes from the long-life radionuclides in three natural radioactive series. Nine of them (/sup 238/U, /sup 234/U, /sup 230/Th, /sup 226/Ra, /sup 210/Po, /sup 232/Th, /sup 228/Th, /sup 235/U, /sup 231/Pa) are alpha-emitters, three of them (/sup 228/Ra, /sup 227/Ac, /sup 210/Pb) are beta-emitters. Among them alpha-emitters contribute the total specific activity of rare earths directly. The rare earths are easily purified in preferential dissolution, radium elimination, and other processes

  13. Rare earths: Market disruption, innovation, and global supply chains

    Science.gov (United States)

    Eggert, Roderick; Wadia, Cyrus; Anderson, Corby; Bauer, Diana; Fields, Fletcher; Meinert, Lawrence D.; Taylor, Patrick

    2016-01-01

    Rare earths, sometimes called the vitamins of modern materials, captured public attention when their prices increased more than ten-fold in 2010 and 2011. As prices fell between 2011 and 2016, rare earths receded from public view—but less visibly they became a major focus of innovative activity in companies, government laboratories and universities. Geoscientists worked to better understand the resource base and improve our knowledge about mineral deposits that will be mines in the future. Process engineers carried out research that is making primary production and recycling more efficient. Materials scientists and engineers searched for substitutes that will require fewer or no rare earths while providing properties comparable or superior to those of existing materials. As a result, even though global supply chains are not significantly different now than they were before the market disruption, the innovative activity motivated by the disruption likely will have far-reaching, if unpredictable, consequences for supply chains of rare earths in the future.

  14. Health effects following long-term exposure to thorium dusts: a twenty-year follow-up study in China

    International Nuclear Information System (INIS)

    Chen, X.A.; Cheng, Y.E.; Xiao, H.; Chen, L.; Yang, Y.J.; Dong, Z.H.; Zheng, R.; Feng, G.; Deng, Y.H.; Feng, Z.L.; Han, X.M.

    2004-01-01

    A twenty-year follow-up study was carried out at Baiyun Obo Rare-earth Iron Mine in China, This mine has been mined since 1958. Its ore contains 0.04% of ThO 2 and 10% of SiO 2 . The purpose of this study is to investigate possible health effects in dust-exposed miners following long-term exposure to thorium-containing dusts and thoron progeny. By using the negative high voltage exhaled thoron progeny measurement system to estimate the miner's thorium lung burden. The highest thorium lung burden among 1 158 measurements of 638 miners was 11.11 Bq. The incidence of stage 0 + pneumoconiosis was increased among dust-exposed miners. An epidemiological study showed that the lung cancer mortality of the dust-exposed miners was significantly (p 2 and SiO 2 ) and thoron progeny. This is the first evidence in humans of the carcinogenicity after long-term inhalation of thorium-containing dusts and thoron progeny. The total person-years of observation for the dust-exposed miners and the controls were 62 712 and 34 672 respectively. (author)

  15. Rare earth element recycling from waste nickel-metal hydride batteries

    International Nuclear Information System (INIS)

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-01-01

    Highlights: • Leaching kinetics of REEs has rarely been reported. • A new method, including hydrochloric acid leaching and oxalic acid precipitation, was proposed. • REEs recovery rate of 95.16% and pure rare earth oxides of 99% were obtained. • Leaching process was controlled by chemical reaction. • The kinetic equation was determined. - Abstract: With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70 °C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, −74 μm particle size, and 100 min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98 kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1−(1−x) 1/3 =A/ρr 0 [HCl] 0.64 exp((−439,800)/(8.314T) )t. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810 °C, a final product of 99% pure rare earth oxides was obtained

  16. Rare earth permanent magnets in China: production and raw materials

    International Nuclear Information System (INIS)

    Luo, Y.

    1998-01-01

    With the development of computer, electronics, communication and modern information industries, NdFeB magnet industry is growing rapidly as a booming business worldwide. Based on the abundance of rare earth and manpower, supporting by the technical teams and the huge domestic market, China NdFeB magnet industry made big jump during the last decade. Its growth rate is the highest one among all other countries. Now China occupies number one place in the world not only due to its richest rare earth reserves, but also due to its output of rare earth, especially, its sales to the international market. China is the only country, who is able to meet the market needs of rare earth worldwide. The current situation of NdFeB magnet industry can be concluded as ''five highs'', i.e. ''high volume growth'', ''high grade development'', ''high expansion of capacity'', ''high value added product'' and ''high variation speed''. The connotations of these ''five highs'' and a brief review on Chinese rare earth industry will be given in this paper. (orig.)

  17. Rare earth element recycling from waste nickel-metal hydride batteries.

    Science.gov (United States)

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Extraction studies on rare earths using dinonyl phenyl phosphoric acid

    International Nuclear Information System (INIS)

    Anitha, M.; Singh, D.K.; Kotekar, M.K.; Vijayalakshmi, R.; Singh, H.

    2011-01-01

    Rare earths are widely used in phosphor materials, magnetic substances, alloys, catalyst, lasers, superconductors, solid oxide fuel cells and in nuclear applications. The high value of these elements depends on their effective separation into high purity compounds. The separation into individual rare earths is very difficult to achieve, due to the very low separation factors between two adjacent rare earths arising due to similar chemical properties. Taking the advantage of variation in basicity, the separation is generally accomplished by solvent extraction or ion exchange. There are several references on the separation of rare earth in different media employing various types of extractants such as 2-ethylhexyl 2-ethyhexylphosphonic acid (EHEHPA) and di-2-ethyl hexyl phosphoric acid (D2EHPA) which have been widely used for the separation and purification of rare earths. Dinonyl phenyl phosphoric acid (DNPPA) is an organo phosphorus extractant (pKa = 2.54) and is an aromatic analogue of D2EHPA, which extracts metal ion by cation exchange mechanism. DNPPA was explored to recover rare earths from phosphate media such as wet process phosphoric acid and merchant grade acid. However, there is no information available in literature on DNPPA for RE extraction from chloride medium. Therefore, an attempt has been made in the present study to investigate the feasibility of using DNPPA for extraction of La(III), Dy(III) and Y(III) from chloride medium

  19. Raw materials for advanced ceramics: rare earths separation processes

    International Nuclear Information System (INIS)

    Ricci, D.R.; Nobre, J.S.M.; Paschoal, J.O.A.

    1990-01-01

    The importance of obtaining purified rare earths oxidesis related, mainly to the increasing use of these compounds as raw materials for advanced ceramics. Processes of rare earths separation and purification are almost always based on the solvent extraction, fractional precipitation and ion exchange chromatography techniques, whose association depends on the initial concentrate and on the desired purity. This paper describes some steps of fractionation of didymium carbonate by using the solvent extraction and fractional precipitation techniques. The experimental conditions presented here have enable the production of lantanium, neodimium - praseodimium, samarium - gadolinium and ytrium concentrates, which constitute the intermediate fractions of the overall process to obtain high purity rare earths. (author) [pt

  20. Coercive Levers in Chinese Economic Statecraft: Attributed Across Earth, Rarely Apparent

    Science.gov (United States)

    2012-06-01

    Singapore, Malaysia, Indonesia, Thailand, the Philippines and Brunei) and the CLMV (Cambodia, Laos , Myanmar, Vietnam) economies by skewing development...Earths Industry and its Role in the International Market,” 2–3. 186 Tse Pui-Kwan, “China’s rare-earth industry,” U.S. Geological Survey Open-File Report...Assessment of China’s Rare Earth Policy,” The Jamestown Foundation, China Brief 10:22 (2010): 2–5. 190 Ibid., 3. 191 Tse , “China’s rare-earth

  1. Anthropogenic Cycles of Rare Earth Elements

    Science.gov (United States)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  2. Separation of heavier rare earths from neutron irradiated uranium targets

    International Nuclear Information System (INIS)

    Bhargava, V.K.; Rao, V.K.; Marathe, S.G.; Sahakundu, S.M.; Iyer, R.H.

    1978-01-01

    A radiochemical method is described for the separation of heavier rare earths from the fission of uranium. The method is particularly suitable for the separation of low yield (10sup(-5)%-10sup(-7)%), highly asymmetric rare earth fission products viz. sup(179,177)Lu, sup(175)Yb, sup(173)Tm, sup(172,171)Er, sup(167)Ho and sup(161,160)Tb in the neutron induced fission of natural and depleted uranium targets. Additional separation steps have been incorporated for decontamination from sup(239)Np (an activation product) and sup(93-90)Y (a high fission-yield product) which show similar chemical behaviour to rare earths. Separation of individual rare earths is achieved by a cation exchange method performed at 80 deg C by elution with α-hydroxyisobutyric acid (α-HIBA). (author)

  3. Rare-earth doping of high T/sub c/ superconducting perovskites

    International Nuclear Information System (INIS)

    Mc Kinnon, W.R.; Tarascon, J.M.; Greene, L.H.; Hull, G.W.

    1987-01-01

    In most superconductors, the magnetic moments of rare-earth (Re) ions interact with the conduction electrons and break the Cooper pairs, supressing or destroying superconductivity. But in the perovskite-based superconductors discovered recently, the rare-earth ions are separated from the copper and oxygen where the superconducting electrons are believed to be located. The authors study the effects of rare-earth doping in both the 40K La/sub 2-x/Sr/sub x/CuO/sub 4-y/ system and 90K YBa/sub 2/Cu/sub 3/O/sub 7-x/ system. In these materials, the RE ions only weakly affect superconductivity, and the effects we do see are more strongly correlated with changes in the volume of the crystal than with the magnetism of the rare earths

  4. Possibility study of use rare earth deposit from Araxa, Minas Gerais State

    International Nuclear Information System (INIS)

    Fernandes, M.D.

    1975-01-01

    Prospecting work done by Instituto de Pesquisas Radioativas on the Barreiro area (Araxa, M.G.) has shown the existence of a rare earth deposit of about 700.000 ton, averaging 13,5 % rare earth oxide, mainly associated to the mineral monazite. In a first stage, the conventional mineral dressing methods were tried to treat the monazite. This was followed by a study of a chemical process for the production of rare earth compounds of commercial grade. The conventional methods of mineral dressing tested did not lead to satisfactory results. This was assumed to be due to insufficient liberation of the monazite. However, the application of the chemical process to the natural material, using concentrated sulfuric acid in the initial attack, allowed more than 90% rare earth extraction and a subsequent yield of commercial grade rare earth oxide, with over 75% rare earth recovery. (author)

  5. A divalent rare earth oxide semiconductor: Yttrium monoxide

    Science.gov (United States)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    Rare earth sesquioxides like Y2O3 are known as widegap insulators with the highly stable closed shell trivalent rare earth ions. On the other hand, rare earth monoxides such as YO have been recognized as gaseous phase, and only EuO and YbO were thermodynamically stable solid-phase rock salt monoxides. In this study, solid-phase rock salt yttrium monoxide, YO, was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO possesses unusual valence of Y2+ ([Kr] 4d1) . In contrast with Y2O3, YO was narrow gap semiconductor with dark-brown color. The electrical conductivity was tunable from 10-1 to 103 Ω-1 cm-1 by introducing oxygen vacancies as electron donor. Weak antilocalization behavior was observed indicating significant spin-orbit coupling owing to 4 d electron carrier. The absorption spectral shape implies the Mott-Hubbard insulator character of YO. Rare earth monoixdes will be new platform of functional oxides. This work was supported by JST-CREST, the Japan Society for the Promotion of Science (JSPS) with Grant-in-Aid for Scientific Research on Innovative Areas (Nos. 26105002 and 26105006), and Nanotechnology Platform (Project No.12024046) of MEXT, Japan.

  6. Non-rare earth magnetic nanoparticles

    Science.gov (United States)

    Carpenter, Everett E.; Huba, Zachary J.; Carroll, Kyler J.; Farghaly, Ahmed; Khanna, Shiv N.; Qian, Meichun; Bertino, Massimo

    2017-09-26

    Continuous flow synthetic methods are used to make single phase magnetic metal alloy nanoparticles that do not contain rare earth metals. Soft and hard magnets made from the magnetic nanoparticles are used for a variety of purposes, e.g. in electric motors, communication devices, etc.

  7. Studies of transport pathways of Th, U, rare earths, Ra-228, and Ra-226 from soil to plants and farm animals: Final progress report, 1983-1988

    Energy Technology Data Exchange (ETDEWEB)

    Linsalata, P

    1988-07-01

    This report consists of three parts. Part 1 discusses a field study conducted in an area of enhanced, natural radioactivity to assess the soil to edible vegetable concentration ratios (CR = concentration in dry vegetable/concentration in dry soil) of Th-232, Th-230, Ra-226, Ra-228, and the light rare earth elements (REE's), La, Ce, and Nd. Twenty-eight soil, and approximately 42 vegetable samples consisting of relatively equal numbers of seven varieties, were obtained from 11 farms on the Pocos de Caldas Plateau in the state of Minas Gerais, Brazil. This region is the site of a major natural analogue study to assess the mobilization and retardation processes affecting thorium and the REE's at the Morro do Ferro ore body, and uranium series radionuclides at the Osamu Utsumi open pit uranium mine. Thorium (IV) serves as a chemical analogue for quadrivalent plutonium, the light REE's (III) as chemical analogues for trivalent americium and curium, and uranium (VI) as an analogue for transuranics with stable oxidation states above IV, e.g., Pu(VI). Part 2 includes our final measurement results for naturally occurring light rare earth elements (REE's include La, Ce, Nd, and SM), U-series and Th-series radionuclides in adult farm animal tissues, feeds and soils. Our findings on soil-to-tissue concentration ratios (CR's) and the comparative behavior of these elements in farm animals raised under natural conditions by local farmers are presented. Part 3 summarizes our findings to date on the distribution and mobilization of Th-232, light rare earth elements (LREE), U-238 and Ra-228 in the MF basin. Estimates of first order, present day, mobilization rate constants resulting from ground water solubilization and seepage/stream transport are calculated using revised inventory estimates for the occurrence of these elements in the ore body and annual flux estimates for the transport of these elements away from the ore body. 151 refs., 20 figs., 40 tabs.

  8. Spectroscopic properties of rare earths in optical materials

    CERN Document Server

    Parisi, Jürgen; Osgood, R; Warlimont, Hans; Liu, Guokui; Jacquier, Bernard

    2005-01-01

    Aimed at researchers and graduate students, this book provides up-to-date information for understanding electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties include electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions on materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.

  9. Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review

    Directory of Open Access Journals (Sweden)

    Sravya Tekumalla

    2014-12-01

    Full Text Available Magnesium-rare earth based alloys are increasingly being investigated due to the formation of highly stable strengthening phases, activation of additional deformation modes and improvement in mechanical properties. Several investigations have been done to study the effect of rare earths when they are alloyed to pure magnesium and other Mg alloys. In this review, the mechanical properties of the previously investigated different magnesium-rare earth based binary alloys, ternary alloys and other higher alloys with more than three alloying elements are presented.

  10. Mortality among male workers at a thorium-processing plant

    International Nuclear Information System (INIS)

    Polednak, A.P.; Stehney, A.F.; Lucas, H.F. Jr.

    1981-01-01

    Mortality is described in a cohort of 3039 men who were employed between 1940 and 1973 at a company involved in the production of thorium and rare earth chemicals from monazite sand. The standardized mortality ratio (SMR) for all causes was 1.05. SMR's were high for cancers of the lung (1,44), rectum (1.90), and pancreas (2.01), and for motor vehicle accidents (1.64). A subgroup of 592 men who worked for one year or longer in selected jobs (laborer, operator, maintenance) was followed up more intensively. SMR's were high for both lung cancer (1.62; 95% CL = 0.78 and 2.98) and pancreatic cancer (4.01; 95% CL = 1.30 and 9.34). The higher proportion of smokers in this subgroup relative to US males could have explained at least part of the excess mortality from lung cancer. Continued follow-up of the cohort in morbidity and mortality studies is needed to evaluate further these possible long-term effects of exposure to radioactivity and chemicals in the thorium extraction process

  11. Study on Preparation and Property of Poly-Aminosilicone-Rare Earth Composite

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming(张明); Qiu Guanming(邱关明); Chen Haiyan(陈海燕); Zhou Lanxiang(周兰香); Inoue Shinich; Okamoto Hiroshi

    2003-01-01

    The poly-aminosilicone-rare earth composite was prepared by poly-aminosilicone cross-linked with rare earth and active silanol. The thermal stability of the composites was studied by thermogravimetric analysis (TG). Force condition of the composites in electric field was analyzed and relative polarizability was derived. It is found that the composites containing different rare earth ions have different relative polarizability. The experiment results reveal that organosilicon materials with different electrical performance can be obtained by this way. Meanwhile, the absorption and flourescene spectrum of composites were also investigated. Compared to rare earth chloride, the spectrum properties of the composite are changed obviously. The possible reasons for these phenomena were discussed.

  12. Study On Beneficiation Technology Of Dong Pao Rare-Earth-Barite-Fluorite With Two Product Plans About Content And Recovery Of Rare-Earth Fine Ores

    International Nuclear Information System (INIS)

    Duong Van Su; Truong Thi Ai; Bui Ba Duy; Bui Thi Bay; Nguyen Hong Ha; Le Thi Hong Ha; Doan Thi Mo; Doan Dac Ban; Nguyen Hoang Son

    2014-01-01

    The ore sample used in the research was taken from the F3 ore bodies and the sample of the F7, F9 and F16 ore bodies which contain the average of 5.98% TR 2 O 3 ; they are multi-metals ore which is difficult to enrich, highly weather with very complex ingredients. The process of the experiment is the ore is crushed, ground, screened and classified reasonably to -0.1 mm and divided into 3 particle size with the following technique: (1) -0.020 mm is primary sludge and the rare-earth fine ore; (2) 0.075-1 mm is gotten through the sludge concentrating table with the output is the 2 parts: the heavy part which is dried magnetic separator with high magnetism to get the rare-earth fine ore and the light one; (3) Light minerals, non-magnetic and ferromagnetic minerals group are ground together to 85% of them get size within -0.075 mm then mix it with 0.020-0.075 mm group. Using flotation separator, get barite-rare earth mixture and fluorite. After that, we separate this mixture by secondary flotation and get refined rare earth, barite and fluorite mineral. The result of the theme: (1) product plan A-rare-earth fine ore has TR 2 O 3 content archive 42.07% with recovery is 69.70%; (2) product plan B-rare-earth fine ore has TR 2 O 3 content archive 29.64% with recovery is 80.01%. (author)

  13. Intra-group separation of rare earths using new organic phosphorus ligands

    International Nuclear Information System (INIS)

    Hadic, Sanela

    2017-01-01

    Rare earth elements (REE) have unique magnetic, photophysical, and chemical properties and they are therefore used in numerous high-technology applications. However, to this day, the isolation of pure rare earths from primary and secondary raw materials is very challenging. In this work, the hydrometallurgical separation of neighboring rare earths (e.g., praseodymium/ neodymium) was optimized with novel selective extraction agents. The separation of rare earths (yttrium and all lanthanides except promethium) was investigated with fourteen new organophosphorus compounds. Oxygen-bearing phosphinic acids yielded good separation results for heavy rare earths (dysprosium to lutetium). For light rare earths (lanthanum to neodymium), particularly high separation factors were realized with synergistic systems containing an aromatic dithiophosphinic acid and a co-extractant, such as tris (2-ethylhexyl) phosphate (TEHP). Optimization studies of the latter extraction system revealed an extremely high separation factor (SF) of 4.21 between praseodymium and neodymium. Another focus of this work was to understand the extraction mechanism. With the aid of nuclear magnetic resonance spectroscopy ("1H-NMR) and time-resolved laser fluorescence spectroscopy (TRLFS), the complex stoichiometry of promising extraction systems was examined. Studies revealed a dependency between the selectivity for rare earths and the coordination number of the formed complexes. In addition, temperature-dependent extraction experiments were performed and thermodynamic data (ΔG, ΔH, and ΔS) determined. These data provided additional information about the origin of selectivity for neighboring rare earths. With regard to the industrial capability of the investigated extraction systems, the chemical durability of ligands was studied under process-relevant conditions. Qualitative and quantitative analytical methods (e.g., GC-MS) were used in long-term experiments to determine the ligand degradation. After

  14. Advanced system for separation of rare-earth fission products

    International Nuclear Information System (INIS)

    Baker, J.D.; Gehrke, R.J.; Greenwood, R.C.; Meikrantz, D.H.

    1982-01-01

    A microprocessor-controlled radiochemical separation system has been further advanced to separate individual rare-earth elements from mixed fission products in times of a few minutes. The system was composed of an automated chemistry system fed by two approximately 300 μg 252 Cf sources coupled directly by a He-jet to transport the fission products. Chemical separations were performed using two high performance liquid chromatography columns coupled in series. The first column separated the rare-earth group by extraction chromatography using dihexyldiethylcarbamoylmethylphosphonate (DHDECMP) adsorbed on Vydac C 8 resin. The second column isolated the individual rare-earth elements by cation exchange chromatography using Aminex A-9 resin with α-hydroxyisobutyric acid (α-HIBA) as the eluent. Significant results, which have been obtained to date with this advanced system, are the identification of several new neutron-rich rare-earth isotopes including 155 Pm (T=48+-4 s) and 163 Gd (T=68+-3 s). In addition, a half-life of 41+-4 s is reported for 160 Eu. (author)

  15. Direct current electroluminescence in rare-earth-doped zinc sulphide

    International Nuclear Information System (INIS)

    Bryant, F.J.; Krier, A.

    1984-01-01

    Some of the properties and characteristics of rare-earth-doped zinc sulphide DCEL devices are reported. Two types of devices are discussed, co-evaporated ZnS:RE thin films and ion implanted ZnS:RE single crystal diodes. The thin film devices exhibit bright DCEL of various colours at low applied voltages (typically approximately 12 V). A study of the spectral intensities and lifetimes of the Er 3+ ion in ZnS:Er 3+ thin films is consistent with a Boltzmann energy distribution amongst the conduction electrons present in these devices. The ZnS:RE single crystal diodes fabricated in this laboratory by ion implantation are also capable of various colour DCEL. By comparing the EL emission obtained from the different rare earth dopants, erbium and neodymium are identified as the most efficient luminescence centres. Further consideration of the EL emission spectra gives evidence for the presence of inter-conduction band hot electron transitions in those devices containing rare earth dopants which are inefficent electroluminescence centres. These findings can be explained in terms of Auger processes occurring in rare earth complexes. (author)

  16. Nuclear orientation on rare earth nickel alloys

    International Nuclear Information System (INIS)

    Nishimura, K.

    1998-01-01

    A hyperfine interaction study of the light rare earth elements, Ce, Pr, Nd and Pm, in the rare earth nickel and CeNi 2 Al 5 compounds by means of the low temperature nuclear orientation is summarised. The magnitudes and directions of the magnetic hyperfine fields obtained through measurements of γ-ray anisotropy and angular distributions reveal the magnetic structures of the ions. The experiments extracted peculiar results for the magnetic properties of the ions, and show certain novel features of the technique to the study of solid-state magnetism. Copyright (1998) Australian Journal of Physics

  17. Features of rare earth element (3) complexing

    International Nuclear Information System (INIS)

    Martynenko, L.I.

    1991-01-01

    Reasons for nonobeyance to the regularity of tetrad ''W'' effect of rare earth chelate complex compounds are discussed in the review. The concept of metal-ligand ionic bond in rare earth complexes is put in the basis of the consideration. From this viewpoint mutual influence of ligands in lower, higher, polynuclear and different-ligand complexes, formed by the ligands of low, medium and high denticity, is discussed. Problems of intermolecular interaction of complexes with different structure are considered in relation to problems of variation of chelate volatility and selectivity in the processes of sublimation and precipitation

  18. IAEA Concludes Follow-up Review of Malaysia Rare Earth Plant IAEA Concludes Follow-up Review of Malaysia Rare Earth Plant

    International Nuclear Information System (INIS)

    2014-01-01

    In its preliminary observations, the follow-up mission found that good progress had been made in implementing the recommendations of the 2011 mission, and noted that the radiological risks of the Lynas plant are low because of the very low level of radioactivity of the materials handled. The team also noted that Malaysia is actively updating its regulations in accordance with the most recent IAEA safety standards. The IAEA team gave some advice for further progress in specific areas. For example: The waste management plan should be based on realistic scenarios including, if considered appropriate, the identification of a final disposal site. Environmental monitoring activities should be optimised to ensure resources are focused on the most important areas, including enhancing monitoring of liquid discharges. The basis of the financial fund to be paid by Lynas for long-term waste management and decommissioning should be communicated more clearly. The AELB and Lynas are encouraged to maintain a proactive approach to relations with the media, public and other stakeholders, on an ongoing basis, to address continuing widespread misconceptions about the plant and radiation issues in general. Rare earths are elements used in many high-technology applications, from mobile phones to wind turbines. Since the ore from which they are refined also usually contains naturally occurring radioactive materials such as thorium or uranium, the process results in very low-level radioactive waste that must be managed safely. The IAEA mission's final report will be submitted to the Malaysian government at the end of October, and will be made public

  19. Magnetostriction of rare earth-Fe2 Laves phase compounds

    International Nuclear Information System (INIS)

    Clark, A.E.; Abbundi, R.; Savage, H.T.

    1977-01-01

    Single crystal magnetostriction measurements were made as a function of temperature on TbFe 2 and DyFe 2 . From these, the intrinsic magnetoelastic coupling coefficients were determined for the rare earth-Fe 2 compounds. Employing X-ray techniques, certain multicomponent rare earth-Fe 2 compounds were identified to maximize the magnetostriction to anisotropy ratio. (Auth.)

  20. Rare earth element lithogeochemistry of granitoid mineral deposits

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.P.; Fryer, B.J. (Memorial Univ. of Newfoundland, St. John' s (Canada). Dept. of Earth Sciences)

    1983-12-01

    As a monitor of the processes involved in the formation of granitoid mineral deposits the coherent group behaviour of the rare earth elements (REE) actively reflects changing fluid characteristics. For example, in the porphyry environment, magmatic-hydrothermal fluids produce potassic alteration with strong enrichment in the light rare earth elements, reflecting their high pH, low fluid/rock ratios, and the dominant role of Cl/sup -/ complexing in metal (i.e. Cu, Au) transport. With increasing fluid/rock ratios and decreasing pH accompanying the progressive involvement of meteoric fluids (and the production of propylitic, argillic, and phyllic alteration) anionic species such as F/sup -/ and CO/sub 3//sup 2 -/ become important in metal (e.g. Mo, W) transport through complexing, and their activity in the hydrothermal fluids is illustrated by mobilization of the heavy rare earth elements. The relative involvement of Cl/sup -/ versus F/sup -/ versus CO/sub 3//sup 2 -/ in metal transport in other granite-related systems can also be monitored through REE behaviour. Hence granitoid tin-tungsten mineralization and associated greisenization typically exhibit heavy rare earth enrichment and evidence the importance of F/sup -/ and CO/sub 3//sup 2 -/ in metal transport. Similarly, heavy rare earth element enrichment in hydrothermal uranium deposits can be related to the transport of uranium as carbonate complexes. REE are widely accepted as powerful tools in the study of rock petrogenesis, but their use has been neglected in the investigation of mineral deposits. The recognition of the systematic variation of REE distributions in granitoid mineral deposits suggests that the application of REE geochemistry, particularly when integrated with fluid inclusion and isotope studies, can provide l) an effective method for identifying the physiochemical controls of metal transport and 2) a useful criterion of elucidating metal distribution.

  1. Rare earth element lithogeochemistry of granitoid mineral deposits

    International Nuclear Information System (INIS)

    Taylor, R.P.; Fryer, B.J.

    1983-01-01

    As a monitor of the processes involved in the formation of granitoid mineral deposits the coherent group behaviour of the rare earth elements (REE) actively reflects changing fluid characteristics. For example, in the porphyry environment, magmatic-hydrothermal fluids produce potassic alteration with strong enrichment in the light rare earth elements, reflecting their high pH, low fluid/rock ratios, and the dominant role of Cl - complexing in metal (i.e. Cu, Au) transport. With increasing fluid/rock ratios and decreasing pH accompanying the progressive involvement of meteoric fluids (and the production of propylitic, argillic, and phyllic alteration) anionic species such as F - and CO 3 2- become important in metal (e.g. Mo, W) transport through complexing, and their activity in the hydrothermal fluids is illustrated by mobilization of the heavy rare earth elements. The relative involvement of Cl - versus F - versus CO 3 2- in metal transport in other granite-related systems can also be monitored through REE behaviour. Hence granitoid tin-tungsten mineralization and associated greisenization typically exhibit heavy rare earth enrichment and evidence the importance of F - and CO 3 2- in metal transport. Similarly, heavy rare earth element enrichment in hydrothermal uranium deposits can be related to the transport of uranium as carbonate complexes. REE are widely accepted as powerful tools in the study of rock petrogenesis, but their use has been neglected in the investigation of mineral deposits. The recognition of the systematic variation of REE distributions in granitoid mineral deposits suggests that the application of REE geochemistry, particularly when integrated with fluid inclusion and isotope studies, can provide l) an effective method for identifying the physiochemical controls of metal transport and 2) a useful criterion of elucidating metal distribution

  2. Role of americium interference in analysis of samples containing rare earths

    International Nuclear Information System (INIS)

    Mohapatra, P.K.; Adya, V.C.; Thulasidas, S.K.; Bhattacharyya, A.; Kumar, Mithlesh; Godbole, S.V.; Manchanda, V.K.

    2007-01-01

    Quality control of nuclear fuel samples requires precise estimation of rare earths which have high neutron absorption cross sections and act as neutron poisons. Am is generated by nuclear decay where as lanthanides may be present as impurities picked up during reprocessing/fuel fabrication. Precise estimation of the rare earths by ICP-AES method in presence of 241 Am is a challenging task due to the likelihood of spectral interference of the latter. Rare earths impurities in the purified Am sample were estimated by ICP-AES method. Known amounts of the rare earths viz. Sm, Eu, Dy and Gd were used as synthetic sample and the interference due to Am was investigated. (author)

  3. Neutron activation analysis of the rare earth elements in Nasu hot springs

    International Nuclear Information System (INIS)

    Ikeda, Nagao; Takahashi, Naruto.

    1978-01-01

    Eleven rare earth elements (lanthanum, cerium, neodymium, samarium, europium, gadolinium, terbium, holmium, thulium, ytterbium and lutetium) in hot spring waters and sinter deposits in the Nasu area were determined by the neutron activation method. The rare earth elements in hot spring water were preconcentrated in ferric hydroxide precipitate and neutron-irradiated. The rare earth elements were chemically separated into lighter and heavier groups and the activity of each group was measured with a Ge(Li) detector. Distribution of the rare earth elements between the hot spring water and the sinter deposit was also discussed. (auth.)

  4. Prospects for trivalent rare earth molecular vapor lasers for fusion

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1976-01-01

    The dynamical properties of three types of RE 3+ molecular vapors were considered: (1) rare earth trihalogens, (2) rare earth trihalogens complexed with transition metal trihalogens, and (3) rare earth chelates. Radiative and nonradiative (unimolecular and bimolecular) transition probabilities have been calculated using phenomenological models predicted on the unique electronic structure of the triply ionized RE ion (well shielded ground electronic configuration of equivalent of electrons). Although all the lanthanide ions have been treated in some detail, specific results are presented for the Nd 3+ and Tb 3+ ions to illustrate the systematics of these vapors as a class of new laser media. Once verified, these phenomenological models will provide a powerful tool for the directed experimental exploration of these systems. Because of the structural similarity to the triply ionized actinides, comments offered here for the lanthanide rare earth series generally apply to gaseous actinide lasers which are also under consideration

  5. Rare earth taggants in-printing ink - its potential in forensic applications

    International Nuclear Information System (INIS)

    Joseph, Daisy; Chodhury, R.K.; Maind, Sandip

    2011-01-01

    Proton Induced X-ray Emission (PIXE) and Energy Dispersive X-ray Fluorescence (EDXRF) techniques were used for elemental characterization of offset printing ink tagged with rare-earth taggants. The offset printing ink was tagged with rare-earth (La, Pr, Nd, Sm, Eu and Gd) thenoyltrifluoroacetonate chelates at about 1000-ppm level for each element separately. Small aliquots (approximately 20 mg) of tagged inks were coated on paper supports in the form of small circles having diameter 10-15 mm each and then analyzed. In the case of PIXE, a proton beam of energy 4 MeV and in the case of EDXRF a radioisotope source of 241 Am (100 mCi) was used to excite the samples. The PIXE analysis showed well-resolved rare-earth LX-rays and EDXRF analysis showed the K X-rays of rare earths. The aim of this study is to see the efficacy of homogeneous mixing of inorganic taggants in offset printing ink with the objective to establish linear relation of intensity (signal) against concentrations/ amounts of taggant(s) and to derive the minimum detection limit, by EDXRF and PIXE. The feasibility study of determination of rare-earth elements in offset printing ink tagged with rare-earth thenoyltrifluoroacetonates was examined. In the present study, we have used the facility of Proton Induced X-ray Emission (PIXE) and Energy Dispersive X-ray Fluorescence (EDXRF) technique for identification of rare earths in tagged printing ink on paper support. Satisfactory results to identify and quantify the taggants were achieved. (author)

  6. Geological research on rare earth elements, results and outlook

    International Nuclear Information System (INIS)

    Fortin, H

    1999-01-01

    This is a report of the geological investigation of rare earth elements carried out by CCHEN and ENAMI (Empresa Nacional de Mineria) over 70,000 square kilometers in Chile's northern coastal mountain range. Twenty areas were identified with sphena, davidite, ilmenite, pyroxene, anatase and magnetite minerals containing 0.3 kg/t to 6.0 kg/t of rare earth elements. Additional research on Cerro Carmen Prospect, located near Diego de Almagro, define it as a metasomatic deposit, hosted in metamorphic contact rocks, between andesites (Pliensbachian to early Jurassic) and intrusive monzonitic rocks. This information increases knowledge about the metallogenesis of Chile's copper - iron - rare earth - uranium deposits and the application of this geological model of ore deposits as defined in Australia's Olympic Dam

  7. Quantum Theory of Rare-Earth Magnets

    Science.gov (United States)

    Miyake, Takashi; Akai, Hisazumi

    2018-04-01

    Strong permanent magnets mainly consist of rare earths (R) and transition metals (T). The main phase of the neodymium magnet, which is the strongest magnet, is Nd2Fe14B. Sm2Fe17N3 is another magnet compound having excellent magnetic properties comparable to those of Nd2Fe14B. Their large saturation magnetization, strong magnetocrystalline anisotropy, and high Curie temperature originate from the interaction between the T-3d electrons and R-4f electrons. This article discusses the magnetism of rare-earth magnet compounds. The basic theory and first-principles calculation approaches for quantitative description of the magnetic properties are presented, together with applications to typical compounds such as Nd2Fe14B, Sm2Fe17N3, and the recently synthesized NdFe12N.

  8. Thorium and health: state of the art

    International Nuclear Information System (INIS)

    Leiterer, A.; Berard, Ph.; Menetrier, F.

    2010-01-01

    This report reviews data available in the literature on the subject: 'thorium and health'. Thorium is a natural radioactive element of the actinide series. It is widely distributed in the earth's crust and 99% is found as isotope thorium-232. Its various uses are explained by its chemical, physical, and nuclear properties. As a potential nuclear fuel, thorium is still in demonstration in pilot scale reactors. But thorium has already multiple and sometimes unknown industrial uses. Some mass market products are concerned like light bulb. This raises the issue of wastes, and of exposures of workers and public. Environmental exposure via food and drink of the general population is low, where as workers can be exposed to significant doses, especially during ore extraction. Data on bio-monitoring of workers and biokinetic of thorium, in particular those provided by ICRP, are gathered here. Studies on health effects and toxicity of thorium are scarce and mostly old, except outcomes of its previous medical use. Studies on other forms of thorium should be undertaken to provide substantial data on its toxicity. Concerning treatment, Ca-DTPA is the recommended drug even if its efficacy is moderate. LiHOPO molecule shows interesting results in animals, and further research on chelating agents is needed. (authors)

  9. Magnetism in rare-earth metals and rare-earth intermetallic compounds

    International Nuclear Information System (INIS)

    Johansson, B.; Nordstroem, L.; Eriksson, O.; Brooks, M.S.S.

    1991-01-01

    Some of out recent local spin density electronic structure calculations for a number of ferromagnetic rare-earth systems are reviewed. A simplified model of the level densities for rare-earth (R) transition metal (M) intermetallic compounds, R m M n , is used to describe in a simple way the main features of their basic electronic structure. Explicit calculations for LuFe 2 and RFe 2 (R=Gd-Yb) systems are presented, where a method to treat simultaneously the localized 4f and the conduction electron spin magnetism is introduced. Thereby it becomes possible to calculate the K RM exchange coupling constant. This method is also used to study theoretically the permanent magnet material Nd 2 Fe 14 B. The electronic structure of the anomalous ferromagnets CeFe 2 and CeCo 5 is discussed and an induced 4f itinerant magnetism is predicted. The γ-α transition in cerium metal is considered, and results from calculations including orbital polarization are presented, where a volume collapse of 10% is obtained. On one side of the transition the 4f electrons are calculated to be essentially non-bonding (localized) and on the other side they are found to contribute to the metallic bonding and this difference in behaviour gives rise to the volume collapse. Recent calculations by Wills, Eriksson and Boring for the crystal structure changes in cerium metal under high pressure are discussed. Their successful results imply an itinerant picture for the 4f electrons in α-cerium. Consequently this strongly supports the view that the γ-α phase transformation is caused by a Mott transition of the 4f electrons. (orig.)

  10. Quantitative analysis or rare earths by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Taam, Isabel; Mantovano, J.L.; Gante, Valdir; Jesus, Camila S.

    2013-01-01

    Rare earths ores and compounds are of growing importance to the worldwide industry. Its applications range from raw material to catalysts, manufacturing of electronics and even super magnets. Therefore, the demand for quick and accurate quantitative analysis methods is continuously growing. Current quantification methods of rare earths involve the separation of these elements by ion exchange and liquid-liquid extraction prior to the analysis itself, processes both time and reagent consuming. In the present work, we propose a method that directly quantifies by XRF technique the following rare earths: La, Pr, Nd, Sm and Gd in a concentrated liquor whose matrix also contains Ca, Y, PO4, U and Th. We evaluated the analytical interference of each element present on the sample on X-rays spectrum. The studied samples are certified standards and the obtained results have been compared to EDTA titration results, an already well-established and widely trusted method.We also measured the matrix effect thus using a complex rare earths standard. Results show that quantification by XRF technique is as accurate as the results in dose titration with EDTA for the same elements, with the advantage of exempting the previous separation step from each rare earth and from other elements present in the matrix (such as U and Th). (author)

  11. Mineral characterisation of Don Pao rare earth deposit in Vietnam

    International Nuclear Information System (INIS)

    XuanBen, T.

    1998-01-01

    Full text: The Don Pao Rare Earth Deposit was discovered in 1959 in Phon Tho district, about 450km North-West of Hanoi capital. Geological work was conducted between 1959-95, resulting in 60 ore bodies of various sizes being identified. The ore bodies are irregularly shaped nests, lenses and veins hosted in the shear zone, at the margin of a Paeleogene aged syenite massif. The mineral composition of Don Pao Deposit is very complex, consisting of more than 50 minerals. Among them, basnaesite, parisite, fluorite and barite are the main constituent minerals of the ore. All the minerals were identified by the modern methods of mineralogical studies. Based on the constituent mineral ratios, four ore types have been distinguished in the deposit: 1. Rare earth ore containing over 5 percent of RE 2 O 3 . 2. Rare Earth-Barite ore containing 0.5 to 30 percent of RE 2 O 3 . 3. Rare Earth-Barite-Fluorite ore containing 1 to 5 percent of RE 2 O 3 . 4. Rare Earth bearing Fluorite ore containing 1 to 5 percent of RE 2 O 3 . According to the benefication test, the ores in Don Pao can be enriched to a concentrate of 60 percent of RE 2 O 3 with a recover of 75 percent

  12. Correlations in rare-earth transition-metal permanent magnets

    International Nuclear Information System (INIS)

    Skomski, R.; Manchanda, P.; Kashyap, A.

    2015-01-01

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo 5 . On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy

  13. Correlations in rare-earth transition-metal permanent magnets

    Science.gov (United States)

    Skomski, R.; Manchanda, P.; Kashyap, A.

    2015-05-01

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo5. On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy.

  14. Complex formation constant and hydration number change of aqua-rare earth ions

    International Nuclear Information System (INIS)

    Kanno, H.

    1998-01-01

    Full text: It is now well established that the inner-sphere hydration number of aqua-rare earth ions changes from nine to eight in the middle of the rare earth series. This hydration number change greatly affects the complex formation of rare earth ions as we observe irregular variations in most series behaviours of the complex formation constant (K) in aqueous solution systems when K being plotted against 1/r or r (r is ionic radius of rare earth ion). Furthermore, it shows very anomalous concentration dependence in the sense that nona-aqua Ln 3+ ion increases in number with increase in salt concentration in aqueous rare earth salt solution (salt chloride, perchlorate). In this report, a theoretical derivation of the formation constant (K) for the inner-sphere complex formation of rare earth ions with a monodentate ligand was made by taking account of both the hydration number change in the middle of the series and its anomalous salt concentration dependence. The series behaviour of the formation constant against 1/r (or r) is successfully explained with using the empirical finding that K varies almost linearly with 1/r (or r) in the region where only one hydration number dominates. This success is also taken as evidence that the anomalous salt concentration dependence of the hydration number change is caused by the outer-sphere complex formation of rare earth ions with the condition that nona-aqua rare earth ions form outer-sphere complexes more easily than octa-aqua ions

  15. Recovery of valuable products from the raffinate of uranium and thorium pilot-plant

    International Nuclear Information System (INIS)

    Martins, E.A.J.

    1990-01-01

    IPEN-CNEN/SP has being very active in refining yellow cake to pure ammonium diuranate which is converted to uranium trioxide, uranium dioxide, uranium tetra-and hexa-fluoride in sequential way. The technology of the thorium purification and its conversion to nuclear grade products has been a practice since several years as well. For both elements the major waste to be worked is the raffinate from purification via TBP-varsol in pulsed columns. In this paper the actual processing technology is reviewed with special emphasis on the recovery of valuable products, mainly nitric acid, ammonium nitrate, uranium, thorium and rare earth elements. Ammonium nitrate from the precipitation of uranium diuranate is of good quality, being radioactivity and uranium-free, and recommended to be applied as fertilizer. In conclusion the main effort is to maximize the recycle and reuse of the above mentioned chemicals. (author)

  16. Proceedings of the international conference on science, technology and applications of rare earths

    International Nuclear Information System (INIS)

    2015-01-01

    Rare Earth Elements (REEs) are extensively used in clean energy applications like wind turbines, hybrid car batteries/electric motors, solar energy collectors, permanent magnets, phosphors, multifunctional pigments, thin film technologies, defence - related systems, etc. The use of rare earth elements in modern technology has increased several folds over the past few years in both domestic and international sectors due to the growing economy. The current global demand for rare earths is expected to provide a myriad of business opportunities for rare earth industries across the world including India for the utilization of rare earths in green energy, technology and industry. Papers relevant to INIS are indexed separately

  17. Study of Nuclear Environment and Material Strategy

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    Progress of global warming requires us to establish a low-carbon society. Carbon-dioxide (CO 2 ) is emitted from two major sectors in the world. The largest CO 2 emitting sector is power sector having 46 % of the world share. Nuclear power has an important role because it does not emit CO 2 while it produces electricity. The second largest sector is transportation and has about 23 % of the world share. 73 % of transportation is land-transportation, that is to say automobile. Therefore, lots of motor-car companies are expressing their vision to supply electric vehicle (EV) or hybrid vehicle (HV) in these few years. In order to manufacture EV and HV, rare-earth materials such as neodymium (Nd) and dysprosium (Dy) are necessary. EV and HV are driven by an electric motor using permanent magnet. Nd is used to improve torque of permanent magnet. Dy is used as supplement for the case of HV in order to enhance thermal resistance because electric motor is exposed to high temperature circumference with combustion engine. 97 % of world supply of rare-earth production is shared by China. The reduction of exportation amount of rare-earth from China to Japan have brought a significant impact on Japan's industries especially for motor-car companies, which are going to supply EV and HV. Japan is going to develop new rare-earth mines outside of China such as in Vietnam. The most important problem relating to rare-earth mining is 'thorium'. The popular minerals containing rare-earth are monazite, bastnasite and so on. Thorium is mostly included in the same minerals. Therefore, thorium is separated whenever rare-earth is refined. Thorium separated in China can be stored for future usage as nuclear fuel. Though thorium began to be considered also in a working group of Atomic Energy Society of Japan since 2010, it is not clear when thorium starts to be used and how much amount of thorium will be consumed. It is estimated that consumption of thorium will be smaller than the production

  18. Fabrication of Superhydrophobic and Luminescent Rare Earth/Polymer complex Films.

    Science.gov (United States)

    Wang, Zefeng; Ye, Weiwei; Luo, Xinran; Wang, Zhonggang

    2016-04-18

    The motivation of this work is to create luminescent rare earth/polymer films with outstanding water-resistance and superhydrophobicity. Specifically, the emulsion polymerization of styrene leads to core particles. Then core-shell-structured polymer nanoparticles are synthesized by copolymerization of styrene and acrylic acid on the core surface. The coordination reaction between carboxylic groups and rare earth ions (Eu(3+) and Tb(3+)) generates uniform spherical rare earth/polymer nanoparticles, which are subsequently complexed with PTFE microparticles to obtain micro-/nano-scaled PTFE/rare earth films with hierarchical rough morphology. The films exhibit large water contact angle up to 161° and sliding angle of about 6°, and can emit strong red and green fluorescence under UV excitation. More surprisingly, it is found that the films maintain high fluorescence intensity after submersed in water and even in aqueous salt solution for two days because of the excellent water repellent ability of surfaces.

  19. Behaviour of rare earth elements, thorium, uranium and strontium isotopes in soil samples of Bryansk region contaminated due to Chernobyl accident

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Yonehara, H.; Kurotaki, K.; Shiraishi, K.; Ramzaev, V.; Barkovski, A.

    2000-01-01

    The aim of this study was to characterise the processes which control retention of rare earth elements, U and Th in soil samples of Bryansk region in one of Russian territory contaminated due to Chernobyl accident. Acid sandy and loam sand podzolic soils are typical of this area. We have classified soil samples into forest, pasture, field, yard and kitchen garden. Rare earth elements, U and Th concentrations were measured by digestion soil samples using acid digestion and microwave digestion method followed by ICP-MS whereas Sr isotope ratio ( 87 Sr/ 86 Sr) was determined by using a thermal ionization mass spectrometer (TIMS). In case of forest soil samples, ratio of U/Th varied from 3.32 to 3.60. Though concentration of U and Th varies, ratio does not show much variation. Pasture soil showed higher concentration of REEs, U and Th. Chondrite normalized pattern of soil samples did not differ much from one another excep Ce and Eu and were similar to that for average concentration of continental crust. In case of 87 Sr/ 86 Sr ratio, top layer soil sample shows a relatively higher isotope ratio than lower layers. These data, within the study area, may be reflective of variations in the concentration of elements in reservoir rocks at depth. (author)

  20. Advances in chromatography of the rare earth elements (review)

    International Nuclear Information System (INIS)

    Oguma, Koichi; Kuroda, Rokuro; Shimizu, Tsuneo.

    1995-01-01

    A review is presented which covers liquid chromatography, gas chromatography, and related techniques. This article intends to describe the chromatographic methods playing an important role in the separation of the rare earth elements. Special attention is paid to the usefulness of various types of liquid chromatography which enable the complete mutual separation of the rare earth elements. Applications are also discussed. (author) 161 refs

  1. Yttrium and rare earths separation by ion exchange resin

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Ayres, M.J.G.; Ribeiro, S.; Silva, G.L.J.P.; Silva, M.L.C.P.; Martins, A.H.

    1988-01-01

    The experimental results of yttrium and rare earths separation from Brazilian xenotime are presented. The research consist in five stage: 1) Preparation of yttrium, erbium and lutetium standard solutions, from solubilization of pure oxides 2) yttrium and rare earths separation by ion exchange chromatrography 3) Separation and recovery of EDTA 4) Precipitation and calcination and 4) Analytical control of process. (C.G.C.) [pt

  2. Crystal field symmetry and magnetic interactions in rare earth-silver amorphous alloys

    International Nuclear Information System (INIS)

    Pappa, Catherine.

    1979-01-01

    A study has been made of the following rare earth based amorphous alloys: Ndsub(x)Agsub(100-x), Prsub(x)Agsub(100-x), Gdsub(x)Agsub(100-x), Tlsub(x)Agsub(100-x). In rare earth based amorphous alloys, the symmetrical distribution of the crystal field is very wide and hence not very sensitive to the content of the alloys. The existence of preponderant negative magnetic interactions leads to an upset magnetic order, the magnetization of a small volume not being nil. The magnetic behaviour of alloys with a small concentration of rare earths is governed by the existence of clusters of statistical origin, within which a rare earth ion has at least one other rare earth ion in the position of first neighbour. The presence of a high anisotropy at low temperatures make the magnetic interactions between clusters inoperative [fr

  3. Rare Earth Elements - A New Challenge for the World Economy

    Directory of Open Access Journals (Sweden)

    Cristina Bumbac

    2013-01-01

    Full Text Available Rare Earth Elements or Rare Earth Metals (REM are a collection of seventeen chemical elements in the periodic table, namely scandium, yttrium and fifteen lanthanides. The term "rare earth" arises from the rare earth minerals from which they were first isolated. They are uncommon oxide-type minerals (earths found in Gandolinite extracted from one mine in Sweden. The first discovery was made in 1794, but it was only in 1940 that the scientist Frank Spedding developed an ion exchange procedure for separating and purifying the REM. For the next decades, they were hardly used in some "minor" industrial fields. Only after 2000 their importance grew, once the multitude of possibilities to use them was discovered due to technological progress. Now REM are incorporated into almost all modern technological devices: superconductors, magnets, electronic polishers, refining catalysts hybrid car components and military techniques. They are used in small quantities, but due to their extraordinary properties the prices are very high. The main problem is that China dominates this market, with 97% of total global supply. The highest concentration of rare earth metals are in Inner Mongolia in China, Mountain Pass in California U.S.A. and in Mount Weld in Australia. The developed countries are far behind China regarding production and are indeed depending on Chinese exports. Hence, there is a difficult situation on this particular market, with an uncertain future.

  4. International strategic minerals inventory summary report; rare-earth oxides

    Science.gov (United States)

    Jackson, W.D.; Christiansen, Grey

    1993-01-01

    Bastnaesite, monazite, and xenotime are currently the most important rare-earth minerals. Bastnaesite occurs as a primary mineral in carbonatites. Monazite and xenotime also can be found in primary deposits but are recovered principally from heavy-mineral placers that are mined for titanium or tin. Each of these minerals has a different composition of the 15 rare-earth elements. World resources of economically exploitable rare-earth oxides (REO) are estimated at 93.4 million metric tons in place, composed of 93 percent in primary deposits and 7 percent in placers. The average mineral composition is 83 percent bastnaesite, 13 percent monazite, and 4 percent of 10 other minerals. Annual global production is about 67,000 metric tons of which 41 percent is from placers and 59 percent is from primary deposits; mining methods consist of open pits (94 percent) and dredging (6 percent). This output could be doubled if the operations that do not currently recover rare earths would do so. Resources are more than sufficient to meet the demand for the predictable future. About 52 percent of the world's REO resources are located in China. Ranking of other countries is as follows: Namibia (22 percent), the United States (15 percent), Australia (6 percent), and India (3 percent); the remainder is in several other countries. Conversely, 38 percent of the production is in China, 33 percent in the United States, 12 percent in Australia, and 5 percent each in Malaysia and India. Several other countries, including Brazil, Canada, South Africa, Sri Lanka, and Thailand, make up the remainder. Markets for rare earths are mainly in the metallurgical, magnet, ceramic, electronic, chemical, and optical industries. Rare earths improve the physical and rolling properties of iron and steel and add corrosion resistance and strength to structural members at high temperatures. Samarium and neodymium are used in lightweight, powerful magnets for electric motors. Cerium and yttrium increase the

  5. Microstructure-property relationships of rare-earth--zinc-oxide varistors

    International Nuclear Information System (INIS)

    Williams, P.; Krivanek, O.L.; Thomas, G.; Yodogawa, M.

    1980-01-01

    The microstructure and properties of ZnO varistors containing Ba, Co, and rare-earth--metal oxides, which give values of α [α=d(log I)/d(log V)] as high as 29, are examined. Mean ZnO grain size is 11 μm, and the grains are uniformly doped with Co. The barium and rare earth metals concentrate into 1.5-μm-wide particles embedded in a matrix of ZnO grains. Within the grains and at grain boundaries, the barium and rare-earth--metal concentration is below the detection limit of the energy-dispersive spectrometer technique (about 0.5%). No intergranular films, amorphous or crystalline, are detected, to within 10 A resolution. These results are shown to be consistent with the grain boundary charge depletion model for the voltage barrier formation and breakdown

  6. Fascinating world of rare earth research

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.

    1977-01-01

    The first part of this paper concerns some of the notable events which occurred early in the author's career as a rare earther and some of the major events which took place in the two decades 1950 to 1970. The notable changes and advances in the rare earth research world since the 1971 Durham Conference are described in the second and largest part of the paper. The final portion is concerned with actinide developments since 1971

  7. First steps of integrated spatial modeling of titanium, zirconium, and rare earth element resources within the Coastal Plain sediments of the southeastern United States

    Science.gov (United States)

    Ellefsen, Karl J.; Van Gosen, Bradley S.; Fey, David L.; Budahn, James R.; Smith, Steven M.; Shah, Anjana K.

    2015-01-01

    The Coastal Plain of the southeastern United States has extensive, unconsolidated sedimentary deposits that are enriched in heavy minerals containing titanium, zirconium, and rare earth element resources. Areas favorable for exploration and development of these resources are being identified by geochemical data, which are supplemented with geological, geophysical, hydrological, and geographical data. The first steps of this analysis have been completed. The concentrations of lanthanum, yttrium, and titanium tend to decrease as distance from the Piedmont (which is the likely source of these resources) increases and are moderately correlated with airborne measurements of equivalent thorium concentration. The concentrations of lanthanum, yttrium, and titanium are relatively high in those watersheds that adjoin the Piedmont, south of the Cape Fear Arch. Although this relation suggests that the concentrations are related to the watersheds, it may be simply an independent regional trend. The concentration of zirconium is unrelated to the distance from the Piedmont, the equivalent thorium concentration, and the watershed. These findings establish a foundation for more sophisticated analyses using integrated spatial modeling.

  8. Evaluation of Rare Earth Element Extraction from North Dakota Coal-Related Feed Stocks

    Science.gov (United States)

    Laudal, Daniel A.

    The rare earth elements consist of the lanthanide series of elements with atomic numbers from 57-71 and also include yttrium and scandium. Due to their unique properties, rare earth elements are crucial materials in an incredible array of consumer goods, energy system components and military defense applications. However, the global production and entire value chain for rare earth elements is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including previously mined deposits in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths are deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from a single resource that is only projected to last another 10 to 20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This dissertation details a study on evaluation of the technical and economic feasibility of rare earth element recovery from North Dakota lignite coal and lignite-related feedstocks. There were four major goals of this study: i) identify lignite or lignite-related feedstocks with total rare earth element content above 300 parts per million, a threshold dictated by the agency who funded this research as the minimum for economic viability, ii) determine the geochemistry of the feedstocks and understand the forms and modes of occurrence of the rare earth elements, information necessary to inform the development of extraction and concentration methods, iii) identify processing methods to concentrate the rare earth elements from the feedstocks to a target of two weight percent, a value

  9. Processing of Pakistani carbonatites for separation of cerium from adjacent rare earths

    International Nuclear Information System (INIS)

    Akram, M.; Qazi, N.K.; Khan, M.F.; Hasan, G.H.; Ahmed, N.; Chughtai, N.A.

    2003-01-01

    Carbonatite rock of Loe-Shilman area in North Western Frontier Province (NWFP) of Pakistan contains rare earth elements. This rock was upgraded in terms of its rare earths content from 2,000 ppm to 10,000 ppm rare earths oxide (REO) by crushing, calcination at 1000 deg. C for 3 hrs and cold leaching with 2% HCl for 1 hr. 80% to 95% of rare earths present in carbonatite powder were digested in nitric acid at 60 deg. C after 2 hrs stirring. Tributyl phosphate (TBP), diluted with dodecane, was used as extractant for extraction of rare earths. Since extraction is dependent on pH of the aqueous feed solution, the role of nitrate ions concentration in the solvent extraction of rare earth elements (REEs) was studied. It was observed that extraction of REEs was maximum at pH 1.1. The solvent had been unable to extract REEs from high acidic feed solutions. Solvents of different molarities were also tried against aqueous phase of pH 1.1. Studies showed a poor gain at 0 M and 0.5 M of organic phase while no gain observed beyond 2 molar solvent. 1 M organic phase gave maximum yield of rare earths salt, Ln(OH)/sub 3/, when stripped solution precipitated with ammonium hydroxide solution. It was also observed that if aqueous solution of 3.0 N was treated with blank solvent (i.e. Molarity = 0), it gave almost the same result. It was further established that optimum quantity of caging agent, Al(NO/sub 3/)/sub 3/-9H/sub 2/O added to aqueous solution prior to pH adjustment (i.e. 10 gm/100 gm powder dissolved) suppressed fluoride ions (F') which were hindering the extraction of rare earths. This improved the extraction efficiency of desired elements. To optimise the process parameters like solvent dilution, aqueous to organic ratio and extraction/stripping times, a' series of experiments were performed. Recovery for the desired elements had been between 78% to 86%. The optimum extraction parameters were found to be TBP concentration 40% (v/v) for aqueous to organic ratio 1:5 and 50

  10. A study on artificial rare earth (RE2O3) based neutron absorber

    International Nuclear Information System (INIS)

    KIM, Kyung-O; Kyung KIM, Jong

    2015-01-01

    A new concept of a neutron absorption material (i.e., an artificial rare earth compound) was introduced for criticality control in a spent fuel storage system. In particular, spent nuclear fuels were considered as a potential source of rare earth elements because the nuclear fission of uranium produces a full range of nuclides. It was also found that an artificial rare earth compound (RE 2 O 3 ) as a High-Level Waste (HLW) was naturally extracted from pyroprocessing technology developed for recovering uranium and transuranic elements (TRU) from spent fuels. In this study, various characteristics (e.g., activity, neutron absorption cross-section) were analyzed for validating the application possibility of this waste compound as a neutron absorption material. As a result, the artificial rare earth compound had a higher neutron absorption probability in the entire energy range, and it can be used for maintaining sub-criticality for more than 40 years on the basis of the neutron absorption capability of Boral™. Therefore, this approach is expected to vastly improve the efficiency of radioactive waste management by simultaneously keeping HLW and spent nuclear fuel in a restricted space. - Highlights: • Quantitative analysis of rare earth elements in PWR spent fuels. • Extraction of artificial rare earth compound using pyroprocessing technology. • Characteristic analysis of artificial rare earth elements. • Performance evaluation of artificial rare earth for criticality control.

  11. X-ray dichroism of rare earth materials

    International Nuclear Information System (INIS)

    Goedkoop, J.B.

    1989-01-01

    The theme of this thesis is the investigation of the strong polarization dependende, or dichroism, that occur in the X-ray absorption spectra of rare earth materials. The rare earth elements distinguish themselves from the other elements through the behaviour of the 4f electrons which form the valence shell. This shell lies deep inside the atom, with the result that influences from the surrounding solid are well screened off by the outer electrons, so that even in the solid the 4f shell behaves very much like a in free atom or ion, and is almost completely spherically symmetric. Perturbations from the solid environment however always disturb this symmetry to some extend, with the result that the absorption spectrum becomes dependent on the mutual orientation of the polarization vector of the radiation and the ion. Earlier the existence of a strong magnetic X-ray dichroism (MXD) in the 3d→4f transitions of rare earths. In this thesis this work is extended, to a small degree theoretically but mainly experimentally. MXD is used in experiments on bulk sample, terbium iron garnet, and on rare earth overlayers on a ferromagnetic surface, Ni(110). The results of the latter study show unequivocally the potential of the MXD technique. The second theme of the thesis concerns experimental developments in soft X-ray spectroscopy. A description is given of a double crystal monochromator beamline that was constructed by our group at LURE, France. Results of the use of an organic crystal - multilayer comination in such a monochromator is described. Also a method is described for the characterization of the resolution of soft X-ray monochromators. Finally a contribution to the characterization of the electron yield technique in the soft X-ray range is given. (author). 296 refs.; 64 figs.; 59 schemes; 9 tabs

  12. Contribution for the studies of rare earth dithionates

    International Nuclear Information System (INIS)

    Schmitz, L.C.

    1988-01-01

    The main objective of this work is the synthesis and investigation of some properties of rare earth dithionates. The rare earth dithionates were prepared from the respective sulphates, by the reaction of the latter with BaS sub(2) O sub(6) in aqueous solutions. The lanthanide ion content was estimated by complexometric titration with EDTA; analysis for H were carried out by microanalysis and the water content was determinated by Karl Fischer titration. This experimental results in addition to thermogravimetric (TG) data gave the stoichiometry of the compounds. (author)

  13. Activation analysis of rare-earth elements in opium and cannabis samples

    International Nuclear Information System (INIS)

    Henke, G.

    1977-01-01

    Rare-earth concentrations in 65 Opium, Cannabis and Cannabis resin samples seized from various parts of the world were determined by destructive NAA. Because of the greater concentrations of Ca, P, K, Fe, Na and Si in plant materials, rare-earth elements were isolated after neutron irradiation and determined by gamma-spectrometry. The main steps of the method are: Preashing of 1 g Cannabis resin, 2.5 g Cannabis or 7.5 g Opium, respectively, in quartz ampoules (5 h, 500 deg C). Neutron irradiation, 24 h at 5x10 13 n cm -2 sec -1 . Cooling period 2-3 days. After addition of 0.1 μCi 139 Ce and rare-earth carriers wet ashing of irradiated samples with H 2 SO 4 /HNO 3 , followed by alternate addition of HNO 3 and H 2 O 2 (30%). Precipitation and removal of silicates, precipitation of fluorides, precipitation of hydroxides. Dissolution of hydroxides in HCl. Extraction with di-(2-ethylhexyl)phosphate (DEHP)/toluene and twice back-extraction of rare earths, gamma-spectrometry of HCl phase. Due to sample activity and half-life of nuclides, three measurements were made on each sample: 2 days (for La, Sm, Gd, Ho, Er, Yb); 14 days (for Nd, Lu) and 30 days after irradiation (for Ce, Eu, Tb). Great variations in absolute element concentrations, but only small significant differences of rare earth concentration ratios were found, indicating inconsiderable biogeochemical fractionation. The mean values of these ratios correspond to the relative abundances of the rare earths in the upper continental earth's crust. (T.G.)

  14. Lifetime measurements of the rare earths

    International Nuclear Information System (INIS)

    Stahnke, H.J.

    1981-01-01

    The lifetime of excited energy levels of Praseodymium, Neodymium, Gadolinium, Holmium and Erbium are measured. The measurements were done on atomic beams excited by laser radiation. The experimental results allow an interpretation of the electronic structure of the rare earths. (BEF)

  15. Activation analysis of trace amounts of rare earth in high purity tantalum

    International Nuclear Information System (INIS)

    Ishibashi, Wataru; Saito, Shinichi; Hirayama, Tooru.

    1975-01-01

    It is necessary to separate rare earth from tantalum by rapid methods in order to remove effects of a strong radioactivity and a short half-life. Tantalum is extracted with 10%N-lauryl (trialkylmethyl) amino-benzene pre-equilibrated with a solution of 9 M hydrochloric and 0.15 M hydrofluoric acid. A non-radioactive rare earth element is added to this aqueous solution, a precipitate of trace amounts of radioactive rare earth in aqueous solution is formed by this addition of rare earth. Some factors in the determination are: 1) the effect of the irradiation position of the sample in the atomic reactor, 2) the effect on the extraction with 10%N-lauryl (trialkylmethyl) amino-benzene for the radioactive rare earth, 3) the effect of the concentration of hydrofluoric acid, ammonia water and nitric acid on co-precipitation. As a result of the investigation we obtained the following satisfactory results: 1) Rare earth was not effected by the extraction of tantalum with 10%N-lauryl (trialkylmethyl) amino-benzene. 2) The recovery of rare earth by co-precipitation increases when an ammonium ion coexists, and when the concentration of hydrofluoric acid decreases, but the recovery decreases with the increase of nitric acid concentration. 3) The time required for the extraction is 9 hours. In case of determination for dysprosium, tantalum extracted with 10%N-lauryl (trialkylmethyl) amino-benzene before activation and the time for separation is 2 hours. (auth.)

  16. Processes for the production of rare earths from monazite (Paper No. 36)

    International Nuclear Information System (INIS)

    Murthy, T.K.S.

    1979-01-01

    A few typical cases are briefly described to illustrate different methods available for rare earth concentration and separation from mixed rare earths chloride obtained for monazite. In the case of cerium, rare earths chloride mixture is treated with sodium sulphate to precipitate rare earths as double sulphates from which hydroxide cake is prepared. The cake is dried to oxidise cerium. Trivalent rare earths are selectively leached and the product is treated with HNO 3 . The resulting ceric nitrate solution is purified by liquid-liquid extraction using TBP. The scrubbed extract is reduced with H 2 O 2 and cerous nitrate is recovered by evaporation. Lanthanum is first concentrated by selective precipitation of hydroxides from rare earths chloride using air-ammonia mixture. The hydroxyde cake is dissolved in HNO 3 and NH 4 NO 3 to get the double nitrate which is subjected to counter current crystallisation for purification. Europium is present at a concentration of 0.01% in the rare earths chloride. It is concentrated in several steps by liquid-liquid extraction using di-2-ethyl hexyl phosphoric acid. The product is purified by selective reduction and europium is obtained as europium sulphate. In the same solvent extraction process samarium and gadolinium are also concentrated to about 25%. They are further upgraded to above 90% purity by repetion of liquid-liquid extraction technique. Cerium, lanthanum and europium obtained by the above processes analyse > 99% as oxides. (M.G.B.)

  17. Determination of individual rare earth elements in Vietnamese monazite by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Nguyen Mong Sinh

    1993-01-01

    Radiochemical neutron activation analysis (RNAA) has been applied for determination of rare earth elements (REE) in Vietnamese monazite. The chemical separation procedure used is based on the chromatographic elution of rare earth groups, after the separation of 233 Pa(Th) in irradiated monazite samples by coprecipitation with MnO 2 , the rare earth elements were retained by Biorad AG1 x 8 resin column in 10% 15.4M HNO 3 -90% methanol solution. The elution of heavy rare earth (HREE) and middle rare earth (MREE) groups was carried out with 10% 1M HNO 3 - 90% methanol and 10% 0.05M HNO 3 -90% methanol solution, respectively; while the light rare earths (LREE) were eluted from the column by 0.1M HNO 3 solution. The accuracy of the method was checked by the analysis of granodiorite GSP-I and the rare earth values were in good agreement. (author) 7 refs.; 3 tabs

  18. Determination Of Rare Earth And Other Elements In YEN-PHU Rare Earth Ore And Other Intermediate Products From The Floatation And Hydrometallurgical Process On Portable XRF Si-PIN Detector

    International Nuclear Information System (INIS)

    Doan Thanh Son; Phung Vu Phong; Nguyen Hanh Phuc

    2014-01-01

    The concentration of rare earths elements such as La, Ce, Pr, Nd, Gd and other elements as Ca, Fe, U, Th in Yen Phu rare earth ore and other intermediate products from the flotation and hydrometallurgical process was determined by using Si-PIN detector fluorescence spectrometry. The precision and accuracy of quantitative analysis was tested by standard reference materials and comparative analysis with different analytical methods. The analytical procedures were set-up and applied for the determination of rare earth and other elements in Yen Phu rare earth ore and other intermediate products from the flotation and hydrometallurgical process with high precision and accuracy. (author)

  19. Addressing Rare-Earth Element Criticality: An Example from the Aviation Industry

    Science.gov (United States)

    Ku, Anthony Y.; Dosch, Christopher; Grossman, Theodore R.; Herzog, Joseph L.; Maricocchi, Antonio F.; Polli, Drew; Lipkin, Don M.

    2014-11-01

    Rare-earth (RE) elements are enablers for a wide range of technologies, including high-strength permanent magnets, energy-efficient lighting, high-temperature thermal barrier coatings, and catalysts. While direct material substitution is difficult in many of these applications because of the specific electronic, optical, or electrochemical properties imparted by the individual rare-earth elements, we describe an example from the aviation industry where supply chain optimization may be an option. Ceramic matrix composite engine components require environmental barrier coatings (EBCs) to protect them from extreme temperatures and adverse reactions with water vapor in the hot gas path. EBC systems based on rare-earth silicates offer a unique combination of environmental resistance, thermal expansion matching, thermal conductivity, and thermal stability across the service temperature window. Several pure rare-earth silicates and solid solutions have been demonstrated in EBC applications. However, all rely on heavy rare-earth elements (HREEs) for phase stability. This article considers the possibility of using separation tailings containing a mixture of HREEs as a source material in lieu of using the high-purity HREE oxides. This option arises because the desired properties of RE-silicate EBCs derive from the average cation size rather than the electronic properties of the individual rare-earth cations. Because separation tailings have not incurred the costs associated with the final stages of separation, they offer an economical alternative to high-purity oxides for this emerging application.

  20. Rare earth element and rare metal inventory of central Asia

    Science.gov (United States)

    Mihalasky, Mark J.; Tucker, Robert D.; Renaud, Karine; Verstraeten, Ingrid M.

    2018-03-06

    Rare earth elements (REE), with their unique physical and chemical properties, are an essential part of modern living. REE have enabled development and manufacture of high-performance materials, processes, and electronic technologies commonly used today in computing and communications, clean energy and transportation, medical treatment and health care, glass and ceramics, aerospace and defense, and metallurgy and chemical refining. Central Asia is an emerging REE and rare metals (RM) producing region. A newly compiled inventory of REE-RM-bearing mineral occurrences and delineation of areas-of-interest indicate this region may have considerable undiscovered resources.

  1. An introduction to the economics of rare earths

    NARCIS (Netherlands)

    Bartekova, E.

    2014-01-01

    The aim of this paper is to examine the supply risk of rare earths and its impact on low carbon technologies deployment. Bringing together seemingly disconnected strands of scientific literature, this multidisciplinary approach allows to provide an overarching overview of the economics of rare

  2. Rare earths from uranium mineralization occurrences in the Permian of the Gemericum, the Western Carpathians

    International Nuclear Information System (INIS)

    Rojkovic, I.; Medved, J.; Walzel, E.; Posta, S.; Sulovsky, P.

    1989-01-01

    Uranium mineralization in the Permian of the Gemericium is accompanied by apatite, monazite and xenotime. The study of rare earth elements distribution is based on the results of instrumental neutron activation analysis and optical emission spectroscopy analysis of rocks and energy-dispersive X-ray microanalyses of minerals. The main light rare earth elements bearing mineral is monazite; for heavy rare earth elements it is xenotime. The rocks accompanying uranium mineralization have increased rare earth elements contents. The mobilization and concentration of uranium mineralization took place during the Alpine metallogenic processes. These processes were also associated with rare earth elements mobilization is which total and selective enrichment in light rare earth elements and heavy rare earth elements was observed. (author). 12 figs., 6 tabs., 5 refs

  3. Magnetic Partitioning Nanofluid for Rare Earth Extraction from Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, Bernard P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, Praveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nune, Satish K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-21

    Rare earth metals are critical materials in a wide variety of applications in generating and storing renewable energy and in designing more energy efficient devices. Extracting rare earth metals from geothermal brines is a very challenging problem due to the low concentrations of these elements and engineering challenges with traditional chemical separations methods involving packed sorbent beds or membranes that would impede large volumetric flow rates of geothermal fluids transitioning through the plant. We are demonstrating a simple and highly cost-effective nanofluid-based method for extracting rare earth metals from geothermal brines. Core-shell composite nanoparticles are produced that contain a magnetic iron oxide core surrounded by a shell made of silica or metal-organic framework (MOF) sorbent functionalized with chelating ligands selective for the rare earth elements. By introducing the nanoparticles at low concentration (≈0.05 wt%) into the geothermal brine after it passes through the plant heat exchanger, the brine is exposed to a very high concentration of chelating sites on the nanoparticles without need to pass through a large and costly traditional packed bed or membrane system where pressure drop and parasitic pumping power losses are significant issues. Instead, after a short residence time flowing with the brine, the particles are effectively separated out with an electromagnet and standard extraction methods are then applied to strip the rare earth metals from the nanoparticles, which are then recycled back to the geothermal plant. Recovery efficiency for the rare earths at ppm level has now been measured for both silica and MOF sorbents functionalized with a variety of chelating ligands. A detailed preliminary techno-economic performance analysis of extraction systems using both sorbents showed potential to generate a promising internal rate of return (IRR) up to 20%.

  4. Ultrasonic attenuation in rare-earth monoarsenides

    Indian Academy of Sciences (India)

    2015-11-27

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Ultrasonic attenuation in rare-earth monoarsenides .... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: Anurag ...

  5. Heavy mineral survey for rare earths in the Northern part of Palawan

    International Nuclear Information System (INIS)

    Reyes, R.Y.; Santos, G.P.; Magsambol, W.N.; Ramos, A.F.; Petrache, C.A.; Tabora, E.U.

    1992-01-01

    A reconnaissance geochemical survey for rare earths was carried out over the northern half of Palawan with considerable success. The survey represents the first systematic geochemical exploration effort to look for indigenous rare earth resources in the Philippines. Total area covered was about 5,000 sq km. The survey entailed the systematic collection of 740 heavy mineral panned concentrate and stream sediment samples along streams and rivers. The average sampling density was about one set of sample per 2-15 sq km. A total of 218 heavy mineral samples were analyzed for lathanum, cerium, praseodymium, neodymium and yttrium. Analysis of stream sediments for rare earths was discontinued due to the high detection limit of the X-ray fluorescence spectrometer. Results of the survey clearly indicated the effectiveness of heavy mineral sampling for rare earths at the reconnaissance level of exploration. Six anomalous and well-defined areas of interest were delineated for possible rare earth mineralization. Three priority zones were further outlined from the six prospective areas for possible follow-up surveys. Mineralogical examination of heavy minerals revealed the presence of major allanite and minor monazite as the potential hosts of rare earths in the priority zone number one. Gray monazite was identified in the priority zone number two as the rare earth mineral. Minute specks and grains of gold were visibly present in some of the heavy mineral samples taken in this area. A combined mineralization of rare earths and gold in this area is a possibility. The discovery of the first gray nodular monazite in Palawan may extend the age of the oldest rocks in the Philippines to Lower Paleozoic. A separate study to establish the age of the oldest rocks in the country is likewise necessary. (auth.). 27 refs.; 6 figs.; 8 tabs

  6. Novel precursors for the deposition of rare earth oxides

    International Nuclear Information System (INIS)

    Ahlers, Mareike

    2010-01-01

    During this work rare earth solvates with nitrate and perchlorate anions have been investigated. All compounds have been structurally characterized and analyzed using thermal gravimetric analysis. The decomposition residues were analyzed using powder diffraction methods. Almost all compounds showed a characteristically intense exothermic decomposition step during the thermal decomposition, most likely caused by an intramolecular redox reaction between the nitrate or perchlorate anion respectively and the organic solvent molecules. The nitrates RE(NO 3 ) 3 (CH(OCH 3 ) 3 ) 2 (RE = Sm, Eu) were isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. The known compound group of dimethoxyethane solvates was then expanded with RE(NO 3 ) 3 (O 2 C 4 H 10 ) (RE = La, Sm, Eu). Considering the possible use as precursor material the already described neodymium compound is also discussed. The thermal decomposition of these compounds yields the respective cubic rare earth oxide and shows the typical intense exothermic decomposition reaction. A variety of different precursor system based on nitrate solvates for the deposition of rare earth oxide layers on a silicon surface was developed and investigated in collaboration with the group of Prof. Dr. Al-Shamery (Univ. Oldenburg). Ultra thin films on a H-Si(111) surface were obtained via the deposition of the precursor, which was dissolved in organic solvents. An oxide layer was detected after the heating of the sample. The film thickness was measured as < 10 nm, whereas the thickness of the film was controlled by the concentration of the precursor solution. Sm(ClO 4 ) 3 (CH(OCH 3 ) 3 ) 3 was isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. Eu(ClO 4 ) 3 (CH(OCH 3 ) 3 ) 2 (MeOH) 2 was obtained without recrystallization. The methanol molecules, formed during the hydrolysis of the trimethyl

  7. Synthesis and characterization of rare-earth-doped calcium tungstate nanocrystals

    Science.gov (United States)

    Suneeta, P.; Rajesh, Ch.; Ramana, M. V.

    2018-02-01

    In this paper, we report synthesis and characterization of rare-earth-ion-doped calcium tungstate (CaWO4) nanocrystals (NCs). Rare-earth ions, such as gadolinium (Gd), neodymium (Nd), praseodymium (Pr), samarium (Sm) and holmium (Ho), were successfully doped in the CaWO4 NCs by changing the synthesis conditions. The adopted synthesis route was found to be fast and eco-friendly. Structural characterizations, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and compositional analysis, were performed using energy dispersive analysis of X-rays (EDAX) on as-synthesized NCs. The results indicate the size of the NCs ranging between 47 to 68nm and incorporation of rare-earth ions in CaWO4 NCs.

  8. Determination of the heavy rare earth radionuclides in melted rock

    International Nuclear Information System (INIS)

    Li Yinming; Wang Yalong; Zhang Quanshi

    1995-01-01

    There are some heavy rare earth radionuclides in the melted rocks, such as 160 Tb, 168,170 Tm, 88,91 Y, 174,177 Lu, 169 Yb, etc.. Because their contents are very low in the melted rocks and the light rare earth fission products are interfered with their determination, it is very complicated to measure them quantitatively. So a new method has been studied in which P507 resin is used to separate and purify the rare earths. Radioactive sources are prepared by the pieces of filter paper for determining chemical yield with X-fluorescence analysis, and radioactive activity is determined with the γ-spectra analysis. It is proved that this method has satisfied the demands of experiments

  9. Thermal shock behavior of rare earth modified alumina ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junlong; Liu, Changxia [Ludong Univ., Yantai (China). School of Transportation

    2017-05-15

    Alumina matrix ceramic composites toughened by AlTiC master alloys, diopside and rare earths were fabricated by hot-pressing and their thermal shock behavior was investigated and compared with that of monolithic alumina. Results showed that the critical thermal shock temperature (ΔT) of monolithic alumina was 400 C. However, it decreased to 300 C for alumina incorporating only AlTiC master alloys, and increased with further addition of diopside and rare earths. Improvement of thermal shock resistance was obtained for alumina ceramic composites containing 9.5 wt.% AlTiC master alloys and 0.5 wt.% rare earth additions, which was mainly attributed to the formation of elongated grains in the composites.

  10. Rare earth elements in a uranium deposit in Pedra, Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Damascena, Kennedy Francys Rodrigues; Amaral, Romilton dos Santos; Santos Junior, Jose Araujo dos; Bezerra, Jairo Dias; Oliveira, Iane Andrade de; Silva, Alberto Antonio da

    2013-01-01

    Rare Earth Elements (REEs) are similar in the physical and chemical properties of their compounds and are most commonly found in nature associated with terrestrial radionuclides. The high interest in conducting research on REEs is due to their multiple applications and high economic value. In this light, the present study analyzed samples of soil and rocks from an anomalous area replete with uranium and thorium, in the town of Pedra, Pernambuco, Brazil, in an attempt to identify the occurrence and concentrations of these elements. For these analyses, neutron activation, followed by high-resolution gamma spectrometry, was used to define the REEs. The following REEs were identified in the study area: La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, and Sc. The most abundant elements in the region, within samples of soil and rock, respectively, were: Ce (63-503 mg.kg -1 / 19.6 to 2243.5 mg.kg -1 ), Nd (25.0 to 249.0 mg.kg -1 / 3.8 to 1951.0 mg.kg -1 ), and La (30.6 to 253.0 mg.kg -1 / 12.1 to 517.0 mg.kg -1 ). The other REEs presented concentrations of between the detection limit and 46.0 mg.kg -1 . The results indicate that the Ce, La, and Nd concentrations appeared in up to 12 times the average occurrences in the earth's crust and up to 4.6 times higher than the averages reported in studies worldwide, including Brazil. Therefore, further studies are warranted to examine the economic viability of REEs in the area and to confirm the occurrence of these anomalous elements in the studied region. (author)

  11. Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets.

    Science.gov (United States)

    Sprecher, Benjamin; Xiao, Yanping; Walton, Allan; Speight, John; Harris, Rex; Kleijn, Rene; Visser, Geert; Kramer, Gert Jan

    2014-04-01

    Neodymium is one of the more critical rare earth elements with respect to current availability and is most often used in high performance magnets. In this paper, we compare the virgin production route of these magnets with two hypothetical recycling processes in terms of environmental impact. The first recycling process looks at manual dismantling of computer hard disk drives (HDDs) combined with a novel hydrogen based recycling process. The second process assumes HDDs are shredded. Our life cycle assessment is based both on up to date literature and on our own experimental data. Because the production process of neodymium oxide is generic to all rare earths, we also report the life cycle inventory data for the production of rare earth oxides separately. We conclude that recycling of neodymium, especially via manual dismantling, is preferable to primary production, with some environmental indicators showing an order of magnitude improvement. The choice of recycling technology is also important with respect to resource recovery. While manual disassembly allows in principle for all magnetic material to be recovered, shredding leads to very low recovery rates (<10%).

  12. Purification process for aqueous solutions of rare earths by liquid-liquid extraction

    International Nuclear Information System (INIS)

    Rollat, A.; Sabot, J.L.; Burgard, M.; Delloye, T.

    1986-01-01

    Alkaline earth metals are removed by liquid-liquid extraction between on aqueous nitric phase of impure rare earth compounds and an organic phase of polyether (crown ether). This process is particularly suited to removal of Ca, Ba and Ra contained in nitric solutions of rare earths [fr

  13. Preparation and Property of Acrylic Acid Rare Earth Complex and Its Hydrosilylation

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Chen Haiyan; Chen Xiaosong; Dai Shaojun; Inoue Shinich; Okamoto Hiroshi

    2004-01-01

    Acrylic acid rare earth complex was prepared. Its chemical composition was determined by chemical and elemental analysis, and its structure as well as properties was characterized using IR, Fluorescence and UV spectrum, and its solubility was also investigated. Meanwhile a kind of elastic functional polymer with rare earth units in the side chains was produced. It is confirmed by IR spectrum that the Si-H bonds really react with acrylic acid rare earth.

  14. Spectrofluorimetric determination of rare earth elements using solidmatrix

    International Nuclear Information System (INIS)

    Suh, I.S.; Chi, K.Y.

    1982-01-01

    In this experiment, rare earth elements are separated from uranium by using the alumina column, anion exchange resin column, and 20% TOA in xylene and fluorescence characteristics were found in the solid matrix to analyze these elements without preseparation from each other. It becomes clear that the YVO 4 matrix is more sensitive than the Y 2 O 3 matrix when the red filter is used to minimized the second order peak intensity. And micro quantity of the rare earth elements in the yellow cake are analyzed by the using of the YVO 4 soid matrix. (Author)

  15. Process to remove rare earth from IFR electrolyte

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Johnson, T.R.

    1994-01-01

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig

  16. Proceedings of the national conference on rare earth processing and utilization - 2014: abstracts

    International Nuclear Information System (INIS)

    Anitha, M.; Dasgupta, Kinshuk; Singh, D.K.

    2014-01-01

    The rare earth elements (REEs) are becoming increasingly important in the transition to a low-carbon, circular economy, considering their essential role in permanent magnets, lamp phosphors, rechargeable nickel metal hydride batteries and catalysts and other green applications. The increasing popularity of hybrid and electric cars, wind turbines and compact fluorescent lamps is causing an increase in the demand and price of REEs. The European Commission considers the REEs as the most critical raw materials group, with the highest supply risk. According to the medium-term criticality matrix of the U.S. Department of Energy (DOE), the five most critical REEs are neodymium (Nd), europium (Eu), terbium (Tb), dysprosium (Dy) and yttrium (Y). China is presently producing more than 90% of all rare earths, although they possess less than 40% of the proven reserves. Due to large and increasing domestic demands, China tightened its REE export quota from 2012 onwards. These export quotas caused serious problems for REE users outside of China. To tackle the REE supply challenge, several approaches have been proposed. Fortunately India is blessed with large resources of rare earths in the form of monazite found in the beach sands of Kerala, Tamil Nadu and Odisha. Indian Rare Earths Limited at Aluva near Kochi used to produce mainly mixed rare earths chloride and export to USA, UK, France, Japan, etc. During the 1990s and early 2000s this plant exported pure oxides of samarium, neodymium, etc. to developed countries. This national conference has expanded its canvas by including newer emerging areas in rare earths recycling, environmental issues, recent advances in rare earth material science, rare earth research and development initiatives around the world which provide a platform for the growth of rare earth Industry. Papers relevant to INIS are indexed separately

  17. Some aspects of ICP-AES analysis of high purity rare earths

    International Nuclear Information System (INIS)

    Murty, P.S.; Biswas, S.S.

    1991-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) is a technique capable of giving high sensitivity in trace elemental analysis. While the technique possesses high sensitivity, it lacks high selectivity. Selectivity is important where substances emitting complex spectra are to be analysed for trace elements. Rare earths emit highly complex spectra in a plasma source and the determination of adjacent rare earths in a high purity rare earth matrix, with high sensitivity, is not possible due to the inadequate selectivity of ICP-AES. One approach that has yielded reasonably good spectral selectivity in the high purity rare earth analysis by ICP-AES is by employing a combination of wavelength modulation techniques and high resolution echelle grating. However, it was found that by using a high resolution monochromator senstitivities either comparable to or better than those reported by the wavelength modulation technique could be obtained. (author). 2 refs., 2 figs., 2 tabs

  18. Study on Yen Phu rare earth ore concentrate treatment technology and separation of major heavy rare earth elements by solvent extraction method

    International Nuclear Information System (INIS)

    Le Ba Thuan; Pham Quang Trung; Vu Lap Lai

    2003-01-01

    1. Yenphu rare earth ore concentrate treatment by alkali under pressure: On the base of studying mineral and chemical compositions of Yenphu rare earth ore concentrate containing 28% TREO and conditions for digestion of ore concentrate by alkali under pressure such as ore concentrate/ NaOH ratio, alkali concentration, pressure and temperature at bench scale (100 gram and 5 kg per batch), the optimal conditions for decomposition of REE ore concentrate have been determined. The yield of the decomposition stage is about 90%. The studies on alkali washing, REE leaching by HCl, pH for leaching process, and iron and radioactive impurities removing by Na 2 S + Na 2 PO 4 have been carried out. The obtained results show that mixture of Na 2 S 5% + Na2PO 4 1% is effective in iron and radioactive impurities removing. The obtained REE oxides get purity of > 99% and meet the need of solvent extraction (SX) individual separation of rare earth elements. The schema for recovery of REEs from Yenphu REE ore concentrate by alkali decomposition under high pressure has been proposed. 2. Fractionation of Yenphu rare earth mixture into subgroups by solvent extraction with PC88A: On the base of simulation program, the parameters for fractional process of rare earths mixture into subgroups by solvent extraction with PC88A have been proposed and determined by experimental verification on mixer-settler set. According to this process, rare earths mixture fractionated into yttrium and light subgroups. In their turn, the light subgroup was separated into light (La, Ce, Pr, Nd) and middle (Sm, Eu, Gd) subgroups. The average yield of the process reached value > 95%. The composition of light subgroup meets the needs for individual separation of Gd, Eu, and Sm. 3. Separation and purification of yttrium: The process for recovery of yttrium consists of two stages: upgrade to get high quality Y concentrate by PC88A and purification by Aliquat 336 in NH 4 SCN-NH 4 Cl medium. The process parameter for

  19. Quantitative analysis of thorium-containing materials using an Industrial XRF analyzer

    International Nuclear Information System (INIS)

    Hasikova, J.; Titov, V.; Sokolov, A.

    2014-01-01

    Thorium (Th) as nuclear fuel is clean and safe and offers significant advantages over uranium. The technology for several types of thorium reactors is proven but still must be developed on a commercial scale. In the case of commercialization of thorium nuclear reactor thorium raw materials will be on demand. With this, mining and processing companies producing Th and rare earth elements will require prompt and reliable methods and instrumentation for Th quantitative on-line analysis. Potential applicability of X-ray fluorescence conveyor analyzer CON-X series is discussed for Th quantitative or semi-quantitative on-line measurement in several types of Th-bearing materials. Laboratory study of several minerals (zircon sands and limestone as unconventional Th resources; monazite concentrate as Th associated resources and uranium ore residues after extraction as a waste product) was performed and analyzer was tested for on-line quantitative measurements of Th contents along with other major and minor components. Th concentration range in zircon sand is 50-350 ppm; its detection limit at this level is estimated at 25- 50 ppm in 5 minute measurements depending on the type of material. On-site test of the CON-X analyzer for continuous analysis of thorium traces along with other elements in zircon sand showed that accuracy of Th measurements is within 20% relative. When Th content is higher than 1% as in the concentrate of monazite ore (5-8% ThO_2) accuracy of Th determination is within 1% relative. Although preliminary on-site test is recommended in order to address system feasibility at a large scale, provided results show that industrial conveyor XRF analyzer CON-X series can be effectively used for analytical control of mining and processing streams of Th-bearing materials. (author)

  20. Determination of preferential rare earth adatom adsorption geometries on Si(001)

    International Nuclear Information System (INIS)

    Shinde, Aniketa; Cao Juexian; Ouyang Wenjie; Wu Ruqian; Ragan, Regina

    2009-01-01

    The adsorption patterns of rare earth atoms on Si(001) were investigated using scanning tunneling microscopy measurements and density functional calculations. Stable configurations were systematically determined via calculation of binding energies of various adatom coverage and adsorption geometry. Competition between inter-adatom hybridization and Coulomb repulsion is the mechanism contributing to binding energy minima associated with commonly observed rare earth adsorption geometries. Comparison of stable configurations with experimental scanning tunneling microscopy images demonstrated accuracy of the theoretical models. This paves a way for the understanding of self-assembly of rare earth disilicide nanowires on vicinal Si(001) substrates.

  1. Guided mode cutoff in rare-earth doped rod-type PCFs

    DEFF Research Database (Denmark)

    Poli, F.; Cucinotta, A.; Passaro, D.

    2008-01-01

    Guided mode properties of rare-earth doped photonic crystal fibers are investigated as a function of the core refractive index, showing the possibility to obtain cutoff at low normalized wavelength.......Guided mode properties of rare-earth doped photonic crystal fibers are investigated as a function of the core refractive index, showing the possibility to obtain cutoff at low normalized wavelength....

  2. Coated air-stable cobalt--rare earth alloy particles and method

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloys. An organometallic compound which decomposes at a temperature below 500 0 C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating on the particles. (U.S.)

  3. Preparation, thermogravimetric study and infrared spectra of rare earth acetates

    International Nuclear Information System (INIS)

    Graehlert, X.; Starke, M.

    1992-01-01

    The anhydrous and the hydrated acetates of Ho, Er, Tm, Yb and Lu have been prepared. The compounds obtained have been investigated by thermogravimetric analysis and infrared spectroscopy. The thermal decomposition of the rare earth acetates may proceed via various steps. It depends on both the number of crystal water molecules in the acetates and the rare earth element's behaviour. (orig.)

  4. Electro-kinetic separation of rare earth elements using a redox-active ligand

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Huayi; Cole, Bren E.; Qiao, Yusen; Bogart, Justin A.; Cheisson, Thibault; Manor, Brian C.; Carroll, Patrick J.; Schelter, Eric J. [Department of Chemistry, University of Pennsylvania, Philadelphia, PA (United States)

    2017-10-16

    Purification of rare earth elements is challenging due to their chemical similarities. All of the deployed separation methods rely on thermodynamic properties, such as distribution equilibria in solvent extraction. Rare-earth-metal separations based on kinetic differences have not been examined. Herein, we demonstrate a new approach for rare-earth-element separations by exploiting differences in the oxidation rates within a series of rare earth compounds containing the redox-active ligand [{2-(tBuN(O))C_6H_4CH_2}{sub 3}N]{sup 3-}. Using this method, a single-step separation factor up to 261 was obtained for the separation of a 50:50 yttrium-lutetium mixture. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Advances in the hydrometallurgical separation techniques of high purity rare earth elements

    International Nuclear Information System (INIS)

    Vijayalakshmi, R.; Kain, V.

    2017-01-01

    Rare Earths are a series of 15 chemically similar elements that occur together in monazite mineral found in the beach sands of Kerala, Tamil Nadu and Orissa. The rare earth elements (REE) are becoming increasingly strategically important considering their essential role in permanent magnets such as, SmCo_5, Sm_2Co_1_7 and Nd_2Fe_1_4B, phosphors for LED screens and lamps, rechargeable nickel metal hydride batteries and catalysts and other green applications. The increasing popularity of hybrid and electric cars, wind turbines and compact fluorescent lamps is causing an increase in the demand and price of REE. The European Commission considers the REE as the most critical raw materials group, with the highest supply risk. According to the medium-term criticality matrix of the U.S. Department of Energy (DOE), the five most critical REE are neodymium (Nd), europium (Eu), terbium (Tb), dysprosium (Dy) and yttrium (Y). China is presently producing more than 90% of all rare earths, although they possess less than 405 of the proven reserves. Due to large and increasing domestic demands, China tightened its REE export quota from 2012 onwards. These export quotas caused serious problems for REE users outside of China. Fortunately India is blessed with large resources of rare earths in the form of monazite found in the beach sands of Kerala, Tamil Nadu and Orissa. Indian Rare Earths Limited at Aluva near Kochi produces mainly mixed rare earths chloride and till recent past exporting to USA, UK, France, Japan, etc. They have revived their rare earth separation plant to meet the in-house demands of the strategic, defense and nuclear industry. This paper discusses the recent advances made in hydrometallurgical separation techniques based on solvent extraction technique, ion-exchange resins, hollow fibre membrane extractor, solvent encapsulated polymeric beads, etc for the production of high purity rare earth elements from both primary (Monazite, xenotime) and secondary sources

  6. Uncovering the end uses of the rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xiaoyue, E-mail: xiaoyue.du@empa.ch [Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Yale University, 195 Prospect Street, New Haven CT 06511 (United States); Graedel, T.E. [Yale University, 195 Prospect Street, New Haven CT 06511 (United States)

    2013-09-01

    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging and conventional established technologies. However, quantitative knowledge of REE remains sparse, despite the current heightened interest in future availability of the resources. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supply vulnerable to short term disruption. We have drawn upon the published literature and unpublished materials in different languages to derive the first quantitative annual domestic production by end use of individual rare earth elements from 1995 to 2007. The information is illustrated in Sankey diagrams for the years 1995 and 2007. Other years are available in the supporting information. Comparing 1995 and 2007, the production of the rare earth elements in China, Japan, and the US changed dramatically in quantities and structure. The information can provide a solid foundation for industries, academic institutions and governments to make decisions and develop strategies. - Highlights: • We have derived the first quantitative end use information of the rare earths (REE). • The results are for individual REE from 1995 to 2007. • The end uses of REE in China, Japan, and the US changed dramatically in quantities and structure. • This information can provide solid foundation for decision and strategy making.

  7. Thin-film method-XRF determination of the composition of rare earth oxides

    International Nuclear Information System (INIS)

    Xiao Deming

    1992-01-01

    The author describes the thin-film sample preparation by precipitation-pumping filtering method and the composition of rare earth oxide materials by XRF determination. The determination limits are 0.01% to 0.17%. The coefficients of variation are in the range of 0.85% to 14.9%. The analytical results of several kinds of rare earth oxide materials show that this method can be applied to the determination of the composition of rare earth oxide mixtures

  8. Development of reduction technology for oxide fuel. Behaviour of rare-earth in lithium reduction process

    International Nuclear Information System (INIS)

    Kato, Tetsuya; Usami, Tsuyoshi; Yuda, Ryoichi; Kurata, Masateru; Moriyama, Hirotake

    2000-01-01

    Solubility measurements of rare-earth oxides in molten LiCl-Li 2 O salt and reduction tests of UO 2 doped with rare-earth oxides were carried out to determine the behavior of rare-earths in lithium reduction process. The solubility of rare-earth oxides increases in the order of Gd 2 O concentration. In multi-element systems including 6 rare-earth oxides, the solubility of each element is smaller than that in the individual systems. In the reduction tests, more than 90% of UO 2 was reduced within 1 hour after starting reduction and about 7% of rare-earths eluded into the LiCl molten salt bath containing Li 2 O which is formed by the reduction of UO 2 . The rare-earth concentrations in the bath were evaluated using the solubility data, assuming that rare-earth oxides in multi-element systems form solid solution as the equilibrium solid phase and that the activity coefficients in the solid phase are independent of the compositions. The calculated concentrations are consistent with the experimental ones obtained in the reduction tests. (author)

  9. Mechanochemical decomposition of monazite to assist the extraction of rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wantae; Bae, Inkook; Chae, Soochun [Korea Institute of Geoscience and Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Shin, Heeyoung, E-mail: hyshin@kigam.re.k [Korea Institute of Geoscience and Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2009-11-03

    Mechanochemical decomposition by milling a mixture of monazite and sodium hydroxide powder and subsequent leaching by sulfuric acid for the extraction of rare earth elements at room temperature has been investigated. The milling of the mixture allows the mechanochemical formation of rare earth hydroxides and sodium phosphate as milling progresses. Nearly all the monazite is decomposed within 120 min under the present milling conditions. A 0.05N sulfuric acid solution enables us to improve the yield of each of La, Nd and Sm to around 85% or more in the powder milled for 120 min. Also, respective Ce and Pr yields of about 20% and 70% remain un-dissolved since they are changed into oxide forms during and after the milling operation. These rare earth oxides are mostly dissolved as the acid concentration increases to 5N. The yield of rare earth elements increases with increasing milling time. Thus mechanochemical milling plays a significant role in achieving high yield of rare earth elements from the leaching of the milled powder.

  10. Mechanochemical decomposition of monazite to assist the extraction of rare earth elements

    International Nuclear Information System (INIS)

    Kim, Wantae; Bae, Inkook; Chae, Soochun; Shin, Heeyoung

    2009-01-01

    Mechanochemical decomposition by milling a mixture of monazite and sodium hydroxide powder and subsequent leaching by sulfuric acid for the extraction of rare earth elements at room temperature has been investigated. The milling of the mixture allows the mechanochemical formation of rare earth hydroxides and sodium phosphate as milling progresses. Nearly all the monazite is decomposed within 120 min under the present milling conditions. A 0.05N sulfuric acid solution enables us to improve the yield of each of La, Nd and Sm to around 85% or more in the powder milled for 120 min. Also, respective Ce and Pr yields of about 20% and 70% remain un-dissolved since they are changed into oxide forms during and after the milling operation. These rare earth oxides are mostly dissolved as the acid concentration increases to 5N. The yield of rare earth elements increases with increasing milling time. Thus mechanochemical milling plays a significant role in achieving high yield of rare earth elements from the leaching of the milled powder.

  11. Rare earth elements exploitation, geopolitical implications and raw materials trading

    Science.gov (United States)

    Chemin, Marie-Charlotte

    2015-04-01

    Rare earth elements (REE) correspond to seventeen elements of the periodic table. They are used in high technology, cracking, electric cars' magnet, metal alloy for batteries, and also in phone construction or ceramics for electronic card. REEs are an important resource for high technology. This project targets 16 years old students in the subject "personalized aid" and will last six weeks. The purpose of this project is to develop autonomy and research in groups for a transdisciplinary work. This project gathers knowledge in geology, geography and economics. During the first session students analyze the geology applications of the REE. They begin the analysis with learning the composition in different rocks such as basalt and diorite to make the link with crystallization. Then they compare it with adakite to understand the formation of these rocks. In the second session, they study REE exploitation. We can find them as oxides in many deposits. The principal concentrations of rare earth elements are associated with uncommon varieties of igneous rocks, such as carbonatites. They can use Qgis, to localize this high concentration. In the third session, they study the environmental costs of REE exploitation. Indeed, the exploitation produces thorium and carcinogenic toxins: sulphates, ammonia and hydrochloric acid. Processing one ton of rare earths produces 2,000 tons of toxic waste. This session focuses, first, on Baotou's region, and then on an example they are free to choose. In the fourth session, they study the geopolitical issues of REE with a focus on China. In fact this country is the largest producer of REE, and is providing 95% of the overall production. REE in China are at the center of a geopolitical strategy. In fact, China implements a sort of protectionism. Indeed, the export tax on REE is very high so, as a foreign company, it is financially attractive to establish a manufacturing subsidiary in China in order to use REE. As a matter of fact

  12. Radiological Impacts and Regulation of Rare Earth Elements in Non-Nuclear Energy Production

    Directory of Open Access Journals (Sweden)

    Timothy Ault

    2015-03-01

    Full Text Available Energy industries account for a significant portion of total rare earth usage, both in the US and worldwide. Rare earth minerals are frequently collocated with naturally occurring radioactive material, imparting an occupational radiological dose during recovery. This paper explores the extent to which rare earths are used by various non-nuclear energy industries and estimates the radiological dose which can be attributed to these industries on absolute and normalized scales. It was determined that typical rare earth mining results in an occupational collective dose of approximately 0.0061 person-mSv/t rare earth elements, amounting to a total of 330 person-mSv/year across all non-nuclear energy industries (about 60% of the annual collective dose from one pressurized water reactor operated in the US, although for rare earth mining the impact is spread out over many more workers. About half of the collective dose from non-nuclear energy production results from use of fuel cracking catalysts for oil refining, although given the extent of the oil industry, it is a small dose when normalized to the energy equivalent of the oil that is used annually. Another factor in energy industries’ reliance on rare earths is the complicated state of the regulation of naturally occurring radiological materials; correspondingly, this paper also explores regulatory and management implications.

  13. Studi Ekstraksi Bijih Thorit dengan Metode Digesti Asam dan Pemisahan Thorium dari Logam Tanah Jarang dengan Metode Oksidasi-Presipitasi Selektif

    Directory of Open Access Journals (Sweden)

    Moch Iqbal Nur Said

    2017-11-01

    Full Text Available Thorium (Th is a radioactive metal that can be formed along with uranumand rare earth metals (REM. Minerals contain radioactive elements are monazite ((Ce,La,Y,U/ThPO4, thorianite ((Th,UO2, and thorite (ThSiO4. Mamuju Area is containing radioactive minerals, thorite is one of them. To separate REM from radioactive elements can be conducted by exctracting thorium from thorite ore by acid digestion method using sulphuric acid (H2SO4, followed by leaching and thorium recovery in the form of thorium hydroxide by chemical precipitation using ammonium hydroxide (NH4OH. The experimental results showed that the optimum conditions of acid digestion that give the highest Th extraction percentage on solid to liquid ratio are obtained at 1:2 (g/mL in 60 minutes with extraction percentages of Th, iron (Fe and REM are 82.47%, 80.08%, and 83.31% respectively. The highest thorium precipitation percentage, as much as 95.47% , was obtained at pH 4.5 on room temperature (26 ± 1°C. At higher temperature (70°C, a lower percentage of thorium precipitation is obtained, as much as 83.69%. Pre-oxidation by using H2O2 solution with two times stoichiometry for 1.5 hours at room temperature is increasing Fe precipitation percentage from 93.08% to 99.93%.

  14. Rare-earth elements in granites: concentration and distribution pattern

    International Nuclear Information System (INIS)

    Galindo, A.C.

    1983-01-01

    The geochemistry of rare earth elements in granites is studied. The rare earth element (REE) distribution pattern in granites is characterized by a smooth curve with decreasing concentrations from La to Lu, and frequently a marked Eu negative anomaly. It seems to exist relationship between granite genesis and its REE pattern, in that bodies of primary (magmatic differentiation) origin always show this negative Eu anomaly, while those bodies generated by crustal anatexis do not show this anomaly. (E.G.) [pt

  15. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW

    1996-01-01

    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the

  16. Recovery of rare earths from used polishes by chemical vapor transport process

    International Nuclear Information System (INIS)

    Ozaki, T.; Machida, K.; Adachi, G.

    1998-01-01

    Full text: Rare earth oxide polishes are widely used in the glass industry because of its mechanical and chemical polishing action. The Japanese glass industry use 2000 tons per year of the polishes, and a large portion of them are thrown away after their polishing lifetime. A dry recovery processes for rare earths from the used polishes have been investigated by using a chemical vapor transport method via the formation of vapor complexes RAl n Cl 3+3n (R = rare earths). A flow type reactor with various temperature gradients was employed for the process. The used polishes were mixed with active carbon, and chlorinated with N 2 + Cl 2 mixture at 1273 K. Aluminium oxide were also chlorinated at lower temperature and the resulting AlCl 3 were introduced to the reactor. The rare earth chlorides and AlCl 3 were converted to the vapor complexes. These were driven along the temperature gradient, decomposed according to the reverse reaction, and regenerated RCl 3 . About 90 % of the used polish were chlorinated after 2 hours. Rare earth chlorides, AlCl 3 , and FeCl 3 were fully transported after 82 hours. The rare earth chlorides were mainly condensed over the temperature range 1263-903 K. On the other hand, AlCl 3 and FeCl 3 were deposited at the temperature range below 413 K. CaCl 2 and SrCl 2 were hardly transported and remained in the residue. When the temperature gradient with the smaller slope was used, mutual separation efficiencies among the rare earths was improved. The highest CeCl 3 purity of 80% was obtained in the process

  17. Thorium and its future importance for nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2015-01-01

    Thorium was discovered in 1828 by the Swedish chemist Jons J. Berzelius. Despite some advantages over uranium for use in nuclear reactors, its main use, in the almost two centuries since its discovery, the use of thorium was restricted to use for gas mantles, especially in the early twentieth century. In the beginning of the Nuclear Era, many countries had interested on thorium, particularly during the 1950-1970 period. There are about 435 nuclear reactors in the world nowadays. They need more than 65.000 tons of uranium yearly. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Thorium is nearly three times more abundant than uranium in the Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, since it is possible to convert thorium waste into nonradioactive elements, thorium is an environment-friendly alternative energy source. Thorium fuel cycle is also inherently resistant to proliferation. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. In this paper a brief history of thorium is presented, besides a review of the world thorium utilization and a discussion about advantages and restrictions of thorium use. (author)

  18. China’s Rare Earths Supply Forecast in 2025: A Dynamic Computable General Equilibrium Analysis

    Directory of Open Access Journals (Sweden)

    Jianping Ge

    2016-09-01

    Full Text Available The supply of rare earths in China has been the focus of significant attention in recent years. Due to changes in regulatory policies and the development of strategic emerging industries, it is critical to investigate the scenario of rare earth supplies in 2025. To address this question, this paper constructed a dynamic computable equilibrium (DCGE model to forecast the production, domestic supply, and export of China’s rare earths in 2025. Based on our analysis, production will increase by 10.8%–12.6% and achieve 116,335–118,260 tons of rare-earth oxide (REO in 2025, based on recent extraction control during 2011–2016. Moreover, domestic supply and export will be 75,081–76,800 tons REO and 38,797–39,400 tons REO, respectively. The technological improvements on substitution and recycling will significantly decrease the supply and mining activities of rare earths. From a policy perspective, we found that the elimination of export regulations, including export quotas and export taxes, does have a negative impact on China’s future domestic supply of rare earths. The policy conflicts between the increase in investment in strategic emerging industries, and the increase in resource and environmental taxes on rare earths will also affect China’s rare earths supply in the future.

  19. Investigation and modelling of rare-earth activated waveguide structures

    International Nuclear Information System (INIS)

    Wolinski, W.; Malinowski, M.; Mossakowska-Wyszynska, A.; Piramidowicz, R.; Szczepanski, P.

    2005-01-01

    In this paper the overview of the recent study on the rare-earth activated waveguides performed in the Optoelectronic Department of IMiO is presented. We reported on the development of rare earth-doped fluorozirconate (ZBLAN) glass fibers that allow a construction of a new family of visible and ultraviolet fiber lasers pumped by upconversion. Especially the performance of holmium devices is presented. The properties of laser planar waveguides obtained by the LPE process and the growth conditions of rare earths doped YAG layers are presented. In this paper we present also the theoretical study of the nonlinear operation of planar waveguide laser, as an example the microdisk Nd:YAG structure is discussed. We derived an approximate formula which relates the small signal gain in the Nd:YAG active medium and the laser characteristics, obtained for whispering-gallery modes and radial modes, to the output power and real parameters of the laser structure (authors)

  20. The fascination of the rare earths - then, now and in the future

    International Nuclear Information System (INIS)

    Wybourne, Brian G.

    2004-01-01

    The rare earths have long been a subject of fascination to chemists and physicists. Herein, I comment on some of the prehistory leading up to the advent of the Judd-Ofelt theory of the intensities of their remarkable spectra, the origins of the Judd-Ofelt theory and its early applications. I then consider subsequent developments and extensions of the theory, its current status and its relevance to current problems of interest in rare earth spectroscopy and the future of rare earth studies

  1. Determination of rare earth elements in high purity rare earth oxides by liquid chromatography, thermionic mass spectrometry and combined liquid chromatography/thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Stijfhoorn, D.E.; Stray, H.; Hjelmseth, H.

    1993-01-01

    A high-performance liquid chromatographic (HPLC) method for the determination of rare earth elements in rocks has been modified and used for the determination of rare earth elements (REE) in high purity rare earth oxides. The detection limit was 1-1.5 ng or 2-3 mg/kg when a solution corresponding to 0.5 mg of the rare earth oxide was injected. The REE determination was also carried out by adding a mixture of selected REE isotopes to the sample and analysing the collected HPLC-fractions by mass spectrometry (MS) using a thermionic source. Since the matrix element was not collected, interference from this element during the mass spectrometric analysis was avoided. Detection limits as low as 0.5 mg/kg could then be obtained. Detection limits as low as 0.05 mg/kg were possible by MS without HPLC-pre-separation, but this approach could only be used for those elements that were not affected by the matrix. Commercial samples of high purity Nd 2 O 3 , Gd 2 O 3 and Dy 2 O 3 were analysed in this study, and a comparison of results obtained by HPLC, combined HPLC/MS and direct MS is presented. (Author)

  2. Enhanced separation of rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenhalgh, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herbst, R. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Soderstrom, M. D. [Cytec Solvay Group, Tempe, AZ (United States); Jakovljevic, B. [Cytec Solvay Group, Niagara Falls, ON (Canada)

    2016-09-01

    Industrial rare earth separation processes utilize PC88A, a phosphonic acid ligand, for solvent extraction separations. The separation factors of the individual rare earths, the equipment requirements, and chemical usage for these flowsheets are well characterized. Alternative ligands such as Cyanex® 572 and the associated flowsheets are being investigated at the pilot scale level to determine if significant improvements to the current separation processes can be realized. These improvements are identified as higher separation factors, reduced stage requirements, or reduced chemical consumption. Any of these improvements can significantly affect the costs associated with these challenging separation proccesses. A mid/heavy rare earth element (REE) separations flowsheet was developed and tested for each ligand in a 30 stage mixer-settler circuit to compare the separation performance of PC88A and Cyanex® 572. The ligand-metal complex strength of Cyanex® 572 provides efficient extraction of REE while significantly reducing the strip acid requirements. Reductions in chemical consumption have a significant impact on process economics for REE separations. Partitioning results summarized Table 1 indicate that Cyanex® 572 offers the same separation performance as PC88A while reducing acid consumption by 30% in the strip section for the mid/heavy REE separation. Flowsheet Effluent Compositions PC88A Cyanex® 572 Raffinate Mid REE Heavy REE 99.40% 0.60% 99.40% 0.60% Rich Mid REE Heavy REE 2.20% 97.80% 0.80% 99.20% Liquor Strip Acid Required 3.4 M 2.3 M Table 1 – Flowsheet results comparing separation performance of PC88A and Cyanex® 572 for a mid/heavy REE separation.

  3. Influence of rare earth additions on the oxidation resistance of chromia forming alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    1995-01-01

    The addition of rare earths to alloys, either in elemental form or as surface coatings reduces the oxidation rate of chromia forming alloys. The rare earths either act as nucleation sites for surface oxides or get incorporates into the surface oxide and diffuse to oxide grain boundaries. If the latter occurs, a change in the defect structure close to the grain boundaries, probably takes place. In this manner, the rare earths inhibits the movement of chromium ions to the oxide/gas interface. The influence of rare earth additions to AISI 316, AISI 316L and Ni-20 Cr on their oxidation behavior has been studied., AISI 316+Ce, AISI 316+Y, Ni-20 Cr and Ni-20 Cr-2 Al-1 Ce were prepared by melting and AISI 316L, AISI 316L+Ce O 2 and AISI 316L+Y 2 O 3 by powder compaction. The effect of superficial deposits of rare earth oxides was also studied. The alloys were coated with rare earth oxides by high temperature conversion of the respective rare earth nitrates. Isothermal oxidation tests were carried out at 900-1100 deg C and the cyclic oxidation tests consisted of 6 cycles of 2 hours each at 900 deg C, followed by cooling to room temperature. All the tests were carried out in air. Oxidation behavior was evaluated gravimetrically. Scanning electron microscopy was used to study surface morphology. Energy dispersive analysis and X-ray diffraction techniques were used to identify oxide constituents. Overall, it has been observed that with the addition of rare earths, oxidation resistance increases by decreasing oxidation rates and increasing oxide adhesion. Addition of rare earths to AISI 316 prepared by melting resulted in rapid formation of a chromium rich oxide layered near the metal/oxide interface which reduced overall oxidation rate. The addition of Ce O 2 to AISI 316L was found to improve oxidation behavior after 10 hours at 1100 deg C and also inhibit the formation of volatile Cr O 3 . The isothermal oxidation behavior of rare earth oxide covered Ni-20 Cr at 900 deg C

  4. METHOD OF PROCESSING MONAZITE SAND

    Science.gov (United States)

    Welt, M.A.; Smutz, M.

    1958-08-26

    A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

  5. Optimization of leaching process for sum of rare earth and calcium oxides

    International Nuclear Information System (INIS)

    Troyanier, L.S.; Elunkina, Z.A.; Nikonov, V.N.; Lobov, V.I.

    1978-01-01

    Presented are the results of investigation of leaching process for rare earth and calcium oxides by sulfuric acid. The method of planning experiment has been used for this investigation. Mixtures of cerium, yttrium and neodyum oxides, taken in the relation of 1:1:0.5, have been used as rare earth elements. Received are adequate models characterizing dependence of solubility of rare earth and calcium oxides on some factors (H 2 SO 4 concentration, CaO:R 2 O 3 relation, liquid to solid ratio, solution temperature, mixing time). Dependences of solubility of rare earth elements and calcium on the process parameters are received and presented in a form of regression equations. Dependences received can be used for choice of optimum regime of the process as well as for its control

  6. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    International Nuclear Information System (INIS)

    Selle, J.E.

    1992-01-01

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented

  7. Method of forming magnetostrictive rods from rare earth-iron alloys

    Science.gov (United States)

    McMasters, O. Dale

    1986-09-02

    Rods of magnetrostructive alloys of iron with rare earth elements are formed by flowing a body of rare earth-iron alloy in a crucible enclosed in a chamber maintained under an inert gas atmosphere, forcing such molten rare-earth-iron alloy into a hollow mold tube of refractory material positioned with its lower end portion within the molten body by means of a pressure differential between the chamber and mold tube and maintaining a portion of the molten alloy in the crucible extending to a level above the lower end of the mold tube so that solid particles of higher melting impurities present in the alloy collect at the surface of the molten body and remain within the crucible as the rod is formed in the mold tube.

  8. Rare earth materials research in European Community R and D programmes

    International Nuclear Information System (INIS)

    Gavigan, J.P.

    1992-01-01

    The level of involvement of EC research programmes in rare earth materials research is quite high. A total of 65 projects have been identified representing an involvement of 283 partners from all over Europe. This corresponds to a budget a 63.3 MECU (76MDollars) of which the EC contributes 40.7 MECU (49MDollars). In this paper, the various research activities will be discussed under the main themes of rare earth permanent magnets, high Tc superconductors, optical and other materials, with specific reference to the three main programmes involved, BRITE/EURAM, SCIENCE and ESPRIT. Two other programmes currently involved in rare earth research are RAW MATERIALS and JOULE. (orig.)

  9. Rare earth oxyhalogenide base thermoluminescent material

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1976-01-01

    A process is described that consists to expose a thermoluminescent material to ionizing radiations, the material being a rare earth oxyhalogenide with terbium additions, to heat this material up to the emission of visible radiations and to measure the emitted radiations which are proportional to the ionizing radiation dose [fr

  10. Photostability of solutions of rare earth chelates in organic solvents and polymers

    International Nuclear Information System (INIS)

    Karasev, V.E.; Mirochnik, A.G.; Lysun, T.V.; Vovna, V.I.

    1990-01-01

    Consideration is given to results of comparative study of photochemical properties of rare erath chelate complexes (adducts of rare earth β-diketonates with triphenylphosphine oxide, hexamethylphosphotriamide, phenanthroline) in organic solvents and polymers. Effect of excitation conditions, composition, solvent, nature of ligand and rare earth ion on photolysis rate was investigated. 9 refs.; 2 figs.; 4 tabs

  11. Prospective thorium fuels for future nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2017-01-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  12. Prospective thorium fuels for future nuclear energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Lainetti, Paulo E.O., E-mail: lainetti@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, {sup 232}Th can be converted to {sup 233}U (fissile) more efficiently than {sup 238}U to {sup 239}Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  13. Research and development of tungsten electrodes added with rare earth oxides

    International Nuclear Information System (INIS)

    Zuoren Nie; Ying Chen; Meiling Zhou; Tieyong Zuo

    2001-01-01

    The recent research and development of tungsten electrodes used in TIG and Plasma technologies are introduced, and the tungsten materials as well as the effects of rare earth oxides are specially discussed. in W-La 2 O 3 , W-CeO 2 , W-Y 2 O 3 and W-ThO 2 electrode materials, the W-2.2mass%La 2 O 3 electrode exhibited the best properties when the current is of little or middle volume, and when the electrodes are used in large current, the W-Y 2 O 3 electrode is the best. By a comparative study between the tungsten electrodes activated with single metal oxides, as above-mentioned, and those containing two or three rare earth oxides, namely La 2 O 3 , CeO 2 and Y 2 O 3 , it was indicated that the welding arc properties of the tungsten electrodes activated with combined rare earth oxides additions is superior than that of the electrodes containing single oxides as above mentioned. It was also shown that the operating properties of tungsten electrodes depend intensively on the rare earth oxides contained in the electrodes, and the actions of rare earth oxides during arcing are the most important factors to the electrodes' operating properties, temperature, work function as well as the arc stability. (author)

  14. Isomerization of butene-1 on rare earth oxides. [Rare earths: La, Nd, Dy

    Energy Technology Data Exchange (ETDEWEB)

    Khodakov, Yu S; Nesterov, V K; Minachev, Kh M [AN SSSR, Moscow. Inst. Organicheskoj Khimii

    1975-09-01

    A study has been made into the isomerization of butene-1 on oxides of rare-earth elements. The dependence of the reaction rate at 20/sup 0/C on the baking temperature of La and Nd oxides have the maximum at 700/sup 0/C. A decrease in the activity of these oxides after bakinq at 800/sup 0/C is observed, as well as during experiments at -30 deq C. In the case of Dy/sub 2/O/sub 3/, the activity at 20/sup 0/C increases gradually with Tsub(bak)=500 to 800/sup 0/C Zeolite 0.57LaNaY exhibits maximum activity at Tsub(bak)=500/sup 0/C Similar data as to the effect of the baking temperature on the catalyst activity were obtained earlier for hydrogenation of ethylene. According to their maximum activity, oxides of rare-earth elements, in the isomerization as well as hydrogenation reactions, can be arranged as follows: La/sub 2/O/sub 3/>Nd/sub 2/O/sub 3/

  15. Mother Lode: The Untapped Rare Earth Mineral Resources of Vietnam

    Science.gov (United States)

    2013-11-01

    to exert their monopolistic control of the market by artificially restricting supply in the interest of higher commodity prices, but were rather...linked. World markets for rare earth elements are at present a near-monopoly controlled by China, and it is becoming ever clearer that alternative... markets for rare earth elements are at present a near- monopoly controlled by China, and it is becoming ever clearer that alternative sources for these

  16. Estimation of formation heat of rare earth and actinide alloys

    International Nuclear Information System (INIS)

    Shubin, A.B.; Yamshchikov, L.F.; Raspopin, S.P.

    1986-01-01

    A method for forecasting the enthalpy of formation of scandium, yttrium, lanthanum and lanthanides, thorium, uranium and plutonium alloys with a series of fusible metals (Al, Ga, In, Tl, Sn, Pb, Sb, Bi) is proposed. The obtained confidence internal value for the calculated Δ f H 0 values exceeds sufficiently the random error of the experimental determination of the rare metal alloy formation enthalpies. However, taking into account considerable divergences in results of Δ f H 0 determinations performed by different science groups, one may conclude, that such forecasting accuracy may be useful in the course of estimation calculations, especially, for actinide element alloys

  17. Spectrofluorimetric characterization and study for the determination of rare earth carbonate complexes

    International Nuclear Information System (INIS)

    Dantas, E.S.K.; Abrao, A.

    1982-01-01

    Some rare earths exhibit fluorescence in acid solution (HC1, H 2 SO 4 or HC10 4 ) when irradiated with ultraviolet radiation; however, analytical application of this property has not been proposed due to the lack of sensitivity resulted from the weakness of the fluorescence transitions. The rare earths are soluble in alkali carbonate solutions, forming anionic carbonate complexes (TR(CO 3 ) sup(n-) sub(x)); some of them have stronger absorption bands than those obtained in acid media. Using this property, the characterization and determination of the six rare earths which fluoresce in carbonate solution has been studied. The excitation and emission wavelengths are (in nm): Sm (406, 596); Eu (280,612); Gd (272,312); Tb (240,542); Dy (350, 576) and Tm (360, 450). Although Ce-III is highly fluorescent in acid media, when in carbonate solution it is easily oxidized to Ce-IV which does not fluoresce neither in acid nor in carbonate solutions. The other rare earths, although soluble in carbonate solution, do not fluoresce in this medium. A comparison is made, between the fluorescence of the fluorescing lanthanides, in acid and carbonate media. The precision and accuracy of this method, the detection limit of all rare earths studied and the mutual interference of some of them is also discussed. The method will be applied to the analytical control of the separation and purification of individual rare earths, now under development. (Author) [pt

  18. Effect of rare earth oxide additives on the performance of NiMH batteries

    International Nuclear Information System (INIS)

    Tanaka, Toshiki; Kuzuhara, Minoru; Watada, Masaharu; Oshitani, Masahiko

    2006-01-01

    To date, we have performed research on nickel-metal hydride (NiMH) batteries used in many applications and have found that addition of rare earth oxides to the nickel electrode and the hydrogen-storage alloy (MH) electrode improves battery performance significantly. Because heavy rare earth oxides of such as Er, Tm, Yb and Lu have remarkable properties that shift the oxygen evolution overpotentials of nickel electrodes to more noble potentials, it is possible to improve high-temperature charge efficiency of nickel-metal hydride secondary batteries by adding them to nickel electrodes. Furthermore, addition of heavy rare earth oxides to MH electrodes depresses an acceleration of the alloy corrosion and improves service life of the battery at high temperatures. Accordingly, addition of heavy rare earth oxides is effective for NiMH batteries used in high-temperature applications such as electric vehicles (EVs), hybrid vehicles (HEVs) and rapid charge devices. In this study, we discussed how the addition of heavy rare earth oxides affects NiMH battery characteristics

  19. Direct Reuse of Rare Earth Permanent Magnets—Coating Integrity

    DEFF Research Database (Denmark)

    Høgberg, Stig; Holbøll, Joachim; Mijatovic, Nenad

    2017-01-01

    Rare earth permanent magnets can be reused directly as an alternative to traditional recycling methods, in which scrapped magnets are reprocessed into new magnets by undergoing many of the original energy-intensive and expensive production processes. Direct reuse entails using segmented magnet...... assemblies built by several small standard-sized magnets that can be reused directly in a number of different applications. A central part of the direct reuse strategy is to separate and demagnetize magnets by heating them to the Curie temperature. We investigated the validity of direct reuse as a rare earth...

  20. Annealed coated air-stable cobalt--rare earth alloy particles

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloy. An organometallic compound which decomposes at a temperature below 500 0 C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating thereon. The coated particles are heated at a temperature ranging from 50 to 200 0 C for a period of time sufficient to increase their intrinsic coercive force by at least 10 percent. (U.S.)

  1. Photo- and electroluminescence of undoped and rare earth doped ZnO electroluminors

    International Nuclear Information System (INIS)

    Bhushan, S.; Pandey, A.N.; Kaza, B.R.

    1977-01-01

    A series of undoped and rare earth (Dy, Yb, Nd, Pr, Gd, La, Sm and Er) doped ZnO electroluminors have been prepared and their photo- (PL) and electroluminescence (EL) spectra at different concentrations of rare earth ions have been investigated. PL and EL spectra of undoped electroluminescence consist of three peaks. Due to the addition of the rare earth ions these peaks are shifted either to the longer or to the shorter wavelength side. The intensities are also either decreased or increased. Experimental results favour the donor-accepted model for this system. (Auth.)

  2. Crystal chemistry and magnetic properties of ternary rare earth sulfides

    International Nuclear Information System (INIS)

    Plug, C.M.; Rijksuniversiteit Leiden

    1977-01-01

    The results of magnetic measurements on two groups of ternary rare earth sulphides are described, the MLnS 2 (M=Li, Na, K) type of compounds and the series Ln 2 ZrS 5 , where Ln denotes one of the rare earths. None of these compounds is metallic, excluding the possibility of RKKY-interaction. In chapter II a survey of the relevant theory on magnetic properties and crystal field splitting is given. In spite of the similarity in chemical properties of the rare earths, the crystal chemistry of their compounds is rather complex. This is due to the lanthanide contraction. The third chapter deals with the description and classification of the numerous crystal structures of both ternary and binary rare earth sulphides that have been observed. Rather simple relations between various structures are presented using a new method of structure classification. The magnetic interactions expected to be based on superexchange via the anions, which is usually very structure dependent. Experiments to study the crystallographic ordering, applying both X-ray and electron diffraction methods and the results of the magnetic measurements on the compounds MLnS 2 are reported in chapter IV. The compounds Ln 2 ZrS 5 are candidates for a systematic study of the variation of the magnetic properties along the rare earth series. The results of magnetic measurements on these compounds are presented in chapter V, combined with the results of specific heat measurements. Also the magnetic structure of two representatives, Tb 2 ZrS 5 and Dy 2 ZrS 5 , determined by neutron diffraction experiments below the ordering temperature, is reported

  3. The lattice dynamical studies of rare earth compounds: electron-phonon interactions

    International Nuclear Information System (INIS)

    Jha, Prafulla K.; Sanyal, Sankar P.; Singh, R.K.

    2002-01-01

    During the last two decades chalcogenides and pnictides of rare earth (RE) atoms have drawn considerable attention of the solid state physicists because of their peculiar electronic, magnetic, optical and phonon properties. Some of these compounds e.g. sulphides and selenides of cerium (Ce), samarium (Sm), yttrium (Y), ytterbium (Yb), europium (Eu) and thulium (Tm) and their alloys show nonintegral valence (between 2 and 3), arising due to f-d electron hybridization at ambient temperature and pressure. The rare earth mixed valence compounds (MVC) reviewed in this article crystallize in simple cubic structure. Most of these compounds show the existence of strong electron-phonon coupling at half way to the zone boundary. This fact manifests itself through softening of the longitudinal acoustic mode, negative value of elastic constant C 12 etc. The purpose of this contribution is to review some of the recent activities in the fields of lattice dynamics and allied properties of rare earth compounds. The present article is primarily devoted to review the effect of electron-phonon interactions on the dynamical properties of rare earth compounds by using the lattice dynamical model theories based on charged density deformations and long-range many body forces. While the long range charge transfer effect arises due to f-d hybridization of nearly degenerate 4f-5d bands of rare earth ions, the density deformation comes into the picture of breathing motion of electron shells. These effects of charge transfer and charge density deformation when considered in the lattice dynamical models namely the three body force rigid ion model (TRM) and breathing shell model (BSM) are quite successful in explaining the phonon anomalies in these compounds and undoubtedly unraveled many important physical process governing the phonon anomalies in rare earth compounds

  4. Separation of Yttrium from Rare Earth Concentrates in Fractional Hydroxide Precipitation

    International Nuclear Information System (INIS)

    Tri Handini; Purwoto; Mulyono

    2007-01-01

    Yttrium has been separated from rare earth concentrates by precipitation in fractional hydroxide using urea. The purpose of this research is to increase the yttrium rate resulting from the sedimentary process through separation of yttrium from other rare earth in fractional hydroxide precipitation using urea. In this research, we study the process variable of the concentration of urea, the ratio of feed volume to condensation volume of urea, as well as the temperature. Determination analysis of the rare earth rate is conducted using an X-ray spectrometer. The best result Y=92.89 % is obtained at a concentration of urea of 50 %, a level of precipitation of 3 times, and a temperature of 80°C. (author)

  5. Cerium and rare earth separation process

    International Nuclear Information System (INIS)

    Martin, M.; Rollat, M.

    1986-01-01

    An aqueous solution containing cerium III and rare earths is oxidized in the anodic compartment of an electrolytic cell, cerium IV is extracted by an organic solvent, the organic phase containing Ce IV is reduced in the catodic compartment of the same electrolytic cell and cerium III is extracted in a nitric aqueous phase [fr

  6. Synthesis and physicochemical investigation of adducts of rare earth thenoyltrifluoroacetonates

    International Nuclear Information System (INIS)

    Anufrieva, S.I.; Snezhko, N.I.; Martynenko, L.I.; Pechurova, N.I.

    1982-01-01

    Adducts of rare earth thenoyltrifluoroacetonates (3) have been synthesized with tributylphosphate (TBP), trioctylphosphenoxide (TOPO), triphenylphosphenoxide (TPO) of 1:1 and 1:2 composition as well as with α, α'-dipyridine (Dipy), o-phenanthroline (Phen) of 1:1 composition. The separated adducts have been studied by methods of element analysis, X-ray phase and derivatographic analyses and IR spectroscopy. It is shown that the adducts are more thermostable compared to the corresponding rare earth thenoyltrifluoroacetonate hydrates

  7. Electronic structure and properties of rare earth and actinide intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.R.

    1984-01-01

    There are 188 contributions, experimental and theoretical, a few on rare earth and actinide elements but mostly on rare earth and actinide intermetallic compounds and alloys. The properties dealt with include 1) crystal structure, 2) magnetic properties and magnetic structure, 3) magnetic phase transformations and valence fluctuations, 4) electrical properties and superconductivity and their temperature, pressure and magnetic field dependence. A few papers deal with crystal growth and novel measuring methods. (G.Q.)

  8. Impact of treated effluents released from processing of radioactive mineral on the aquatic environment of Periyar river

    International Nuclear Information System (INIS)

    Radhakrishnan, Sujata; Haridasan, P.P.; Radhakrishna Pillai, K.; Pillai, P.M.B.; Khan, A.H.

    2005-01-01

    The chemical processing of monazite/ thorium concentrate for the separation of thorium, uranium and rare earths results in the generation of effluents, both acidic and alkaline. Indian Rare Earths Ltd (IREL), Udyogamandal was carrying out processing of monazite for nearly 50 years. Presently (since 2004) Indian Rare Earths Ltd, Udyogamandal is processing earlier stocked thorium hydroxide concentrate retrieved from Silos to produce Thorium Oxalate (along with a small percentage of Rare Earth elements), Nuclear Grade Ammonium Di-Uranate (NGADU), and small quantities of Nuclear Grade Thorium Oxide ('THRUST' Project). The treated effluents after monitoring are discharged to river Periyar. River Periyar is the recipient water body for treated effluents from IREL as well as a host of other chemical industries. Indian Rare Earths Ltd, Udyogamandal had been carrying out chemical processing of monazite for the past 50 years. Recently, from 2004, the plant has shifted from monazite processing to processing of thorium concentrate (THRUST Project). The present paper discusses the characteristics of the effluents generated as per this project, their treatment, monitoring methodology, discharge and impact on the aquatic environment of river Periyar. It has been noted that the impact on the aquatic environment by way of enhancing the natural background radioactivity in the river had been insignificant. (author)

  9. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  10. Magnetoelastic interaction in rare earth systems

    International Nuclear Information System (INIS)

    Dohm, V.

    1975-01-01

    A theory of rotationally invariant spin-lattice interactions in rare earth systems is presented. It is shown that rotational invariance to leading order is ensured only if rotational interactions of first and second order in the displacements are included simultaneously in the spin-lattice Hamiltonian. The rotational second-order interactions yield effects which are as large as those of the linear rotational interaction. It is pointed out that a corresponding statement should hold also for pure strain interactions. The phonon Green's function is calculated for the paramagnetic phase of rare earth systems. It is found that in an applied magnetic field the rotational interactions cause measureable changes of the phonon dispersion and the sound velocity even for cubic symmetry. These effects turn out to be of the same order of magnitude as the conventional field-dependent strain effects and are qualitatively different from the latter. The results of our theory are illustrated by the example of SmSb, and quantitative predictions for the transverse sound velocities are given. (orig.) [de

  11. Investigation of rare earth natural radionuclide in Gannan region, Jiangxi province

    International Nuclear Information System (INIS)

    Liu Huiping; Zhong Minglong; Hu Yongmei

    2014-01-01

    In order to identify the types, level and migration law of natural radionuclide in ionic rare earth during its development and utilization process, the natural radionuclide in raw ore, waste residues and wastewater of south ionic rare of Gannan region, Jiangxi province were investigated. The results showed that: the natural radionuclide in rare earth raw ore in An'yuan and Longnan is with high content, in which the specific activities of natural U, 226 Ra and 232 Th are 3.69 × l0 4 , 8.33 × l0 3 and 3,40 × l0 3 Bq/ kg respectively; And the specific activities of the acid-soluble slag are 2.58 × l0 4 , 2.81 × l0 4 and 2.75 × l0 4 Bq/kg respectively; The radioactive level of natural U and 232 Th in some rare earth tailings, and the specific activity of natural U in the neutralizing slag of some individual enterprises is higher than national standards' exemption level (1000 Bq/kg). Also, the total content of Th and U in the efflux wastewater of some rare earth enterprises efflux wastewater are higher than the national emission standards limit (0.1 mg/L). (authors)

  12. Methods of Separation of Total Rare Earths in Low-Alloy Constructional Steels

    Science.gov (United States)

    1954-11-10

    investigation of the effects of added anions upon the absorption spectra of the rare earths elements has been continued. The effects of tartrate in...complexes, the equilibrium among the di-hydrogen cupric EDTA complex, uncomplexed cupric ions, the monohydrogen rare earth- EDTA complex and rare...solutions used are described. A polaro- graphic method for determining cupric ion concentration in support- ing KNOj solutions, and thereby supporting

  13. A comparative study of CaWO4 and rare earth intensifying screens

    International Nuclear Information System (INIS)

    Ambiger, T.Y.; Ayappan, P.

    1978-01-01

    Three brands of commercially available calcium tungstate intensifying screens and a brand of rare earth screen emitting blue light have been used with two types of fast medical x-ray films, one imported and the other indigenous in various film-screen combinations and their sensitometric properties have been determined and compared. The rare earth screen has been found to be about 3 to 4 times faster than the tungstate screens without reduction in contrast. This indicates that the use of rare earth screen in medical radiography will help to reduce the patient dose by the same factor. (M.G.B.)

  14. Synthesis and physicochemical investigation of adducts of rare earth thenoyltrifluoroacetonates

    Energy Technology Data Exchange (ETDEWEB)

    Anufrieva, S.I.; Snezhko, N.I.; Martynenko, L.I.; Pechurova, N.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1982-11-01

    Adducts of rare earth thenoyltrifluoroacetonates (3) have been synthesized with tributylphosphate (TBP), trioctylphosphenoxide (TOPO), triphenylphosphenoxide (TPO) of 1:1 and 1:2 composition as well as with ..cap alpha.., ..cap alpha..'-dipyridine (Dipy), o-phenanthroline (Phen) of 1:1 composition. The separated adducts have been studied by methods of element analysis, X-ray phase and derivatographic analyses and IR spectroscopy. It is shown that the adducts are more thermostable compared to the corresponding rare earth thenoyltrifluoroacetonate hydrates.

  15. A study on the separation method of total rare earth oxides in Xenotime

    International Nuclear Information System (INIS)

    Shim, Sang Kwon; Park, Hea Kyung; Kim, Kyung Lim

    1990-01-01

    This study is concerned with the separation method of total rare earth oxides in Xenotime by acid digest method. Thioacetamide was used as a carrier, tartaric acid was used as a masking agent and oxalic acid was used as a precipitant. So the effects of three acid digest methods, pH of the solution, digesting time,tartaric acid, oxalic acid and aging time were oberved. The results showed that the best acid digest method was sulfuric acid leaching and mixed acid digest method, and that pH of the solution was 2, digesting time was 4 hours, tartaric acid was 100 ml of 2% solution, oxalic acid was 8 gr. and aging time was 1 hour. Through this experiment, it was confirmed by X-ray diffractometer that the separated total rare earth oxides consisted of the Yttrium and the other rare earth elements : Gadolinium, Dysprosium, Erbium, Ytterbium and trace rare earth elements. The pure rare earth oxides being separated by this method were dried and ignited at 900 deg C (Author)

  16. Thermoluminescence dosimetry of rare earth doped calcium ...

    Indian Academy of Sciences (India)

    Unknown

    CaAl2O4) doped with different rare earth ions have been studied and their suitability for radiation dosimetry applications is discussed. It is observed that monocalcium aluminate doped with cerium is a good dosimeter having linear response up to ...

  17. Concentration of light rare earths process by amoniacal precipitation

    International Nuclear Information System (INIS)

    Aguilera, Y.; Rapado, M.; Consuegra, R.

    1996-01-01

    A procedure for the separation and concentration of light rare earths using a mixture of ammonia and water was developed. As a result technical concentrates of rare earths were obtained and the physical separation in the filtration step was improved. The filtration parameters (cake resistance r 0 and filtration web resistance R) were obtained for this process being they 5,5.10 11 cm/g and 3,4.10 13 cm -1 respectively. The proposed technology concentrates (Ce, La and Nd) with purities ranging from: 85-90 %, 85-87 % and 42-65 % respectively in only one precipitation step

  18. Peculiarities of rare-earth-element distribution in environmental objects

    International Nuclear Information System (INIS)

    Gorbunov, A.V.; Onischenko, T.L.; Gundorina, S.F.; Frontasyeva, M.V.

    1993-01-01

    The effect of the production of phosphorus fertilizers on the pollution of the environment by rare-earth elements is reviewed. The main sources of rare-earth element pollution in the environment are described. The levels of REEs in components of the environment - atmosphere, snow, different types of soil, native and agricultural types of vegetation - that provide evidence for their participation in the biological cycle of plants are considered. The high values of the correlation coefficients lead one to think that the REE distribution in vegetation occurs under specific laws true for this family of elements. (author) 9 refs.; 6 figs.; 5 tabs

  19. Novel online security system based on rare-earth-doped glass microbeads

    Science.gov (United States)

    Officer, Simon; Prabhu, G. R.; Pollard, Pat; Hunter, Catherine; Ross, Gary A.

    2004-06-01

    A novel fluorescent security label has been produced that could replace numerous conventional fluorescent dyes in document security. This label utilizes rare earth ions doped in a borosilicate glass matrix to produce sharp spectral fluorescence peaks with characteristic long lifetimes due to the rare earth ions. These are subsequently detected by an online detection system based on fluorescence and the long lifetimes to avoid any interference from other fluorophores present in the background. Security is further enhanced by the interaction of the rare earth ions with each other and the effect of the host on the emission spectra and therefore the number of permutations that could be produced. This creates a very secure label with various applications for the security market.

  20. Rare earth oxide doping in oxide cathodes

    International Nuclear Information System (INIS)

    Engelsen, Daniel den; Gaertner, Georg

    2006-01-01

    The effect on life performance and poisoning with O 2 by doping oxide cathodes with rare earth oxides and pseudo rare earth oxides, notably yttria, is qualitatively explained in terms of electrolysis of BaO during emission of electrons. Doped cathodes show less electrolysis and consume therefore less Ba during life: consequently, doped cathodes have a better life performance. However, the lower Ba-production makes doped cathodes more sensitive to oxygen poisoning. The experimentally found relation between conductivity and yttria concentration was the motive to propose a new model for the crystal imperfections in BaO. In this new imperfection model most Y 3+ -ions will combine with barium vacancies, therefore, the increase of the conductivity is modest and also the effect on the position of the Fermi level is modest. By assuming a combination of bulk and surface conductivity, the agreement between experiment and theory can be improved further

  1. Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy.

    Science.gov (United States)

    Zhang, Ying; Yu, Chenguang; Huang, Guanyi; Wang, Changli; Wen, Longping

    2010-09-07

    Four rare earth oxides have been shown to induce autophagy. Interestingly, we often noticed plentiful vacuolization, which was not always involved in this autophagic process. In this study, we investigated three other rare-earth elements, including Yttrium (Y), Ytterbium (Yb), and Lanthanum (La). Autophagic effect could be induced by all of them but only Y(2)O(3) and Yb(2)O(3) could cause massive vacuolization. Y(2)O(3) and Yb(2)O(3) treated by sonication or centrifugation to reduce particle size were used to test vacuolization level in HeLa cell lines. The results showed that rare earth oxides-induced vacuolization is size-dependent and differs from autophagic pathway. To further clarify the characteristics of this autophagic process, we used MEF Atg-5 (autophagy associated gene 5) knockout cell line, and the result showed that the autophagic process induced by rare earth oxides is Atg-5-dependent and the observed vacuolization was independent from autophagy. Similar results could also be observed in our tests on 3-methyladenine(3-MA), a well-known autophagy inhibitor. In conclusion, for the first time, we clarified the relationship between massive vacuolization and autophagic process induced by rare earth oxides and pointed out the size effect of rare earth oxides on the formation of vacuoles, which give clues to further investigation on the mechanisms underlying their biological effects.

  2. Studi Pemisahan Thorium dari Besi dan Logam Tanah Jarang dalam Larutan Asam Nitrat dengan Ekstraksi Pelarut Menggunakan Ekstraktan Trioctylphosphine Oxide

    Directory of Open Access Journals (Sweden)

    Briliant

    2017-11-01

    Full Text Available A series of solvent extraction experiment to separate thorium(Th from iron (Fe and rare earth metals (REE using trioctylphosphine oxide (TOPO conducted with variations of nitric acid concentration, extraction time, ratio between exctractan and diluent (g/mL, and ratio between organic solution and aqueous solution volumes (O/A, and variation of nictric acid concentration in stripping process. Thorium, iron and rare earth metals early concentration in solution feed were measured by using Inductively Coupling Plasma (ICP, Atomic Absorption Spectroscopy (AAS, dan Ultraviolet Visible Spectroscopy (UV-VIS Spectro respectively. The nitric acid concentration was varied at 1M, 2M, 3M, 4M, and 5M. The extraction time was varied at 2, 5, 10, 15, and 20 minutes, meanwhile the ratio between extractan and diluent (g/mL was varied at 2:100, 3:100, 4:100, 5:100, and 6:100 with O/A ratio at 1:3, 1:2, 1:1, 2:1, and 3:1. At stripping stage, the nitric acid concentration was varied at 0.1M; 0.2M; 0.3M; 0.4M; and 0.5M. The result of the experiments show that the best condition was obtained on 3M nitric acid concentration, 10 minutes extraction time, 5:100 (g/mL extractan and diluent ratio, and 1:1 O/A ratio, that resulted in 97.26% Th extraction, 7.97% Fe extraction, and 62.15% rare earth metals extraction with βTh-Fe and βTh-REE value 273.62 and 14.43 respectively. On the stripping experiment, the highest Th stripping percentage obtained as much as 51.37% at 0.3M nitric acid concentration with Fe and REE stripping percentage up to 2.72% and 2.55% respectively.

  3. Quantifying dust input to the Subarctic North Pacific - Results from surface sediments and sea water thorium isotope measurements

    Science.gov (United States)

    Winckler, G.; Serno, S.; Hayes, C.; Anderson, R. F.; Gersonde, R.; Haug, G. H.

    2012-12-01

    The Subarctic North Pacific is one of the three primary high-nutrient-low chlorophyll regions of the modern ocean, where the biological pump is relatively inefficient at transferring carbon from the atmosphere to the deep sea. The system is thought to be iron-limited. Aeolian dust is a significant source of iron and other nutrients that are essential for the health of marine ecosystems and potentially a controlling factor of the high-nutrient-low chlorophyll status of the Subarctic North Pacific. However, constraining the size of the dust flux to the surface ocean remains difficult. Here we apply two different approaches, based on surface sediment and water column samples, respectively, obtained during the SO202/INOPEX research cruise to the Subarctic North Pacific in 2009. We map the spatial patterns of Th/U isotopes, helium isotopes and rare earth elements across surface sediments from 37 multi-core core-top sediments across the Subarctic North Pacific. In order to deconvolve the detrital endmembers in regions of the North Pacific affected by volcanic material, IRD and hemipelagic input, we use a combination of trace elements with distinct characteristics in the different endmembers. This approach allows us to calculate the relative aeolian fraction, and in combination with Thorium230-normalized mass flux data, to quantify the dust supply. Secondly, we present an innovative approach to use paired Thorium-232 and Thorium-230 concentrations of upper-ocean seawater at 7 stations along the INOPEX track. Thorium-232 in the upper water column is dominantly derived from dissolution of aeolian dust, whereas Thorium-230 data provide a measure of the thorium removal from the surface waters and, thus, allow us to derive Thorium-232 fluxes. Combined with a mean Thorium-232 concentration in dust and estimate of the thorium solubility, the Thorium-232 flux can be translated in a dust flux to the surface ocean. Dust flux estimates for the Subarctic North Pacific will be

  4. Two main and a new type rare earth elements in Mg alloys: A review

    Science.gov (United States)

    Kong, Linghang

    2017-09-01

    Magnesium (Mg) alloys stand for the lightest structure engineering materials. Moreover, the strengthening of Mg alloys in ductility, toughness and corrosion predominates their wide applications. With adding rare earth elements in Mg, the mechanical properties will be improved remarkably, especially their plasticity and strength. A brief overview of the addition of rare earth elements for Mg alloys is shown. The basic mechanisms of strengthening Mg alloys with rare earth elements are reviewed, including the solid solution strengthening, grain refinement and long period stacking ordered (LPSO) phase. Furthermore, the available rare earth elements are summarized by type, chemical or physical effects and other unique properties. Finally, some challenge problems that the research is facing and future expectations of ra-re-earth Mg alloys are stated and discussed.

  5. New Trident Molecule with Phosphoric Acid Functionality for Trivalent Rare Earth Extraction

    Directory of Open Access Journals (Sweden)

    Keisuke Ohto

    2017-11-01

    Full Text Available Tripodal extraction reagent with three phosphoric acid groups, together with the corresponding monopodal molecule has been prepared to investigate some metals extraction behavior, in particular, trivalent rare earth elements (REEs. The tripodal reagent exhibited extremely high selectivity for metals with high valency such as Zr(IV, In(III, Lu(III, and Fe(III. Tripodal reagent also exhibited exceptionally high extraction ability compared with the corresponding monopodal one in the extraction of trivalent rare earths. The result for the stoichiometry of tripodal reagent to heavy rare earths showed the inflection point between Er (2:1 for a ligand with ion and Tm (1:1. The extraction reactions were determined for all rare earths with both reagents. The extraction equilibrium constants (Kex, the separation factors (β, half pH values (pH1/2, difference half pH values (ΔpH1/2 for extraction of REEs with both reagents are estimated.

  6. Application of 241Am EDXRF to the determination of rare earth samples of solvent extraction processes

    International Nuclear Information System (INIS)

    Yan Chunhua; Jia Jiangtao; Liao Chunsheng; Li Biaoguo

    1998-01-01

    A rapid energy dispersive X-ray fluorescence spectroscopy (EDXRF) analysis system is established to determine rare earth concentrations. The characteristic K-shell series X-rays of rare earths were excited by a 1.1 x 10 9 Bq 241 Am radioisotope source. The spectra were recorded and analyzed using a multi-channel analyzer, employing a high-purity Ge detector. In this method, the Compton scattering peak, absorption of elements, and specific simplification are considered. Samples of light, middle and heavy rare earths during separation processes in both hydrochloride solution and rare earth loaded organic phases were analyzed off-line. Some comparative results measured by ICP are also given. The results show that the method can be used for a wide range of rare earth concentrations (0.1-300 g l -1 rare earth oxide). Being rapid, effective, precise and non-destructive, the method can be applied to on-line analysis to determine rare earth concentrations during separation by solvent extraction. (orig.)

  7. Extreme magnetoresistance in magnetic rare-earth monopnictides

    Science.gov (United States)

    Ye, Linda; Suzuki, Takehito; Wicker, Christina R.; Checkelsky, Joseph G.

    2018-02-01

    The acute sensitivity of the electrical resistance of certain systems to magnetic fields known as extreme magnetoresistance (XMR) has recently been explored in a new materials context with topological semimetals. Exemplified by WTe2 and rare-earth monopnictide La(Sb,Bi), these systems tend to be nonmagnetic, nearly compensated semimetals and represent a platform for large magnetoresistance driven by intrinsic electronic structure. Here we explore electronic transport in magnetic members of the latter family of semimetals and find that XMR is strongly modulated by magnetic order. In particular, CeSb exhibits XMR in excess of 1.6 ×106% at fields of 9 T whereas the magnetoresistance itself is nonmonotonic across the various magnetic phases and shows a transition from negative magnetoresistance to XMR with fields above magnetic ordering temperature TN. The magnitude of the XMR is larger than in other rare-earth monopnictides including the nonmagnetic members and follows a nonsaturating power law to fields above 30 T. We show that the overall response can be understood as the modulation of conductivity by the Ce orbital state and for intermediate temperatures can be characterized by an effective medium model. Comparison to the orbitally quenched compound GdBi supports the correlation of XMR with the onset of magnetic ordering and compensation and highlights the unique combination of orbital inversion and type-I magnetic ordering in CeSb in determining its large response. These findings suggest a paradigm for magneto-orbital control of XMR and are relevant to the understanding of rare-earth-based correlated topological materials.

  8. Port Pirie rare earths plant stage 3

    International Nuclear Information System (INIS)

    1990-08-01

    SX Holdings Limited intends to establish a rare earths plant at Port Pirie, South Australia. The proposal involves three stages of development, Stage 3 being to develop a monazite cracking plant and associated rare earths separation facility with the capacity to process up to 8,000 t/a of monazite-type ores. The proposed initial capacity is 4,000 t/a. This Draft Environmental Impact Statement relates to Stage 3 and is based on a monazite processing capacity of 8,000 t/a. The justification of the project is given in terms of use and the market for rare earths, the economic and environmental benefits of the proposal, the site selection process, site rehabilitation, and the consequences of not proceeding. A detailed description of the project is given, including the treatment process, site development and facilities, the supply of raw materials, product and waste handling, transport and storage, plant commissioning, operation and decommissioning, construction and staffing. The environmental issues entailed in the proposed development are discussed and include social effects, land use and infrasturcture considerations, risk management and transport. Occupational and environmental radiation issues, including assessments of exposure pathways and doses, management and monitoring, disposal of monosite residue are also discussed. It is estimated that the effects of disposal of 2,330 t/year of radioactive slurry in the sub-aerial tailing disposal system at Olympic Dam will be negligible. Moreover, the gamma dose increases would not result in any significant increase in occupational exposures. 38 refs., tabs., ills

  9. Recovery of uranium and of rare earths from Moroccan phosphates

    International Nuclear Information System (INIS)

    Ezahr, I.; El Houari, A.; Smani, S.M.

    1984-01-01

    The contents of uranium and of rare earths in Moroccan phosphates vary from 75 to 250 ppm and from 900 to 1500 ppm, respectively. The phosphates produced in Morocco contain therefore about 2500 t of uranium and 25 000 t of rare earths, compared with annual productions of uranium and of rare earths of 43 000 t and 33 000 t, respectively. During the sulphuric leaching of the phosphate ores, uranium is found to 80-90% in the phosphoric acid. Research into the extraction of uranium has shown that for the phosphoric acids produced at Safi the coefficient of extraction: is not very sensitive to the P 2 O 5 concentration on the 28-30% region; is not affected by the sulphur level up to the concentration of 4%; is very sensitive to the fluorine content beyond 1%. On the level of the first cycle of the process in Depa-Topo, four extraction stages permit a yield of between 92 and 98% to be reached. The addition of an oxidizing agent to the phosphoric acids under examination was not necessary, as their potential level is high. The purity of the yellow-cakes obtained varies from 94 to 99%. The overall recovery efficiency lies between 67 and 71%. In a second part, this paper deals with the recovery of the rare earths [fr

  10. Preparation and characterization of PT-rare earth/C electrocatalysts for PEM fuel cells

    International Nuclear Information System (INIS)

    Santoro, Thais Aranha de Barros

    2009-01-01

    Pt-rare earth/C electrocatalysts (rare earth = La, Ce, Pr, Nd, Sm, Tb, Dy, Ho, Er, Tm, and Lu) were prepared (20 wt.% and Pt-to-RE atomic ratio of 50:50) by an alcohol reduction process using H 2 PtCl 6 .6H 2 O (Aldrich) and rare earth (III) chlorides (Aldrich) as metal sources, ethylene glycol as solvent and reducing agent, and Vulcan XC72 as support. The electrocatalysts were characterized by Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffractometry (XRD) and Transmission Electron Microscopy (TEM). The energy dispersive x-ray spectroscopy analysis showed that the Pt-Rare Earth atomic ratios obtained for all electrocatalysts were similar to those used in the preparations. In all diffractograms, it was observed a broad peak at about 25 degree which was associated to the Vulcan XC72 support material and four peaks at approximately 28=40 degree, 47 degree, 67 degree and 82 degree, which were associated to the (111), (200), (220), (311), and (222) planes, respectively, of the face-centered cubic (fcc) structure characteristic of platinum and platinum alloys. For the Pt-Rare Earth/C electrocatalysts, it was also observed peaks related to the rare earth oxides on the X ray diffractograms. PtLa/C electrocatalysts were prepared at different atomic ratio. Transmission electronic microscopy micrographs of electrocatalysts showed a reasonable distribution of the Pt particles on the carbon support with some agglomerations, which is in agreement with x-ray diffractometry result. The performance for CO, methanol and ethanol oxidation was investigated by cyclic voltammetry, chronoamperometry and Fourier transform infrared spectroscopy spectroscopy. The electrocatalytic activity of the Pt-Rare Earth/C electro catalyst, specially PtLa/C, were higher than that of the Pt/C electrocatalyst. Fourier transform infrared spectroscopy studies for ethanol oxidation on Pt-Rare Earth/C electrocatalyst showed that acetaldehyde and acetic acid were the main products. The PtLa/C (30

  11. Application of liquid-liquid extraction in separation of rare earths [Paper No. : V-6

    International Nuclear Information System (INIS)

    Deshpande, S.M.; Krishnan, N.P.K.; Murthy, T.K.S.; Swaminathan, T.V.

    1979-01-01

    The rare earths consist of fifteen elements which have very similar chemical properties and are difficult to separate from each other. Since they exist together in all naturally occurring minerals their separation is one of the important and difficult aspects of their technology. Liquid-liquid extraction has proved to be an efficient technique for their separation. The two important extraction systems that find practical and large scale application, the nitric acid + tri-n-butyl phosphate, and mineral acid (particularly hydrochloric acid) + organo phosphoric acid (like di-2-ethyl hexyl phosphoric acid), are briefly reviewed. The factors affecting the extraction and separation of rare earths in the two systems are discussed. On an industrial scale the extraction process is very often employed for an initial concentration of the desired rare earths from complex mixtures. The final purification is generally achieved by the ion exchange method. The utility of the solvent extraction process for the upgrading of selected rare earths-europium, samarium and gadolinium-from a mixed rare earth chloride, derived from monazite, is illustrated by the work carried out in this laboratory and pilot plant operation at the Alwaye plant of M/s. Indian Rare Earths Ltd. (author)

  12. Contribution to the study of rare earth separation by ion exchange, using ammonium lactate

    International Nuclear Information System (INIS)

    Gratot, I.

    1958-01-01

    Using the technique of chromatography on a column of Dowex 50 resin, heated to 87 deg. C, we have studied the separation of rare earths (from holmium to praseodymium) which may be produced with the cyclotron by heavy ions, α or protons. From an ammonium lactate solution M at pH 5, separations are carried out by varying the dilution as a function of the quantity of the target rare earth and of its position during elution. When weighable quantities of the rare earth (more than 5 mg) appear towards the end of the elution, the separation is little affected this case approaches that of a tracer mixture of rare earths; if on the other hand weighable quantities of the rare earth are washed through at the beginning of the chromatogram, the dilution must be adjusted in order to obtain a good separation. (author) [fr

  13. Determination of rare earth elements by liquid chromatography/inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Yoshida, K.; Haraguchi, H.

    1984-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) interfaced with high-performance liquid chromatography (HPLC) has been applied to the determination of rare earth elements. ICP-AES was used as an element-selective detector for HPLC. The separation of rare earth elements with HPLC helped to avoid erroneous analytical results due to spectral interferences. Fifteen rare earth elements (Y and 14 lanthanides) were determined selectively with the HPLC/ICP-AES system using a concentration gradient method. The detection limits with the present HPLC/ICP-AES system were about 0.001-0.3 μg/mL with a 100-μL sample injection. The calibration curves obtained by the peak height measurements showed linear relationships in the concentration range below 500 μg/mL for all rare earth elements. A USGS rock standard sample, rare earth ores, and high-purity lanthanide reagents (>99.9%) were successfully analyzed without spectral interferences

  14. Production of Rare Earth Elements from Malaysian Monazite by Selective Precipitation

    International Nuclear Information System (INIS)

    Che Nor Aniza Che Zainul Bahri; Al- Areqi, W.M.; Amran Abdul Majid; Mohd Izzat Fahmi Mohd Ruf

    2016-01-01

    Rare earth elements (REEs) are very valuable and have high demands for advanced technology nowadays. REEs can be classified to light rare earth elements (LREEs) and heavy rare earth elements (HREEs). Malaysian rare earth ore especially monazite, is rich with LREEs compared to HREEs. Therefore a study was carried out to extract the REE from Malaysian monazite. The objectives of this study are to determine the content of REEs in Malaysian monazite leach solution, as well as to produce high grade of REEs. Concentrated sulphuric acid was used in digestion process and the filtrate containing the REEs was determined using Inductively Coupled Plasma- Mass Spectrometry (ICP-MS). Ammonia solution was used for REEs precipitation from monazite leach solution. The result indicated that REEs was successfully separated from monazite leach solution through selective precipitation using ammonia at pH 2.34 and the percentage of REEs that successfully separated was 70.03 - 81.85 %. The percentage of REEs which successfully separated from final solution was 96.05 - 99.10 %. Therefore, to have high purification of individual REEs, solvent extraction process should be carried out. (author)

  15. Diagnostic study about lanthanides (rare earths)

    International Nuclear Information System (INIS)

    Ribeiro, G.F.

    1985-01-01

    The world situation of rare earths (lanthanides) is evaluated, and a comparison of the Brazilian situation in respect to other countries is established, concerning the following aspects: geology of mineral deposits; main sources, uses, reserves and production; their consumption, prices and state-of-art of geological researches and industrial processes for physical and chemical separation / concentration of these elements. (C.L.B.) [pt

  16. Rare earth phosphors and phosphor screens

    International Nuclear Information System (INIS)

    Buchanan, R.A.; Maple, T.G.; Sklensky, A.F.

    1981-01-01

    Advances in the use of stabilized rare earth phosphors and of conversion screens using these materials are examined. In particular the new phosphors discussed in this invention consist of oxybromides of yttrium, lanthanum and gadolinium with a luminescent activator ion stabilized by an oxychloride or oxyfluoride surface layer and the conversion screens include trivalent cerium as the activator ion. (U.K.)

  17. Antiferromagnetic correlations in icosahedral R-Mg-Zn quasicrystals (R rare earth)

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, B; Schmitt, D [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France); Ouladdiaf, B [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Powder neutron-diffraction experiments performed on R-Mg-Zn quasicrystals have shown for the first time the existence of magnetic ordering of the rare earth in these systems at low temperature (T{sub c} {<=} 6.5 K depending on the rare earth). Both narrow and broad magnetic diffraction peaks have been observed showing the presence of two different scales of magnetic correlations. (author). 3 refs.

  18. Synthesis of ion-exchange resin for selective thorium and uranyl ions sorption

    Science.gov (United States)

    Konovalov, Konstantin; Sachkov, Victor

    2017-11-01

    In this work, the method of ion-exchange resin synthesis selective to radionuclides (uranium and thorium) is presented. The method includes synthesis of polymeric styrene-divinylbenzene macroporous matrix with size of 0.1-0.2 mm, and its subsequent transformation by nitration and then reduction by tin (II) chloride. For passivation of active primary amines partially oxidation by oxygen from air is used. Obtained ion-exchange resin has ratio of sorption sum U+Th to sorption sum of other total rare-earth elements as 1:1.88 at ratio of solid to liquid phase 1:200. The proposed method of ion-exchange resin synthesis is scaled-up for laboratory reactors with volume of 5 and 50 liters.

  19. Solvent extraction of rare earth elements by γ-ray spectrometry

    International Nuclear Information System (INIS)

    Sudha Vani, T.J.; Krishna Rao, K.S.V.; Krishna Reddy, L.; Jaya Rami Reddy, M.; Lee, Yong III

    2010-01-01

    Rare earth element (REE) is a mine of new material and has very wide uses in industry. India has second largest abundant resources of rare earths and with its products and exports playing an important part in the world. REEs are important in nuclear energy programs, hence the separation and purification of rare earths is demanded. As well known, the separation between trivalent REEs is one of the most difficult tasks in separation chemistry due to their similar chemical properties. A large number of acidic and neutral organo-phosphorus and sulphur extractants have been widely employed industrially for the solvent extraction separation of REEs. However, these reagents display various shortcomings, such as poor selectivity, third phase formation, etc. In view of the ever increasing demand for high purity REEs as a group or from one another, there is a growing interest in the development of new and more selective solvent extraction reagents

  20. Use of EDTA for potentiometric back titration of rare earths and analysis of their mixtures

    International Nuclear Information System (INIS)

    Zayed, M.A.; Rizk, M.S.; Khalifa, H.; Omer, W.F.

    1987-01-01

    Advantage was taken of the stoichiometric reaction between mercury(II), rare earths, alkaline earths, heavy metal ions and EDTA in urotropine buffered media to determine rare earths by back-titration of excess EDTA in the course of estimating a variety of lanthanides or analysing their binary mixture with one of the alkaline earth metals by selective control of pH; or analysing their binary mixtures with heavy metals using fluoride as a good masking agent for rare earths; or analysing their ternary mixtures with both heavy and alkaline earth metals in two steps, one by selective control of pH and the other by masking of rare earths with fluoride at lower pH to estimate the heavy metal. The procedures given are simple, rapid and extremely reliable. 19 refs. (author)

  1. Labelling of TTHA coupled IgG and MCAb with rare earth radionuclides

    International Nuclear Information System (INIS)

    Wu Younghui; Zhang Yulei; Wu Chuanchu; Wang Xiangyun; Liu Yuanfang

    1988-07-01

    This article expands a process of labelling G-immunoglobulin (IgG) and monoclonal antibody (MCAb) with rare earth radionuclides. In this labelling process, cycloanhydride (CTTHAA) of Tri-ethyl Tetra-amine Hexa-acetic Acid (TTHA) is employed as a bifunctional chelating conjugate, the metal chelation takes place after CTTHAA has first been linked to IgG, followed by chemical reaction with rare earth radionuclides. Detailed investigations have been carried out to examine the influencing parameters of labelling globulins with rare earth, such as metal to CTTHAA mole-ratio, pH value and labelling time. The immunoreactivity of the labelled compound (RE-TTHA-IgG) has been retained throughout the whole labelling process

  2. Separation of rare earth mixtures by gas chromatography using dipivaloylmethane as complexing agent

    International Nuclear Information System (INIS)

    Golubtsova, V.Yu.; Luchinkin, V.V.; Martynenko, L.I.; Murav'eva, I.A.; Sokolov, D.N.

    1981-01-01

    Possibility of using dipivaloylmethave for quantitative separation of rare earth element mixtures under the regime of chromatography for preparative and analytical purposes, is studied. Introduction of β-diketone surplus into the chromatographic solution is shown to remove the necessity of column conditioning. It is stated that chelate solution should have concentration above the threshold one. The developed method is applicable for quantitative separation of some rare earth mixtures for preparative purposes, as well as for the analysis of rare earth mixtures, containing components in equivalent quantities [ru

  3. Effect of the kind of alkaline and rare earth ions on the structure of a glass rich in earth

    International Nuclear Information System (INIS)

    Quintas, Arnaud; Caurant, Daniel; Majerus, Odile; Lenoir, Marion; Dussossoy, Jean-Luc; Charpentier, Thibault; Neuville, Daniel R.; Gervais, C.

    2006-01-01

    In the framework of a structural study of a nuclear wastes containment glass of type alumino borosilicate and rich in rare earths, the influence of the kind of alkaline or rare earth ions is analyzed. For that, two glasses series have been prepared in which the Na + ion (respectively Ca 2+ ions) present in the standard composition is totally substituted by another alkaline ion Li + , K + , Rb + or Cs + (respectively another rare earth ion Mg 2+ , Sr 2+ or Ba 2+ ). These glasses, analyzed by optical absorption, Raman and 27 Al or 11 B NMR spectroscopies have revealed the strong impact of the kind of the modifying ion as well as the structure of the vitreous lattice (variation of the ratio BO 3 /BO 4 and local variations of the polymerization degree) than the local surroundings of the rare earth (decrease of the covalency degree of the bond Nd-O with the increase of the field force of the modifying ion). (O.M.)

  4. Exploitation of rare earth catalysts in polymer syntheses

    Institute of Scientific and Technical Information of China (English)

    Shen Zhiquan

    2006-01-01

    The studies over forty years on rare earth catalysts in polymer syntheses of diene,alkyne,alkylene oxide,thiirane, carbon dioxide copolymerization, lactide,caprolactone,cyclic carbonate and so forth in China have been reviewed.

  5. Relationship between accumulation of rare earth element in tumor and ionic radius

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, N [Kanazawa Univ. (Japan). School of Medicine

    1975-02-01

    The accumulation of rare earth elements in the different organs of Ehrlich's tumor-bearing mice at 48 hours after intraperitoneal administration was measured by a Ge(Li) semiconductor detector. Accumulation of all the rare earth elements was the highest in the pancreas. Accumulation of /sup 152/Eu in the different organs of Ehrlich's tumor-bearing mice was very high. The accumulation of rare earth elements in Ehrlich's tumor was lower than the accumulation of /sup 67/Ga and /sup 46/Sc. The tumor-organ concentration ratio of rare earth elements was remarkably lower than the accumulation of /sup 67/Ga and /sup 46/Sc. However, the accumulation of /sup 152/Eu in Ehrlich's tumor was somewhat higher than that of /sup 67/Ga. The relationship between the accumulation and the carrier content was examined. The lower the carrier content was, the higher was the accumulation in different organs. However, the carrier effect of rare earth on the uptake in different organs elements was slight. The author postulated that the elements in which the ionic radius is similar to that of Mg(0.62 A) or Ca(0.99 A) are abundant in the tumor cell membrane, and they might pass through the tumor cell membrane much more easily than would the other elements. However, the result was negative.

  6. Research on manufacturing aluminum - rare earth alloy with a high content of rare earth (> 20% RE) from total rare earth oxides by thermit reduction

    International Nuclear Information System (INIS)

    Ngo Trong Hiep; Dam Van Tien; Tran Duy Hai; Ngo Xuan Hung and Ly Thanh Vu

    2004-01-01

    In this report, several theoretical principles of thermit reduction method used for metal oxides to obtain metals, ferroalloys and ligatua with technical purity are presented. Manufacture of aluminum-rare earth alloys by thermit reduction is also described in the report. Data that are generalized based on thermo-kinetic calculation of the thermit reduction and selection of technological flow-sheet based on thermal effect will partly clarify research results in investigating typical features of the process and identify measures to reduce metal loss in discharged slags. (author)

  7. Binding of rare earths to serum proteins and DNA

    International Nuclear Information System (INIS)

    Rosoff, B.; Spencer, H.

    1979-01-01

    In order to investigate further the physiological behavior of rare earths and rare earth chelates, studies of the binding of 46 Sc, 91 Y, and 140 La to serum proteins and to nucleic acids were performed using the methods of equilibrium dialysis and ultrafiltration. The binding of lanthanum and yttrium as the chlorides to α-globulin increased as the free rare earth concentration increased. When scandium and lanthanum were chelated in nitrilotriacetate (NTA) the binding to α-globulin was considerably less and there was no binding to albumin. The binding of 46 Sc chelated to ethylenediamine di(O-hydroxyphenylacetate) (EDDHA) was five times greater than of 46 Sc chloride. When the free scandium concentration was increased, the moles bound per mole of protein increased proportionally and the binding was reversible. Scandium was 100% filterable from a mixture of human serum and from the scandium chelates with high stability constants scandium diethylenetriaminepentaacetate (ScDTPA), scandium ethylenediaminetetraacetate (ScEDTA) and scandium cyclohexane trans-1,2-diaminetetraacetate (ScCDTA) respectively. In contrast, only 2% of the scandium was filterable when scandium nitrilotriacetate, a scandium chelate of low stability constant, was used. (Auth.)

  8. Social and Environmental Impact of the Rare Earth Industries

    Directory of Open Access Journals (Sweden)

    Saleem H. Ali

    2014-02-01

    Full Text Available The use of rare earth elements in various technologies continues to grow despite some alternatives being found for particular uses. Given a history of ecological concerns about pollution from rare earth mines, particularly in China, there are growing social and environmental concerns about the growth of the mining and mineral processing in this sector. This is best exemplified by the recent social and environmental conflict surrounding the development of the Lynas Advanced Materials Plant (LAMP in Kuantan, Malaysia which led to international activism and claims of environmental and social injustice. This paper analyses the structure of environmental and social conflicts surrounding rare earth minerals and opportunities for improving the social and environmental performance of the sector. Many of these elements are used for green technologies. Opportunities exist that offer a more circular supply chain following industrial ecological principles through which reuse and recycling of the materials can provide a means of mitigating social and environmental conflicts in this sector. In addition, public engagement processes that recognize community concerns about radiation, and transparent scientifically predicated decision-making through an appropriate governance structure within regulatory organizations are also presented.

  9. The magnetoresistivity of some rare-earth metals

    International Nuclear Information System (INIS)

    Webber, G.D.

    1978-10-01

    The thesis describes measurements of the low temperature transverse magnetoresistivities of single crystals of rare-earth metals in magnetic fields up to 8 Tesla. A general introduction to the rare-earths, their magnetic properties and a review of the basic theory and mechanism of magnetoresistivity is given. Details of the crystal structure, growth of single crystals and sample mounting method follow. The experimental equipment and measuring techniques are then described. The low temperature transverse magnetoresistivity of polycrystalline lanthanum and single crystal praseodymium for the temperature range 4.2 - 30K is measured. The separation of the spin-disorder and Fermi-surface orbital effect contributions are described and the theoretical and experimental spin-disorder values compared. Magnetoresistivity measurements for neodymium single crystals (4.2 - 30K) are compared with the magnetic properties determined from neutron diffraction studies. Results for gadolinium single crystals (4.2 - 200K) are compared for two different impurity levels and with previous work. (UK)

  10. China's Rare Earth Supply Chain: Illegal Production, and Response to new Cerium Demand

    Science.gov (United States)

    Nguyen, Ruby Thuy; Imholte, D. Devin

    2016-07-01

    As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China's supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructed a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the US market starting from 2018. Results showed that market share of the illegal sector has grown since 2007-2015, ranging between 22% and 25% of China's rare earth supply, translating into 59-65% illegal heavy rare earths and 14-16% illegal light rare earths. There will be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Finally, we illustrate revenue streams for different ore compositions in China in 2015.

  11. Rare earth (3) pivalates

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Martynenko, L.I.; Zoan An' Tu; Ch'eu Tkhi Nguet; Troyanov, S.I.; Rykov, A.N.; Korenev, Yu.M.

    1994-01-01

    Depending on synthesis conditions rare earth pivalates can be obtained in the form of either adducts NPiv·HPiv or hydrates MPiv 3 ·mH 2 O. Adducts are the most stable form of pivalates. Heating of adducts result in formation of corresponding MPiv 3 . MPiv 3 ·nHPiv compounds are characterized by IR-spectroscopy and thermal analysis data. Behaviour of MPiv 3 was studied in the regime of vacuum sublemation. Using mass spectroscopy of NdPiv 3 it was shown that gaseous phase above MPiv 3 had complex composition and contained ligomer fragments. X-ray structure analysis of [NdPiv 3 ·3HPiv] was conducted

  12. Thermoelectric transport in rare-earth compounds

    International Nuclear Information System (INIS)

    Koehler, Ulrike

    2007-01-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce 3 Rh 4 Sn 13 are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu 1-x Yb x Rh 2 Si 2 and Ce x La 1-x Ni 2 Ge 2 by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  13. K isomerism and collectivity in neutron-rich rare-earth isotopes.

    OpenAIRE

    Patel, Zena

    2016-01-01

    Neutron-rich rare-earth isotopes were produced by in-flight fission of 238U ions at the Radioactive Isotope Beam Factory (RIBF), RIKEN, Japan. In-flight fission of a heavy, high-intensity beam of 238U ions on a light target provides the cleanest secondary beams of neutron-rich nuclei in the rare-earth region of isotopes. In-flight fission is advantageous over other methods of nuclear production, as it allows for a secondary beam to be extracted, from which the beam species can be separated an...

  14. Separation of rare earth metal using micro solvent extraction system

    International Nuclear Information System (INIS)

    Nishihama, S.; Tajiri, Y.; Yoshizuka, K.

    2005-01-01

    A micro solvent extraction system for the separation of rare earth metals has been investigated. The micro flow channel was fabricated on a PMMA plate. Extraction equilibrium was quickly achieved, without any mechanical mixing. The solvent extraction results obtained for the Pr/Sm binary solutions revealed that both rare earth metals are firstly extracted together. Following, the Pr is extracted in the organic solution and Sm remains in the aqueous phase. The phase separation can be successively achieved by contriving the cross section of the flow channel

  15. Significant improvement of accuracy and precision in the determination of trace rare earths by fluorescence analysis

    International Nuclear Information System (INIS)

    Ozawa, L.; Hersh, H.N.

    1976-01-01

    Most of the rare earths in yttrium, gadolinium and lanthanum oxides emit characteristic fluorescent line spectra under irradiation with photons, electrons and x rays. The sensitivity and selectivity of the rare earth fluorescences are high enough to determine the trace amounts (0.01 to 100 ppM) of rare earths. The absolute fluorescent intensities of solids, however, are markedly affected by the synthesis procedure, level of contamination and crystal perfection, resulting in poor accuracy and low precision for the method (larger than 50 percent error). Special care in preparation of the samples is required to obtain good accuracy and precision. It is found that the accuracy and precision for the determination of trace (less than 10 ppM) rare earths by fluorescence analysis improved significantly, while still maintaining the sensitivity, when the determination is made by comparing the ratio of the fluorescent intensities of the trace rare earths to that of a deliberately added rare earth as reference. The variation in the absolute fluorescent intensity remains, but is compensated for by measuring the fluorescent line intensity ratio. Consequently, the determination of trace rare earths (with less than 3 percent error) is easily made by a photoluminescence technique in which the rare earths are excited directly by photons. Accuracy is still maintained when the absolute fluorescent intensity is reduced by 50 percent through contamination by Ni, Fe, Mn or Pb (about 100 ppM). Determination accuracy is also improved for fluorescence analysis by electron excitation and x-ray excitation. For some rare earths, however, accuracy by these techniques is reduced because indirect excitation mechanisms are involved. The excitation mechanisms and the interferences between rare earths are also reported

  16. Rare earth aerosol analysis by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Citron, I.M.; Mausner, L.F.

    1982-01-01

    An analytical method for the determination of four lanthanides in air filter samples is described. The method involves simultaneous quantitative determinations of La, Ce, Pr, and Nd at the microgram level by x-ray fluorescence spectrometry without chemical separation of these rare earths and without serious interferences from the dust matrices on the filters. The method has been used successfully to analyze some air filter samples collected at a rare earth processing refinery in Illinois. A description of the development of the method is given as well as the results obtained by using this method on the air filter samples. The reproducibility of the results was generally +-5%

  17. The determination of the rare earth elements in naturally-occurring materials zy flame spectroscopy

    International Nuclear Information System (INIS)

    Watts, J.C.

    1975-01-01

    Because the quantitative collection of the rare-earth elements retains natural abundance ratios, adequate analytical methodology incorporates their individual sensitivities, and tolerates their mutual contamination. To achieve these ends, the sensitivities of 15 rare-earths in flame emission were determined in the unseparated nitrous oxide/acetylene flame, their mutual interference ascertained at practical concentrations, and useful emission lines selected for their determination in natural materials. Sources of atomic emission interference were extraneous in origin. Fe in the determination of Dy and Zr in the determination of Nd. Inter-element interferences of the rare-earth elements were minimal after wavelength selection and reduction of the spectral band width. For comparison, five rare earths were determined by flame AAS. (author)

  18. Science and technology of the rare earth elements

    International Nuclear Information System (INIS)

    Azzouz, Abdelkrim; Chegrouche, Salah; Telmoune, Sid-Ali; Layachi, Lazhar

    1992-07-01

    The present work studies the chemical physics properties, the different methods of analysis (neutron activation, emission spectrometry, chromatography), and the techniques of separation of rare earth (electrodeposition, thermic decomposition, salts distillation and ions exchange)

  19. Clinical comparison of conventional and rare earth screen-film systems for cephalometric radiographs

    International Nuclear Information System (INIS)

    Kaugars, G.E.; Fatouros, P.

    1982-01-01

    This study compared cephalometric and P-A skull films taken with conventional (CaWO4) screens and rare earth screens. Patient exposure was reduced by 17 to 55 percent on two different x-ray machines by the use of rare earth screens. Results from 130 clinical evaluations showed that the diagnostic quality of radiographs taken with either system was roughly comparable. This presents a persuasive argument for the use of rare earth screens since the diagnostic quality of the films can be maintained while significantly reducing the patient's exposure to radiation

  20. Simultaneous determination of uranium and thorium with Arsenazo III by second-derivative spectrophotometry

    International Nuclear Information System (INIS)

    Kuroda, Rokuro; Kurosaki, Mayumi; Hayashibe, Yutaka; Ishimaru, Satomi

    1990-01-01

    A derivative spectrophotometric method has been developed for the simultaneous determination of microgram quantities of uranium and thorium with Arsenazo III in hydrochloric acid medium. The second-derivative absorbances of the uranium and thorium Arsenazo III complexes at 679.5 and 684.4 nm are used for their quantification. Uranium and thorium, both in the range 0.1-0.7 μg/ml have been determined simultaneously with good precision. The procedure does not require separation of uranium and thorium, and allows the determination of both metals in the presence of alkaline-earth metals and zirconium, but lanthanides interfere. (author)

  1. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    Science.gov (United States)

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  2. Microhardness of epitaxial layers of GaAs doped with rare earths

    International Nuclear Information System (INIS)

    Kulish, U.M.; Gamidov, Z.S.; Kuznetsova, I.Yu.; Petkeeva, L.N.; Borlikova, G.V.

    1989-01-01

    Results of the study of microhardness of GaAS layer doped by certain rare earths - Gd, Tb, Dy - are presented. The assumption is made that the higher is the value of the first potential of rare earth impurity ionization (i.e. the higher is the filling of 4f-shell), the lower is the effect of the element on electric and mechanical properties of GaAs epitaxial layers

  3. Field-induced valence transition in rare-earth system

    International Nuclear Information System (INIS)

    Chattopadhaya, A.; Ghatak, S.K.

    2000-01-01

    The magnetic field-induced valence transition in rare-earth compound has been examined based on a pseudospin S=1 Ising model proposed earlier for valence transition. The model includes finite mixing between two pertinent ionic configurations (magnetic and non-magnetic) separated by an energy gap and with intersite interaction between rare-earth ions. Using the mean field approximation the magnetic behaviour and the critical field (H c ) for transition are obtained as a function of energy gap and temperature. The phase boundary defined in terms of reduced field H c /H co and reduced temperature T/T v (T v being valence transition temperature in absence of field) is nearly independent of energy gap. These results are in qualitative agreement with experimental observation in Yb- and Eu-compounds

  4. Partitioning of the rare earths and actinides between R7T7 nuclear glass alteration products and solution according to disposal conditions; Partage des terres rares et des actinides entre solution et produits d`alteration du verre nucleaire type R7T7 en fonction des conditions de stockage

    Energy Technology Data Exchange (ETDEWEB)

    Menard, O

    1995-10-25

    The alteration of nuclear glass by water is liable to release radionuclides into the environment. Determining the release kinetics of these elements and their aqueous chemical forms are therefore essential steps in establishing the safety of a geological repository site. Leach tests were conducted with a nonradioactive specimen of the French ``R7T7`` light water containment glass spiked with U and Th, and with two R7T7 specimens spiked with {sup 237}Np and {sup 239}Pu, respectively. The alteration solution compositions were representative of deep groundwater and contained carbonate, sulfate, phosphate, fluorine and chlorine ions. The release of U, Th, Np and Pu, as well as of the rare earths La, Ce and Nd were monitored by ICP mass spectrometry and by {alpha} spectrometry. Scanning and transmission electron microscopic examination of the nonradioactive altered glass surfaces was also performed to assess the partitioning balance for the rare earths, U and Th between the glass alteration products and solution. The mobility of these elements depends on two competing mechanisms. The rare earths and thorium are incorporated in the alteration products (gel); the retention process is assumed to involve chemisorption or coprecipitation, enhanced in the gel layer by the presence of phosphate ions in particular. Conversely, the aqueous species in the alteration solutions (mainly anions) form complexes with the actinides and rare earths; this phenomenon is particularly evident with U and Np. The presence of carbonate ions favors this mobility. Plutonium differs from U and Np in that it is adsorbed mainly on colloids formed by glass dissolution, the principal factors governing its chemical evolution in solution. (author). refs., 122 figs., 185 tabs.

  5. Investigation of the evaporation of rare earth chlorides in a LiCl-KCl molten salt

    International Nuclear Information System (INIS)

    Sung Bin Park; Dong Wook Cho; Moon Sik Woo; Sung Chan Hwang; Young Ho Kang; Jeong Guk Kim; Hansoo Lee

    2011-01-01

    Uranium dendrites which were deposited at a solid cathode of an electrorefiner contained a certain amount of salts. These salts should be removed for the recovery of pure metal using a cathode processor. In the uranium deposits from the electrorefining process, there are actinide chlorides and rare earth chlorides in addition to uranium chloride in the LiCl-KCl eutectic salt. The evaporation behaviors of the actinides and rare earth chlorides in the salts should be investigated for the removal of salts in the deposits. Experiments on the salt evaporation of rare earth chlorides in a LiCl-KCl eutectic salt were carried out. Though the vapor pressures of the rare earth chlorides were lower than those of the LiCl and KCl, the rare earth chlorides were co-evaporized with the LiCl-KCl eutectic salt. The Hertz-Langmuir relation was applied for this evaporation, and also the evaporation rates of the salt were obtained. The co-evaporation of the rare earth chlorides and LiCl-KCl eutectic were also discussed. (author)

  6. Remediation and upgrading of old, inadequate waste management facilities. Integrated waste management system for rare earth and rare metal industry at Sillamaee, Estonia, former uranium facility

    International Nuclear Information System (INIS)

    Kaasik, Tonis; Siinmaa, Anti

    2001-01-01

    Full text: The Sillamaee Metallurgical Plant was built in 1946-1948 at Sillamaee, in North-East Estonia, ca 190 km from Tallinn. Target product was uranium, mostly in form of yellow cake (U 3 O 8 ) for Soviet nuclear program. Uranium ore processing continued from 1948 to 1977, totally 4,013,000 tons of uranium ore were processed at Sillamaee plant. In early 1970s the plant introduced a new production line - rare earth elements. Rare earths were until 1991 produced from loparite (later from semi-processed loparite) - rare earths, niobium, tantalum and NORM-containing ore for Kola peninsula, Russia; later. All wastes were, as typical to hydrometallurgical processing all over the world, discharged to a large, 40 ha liquid waste depository - tailings pond, what in Sillamaee case was designed to discharge all liquid constituents slowly to the Baltic Sea. All uranium related activities were stopped in 1990, when only rare earth and rare metal production lines remained operational. The plant was 100 % privatized in 1997 and is today operated by Silmet Ltd., processing annually up to 8 000 tons of rare earth and 2000 tons of niobium and tantalum ores. Like all industries, inherited from Soviet times, Silmet plant is today facing a serious challenge to upgrading technologies towards waste minimizations process efficiency. The historical tailings pond, containing ca 1800 tons of natural uranium and ca 800 tons of thorium, was found geotechnically unstable and leaking to the Baltic Sea, in mid 90s. Being a problem of common Baltic concern, an international remediation project was initiated by Estonian Government and plant operator in 1998. In cooperation with Estonian, Finnish, Swedish, Danish and Norwegian Governments and with assistance by the European Union, the tailings pond will be environmentally remediated - dams stabilized and surface covered, by end of 2006. Close-down and environmental remediation of the tailings pond provides plant an ultimate challenge of

  7. Investigations on the determination of traces of some rare earths (Eu, Sm, Gd, Y) in oxides of rare earths (Y2O3, Sm2O3, Gd2O3) by emission spectrography in d.c. arc

    International Nuclear Information System (INIS)

    Dittrich, K.; Gajek, M.; Luan, P.

    1978-01-01

    The evaporation of traces and matrices of rare earth elements was investigated in different atmospheres. It was found, that low-boiling rare earths elements, because of their extended formation of carbides evaporate more slowly than high-boiling rare earths elements. The evaporation of the traces depends on the matrices. 3 cases for the determination of traces of rare earths elements in oxides of other rare earths elements are derived from the results of the evaporation: Low- to high-boiling traces of rare earths elements in low-boiling matrices of rare earths elements, low-boiling traces in medium- to high-boiling matrices, and medium- to high-boiling traces in medium- to high-boiling matrices. The results of the determination are: in Y 2 O 3 : 14 ppm Sm, 2 ppm Eu; in Gd 2 O 3 : 18 ppm Y, 3 ppm Sm, 2 ppm Eu; in Sm 2 O 3 : 70 ppm Y, 370 ppm Gd, 16 ppm Eu. (author)

  8. Activation analysis of rare-earth elements in opium and cannabis samples. [Neutron reactions

    Energy Technology Data Exchange (ETDEWEB)

    Henke, G [Muenster Univ. (Germany, F.R.). Inst. fuer Pharmazeutische Chemie

    1977-01-01

    Rare-earth concentrations in 65 Opium, Cannabis and Cannabis resin samples seized from various parts of the world were determined by destructive NAA. Because of the greater concentrations of Ca, P, K, Fe, Na and Si in plant materials, rare-earth elements were isolated after neutron irradiation and determined by gamma-spectrometry. The main steps of the method are: Preashing of 1 g Cannabis resin, 2.5 g Cannabis, or 7.5 g Opium, respectively, in quartz ampoules (5 h, 500 deg C). Neutron irradiation, 24 h at 5x10/sup 13/n cm/sup -2/sec/sup -1/. Cooling period 2-3 days. After addition of 0.1 ..mu..Ci /sup 139/Ce and rare-earth carriers wet ashing of irradiated samples with H/sub 2/SO/sub 4//HNO/sub 3/, followed by alternate addition of HNO/sub 3/ and H/sub 2/O/sub 2/ (30%). Precipitation and removal of silicates, precipitation of fluorides, precipitation of hydroxides. Dissolution of hydroxides in HCl. Extraction with di-(2-ethylhexyl)phosphate (DEHP)/toluene and twice back-extraction of rare earths, gamma-spectrometry of HCl phase. Due to sample activity and half-life of nuclides, three measurements were made on each sample: 2 days (for La, Sm, Gd, Ho, Er, Yb); 14 days (for Nd, Lu) and 30 days after irradiation (for Ce, Eu, Tb). Great variations in absolute element concentrations, but only small significant differences of rare earth concentration ratios were found, indicating inconsiderable biogeochemical fractionation. The mean values of these ratios correspond to the relative abundances of the rare earths in the upper continental earth's crust.

  9. Rare earth metals in North America; Zeldzame aardmetalen in Noord-Amerika

    Energy Technology Data Exchange (ETDEWEB)

    Louzada, K.

    2012-11-15

    The uncertain supply of rare earth metals (Rare Earth Elements) from China for the high tech industry in the U.S. is a barrier for innovation and the high-tech manufacturing industry. Many rare earths are applied in permanent magnets for sustainable energy generation and for energy storage systems in for example electric cars. Also other sectors feel the pressure of shortages. The federal government in the USA and US companies use the opportunity to encourage research into recycling, reducing the use and finding alternatives for rare earths. Canada sees in the uncertain supply and dwindling reserves in the USA and elsewhere an economic opportunity. Canada can start the development of hitherto unprofitable reserves of valuable materials. Both in the USA and Canada, the number of exploration projects in the mining industry has grown significantly [Dutch] De onzekere aanvoer van zeldzame aardmetalen (Rare Earth Elements) uit China voor de hightechindustrie vormt in de VS een hindernis voor innovatie en voor de hightech maakindustrie. Met name in permanente magneten voor duurzame energieopwekking en energieopslagsystemen voor bijvoorbeeld elektrische auto's worden veel zeldzame aardmetalen verwerkt. Ook andere sectoren staan onder druk. De federale overheid en bedrijven in de VS maken van de gelegenheid gebruik om onderzoek naar de recycling, vermindering van het gebruik en alternatieven voor zeldzame aardmetalen te stimuleren. Canada ziet de onzekere aanvoer en slinkende reserves in de VS en elders als een economische kans. Het land kan tot nu toe onrendabele voorkomens van de waardevolle materialen gaan ontwikkelen. Zowel in de VS als in Canada is het aantal exploratieprojecten in de mijnbouw aanzienlijk gegroeid.

  10. Structure and spectroscopy of rare earth – Doped lead phosphate glasses

    International Nuclear Information System (INIS)

    Pisarski, Wojciech A.; Żur, Lidia; Goryczka, Tomasz; Sołtys, Marta; Pisarska, Joanna

    2014-01-01

    Highlights: • Lead phosphate glasses doped with rare earth ions were prepared. • The local structure was examined using X-ray diffraction and spectroscopic methods. • Different structural phosphate groups are present in lead phosphate glasses. • The electron–phonon coupling strength and phonon energy of the glass host was determined. • Several observed emission bands are due to 4f–4f electronic transitions of rare earth ions. -- Abstract: Lead–gallium phosphate glasses doped with rare the earth ions (Eu 3+ , Dy 3+ , Tb 3+ , Er 3+ ) were synthesized. The structure of obtained glasses was examined by means of use: X-ray diffraction (XRD), nuclear magnetic resonance ( 207 Pb and 31 P NMR), fourier transform infrared (FT-IR) and Raman spectroscopy. In contrast to fully amorphous Ln-doped samples (Ln = Eu, Dy, Tb), in Er-doped sample the GaPO 4 crystalline phase was identified. It was found from the NMR, FT-IR and Raman spectroscopic techniques that, different structural phosphate groups were present in lead phosphate glasses. Based on absorption measurements, the UV–VIS cut-off wavelength for lead phosphate glass was determined and its value is close to 305 nm. Excitation and emission spectra of rare earths were also detected. From excitation spectra of Eu 3+ the electron–phonon coupling strength and phonon energy of the glass host were determined. Due to 4f 6 –4f 6 (Eu 3+ ), 4f 8 –4f 8 (Tb 3+ ), 4f 9 –4f 9 (Dy 3+ ) and 4f 11 –4f 11 (Er 3+ ) electronic transitions of trivalent rare earth ions several luminescence bands were stated

  11. Minimization of zirconium chlorinator residues

    International Nuclear Information System (INIS)

    Green, G.K.; Harbuck, D.D.

    1995-01-01

    Zirconium chlorinator residues contain an array of rare earths, scandium, unreacted coke, and radioactive thorium and radium. Because of the radioactivity, the residues must be disposed in special waste containment facilities. As these sites become more congested, and with stricter environmental regulations, disposal of large volumes of wastes may become more difficult. To reduce the mass of disposed material, the US Bureau of Mines (USBM) developed technology to recover rare earths, thorium and radium, and unreacted coke from these residues. This technology employs an HCl leach to solubilize over 99% of the scandium and thorium, and over 90% of the rare earths. The leach liquor is processed through several solvent extraction stages to selectively recover scandium, thorium, and rare earths. The leach residue is further leached with an organic acid to solubilize radium, thus allowing unreacted coke to be recycled to the chlorinator. The thorium and radium waste products, which comprise only 2.1% of the original residue mass, can then be sent to the radioactive waste facility

  12. Partition of rare-earths in phosphates laterites from Maicuru, Brazil - PA

    International Nuclear Information System (INIS)

    Lemos, V.P.; Costa, M.L. da.

    1987-01-01

    The phosphatic laterites of Maicuru-Para are formed of aluminium phosphates, mainly of the crandallite group, followed by wardite, augellite and senegallite. The crandallite group is represented in the form of the solid solution goyazite-florencite-crandallite, in variable proportions. In three samples, the florencite occurs as the predominant member, while in the others crandallite is the main mineral. The unit-cell dimension of florencites, in two samples, measured are the same as those of the florencites from other deposits. The rare earths occur mainly in this mineral group with predominance of the light rare earth elements. This is well observed in the condrite normalized REE patterns. These enrichments are not regular. The geochemical characteristics of the rare earth distribution in the crandallites of Maicuru, leads tho suggest this mineral was formed from distinct lithologies. (author) [pt

  13. Anomalies in photofission of rare earth nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gann, A.V.; Nazarova, T.S.; Noga, V.I.; Ranyuk, Y.N.; Sorokin, P.V.; Telegin, Y.N.

    1979-09-01

    Measurements of photofission produced by 1-GeV bremsstrahlung in the heavy rare earth elements show an anomalously large cross section compared to that predicted by the liquid drop model. These measurements check the results obtained previously with 1-GeV protons by Andronenko et al. (JETP Lett. 24, 573 (1976)).

  14. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium.

    Science.gov (United States)

    Bogart, Justin A; Lippincott, Connor A; Carroll, Patrick J; Schelter, Eric J

    2015-07-06

    Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare-earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2-(t) BuNO)C6 H4 CH2 }3 N](3-) (TriNOx(3-) ), feature a size-sensitive aperture formed of its three η(2) -(N,O) ligand arms. Exposure of metal cations in the aperture induces a self-associative equilibrium comprising [M(TriNOx)thf]/ [M(TriNOx)]2 (M=rare-earth metal). Differences in the equilibrium constants (Keq ) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio SNd/Dy =359. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A political economy of China's export restrictions on rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Pothen, Frank [Zentrum fuer Europaeische Wirtschaftsforschung GmbH (ZEW), Mannheim (Germany); Fink, Kilian [Frankfurt Univ. (Germany)

    2015-04-20

    We investigate why governments restrict exports of exotic raw materials taking rare earth elements as a case study. Trade restrictions on exotic materials do not have immediate macroeconomic effects. Relocating rare earth intensive industries is found to be the main reason behind China's export barriers. They are part of a more extensive strategy aiming at creating comparative advantages in these sectors and at overcoming path dependencies. Moreover, export barriers serve as a second-best instrument to reduce pollution and to slow down the depletion of exhaustible resources. Growing domestic rare earth consumption renders those increasingly ineffective. Rising reliance on mine-site regulation indicates that this fact is taken into account. Rare earth extraction is dominated by a few large companies; the demand side is dispersed. That speaks against successful lobbying for export restrictions. It appears as if the export barriers are set up to compensate mining firms.

  16. The Effect of Rare Earth on the Structure and Performance of Laser Clad Coatings

    Science.gov (United States)

    Bao, Ruiliang; Yu, Huijun; Chen, Chuanzhong; Dong, Qing

    Laser cladding is one kind of advanced surface modification technology and has the abroad prospect in making the wear-resistant coating on metal substrates. However, the application of laser cladding technology does not achieve the people's expectation in the practical production because of many defects such as cracks, pores and so on. The addiction of rare earth can effectively reduce the number of cracks in the clad coating and enhance the coating wear-resistance. In the paper, the effects of rare earth on metallurgical quality, microstructure, phase structure and wear-resistance are analyzed in turns. The preliminary discussion is also carried out on the effect mechanism of rare earth. At last, the development tendency of rare earth in the laser cladding has been briefly elaborated.

  17. Procedure for the separation of cerium from rare earth phosphate mixtures

    International Nuclear Information System (INIS)

    Richter, H.; Grauss, H.; Schmitt, A.; Schade, H.; Lindeholz, M.; Lorenz, E.; Weickart, J.

    1986-01-01

    The invention is concerned with a procedure for the separation of cerium from rare earth concentrates originating from the partial neutralization of nitric crude phosphate decomposition solutions without preceding elimination of impurities from the raw material. The rare earth phosphates are treated with an excess of concentrated nitric acid through which the Ce 3+ , contained in the solution, is oxidized to Ce 4+ and precipitated as cerium(IV) phosphate by neutralization with alkalis

  18. Adducts of rare earth tris-acetylacetonates with dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Dzyubenko, N.G.; Kalenichenko, Yu.V.; Martynenko, L.I.

    1988-01-01

    Adducts of rare earth and yttrium (r.e.e., M) acetylacetonates with dimethyl sulfoxide (DMSO), MA 3 xnDMSO are synthesized. The acetylacetonates of light r.e.e. (M=La-Tb) are shown by different physico-chemical methods to form diadducts of the MA 3 x2DMSOxH 2 O composition, where A - -acetylacetonate-ion, and the acetyl-acetonates of heavy r.e.e. (M=Dy-Lu, Y)-monoadducts MA 3 xDMSO. The estimation of adduct thermal stability is carried out using the values of seeming activation energy of their thermal degradation. Monoadducts are shown to give volatile forms of rare earth acetylacetonates during heating in vacuum, and diadducts do not form volatile forms of acetylacetonates

  19. Exchange interactions in two-state systems: rare earth pyrochlores

    Science.gov (United States)

    Curnoe, S. H.

    2018-06-01

    The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.

  20. A divalent rare earth oxide semiconductor: Yttrium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kaminaga, Kenichi; Sei, Ryosuke [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Department of Chemistry, Tohoku University, Sendai 980-8578 (Japan); Hayashi, Kouichi [Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Happo, Naohisa [School of Information Sciences, Hiroshima City University, Hiroshima 731-3194 (Japan); Tajiri, Hiroo [Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, Sayo 679-5198 (Japan); Oka, Daichi; Fukumura, Tomoteru, E-mail: tomoteru.fukumura.e4@tohoku.ac.jp [Department of Chemistry, Tohoku University, Sendai 980-8578 (Japan); Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan)

    2016-03-21

    Rare earth oxides are usually widegap insulators like Y{sub 2}O{sub 3} with closed shell trivalent rare earth ions. In this study, solid phase rock salt structure yttrium monoxide, YO, with unusual valence of Y{sup 2+} (4d{sup 1}) was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO has been recognized as gaseous phase in previous studies. In contrast with Y{sub 2}O{sub 3}, YO was dark-brown colored and narrow gap semiconductor. The tunable electrical conductivity ranging from 10{sup −1} to 10{sup 3} Ω{sup −1 }cm{sup −1} was attributed to the presence of oxygen vacancies serving as electron donor. Weak antilocalization behavior observed in magnetoresistance indicated significant role of spin-orbit coupling as a manifestation of 4d electron carrier.

  1. Recent advances in syntheses and biomedical applications of nano-rare earth metal-organic framework materials

    Directory of Open Access Journals (Sweden)

    Xin Pengyan

    2017-12-01

    Full Text Available In recent years,the syntheses of nano-rare earth metal-organic framework (MOF materials and their applications in biomedicine,especially in the diagnosis and treatment of cancer have attracted extensive attentions.On the one hand,nano-rare earth MOFs,which have unique optical and magnetic properties,are promising multimodal imaging contrast agents for biomedical imaging,such as fluorescence imaging and magnetic resonance imaging.On the other hand,nano-rare earth MOFs have various compositions and structures,and excellent intrinsic properties such as large specific surface area,high pore volume and tunable pore size,which enable them to perform as promising nanoplatforms for drug delivery.Therefore,nano-rare earth MOFs may provide a new platform for the development of diagnostic and therapeutic reagents.In this article,the recent advances in the syntheses of nano-rare earth MOFs and their applications in biomedicine are summarized.

  2. Transferred hyperfine interaction between the rare-earth ions and the fluorine nuclei in rare-earth trifluorides

    DEFF Research Database (Denmark)

    Hansen, P. E.; Nevald, Rolf; Guggenheim, H. G.

    1978-01-01

    The isotropic and anisotropic transferred hyperfine interactions between F ions in the two chemically inequivalent sites and the rare-earth ions (R) have been derived from 19F NMR measurements in the temperature region 100-300 K on single crystals of TbF3 and DyF3. The isotropic interactions are ...... to vary only slightly with temperature. They are further assigned to definite R's in the unit cell, which cannot be done from macroscopic magnetic measurements....

  3. Rare-Earth Tantalates and Niobates Single Crystals: Promising Scintillators and Laser Materials

    Directory of Open Access Journals (Sweden)

    Renqin Dou

    2018-01-01

    Full Text Available Rare-earth tantalates, with high density and monoclinic structure, and niobates with monoclinic structure have been paid great attention as potential optical materials. In the last decade, we focused on the crystal growth technology of rare-earth tantalates and niobates and studied their luminescence and physical properties. A series of rare-earth tantalates and niobates crystals have been grown by the Czochralski method successfully. In this work, we summarize the research results on the crystal growth, scintillation, and laser properties of them, including the absorption and emission spectra, spectral parameters, energy levels structure, and so on. Most of the tantalates and niobates exhibit excellent luminescent properties, rich physical properties, and good chemical stability, indicating that they are potential outstanding scintillators and laser materials.

  4. Identification and determination of natural radioactive impurities in rare earth chlorides

    International Nuclear Information System (INIS)

    Gu, M.J.; Cen, Y.H.; Tang, T.Y.; Chang, J.X.

    1988-01-01

    227 Ac, 228 Th, 226 Ra, 210 Po and 210 Pb can be present at rare earth chlorides. A radiochemical procedure is presented for the identification and determination of natural radioactive impurities in rare earth chlorides. The determination limits for these radionuclides were 1.5x10 -4 to 3x10 -1 Bq/g. The relative standard deviations for determining 10 -2 Bq/g radionuclides were usually less than +-7%. (author) 9 refs.; 3 figs.; 2 tabs

  5. Concentration of rare earths ore from Pocos de Caldas - MG, Brazil

    International Nuclear Information System (INIS)

    Sampaio, J.A.; Lins, F.F.; Porphirio, N.H.

    1990-01-01

    The objective of this research was to concentrate, mainly by flotation, a rare-earth ore body. The valuable mineral is bastnaesite which occurs intimately associated with iron oxides and other gangue minerals, making difficult to get a concentrate of commercial grade. The use of oleic acid at a pulp temperature of -80 sup(0)C gave a concentrate of 23% rare-earth oxides at 72% overall recovery. The magnetic separation could enhance the grade of the flotation feed. (author)

  6. An operationally simple method for separating the rare-earth elements neodymium and dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Bogart, Justin A.; Lippincott, Connor A.; Carroll, Patrick J.; Schelter, Eric J. [Department of Chemistry, University of Pennsylvania, Philadelphia, PA (United States)

    2015-07-06

    Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare-earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2-"tBuNO)C_6H_4CH_2}{sub 3}N]{sup 3-} (TriNOx{sup 3-}), feature a size-sensitive aperture formed of its three η{sup 2}-(N,O) ligand arms. Exposure of metal cations in the aperture induces a self-associative equilibrium comprising [M(TriNOx)thf]/[M(TriNOx)]{sub 2} (M=rare-earth metal). Differences in the equilibrium constants (K{sub eq}) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio S{sub Nd/Dy}=359. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Radioactive rare earths from fallout for study of particle movement in the sea

    International Nuclear Information System (INIS)

    Sugihara, Thomas T.; Bowen, Vaughan T.

    1962-01-01

    As part of an extensive study of the distribution of long-lived radionuclides from fallout in the Atlantic Ocean, a large number of measurements of cerium-144 and promethium-147 concentration have been made. Comparison of these concentrations as they vary both horizontally and vertically, with simultaneously measured concentrations of strontium-90, indicates that the rare earths are generally depleted in surface water, by comparison with the nuclides known to be soluble. This observation, coupled with frequent observation of rare-earth enrichment at depth, leads us to postulate rapid vertical transport of rare earths by attachment to particles undergoing sedimentation. This is completely plausible in terms of the 'radiocolloid' behaviour generally observed for rare earths at sea-water pH. An attempt is made to interpret this study in the overall picture of the marine geochemistry of the trivalent cations, as well as to emphasize the unique and generally useful aspects of the fallout tracer experiment. (author) [fr

  8. The use of rare earth radiotracers in the study of solvent extraction kinetics

    International Nuclear Information System (INIS)

    Lim, T.M.; Tran, T.

    1993-01-01

    The suitability of rare earth radionuclides as tracers in research and industry are assessed. In general, the most desirable characteristics of radiotracers for process studies are a half-life in the range 5-200 days, a high yield, high energy γ-emission and low cost of production. The majority of rare earths have at least one radionuclide with acceptable characteristics. The application of radiotracers to the study of kinetics of rare earth solvent extraction have been studied using a modified Lewis cell. Terbium-160 was selected as the most suitable rare earth radionuclide for our experiments. Samples of both aqueous and organic phases were continuous withdrawn, monitored using an automated γ-counting system based on two sodium iodide detectors and then pumped back to the Lewis cell. Excellent results were obtained and the rate of extraction was shown to be first order with respect to the terbium concentration. 6 refs., 1 tab., 7 figs

  9. Rare earth impurities in high purity lanthanum oxide determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Desai, H.B.; Parthasarathy, R.; Gangadharan, S.

    1992-01-01

    Individual rare earth impurities in high purity La 2 O 3 (≥99.9%) have been determined by NAA after pre-separation of the matrix (La). The separation is carried out on an anion exchanger (Dowex 1x8) using different mixtures of methanol/nitric acid as eluants. The rare earth elements from Dy to Lu are eluted quantitatively using a 10% 1M HNO 3 - 90% methanol mixture, while the light rare earths from Ce to Gd are eluted quantitatively using a 10% 0.05M HNO 3 - 90% methanol mixture. La, which is retained on the column, is eluted using 0.1M HNO 3 . The recoveries of the various rare earth elements have been checked using radiotracers and also by spiking the sample with known amount of elements, and the recoveries are found to be quantitative. Results obtained on a typical high purity lanthanum oxide are reported here. (author) 5 refs.; 1 fig

  10. Synthesis and investigation of some physicochemical properties of rare earth nitrobarbiturates

    International Nuclear Information System (INIS)

    Biryulina, V.N.; Chupakhina, R.A.; Serebrennikov, V.V.

    1984-01-01

    Crystal depositions of L 3 MnH 2 O composition where L is anion of nitrobarbituric acid C 4 H 2 N 3 O 5 - ; M is rare earth ion excluding Ce 3+ and Pm 3+ ; n=12 are extracted under dissolution of freshly prepared hydroxides of rare earth elements (REE) in ethanol aqueous solution of nitrobarbituric acid. The method of IR spectroscopy has been applied to disclose relation of rare earth ion with groups of C=0 acid. The method of derivatography has been used to study thermolysis of REE nitrobarbiturates; dehydration proceeds in two stages with decrease of temperature of the beginning of dehydration by 20 deg C in the La 3+ → Lu 3+ series. The curve of dependence of REE nitrobarbiturate solubility in water at 25 deg C on serial number of REE passes through the minimum accounted for Sm 3+

  11. Structurally triggered metal-insulator transition in rare-earth nickelates.

    Science.gov (United States)

    Mercy, Alain; Bieder, Jordan; Íñiguez, Jorge; Ghosez, Philippe

    2017-11-22

    Rare-earth nickelates form an intriguing series of correlated perovskite oxides. Apart from LaNiO 3 , they exhibit on cooling a sharp metal-insulator electronic phase transition, a concurrent structural phase transition, and a magnetic phase transition toward an unusual antiferromagnetic spin order. Appealing for various applications, full exploitation of these compounds is still hampered by the lack of global understanding of the interplay between their electronic, structural, and magnetic properties. Here we show from first-principles calculations that the metal-insulator transition of nickelates arises from the softening of an oxygen-breathing distortion, structurally triggered by oxygen-octahedra rotation motions. The origin of such a rare triggered mechanism is traced back in their electronic and magnetic properties, providing a united picture. We further develop a Landau model accounting for the metal-insulator transition evolution in terms of the rare-earth cations and rationalizing how to tune this transition by acting on oxygen rotation motions.

  12. Rare earth metals-primary resources and prospects of processing secondary resources in India

    International Nuclear Information System (INIS)

    Pandey, B.D.

    2015-01-01

    The importance of Rare earth metals (REMs) in modern technological applications is associated with their spectroscopic and magnetic properties. The occurrence of rare earths in mixed form is commonly reported and their separation to the individual metal is a challenging task because of the similar chemical properties. The economical processing of the primary ores of rare earths is limited to a few countries and their supply at the international level is currently dominated by China. Hence assessing the present scenario of the primary resources of rare earths vis-à-vis their applications and demand is crucial at this stage, besides looking at the alternate resources to ensure availability of REMs; such aspects are covered in the manuscript. In view of the environmental concerns in the processing of ores such as monazite, xenotime, bastnasite, etc, and increasing demand of REMs, corresponding increase in demand of the raw materials has been recorded. It is therefore, necessary to utilize the end-of the-life rare earth containing materials as a rich resource by developing an appropriate recycling technology, which is emerging as a high priority area. To recover the REMs, major secondary resources such as electronic wastes, industrial wastes, spent catalysts and magnets, and phosphors powder, etc, have been considered for now. This will not only open the prospects of utilizing the wastes containing REMs, but will also limit the imports while lowering the production cost and decreasing the load on the primary reserves. The paper also examines the efficient recycling methods to recover a fairly good amount of rare earths which are relevant to India in view of the limited exploitation of the ores. Recovery of REMs from secondary resources using mechanical treatment followed by hydrometallurgical methods is prevalent and the same is reviewed in some detail. The recent R and D work pursued at CSIR-NML to extract (leaching and metal separation using some phosphatic reagents

  13. Assessment of trading partners for China's rare earth exports using a decision analytic approach.

    Science.gov (United States)

    He, Chunyan; Lei, Yalin; Ge, Jianping

    2014-01-01

    Chinese rare earth export policies currently result in accelerating its depletion. Thus adopting an optimal export trade selection strategy is crucial to determining and ultimately identifying the ideal trading partners. This paper introduces a multi-attribute decision-making methodology which is then used to select the optimal trading partner. In the method, an evaluation criteria system is established to assess the seven top trading partners based on three dimensions: political relationships, economic benefits and industrial security. Specifically, a simple additive weighing model derived from an additive utility function is utilized to calculate, rank and select alternatives. Results show that Japan would be the optimal trading partner for Chinese rare earths. The criteria evaluation method of trading partners for China's rare earth exports provides the Chinese government with a tool to enhance rare earth industrial policies.

  14. Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon.

    Science.gov (United States)

    Rollat, Alain; Guyonnet, Dominique; Planchon, Mariane; Tuduri, Johann

    2016-03-01

    This paper proposes a forecast of certain rare earth flows in Europe at the 2020 horizon, based on an analysis of trends influencing various actors of the rare earth industry along the value chain. While 2020 is indicated as the forecast horizon, the analysis should be considered as more representative of the next decade. The rare earths considered here are used in applications that are important for a low-carbon energy transition and/or have a significant recycling potential: NdFeB magnets (Pr, Nd, Dy), NiMH batteries (Pr, Nd) and fluorescent lamp phosphors (Eu, Tb, Y). An analysis of major trends affecting the rare earth industry in Europe along the value chain (including extraction, separation, fabrication, manufacture, use and recycling), helps to build a scenario for a material flow analysis of these rare earths in Europe. The scenario assumes in particular that during the next decade, there exists a rare earth mine in production in Europe (with Norra Kärr in Sweden as a most likely candidate) and also that recycling is in line with targets proposed in recent European legislation. Results are presented in the form of Sankey diagrams which help visualize the various flows for the three applications. For example, calculations forecast flows from extraction to separation of Pr, Nd and Dy for magnet applications in Europe, on the order of 310 tons, 980 tons and 80 tons rare earth metal resp., while recycled flows are 35 tons, 110 tons and 30 tons resp. Calculations illustrate how the relative contribution of recycling to supply strongly depends on the situation with respect to demand. Considering the balance between supply and demand, it is not anticipated any significant shortage of rare earth supply in Europe at the 2020 horizon, barring any new geopolitical crisis involving China. For some heavy rare earths, supply will in fact largely outweigh demand, as for example Europium due to the phasing out of fluorescent lights by LEDs. Copyright © 2016 Elsevier Ltd

  15. Thermoelectric transport in rare-earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Ulrike

    2007-07-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce{sub 3}Rh{sub 4}Sn{sub 13} are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu{sub 1-x}Yb{sub x}Rh{sub 2}Si{sub 2} and Ce{sub x}La{sub 1-x}Ni{sub 2}Ge{sub 2} by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  16. Costs and benefits of rare earth screens

    International Nuclear Information System (INIS)

    Taylor, F.E.

    1977-01-01

    The British Institute of Radiology has submitted evidence (Royal Commission on Environmental Pollution, 1976, Sixth Report, Nuclear Power and the Environment. Cmnd 6618, HMSO, London) leading to the conclusion that the introduction of rare earth screens in medical radiography is not financially practical at present in the U.K. This conclusion is questioned. The cost of reducing the genetic dose from medical radiography should be compared with the costs of reducing that from other sources such as nuclear power wastes, since the risks are to future generations in both cases. The cost of reducing public exposure by the use of rare earth screens in U.K. hospitals is calculated to be about Pound1 per man-rad; a total annual genetic collective dose of nearly 300,000 man-rad could be saved. An anomalous situation is presented by the great discrepancies between this cost, and published estimates both of the cost of the detriment associated with the genetic collective dose and of the value incorporated into the design objective for nuclear reactors. (U.K.)

  17. Diversification of the rare-earth business in the existing enterprises

    Science.gov (United States)

    Bogdanov, S. V.; Grishaev, S. I.; Yazev, V. A.

    2013-12-01

    The development of the modern rare-earth business is analyzed, and the possibilities of using a mathematical description of the prospects of this business on the basis of nonlinear evolution equations are estimated. The well-known methods of describing the life cycle of the economic activity of a commercial company in the closed multisector model of market economics is used to determine the boundaries of changing the average labor productivity during the diversification of business on operating Russian enterprises that produce a wide range of products and are intended to manufacture new types of high-technology rare-earth metal products.

  18. The role of rare earths in narrow energy gap semiconductors

    International Nuclear Information System (INIS)

    Partin, D.L.; Heremans, J.; Morelli, D.T.; Thrush, C.M.

    1991-01-01

    Narrow energy band gap semiconductors are potentially useful for various devices, including infrared detectors and diode lasers. Rare earth elements have been introduced into lead chalcogenide semiconductors using the molecular beam epitaxy growth process. Europium and ytterbium increase the energy band gap, and nearly lattice-matched heterojunctions have been grown. In some cases, valence changes in the rare earth element cause doping of the alloy. In this paper some initial investigations of the addition of europium to indium antimonide are reported, including the variation of lattice parameter and optical transmission with composition and a negative magnetoresistance effect

  19. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Composite Material

    International Nuclear Information System (INIS)

    You-Hua, Jia; Biao, Zhong; Xian-Ming, Ji; Jian-Ping, Yin

    2008-01-01

    We predict enhanced laser cooling performance of rare-earth-ions-doped glasses containing nanometre-sized ul-traBne particles, which can be achieved by the enhancement of local Geld around rare earth ions, owing to the surface plasma resonance of small metallic particles. The influence of energy transfer between ions and the particle is theoretically discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption is predicted. It is concluded that the absorption are greatly enhanced in these composite materials, the cooling power is increased as compared to the bulk material

  20. Structure and properties of rare earth-rich glassed for nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Bardez, I.

    2004-11-01

    A new nuclear glass composition, able to immobilize highly radioactive liquid wastes from high burn-up UO 2 fuel, was established and its structure studied. The composition of the selected rare earth-rich glass is (molar %): 61.79 SiO 2 - 8.94 B 2 O 3 - 3.05 Al 2 O 3 - 14.41 Na 2 O - 6.32 CaO - 1.89 ZrO 2 - 3.60 RE 2 O 3 (with RE = La, Ce, Pr and Nd). The aim of this study was to determine the local environment of the rare earth in this glass and also to glean information about the effect of glass composition on the rare earth neighbouring (influence of Si, B, Al, Na and Ca contents). To this end, several series of glasses, prepared from the baseline glass, were studied by different characterisation methods such as EXAFS spectroscopy at the neodymium LIII-edge, optical absorption spectroscopy, Raman spectroscopy and 29 Si, 27 Al and 11 B MAS-NMR. By coupling all the results obtained, several hypotheses about the nature of the rare earth neighbouring in the glass were proposed. (author)