WorldWideScience

Sample records for rare earth-doped glass

  1. Cross Relaxation in rare-earth-doped oxyfluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, G.; Weis, Eric M. [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lira, A.C. [Unidad Académica Profesional Nezahualcóyotl, Universidad Autónoma del Estado de México, Av. Bordo de Xochiaca s/n, Nezahualcóyotl, Estado de Mexico 57000, México (Mexico); Caldiño, Ulises [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, México D.F. 09340 (Mexico); Williams, Darrick J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hehlen, Markus P., E-mail: hehlen@lanl.gov [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-07-15

    The excited-state relaxation dynamics of Tb{sup 3+}, Sm{sup 3+}, and Eu{sup 3+} doped into a 50SiO{sub 2}–20Al{sub 2}O{sub 3}–10Na{sub 2}O–20LaF{sub 3} (mol%) oxyfluoride glass are studied. Multiphonon relaxation of the primary emitting states in Tb{sup 3+} ({sup 5}D{sub 3} and {sup 5}D{sub 4}), Sm{sup 3+} ({sup 4}G{sub 5/2}), and Eu{sup 3+} ({sup 5}D{sub 0}) was found to be negligible in the present host. The relaxation of Tb{sup 3+} ({sup 5}D{sub 4}) and Eu{sup 3+} ({sup 5}D{sub 0}) is dominated by radiative decay. For Tb{sup 3+} ({sup 5}D{sub 3}) and Sm{sup 3+} ({sup 4}G{sub 5/2}) in contrast, radiative relaxation is in competition with several non-radiative cross-relaxation processes. This competition was found to be particularly pronounced for the {sup 5}D{sub 3} excited state in Tb{sup 3+}, where a 124-fold decrease of the ({sup 5}D{sub 3}→{sup 7}F{sub 5})/({sup 5}D{sub 4}→{sup 7}F{sub 5}) emission intensity ratio and a ∼10-fold shortening of the {sup 5}D{sub 3} lifetime was observed upon increasing the Tb{sup 3+} concentration from 0.01% to 1%. The Tb{sup 3+} concentration dependence of {sup 5}D{sub 3} also points to some degree of ion aggregation in the “as quenched” glasses. A Judd–Ofelt intensity analysis was performed for Sm{sup 3+} and used to estimate the relative magnitude of {sup 4}G{sub 5/2} cross-relaxation processes. Four cross-relaxation processes in particular were identified to account for 92% of the total {sup 4}G{sub 5/2} non-radiative decay, and a 11% quantum efficiency was estimated for the {sup 4}G{sub 5/2} excited state. Non-exponentiality in the {sup 5}D{sub 0} decay of Eu{sup 3+} is evidence for several Eu{sup 3+} coordination environments in the glass host that manifest in different {sup 5}D{sub 0} decay constants because of the hypersensitivity of the {sup 5}D{sub 0}→{sup 7}F{sub 2} transition. -- Highlights: ► Tb{sup 3+}, Sm{sup 3+}, and Eu{sup 3+} were doped into a LaF{sub 3}-rich oxyfluoride glass. ► The

  2. Thermal effects on light emission in Yb3+ -sensitized rare-earth doped optical glasses

    International Nuclear Information System (INIS)

    Gouveia, E.A.; Araujo, M.T. de; Gouveia-Neto, A.S.

    2001-01-01

    The temperature effect upon infrared-to-visible frequency upconversion fluorescence emission in off-resonance infrared excited Yb 3+ -sensitized rare-earth doped optical glasses is theoretically and experimentally investigated. We have examined samples of Er3+/Yb 3+ -codoped Ga 2 S 3 :La 2 O 3 chalcogenide glasses and germanosilicate optical fibers, and Ga2O3:La 2 O 3 chalcogenide and fluoroindate glasses codoped with Pr 3+ /Yb 3+ , excited off-resonance at 1.064μm. The experimental results revealed thermal induced enhancement in the visible upconversion emission intensity as the samples temperatures were increased within the range of 20 deg C to 260 deg C. The fluorescence emission enhancement is attributed to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium-sensitizer. A theoretical approach that takes into account a sensitizer temperature dependent effective absorption cross section, which depends upon the phonon occupation number in the host matrices, has proven to agree very well with the experimental data. As beneficial applications of the thermal enhancement, a temperature tunable amplifier and a fiber laser with improved power performance are presented. (author)

  3. Fluorescence yield in rare-earth-doped sol-gel silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Silversmith, A.J., E-mail: asilvers@hamilton.ed [Physics Department, Hamilton College, 198 College Hill Road, Clinton, NY 13323 (United States); Nguyen, Nguyen T.T.; Campbell, D.L. [Physics Department, Hamilton College, 198 College Hill Road, Clinton, NY 13323 (United States); Boye, D.M.; Ortiz, C.P. [Davidson College, Davidson, NC 28035 (United States); Hoffman, K.R. [Whitman College, Walla Walla, WA 99362 (United States)

    2009-12-15

    We have used trivalent terbium to investigate the mechanism behind fluorescence enhancement by Al{sup 3+} co-doping. Our results indicate that rare-earth (RE) ions cluster together in aluminum-rich regions of the glass, and behave as if they were dispersed uniformly throughout these regions when the ratio of Al to RE is {approx}10 or greater. We also studied the effects of adding chemical drying agents to the precursor solution for the synthesis of sol-gel-derived silicate glasses. Such glasses can be treated at significantly higher annealing temperatures without degradation of optical quality, and have the density of melt glass. Fluorescence yield from doped RE ions improves markedly with the addition of the drying agents, and the denser glasses are not subject to rehydration.

  4. Optical and structural characterization of rare earth doped niobium phosphate glasses

    International Nuclear Information System (INIS)

    Sene, F.F.; Martinelli, J.R.; Gomes, L.

    2004-01-01

    Phosphate glasses containing up to 45mol% of niobium were obtained. X-ray diffraction, infrared, Raman, and optical absorption spectroscopy were used to analyze those materials. The refractive index varies from 1.70 to 1.85 as the amount of Nb increases. Niobium phosphate glasses with optical transparence in the (400-2500nm) range were produced. The cut off varied from 342nm to 378nm as a function of the Nb concentration. The cut off is due to the charge transfer O 2 ->Nb 5+ . Glasses containing 10mol% of Nb 2 O 5 are the most promising materials to be used as rare-earth ions hosts because they are chemically resistant, and show optical transparency in the spectral range of visible to infrared. Doping the glasses with 1-5mol% of Er, Ho, Pr, and Yb ions does not change the glass structure, as measured by X-ray diffraction, infrared, and Raman spectroscopy. The fluorescence lifetimes were determined for Nd, Yb, and Er, and the absorption cross-section were determined for all ions. The energy transfer in co-doped Yb-Er system was measured, and the lifetime of excited states and the luminescence efficiency were determined to be 91% for the Er 4 I 11/2 level, in the Yb-Er co-doped glasses

  5. Novel online security system based on rare-earth-doped glass microbeads

    Science.gov (United States)

    Officer, Simon; Prabhu, G. R.; Pollard, Pat; Hunter, Catherine; Ross, Gary A.

    2004-06-01

    A novel fluorescent security label has been produced that could replace numerous conventional fluorescent dyes in document security. This label utilizes rare earth ions doped in a borosilicate glass matrix to produce sharp spectral fluorescence peaks with characteristic long lifetimes due to the rare earth ions. These are subsequently detected by an online detection system based on fluorescence and the long lifetimes to avoid any interference from other fluorophores present in the background. Security is further enhanced by the interaction of the rare earth ions with each other and the effect of the host on the emission spectra and therefore the number of permutations that could be produced. This creates a very secure label with various applications for the security market.

  6. Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses

    Science.gov (United States)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2018-03-01

    Seven rare earth (Sm3+, Eu3+ and Nd3+) doped lead alumino phosphate glasses were prepared. The protective and sensing measures from gamma rays were analysed in terms of parameters viz. density (ρ), refractive index, energy band gap (Eg), mean free path (mfp), effective atomic number (Zeff) and buildup factors (energy absorption EABF as well as exposure buildup factor EBF). The energy dependent parameters (mfp, Zeff, EABF and EBF) were investigated in the energy region from 15 keV to 15 MeV. EABF and EBF values were observed to be maximum in the intermediate energy region. Besides, the EABF and EBF values for the prepared samples are shown to have strong dependence on chemical composition of the glass at lower energy, whereas, it is almost independent of chemical composition in higher energy region. The prepared glass samples are found to have potential applications in radiation shielding as well as radiation sensing, which further find numerous applications in the field of medicine and industry.

  7. Optical spectroscopy of rare earth-doped oxyfluoro-tellurite glasses ...

    Indian Academy of Sciences (India)

    2017-08-16

    Aug 16, 2017 ... glass matrix with different RE ions for optical properties is of importance. ... Figure 1. XRD pattern of the tellurite glasses studied. Table 1. Composition and glass transition ... convoluted using Gaussian line shape. Parameters like .... On the other hand, in Er3+ ion, the ground state 4I15/2 itself has manifold.

  8. Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings

    Directory of Open Access Journals (Sweden)

    Erik P. Schartner

    2014-11-01

    Full Text Available We report the development of a point temperature sensor, based on monitoring upconversion emission from erbium:ytterbium-doped tellurite coatings on the tips of optical fibres. The dip coating technique allows multiple sensors to be fabricated simultaneously, while confining the temperature-sensitive region to a localised region on the end-face of the fibre. The strong response of the rare earth ions to changing temperature allows a resolution of 0.1–0.3 °C to be recorded over the biologically relevant range of temperatures from 23–39 °C.

  9. Rare-earth-doped fluorozirconate fiber lasers

    International Nuclear Information System (INIS)

    Brierly, M.C.; France, P.W.; Moore, M.W.; Davey, S.T.

    1988-01-01

    Rare-earth-doped fiber lasers fabricated using silica-based fibers are rapidly becoming an established technology. Simultaneously, in the search for lower losses to achieve longer repeaterless communications links, another fiber technology based on fluorozirconate glasses is emerging. Fluorozirconate glass systems are known to be suitable laser hosts, and the authors have already reported Nd-doped fiber lasers using this technology. Recently the authors have used a 0.5-m length of 44-μm core fluorozirconate fiber doped with 1000 ppm of Nd 3+ ions in a longitudinally pumped Fabry-Perot cavity with a 90% output coupler. They observed lasing at 1.05 μm with a threshold of 33-mW launched power at 514 nm and a slope efficiency of 16.8%. The authors attribute this improvement to the higher dopant concentration, better fiber to mirror coupling, and more optimum output coupler reflectivity. In addition the same fiber used with two high-reflector mirrors at 1.35μm produced lasing at 1.35μm with a threshold of 60-mW launched power

  10. Theoretical study of the structure and optical properties of rare-earth-doped BeF2 glass

    International Nuclear Information System (INIS)

    Brawer, S.; Weber, M.J.

    1980-01-01

    We investigate the question of whether the local structure of a glass can be deduced directly from its optical spectra by testing such a procedure on a model system. The model system was Eu 3+ -doped BeF 2 glass generated the Monte Carlo technique of statistical mechanics. The optical energy levels of Eu 3+ were calculated from a point charge model. Using the resulting spectra as data, it is shown that details of the structure of the rare-earth ion sites of the simulated glass cannot be reconstructed uniquely from the data. Based on these results, it is concluded that reliable glass structure cannot be deduced from optical spectra

  11. Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Janek, Joanna, E-mail: janek.joanna@gmail.com; Sołtys, Marta; Żur, Lidia; Pietrasik, Ewa; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-09-01

    Series of lead-free borate glasses with different oxide modifiers and lanthanide ions were prepared. The effect of oxide modifiers MO (M = Ca, Sr, Ba) on spectroscopic properties of trivalent Ln{sup 3+} (Ln = Eu, Er, Pr) were systematically investigated. Especially, the luminescence spectra of Ln{sup 3+}-doped lead-free borate glasses are presented and discussed in relation to the impact of selective components (CaO, SrO and BaO). Several spectroscopic parameters, such as the fluorescence intensity ratio R/O (Eu{sup 3+}) and measured luminescence lifetimes for the {sup 5}D{sub 0} (Eu{sup 3+}), {sup 4}I{sub 13/2} (Er{sup 3+}) and {sup 1}D{sub 2} (Pr{sup 3+}) excited states of lanthanide ions were analyzed in details. The research proved that spectroscopic properties of trivalent Ln{sup 3+} depend significantly on kind of presence oxide modifiers MO (M = Ca, Sr, Ba) in glass host matrices. - Highlights: • Luminescence of Ln{sup 3+}-doped borate glasses was presented and discussed. • Effect of glass modifiers on spectroscopic properties of rare earths was studied. • Measured luminescence lifetimes of Ln{sup 3+} (Ln = Eu, Er, Pr) were analyzed. • Luminescence intensity ratios R/O (Eu{sup 3+}) were determined.

  12. Thermoluminescence dosimetry of rare earth doped calcium ...

    Indian Academy of Sciences (India)

    Unknown

    CaAl2O4) doped with different rare earth ions have been studied and their suitability for radiation dosimetry applications is discussed. It is observed that monocalcium aluminate doped with cerium is a good dosimeter having linear response up to ...

  13. Sol–gel glass-ceramics comprising rare-earth doped SnO2 and LaF3 nanocrystals: an efficient simultaneous UV and IR to visible converter

    International Nuclear Information System (INIS)

    Yanes, A. C.; Castillo, J. del; Méndez-Ramos, J.; Rodríguez, V. D.

    2011-01-01

    We report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO 2 semiconductor nanocrystal (quantum dot), and LaF 3 , presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO 2 quantum dot and subsequent efficient energy transfer to Eu 3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb 3+ –Er 3+ partitioned into low phonon LaF 3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.Graphical AbstractWe report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO 2 semiconductor nanocrystal (quantum dot) and LaF 3 , presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO 2 quantum dot and subsequent efficient energy transfer to Eu 3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb 3+ –Er 3+ partitioned into low phonon LaF 3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.

  14. Luminescence studies of rare earth doped dosimeters

    International Nuclear Information System (INIS)

    Karali, T.

    1999-10-01

    The main objective of this thesis has been to address the applications and fundamentals of thermoluminescence (TL) and to contribute to existing knowledge about TL mechanisms in materials which are applied as radiation dosimeters. This issue has been explored for a long time but the mechanisms lack completeness and certainty. TL, Radioluminescence (RL) and Radio-thermoluminescence (RLTL) measurements have been conducted on a high sensitivity TL spectrometer both at low (30-290 K) and high (25-400 deg. C) temperatures, and different heat treatments (furnace and laser) were conducted in order to study the possible impurity clustering which changes the TL spectra and efficiency of the dosimeters. Studies have been based on three different host structure, namely sulphate, borates and zircon. The spectra of calcium sulphate samples doped with Tm 3+ and Dy 3+ at different concentration were examined using TL, RL and RLTL. Similar procedures were applied to the borate samples. Modifications of the material by thermal treatments convert the state of dispersion of the rare earth ions between isolated, pair or defect clusters, which alter the dosimeter efficiency. In some cases, modified geometries are detectable by movement of the line emissions such as for quenched samples which are attributable to new microcrystal line phases. The study of co-doped samples showed unequivocal evidence of a glow peak displacement of the two dopants within a single sample. This result supports the new view that RE 3+ ions could form part of a complex defect acting as both charge trap and recombination centres. Pulsed laser heating with a UV laser changed the glow curve shape and lead to strong signals. The detailed mechanisms for this process are discussed. The RL and TL spectra of synthetic zircon crystals doped with different RE 3+ ions (Pr, Sm, Eu, Gd, Ho, Dy, Er, and Yb) and phosphorus are reported. Even though there is some intrinsic emission from the host lattice the major signals are

  15. Radioluminescence of rare-earth doped aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, M.; Molina, P. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Pinto 399, 7000 Tandil (Argentina); Barros, V. S.; Khoury, H. J.; Elihimas, D. R., E-mail: msantiag@exa.unicen.edu.ar [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, Recife, PE 50740-540 (Brazil)

    2011-10-15

    Carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al{sub 2}O{sub 3} samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  16. Radioluminescence of rare-earth doped aluminum oxide

    International Nuclear Information System (INIS)

    Santiago, M.; Molina, P.; Barros, V. S.; Khoury, H. J.; Elihimas, D. R.

    2011-10-01

    Carbon-doped aluminum oxide (Al 2 O 3 :C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al 2 O 3 samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  17. Guided mode cutoff in rare-earth doped rod-type PCFs

    DEFF Research Database (Denmark)

    Poli, F.; Cucinotta, A.; Passaro, D.

    2008-01-01

    Guided mode properties of rare-earth doped photonic crystal fibers are investigated as a function of the core refractive index, showing the possibility to obtain cutoff at low normalized wavelength.......Guided mode properties of rare-earth doped photonic crystal fibers are investigated as a function of the core refractive index, showing the possibility to obtain cutoff at low normalized wavelength....

  18. Direct current electroluminescence in rare-earth-doped zinc sulphide

    International Nuclear Information System (INIS)

    Bryant, F.J.; Krier, A.

    1984-01-01

    Some of the properties and characteristics of rare-earth-doped zinc sulphide DCEL devices are reported. Two types of devices are discussed, co-evaporated ZnS:RE thin films and ion implanted ZnS:RE single crystal diodes. The thin film devices exhibit bright DCEL of various colours at low applied voltages (typically approximately 12 V). A study of the spectral intensities and lifetimes of the Er 3+ ion in ZnS:Er 3+ thin films is consistent with a Boltzmann energy distribution amongst the conduction electrons present in these devices. The ZnS:RE single crystal diodes fabricated in this laboratory by ion implantation are also capable of various colour DCEL. By comparing the EL emission obtained from the different rare earth dopants, erbium and neodymium are identified as the most efficient luminescence centres. Further consideration of the EL emission spectra gives evidence for the presence of inter-conduction band hot electron transitions in those devices containing rare earth dopants which are inefficent electroluminescence centres. These findings can be explained in terms of Auger processes occurring in rare earth complexes. (author)

  19. Review on dielectric properties of rare earth doped barium titanate

    International Nuclear Information System (INIS)

    Ismail, Fatin Adila; Osman, Rozana Aina Maulat; Idris, Mohd Sobri

    2016-01-01

    Rare earth doped Barium Titanate (BaTiO_3) were studied due to high permittivity, excellent electrical properties and have wide usage in various applications. This paper reviewed on the electrical properties of RE doped BaTiO_3 (RE: Lanthanum (La), Erbium (Er), Samarium (Sm), Neodymium (Nd), Cerium (Ce)), processing method, phase transition occurred and solid solution range for complete study. Most of the RE doped BaTiO_3 downshifted the Curie temperature (T_C). Transition temperature also known as Curie temperature, T_C where the ceramics had a transition from ferroelectric to a paraelectric phase. In this review, the dielectric constant of La-doped BaTiO_3, Er-doped BaTiO_3, Sm-doped BaTiO_3, Nd-doped BaTiO_3 and Ce-doped BaTiO_3 had been proved to increase and the transition temperature or also known as T_C also lowered down to room temperature as for all the RE doped BaTiO_3 except for Er-doped BaTiO_3.

  20. DFT Calculations using WIEN2K to determine oxygen defect structure of rare earth doped ceria

    CERN Document Server

    Khalife, Ali Rida

    2014-01-01

    We perform density functional calculations using the program WIEN2K in order to study oxygen vacancies in rare earth doped ceria. The calculation for all rare earth elements were prepared, however only those foe Cadmium and Europium were performed due to lack of time. Also a short description of my stay at CERN was presented

  1. Fatigue Resistance of Filled NR with PMMA-Wrapped and Rare Earth-Doped Alumina-Siloxane Gel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Poly (methyl methacrylate) (PMMA) was used to wrap alumina-siloxane sol which was produced by water glass, aluminum nitrate and α-methacrylic acid, and as a result, alumina-siloxane gel wrapped by PMMA was obtained. Meanwhile, rare earth ions were employed to dope in the course of reaction, and the formed rare earth doped PMMA microcapsule powder was filled into natural rubber (NR). It is found through the analysis of mechanical properties that Young′s modulus universally improves and a remarkable resistance to fatigue is displayed. Retention rate of tensile strength is twice that of the controlled sample after ten thousand times of extension fatigue.

  2. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  3. Negative Refraction in Rare-Earth Doped Crystals

    Science.gov (United States)

    2016-06-09

    in the material, which in turn refracts into free- space. The false- color plots in Fig. 10 show the snapshots for the electric field in the two spatial...M. Shelby, Homogeneous Line Broadening of Optical Transitions of Ions and Molecules in Glasses, J. Lumin. 36, 179 (1987). [20] B. S. Ham , P. R

  4. Photo-Induced conductivity of heterojunction GaAs/Rare-Earth doped SnO2

    Directory of Open Access Journals (Sweden)

    Cristina de Freitas Bueno

    2013-01-01

    Full Text Available Rare-earth doped (Eu3+ or Ce3+ thin layers of tin dioxide (SnO2 are deposited by the sol-gel-dip-coating technique, along with gallium arsenide (GaAs films, deposited by the resistive evaporation technique. The as-built heterojunction has potential application in optoelectronic devices, because it may combine the emission from the rare-earth-doped transparent oxide, with a high mobility semiconductor. Trivalent rare-earth-doped SnO2 presents very efficient emission in a wide wavelength range, including red (in the case of Eu3+ or blue (Ce3+. The advantage of this structure is the possibility of separation of the rare-earth emission centers, from the electron scattering, leading to an indicated combination for electroluminescence. Electrical characterization of the heterojunction SnO2:Eu/GaAs shows a significant conductivity increase when compared to the conductivity of the individual films. Monochromatic light excitation shows up the role of the most external layer, which may act as a shield (top GaAs, or an ultraviolet light absorber sink (top RE-doped SnO2. The observed improvement on the electrical transport properties is probably related to the formation of short conduction channels in the semiconductors junction with two-dimensional electron gas (2DEG behavior, which are evaluated by excitation with distinct monochromatic light sources, where the samples are deposited by varying the order of layer deposition.

  5. Sensing Using Rare-Earth-Doped Upconversion Nanoparticles

    OpenAIRE

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near ...

  6. Rare-earth doped boron nitride nanotubes: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wellington Marcos; Sousa, Edesia Martins Barros de, E-mail: wellingtonmarcos@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Boron nitride is a heat and chemically resistant refractory compound of boron and nitrogen atoms with the chemical formula BN. This structure exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form (h-BN) corresponding to graphite is the most stable and soft among BN polymorph. However, boron nitride nanotubes (BNNTs) were first time synthesized in 1995 [1] and have a type of one-dimensional (1D) nanostructure. Recently the BNNTs have attracted significant interest for scientific and technological applications due to their Wide bandgap. The Wide-bandgap semiconductors doped with rare-earth are considered as a new type of luminescent material, combining special Wide bandgap semiconducting properties with the rare-earth luminescence feature. BNNTs have a stable wide bandgap of 5.5 eV and super thermal and chemical stabilities, which make BNNTs an ideal nanosized luminescent material [2]. In this study, we report a simple and efficient route for the synthesis of BNNTs doped with samarium and europium. High quality BNNTs doped was produced via CVD technique using NH{sub 3} and N{sub 2} gases as source. Boron amorphous, catalyst and oxides rare-earth powder were used as precursor. Detailed studies involving energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were performed in order to characterize the BNNTs as grown. [1] Chopra, N. G.; Luyken, R. J. et al. Science, v. 269, p. 966-967, 1995. [2] Chen, H.; Chen, Y. et al. Adv. Matter. v. 19, p. 1845-1848, 2007. (author)

  7. Rare-earth doped boron nitride nanotubes: Synthesis and characterization

    International Nuclear Information System (INIS)

    Silva, Wellington Marcos; Sousa, Edesia Martins Barros de

    2016-01-01

    Full text: Boron nitride is a heat and chemically resistant refractory compound of boron and nitrogen atoms with the chemical formula BN. This structure exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form (h-BN) corresponding to graphite is the most stable and soft among BN polymorph. However, boron nitride nanotubes (BNNTs) were first time synthesized in 1995 [1] and have a type of one-dimensional (1D) nanostructure. Recently the BNNTs have attracted significant interest for scientific and technological applications due to their Wide bandgap. The Wide-bandgap semiconductors doped with rare-earth are considered as a new type of luminescent material, combining special Wide bandgap semiconducting properties with the rare-earth luminescence feature. BNNTs have a stable wide bandgap of 5.5 eV and super thermal and chemical stabilities, which make BNNTs an ideal nanosized luminescent material [2]. In this study, we report a simple and efficient route for the synthesis of BNNTs doped with samarium and europium. High quality BNNTs doped was produced via CVD technique using NH 3 and N 2 gases as source. Boron amorphous, catalyst and oxides rare-earth powder were used as precursor. Detailed studies involving energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were performed in order to characterize the BNNTs as grown. [1] Chopra, N. G.; Luyken, R. J. et al. Science, v. 269, p. 966-967, 1995. [2] Chen, H.; Chen, Y. et al. Adv. Matter. v. 19, p. 1845-1848, 2007. (author)

  8. Dynamic population gratings in rare-earth-doped optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, Serguei [Optics Department, CICESE, km.107 carr. Tijuana-Ensenada, Ensenada, 22860, BC (Mexico)], E-mail: steps@cicese.mx

    2008-11-21

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  9. Dynamic population gratings in rare-earth-doped optical fibres

    International Nuclear Information System (INIS)

    Stepanov, Serguei

    2008-01-01

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  10. Rare-Earth Doped Photonic Crystal Fibre Lasers and Amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.

    2005-01-01

    In this thesis, a theoretical and numerical study of the use of rare-earthdoped photonic crystal fibres as optical amplifiers and lasers, has been performed. Photonic crystal fibres or microstructured optical fibres is a new kind of optical fibre in which the cladding region typically consist....... Their novel properties allow for design of optical fibre amplifiers and fibre lasers with superior performance, compared to solutions based on conventional fibres. The primary applications considered are high efficiency fibre amplifiers based on index guiding photonic crystal fibres, and cladding pumped....... The thesis also presents the basic properties of optical amplification, and describes the numerical model developed to model the behaviour of lasers and amplifiers based on photonic crystal fibres. The developed numerical tools are then used to investigate specific applications of photonic crystal fibres...

  11. Preparation and Characterization of Rare Earth Doped Fluoride Nanoparticles

    Directory of Open Access Journals (Sweden)

    Timothy A. DeVol

    2010-03-01

    Full Text Available This paper reviews the synthesis, structure and applications of metal fluoride nanoparticles, with particular focus on rare earth (RE doped fluoride nanoparticles obtained by our research group. Nanoparticles were produced by precipitation methods using the ligand ammonium di-n-octadecyldithiophosphate (ADDP that allows the growth of shells around a core particle while simultaneously avoiding particle aggregation. Nanoparticles were characterized on their structure, morphology, and luminescent properties. We discuss the synthesis, properties, and application of heavy metal fluorides; specifically LaF3:RE and PbF2, and group IIA fluorides. Particular attention is given to the synthesis of core/shell nanoparticles, including selectively RE-doped LaF3/LaF3, and CaF2/CaF2 core/(multi-shell nanoparticles, and the CaF2-LaF3 system.

  12. Laser action on rare earth doped nitride semiconductor thin layers

    International Nuclear Information System (INIS)

    Oussif, A.; Diaf, M.

    2010-01-01

    Complete text of publication follows. The structure, chemical composition, properties, and their relationships in solids lay the foundation of materials science. Recently, great interest in rare-earth (RE)-doped wide-bandgap semiconductors, which combine the electronic properties of semiconductors with the unique luminescence features of RE ions, is from the fundamental standpoint of structure-composition-properties of solids. At first, a significant amount of work has been reported on the study of infrared emissions from Er 3+- doped semiconductors because Er 3+ exhibits luminescence at 1.54 μm, a wavelength used in optical communications. Since Steckl and Birkhahn first reported visible emission associated with Er from GaN:Er films, the RE-doped semiconductors have received considerable interest for possible application in light emitting devices. Molecular-beam epitaxy (MBE) and metalorganic chemical vapour deposition (MOCVD) have been used mainly to grow GaN host films. The RE dopants were typically incorporated into the host films by in situ doping during the growth or by ion implantation after the growth. GaN doped with rare-earth elements (RE) hold significant potential for applications in optical devices, since they show sharp intense luminescence which is only minimally affected by temperature variations. Among the various RE dopants, Eu seems to be the most interesting, since it yields red luminescence 622 nm which has not been realized in commercially available light emitting devices (LEDs) that use InGaN active layers. We have earlier reported single crystalline growth of Eu-doped GaN and nearly temperature independent red luminescence at 622 nm originating from the intra-4f-4f transition of the Eu 3+ ion. The red luminescence was analyzed and determined to be generated through trap-level-mediated energy transfer from the semiconductor host.

  13. Rare Earth Doped Lanthanum Calcium Borate Polycrystalline Red Phosphors

    Directory of Open Access Journals (Sweden)

    H. H. Xiong

    2014-01-01

    Full Text Available Single-phased Sm3+ doped lanthanum calcium borate (SmxLa2−xCaB10O19, SLCB, x=0.06 polycrystalline red phosphor was prepared by solid-state reaction method. The phosphor has two main excitation peaks located at 398.5 nm and 469.0 nm, which are nicely in accordance with the emitting wavelengths of commercial near-UV and blue light emitting diode chips. Under the excitation of 398.0 nm, the dominant red emission of Sm3+ in SLCB phosphor is centered at 598.0 nm corresponding to the transition of 4G5/2 → 6H7/2. The Eu3+ fluorescence in the red spectral region is applied as a spectroscopic probe to reveal the local site symmetry in the host lattice and, hence, Judd-Ofelt parameters Ωt  (t=2, 4 of Eu3+ in the phosphor matrix are derived to be 3.62×10-20 and 1.97×10-20 cm2, indicating a high asymmetrical and strong covalent environment around rare earth luminescence centers. Herein, the red phosphors are promising good candidates employed in white light emitting diodes (LEDs illumination.

  14. Sensing using rare-earth-doped upconversion nanoparticles.

    Science.gov (United States)

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit.

  15. Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina

    Science.gov (United States)

    Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya

    Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.

  16. Factors controlling the thermoluminescence spectra of rare earth doped calcium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wyfemail@gmail.com [School of Science, China University of Geosciences, Beijing 100083 (China); Zhao, Y. [School of Science, China University of Geosciences, Beijing 100083 (China); White, D. [Barnsley Hospital NHS Foundation Trust, Gawber Road, Barnsley S75 2EP (United Kingdom); Finch, A.A. [Department of Earth & Environmental Sciences, University of St Andrews, Fife KY16 9AL (United Kingdom); Townsend, P.D. [Physics Building, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2017-04-15

    Thermoluminescence spectra of rare earth doped calcium fluoride samples, both powder and single crystal, were recorded over the temperature range from 25 K to 673 K. Although some broad band features exist, the spectra are dominated by the rare earth line transitions. The glow peak temperatures are slightly sensitive both to the ionic size of the dopants and the dopant concentration. By contrast, very considerable differences are generated by heat treatments, such as annealing followed by either fast or slow cooling. Comments are included on the reasons for such sensitivity in terms of association of dopant and intrinsic defect sites and why the results of dosimetry powder differ from those from single crystals.

  17. All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles.

    Science.gov (United States)

    Serrano, D; Karlsson, J; Fossati, A; Ferrier, A; Goldner, P

    2018-05-29

    Nanoscale systems that coherently couple to light and possess spins offer key capabilities for quantum technologies. However, an outstanding challenge is to preserve properties, and especially optical and spin coherence lifetimes, at the nanoscale. Here, we report optically controlled nuclear spins with long coherence lifetimes (T 2 ) in rare-earth-doped nanoparticles. We detect spins echoes and measure a spin coherence lifetime of 2.9 ± 0.3 ms at 5 K under an external magnetic field of 9 mT, a T 2 value comparable to those obtained in bulk rare-earth crystals. Moreover, we achieve spin T 2 extension using all-optical spin dynamical decoupling and observe high fidelity between excitation and echo phases. Rare-earth-doped nanoparticles are thus the only nano-material in which optically controlled spins with millisecond coherence lifetimes have been reported. These results open the way to providing quantum light-atom-spin interfaces with long storage time within hybrid architectures.

  18. Rare-earth doping of high T/sub c/ superconducting perovskites

    International Nuclear Information System (INIS)

    Mc Kinnon, W.R.; Tarascon, J.M.; Greene, L.H.; Hull, G.W.

    1987-01-01

    In most superconductors, the magnetic moments of rare-earth (Re) ions interact with the conduction electrons and break the Cooper pairs, supressing or destroying superconductivity. But in the perovskite-based superconductors discovered recently, the rare-earth ions are separated from the copper and oxygen where the superconducting electrons are believed to be located. The authors study the effects of rare-earth doping in both the 40K La/sub 2-x/Sr/sub x/CuO/sub 4-y/ system and 90K YBa/sub 2/Cu/sub 3/O/sub 7-x/ system. In these materials, the RE ions only weakly affect superconductivity, and the effects we do see are more strongly correlated with changes in the volume of the crystal than with the magnetism of the rare earths

  19. Synthesis and sorption properties of new synthesized rare-earth-doped sodium titanate

    International Nuclear Information System (INIS)

    Ali, I.M.

    2010-01-01

    A series of rare-earth-doped sodium titanates with the chemical formula R x H y Na 4-(x+y) TiO 4 ·nH 2 O (where R = Ce 3+ , Nd 3+ and Sm 3+ ) were grown employing solid-state fusion reaction technique. The physico-chemical investigations indicated that the new materials were self engineered into large particles enough to be used in sorption process and having crystalline structures containing localized Na + ions. Equilibrium studies revealed that an enhancement in sorption efficiency of sodium titanate after rare-earth doping. The neodymium-rich sodium titanate exhibited a better exchange affinity for Cs + compared to the other studied series. Data on the kinetics of cesium exchange fit well to pseudo-second order and intra-particle diffusion models. In a separate experiment, it was reported that the R-HNaTi series showed responsible sorption affinity toward Ce, Nd and Sm ions in their solution mixture with insignificant selectivity trend which reflects the high stability of titanate matrices. (author)

  20. Laser induced adjustment of the conductivity of rare earth doped Mn-Zn nanoferrite

    Directory of Open Access Journals (Sweden)

    El-Dek S. I.

    2017-10-01

    Full Text Available Two series of Mn-Zn nanoferrites (namely Mn1-xZnxFe2O4 and Mn1-xZnxFe2-yRyO4 were synthesized using standard ceramic technique. X-ray diffraction and FT-IR were employed in the chacterization of the nanopowder. The X-ray density for each sample increased after laser irradiation which was correlated with the decrease in the unit cell volume. The study involved the thermal and frequency variation of the dielectric constant and AC conductivity of the investigated samples before and after laser irradiation. The later altered the conductivity by decreasing its value for the rare earth doped samples except for the Sm3+ doped one. The results suggested the exploitation of Mn-Zn doped rare earth nanoferrites in many technological applications demanding high resistivity.

  1. Influence of Rare Earth Doping on the Structural and Catalytic Properties of Nanostructured Tin Oxide

    Directory of Open Access Journals (Sweden)

    Maciel Adeilton

    2008-01-01

    Full Text Available AbstractNanoparticles of tin oxide, doped with Ce and Y, were prepared using the polymeric precursor method. The structural variations of the tin oxide nanoparticles were characterized by means of nitrogen physisorption, carbon dioxide chemisorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The synthesized samples, undoped and doped with the rare earths, were used to promote the ethanol steam reforming reaction. The SnO2-based nanoparticles were shown to be active catalysts for the ethanol steam reforming. The surface properties, such as surface area, basicity/base strength distribution, and catalytic activity/selectivity, were influenced by the rare earth doping of SnO2and also by the annealing temperatures. Doping led to chemical and micro-structural variations at the surface of the SnO2particles. Changes in the catalytic properties of the samples, such as selectivity toward ethylene, may be ascribed to different dopings and annealing temperatures.

  2. Crystal-field investigations of rare-earth-doped wide band gap semiconductors

    CERN Multimedia

    Muller, S; Wahl, U

    Crystal field investigations play a central role in the studies of rare earth doped semiconductors. Optical stark level spectroscopy and lattice location studies of radioactive rare earth isotopes implanted at ISOLDE have provided important insight into these systems during the last years. It has been shown that despite a major site preference of the probe atoms in the lattice, several defect configurations do exist. These sites are visible in the optical spectra but their origin and nature aren't deducible from these spectra alone. Hyperfine measurements on the other hand should reveal these defect configurations and yield the parameters necessary for a description of the optical properties at the atomic scale. In order to study the crystal field with this alternative approach, we propose a new concept for perturbed $\\gamma\\gamma$-angular correlation (PAC) experiments at ISOLDE based on digital signal processing in contrast to earlier analog setups. The general functionality of the spectrometer is explained ...

  3. Growth of rare-earth doped single crystal yttrium aluminum garnet fibers

    Science.gov (United States)

    Bera, Subhabrata; Nie, Craig D.; Harrington, James A.; Cheng, Long; Rand, Stephen C.; Li, Yuan; Johnson, Eric G.

    2018-02-01

    Rare-earth doped single crystal (SC) yttrium aluminum garnet (YAG) fibers have great potential as high-power laser gain media. SC fibers combine the superior material properties of crystals with the advantages of a fiber geometry. Improving processing techniques, growth of low-loss YAG SC fibers have been reported. A low-cost technique that allows for the growth of optical quality Ho:YAG single crystal (SC) fibers with different dopant concentrations have been developed and discussed. This technique is a low-cost sol-gel based method which offers greater flexibility in terms of dopant concentration. Self-segregation of Nd ions in YAG SC fibers have been observed. Such a phenomenon can be utilized to fabricate monolithic SC fibers with graded index.

  4. Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs

    DEFF Research Database (Denmark)

    Poli, F.; Cucinotta, A.; Passaro, D.

    2009-01-01

    In this paper, large-mode-area, double-cladding, rare-earth-doped photonic crystal fibers are investigated in order to understand how the refractive index distribution and the mode competition given by the amplification can assure single-mode propagation. Fibers with different core diameters, i...

  5. Enhanced near-infrared photoacoustic imaging of silica-coated rare-earth doped nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Yang [Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372 (Singapore); School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Liao, Lun-De [Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Rd., Zhunan Town, Miaoli County 35053, Taiwan, ROC (China); Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456 (Singapore); Bandla, Aishwarya [Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456 (Singapore); Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077 (Singapore); Liu, Yu-Hang [Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077 (Singapore); Yuan, Jun [Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456 (Singapore); Thakor, Nitish [Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456 (Singapore); Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077 (Singapore); Tan, Mei Chee, E-mail: meichee.tan@sutd.edu.sg [Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372 (Singapore)

    2017-01-01

    Near-infrared photoacoustic (PA) imaging is an emerging diagnostic technology that utilizes the tissue transparent window to achieve improved contrast and spatial resolution for deep tissue imaging. In this study, we investigated the enhancement effect of the SiO{sub 2} shell on the PA property of our core/shell rare-earth nanoparticles (REs) consisting of an active rare-earth doped core of NaYF{sub 4}:Yb,Er (REDNPs) and an undoped NaYF{sub 4} shell. We observed that the PA signal amplitude increased with SiO{sub 2} shell thickness. Although the SiO{sub 2} shell caused an observed decrease in the integrated fluorescence intensity due to the dilution effect, fluorescence quenching of the rare earth emitting ions within the REDNPs cores was successfully prevented by the undoped NaYF{sub 4} shell. Therefore, our multilayer structure consisting of an active core with successive functional layers was demonstrated to be an effective design for dual-modal fluorescence and PA imaging probes with improved PA property. The result from this work addresses a critical need for the development of dual-modal contrast agent that advances deep tissue imaging with high resolution and signal-to-noise ratio. - Graphical abstract: Illustration of multilayer structured imaging probe with REDNPs as active core, undoped NaYF{sub 4} as intermediate layer and SiO{sub 2} as outer shell. The PA signal amplitude of REs/SiO{sub 2} was increased with the SiO{sub 2} shell thickness. - Highlights: • Silica coating was demonstrated to be much more effective in enhancing the PA signal amplitude comparing to soft polymer. • PA enhancement was attributed to the increased phonon modes and phonon energy with the introduction of the SiO{sub 2} coating. • Multilayer structure was an effective design for dual-modal fluorescence and PA imaging probes with improved PA property.

  6. Changes of fluorescent spectral features after successive rare earth doping of gadolinium oxide powders

    Energy Technology Data Exchange (ETDEWEB)

    Kuznik, W. [Chemical Department, Silesian University of Technology, Gliwice (Poland); Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Brik, M.G. [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Cieslik, I.; Majchrowski, A.; Jaroszewicz, L. [Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); AlZayed, N.S. [Physics and Astronomy Dept., College of Science, P.O. Box 2455, King Saud University, Riyadh 11451 (Saudi Arabia); El-Naggar, A.M. [Physics and Astronomy Dept., College of Science, P.O. Box 2455, King Saud University, Riyadh 11451 (Saudi Arabia); Permanent address: Physics department, Faculty of Science, Ain Shams University, Abassia, Cairo 11566 (Egypt); Sildos, I.; Lange, S.; Kiisk, V. [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Kityk, I.V., E-mail: ikityk@el.pcz.czest.pl [Electrical Engineering Department, Czestochowa University of Technology, Armii Krajowej 17, Czestochowa (Poland); Physics and Astronomy Dept., College of Science, P.O. Box 2455, King Saud University, Riyadh 11451 (Saudi Arabia)

    2012-01-15

    Highlights: > Principally new phosphors based on rare earth moped Gd{sub 2}O{sub 3} are obtained. > The time-resolved fluorescent spectra show drastic changes with the doping. > Temperature measurements were done. - Abstract: We present a complex fluorescence study of a series of gadolinium oxide polycrystalline powders singly, doubly and triply doped with trivalent rare earth ions (Er{sup 3+}, Tb{sup 3+}, and Dy{sup 3+}), to explore a possibility of their use as materials for white light emitting diodes. The excitation and luminescence spectra along with the decay kinetics were measured in the temperature range from 6 to 300 K. The luminescence efficiency was studied within the visible spectral range, i.e. -400 nm to 750 nm under excitation by 355 nm third harmonic Nd:YAG laser pulses. Singly doped Er{sup 3+} sample gave stronger luminescence signals, but others showed significantly larger decay lifetimes. The successive rare earths doping leads to substantial changes of the spectral positions due to the up-conversion processes. In the singly (Er{sup 3+}) doped sample, following the time resolved spectrum and decay curves, there are two different types of emissions: at 660 nm and at shorter wavelengths (below 640 nm) the red emission's lifetime is ten times longer than at shorter wavelengths. The singly doped sample shows unclear temperature-dependence of luminescence with lifetime at 550 nm (the longest at 100 K, similarly at 6 K and 300 K) and achieved luminous efficacy 73.5 lm/W.

  7. Polarization dependence of two-photon transition intensities in rare-earth doped crystals

    Energy Technology Data Exchange (ETDEWEB)

    Le Nguyen, An-Dien [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    A polarization dependence technique has been developed as a tool to investigate phonon scattering (PS), electronic Raman scattering (ERS), and two-photon absorption (TPA) transition intensities in vanadate and phosphate crystals. A general theory for the polarization dependence (PD) of two-photon transition intensities has been given. Expressions for the polarization dependent behavior of two-photon transition intensities have been tabulated for the 32 crystallographic point groups. When the wavefunctions for the initial and final states of a rare-earth doped in crystals are known, explicit PD expressions with no unknown parameters can be obtained. A spectroscopic method for measuring and interpreting phonon and ERS intensities has been developed to study PrVO4, NdVO4, ErVO4, and TmVO4 crystals. Relative phonon intensities with the polarization of the incident and scattered light arbitrarily varied were accurately predicted and subsequently used for alignment and calibration in ERS measurements in these systems for the first time. Since ERS and PS intensities generally follow different polarization curves as a function of polar angles, the two can be uniquely identified by comparing their respective polarization behavior. The most crucial application of the technique in ERS spectroscopy is the establishment of a stringent test for the Axe theory. For the first time, the F1/F2 ratio extracted from the experimental fits of the ERS intensities were compared with those predicted by theories which include both the second- and third-order contributions. Relatively good agreement between the fitted values of F1/F2 and the predicted values using the second-order theory has been found.

  8. Rare earth-doped integrated glass components: modeling and optimization

    DEFF Research Database (Denmark)

    Lumholt, Ole; Bjarklev, Anders Overgaard; Rasmussen, Thomas

    1995-01-01

    is performed, and the influence of variations in the launched pump power, the core cross section, the waveguide length, the erbium concentration, and the background losses are evaluated. Optimal design proposals are given, and the process reproducibility of the proposed optimal design is examined. Requirements...

  9. Monolithic Rare Earth Doped PTR Glass Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of airborne and spaceborne laser systems dictates a number of extremely challenging requirements for such fine optical devices. These requirements...

  10. New Mid-IR Lasers Based on Rare-Earth-Doped Sulfide and Chloride Materials

    International Nuclear Information System (INIS)

    Nostrand, M

    2000-01-01

    Applications in remote-sensing and military countermeasures have driven a need for compact, solid-state mid-IR lasers. Due to multi-phonon quenching, non-traditional hosts are needed to extend current solid-state, room-temperature lasing capabilities beyond ∼ 4 (micro)m. Traditional oxide and fluoride hosts have effective phonon energies in the neighborhood of 1000 cm -1 and 500 cm -1 , respectively. These phonons can effectively quench radiation above 2 and 4 (micro)m, respectively. Materials with lower effective phonon energies such as sulfides and chlorides are the logical candidates for mid-IR (4-10 (micro)m) operation. In this report, laser action is demonstrated in two such hosts, CaGa 2 S 4 and KPb 2 Cl 5 . The CaGa 2 S 4 :Dy 3+ laser operating at 4.3 (micro)m represents the first sulfide laser operating beyond 2 (micro)m. The KPb 2 Cl 5 :Dy 3+ laser operating at 2.4 (micro)m represents the first operation of a chloride-host laser in ambient conditions. Laser action is also reported for CaGa 2 S 4 :Dy 3+ at 2.4 (micro)m, CaGa 2 S 4 :Dy 3+ at 1.4 (micro)m, and KPb 2 Cl 5 :Nd 3+ at 1.06 (micro)m. Both host materials have been fully characterized, including lifetimes, absorption and emission cross sections, radiative branching ratios, and radiative quantum efficiencies. Radiative branching ratios and radiative quantum efficiencies have been determined both by the Judd-Ofelt method (which is based on absorption measurements), and by a novel method described herein which is based on emission measurements. Modeling has been performed to predict laser performance, and a new method to determine emission cross section from slope efficiency and threshold data is developed. With the introduction and laser demonstration of rare-earth-doped CaGa 2 S 4 and KPb 2 Cl 5 , direct generation of mid-IR laser radiation in a solid-state host has been demonstrated. In KPb 2 Cl 5 , predictions indicate that laser operation to 9 (micro)m may be possible, a wavelength previously

  11. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals

    DEFF Research Database (Denmark)

    Gobron, Olivier; Jung, K.; Galland, N.

    2017-01-01

    Frequency-locking a laser to a spectral hole in rare-earth doped crystals at cryogenic temperature has been shown to be a promising alternative to the use of high finesse Fabry-Perot cavities when seeking a very high short term stability laser (M. J. Thorpe et al., Nature Photonics 5, 688 (2011......)). We demonstrate here a novel technique for achieving such stabilization, based on generating a heterodyne beat-note between a master laser and a slave laser whose dephasing caused by propagation near a spectral hole generate the error signal of the frequency lock. The master laser is far detuned from...

  12. Spectroscopic identification of rare earth elements in phosphate glass

    Science.gov (United States)

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.

    2018-01-01

    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV-VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  13. Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band.

    Science.gov (United States)

    Xing, P; Chen, G F R; Zhao, X; Ng, D K T; Tan, M C; Tan, D T H

    2017-08-22

    Ring resonators on silicon rich nitride for potential use as rare-earth doped amplifiers pumped at 1310 nm with amplification at telecommunications-band are designed and characterized. The ring resonators are fabricated on 300 nm and 400 nm silicon rich nitride films and characterized at both 1310 nm and 1550 nm. We demonstrate ring resonators exhibiting similar quality factors exceeding 10,000 simultaneously at 1310 nm and 1550 nm. A Dysprosium-Erbium material system exhibiting photoluminescence at 1510 nm when pumped at 1310 nm is experimentally demonstrated. When used together with Dy-Er co-doped particles, these resonators with similar quality factors at 1310 nm and 1550 nm may be used for O-band pumped amplifiers for the telecommunications-band.

  14. Using rare earth doped thiosilicate phosphors in white light emitting LEDs: Towards low colour temperature and high colour rendering

    International Nuclear Information System (INIS)

    Smet, P.F.; Korthout, K.; Haecke, J.E. van; Poelman, D.

    2008-01-01

    Rare earth doped thiosilicates are promising materials for use in phosphor converted light emitting diodes (pcLEDs). These phosphors (including the hosts Ca 2 SiS 4 , BaSi 2 S 5 and Ba 2 SiS 4 in combination with Ce 3+ and/or Eu 2+ doping) cover the entire visible part of the spectrum, as the emission colour can be changed from deep blue to red. The photoluminescence emission spectrum and the overlap of the excitation spectrum with the emission of pumping LEDs is evaluated. The trade-off between high colour rendering and high electrical-to-optical power efficiency is discussed by simulation with both blue and UV emitting LEDs. Finally, a phosphor combination with low colour temperature (3000 K) and high colour rendering (CRI = 93) is proposed

  15. Design and length optimization of an adiabatic coupler for on-chip vertical integration of rare-earth-doped double tungstate waveguide amplifiers

    NARCIS (Netherlands)

    Mu, Jinfeng; Sefünç, Mustafa; García Blanco, Sonia Maria

    2014-01-01

    The integration of rare-earth doped double tungstate waveguide amplifiers onto passive technology platforms enables the on-chip amplification of very high bit rate signals. In this work, a methodology for the optimized design of vertical adiabatic couplers between a passive Si3N4 waveguide and the

  16. Structure, electronic properties, luminescence and chromaticity investigations of rare earth doped KMgBO{sub 3} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianghui; Cheng, Qijin [School of Energy Research, Xiamen University, Xiamen 361005 (China); Wu, Shunqing [Department of Physics, Xiamen University, Xiamen, 361005 (China); Zhuang, Yixi [College of Materials, Xiamen University, Xiamen 361005 (China); Guo, Ziquan; Lu, Yijun [Department of Electronic Science, Fujian Engineering Research Center for Solid-state Lighting, Xiamen University, Xiamen 361005 (China); Chen, Chao, E-mail: cchen@xmu.edu.cn [School of Energy Research, Xiamen University, Xiamen 361005 (China); Department of Physics, Xiamen University, Xiamen, 361005 (China); Department of Electronic Science, Fujian Engineering Research Center for Solid-state Lighting, Xiamen University, Xiamen 361005 (China)

    2015-09-01

    In this work, the optimization of the geometry and the electronic properties of the host matrix KMgBO{sub 3} were investigated using density functional theory, and the comprehensive photoluminescence and chromaticity properties on five rare earth ion-doped (RE = Ce{sup 3+}, Tm{sup 3+}, Tb{sup 3+}, Eu{sup 3+}, Dy{sup 3+}) KMgBO{sub 3} phosphors were also studied. By introducing RE ions into the KMgBO{sub 3} host, excellent purple, blue, green, red and white emitting light could be obtained under the near-ultraviolet light excitation. The results suggest that rare earth doped KMgBO{sub 3} phosphors are potential luminescence materials for the application in the near-ultraviolet white light-emitting diodes. - Highlights: • The electronic properties of the host matrix KMgBO{sub 3} were investigated. • The PL properties on rare earth ions doped KMgBO{sub 3} phosphors were studied. • The chromaticity properties on rare earth ions doped KMgBO{sub 3} samples were studied. • Tm{sup 3+} and Eu{sup 3+} doped KMgBO{sub 3} samples show higher color purity than commercial phosphors.

  17. Magnetic, dielectric and microwave absorption properties of rare earth doped Ni–Co and Ni–Co–Zn spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Stergiou, Charalampos, E-mail: stergiou@cperi.certh.gr

    2017-03-15

    In this article we analyze the electromagnetic properties of rare earth substituted Ni–Co and Ni–Co–Zn cubic ferrites in the microwave band, along with their performance as microwave absorbing materials. Ceramic samples with compositions Ni{sub 0.5}Co{sub 0.5}Fe{sub 2−x}R{sub x}O{sub 4} and Ni{sub 0.25}Co{sub 0.5}Zn{sub 0.25}Fe{sub 2−x}R{sub x}O{sub 4} (R=Y and La, x=0, 0.02), fabricated with the solid state reaction method, were characterized with regard to the complex permeability μ*(f) and permittivity ε*(f) up to 20 GHz. The rare earth substitutions basically affect the microwave μ*(f) spectra and the dynamic magnetization mechanisms of domain wall motion and magnetization rotation. Key parameters for this effect are the reduced magnetocrystalline anisotropy and the created crystal inhomogeneities. Moreover, permittivity is increased with the Y and La content, due to the enhancement of the dielectric orientation polarization. Regarding the electromagnetic wave attenuation, the prepared ferrites exhibit narrowband return losses (RL) by virtue of the cancellation of multiple reflections, when their thickness equals an odd multiple of quarter-wavelength. Interestingly, the zero-reflection conditions are satisfied in the vicinity of the ferromagnetic resonance. As the rare earth doping shifts this mechanism to lower frequencies, loss peaks with RL>46 dB occur at 4.1 GHz and 5 GHz for Y and La-doped Ni–Co–Zn spinels, whereas peaks with RL>40 dB appear at 18 GHz and 19 GHz for Y and La-doped Ni–Co spinels, respectively. The presented experimental findings underline the potential of cubic ferrites with high Co concentration in the suppression of electromagnetic reflections well above the 1 GHz region. - Highlights: • Due to cation distribution, magnetic anisotropy drops in Y and La doped samples. • Microwave permeability spectra shift to lower frequencies with rare earth doping. • Permittivity is increased due to crystal modifications

  18. Synthesis, properties and host effects of rare-earth doped silica nanopowders for photonic applications

    Science.gov (United States)

    Halpern, Susan B.

    In this study, SiO2/Al2O3/Er2O 3 (SAE) nanopowders were fabricated by the CF-CVC technique with average primary particle sizes ranging from 10--30 nm. Fluorescence and lifetime measurements were made both on as-prepared powders, as well as heat treated powders, with the latter exhibiting significantly higher emission intensities. At ˜1000°C, the SAE became partially devitrified with extremely broad (FWHM ≈ 78 nm) and flat emission spectra, which is highly desirable for Wavelength Division Multiplexing (WDM) in optical amplifiers. The unique optical properties of the powders are attributed to the formation of a metastable phase consisting of an uniform nano-scale dispersion of a metastable intermediate SiO2 (Al,Er)2O3 phase in an amorphous SiO 2 matrix. At higher heat treatments (1400°C), a dual-phase equilibrium structure was formed, consisting of a pyrochlore phase in a crystobalite matrix. The SAE nanopowders were incorporated into various optical hybrid glass hosts for active planar waveguide applications. Host selection was dependent on transparency in the wavelength region of interest (900 nm--1600 nm), index matching (n ˜ 1.5), chemical/thermal stability, and ease of processing. Furthermore, the inorganic-organic glasses were hydrophobic, resulting in a minimal level of residual OH- which can quench fluorescence emission. Four separate groups of host materials were studied: Perfluoro-alkyl Hybrid Glass (n ≈ 1.42), Alumina-Silica Hybrid Glass (n ≈ 1.49), Polyurethane-Silica Hybrid Glass (n ≈ 1.44), and Methyl/Epoxy Group Hybrid Glass (n ≈ 1.48). All hosts showed high spectral transparency, uniform dispersion of the nanopowder in the host, and minimal surface quenching of emission, and therefore represent excellent candidates for fabrication of next generation nanophotonic planar devices.

  19. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    Science.gov (United States)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  20. Photo- and electroluminescence of undoped and rare earth doped ZnO electroluminors

    International Nuclear Information System (INIS)

    Bhushan, S.; Pandey, A.N.; Kaza, B.R.

    1977-01-01

    A series of undoped and rare earth (Dy, Yb, Nd, Pr, Gd, La, Sm and Er) doped ZnO electroluminors have been prepared and their photo- (PL) and electroluminescence (EL) spectra at different concentrations of rare earth ions have been investigated. PL and EL spectra of undoped electroluminescence consist of three peaks. Due to the addition of the rare earth ions these peaks are shifted either to the longer or to the shorter wavelength side. The intensities are also either decreased or increased. Experimental results favour the donor-accepted model for this system. (Auth.)

  1. Robust Visible and Infrared Light Emitting Devices Using Rare-Earth-Doped GaN

    National Research Council Canada - National Science Library

    Steckl, Andrew

    2006-01-01

    Rare earth (RE) dopants (such as Er, Eu, Tm) in the wide bandgap semiconductor (WBGS) GaN are investigated for the fabrication of robust visible and infrared light emitting devices at a variety of wavelengths...

  2. Synthesis and characterization of rare-earth-doped calcium tungstate nanocrystals

    Science.gov (United States)

    Suneeta, P.; Rajesh, Ch.; Ramana, M. V.

    2018-02-01

    In this paper, we report synthesis and characterization of rare-earth-ion-doped calcium tungstate (CaWO4) nanocrystals (NCs). Rare-earth ions, such as gadolinium (Gd), neodymium (Nd), praseodymium (Pr), samarium (Sm) and holmium (Ho), were successfully doped in the CaWO4 NCs by changing the synthesis conditions. The adopted synthesis route was found to be fast and eco-friendly. Structural characterizations, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and compositional analysis, were performed using energy dispersive analysis of X-rays (EDAX) on as-synthesized NCs. The results indicate the size of the NCs ranging between 47 to 68nm and incorporation of rare-earth ions in CaWO4 NCs.

  3. Development of novel rare earth doped fluoride and oxide scintillators for two-dimensional imaging

    Czech Academy of Sciences Publication Activity Database

    Yoshikawa, A.; Yanagida, T.; Yokota, Y.; Kamada, K.; Kawaguchi, N.; Fukuda, K.; Yamazaki, A.; Watanabe, K.; Uritani, A.; Iguchi, T.; Boulon, G.; Nikl, Martin

    2011-01-01

    Roč. 29, č. 12 (2011), s. 1178-1182 ISSN 1002-0721 Grant - others:AV ČR(CZ) M100100910 Institutional research plan: CEZ:AV0Z10100521 Keywords : scintillator * gamma-ray detection * neutron detection * fluoride * Ce * Eu * rare earth Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.901, year: 2011

  4. Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography

    NARCIS (Netherlands)

    Kim, J.; Michelin, S.; Hilbers, M.; Martinelli, L.; Chaudan, E.; Amselem, G.; Fradet, E.; Boilot, J.-P.; Brouwer, A.M.; Baroud, C.N.; Peretti, J.; Gacoin, T.

    Rare-earth phosphors exhibit unique luminescence polarization features originating from the anisotropic symmetry of the emitter ion's chemical environment. However, to take advantage of this peculiar property, it is necessary to control and measure the ensemble orientation of the host particles with

  5. Characterization of rare-earth doped Si 3 N4 /SiC micro/nanocomposites

    Directory of Open Access Journals (Sweden)

    Peter Tatarko

    2010-03-01

    Full Text Available Influence of various rare-earth oxide additives (La2O3, Nd2O3, Sm2O3, Y2O3, Yb2O3 and Lu2O3 on the mechanical properties of hot-pressed silicon nitride and silicon nitride/silicon carbide micro/nano-composites has been investigated. The bimodal character of microstructures was observed in all studied materials where elongated β-Si3N4 grains were embedded in the matrix of much finer Si3N4 grains. The fracture toughness values increased with decreasing ionic radius of rare-earth elements. The fracture toughness of composites was always lower than that of monoliths due to their finer Si3N4/SiC microstructures. Similarly, the hardness and bending strength values increased with decreasing ionic radius of rare-earth elements either in monoliths or composites. On the other hand, the positive influence of finer microstructure of the composites on strength was not observed due to the present defects in the form of SiC clusters and non-reacted carbon zones. Wear resistance at room temperature also increased with decreasing ionic radius of rare-earth element. Significantly improved creep resistance was observed in case either of composite materials or materials with smaller radius of RE3+.

  6. Spectroscopy and Device Performance of Rare Earth Doped III-Nitrides

    National Research Council Canada - National Science Library

    Hommerich, Uwe

    2002-01-01

    .... Prime candidates for redgreen- blue (RGB) emission are the rare earth ions Eu3+ (red), Er3+ (green), and Tm3+ (blue). A full-color TFEL phosphor system based on RE doped GaN has been demonstrated with high brightness...

  7. Preparation of Rare Earth Doped Alumina-Siloxane Gel and Its ER Effect

    Institute of Scientific and Technical Information of China (English)

    李幼荣; 张明; 周兰香; 邱关明; 井上真一; 冈本宏

    2002-01-01

    Poly(methyl methacrylate) (PMMA) was used to wrap alumina-siloxane sol through emulsion polymerization. A kind of suspensions with notable ER effect was produced by fully mixing the prepared microcapsule with silicon oil. Meanwhile a series of PMMA wrapped alumina-siloxane gel doped with rare earths was obtained and its ER effect was tested, like viscosity of different rare earth ion doped samples in different powder concentrations and at different temperatures, at the same time, leak current density and dielectric constant were measured. Results show that the ER effect of this suspension is remarkable, and its stability is much better. The condition of emulsion polymerization and the mechanism of effect are discussed.

  8. Syntheses and characterizations of rare earth doped phospho-silicated apatites: application to nuclear waste confinement

    International Nuclear Information System (INIS)

    Boyer, Laurent

    1998-01-01

    Apatite matrices have been developed for the conditioning of actinides from spent fuels of PWR reactors. Silicated apatites (britholites) containing actinides and lanthanides have been discovered in the natural environment. Synthetic analogues of these britholites can be obtained by solid-solid reaction at high temperature. The compounds of the solid solution of fluorinated britholites are synthesized by the double substitution of (Ca 2+ , PO 4 3- ) by (Ln 3+ , SiO 4 4- ). Trivalent lanthanides are chemical analogues of trivalent actinides. The synthesis was performed with La, Nd and Eu. This study allows to demonstrate that the chemical immobilization comes from the fixation of rare earths at the atomic scale, thanks to their participation to the mineral structure. In part 1, the criteria for the formulation of a matrix for the conditioning of separate radionuclides are given. The structure and the different methods of apatite preparation are shown. Part 2 treats of the study of the solid solution, of the elaboration of the Ca 9 Nd 1 (SiO 4 ) 5 F 2 ceramic and of its physico chemical characterization. The last part deals with the localization of rare earths in the apatite structure, determined by europium luminescence and X-ray diffraction on monocrystal. (J.S.) [fr

  9. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng; Deng, Rui; Lin, Weinan; Tian, Yufeng; Peng, Haiyang; Yi, Jiabao; Yao, Bin; Wu, Tao

    2013-01-01

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  10. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    Science.gov (United States)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  11. Rare earth doped M-type hexaferrites; ferromagnetic resonance and magnetization dynamics

    Directory of Open Access Journals (Sweden)

    Vipul Sharma

    2018-05-01

    Full Text Available M-type hexagonal barium ferrites come in the category of magnetic material that plays a key role in electromagnetic wave propagation in various microwave devices. Due to their large magnetic anisotropy and large magnetization, their operating frequency exceeds above 50 GHz. Doping is a way to vary its magnetic properties to such an extent that its ferromagnetic resonance (FMR response can be tuned over a broad frequency band. We have done a complete FMR study of rare earth elements neodymium (Nd and samarium (Sm, with cobalt (Co as base, doped hexaferrite nanoparticles (NPs. X-ray diffractometry, vibrating sample magnetometer (VSM, and ferromagnetic resonance (FMR techniques were used to characterize the microstructure and magnetic properties of doped hexaferrite nanoparticles. Using proper theoretical electromagnetic models, various parameters are extracted from FMR data which play important role in designing and fabricating high-frequency microwave devices.

  12. Evidence of dilute ferromagnetism in rare-earth doped yttrium aluminium garnet

    Energy Technology Data Exchange (ETDEWEB)

    Farr, Warrick G.; Goryachev, Maxim; Le Floch, Jean-Michel; Tobar, Michael E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia); Bushev, Pavel [Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken (Germany)

    2015-09-21

    This work demonstrates strong coupling regime between an erbium ion spin ensemble and microwave hybrid cavity-whispering gallery modes in a yttrium aluminium garnet dielectric crystal. Coupling strengths of 220 MHz and mode quality factors in excess of 10{sup 6} are demonstrated. Moreover, the magnetic response of high-Q modes demonstrates behaviour which is unusual for paramagnetic systems. This behaviour includes hysteresis and memory effects. Such qualitative change of the system's magnetic field response is interpreted as a phase transition of rare earth ion impurities. This phenomenon is similar to the phenomenon of dilute ferromagnetism in semiconductors. The clear temperature dependence of the phenomenon is demonstrated.

  13. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng

    2013-04-29

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  14. Synthesis, Characterization and Comparative Luminescence Studies of Rare-Earth-Doped Gd2O3 Nanoparticles

    Science.gov (United States)

    Pyngrope, D.; Singh, L. R.; Prasad, A. I.; Bora, A.

    2018-04-01

    A facile direct precipitation method was used for the synthesis of luminescence nanomaterial. Gd2O3 doped with rare earth element Eu3+ is synthesized by polyol route. The synthesized nanoparticles show their characteristic red emission. The nanoparticles are characterized by x-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and photoluminescence (PL) study. The synthesized nanoparticles are spherical particles with 30 nm size. The photoluminescence studies show the characteristic Eu3+ red emission. The PL study shows the intensity of the magnetic dipole transition ( 5 D0 \\to 7 F1 ) at 592 nm compared to that of the electronic dipole transition ( 5 D0 \\to 7 F2 ) at 615 nm. The nanomaterials can show significant application in various display devices and biomedical applications for tracking.

  15. Progress Towards Left-Handed Electromagnetic Waves in Rare-Earth Doped Crystals

    Science.gov (United States)

    Brewer, Nicholas Riley

    In 1968 Victor Veselago determined that a material with both a negative permittivity and negative permeability would have some extraordinary properties. The index of refraction of this material would be negative and light propagating inside would be 'left-handed'. This research went relatively unnoticed until the year 2000 when John Pendry discovered that a lens with an index of refraction of n = -1 could, in principle, have infinite resolution. Since 2000, research into negative index materials has exploded. The challenging part of this research is to get a material to respond to magnetic fields at optical frequencies. Artificially created metamaterials are able to achieve this and have been the focus of most negative index research. The long term goal of our project is to produce left-handed light in an atomic system. In order to do this, an atomic transition needs to be utilized that is magnetic dipole in character. Pure magnetic dipole transitions in the optical regime are more rare and fundamentally much weaker than the electric dipole transitions typically used in atomic physics experiments. They can be found, however, in the complex atomic structure of rare-earth elements. The 7F0 → 5D 1 transition in europium doped yttrium orthosilicate (Eu3+:Y 2SiO5) has a wavelength of 527.5 nm and is a pure magnetic dipole transition. We measured its dipole moment to be (0.063 +/- 0.005)mu B via Rabi oscillations, inferring a magnetization on the order of 10 -2 A/m. Demonstrating this large magnetic response at an optical frequency is a major first step in realizing left-handed light in atomic systems.

  16. High-resolution laser spectroscopy of rare-earth doped insulators: a personal perspective

    International Nuclear Information System (INIS)

    Macfarlane, Roger M.

    2002-01-01

    I offer some reflections on the past three decades of high-resolution spectroscopy of rare-earth ions in solids which was ushered in by the development of tunable lasers in the mid 1970s. A brief review is given of some of the accomplishments in the area of spectral hole-burning and coherent transient spectroscopy, emphasizing work with which the author has been associated. Spectral hole-burning has been characterized by a richness of mechanisms. These include population storage in nuclear-spin and electron-spin Zeeman sub-levels, hyperfine and superhyperfine levels and metastable optical levels with corresponding hole lifetimes from many hours to microseconds. In addition, persistent hole-burning has been seen in disordered materials and in those showing photo-ionization or photo-chemistry following excitation into zero-phonon lines. This has made hole-burning a generally useful technique for the measurement of magnetic and electric dipole moments, hyperfine interactions, spin relaxation and thermally induced line-broadening. Photon-echoes have proven to be the prime source of coherence-time information and coherence times as long as several milliseconds corresponding to optical resonance widths of less than 100 Hz have been reported. Tables summarizing these results and providing references to original work are included

  17. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles.

    Science.gov (United States)

    Townley, Helen E; Kim, Jeewon; Dobson, Peter J

    2012-08-21

    Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo.

  18. Quantum efficiency of silica-coated rare-earth doped yttrium silicate

    International Nuclear Information System (INIS)

    Cervantes-Vásquez, D.; Contreras, O.E.; Hirata, G.A.

    2013-01-01

    The photoluminescent properties of rare earth-activated white-emitting Y 2 SiO 5 :Ce,Tb nanocrystalline phosphor prepared by two different methods, pressure-assisted combustion synthesis and sol–gel, were studied. The synthesized phosphor samples were post-annealed at 1373 K and 1623 K in order to obtain the X1-Y 2 SiO 5 and X2-Y 2 SiO 5 phases, respectively, which were confirmed by X-ray diffraction measurements. Photoluminescence analysis showed the contribution of two blue-emission bands within the 380–450 nm region originating from 5d–4f transitions in Ce 3+ ions and a well-defined green emission of Tb 3+ ions located at 545 nm corresponding to 5 D 4 → 7 F 5 electronic transitions. Thereafter, Y 2 SiO 5 :Ce,Tb powders were coated with colloidal silica in order to investigate the effect of silica coatings on their luminescent properties. Absolute fluorescence quantum efficiency measurements were carefully performed, which revealed an increase of 12% of efficiency in coated compared with bare-Y 2 SiO 5 :Ce,Tb phosphor. -- Highlights: • Y 2 SiO 5 :Ce,Tb phosphor powders were successfully coated with colloidal silica. • Post-annealing treatments improved the quantum efficiency of silica-coated Y 2 SiO 5 :Ce,Tb phosphors. • Absolute fluorescence quantum efficiency measurements showed an increase of 12%

  19. Quantum efficiency of silica-coated rare-earth doped yttrium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes-Vásquez, D., E-mail: dcervant@cnyn.unam.mx [Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, B.C., México (Mexico); Contreras, O.E.; Hirata, G.A. [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, C.P. 22800 Ensenada, B.C., México (Mexico)

    2013-11-15

    The photoluminescent properties of rare earth-activated white-emitting Y{sub 2}SiO{sub 5}:Ce,Tb nanocrystalline phosphor prepared by two different methods, pressure-assisted combustion synthesis and sol–gel, were studied. The synthesized phosphor samples were post-annealed at 1373 K and 1623 K in order to obtain the X1-Y{sub 2}SiO{sub 5} and X2-Y{sub 2}SiO{sub 5} phases, respectively, which were confirmed by X-ray diffraction measurements. Photoluminescence analysis showed the contribution of two blue-emission bands within the 380–450 nm region originating from 5d–4f transitions in Ce{sup 3+} ions and a well-defined green emission of Tb{sup 3+} ions located at 545 nm corresponding to {sup 5}D{sub 4}→{sup 7}F{sub 5} electronic transitions. Thereafter, Y{sub 2}SiO{sub 5}:Ce,Tb powders were coated with colloidal silica in order to investigate the effect of silica coatings on their luminescent properties. Absolute fluorescence quantum efficiency measurements were carefully performed, which revealed an increase of 12% of efficiency in coated compared with bare-Y{sub 2}SiO{sub 5}:Ce,Tb phosphor. -- Highlights: • Y{sub 2}SiO{sub 5}:Ce,Tb phosphor powders were successfully coated with colloidal silica. • Post-annealing treatments improved the quantum efficiency of silica-coated Y{sub 2}SiO{sub 5}:Ce,Tb phosphors. • Absolute fluorescence quantum efficiency measurements showed an increase of 12%.

  20. Towards atomic scale engineering of rare-earth-doped SiAlON ceramics through aberration-corrected scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Yurdakul, Hilmi; Idrobo, Juan C.; Pennycook, Stephen J.; Turan, Servet

    2011-01-01

    Direct visualization of rare earths in α- and β-SiAlON unit-cells is performed through Z-contrast imaging technique in an aberration-corrected scanning transmission electron microscope. The preferential occupation of Yb and Ce atoms in different interstitial locations of β-SiAlON lattice is demonstrated, yielding higher solubility for Yb than Ce. The triangular-like host sites in α-SiAlON unit cell accommodate more Ce atoms than hexagonal sites in β-SiAlON. We think that our results will be applicable as guidelines for many kinds of rare-earth-doped materials.

  1. Enhancement of pump absorption efficiency by bending and twisting of double clad rare earth doped fibers (Conference Presentation)

    Science.gov (United States)

    Koška, Pavel; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Kasik, Ivan; Podrazký, Ondřej

    2017-05-01

    chaotic double-clad fiber amplifier," Opt. Lett., vol. 26, no. 12, pp. 872-874, (2001). [2] Kouznetsov, D., Moloney, J. V., "Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry," J. Opt. Soc. Am. B, vol. 19, no. 6, pp. 1259-1263, June 2002. [3] Li, Y., Jackson, S. D., Fleming, S., "High absorption and low splice loss properties of hexagonal double-clad fiber," IEEE Photonics Technol. Lett., vol 16, no. 11, pp. 2502-2504, Nov. 2004. [4] Ko\\vska, P. and Peterka, P., "Numerical analysis of pump propagation and absorption in specially tailored double-clad rare-earth doped fiber," Optical and Quantum Electronics, vol. 47, no. 9, pp. 3181-3191 (2015). [5] Ko\\vska, P., Peterka, P., and Doya, V., "Numerical modeling of pump absorption in coiled and twisted double-clad fibers," IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 2 (2016). [6] Ko\\vska, P., Peterka, P., Aubrecht, J., Podrazký, O., Todorov, F., Becker, M., Baravets, Y., Honzátko, P., and Kašík, I., "Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers," Opt. Express, vol. 24, no. 1, pp. 102-107 (2016).

  2. Thermochemistry of rare earth doped uranium oxides LnxU1-xO2-0.5x+y (Ln = La, Y, Nd)

    Science.gov (United States)

    Zhang, Lei; Navrotsky, Alexandra

    2015-10-01

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10-50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO1.5, UO2 and UO3 in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of LnxU1-xO2-0.5x+y is similar to that of UO2 to UO3 for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U5+, U6+, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements.

  3. Enhancing photovoltaic performance of dye-sensitized solar cell by rare-earth doped oxide of Lu2O3:(Tm3+, Yb3+)

    International Nuclear Information System (INIS)

    Li Qingbei; Lin Jianming; Wu Jihuai; Lan Zhang; Wang Yue; Peng Fuguo; Huang Miaoliang

    2011-01-01

    Highlights: → Tm 3+ /Yb 3+ codoped oxide is introduced into the TiO 2 film in dye-sensitized solar cell. → The RE improves light harvest via conversion luminescence and increases photocurrent. → The RE elevates the oxide film energy level and increases the cell photovoltage. → The cell efficiency is increased by 11.1% compared to the cell lacking of RE doping. - Abstract: In order to increase of the photocurrent, photovoltage and energy conversion efficiency of dye-sensitized solar cell (DSSC), rare-earth doped oxide of Lu 2 O 3 :(Tm 3+ , Yb 3+ ) is prepared and introduced into the TiO 2 film in the DSSC. As a luminescence medium, Lu 2 O 3 :(Tm 3+ , Yb 3+ ) improves incident light harvest via a conversion luminescence process and increases photocurrent; as a p-type dopant, the rare-earth ions elevate the energy level of the oxide film and increase the photovoltage. Under a simulated solar light irradiation of 100 mW cm -2 , the light-to-electric energy conversion efficiency of the DSSC with Lu 2 O 3 :(Tm 3+ , Yb 3+ ) doping reaches 6.63%, which is increased by 11.1% compared to the DSSC without Lu 2 O 3 :(Tm 3+ , Yb 3+ ) doping.

  4. Photo- and electro-luminescence of rare earth doped ZnO electroluminors at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Bhushan, S.; Kaza, B.R.; Pandey, A.N.

    1981-01-01

    Photo (PL) and electroluminescent (EL) spectra of some rare earth (La, Gd, Er or Dy) doped ZnO electroluminors have been investigated at liquid nitrogen temperature (LNT) and compared with their corresponding results at room temperature (RT). In addition to three bands observed at RT, one more band on the higher wavelength side appears in EL spectra. Spectral shift with the exciting intensity at LNT supports the donor-acceptor (DA) model in which the rare earths form the donor levels. From the temperature dependent studies of PL and EL brightness, the EL phenomenon is found to be more susceptible to traps. (author)

  5. Intense luminescence emission from rare-earth-doped MoO3 nanoplates and lamellar crystals for optoelectronic applications

    International Nuclear Information System (INIS)

    Vila, M; Díaz-Guerra, C; Jerez, D; Piqueras, J; Lorenz, K; Alves, E

    2014-01-01

    Strong and stable room-temperature photoluminescence (PL) emission is achieved in MoO 3 nanoplates and lamellar crystals doped with Er and Eu by ion implantation and subsequent annealing. Micro-Raman and PL spectroscopy reveal that optical activation of the rare earth ions and recovery of the original MoO 3 structure are achieved for shorter annealing treatments and for lower temperatures in nanoplates, as compared with lamellar crystals. Er seems to be more readily incorporated into optically active sites in the oxide lattice than Eu. The influence of the dimensionality of the host sample on the characteristics of the PL emission of both rare earth dopants is addressed. (paper)

  6. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.

    Science.gov (United States)

    Ganem, Joseph; Bowman, Steven R

    2013-11-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

  7. PHYSICAL AND ELECTRICAL PROPERTIES ENHANCEMENT OF RARE-EARTH DOPED-POTASSIUM SODIUM NIOBATE (KNN: A REVIEW

    Directory of Open Access Journals (Sweden)

    Akmal Mat Harttat Maziati

    2015-06-01

    Full Text Available Alkaline niobate mainly potassium sodium niobate, (KxNa1-x NbO3 (abreviated as KNN has long attracted attention as piezoelectric materials as its high Curie temperature (Tc and piezoelectric properties. The volatility of alkaline element (K, Na is, however detrimental to the stoichiometry of KNN, contributing to the failure to achieve high-density structure and lead to the formation of intrinsic defects. By partially doping of several rare-earth elements, the inherent defects could be improved significantly. Therefore, considerable attempts have been made to develop doped-KNN based ceramic materials with high electrical properties. In this paper, these research activities are reviewed, including dopants type and doping role in KNN perovskite structure.

  8. Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

    Science.gov (United States)

    Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew

    2018-05-01

    To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.

  9. Enhancement of single particle rare earth doped NaYF4: Yb, Er emission with a gold shell

    International Nuclear Information System (INIS)

    Li, Ling; Green, Kory; Hallen, Hans; Lim, Shuang Fang

    2015-01-01

    Upconversion of infrared light to visible light has important implications for bioimaging. However, the small absorption cross-section of rare earth dopants has limited the efficiency of these anti-Stokes nanomaterials. We present enhanced excitation absorption and single particle fluorescent emission of sodium yttrium fluoride, NaYF 4 : Yb, Er based upconverting nanoparticles coated with a gold nanoshell through surface plasmon resonance. The single gold-shell coated nanoparticles show enhanced absorption in the near infrared, enhanced total emission intensity, and increased green relative to red emission. We also show differences in enhancement between single and aggregated gold shell nanoparticles. The surface plasmon resonance of the gold-shell coated nanoparticle is shown to be dependent on the shell thickness. In contrast to other reported results, our single particle experimental observations are corroborated by finite element calculations that show where the green/red emission enhancement occurs, and what portion of the enhancement is due to electromagnetic effects. We find that the excitation enhancement and green/red emission ratio enhancement occurs at the corners and edges of the doped emissive core. (paper)

  10. Magnetic and magnetoelectric properties of NdCrTiO5 revealed by systematically rare-earth doping

    Science.gov (United States)

    Li, Qing; Feng, Zhenjie; Cheng, Cheng; Wang, Bojie; Chu, Hao; Huang, Ping; Wang, Difei; Qian, Xiaolong; Yu, Chuan; Wang, Guohua; Deng, Dongmei; Jing, Chao; Cao, Shixun; Zhang, Jincang

    2018-01-01

    We have systematically synthesized polycrystalline samples of Nd0.9A0.1CrTiO5 (A = Pr, Nd, Gd, Dy, Er, Tm, and Yb), and have investigated their crystal structure, polarization and magnetic susceptibility. The polarization values of doped samples are suppressed comparing to pure NdCrTiO5 sample, which indicates that the polarization is highly dependence with the magnetic moments of doping ions. The TN of Cr-Cr in Nd0.9A0.1CrTiO5 are dominated by both the suppression effect caused by doped magnetic moment increment and the enhancement effect caused by c axis contracting. We conclude that the magnetic moments in the rare-earth Nd sites play an important role in the magnetoelectric effect in NdCrTiO5 family. The substitution effect discussion here can help us well understand the intrinsic mechanism and provide a possible guidance in exploring new magnetoelectric coupling systems.

  11. Effect of rare earth doping on optical and spectroscopic characteristics of BaZrO3:Eu3+,Tb3+ perovskites

    Science.gov (United States)

    Katyayan, Shambhavi; Agrawal, Sadhana

    2018-06-01

    This paper reports structural investigations of rare earth doped BaZrO3 phosphors synthesized by Solid state reaction technique with varying concentrations of Eu3+ and Tb3+ from 0 mol% to 2 mol%. The synthesized phosphors show enhanced variable emissions in the visible region corresponding to different hypersensitive electronic transitions of Eu3+ and Tb3+ ions. With cubic structure confirmed in XRD analysis, the FESEM images show uniform grain connectivity and homogeneity of prepared samples. The TEM micrographs of the synthesized phosphors show agglomerated irregular structures. The synthesized phosphors were also subjected to FTIR, Raman, EDXS analysis along with studies of thermoluminescent and photoluminescent characteristics. On subjecting to 229 nm (UV) excitation, the phosphors show enhanced PL emissions corresponding to 571 nm (5D0-7F0), 591 nm (5D0-7F1), 615 nm (5D0-7F2) and 678 nm (5D0-7F4) hypersensitive transitions of Eu3+ ions and emission peaks at 489 nm (5D4-7F6), 539 nm (5D4-7F5), 589 nm (5D4-7F4) and 632 nm (5D4-7F3) accounting for electronic transitions of Tb3+ ions respectively. The computed average PL lifetime is 14.014 s. In the TL analysis, the second order of kinetics with the activation energy varying from 5.0 × 10‑1 eV to 6.6 × 10‑1 eV is reported. The maximum TL lifetime is estimated as 19.4985 min in the TL lifetime analysis.

  12. New Erbium Doped Antimony Glasses for Laser and Glass ...

    African Journals Online (AJOL)

    Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses.

  13. Characterisation and behaviour under irradiation of rare-earth doped powellite phases - Application to the long term behaviour of nuclear waste matrices

    International Nuclear Information System (INIS)

    Mendoza, C.

    2010-09-01

    This work deals with the behaviour under irradiation of a glass-ceramic made after heat treatment of a molybdenum rich R7/T7 type glass. Rare earth elements (Eu 3+ and Nd 3+ ) are used as surrogates of minor actinides and fission products as well as structural luminescent probes. We will focus on the behaviour of the crystalline phase which is a powellite type calcium molybdate that incorporated other elements including rare earth elements. In order to determine the crystalline-chemical properties of the powellite structure, Raman spectroscopy and photoluminescence analyses are led on natural powellite samples and synthetic ceramics with compositions from pure CaMoO 4 to Ca 0.76 Sr 0.1 Na 0.07 Eu 0.01 La 0.02 Nd 0.02 Pr 0.02 MoO 4 , a model composition of the crystalline phase of the glass-ceramic. The analyses of synthetic samples irradiated with He, Ar and Pb ions compared to the behaviour of a natural powellite sample that contains uranium indicate that powellite resist strongly to irradiation and never reach the amorphous state. (author)

  14. Energy Transfer between Post-Transition Elements & Rare Earths in Oxide & Chalcogenide Glasses.

    Science.gov (United States)

    1979-08-27

    Caird [13]. A calculation of reduced matrix elements of Pr3 in 20 Na O • 80 TeO2 glass [14] showed that they differ slightly from data of ref. [121... glasses Transition (lass 35 ZnO 65 TeO2 20 Na2 O 80 TeO 2 fX 106 fX 106 l.,eas 3a, a) Ia’l. faI f.me.s f al f+ I fal 3 H4 - 3 H6 1.56 1.65 1.12...Rare-Earth Doped Glasses 20. jIST HAEV CCnFn~m ,i cn,on ra e sideit If c."*Ar’ -- ~ 14-r by t?-h.c .: r Intensity parameters, radiative transition

  15. Performance of magneto-optical glass in optical current transducer application

    International Nuclear Information System (INIS)

    Shen, Yan; Lu, Yunhe; Liu, Zhao; Yu, Xueliang; Zhang, Guoqing; Yu, Wenbin

    2015-01-01

    First, a theoretical analysis was performed on the effect of temperature on the performance of the sensing element of paramagnetic rare earth-doped magneto-optical glass material that can be used in an optical current transducer application. The effect comprises two aspects: the linear birefringence and the Verdet constant. On this basis, rare earth-doped glass temperature characteristics were studied, and the experimental results indicated that the linear birefringence of rare earth-doped glass increased with increasing temperature, while its magneto-optical sensitivity decreased. Comparative experiments performed for various concentrations of rare earth dopant in the glass revealed that changes in the dopant concentration had no significant effect on the performance of magneto-optical glass. At last, a comparison between rare earth-doped magneto-optical and diamagnetic dense flint glass showed that the sensitivity of the former was six times that of the latter, although the temperature stability of the former was poorer. - Highlights: • Theoretical analysis on the effects of temperature on RE glass. • Rare earth doping leads to higher magneto-optical sensitivity. • The sensitivity of the RE glass is six times that of the dense flint glass

  16. Thermochemistry of rare earth doped uranium oxides Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} (Ln = La, Y, Nd)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Navrotsky, Alexandra, E-mail: anavrotsky@ucdavis.edu

    2015-10-15

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10–50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO{sub 1.5}, UO{sub 2} and UO{sub 3} in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} is similar to that of UO{sub 2} to UO{sub 3} for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U{sup 5+}, U{sup 6+}, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements. - Highlights: • We synthesize, characterize Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} solid solutions (Ln = La, Y, Nd). • Formation enthalpies become more exothermic with increasing rare earth content. • Oxidation enthalpy of Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} is similar to that of UO{sub 2} to UO{sub 3}. • Direct calorimetric measurements are in good agreement with free energy data.

  17. Computer modelling of defect structure and rare earth doping in LiCaAlF sub 6 and LiSrAlF sub 6

    CERN Document Server

    Amaral, J B; Valerio, M E G; Jackson, R A

    2003-01-01

    This paper describes a computational study of the mixed metal fluorides LiCaAlF sub 6 and LiSrAlF sub 6 , which have potential technological applications when doped with a range of elements, especially those from the rare earth series. Potentials are derived to represent the structure and properties of the undoped materials, then defect properties are calculated, and finally solution energies for rare earth elements are calculated, enabling preferred dopant sites and charge compensation mechanisms to be predicted.

  18. Structural properties of lithium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    Thomazini D.

    2001-01-01

    Full Text Available This paper presents the study on lithium triborate glass (LBO in the system (1-x|3B2O3.Li2O| (xNb2O5 yPr3+ zYb3+ wNd3+ with 0 <= x <= 20 mol% (y, z and w in mol%. The samples were studied by Raman spectroscopy, infrared absorption and differential thermal analysis. Pr3+-doped LBO and Pr3+/Yb3+-doped LBO samples show an increase of the glass transition and crystallization temperatures and a decrease of the fusion temperature associated with the increase of the praseodymium concentration in the LBO matrix. For the Nd3+-doped LBO and Pr3+/Yb3+-doped (LBO+Nb2O5 samples, a decrease of the glass transition temperature of the samples was observed. The increase of the rare earth doping leads to an increase of the difference between the glass transition and the crystallization temperatures. From infrared analysis it was possible to identify all the modes associated to the B-O structure. The NbO6 octahedra was also identified by IR spectroscopy for samples with x=5, 10, 15 and 20 mol% and y=0.05, z=1.1 mol%. Raman spectroscopy shows the presence of boroxol rings, tetrahedral and triangular coordination for boron. For samples containing niobium, the Raman spectra show the vibrational mode associated with the Nb-O bond in the niobium octahedra (NbO6.

  19. Room temperature ferromagnetism with large magnetic moment at low field in rare-earth-doped BiFeO₃ thin films.

    Science.gov (United States)

    Kim, Tae-Young; Hong, Nguyen Hoa; Sugawara, T; Raghavender, A T; Kurisu, M

    2013-05-22

    Thin films of rare earth (RE)-doped BiFeO3 (where RE=Sm, Ho, Pr and Nd) were grown on LaAlO3 substrates by using the pulsed laser deposition technique. All the films show a single phase of rhombohedral structure with space group R3c. The saturated magnetization in the Ho- and Sm-doped films is much larger than the values reported in the literature, and is observed at quite a low field of 0.2 T. For Ho and Sm doping, the magnetization increases as the film becomes thinner, suggesting that the observed magnetism is mostly due to a surface effect. In the case of Nd doping, even though the thin film has a large magnetic moment, the mechanism seems to be different.

  20. Thermoluminescence dosimetry of rare earth doped calcium ...

    Indian Academy of Sciences (India)

    Unknown

    Komath and their colleagues in the Bioceramics Division,. Sree Chitra Tirunal Institute for Medical Sciences and. Technology, Thiruvananthapuram, for providing laboratory facilities to carry out this work. The financial assistance provided by KSCSTE, Govt. of Kerala, for this work is gratefully acknowledged. References.

  1. Photo darkening of rare earth doped silica

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    2011-01-01

    /2/11/2 chemical bond is formed on dioxasilirane which comprises the PD color center for the visible and near-infrared. Difference in solid acidity of the silica material co-doped with Yb/Al and Yb/P may explain the observed difference in spectral shapes by change of bond order to the formed chemical bond. © 2011...

  2. Rare earth impact on glass structure and alteration kinetics

    International Nuclear Information System (INIS)

    Molieres, E.

    2012-01-01

    This work is related to the question of the geological deep repository of high-level waste glass. These wastes include fission products and minor actinides, elements which can be simulated by rare earths. As new glass compositions could enable increased rare earth concentrations, it is crucial to know and understand rare earth impact on glass structure on the one hand, and on glass alteration kinetics or their incorporation into an altered layer. This work studied simplified borosilicate glasses in order to limit synergetic effects between rare earths and other elements. Various complementary techniques were used to characterize pristine and altered glasses (solid-high resolution NMR, Raman spectroscopy, fluorescence, SIMS, SAXS). Firstly, the structural role of a rare earth is discussed and is compared to a calcium cation. The local environment of rare earths is also probed. Secondly, rare earth (nature and concentration) impact on several alteration regimes was studied (initial rate, rate drop). Then, after alteration, rare earth elements being retained within the altered layer, the structural impact of rare earth elements (and their local environment) in this alteration layer was also investigated. (author) [fr

  3. Rare earth ion controlled crystallization of mica glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garai, Mrinmoy; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in

    2016-09-05

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO{sub 2}, Nd{sub 2}O{sub 3}, Sm{sub 2}O{sub 3} and Gd{sub 2}O{sub 3} doped K{sub 2}O−MgO−B{sub 2}O{sub 3}−Al{sub 2}O{sub 3}−SiO{sub 2}−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm{sup −3}) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T{sub g}) and crystallization temperature (T{sub c}). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg{sub 3}(AlSi{sub 3}O{sub 10})F{sub 2} by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10{sup −6}/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque

  4. Rare earth ion controlled crystallization of mica glass-ceramics

    International Nuclear Information System (INIS)

    Garai, Mrinmoy; Karmakar, Basudeb

    2016-01-01

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO_2, Nd_2O_3, Sm_2O_3 and Gd_2O_3 doped K_2O−MgO−B_2O_3−Al_2O_3−SiO_2−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm"−"3) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T_g) and crystallization temperature (T_c). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg_3(AlSi_3O_1_0)F_2 by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10"−"6/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque fluorophlogopite mica glass-ceramics by single-step heat treatment. • Nanocrystalline glass

  5. The formation of crystals in glasses containing rare earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Fadzil, Syazwani Mohd [Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Hrma, Pavel [Pohang University of Science and Technology (POSTECH), Pohang, South Korea and Pacific Northwest National Laboratory, Richland, Washington (United States); Crum, Jarrod [Pacific Northwest National Laboratory, Richland, Washington (United States); Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt [National University of Malaysia, Bandar Baru Bangi, Selangor (Malaysia)

    2014-02-12

    Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd{sub 2}O{sub 3}–22.7CeO{sub 2}–11.7La{sub 2}O{sub 3}–10.9PrO{sub 2}–1.3Eu{sub 2}O{sub 3}–1.3Gd{sub 2}O{sub 3}–8.1Sm{sub 2}O{sub 3}–4.8Y{sub 2}O{sub 3} with a baseline glass of composition 60.2SiO{sub 2}–16.0B{sub 2}O{sub 3}–12.6Na{sub 2}O–3.8Al{sub 2}O{sub 3}–5.7CaO–1.7ZrO{sub 2}. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La{sub 2}O{sub 3} and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800°C to 1150°C in 50°C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO{sub 5}) and oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26}) were found in glasses containing La{sub 2}O{sub 3}, while oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26} and NaNd{sub 9}Si{sub 6}O{sub 26}) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (T{sub L}) of the glasses containing 5%, 10% and 15% La{sub 2}O{sub 3} were 800°C, 959°C and 986°C, respectively; while T{sub L} was 825°C, 1059°C and 1267°C for glasses

  6. Investigation and modelling of rare-earth activated waveguide structures

    International Nuclear Information System (INIS)

    Wolinski, W.; Malinowski, M.; Mossakowska-Wyszynska, A.; Piramidowicz, R.; Szczepanski, P.

    2005-01-01

    In this paper the overview of the recent study on the rare-earth activated waveguides performed in the Optoelectronic Department of IMiO is presented. We reported on the development of rare earth-doped fluorozirconate (ZBLAN) glass fibers that allow a construction of a new family of visible and ultraviolet fiber lasers pumped by upconversion. Especially the performance of holmium devices is presented. The properties of laser planar waveguides obtained by the LPE process and the growth conditions of rare earths doped YAG layers are presented. In this paper we present also the theoretical study of the nonlinear operation of planar waveguide laser, as an example the microdisk Nd:YAG structure is discussed. We derived an approximate formula which relates the small signal gain in the Nd:YAG active medium and the laser characteristics, obtained for whispering-gallery modes and radial modes, to the output power and real parameters of the laser structure (authors)

  7. A fast dynamic mode in rare earth based glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L. Z.; Xue, R. J.; Zhu, Z. G.; Wang, W. H.; Bai, H. Y., E-mail: hybai@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Ngai, K. L. [Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)

    2016-05-28

    Metallic glasses (MGs) usually exhibit only slow β-relaxation peak, and the signature of the fast dynamic is challenging to be observed experimentally in MGs. We report a general and unusual fast dynamic mode in a series of rare earth based MGs manifested as a distinct fast β′-relaxation peak in addition to slow β-relaxation and α-relaxation peaks. We show that the activation energy of the fast β′-relaxation is about 12RT{sub g} and is equivalent to the activation of localized flow event. The coupling of these dynamic processes as well as their relationship with glass transition and structural heterogeneity is discussed.

  8. Acoustic and Thermal Vibrational Behavior of Rare Earth Glasses

    International Nuclear Information System (INIS)

    Senin, H. B.; Kancono, W.; Sidek, H. A. A.

    2007-01-01

    The ultrasonic wave velocity and the thermal expansion of the rare earth glasses have been measured as functions of temperature and pressure to test predictions of the soft potential model for the acoustic and thermal properties. The longitudinal ultrasonic wave velocities increase under pressure. The hydrostatic pressure derivative of the bulk modulus is positive: these glasses show a normal elastic response as compressed. However, the pressure derivative of the shear modulus is negative and small, indicating weak softening of shear modes under pressure. The results found are used to determine the Gruneisen parameters. This is to obtain the acoustic mode contribution to thermal expansion. After subtraction of the relaxation and anharmonic contributions, the temperature dependence of the shear wave ultrasound velocity follows a linear law as predicted by the Soft Potential Model

  9. Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Sidiroglou, F.; Baxter, G. [Optical Technology Research Laboratory, College of Engineering and Science, Victoria University, P.O. Box 14428, Melbourne, VIC 8001 (Australia); Roberts, A. [School of Physics, The University of Melbourne, Melbourne, VIC 3010 (Australia)

    2016-04-15

    Rare-earth doped optical fibers have captivated the interest of many researchers around the world across the past three decades. The growth of this research field has been stimulated primarily through their application in optical communications as fiber lasers and amplifiers, although rare-earth doped optical fiber based devices are now finding important uses in many other scientific and industrial areas (for example, medicine, sensing, the military, and material processing). Such wide commercial interest has provided a strong incentive for innovative fiber designs, alternative glass compositions, and novel fabrication processes. A prerequisite for the ongoing progress of this research field is developing the capacity to provide high resolution information about the rare-earth dopant distribution profiles within the optical fibers. This paper constitutes a comprehensive review of the imaging techniques that have been utilized in the analysis of the distribution of the rare-earth ion erbium within the core of optical fibers.

  10. Photo darkening in Rare earth doped silica: Model and Experiment

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    2011-01-01

    A model for photo darkening based on chemical bond formation is presented. The formation process, color center spectral response and bleaching is discussed and model predictions is found to follow high power fiber laser operation......A model for photo darkening based on chemical bond formation is presented. The formation process, color center spectral response and bleaching is discussed and model predictions is found to follow high power fiber laser operation...

  11. Spectroscopy and dynamics of rare earth doped fluorides

    NARCIS (Netherlands)

    Ebens, Willem Omco

    1995-01-01

    The defect structure of RE doped Fluorides has been studied along with the conductivity properties, using a variety of techniques, both experimental and theoretical. Two systems have been studied in detail, which represent two kinds of defect states for RE doped SrFr. The system SrFr:CeF, has been

  12. Plasma synthesis of rare earth doped integrated optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Raoux, S.; Anders, S.; Yu, K.M.; Brown, I.G. [Lawrence Berkeley Lab., CA (United States); Ivanov, I.C. [Charles Evans & Associates, Redwood City, CA (United States)

    1995-03-01

    We describe a novel means for the production of optically active planar waveguides. The makes use of a low energy plasma deposition. Cathodic-arc-produced metal plasmas the metallic components of the films and gases are added to form compound films. Here we discuss the synthesis of Al{sub 2{minus}x}ER{sub x}O{sub 3} thin films. The erbium concentration (x) can vary from 0 to 100% and the thickness of the film can be from Angstroms to microns. In such material, at high active center concentration (x=l% to 20%), erbium ions give rise to room temperature 1.53{mu}m emission which has minimum loss in silica-based optical fibers. With this technique, multilayer integrated planar waveguide structures can be grown, such as Al{sub 2}O{sub 3}/Al{sub 2{minus}x}Er{sub x}O{sub 3}/Al{sub 2}O{sub 3}/Si, for example.

  13. Rare-earth doped phosphors: oldies or goldies?

    International Nuclear Information System (INIS)

    Moine, B.; Bizarri, G.

    2003-01-01

    The scientific research on phosphors has a long history starting more than 100 years ago. But recently the appearance of new kinds of displays and lighting devices (plasma display, fluorescent lamp without mercury, etc.) induced an increase of the research of new phosphors with better luminous efficiency than those available up to now. It has been shown that the behavior of 'classical' phosphors in a plasma display panel is quite different than in a cathode ray tube and that the vacuum ultraviolet (VUV) excitation process has to be studied with care in order to improve the phosphors efficiency. That is particularly true in PDPs. It is well established now that a good phosphor for electronic or ultraviolet excitation is not necessarily a good choice for excitation in VUV. This is probably due to the fact that the excitation process is very different in that case and also because the penetration depth of the VUV photons is extremely small inducing a large contribution of the surface of the phosphor. We will illustrate this with some examples. Methods to accelerate luminous intensity decrease under VUV excitation will be described. Low efficiency, fast aging process are both drawbacks that can be solved only in the framework of fundamental studies. Quantum cutting emission may be a solution for the first one but no satisfactory process was proposed for the moment to solve the second

  14. Modélisation et Spectroscopie des Vitrocéramiques Fluorées dopés par des Ions de Terres Rares pour Applications en Amplification dans l'Infrarouge

    OpenAIRE

    El Jouad , Mohamed

    2010-01-01

    This thesis concerns the characterization of rare earth doped fluoride glasses and glass ceramics. The interest of such materials and systems to achieve ultra-transparent with low losses and also with low phonon frequency avoiding the normal processes that limit the performance of laser emission. The study is based on two aspects: modeling and experimental spectroscopy. The emission spectroscopy measurements with site selection have the potential to probe the environment around the luminescen...

  15. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  16. High modulus rare earth and beryllium containing silicate glass compositions. [for glass reinforcing fibers

    Science.gov (United States)

    Bacon, J. F. (Inventor)

    1976-01-01

    Glass compositions having a Young's modulus of at least 16 million psi and a specific modulus of at least 110 million inches consisting essentially of approximately, by weight, 20 to 43% SiO2, 8 to 21% Al2O3, 4 to 10% BeO, 27 to 58% of at least one oxide selected from a first group consisting of Y2O3, La2O3, Nd2O3, Ce2O3, Ce2O3, and the mixed rare earth oxides, and 3 to 12% of at least one oxide selected from a second group consisting of MgO, ZrO2, ZnO and CaO are described. The molar ratio of BeO to the total content of the first group oxides is from 1.0 to 3.0.

  17. Physical, thermal and structural properties of Calcium Borotellurite glass system

    Energy Technology Data Exchange (ETDEWEB)

    Paz, E.C. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Açailândia, MA (Brazil); Dias, J.D.M. [CCSST – UFMA, Imperatriz, MA (Brazil); Melo, G.H.A. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Imperatriz, MA (Brazil); Lodi, T.A. [CCSST – UFMA, Imperatriz, MA (Brazil); Carvalho, J.O. [CCSST – UFMA, Imperatriz, MA (Brazil); IFTO, Araguaína, TO (Brazil); Façanha Filho, P.F.; Barboza, M.J.; Pedrochi, F. [CCSST – UFMA, Imperatriz, MA (Brazil); Steimacher, A., E-mail: steimacher@hotmail.com [CCSST – UFMA, Imperatriz, MA (Brazil)

    2016-08-01

    In this work the glass forming ability in Calcium Borotellurite (CBTx) glass system was studied. Six glass samples were prepared by melt-quenching technique and the obtained samples are transparent, lightly yellowish, with no visible crystallites. The structural studies were carried out by using XRD, FTIR, Raman Spectra, density measurements, and the thermal analysis by using DTA and specific heat. The results are discussed in terms of tellurium oxide content and their changes in structural and thermal properties of glass samples. The addition of TeO{sub 2} increased the density and thermal stability values and decreased glass transition temperature (Tg). Raman and FTIR spectroscopies indicated that the network structure of CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. CBTx system showed good glass formation ability and good thermal stability, which make CBTx glasses suitable for manufacturing process and a candidate for rare-earth doping for several optical applications. - Highlights: • Glass forming ability on Calcium Borotellurite system was studied. • The glass structure was investigated by XRD, Raman and FTIR. • The glass network structure of the CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. • The density and thermal stability of the CBTx glass decreases with TeO{sub 2} while the Cp and the Tg decreases. • The obtained CBTx glasses are suitable for manufacturing process and rare-earth doping for several optical applications.

  18. Influence of rare-earth ions on fluorogallate glass formation and properties

    International Nuclear Information System (INIS)

    Zhang Guoyin; Poulain, M.J.

    1998-01-01

    Various rare earths have been incorporated in a lead fluorogallate glass with the following chemical composition: 30PbF 2 -20GaF 3 -15InF 3 -20CdF 2 -15ZnF 2 (PGICZ). Selected rare earths are La, Ce, Pr, Nd, Gd, Er, Yb and Lu, and the doping level varies between 1 and 10 mol%. The influence of rare earth fluorides on glass forming ability and on physical properties is investigated. At low concentration ( 3 in a modified PGCIZ glass have been cast. Experimental results suggest that rare earths act as modifiers rather than vitrifies in this fluorogallate system. The effect of rare earths on the values of glass transition temperature, refractive index, density and thermal expansion is reported. (orig.)

  19. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Fadzil, Syazwani, E-mail: mfsyazwani86@postech.ac.kr [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 790784 Pohang, Gyeongbuk (Korea, Republic of); School of Applied Physics, Faculty of Science and Technology, The National University of Malaysia, 43650 Bandar Baru Bangi, Selangor (Malaysia); Hrma, Pavel [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 790784 Pohang, Gyeongbuk (Korea, Republic of); Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States); Schweiger, Michael J.; Riley, Brian J. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States)

    2015-10-15

    Pyroprocessing is are processing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl–KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the glass matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (T{sub L}): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE{sub 2}O{sub 3}) while possessing an acceptable chemical durability. - Highlights: • We investigated crystallization in borosilicate glasses containing rare earth oxides. • New crystallinity and durability data are shown for glasses proposed in the literature. • Both liquidus temperature and chemical durability increased as the waste loading increased.

  20. Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions

    Czech Academy of Sciences Publication Activity Database

    Kostka, Petr; Zavadil, Jiří; Iovu, M.S.; Ivanova, Z. G.; Furniss, D.; Seddon, A.B.

    2015-01-01

    Roč. 648, NOV 5 (2015), s. 237-243 ISSN 0925-8388 R&D Projects: GA ČR GAP106/12/2384 Institutional support: RVO:67985891 ; RVO:67985882 Keywords : chalcogenide glasses * rare earth ions * low-temperature photoluminescence * optical transmission Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 3.014, year: 2015

  1. Structure study and properties of rare earth-rich glassed for the conditioning of nuclear waste

    International Nuclear Information System (INIS)

    Bardez, I.

    2004-11-01

    A new nuclear glass composition, able to immobilize highly radioactive liquid wastes from high burn-up UO 2 fuel, was established and its structure studied. The composition of the selected rare earth-rich glass is (molar %): 61.79 SiO 2 - 8.94 B 2 O 3 - 3.05 Al 2 O 3 - 14.41 Na 2 O - 6.32 CaO - 1.89 ZrO 2 - 3.60 RE 2 O 3 (with RE = La, Ce, Pr and Nd) The aim of this study was to determine the local environment of the rare earth in this glass and also to glean information about the effect of glass composition on the rare earth neighbouring (influence of Si, B, Al, Na and Ca contents). To this end, several series of glasses, prepared from the baseline glass, were studied by different characterisation methods such as EXAFS spectroscopy at the neodymium L III -edge, optical absorption spectroscopy, Raman spectroscopy and 29 Si, 27 Al and 11 B MAS-NMR. By coupling all the results obtained, several hypotheses about the nature of the rare earth neighbouring in the glass were proposed. (author)

  2. Structure and properties of rare earth-rich glassed for nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Bardez, I.

    2004-11-01

    A new nuclear glass composition, able to immobilize highly radioactive liquid wastes from high burn-up UO 2 fuel, was established and its structure studied. The composition of the selected rare earth-rich glass is (molar %): 61.79 SiO 2 - 8.94 B 2 O 3 - 3.05 Al 2 O 3 - 14.41 Na 2 O - 6.32 CaO - 1.89 ZrO 2 - 3.60 RE 2 O 3 (with RE = La, Ce, Pr and Nd). The aim of this study was to determine the local environment of the rare earth in this glass and also to glean information about the effect of glass composition on the rare earth neighbouring (influence of Si, B, Al, Na and Ca contents). To this end, several series of glasses, prepared from the baseline glass, were studied by different characterisation methods such as EXAFS spectroscopy at the neodymium LIII-edge, optical absorption spectroscopy, Raman spectroscopy and 29 Si, 27 Al and 11 B MAS-NMR. By coupling all the results obtained, several hypotheses about the nature of the rare earth neighbouring in the glass were proposed. (author)

  3. High-average-power laser medium based on silica glass

    Science.gov (United States)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.

  4. Magnetic properties of 3d-transition metal and rare earth fluoride glasses

    International Nuclear Information System (INIS)

    Renard, J.P.; Dupas, C.; Velu, E.; Jacobini, C.; Fonteneau, G.; Lucas, J.

    1981-01-01

    The ac susceptibility of fluoride glasses in the ternary systems PbF 2 -MnF 2 -FeF 3 , ThF 4 -BaF 2 -MnF 2 , ZnF 2 -BaF 2 -RF 3 (R = Dy-Ho) has been studied down to 0.3 K. The susceptibility of rare earth glasses exhibits a broad maximum strongly dependent on the measuring frequency ν while a spin glass transition with a sharp susceptibility cusp nearly independent on ν is observed in 3d-transition metal glasses. Magnetic after effects are observed below the spin freezing temperature. (orig.)

  5. Low-field susceptibilities of rare earth spin glass alloys

    International Nuclear Information System (INIS)

    Sarkissian, B.V.B.

    1977-01-01

    Static susceptibility in various applied fields and AC susceptibility data on Sc 13% Gd and Sc 4.5% Tb spin glass alloys are reported. The data show that the sharp peak at the freezing temperature, Tsub(g), normally observed in the low-field susceptibility of spin glasses containing 3d magnetic impurities is observed here in the case of Gd, which is an S state solute, but not for Tb. On the contrary, for the Sc-Tb alloy a rather rounded maximum is observed which becomes slightly sharper with increasing applied magnetic fields. (author)

  6. Eu-activated fluorochlorozirconate glass-ceramic scintillators

    International Nuclear Information System (INIS)

    Johnson, J. A.; Schweizer, S.; Henke, B.; Chen, G.; Woodford, J.; Newman, P. J.; MacFarlane, D. R.

    2006-01-01

    Rare-earth-doped fluorochlorozirconate (FCZ) glass-ceramic materials have been developed as scintillators and their properties investigated as a function of dopant level. The paper presents the relative scintillation efficiency in comparison to single-crystal cadmium tungstate, the scintillation intensity as a function of x-ray intensity and x-ray energy, and the spatial resolution (modulation transfer function). Images obtained with the FCZ glass-ceramic scintillator and with cadmium tungstate are also presented. Comparison shows that the image quality obtained using the glass ceramic is close to that from cadmium tungstate. Therefore, the glass-ceramic scintillator could be used as an alternative material for image formation resulting from scintillation. Other inorganic scintillators such as single crystals or polycrystalline films have limitations in resolution or size, but the transparent glass-ceramic can be scaled to any shape or size with excellent resolution

  7. Structure and spectroscopy of rare earth – Doped lead phosphate glasses

    International Nuclear Information System (INIS)

    Pisarski, Wojciech A.; Żur, Lidia; Goryczka, Tomasz; Sołtys, Marta; Pisarska, Joanna

    2014-01-01

    Highlights: • Lead phosphate glasses doped with rare earth ions were prepared. • The local structure was examined using X-ray diffraction and spectroscopic methods. • Different structural phosphate groups are present in lead phosphate glasses. • The electron–phonon coupling strength and phonon energy of the glass host was determined. • Several observed emission bands are due to 4f–4f electronic transitions of rare earth ions. -- Abstract: Lead–gallium phosphate glasses doped with rare the earth ions (Eu 3+ , Dy 3+ , Tb 3+ , Er 3+ ) were synthesized. The structure of obtained glasses was examined by means of use: X-ray diffraction (XRD), nuclear magnetic resonance ( 207 Pb and 31 P NMR), fourier transform infrared (FT-IR) and Raman spectroscopy. In contrast to fully amorphous Ln-doped samples (Ln = Eu, Dy, Tb), in Er-doped sample the GaPO 4 crystalline phase was identified. It was found from the NMR, FT-IR and Raman spectroscopic techniques that, different structural phosphate groups were present in lead phosphate glasses. Based on absorption measurements, the UV–VIS cut-off wavelength for lead phosphate glass was determined and its value is close to 305 nm. Excitation and emission spectra of rare earths were also detected. From excitation spectra of Eu 3+ the electron–phonon coupling strength and phonon energy of the glass host were determined. Due to 4f 6 –4f 6 (Eu 3+ ), 4f 8 –4f 8 (Tb 3+ ), 4f 9 –4f 9 (Dy 3+ ) and 4f 11 –4f 11 (Er 3+ ) electronic transitions of trivalent rare earth ions several luminescence bands were stated

  8. Rapid determination of Faraday rotation in optical glasses by means of secondary Faraday modulator.

    Science.gov (United States)

    Sofronie, M; Elisa, M; Sava, B A; Boroica, L; Valeanu, M; Kuncser, V

    2015-05-01

    A rapid high sensitive method for determining the Faraday rotation of optical glasses is proposed. Starting from an experimental setup based on a Faraday rod coupled to a lock-in amplifier in the detection chain, two methodologies were developed for providing reliable results on samples presenting low and large Faraday rotations. The proposed methodologies were critically discussed and compared, via results obtained in transmission geometry, on a new series of aluminophosphate glasses with or without rare-earth doping ions. An example on how the method can be used for a rapid examination of the optical homogeneity of the sample with respect to magneto-optical effects is also provided.

  9. Infrared and Raman investigation of rare-earth phosphate glasses for potential use as radioactive waste forms

    International Nuclear Information System (INIS)

    Morgan, S.H.

    1989-01-01

    This project was designed to investigate the properties of the rare-earth phosphate glass systems CeO 2 -P 2 O 5 and Pr 2 O 3 -P 2 O 5 for potential use as radioactive waste glasses. The glass-forming region and optimum processing parameters of these glass systems were investigated. The structure of the host glasses and glassed loaded with simulated waste elements was investigated using Raman and infrared spectroscopy. Because of the radical differences in the spectra of the molybdenum-loaded glasses, the structure of the MoO 3 -P 2 O 5 glass system was also investigated. 29 refs., 8 figs., 2 tabs

  10. Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Petr, E-mail: petr.kostka@irsm.cas.cz [Institute of Rock Structure and Mechanics AS CR, V Holešovičkách 41, 182 09 Praha 8 (Czech Republic); Zavadil, Jiří [Institute of Photonics and Electronics AS CR, Chaberská 57, 182 51 Praha 8, Kobylisy (Czech Republic); Iovu, Mihail S. [Institute of Applied Physics, Academy of Sciences of Moldova, Str. Academiei 5, MD-28 Chisinau, Republic of Moldova (Moldova, Republic of); Ivanova, Zoya G. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Furniss, David; Seddon, Angela B. [Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2015-11-05

    Sulfide and oxysulfide bulk glasses Ga-La-S-O, Ge-Ga-S and Ge-Ga-As-S doped, or co-doped, with various rare-earth (RE{sup 3+}) ions are investigated for their room temperature transmission and low-temperature photoluminescence. Photoluminescence spectra are collected by using external excitation into the Urbach tail of the fundamental absorption edge of the host-glass. The low-temperature photoluminescence spectra are dominated by the broad-band luminescence of the host glass, with superimposed relatively sharp emission bands due to radiative transitions within 4f shells of RE{sup 3+} ions. In addition, the dips in the host-glass luminescence due to 4f-4f up-transitions of RE{sup 3+} ions are observed in the Ge-Ga-S and Ge-Ga-As-S systems. These superimposed narrow effects provide a direct experimental evidence of energy transfer between the host glass and respective RE{sup 3+} dopants. - Highlights: • An evidence of energy transfer from host-glass to doped-in RE ions is presented. • Energy transfer is manifested by dips in host-glass broad-band luminescence. • This channel of energy transfer is documented on selected RE doped sulfide glasses. • Photoluminescence spectra are dominated by broad band host-glass luminescence. • Presence of RE ions is manifested by superimposed narrow 4f-4f transitions.

  11. Preparation method and thermal properties of samarium and europium-doped alumino-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sava, B.A., E-mail: savabogdanalexandru@yahoo.com [National Institute of Research and Development for Optoelectronics, Department for Optospintronics, 409 Atomistilor Street, P.O. Box MG – 5, RO-77125 Magurele (Romania); Elisa, M., E-mail: astatin18@yahoo.com [National Institute of Research and Development for Optoelectronics, Department for Optospintronics, 409 Atomistilor Street, P.O. Box MG – 5, RO-77125 Magurele (Romania); Boroica, L., E-mail: boroica_lucica@yahoo.com [National Institute for Lasers, Plasma and Radiation Physics, 77125 Magurele (Romania); Monteiro, R.C.C., E-mail: rcm@fct.unl.pt [Center of Materials Research/Institute for Nanostructures, Nanomodelling and Nanofabrication, (CENIMAT/I3N), Department of Materials Sciences, Faculty of Sciences and Technology, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2013-12-01

    Highlights: • Improved preparation method of rare-earth-doped phosphate glasses was done. • Working and annealing temperatures were lower than for undoped phosphate glass. • Doped glass viscosity is also lower and has quasi-linear variation with temperature. • Exothermic peak appears at about 555 °C and 685 °C, due to devitrification in glass. -- Abstract: The present work investigates alumino-phosphate glasses from Li{sub 2}O–BaO–Al{sub 2}O{sub 3}–La{sub 2}O{sub 3}–P{sub 2}O{sub 5} system containing Sm{sup 3+} and Eu{sup 3+} ions, prepared by two different ways: a wet raw materials mixing route followed by evaporation and melt-quenching, and by remelting of shards. The linear thermal expansion coefficient measured by dilatometry is identical for both rare-earth-doped phosphate glasses. Comparatively to undoped phosphate glass the linear thermal expansion coefficient increases with 2 × 10{sup −7} K{sup −1} when dopants are added. The characteristic temperatures very slowly decrease but can be considered constant with atomic weight, atomic number and f electrons number of the doping ions in the case of T{sub g} (vitreous transition temperature) and T{sub sr} (high annealing temperature) but slowly increase in the case of T{sub ir} (low annealing temperature–strain point) and very slowly increase, being practically constant in the case of T{sub D} (dilatometric softening temperature). Comparatively to undoped phosphate glass the characteristic temperatures of Sm and Eu-doped glasses present lower values. The higher values of electrical conductance for both doped glasses, comparatively to usual soda-lime-silicate glass, indicate a slightly reduced stability against water. The viscosity measurements, showed a quasi-linear variation with temperature the mean square deviation (R{sup 2}) being ranged between 0.872% and 0.996%. The viscosity of doped glasses comparatively to the undoped one is lower at the same temperature. Thermogravimetric

  12. Rare earths: harvesting basic research for technology

    International Nuclear Information System (INIS)

    Jagatap, B.N.

    2014-01-01

    In recent years, rare earths are increasingly becoming a versatile platform for basic research that presents enormous technological potentials. A variety of nano-sized inorganic matrices varying from oxides, phosphates, gallates and aluminates, tungstates, stannates, vanadates to fluorides doped with different lanthanide ions have been synthesized and their optical properties have been investigated in the Chemistry Group, BARC. Another interesting application is laser cooling of solids using rare earth doped glasses with potential applications in remote cooling of electronic devices. Combining the luminescence properties of rare earths with photonic crystals is yet another potent area with wide ranging applications. In this presentation we provide an overview of these developments with examples from the R and D programs of the Chemistry Group, BARC

  13. Computer simulations of rare earth sites in glass: experimental tests and applications to laser materials

    International Nuclear Information System (INIS)

    Weber, M.J.

    1984-11-01

    Computer simulations of the microscopic structure of BeF 2 glasses using molecular dynamics are reviewed and compared with x-ray and neutron diffraction, EXAFS, NMR, and optical measurements. Unique information about the site-to-site variations in the local environments of rare earth ions is obtained using optical selective excitation and laser-induced fluorescence line-narrowing techniques. Applications and limitations of computer simulations to the development of laser glasses and to predictions of other static and dynamic properties of glasses are discussed. 35 references, 2 figures, 2 tables

  14. Low-field susceptibilities of rare-earth spin glass alloys

    International Nuclear Information System (INIS)

    Sarkissian, B.V.B.

    1978-01-01

    The low-field AC susceptibilities of the dilute rare-earth spin glass alloys Sc-Gd, Sc-Tb, Pr-Tb and Pr-Gd are reported and compared with low-field DC susceptibilities of the same samples. The similarities between their behaviour and that of Au-Fe spin glass alloys is also considered. When single-ion anisotropy is important, this can cause a dramatic broadening of the sharp peak. Broadening in the AC peak has also observed as the frequency of the deriving field is increased. These data can be qualitatively discussed in terms of a recent magnetic-cluster model for spin glasses. (author)

  15. Scintillation property of rare earth-free SnO-doped oxide glass

    OpenAIRE

    Masai, Hirokazu; Yanagida, Takayuki; Fujimoto, Yutaka; Koshimizu, Masanori; Yoko, Toshinobu

    2012-01-01

    The authors have demonstrated scintillation of rare earth (RE)-free Sn-doped oxide glass by excitation of ionizing radiation. It is notable that light emission is attained for RE-free transparent glass due to s[2]-sp transition of Sn[2+] centre and the emission correlates with the excitation band at 20 eV. We have also demonstrated that excitation band of emission centre can be tuned by the chemical composition of the host glass. The present result is valuable not only for design of RE-free i...

  16. [Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements].

    Science.gov (United States)

    Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo

    2015-08-01

    The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.

  17. Elastic properties and molar volume of rare-earth aluminosilicae glasses

    International Nuclear Information System (INIS)

    Tanabe, S.; Hirao, K.; Soga, N.

    1992-01-01

    This paper reports on the elastic properties, molar volume, and glass transition temperature (T g ) of rare-earth-containing aluminosilicate glasses that were investigated in the compositions of SiO 2 --LnAlO 3 and SiO 2 --Ln 3/4 Al 5/4 O 3 , where Ln is Y, La, Nd, Eu, or Yb. The molar volume decreased with decreased ionic size of the Ln 3+ ion, and T g and elastic moduli increased in the same order. The Yb-containing glasses showed the highest Young's modulus among all the oxide glasses, even higher than the highest value ever known fro glass containing Y 2 O 3 , as expected from the smaller ionic radius of Yb 3+ than that of Y 3+ . The bulk modulus was found to be almost proportional to the inverse four-thirds power of the molar volume of glasses in each composition, indicating that Ln 3+ ions can substitute for each other without changing the glass structure except for the size of the local structure around themselves. From the comparison of these properties, the structural role of rate-earth ions in these glasses is discussed

  18. Dosimetric and kinetic parameters of lithium cadmium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    J. Anjaiah

    2014-10-01

    Full Text Available Thermoluminescence (TL characteristics of X-ray irradiated pure and doped with four different rare earth ions (viz., Pr3+, Nd3+, Sm3+ and Eu3+ Li2O–Cdo–B2O3 glasses have been studied in the temperature range 303–573 K; the pure glass has exhibited single TL peak at 466 K. When this glass is doped with different rare earth ions no additional peaks are observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve is found to be maximum for Eu3+ doped glasses. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen's formulae. The possible use of these glasses in radiation dosimetry has been described. The result clearly showed that europium doped cadmium borate glass has a potential to be considered as the thermoluminescence dosimeter.

  19. Spectroscopic and visible luminescence properties of rare earth ions in lead fluoroborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Anjaiah, G. [Department of Physics, Osmania University, Hyderabad 500007 (India); Nayab Rasool, SK. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Kistaiah, P., E-mail: pkistaiah@yahoo.com [Department of Physics, Osmania University, Hyderabad 500007 (India)

    2015-03-15

    The lanthanide doped lead lithium calcium zinc fluoroborate glasses (LLCZFB:Ln) of composition 20PbF{sub 2}+10Li{sub 2}O+5Cao+5ZnO+59B{sub 2}O{sub 3}+1Ln{sub 2}O{sub 3} (where Ln=Sm, Eu and Dy in mol%) were prepared by conventional melt quench technique. The amorphous nature of these glasses was confirmed by X-ray diffraction studies. The glass transition temperatures (T{sub g}) were studied by DSC analysis. The glass structure and spectroscopic properties were investigated using optical absorption, vibrational and fluorescence spectra. The FT-IR spectra and Raman spectra reveal the presence of BO{sub 3}, BO{sub 4} and non-bridging oxygen's. The Judd–Ofelt intensity parameters Ω{sub λ} (λ=2, 4, 6) were determined from the spectral intensities of absorption bands. These parameters were used to calculate the radiative parameters such as radiative transition probability (A{sub R}), radiative life time (τ{sub R}) and branching ratio (β{sub r}) for various excited luminescent states of rare earth ions. The visible emission spectra for different rare earth ions were recorded by exciting the samples at different wavelengths and the decay rates for the different rare earth ions were measured. Using the emission spectra, full width half maxima (FWFM), stimulated emission cross section (σ{sup E}{sub p}) were evaluated. The nature of decay profiles of {sup 4}F{sub 9/2}, {sup 4}G{sub 5/2} and {sup 5}D{sub 0} states of Dy, Sm and Eu ions respectively are analyzed. Comparison of luminescence features of these glasses and also with those reported for different glass hosts indicates that the LLCZFB:Dy glass has strong luminescence in the visible region. - Highlights: • LLCZFB:Ln glasses are prepared with Ln: Sm, Eu and Dy. • Glasses are characterized by XRD, FTIR, Raman, absorption and emission spectra. • J–O theory is used to calculate different radiative properties. • Green, yellow and red emissions are observed. • Glasses are useful for the development

  20. Crystallization and structural approaches of rare earths aluminosilicate glasses (Ln = La, Y, Sc)

    International Nuclear Information System (INIS)

    Sadiki, N.; Coutures, J.P.; Hennet, L.; Florian, P.; Vaills, Y.; Massiot, D.

    2010-01-01

    The crystallization behaviour of aluminosilicate glasses of lanthanum, yttrium and scandium has been studied by DTA, XRD, SEM-EDX and EPMA analysis. Young modulus E and hardness H have been measured by using nano-indentation and elastic modulus C 11 and C 44 by Brillouin scattering. The Young modulus measured by nano-indentation agree to those determined by Brillouin scattering and those calculated using Makishima-Mackenzie and Rocherulle model's. The results of DTA analysis indicate that (a) the glass transition temperatures T g are higher for yttrium and scandium containing glasses than their lanthanum counterparts, the melting observed in the yttrium glasses and recently in the scandium glasses correspond to the ternary eutectic Ln 2 O 3 -Al 2 O 3 -SiO 2 (Ln = Y, Sc) (b) the thermal stability is strongly related to the ionic radii of the rare earth. The last results obtained on scandium containing glasses confirm this hypothesis. The XRD results show that the nature of the observed crystallized phases is consistent with the phase diagrams. We also have investigated by NMR-MAS of 27 Al (high field- 17.6 T) these glasses. The results indicate that Al(V) species are correlated to the ionic radii of the rare earth. X-rays and neutron scattering experiments have been respectively performed on the high energy diffraction beam lines ID11 and ID15 at ESRF. The interatomic distances and first-shell coordination numbers were determined. The results are consistent with those performed by NMR-MAS. (authors)

  1. Structural and crystallisation study of a rare earth alumino borosilicate glass designed for nuclear waste confinement

    International Nuclear Information System (INIS)

    Quintas, A.

    2007-09-01

    This work is devoted to the study of a rare earth alumino borosilicate glass, which molar composition is 61,81 SiO 2 - 3,05 Al 2 O 3 - 8,94 B 2 O 3 - 14,41 Na 2 O - 6,33 CaO - 1,90 ZrO 2 - 3,56 Nd 2 O 3 , and envisaged for the immobilization of nuclear wastes originating from the reprocessing of high discharge burn up spent fuel. From a structural viewpoint, we investigated the role of the modifier cations on the arrangement of the glass network through different modifications of the glass composition: variation of the Na/Ca ratio and modification of the nature of the alkali and alkaline earth cations. The NMR and Raman spectroscopic techniques were useful to determine the distribution of modifier cations among the glass network and also to cast light on the competition phenomena occurring between alkali and alkaline earth cations for charge compensation of [AlO 4 ] - and [BO 4 ] - species. The neodymium local environment could be probed by optical absorption and EXAFS spectroscopies which enabled to better understand the insertion mode of Nd 3+ ions among the silicate domains of the glass network. Concerning the crystallization behavior we were interested in how the glass composition may influence the crystallization processes and especially the formation of the apatite phase of composition Ca 2 Nd 8 (SiO 4 ) 6 O 2 . In particular, this work underlined the important role of both alkaline earth and rare earth cations on the crystallization of the apatite phase. (author)

  2. Investigation of local environment around rare earths (La and Eu) by fluorescence line narrowing during borosilicate glass alteration

    International Nuclear Information System (INIS)

    Molières, Estelle; Panczer, Gérard; Guyot, Yannick; Jollivet, Patrick; Majérus, Odile; Aschehoug, Patrick; Barboux, Philippe; Gin, Stéphane; Angeli, Frédéric

    2014-01-01

    The local environment of europium in soda-lime borosilicate glasses with a range of La 2 O 3 content was probed by continuous luminescence and Fluorescence Line Narrowing (FLN) to investigate the local environment of rare earth elements in pristine and leached glass. After aqueous leaching at 90 °C at pH 7 and 9.5, rare earths were fully retained and homogeneously distributed in the amorphous alteration layer (commonly called gel). Two separate silicate environments were observed in pristine and leached glasses regardless of the lanthanum content and the leaching conditions. A borate environment surrounding europium was not observed in pristine and leached glasses. During glass alteration, OH groups were located around the europium environment, which became more organized (higher symmetry) in the first coordination shell. -- Highlights: • No borate environment surrounding europium was detected in pristine borosilicate glasses. • Up to 12 mol% of REE2O3 in glass, local environment of europium does not significantly change. • Europium environment becomes more ordered and symmetric in gels than in pristine glasses. • Two distinct silicate sites were observed, as well in pristine glass as in gels (leached glasses). • In altered glasses, OH groups were located around europium

  3. Investigation of local environment around rare earths (La and Eu) by fluorescence line narrowing during borosilicate glass alteration

    Energy Technology Data Exchange (ETDEWEB)

    Molières, Estelle [CEA – DEN-DTCD-LCV-SECM Laboratoire d' études du Comportement à Long Terme, 30207 Bagnols-sur-Cèze (France); Panczer, Gérard; Guyot, Yannick [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Jollivet, Patrick [CEA – DEN-DTCD-LCV-SECM Laboratoire d' études du Comportement à Long Terme, 30207 Bagnols-sur-Cèze (France); Majérus, Odile; Aschehoug, Patrick; Barboux, Philippe [Laboratoire de Chimie de la Matière Condensée de Paris, UMR-CNRS 7574, École Nationale Supérieure de Chimie de Paris (ENSCP Chimie-ParisTech), 11 rue Pierre et Marie Curie, 75231 Paris (France); Gin, Stéphane [CEA – DEN-DTCD-LCV-SECM Laboratoire d' études du Comportement à Long Terme, 30207 Bagnols-sur-Cèze (France); Angeli, Frédéric, E-mail: frederic.angeli@cea.fr [CEA – DEN-DTCD-LCV-SECM Laboratoire d' études du Comportement à Long Terme, 30207 Bagnols-sur-Cèze (France)

    2014-01-15

    The local environment of europium in soda-lime borosilicate glasses with a range of La{sub 2}O{sub 3} content was probed by continuous luminescence and Fluorescence Line Narrowing (FLN) to investigate the local environment of rare earth elements in pristine and leached glass. After aqueous leaching at 90 °C at pH 7 and 9.5, rare earths were fully retained and homogeneously distributed in the amorphous alteration layer (commonly called gel). Two separate silicate environments were observed in pristine and leached glasses regardless of the lanthanum content and the leaching conditions. A borate environment surrounding europium was not observed in pristine and leached glasses. During glass alteration, OH groups were located around the europium environment, which became more organized (higher symmetry) in the first coordination shell. -- Highlights: • No borate environment surrounding europium was detected in pristine borosilicate glasses. • Up to 12 mol% of REE2O3 in glass, local environment of europium does not significantly change. • Europium environment becomes more ordered and symmetric in gels than in pristine glasses. • Two distinct silicate sites were observed, as well in pristine glass as in gels (leached glasses). • In altered glasses, OH groups were located around europium.

  4. Effect of the addition of Na2O on the thermal stability of alumino silicated glasses rich in rare earths

    International Nuclear Information System (INIS)

    Lassalle-Herraud, Olivier; Matecki, Marc; Glorieux, Benoit; Sadiki, Najim; Montoullout, Valerie; Dussossoy, Jean-Luc

    2006-01-01

    Alumino silicated glasses rich in rare earths have been prepared by concentrated solar way. Their recrystallization, the structural and microstructural properties as well as the mechanical and thermal properties of these glasses have been studied. The results show the effect of sodium addition on the thermal stability of the materials, the vitreous transition temperature and the recrystallization temperature. A heat treatment has allowed to reveal the formation of sodium apatite micro-crystallites and of lanthanum silicate in the glasses. (O.M.)

  5. A Glass-Ceramic Waste Forms for the Immobilization of Rare Earth Oxides from the Pyroprocessing Waste salt

    International Nuclear Information System (INIS)

    Ahn, Byung-Gil; Park, Hwan-Seo; Kim, Hwan-Young; Kim, In-Tae

    2008-01-01

    The fission product of rare earth (RE) oxide wastes are generates during the pyroprocess . Borosilicate glass or some ceramic materials such as monazite, apatite or sodium zirconium phosphate (NZP) have been a prospective host matrix through lots of experimental results. Silicate glasses have long been the preferred waste form for the immobilization of HLW. In immobilization of the RE oxides, the developed process on an industrial scale involves their incorporation into a glass matrix, by melting under 1200 ∼ 1300 .deg. C. Instead of the melting process, glass powder sintering is lower temperature (∼ 900 .deg. C) required for the process which implies less demanding conditions for the equipment and a less evaporation of volatile radionuclides. This study reports the behaviors, direct vitrification of RE oxides with glass frit, glass powder sintering of REceramic with glass frit, formation of RE-apatite (or REmonazite) ceramic according to reaction temperature, and the leach resistance of the solidified waste forms

  6. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Glass Containing Nanometer-Sized Metallic Particles

    International Nuclear Information System (INIS)

    Jia Youhua; Zhong Biao; Yin Jianping

    2009-01-01

    The enhanced laser cooling performance of rare-earth-ions-doped glasses containing small particles is predicted. This is achieved by the enhancement of local field around rare earth ions, owing to the surface plasmon resonance of small metallic particles. The role of energy transfer between ions and the particle is theoretical discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption and the fluorescence is predicted. Moreover, taking Yb 3+ -doped ZBLAN as example, the cooling power and heat-light converting efficiency are calculated. It is finally concluded that the absorption and the fluorescence are greatly enhanced in these composite materials, the cooling power is increased compared to the bulk material. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Plasmon-Assisted Efficiency Enhancement of Eu3+-Doped Tellurite Glass-Covered Solar Cells

    Science.gov (United States)

    Lima, Bismarck C.; Gómez-Malagón, L. A.; Gomes, A. S. L.; Garcia, J. A. M.; Kassab, L. R. P.

    2017-12-01

    Rare-earth-doped tellurite glass containing metallic nanoparticles can be exploited to manage the solar spectrum in order to increase solar cell efficiency. It is therefore possible to modify the incident solar spectrum profile to the spectrum that optimizes the solar cell recombination process by covering the solar cell with plasmonic luminescent downshifting layers. With this approach, the losses due to thermalization are minimized and the efficiency is increased. Due to the down-conversion process that couples the plasmon resonance of the metallic nanoparticles and the rare-earth electronic energy levels, it is possible to convert photons from the ultraviolet region to the visible and near-band-gap region of the semiconductor. It is demonstrated here that plasmon-assisted efficiency enhancements of 14.0% and 34.5% can be obtained for commercial Si and GaP solar cells, respectively, covered with Eu3+-doped TeO2-ZnO glass containing silver nanoparticles.

  8. Application of lanthanide ions doped in different glasses

    International Nuclear Information System (INIS)

    Dhondiyal, Charu Chandra

    2015-01-01

    The transfer of optical excitation energy from one ion/molecule to another ion/molecule has proved to be of potential importance in industrial application as well as research. Rare earth elements (RE) although not as rare as some of them occur more prevalently then other well known material (e.g. silver, tin, tungsten) are special group of elements of the periodic table comprising lanthanide series (from lanthanum to lutetium) and actinide series (from actinium to lawrencium). Most of the actinides are highly radioactive hence their uses are limited. Fluorescence is the particular optical property of lanthanide (RE) ions. The narrow absorption and emission lines exhibited by the RE ions in crystals, glasses and solutions have always made these ions attractive as sensitive probes of solids and liquid state and also makes them useful in laser technology, CRT displays, UV to visible converters and optical communications etc. In recent years there has been a special interest to study the properties and applications of rare earth doped in glasses. Lanthanide ions in glasses play an important role, especially by retaining their emission capabilities, in the host matrix. Glass as a dielectric material plays an important role in science and industry. Its chemical, physical and particular optical properties make it suitable for applications such as opto-electronic materials, laboratory equipment, laser gain media, etc. Photoluminescence from rare earth doped glasses are of major interest in the research area of optoelectronic device applications like phosphors, display monitors, lasers and amplifiers for communication systems. Now a days, development of optical devices based on rare-earth ions doped materials is one of the interesting fields of research. Rare earth doped glasses are widely used as laser materials, optical amplifiers, optical memory devices, magneto-optical devices, medical lasers, eye safe lasers, flat panel displays, fluorescent lamps, white LED's etc

  9. Thermogravimetric investigation into some crystals of rare earth ultraphosphates and glasses on their base

    Energy Technology Data Exchange (ETDEWEB)

    Dudko, G D; Musiyachenko, V D; Shevelevich, R S; Gut' ko, A D

    1986-01-01

    Thermal properties of crystal and glass-like ulraphosphates (UP) rare earth and bismuth: LnP/sub 5/O/sub 14/, where Ln-La, Nd, Eu, Gd, and (R, Nd)P/sub 5/O/sub 14/, where R=La, Gd, Bi, depending on their thermal prehistory are studied. The ratio R/sub 2/O/sub 3/:Nd/sub 2/O/sub 3/ equals 1:2. The glasses were produced by initial UP melt cooling from 1200 deg C to room temperature. It is shown, that the reaction of continuous decomposition with the maximum rate at 1000-1080 deg C and the loss of P/sub 2/O/sub 5/ at 1200 deg C not exceeding 4.5 weight % precedes the melting of LnP/sub 5/O/sub 14/ type crystal, where Ln=La, Nd, Eu, Gd, and (R, Nd)P/sub 5/O/sub 14/, where R=La, Gd, Bi (at the temperatures 1035-1100 deg C). The decomposition activation energy E/sub a/, as well as melting enthalpy ..delta..H/sub melting/ and melting temperature t/sub melting/ of LnP/sub 5/O/sub 14/ crystals, decrease in the series from La to Gd with the increase in the rare earth atomic number E/sub a/:580+-34-464+-32 kJ/mol, ..delta..H/sub melting/:37+-3-32+-2 kJ/mol, t/sub melting/:1100+-10-1035+-10 deg C.

  10. Behaviour of rare earth elements, as natural analogues of transuranium elements, during weathering of basaltic glasses

    International Nuclear Information System (INIS)

    Daux, V.; Crovisier, J.L.; Petit, J.C.

    1991-01-01

    Subglacial basaltic glasses from Iceland have been studied in order to investigate REE behaviour low-temperature weathering. Just as actinides accumulate in the hydrated superficial corrosion layer of borosilicate glasses, REEs are found to be enriched in the natural corrosion layer of basaltic glasses (palagonite). However, this enrichment is only relative for basaltic glasses [fr

  11. From Selenium- to Tellurium-Based Glass Optical Fibers for Infrared Spectroscopies

    Directory of Open Access Journals (Sweden)

    Jacques Lucas

    2013-05-01

    Full Text Available Chalcogenide glasses are based on sulfur, selenium and tellurium elements, and have been studied for several decades regarding different applications. Among them, selenide glasses exhibit excellent infrared transmission in the 1 to 15 µm region. Due to their good thermo-mechanical properties, these glasses could be easily shaped into optical devices such as lenses and optical fibers. During the past decade of research, selenide glass fibers have been proved to be suitable for infrared sensing in an original spectroscopic method named Fiber Evanescent Wave Spectroscopy (FEWS. FEWS has provided very nice and promising results, for example for medical diagnosis. Then, some sophisticated fibers, also based on selenide glasses, were developed: rare-earth doped fibers and microstructured fibers. In parallel, the study of telluride glasses, which can have transmission up to 28 µm due to its atom heaviness, has been intensified thanks to the DARWIN mission led by the European Space Agency (ESA. The development of telluride glass fiber enables a successful observation of CO2 absorption band located around 15 µm. In this paper we review recent results obtained in the Glass and Ceramics Laboratory at Rennes on the development of selenide to telluride glass optical fibers, and their use for spectroscopy from the mid to the far infrared ranges.

  12. Erbium concentration dependent absorbance in tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Sazali, E. S., E-mail: mdsupar@utm; Rohani, M. S., E-mail: mdsupar@utm; Sahar, M. R., E-mail: mdsupar@utm; Arifin, R., E-mail: mdsupar@utm; Ghoshal, S. K., E-mail: mdsupar@utm; Hamzah, K., E-mail: mdsupar@utm [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  13. Optical Characterization of Rare Earth-doped Wide Band Gap Semiconductors

    National Research Council Canada - National Science Library

    Hommerich, Uwe

    1999-01-01

    ...+) PL intensity under below gap excitation. Photoluminescence excitation (PLE) studies revealed that oxygen/carbon introduces a broad below gap PLE band, which provides an efficient pathway for E(3+) excitation...

  14. Luminescence properties of rare earth doped metal oxide nanostructures: A case of Eu-ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, D. [School of Basic Sciences, Centurion University of Technology and Management, Odisha-752050 India (India); Acharya, B. S. [Department of Physics, C.V. Raman College of Engineering, Bhubaneswar, Odisha, India-752054 (India); Panda, N. R., E-mail: nihar@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha-751013 India (India)

    2016-05-06

    The present study reports the growth and luminescence properties of Eu doped ZnO nanostructures. The experiment has been carried out by synthesizing the materials by simple wet-chemical method. X-ray diffraction (XRD) studies show expansion of ZnO lattice with the incorporation of Eu ions which has been confirmed from the appearance of Eu{sub 2}O{sub 3} as a minor phase in the XRD pattern. The estimation of crystallite size from XRD results matches closely with the results obtained from transmission electron microscopy. Further, these results show the formation of nanosized Eu-ZnO particles of average size around 60 nm stacked on each other. FTIR studies show the presence of both Zn-O and Eu-O modes in the spectra supporting the results obtained from XRD. The interesting results obtained from photoluminescence (PL) measurements show the presence of both band edge emission in UV region and the defect emissions in violet, blue and green region. The appearance of {sup 5}D{sub 0}→{sup 7}F{sub J} transitions of Eu{sup 3+} ions in red region clearly suggests the possible occurrence of energy transfer between the energy states of ZnO host and Eu{sup 3+} ions.

  15. Rare Earth Doped GaN Laser Structures Using Metal Modulated Epitaxy

    Science.gov (United States)

    2015-03-30

    Technology and Physics of MBE. Plenum, New York. (1985) p.38 5. Shawn D. Burnham, Improved Understanding And Control Of Magnesium -Doped Gallium Nitride By...range in order to minimize Mg self-compensation or other kind of defects. The other straightforward method is to increase the magnesium concentration...tested using NaOH etching 22. The surface is resistant to the etching indicating that no polarity inversion occurs during the growth, even though Mg

  16. Rare earth doped nanoparticles in organic and inorganic host materials for application in integrated optics

    NARCIS (Netherlands)

    Dekker, R.; Hilderink, L.T.H.; Diemeer, Mart; Stouwdam, J.W.; Sudarsan, V; van Veggel, F.C.J.M.; Driessen, A.; Worhoff, Kerstin; Misra, D; Masscher, P.; Sundaram, K.; Yen, W.M.; Capobianco, J.

    2006-01-01

    The preparation and the optical properties of lanthanum fluoride (LaF3) nanoparticles doped with erbium and neodymium will be discussed. Organic and inorganic materials in the form of polymers and sol-gels were used to serve as the hosts for the inorganic nanoparticles, respectively. The organic

  17. Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials

    International Nuclear Information System (INIS)

    Thiel, C W; Macfarlane, R M; Cone, R L; Sun, Y; Böttger, T; Sinclair, N; Tittel, W

    2014-01-01

    A method is introduced for quantitatively analyzing photon echo decay measurements to characterize excitation-induced decoherence resulting from the phenomenon of instantaneous spectral diffusion. Detailed analysis is presented that allows fundamental material properties to be extracted that predict and describe excitation-induced decoherence for a broad range of measurements, applications and experimental conditions. Motivated by the need for a method that enables systematic studies of ultra-low decoherence systems and direct comparison of properties between optical materials, this approach employs simple techniques and analytical expressions that avoid the need for difficult to measure and often unknown material parameters or numerical simulations. This measurement and analysis approach is demonstrated for the 3 H 6 to 3 H 4 optical transition of three thulium-doped crystals, Tm 3+ :YAG, Tm 3+ :LiNbO 3 and Tm 3+ :YGG, that are currently employed in quantum information and classical signal processing demonstrations where minimizing decoherence is essential to achieve high efficiencies and large signal bandwidths. These new results reveal more than two orders of magnitude variation in sensitivity to excitation-induced decoherence among the materials studied and establish that the Tm 3+ :YGG system offers the longest optical coherence lifetimes and the lowest levels of excitation-induced decoherence yet observed for any known thulium-doped material. (paper)

  18. The Effects of Rare Earth Doping on Gallium Nitride Thin Films

    Science.gov (United States)

    2011-09-01

    capture in a solid state device,” Journal of Physics D: Applied Physics, vol. 43, p. 075502, 2010. [28] D. S. McGregor, M. F. Ohmes , R. E. Ortiz, A. S...1044, 1964. [5] M. Cardona and L. Ley , Photoemission in Solids: General Principles. Springer- Verlag New York, 1978. [6] C. Cohen-Tannoudji, B. Diu...A, vol. 50, no. 6, pp. 449–450, 1975. [46] L. Ley , R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, “Total valence-band densities of

  19. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; Goldner, Philippe, E-mail: philippe.goldner@chimie-paristech.fr [PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Ferrier, Alban [PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonnes Universités, UPMC Univ Paris 06, 75005 Paris (France); Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Ramírez, Mariola O.; Bausá, Luisa E. [Departamento Física de Materiales and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Ikesue, Akio [World Laboratory, Mutsuno, Atsuta-ku, Nagoya 456-0023 (Japan)

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu{sup 3+} doped Y {sub 2}O{sub 3} transparent ceramics. This result is obtained on the {sup 7}F{sub 0}→{sup 5}D{sub 0} transition in Eu{sup 3+} doped Y {sub 2}O{sub 3} ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu{sup 3+} concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  20. Photoluminescence of rare-earth-doped Ca4Ga2S7

    International Nuclear Information System (INIS)

    Tagiev, B.G.; Tagiev, O.B.; Dzhabbarov, R.B.; Musaeva, N.N.; Kasumov, U.F.

    2001-01-01

    One obtained Ca 4 Ga 2 S 7 :REM crystals and studied their photoluminescent (PL) properties. One used Nd, Ce, Pr and Tb as promoters. It is shown that in all investigated crystals one observed PL intensity maximums at λ 543 nm that result from intracentre transitions of Nd 3+ ions. The excitation energy is effectively transferred nonradiatingly from Ce 3+ , Pr 3+ , Tb 3+ ions to Nd 3+ ion. In the case, Ce 3+ , Pr 3+ , Tb 3+ are the effective ions-sensitizers [ru

  1. Thermoluminescence of rare earth doped BaSO/sub 4/ phosphors and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, J.S.; Varadharajan, G. (Bhabha Atomic Research Centre, Bombay (India). Div. of Radiological Protection)

    1982-03-01

    Thermoluminescence of synthetic BaSO/sub 4/ samples individually doped with Y, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy and Tm has been studied after ..gamma..- and microwave irradiations. BaSO/sub 4/:Eu has the highest response for ..gamma..-radiation while BaSO/sub 4/:Tb exhibits highest reduction in its ..gamma..-induced TL after exposure to microwave radiation (2425 +- 25 MHz). The reduction depends on the microwave radiant exposure and is independent of the irradiance level in the range 25-200 mW . cm/sup -2/ and hence can be useful for microwave dosimetry.

  2. Luminescence of rare earth-doped Si-ZrO2 co-sputtered films

    International Nuclear Information System (INIS)

    Rozo, Carlos; Jaque, Daniel; Fonseca, Luis F.; Sole, Jose Garcia

    2008-01-01

    Er-doped Si-yttria-stabilized zirconia (YSZ) thin film samples were prepared by rf co-sputtering. Chemical composition of the samples was determined using energy-dispersive spectroscopy (EDS) and the structure of the films by X-ray diffraction (XRD). The samples were annealed to 700 deg. C. Photoluminescence (PL) measurements were performed for the visible and infrared. By exciting with the 488-nm-laser line the Er 3+ emissions 2 H 11/2 → 4 I 15/2 , 4 S 3/2 → 4 I 15/2 , 4 F 9/2 → 4 I 15/2 and a narrow 4 I 13/2 → 4 I 15/2 emission were observed. The 4 I 11/2 → 4 I 15/2 emissions for the same excitation wavelength were weak. Excitation wavelength dependence of the 4 I 13/2 → 4 I 15/2 emissions indicated that the emissions were due to a combination of energy transfer from Si nanoparticles (np) to Er ions and energy transfer from defects in the matrix to the Er ions for excitations resonant with the energy levels of such defects. 4 I 13/2 → 4 I 15/2 emission decay measurements show two decaying populations of Er ions according to their locations with respect to other ions or any non-radiative defects. 4 I 11/2 → 4 I 15/2 emission dependence on 4 I 13/2 → 4 I 15/2 emission showed that the former was possibly due to a combination of downconversion from higher levels of the Er ions, energy transfer from Si nanoparticles and upconversion transfer processes. We concluded that Er-doped Si-YSZ is a promising material for photonic applications being easily broadband excited using low-pumping powers

  3. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Science.gov (United States)

    Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  4. Injection Laser Using Rare Earth Doped GaN Thin Films for Visible and Infrared Applications

    Science.gov (United States)

    2010-05-01

    9] B. N. Mahalley, S. J. Dhoble, R. B. Pode, and G. Alexander, "Photoluminescence in GdVO4 :Bi3+, Eu3 + red phosphor," Appl. Phys. A, vol. 70...July 2007. 3. H. Y. Peng, C-W. Lee, H. O. Everitt, C. Munasinghe, D. S. Lee and A. J. Steckl, “Spectroscopic and energy transfer studies of Eu3 + centers... nanoparticles as blue emitters; a method to avoid sintering at high temperatures”, Small 4, pp. 105-110, Jan. 2008. 7. N. Nepal, J. M. Zavada, D. S. Lee and A

  5. Effect of light rare earth doping in 123 high temperature supercoductors

    Directory of Open Access Journals (Sweden)

    M. Mirzadeh

    2006-09-01

    Full Text Available   We have studied the structural and electrical properties of Gd(Ba2-xLaxCu3O7+δ [Gd(BaLa123], Gd(Ba2-xNdxCu3O7+δ [Gd(BaNd123], and Nd(Ba2-xPrxCu3O7+δ [Nd(BaPr123] compounds with 0.0≤x≤0.8 prepared by the standard solid-state reaction. The XRD patterns show that all of the samples with x≤0.5 are isosructure 123 phase, but in Gd(BaNd123 and Nd(BaPr123 there are several impurity peaks in the XRD patterns for x≥0.6. We estimated the xcsolubility=1.1, 0.6 and 0.55 in Gd(BaLa123, Nd(BaPr123, and Gd(BaNd123, respectively. The resistivity increases with the increase of doping. The decrease of Tc with the increase of Pr doping is faster than Nd and La doping. The normal-state resistivity is fitted for two and three dimensional variable range hopping (2D&amp3D-VRH and Coulomb gap (CG regimes, separately. Our results indicate that the dominant mechanism for x≥xcSIT is 3D-VRH. The broadening of magnetoresistance have been investigated by TAFC and AH models. The pinning energy and Josephson coupling energy, decrease with the increase of applied magnetic field as U~H-β, these values also decrease with doping concentration Pr is more effective than Nd and La.

  6. Site preference of rare earth doping in palladium-iron-arsenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stuerzer, Christine; Schulz, Anne; Johrendt, Dirk [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2014-12-15

    The solid solutions (Ca{sub 1-y}RE{sub y}Fe{sub 1-x}Pd{sub x}As){sub 10}Pd{sub z}As{sub 8} with RE = La, Ce, and Pr were synthesized by solid state methods and characterized by X-ray powder diffraction with subsequent Rietveld refinements [(CaFeAs){sub 10}Pt{sub 3}As{sub 8}-type structure (''1038 type''), P anti 1, Z = 1]. Substitution levels (Ca/RE, Fe/Pd, and Pd/□) obtained from Rietveld refinements coincide well with the nominal values according to EDS and the linear courses of the lattice parameters as expected from the ionic radii. The RE atoms favor the one out of five calcium sites, which is eightfold coordinated by arsenic. This leads to significant stabilization of the structure, and especially prevents palladium over-doping in the iron-arsenide layers as observed in the pristine compound (CaFe{sub 1-x}Pd{sub x}As){sub 10}Pd{sub z}As{sub 8}. While the stabilization energy is estimated to about 40 kJ.mol{sup -1} by electronic structure calculations, the reason for the diminished Fe/Pd substitution through RE doping is still not yet understood. We suggest that the electrons transferred from RE{sup 3+} to the (Fe{sub 1-x}Pd{sub x})As layer makes higher palladium concentrations unfavorable. Anyway the reduced palladium doping enables superconductivity with critical temperatures up to 20 K (onset) in the RE doped Pd1038 samples, which could not be obtained earlier due to palladium over-doping in the active iron-arsenide layers. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Oxygen influence on luminescence properties of rare-earth doped NaLaF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Tuomela, A., E-mail: anu.tuomela@oulu.fi [Research Center of Molecular Materials, University of Oulu, P.O. Box 3000, FIN-90014 (Finland); Pankratov, V., E-mail: vladimirs.pankratovs@oulu.fi [Research Center of Molecular Materials, University of Oulu, P.O. Box 3000, FIN-90014 (Finland); Sarakovskis, A.; Doke, G.; Grinberga, L. [Institute of Solid State Physics, University of Latvia, 8 Kengaraga, LV-1063 Riga (Latvia); Vielhauer, S. [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Huttula, M. [Research Center of Molecular Materials, University of Oulu, P.O. Box 3000, FIN-90014 (Finland)

    2016-11-15

    Luminescence properties of erbium and europium doped NaLaF{sub 4} with different oxygen content have been studied. Vacuum ultraviolet (VUV) excitation luminescence spectroscopy technique has been applied by using synchrotron radiation excitation. It was found that oxygen impurity leads to significant degradation of Er{sup 3+} or Eu{sup 3+} emission under VUV excitation. The intensive O{sup 2−}–Er{sup 3+} charge transfer excitation band has been detected from oxygen abundant NaLaF{sub 4} in the 150–165 nm spectral range. This band reveals a competing absorption mechanism in oxygen containing NaLaF{sub 4}. It is clearly demonstrated that one reason for the Er{sup 3+} emission degradation in oxygen abundant NaLaF{sub 4} is strong suppression of 4f–5d transitions in Er{sup 3+} ion. The degradation of the Eu{sup 3+} emission under VUV excitation was explained by diminishing of F{sup −}–Eu{sup 3+} charge transfer absorption band as well as by competing relaxation centers in the oxygen abundant NaLaF{sub 4}.

  8. Fiber-optic thermometer application of thermal radiation from rare-earth end-doped SiO2 fiber

    International Nuclear Information System (INIS)

    Katsumata, Toru; Morita, Kentaro; Komuro, Shuji; Aizawa, Hiroaki

    2014-01-01

    Visible light thermal radiation from SiO 2 glass doped with Y, La, Ce, Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu were studied for the fiber-optic thermometer application based on the temperature dependence of thermal radiation. Thermal radiations according to Planck's law of radiation are observed from the SiO 2 fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu at the temperature above 1100 K. Thermal radiations due to f-f transitions of rare-earth ions are observed from the SiO 2 fibers doped with Nd, Dy, Ho, Er, Tm, and Yb at the temperature above 900 K. Peak intensities of thermal radiations from rare-earth doped SiO 2 fibers increase sensitively with temperature. Thermal activation energies of thermal radiations by f-f transitions seen in Nd, Dy, Ho, Er, Tm, and Yb doped SiO 2 fibers are smaller than those from SiO 2 fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu. Thermal radiation due to highly efficient f-f transitions in Nd, Dy, Ho, Er, Tm, and Yb ions emits more easily than usual thermal radiation process. Thermal radiations from rare-earth doped SiO 2 are potentially applicable for the fiber-optic thermometry above 900 K

  9. Nuclear waste glasses of SON68 type and their weathering products, optical spectroscopy of uranium and rare earth elements

    International Nuclear Information System (INIS)

    Ollier, N.

    2002-09-01

    This study concerns the long-term behaviour of high-level waste glasses and more precisely lanthanides and uranium behaviour with weathering. The leaching was performed on glass powder at 90 deg. C in a pseudo-dynamic mode. Two weathering gels were obtained, with different renewal rate and leaching duration. In glass, we demonstrate that U(IV) and U(VI) species coexist. Time-resolved spectroscopy and XPS measurements show that hexavalent uranium is present under uranyl entities and UO 3 type environment. In weathering gels, U(VI) is still present under uranyl form as well as uranyl hydroxide. It means that U behaviour depends on renewal rate, moreover precipitation of crystallized phases like bauranolte BaU 2 O 7 .xH 2 O and uranyl silicate of uranophane type occur. Concerning lanthanides, Eu 3+ was used as a luminescent local probe. Two sites were found in glass and gels. In glass, the sites were attributed to a silicate and a borate one. In gels, the silicate site is conserved whereas the second one is supposed to correspond to an aluminate one. Photoluminescence and Moessbauer measurements show that the rare earth site symmetry increases in gel. This result confirms that order is higher in gels than in glass. The third part of the thesis concerns irradiation effect in glasses. The main result shows some behaviour differences between a 5 oxides borosilicate glass and a more complex one close to the SON68 glass. Presence of mixed alkali (Na, Li and Cs) seems to notably reduce the Na migration. (author)

  10. Effect of the kind of alkaline and rare earth ions on the structure of a glass rich in earth

    International Nuclear Information System (INIS)

    Quintas, Arnaud; Caurant, Daniel; Majerus, Odile; Lenoir, Marion; Dussossoy, Jean-Luc; Charpentier, Thibault; Neuville, Daniel R.; Gervais, C.

    2006-01-01

    In the framework of a structural study of a nuclear wastes containment glass of type alumino borosilicate and rich in rare earths, the influence of the kind of alkaline or rare earth ions is analyzed. For that, two glasses series have been prepared in which the Na + ion (respectively Ca 2+ ions) present in the standard composition is totally substituted by another alkaline ion Li + , K + , Rb + or Cs + (respectively another rare earth ion Mg 2+ , Sr 2+ or Ba 2+ ). These glasses, analyzed by optical absorption, Raman and 27 Al or 11 B NMR spectroscopies have revealed the strong impact of the kind of the modifying ion as well as the structure of the vitreous lattice (variation of the ratio BO 3 /BO 4 and local variations of the polymerization degree) than the local surroundings of the rare earth (decrease of the covalency degree of the bond Nd-O with the increase of the field force of the modifying ion). (O.M.)

  11. Upconversion in rare earth ions doped TeO2-ZnO glass

    International Nuclear Information System (INIS)

    Mohanty, Deepak Kumar; Rai, Vineet Kumar

    2012-01-01

    The Er 3+ /Yb 3+ doped/codoped TeO 2 -ZnO glasses have been fabricated by conventional melt and quenching technique. The absorption spectra of the doped/codoped glasses have been performed. The visible upconversion emissions of both doped and codoped glasses have been observed using 808 nm diode laser excitation. The process involved in upconversion emissions has been discussed in detail. (author)

  12. Nondestructive Redox Quantification Reveals Glassmaking of Rare French Gothic Stained Glasses.

    Science.gov (United States)

    Hunault, Myrtille O J Y; Loisel, Claudine; Bauchau, Fanny; Lemasson, Quentin; Pacheco, Claire; Pichon, Laurent; Moignard, Brice; Boulanger, Karine; Hérold, Michel; Calas, Georges; Pallot-Frossard, Isabelle

    2017-06-06

    The sophisticated colors of medieval glasses arise from their transition metal (TM) impurities and capture information about ancient glassmaking techniques. Beyond the glass chemical composition, the TM redox is also a key factor in the glass color, but its quantification without any sampling is a challenge. We report a combination of nondestructive and noninvasive quantitative analyses of the chemical composition by particle-induced X-ray emission-particle-induced γ-ray emission mappings and of the color and TM element speciation by optical absorption spectroscopy performed on a red-blue-purple striped glass from the stained glass windows of the Sainte-Chapelle in Paris, France, during its restoration. These particular glass pieces must have been produced as a single shot, which guarantees that the chemical variations reflect the recipe in use in a specific medieval workshop. The quantitative elemental mappings demonstrate that the colored glass parts are derived from the same base glass, to which TMs were deliberately added. Optical absorption spectra reveal the origin of the colors: blue from Co II , red from copper nanoparticles, and purple from Mn III . Furthermore, the derivation of the quantitative redox state of each TM in each color shows that the contents of Fe, Cu, and Mn were adjusted to ensure a reducing glass matrix in the red stripe or a metastable overoxidized glass in the purple stripe. We infer that the agility of the medieval glassmaker allowed him to master the redox kinetics in the glass by rapid shaping and cooling to obtain a snapshot of the thermodynamically unstable glass colors.

  13. Spectroscopic enhancement in nanoparticles embedded glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sahar, M. R., E-mail: mrahim057@gmail.com; Ghoshal, S. K., E-mail: mrahim057@gmail.com [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

    2014-09-25

    This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

  14. Structure, thermal stability and resistance under external irradiation of rare earths and molybdenum-rich alumino-borosilicate glasses

    International Nuclear Information System (INIS)

    Chouard, N.

    2011-01-01

    In France, the highly radioactive nuclear liquid wastes arising from spent nuclear fuel reprocessing (fission products + minor actinides (FPA)) are currently immobilized in an alumino-borosilicate glass called 'R7T7'. In the future, the opportunity of using new alumino-borosilicate glass compositions (HTC glasses) is considered in order to increase the waste loading in glasses and thus significantly decrease the number of glass canisters. However, the increase of the concentration of FPA could lead to the crystallization of rare-earth-rich phases (Ca 2 RE 8 (SiO 4 ) 6 O 2 ) or molybdenum-rich phases (CaMoO 4 , Na 2 MoO 4 ) during melt cooling, which can modify the confinement properties of the glass (chemical durability, self-irradiation resistance..), particularly if they can incorporate radionuclides α or β in their structure. This thesis can be divided into two parts: The first part deals with studying the relationship that can occur between the composition, the structure and the crystallization tendency of simplified seven oxides glasses, belonging to the SiO 2 -B 2 O 3 -Al 2 O 3 -Na 2 O-CaO-MoO 3 -Nd 2 O 3 system and derived from the composition of the HTC glass at 22,5 wt. % in FPA. The impact of the presence of platinoid elements (RuO 2 in our case) on the crystallization of the different phases is also studied. The second part deals with the effect of actinides α decays and more particularly of nuclear interactions essentially coming from recoil nuclei (simulated here by heavy ions external irradiations) on the behaviour under irradiation of an alumino-borosilicate glass containing apatite Ca 2 Nd 8 (SiO 4 ) 6 O 2 crystals, that can incorporate actinides in their structure. Two samples containing apatite crystals with different size are studied, in order to understand the impact of microstructure on the irradiation resistance of this kind of material. (author) [fr

  15. Structure and properties of rare earth-rich glassed for nuclear waste immobilisation; Etude des caracteristiques structurales et des proprietes de verres riches en terres rares destines au confinement des produits de fission et elements a vie longue

    Energy Technology Data Exchange (ETDEWEB)

    Bardez, I

    2004-11-15

    A new nuclear glass composition, able to immobilize highly radioactive liquid wastes from high burn-up UO{sub 2} fuel, was established and its structure studied. The composition of the selected rare earth-rich glass is (molar %): 61.79 SiO{sub 2} - 8.94 B{sub 2}O{sub 3} - 3.05 Al{sub 2}O{sub 3} - 14.41 Na{sub 2}O - 6.32 CaO - 1.89 ZrO{sub 2} - 3.60 RE{sub 2}O{sub 3} (with RE = La, Ce, Pr and Nd). The aim of this study was to determine the local environment of the rare earth in this glass and also to glean information about the effect of glass composition on the rare earth neighbouring (influence of Si, B, Al, Na and Ca contents). To this end, several series of glasses, prepared from the baseline glass, were studied by different characterisation methods such as EXAFS spectroscopy at the neodymium LIII-edge, optical absorption spectroscopy, Raman spectroscopy and {sup 29}Si, {sup 27}Al and {sup 11}B MAS-NMR. By coupling all the results obtained, several hypotheses about the nature of the rare earth neighbouring in the glass were proposed. (author)

  16. Y and Er minor addition effect on glass forming ability of a Ni–Nb–Zr alloy

    International Nuclear Information System (INIS)

    Deo, L.P.; Oliveira, M.F. de

    2015-01-01

    Highlights: • A theoretical selection criterion to predict the GFA was used for Ni–Nb–Zr–RE alloys. • The prediction agrees very well with thermal parameter gm used to evaluate experimentally the GFA. • RE doped alloys showed higher GFA than the base alloy. • Y and Er elements showed similar effects to improve the GFA of the base alloy. - Abstract: Since the discovering of amorphous alloys in 1960, the actual causes of why some alloys can be easily formed into glasses while others cannot, are not clearly known, thus there is no universal theory to predict the glass forming ability in metallic systems. It is well known that the minor amount addition of proper rare-earth elements can greatly enhance the glass forming ability of some glass-forming alloys. In the present study, a selection criterion was successfully used to predict the glass forming ability improvement of Ni 67.3 Nb 28.4 Zr 4.3 alloy with minor additions of Y or Er. The actual glass forming ability of the base alloy and rare-earth doped alloys were evaluated by the thermal parameter γ m and the results agree very well with the tendency predicted by the calculation. The amorphous nature of alloys was mainly analyzed by X-ray diffraction and differential scanning calorimetry. This work also presents a brief and complementary consideration about oxygen contamination quantified by the inert gas fusion method

  17. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Miae [Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Heo, Jong, E-mail: jheo@postech.ac.kr [Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Department of Materials Engineering, Adama Science and Technology University (ASTU), PO Box 1888, Adama (Ethiopia)

    2015-12-15

    Glass-ceramics containing calcium neodymium(cerium) oxide silicate [Ca{sub 2}Nd{sub 8-x}Ce{sub x}(SiO{sub 4}){sub 6}O{sub 2}] crystals were fabricated for the immobilization of radioactive wastes that contain large portions of rare-earth ions. Controlled crystallization of alkali borosilicate glasses by heating at T ≥ 750 °C for 3 h formed hexagonal Ca–silicate crystals. Maximum lanthanide oxide waste loading was >26.8 wt.%. Ce and Nd ions were highly partitioned inside Ca–silicate crystals compared to the glass matrix; the rare-earth wastes are efficiently immobilized inside the crystalline phases. The concentrations of Ce and Nd ions released in a material characterization center-type 1 test were below the detection limit (0.1 ppb) of inductively coupled plasma mass spectroscopy. Normalized release values performed by a product consistency test were 2.64·10{sup −6} g m{sup −2} for Ce ion and 2.19·10{sup −6} g m{sup −2} for Nd ion. Results suggest that glass-ceramics containing calcium neodymium(cerium) silicate crystals are good candidate wasteforms for immobilization of lanthanide wastes generated by pyro-processing. - Highlights: • Glass-ceramic wasteforms containing Ca{sub 2}Nd{sub 8-x}Ce{sub x}(SiO{sub 4}){sub 6}O{sub 2} crystals were synthesized to immobilize lanthanide wastes. • Maximum lanthanide oxide waste loading was >26.8 wt.%. • Ce and Nd ions were highly partitioned inside Ca–Nd–silicate crystals compared to glass matrix. • Amounts of Ce and Nd ions released in the material characterization center-type 1 were below the detection limit (0.1 ppb). • Normalized release values performed by a PCT were 2.64• 10{sup −6} g m{sup −2} for Ce ions and 2.19• 10{sup −6} g m{sup −2} for Nd ions.

  18. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  19. Apatite glass-ceramics: a review

    Science.gov (United States)

    Duminis, Tomas; Shahid, Saroash; Hill, Robert Graham

    2016-12-01

    This article is a review of the published literature on apatite glass-ceramics (GCs). Topics covered include crystallization mechanisms of the various families of the apatite GCs and an update on research and development on apatite GCs for applications in orthopedics, dentistry, optoelectronics and nuclear waste management. Most apatite GCs crystallize through a homogenous nucleation and crystallization mechanism, which is aided by a prior liquid-liquid phase separation. Careful control of the base glass composition and heat-treatment conditions, which determine the nature and morphology of the crystal phases in the GC can produce GC materials with exceptional thermal, mechanical, optical and biological properties. The GCs reviewed for orthopedic applications exhibit suitable mechanical properties and can chemically bond to bone and stimulate its regeneration. The most commercially successful apatite GCs are those developed for dental veneering. These materials exhibit excellent translucency and clinical esthetics, and mimic the natural tooth mineral. Due to the ease of solid solution of the apatite lattice, rare earth doped apatite GCs are discussed for potential applications in optoelectronics and nuclear waste management. One of the drawbacks of the commercial apatite GCs used in orthopedics is the lack of resorbability, therefore the review provides a direction for future research in the field.

  20. Influence of rare-earth ions on SiO{sub 2}-Na{sub 2}O-RE{sub 2}O{sub 3} glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J A [Department of Materials Science and Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388 (United States); Benmore, C J [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Holland, D [Department of Physics, University of Warwick, CV4 7AL (United Kingdom); Du, J [Department of Material Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Beuneu, B [Laboratoire Leon Brillouin, CEA-CNRS, CEA/Saclay, F-91191 Gif-sur-Yvette (France); Mekki, A, E-mail: jjohnson@utsi.edu [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2011-02-16

    Praseodymium and europium sodium silicate glasses of nominal composition (SiO{sub 2}){sub 0.70-x}(Na{sub 2}O){sub 0.30}(RE{sub 2}O{sub 3}){sub x}, where RE is the rare earth and 0 {<=} x {<=} 0.10, were studied by neutron and high-energy x-ray scattering and classical molecular dynamics simulations. The observation of a significant x-ray intensity in doped as compared to un-doped glasses is indicative of RE-RE correlations at a distance of {approx} 3.7-3.9 A, much shorter than would be expected for a homogeneous distribution, suggesting that clustering of the rare-earth cations occurs in both these glass systems at low concentrations. Above x = 0.075 (nominal), minimal changes in this region indicate that the RE atoms are incorporated much more randomly into the glass structure. The molecular dynamics simulations suggest that the rare-earth ions enter the sodium-rich regions in the sodium silicate glasses and act as modifiers. A cluster analysis performed on the model systems indicates that the tendency for clustering is higher in praseodymium-containing glasses than in the europium glasses.

  1. Complexometric determination of rare earth elements in quartz glasses with indicator xylenol orange-cetylpyridinium chloride

    International Nuclear Information System (INIS)

    Svistunova, G.P.; Amelin, V.G.

    1988-01-01

    A study was made on possibility of using the system xylenol orange (XO)-cetypyridinium determination of REE. XO forms with REE in the presence of CP intensively coloured complexes with absorbtion maximums at 610-615 nm. Colour transformation from blue to yellow is observed during complexometric titration in CP presence in the final point of titration by EDTA solution. The method was applied for Eu and Ce determination in alloyed quartz glasses. Titanium doesn't prevent REE determination at its content in titrated solution up to 1 mg. Other elements affect slightly the results. The method is recommended to use for 0.1-0.7% REE determination in quartz glasses of 0.5-1.5 g samples

  2. Complexometric determination of rare earth elements in quartz glasses with indicator xylenol orange-cetylpyridinium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Svistunova, G P; Amelin, V G

    1988-11-01

    A study was made on possibility of using the system xylenol orange (XO)-cetypyridinium determination of REE. XO forms with REE in the presence of CP intensively coloured complexes with absorbtion maximums at 610-615 nm. Colour transformation from blue to yellow is observed during complexometric titration in CP presence in the final point of titration by EDTA solution. The method was applied for Eu and Ce determination in alloyed quartz glasses. Titanium doesn't prevent REE determination at its content in titrated solution up to 1 mg. Other elements affect slightly the results. The method is recommended to use for 0.1-0.7% REE determination in quartz glasses of 0.5-1.5 g samples.

  3. White emission materials from glass doped with rare Earth ions: A review

    Energy Technology Data Exchange (ETDEWEB)

    Yasaka, P.; Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, 73000 (Thailand)

    2016-03-11

    Solid State Lighting (SSL) based devices are predicted to play a crucial role in the coming years. Development of W-LED, which have an edge over traditional lighting sources due to their compact size, higher reliability, shock resistance, interesting design possibilities, higher transparency and an extremely long lifetime. Over the fifteen trivalent lanthanide ions, Dy{sup 3+} ions doped glasses are most appropriate for white light generation because of the fact that it exhibits two intense emission bands corresponds to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} (magnetic dipole) and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} (electric dipole) transitions at around 480-500 nm and 580-600 nm pertaining to blue and yellow regions respectively. In this work, the developments of Dy3+ doped in several glass structures for white emitting materials application have reviewed. Properties of Dy{sup 3+} doped in glasses were discussed for use as a solid state lighting materials application.

  4. Radio-luminescence efficiency and rare-earth dispersion in Tb-doped silica glasses

    Czech Academy of Sciences Publication Activity Database

    Fasoli, M.; Moretti, F.; Lauria, A.; Chiodini, N.; Vedda, A.; Nikl, Martin

    2007-01-01

    Roč. 42, - (2007), s. 784-787 ISSN 1350-4487 Institutional research plan: CEZ:AV0Z10100521 Keywords : sol-gel * scintillators * silica * rare earths * terbium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.054, year: 2007

  5. Optical and spectroscopic investigation on Calcium Borotellurite glass system

    Science.gov (United States)

    Paz, E. C.; Lodi, T. A.; Gomes, B. R. A.; Melo, G. H. A.; Pedrochi, F.; Steimacher, A.

    2016-05-01

    In this work, the glass formation in Calcium Borotellurite (CBTx) system and their optical properties were studied. Six glass samples were prepared by melt-quenching technique and the samples obtained are transparent, lightly yellowish, without any visible crystallites. The results showed that TeO2 addition increases the density, the electronic polarizability and, consequently, the refractive index. The increase of electronic polarizability and optical basicity suggest that TeO2 addition increases the non-bridging oxygen (NBO) concentration. The increase of TeO2 shifts the band edge to longer wavelength owing to increase in non-bridging oxygen ions, resulting in a linear decrease of optical energy gap. The addition of TeO2 increases the temperature coefficient of the optical path length (dS/dT) in room temperature, which are comparable to phosphate and lower than Low Silica Calcium Alumino Silicate (LSCAS) glasses. The values of dS/dT present an increase as a function of temperature for all the samples measured. The results suggest that CBTx is a good candidate for rare-earth doping and several optical applications.

  6. Rare-Earth Oxide Ion (Tm3+, Ho3+, and U3+) Doped Glasses and Fibres for 1.8 to 4 Micrometer Coherent and Broadband Sources

    Science.gov (United States)

    2006-07-24

    oxide ( TeO2 ) , fluorine- containing silicate (SiOF2) and germanate (GeOF2) glass hosts for each dopant by characterising the spectroscopic properties...Earth Oxide Ion (Tm3+, Ho3+, And U3+) Doped Glasses And Fibres For 1.8 To 4 Micrometer Coherent And Broadband Sources 5c. PROGRAM ELEMENT NUMBER 5d...Rare-earth oxide ion (Tm3+, Ho3+, and U3+) doped glasses and fibres for 1.8 to 4 micrometer coherent and broadband sources Report prepared

  7. Effect of compositional variations on charge compensation of AlO4 and BO4 entities and on crystallization tendency of a rare-earth-rich aluminoborosilicate glass

    International Nuclear Information System (INIS)

    Quintas, A.; Caurant, D.; Majerus, O.; Charpentier, T.; Dussossoy, J.-L.

    2009-01-01

    This paper presents the structural and crystallization study of a rare-earth-rich aluminoborosilicate glass that is a simplified version of a new nuclear glass proven to be a potential candidate for the immobilization of highly concentrated radioactive wastes that will be produced in the future. In this work, we studied the impact of changing the nature of alkali (Li + , Na + , K + , Rb + , Cs + ) or alkaline-earth (Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ ) cations present in glass composition on glass structure (by 27 Al and 11 B nuclear magnetic resonance spectroscopy) and on its crystallization tendency during melt cooling at 1 K/min (average cooling rate during industrial process). From these composition changes, it was established that alkali cations were preferentially involved in charge compensation of (AlO 4 ) - and (BO 4 ) - entities in the glassy network comparatively to alkaline-earth cations. Whatever the nature of alkali cations, glass compositions containing calcium gave way to the crystallization of an apatite silicate phase bearing calcium and rare-earth (RE) cations (Ca 2 RE 8 (SiO 4 ) 6 O 2 , RE = Nd or La) but melt crystallization tendency during cooling strongly varied with the nature of alkaline-earth cations.

  8. Luminescence quenching versus enhancement in WO3-NaPO3 glasses doped with trivalent rare earth ions and containing silver nanoparticles

    Science.gov (United States)

    Dousti, M. Reza; Poirier, Gael Y.; Amjad, Raja J.; de Camargo, Andrea S. S.

    2016-10-01

    We report on the influence of silver nanoparticles (NPs) on the luminescence behavior of trivalent rare earth (RE) ion doped tungsten-phosphate glasses. In order to induce the growth of NPs, the as-prepared glass samples containing silver atoms, are exposed to heat-treatment above the glass transition temperature. The surface plasmon resonance band of the Ag NPs is observed in the visible range around 420 and 537 nm in the glasses with low and high tungsten content, respectively. Such difference in spectral shift of the plasmon band is attributed to the difference in the refractive index of the two studied glass compositions. Heat-treatment results in the general increase in number of NPs, while in the case of glasses with low tungsten content, it also imposes a shift to the Ag plasmon band. The NPs size distribution (4-10 nm) was determined in good agreement with the values obtained by using Mie theory and by transmission electron microscopy. The observed quenching in the visible luminescence of glasses doped with Eu3+, Tb3+ or Er3+is attributed to energy transfer from the RE ions to Ag species, while an enhanced near-infrared emission in Er3+ doped glasses is discussed in terms of the chemical contribution of silver, rather than the most commonly claimed enhancement of localized field or energy transfer from silver species to Er3+. The results are supported by the lifetime measurements. We believe that this study gives further insight and in-depth exploration of the somewhat controversial discussions on the influence of metallic NPs plasmonic effects in RE-doped glasses.

  9. Partitioning of the rare earths and actinides between R7T7 nuclear glass alteration products and solution according to disposal conditions

    International Nuclear Information System (INIS)

    Menard, O.

    1995-01-01

    The alteration of nuclear glass by water is liable to release radionuclides into the environment. Determining the release kinetics of these elements and their aqueous chemical forms are therefore essential steps in establishing the safety of a geological repository site. Leach tests were conducted with a nonradioactive specimen of the French ''R7T7'' light water containment glass spiked with U and Th, and with two R7T7 specimens spiked with 237 Np and 239 Pu, respectively. The alteration solution compositions were representative of deep groundwater and contained carbonate, sulfate, phosphate, fluorine and chlorine ions. The release of U, Th, Np and Pu, as well as of the rare earths La, Ce and Nd were monitored by ICP mass spectrometry and by α spectrometry. Scanning and transmission electron microscopic examination of the nonradioactive altered glass surfaces was also performed to assess the partitioning balance for the rare earths, U and Th between the glass alteration products and solution. The mobility of these elements depends on two competing mechanisms. The rare earths and thorium are incorporated in the alteration products (gel); the retention process is assumed to involve chemisorption or coprecipitation, enhanced in the gel layer by the presence of phosphate ions in particular. Conversely, the aqueous species in the alteration solutions (mainly anions) form complexes with the actinides and rare earths; this phenomenon is particularly evident with U and Np. The presence of carbonate ions favors this mobility. Plutonium differs from U and Np in that it is adsorbed mainly on colloids formed by glass dissolution, the principal factors governing its chemical evolution in solution. (author). refs., 122 figs., 185 tabs

  10. Structural and crystallisation study of a rare earth alumino borosilicate glass designed for nuclear waste confinement; Etude de la structure et du comportement en cristallisation d'un verre nucleaire d'aluminoborosilicate de terre rare

    Energy Technology Data Exchange (ETDEWEB)

    Quintas, A

    2007-09-15

    This work is devoted to the study of a rare earth alumino borosilicate glass, which molar composition is 61,81 SiO{sub 2} - 3,05 Al{sub 2}O{sub 3} - 8,94 B{sub 2}O{sub 3} - 14,41 Na{sub 2}O - 6,33 CaO - 1,90 ZrO{sub 2} - 3,56 Nd{sub 2}O{sub 3}, and envisaged for the immobilization of nuclear wastes originating from the reprocessing of high discharge burn up spent fuel. From a structural viewpoint, we investigated the role of the modifier cations on the arrangement of the glass network through different modifications of the glass composition: variation of the Na/Ca ratio and modification of the nature of the alkali and alkaline earth cations. The NMR and Raman spectroscopic techniques were useful to determine the distribution of modifier cations among the glass network and also to cast light on the competition phenomena occurring between alkali and alkaline earth cations for charge compensation of [AlO{sub 4}]{sup -} and [BO{sub 4}]{sup -} species. The neodymium local environment could be probed by optical absorption and EXAFS spectroscopies which enabled to better understand the insertion mode of Nd{sup 3+} ions among the silicate domains of the glass network. Concerning the crystallization behavior we were interested in how the glass composition may influence the crystallization processes and especially the formation of the apatite phase of composition Ca{sub 2}Nd{sub 8}(SiO{sub 4}){sub 6}O{sub 2}. In particular, this work underlined the important role of both alkaline earth and rare earth cations on the crystallization of the apatite phase. (author)

  11. Numerical analysis of pump propagation and absorption in specially tailored double-clad rare-earth doped fiber

    Czech Academy of Sciences Publication Activity Database

    Koška, Pavel; Peterka, Pavel

    2015-01-01

    Roč. 47, č. 9 (2015), s. 3181-3191 ISSN 0306-8919 R&D Projects: GA ČR GA14-35256S Grant - others:GA AV ČR(CZ) M100761202 Institutional support: RVO:67985882 Keywords : Finite element method * Fiber lasers * Double clad fiber s Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.290, year: 2015

  12. Thermoelectric properties of rare earth-doped n-type Bi2Se0∙3Te2∙7 ...

    Indian Academy of Sciences (India)

    Administrator

    the electrical resistivity, but also help to reduce the thermal conductivity. ... environmental impact and high reliability in applications of solid-state electronic cooling and power generation. ... After the system was cooled down to room tempe-.

  13. Luminescence and scintillation properties of rare-earth-doped LuF.sub.3./sub. scintillation crystals

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Fukuda, K.; Kurosawa, S.; Yokota, Y.; Yoshikawa, A.

    2015-01-01

    Roč. 41, Mar SI (2015), s. 58-62 ISSN 0925-3467 Institutional support: RVO:68378271 Keywords : lutetium fluoride * scintillator * scintillator * VUV luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  14. Rare-earth doped gadolinia based phosphors for potential multicolor and white light emitting deep UV LEDs.

    Science.gov (United States)

    Bedekar, Vinila; Dutta, Dimple P; Mohapatra, M; Godbole, S V; Ghildiyal, R; Tyagi, A K

    2009-03-25

    Gadolinium oxide host and europium/dysprosium/terbium doped gadolinium oxide nanoparticles were synthesized using the sonochemical technique. Gadolinium oxide nanocrystals were also co-doped with total 2 mol% of Eu(3+)/Dy(3+),Eu(3+)/Tb(3+),Dy(3+)/Tb(3+), and also Eu(3+)/Dy(3+)/Tb(3+) ions, by the same method. The nanoparticles obtained were characterized using powder x-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) techniques. The size of the particles ranged from 15 to 30 nm. The triple doped samples showed multicolor emission on single wavelength excitation. The photoluminescence results were correlated with the lifetime data to get an insight into the luminescence and energy transfer processes taking place in the system. On excitation at 247 nm, the novel nanocrystalline Gd(2)O(3):RE (RE = Dy, Tb) phosphor resulted in having very impressive CIE chromaticity coordinates of x = 0.315 and y = 0.316, and a correlated color temperature of 6508 K, which is very close to standard daylight.

  15. Novel rare-earth doped silicon-nitride based materials as promising conversion phosphors for white LEDs

    NARCIS (Netherlands)

    Li, Yuan Qiang; Hintzen, H.T.J.M.

    2006-01-01

    Lighting world will change drastically due to the replacement of the traditional TL, PL and incandescent lamps by white LEDs. Advantageous features of white LEDs are a longer lifetime, lower energy consumption and extended possibilities for integration and miniaturisation. A white LED can be

  16. Numerical analysis of pump propagation and absorption in specially tailored double-clad rare-earth doped fiber

    Czech Academy of Sciences Publication Activity Database

    Koška, Pavel; Peterka, Pavel

    2015-01-01

    Roč. 47, č. 9 (2015), s. 3181-3191 ISSN 0306-8919 R&D Projects: GA ČR GA14-35256S Grant - others:GA AV ČR(CZ) M100761202 Institutional support: RVO:67985882 Keywords : Finite element method * Fiber lasers * Double clad fibers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.290, year: 2015

  17. Nanostructured rare earth doped Nb2O5: Structural, optical properties and their correlation with photonic applications

    International Nuclear Information System (INIS)

    Pereira, Rafael Ramiro; Aquino, Felipe Thomaz; Ferrier, Alban; Goldner, Philippe; Gonçalves, Rogéria R.

    2016-01-01

    In the present work, we report on a systematic study on structural and spectroscopic properties Eu 3+ and Er 3+ -doped Nb 2 O 5 prepared by sol–gel method. The Eu 3+ ions were used as structural probe to determine the symmetry sites occupied by lanthanide ions. The Eu 3+ -doped Nb 2 O 5 nanocrystalline powders were annealed at different temperatures to verify how the different Nb 2 O 5 crystalline phases affect the structure and the luminescence properties. Er 3+ -doped Nb 2 O 5 was prepared showing an intense NIR luminescence, and, visible luminescence on the green and red, deriving from upconversion process. The synthetized materials can find widespread applicability in photonics as red luminophor for white LED (with tricolor), optical amplifiers and upconverter materials. - Highlights: • Vis and NIR emission from nanostructured lanthanide doped Nb 2 O 5 . • Eu 3+ -doped Nb 2 O 5 as Red luminophor. • Multicolor tunability of intense upconversion emission from lanthanide doped Nb 2 O 5 . • Potential application as biological markers. • Broad band NIR emission.

  18. Interpretation of certain spectroscopic peculiarities of rare earth activators in liquifying glass based on adsorption study of their leaching products

    International Nuclear Information System (INIS)

    Burkat, T.M.; Galant, E.I.; Dobychin, D.P.; Zinyakova, V.M.; Rejshakhrit, A.L.; Tolstoj, M.N.

    1977-01-01

    A sorption method was employed to investigate the porous products from the leaching of DV-1 glasses containing various activators and to study spectral properties of segregating glasses. The volume of pores formed in leaching and the distribution of their radii were studied in glasses subjected to various thermal treatments. The relationship was investigated of the kinetics of growth of the size of the inhomogeneity areas and the presence of activators. It is found that those segregating transformations in the glass, which influence the interaction of ions of different earth elements, are related to the formation of inhomogeneity areas of radii of more than 8 and less than 50 A

  19. Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range

    NARCIS (Netherlands)

    Dekker, R.; Worhoff, Kerstin; Stouwdam, J.W.; van Veggel, F.C.J.M.; Driessen, A.

    2005-01-01

    In the present work we applied a measurement setup to determine several relevant properties of rare-earth doped nanoparticles dispersed in polymer slab waveguides in a single absorption measurement: background absorption of the polymer host material, water absorption, polymer composition

  20. Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range

    NARCIS (Netherlands)

    Dekker, R.; Worhoff, Kerstin; Stouwdam, J.W.; van Veggel, F.C.J.M.; Driessen, A.

    In the present work we applied a measurement setup to determine several relevant properties of rare-earth doped nanoparticles dispersed in polymer slab waveguides in a single absorption measurement: background absorption of the polymer host material, water absorption, polymer composition

  1. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping.

    Science.gov (United States)

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-11-21

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times.

  2. Irradiation effects on SiAlO(N) rare earth aluminosilicate glasses in the framework of actinides transmutation

    International Nuclear Information System (INIS)

    Dauce, R.

    2003-11-01

    Actinides transmutation would permit to decrease the amount of waste to be dispose in deep geological site. However, a surrounding matrix is generally necessary after the separation of the radionuclides. Reference ceramics irradiations in the context of transmutation have been widely investigated, but no study have been performed on amorphous materials in the same conditions. The extensive study of glass evolution under heavy-ions bombardment can however permit to get insight damaging mechanisms during irradiation. The glassy compositions, which are SiAlO(N) type, were chosen for their refractoriness, their high chemical durability and excellent mechanical properties. Five compositions, in the Y-Mg-Si-Al-O(-N), Nd-Mg-Si-Al-O(-N) and La-Y-Al-O-N systems, were synthesized and characterized. A link is find between the structure of glasses and their deformation mechanism. The glasses were irradiated at GANIL (Caen), with several MeV energy heavy-ions. Their hardness decrease after bombardment, in close link with the electronic stopping power, but seems to be independent of the amount and nature of the network modifiers. This hardness decrease is more pronounced in the case of nitrogen containing glasses, and is due to a change in the glass deformation mechanism under indentation. The pristine glasses exhibit a 'normal' behavior, but the irradiated glasses are strained mainly by a densification mechanism. This change in the indentation behavior is probably due to several structural modifications. Indeed, UV-visible absorption spectroscopy shows the presence of a large amount of point defects after bombardment. Furthermore, particularly in the case of nitrogen containing glasses, the local environment of aluminum and silicon are largely disturbed, as shown by NMR and Raman spectroscopies. (author)

  3. Dynamic colour and utilizable white fluorescence from Eu/Tb ions codoped lithium-yttrium-aluminium-silicate glasses

    International Nuclear Information System (INIS)

    Shen Lifan; Liu Xiao; Chen Baojie; Lin Hai; Pun, Edwin Yue Bun

    2012-01-01

    A group of dynamic-colour white fluorescences with various colour temperatures that can be applied to circadian lighting are achieved in Eu/Tb-codoped lithium-yttrium-aluminium-silicate (LYAS) glasses, which can be attributed to the simultaneous generation of three primary colours emitting from Eu 3+ (red), Eu 2+ (blue) and Tb 3+ (green) by varying the ultraviolet (UV) radiation wavelength. Fluorescence colour coordinates pass through the whole white region of the CIE x, y chromaticity diagram when the UV excitation wavelength is increased from 300 to 370 nm. A favourable white light with colour coordinates (0.338, 0.298) close to the equal energy white is obtained under 360 nm excitation. These results indicate that the Eu/Tb-codoped LYAS glasses are a promising candidate to develop white lighting devices under the excitation of commercial UV light-emitting diodes, and a smart lighting system based on rare-earth doped glasses will be a potential illumination source offering controllability of the colour temperature that can adjust to specific environments and requirements, and benefit human health, well-being and productivity. (paper)

  4. Retention of actinides and rare earth in the alteration gels of R7T7 nuclear glass

    International Nuclear Information System (INIS)

    Advocat, Th.; Menard, O.; Chouchan, J.L.; Jollivet, P.

    1997-01-01

    Under oxic conditions, over 98.5% of the lanthanides and thorium released from the glass were retained in the alteration products on the glass surface, probably by coprecipitation with a siliceous gel. Uranium and Neptunium retention varied from 40% in carbonated medium to more than 95% in phosphate medium. With carbonate ions, Np and U formed stable complexes, which tend to limit actinide incorporation in the gel layer. Plutonium retention is larger than 90%. This element exhibited atypical behaviour to the extend that it was strongly bonded to colloidal particles in solution. (authors)

  5. Effect of rare-earth dopants on the growth and structural, optical, electrical and mechanical properties of L-arginine phosphate single crystals

    International Nuclear Information System (INIS)

    Arjunan, S.; Bhaskaran, A.; Kumar, R. Mohan; Mohan, R.; Jayavel, R.

    2010-01-01

    Research highlights: → Thorium, Lanthanum and Cerium rare-earth ions were doped with L-arginine phosphate material and the crystals were grown by slow evaporation technique. → The transparency of the rare-earth doped LAP crystals has enhanced compared to pure LAP. → The powder SHG measurements revealed that the SHG output of rare-earth doped LAP crystals increases considerably compared to that of LAP. → Vicker's hardness number of as-grown crystal of LAP is higher than that of rare-earth doped LAP crystals. - Abstract: Effect of Thorium, Lanthanum and Cerium rare-earth ions on the growth and properties of L-arginine phosphate single crystals has been reported. The incorporation of rare-earth dopants into the L-arginine phosphate crystals is confirmed by Inductively Coupled Plasma-Mass Spectroscopy analysis. The unit cell parameters for pure and rare-earth doped L-arginine phosphate crystals have been estimated by powder X-ray diffraction studies. UV-visible studies revealed the transmittance percentage and cut-off wavelengths of the grown crystals. Powder second harmonic generation measurement has been carried out for pure and doped L-arginine phosphate crystals. The dielectric behavior of the grown crystals was analyzed for different frequencies at room temperature. The mechanical properties have been determined for pure and the doped L-arginine phosphate crystals.

  6. Effect of rare-earth dopants on the growth and structural, optical, electrical and mechanical properties of L-arginine phosphate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, S., E-mail: arjunan_hce@yahoo.co.i [Department of Physics, Sri Ramachandra University, Porur, Chennai (India); Bhaskaran, A. [Department of Physics, Dr. Ambedkar Government College, Chennai (India); Kumar, R. Mohan; Mohan, R. [Department of Physics, Presidency College, Chennai (India); Jayavel, R. [Crystal Growth Centre, Anna University, Chennai (India)

    2010-09-17

    Research highlights: {yields} Thorium, Lanthanum and Cerium rare-earth ions were doped with L-arginine phosphate material and the crystals were grown by slow evaporation technique. {yields} The transparency of the rare-earth doped LAP crystals has enhanced compared to pure LAP. {yields} The powder SHG measurements revealed that the SHG output of rare-earth doped LAP crystals increases considerably compared to that of LAP. {yields} Vicker's hardness number of as-grown crystal of LAP is higher than that of rare-earth doped LAP crystals. - Abstract: Effect of Thorium, Lanthanum and Cerium rare-earth ions on the growth and properties of L-arginine phosphate single crystals has been reported. The incorporation of rare-earth dopants into the L-arginine phosphate crystals is confirmed by Inductively Coupled Plasma-Mass Spectroscopy analysis. The unit cell parameters for pure and rare-earth doped L-arginine phosphate crystals have been estimated by powder X-ray diffraction studies. UV-visible studies revealed the transmittance percentage and cut-off wavelengths of the grown crystals. Powder second harmonic generation measurement has been carried out for pure and doped L-arginine phosphate crystals. The dielectric behavior of the grown crystals was analyzed for different frequencies at room temperature. The mechanical properties have been determined for pure and the doped L-arginine phosphate crystals.

  7. Effect of rare earth hypophosphite and melamine cyanurate on fire performance of glass-fiber reinforced poly(1,4-butylene terephthalate) composites

    International Nuclear Information System (INIS)

    Yang, Wei; Tang, Gang; Song, Lei; Hu, Yuan; Yuen, Richard K.K.

    2011-01-01

    Highlights: ► We synthesize and characterize two types of rare earth hypophosphite (REHP). ► REHP and melamine cyanurate are used as flame retardants. ► We prepare fire retarded glass-fiber/poly(1,4-butylene terephthalate) composites. ► The flammability of these composites is significantly reduced. - Abstract: This work mainly deals with a novel flame retardant system for glass-fiber reinforced poly(1,4-butylene terephthalate) (GRPBT) composites using trivalent rare earth hypophosphite (REHP) and melamine cyanurate (MC) through melt blending method. Firstly, two types of REHP, lanthanum hypophosphite and cerium hypophosphite, were synthesized and characterized. Thermal gravimetric analysis (TGA) was employed to investigate the thermal decomposition behavior of REHP and flame retardant treated GRPBT composites. Thermal combustion properties were measured using microscale combustion calorimeter. Fire performance was evaluated by limiting oxygen index, Underwriters Laboratories 94 and cone calorimeter. The results showed that the flammability of GRPBT is significantly reduced by the incorporation of the flame retardant mixture. Mechanism analysis revealed that the addition of MC reduces the condensed phase effect of REHP, but improves the flame inhibition in gas phase.

  8. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  9. Investigation of electrical and optical properties of Ge-Ga-As-S glasses doped with rare-earth ions

    Czech Academy of Sciences Publication Activity Database

    Zavadil, Jiří; Kubliha, M.; Kostka, Petr; Iovu, M.; Labaš, V.; Ivanova, Z.G.

    -, č. 377 (2013), s. 85-89 ISSN 0022-3093 R&D Projects: GA ČR GAP106/12/2384; GA MŠk 7AMB12SK147 Institutional support: RVO:67985882 ; RVO:67985891 Keywords : Chalcogenide glass * Direct electrical conductivity * Photoluminescence Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; DB - Geology ; Mineralogy (USMH-B) Impact factor: 1.716, year: 2013

  10. Structure study and properties of rare earth-rich glassed for the conditioning of nuclear waste; Etude des caracteristiques structurales et des proprietes de verres riches en terres rares destines au confinement des produits de fission et elements a vie longue

    Energy Technology Data Exchange (ETDEWEB)

    Bardez, I

    2004-11-15

    A new nuclear glass composition, able to immobilize highly radioactive liquid wastes from high burn-up UO{sub 2} fuel, was established and its structure studied. The composition of the selected rare earth-rich glass is (molar %): 61.79 SiO{sub 2} - 8.94 B{sub 2}O{sub 3} - 3.05 Al{sub 2}O{sub 3} - 14.41 Na{sub 2}O - 6.32 CaO - 1.89 ZrO{sub 2} - 3.60 RE{sub 2}O{sub 3} (with RE = La, Ce, Pr and Nd) The aim of this study was to determine the local environment of the rare earth in this glass and also to glean information about the effect of glass composition on the rare earth neighbouring (influence of Si, B, Al, Na and Ca contents). To this end, several series of glasses, prepared from the baseline glass, were studied by different characterisation methods such as EXAFS spectroscopy at the neodymium L{sub III}-edge, optical absorption spectroscopy, Raman spectroscopy and {sup 29}Si, {sup 27}Al and {sup 11}B MAS-NMR. By coupling all the results obtained, several hypotheses about the nature of the rare earth neighbouring in the glass were proposed. (author)

  11. Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range

    OpenAIRE

    Dekker, R.; Worhoff, Kerstin; Stouwdam, J.W.; van Veggel, F.C.J.M.; Driessen, A.

    2005-01-01

    In the present work we applied a measurement setup to determine several relevant properties of rare-earth doped nanoparticles dispersed in polymer slab waveguides in a single absorption measurement: background absorption of the polymer host material, water absorption, polymer composition (overtones), rare earth concentration, and ligand contribution (increase of exponential loss trend in the UV). Furthermore, nanoparticle size and concentration in case of a refractive index mismatch (1//spl l...

  12. Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass

    International Nuclear Information System (INIS)

    Qin, T.; Mountjoy, G.; Afify, N. D.; Reid, M. F.; Yeung, Y. Y.; Speghini, A.; Bettinelli, M.

    2011-01-01

    Rare-earth-doped glasses are key materials for optical technology due to the luminescent properties of 4f n ions. The crystal-field model describes the effect of local environment on transitions between 4f electrons. We present a detailed modeling study of the optical spectra of sodium disilicate glass, 33Na 2 O·67SiO 2 , doped with 0.2% and 1.0 mol%Eu 2 O 3 . This study uses very large molecular dynamics models with up to 100 Eu 3+ ions, the superposition model for covalent and overlap effects on crystal-field parameters, and realistic values for homogeneous linewidth broadening. The simulated spectra are in reasonable agreement with experiment. The trends in 7 F J energy levels across different Eu 3+ ion sites have been examined and a very detailed analysis is presented that looks at how features of the spectra are related to features of the local environment of Eu 3+ ions. Increasing the crystal-field strength S total causes the 7 F 0 energy level to decrease and causes the splitting of 7 F J manifolds to increase, and this is due to increasing mixing of 4f wave functions. To a reasonable approximation the crystal-field strength components S k depend on angular positions of ligands independently of distances to ligands. The former are seen to be more significant in determining S k , which are closely related to the rotationally invariant bond-orientational order parameters Q k . The values of S 2 are approximately linear in Q 2 , and the values of Q 2 are higher for fivefold than sixfold coordinated rare-earth ions. These results can be of importance for efforts to enhance the local environment of rare-earth ions in oxide glasses for optical applications.

  13. Optical characterization, 1.5 μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses

    International Nuclear Information System (INIS)

    Rodriguez-Mendoza, U.R.; Lalla, E.A.; Caceres, J.M.; Rivera-Lopez, F.; Leon-Luis, S.F.; Lavin, V.

    2011-01-01

    The optical properties of Er 3+ ions in a novel glass based on TeO 2 -PbF 2 -AlF 3 oxyfluoride tellurites have been investigated using steady-state and time-resolved spectroscopies as a function of the rare-earth doping concentration. Basic optical characterizations have been performed measuring and calculating the absorption and emission spectra and the cross-sections, the Judd-Ofelt intensity parameters, the radiative probabilities and the fluorescence decays and lifetimes. Special attention has been devoted to the broad 4 I 13/2 → 4 I 15/2 emission transition at around 1.53 μm since, with a wide broadening of around 70 nm and a relative long lifetime of around 3 ms compared to others glass hosts, it shows potential applications in the design of erbium-doped fiber amplifiers. The absorption, the stimulated emission and the gain cross-sections of this transition have been obtained and compared with that obtained in different hosts. Finally, infrared-to-visible upconversion processes exciting at around 800 nm have been analyzed and different mechanisms involved in the energy conversion have been proposed. - Research highlights: → Broadened emission bands and high absorption and emission cross-sections for the transition 4 I 15/2 → 4 I 13/2 suitable for EDFAs. → Efficient green upconverted emission. → High value of C DA (6) energy transfer parameter.

  14. Effect of the kind of alkaline and rare earth ions on the structure of a glass rich in earth; Effet de la nature des ions alcalins et alcalino-terreux sur la structure d un verre riche en terre

    Energy Technology Data Exchange (ETDEWEB)

    Quintas, Arnaud; Caurant, Daniel; Majerus, Odile [Laboratoire de Chimie Appliquee de l Etat Solide, UMR 7574, ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, (France); Lenoir, Marion; Dussossoy, Jean-Luc [Commissariat a l Energie Atomique, Centre d Etudes de la Vallee du Rhone, DIEC/SCDV/LEBM, 30207 Bagnols-sur-Ceze, (France); Charpentier, Thibault [Service de Chimie Moleculaire, DSM/DRECAM/CEA Saclay, 91191 Gif-sur-Yvette Cedex, (France); Neuville, Daniel R. [Laboratoire de Physique des Mineraux et des Magmas, UMR 7047-CNRS-IPGP, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, (France); Gervais, C. [Laboratoire de Chimie de la matiere condensee, UMR7574, Universite Pierre et Marie Curie, 4 place Jussieu, F-75252 Paris Cedex 05, (France)

    2006-07-01

    In the framework of a structural study of a nuclear wastes containment glass of type alumino borosilicate and rich in rare earths, the influence of the kind of alkaline or rare earth ions is analyzed. For that, two glasses series have been prepared in which the Na{sup +} ion (respectively Ca{sup 2+} ions) present in the standard composition is totally substituted by another alkaline ion Li{sup +}, K{sup +}, Rb{sup +} or Cs{sup +} (respectively another rare earth ion Mg{sup 2+}, Sr{sup 2+} or Ba{sup 2+}). These glasses, analyzed by optical absorption, Raman and {sup 27}Al or {sup 11}B NMR spectroscopies have revealed the strong impact of the kind of the modifying ion as well as the structure of the vitreous lattice (variation of the ratio BO{sub 3}/BO{sub 4} and local variations of the polymerization degree) than the local surroundings of the rare earth (decrease of the covalency degree of the bond Nd-O with the increase of the field force of the modifying ion). (O.M.)

  15. Luminescent features of sol–gel derived rare-earth multi-doped oxyfluoride nano-structured phosphors for white LED application

    International Nuclear Information System (INIS)

    Gouveia-Neto, A.S.; Silva, A.F. da; Bueno, L.A.; Costa, E.B. da

    2012-01-01

    Rare-earth doped oxyfluoride 75SiO 2 :25PbF 2 nano-structured phosphors for white-light-emitting diodes were synthesized by thermal treatment of precursor sol–gel derived glasses. Room temperature luminescence features of Eu 3+ , Sm 3+ , Tb 3+ , Eu 3+ /Tb 3+ , and Sm 3+ /Tb 3+ ions incorporated into low-phonon-energy PbF 2 nanocrystals dispersed in the aluminosilicate glass matrix and excited with UV light emitting diode were investigated. The luminescence spectra exhibited strong emission signals in the red (600, 610, 625, and 646 nm), green (548 and 560 nm), and blue (485 nm) wavelength regions. White-light emission was observed in Sm/Tb and Eu/Tb double-doped activated phosphors employing UV-LED excitation at 395 nm. The dependence of the luminescence emission intensities upon annealing temperature and rare-earth concentration was also examined. The results indicated that there exist optimum annealing temperature and activator ion concentration in order to obtain intense visible emission light with high color rendering index. The study suggests that the nanocomposite phosphor based upon 75SiO 2 :25PbF 2 host herein reported is a promising contender for white-light LED applications. - Highlights: ► White-light emission in double-doped activated phosphors employing UV-LED excitation. ► Luminescent features of europium, samarium, and terbium in nanocrystals dispersed in aluminosilicate glass. ► New nanocomposite phosphor host for white-light LED applications.

  16. Effect of rare-earth additions on the structure and dielectric energy storage properties of Ba{sub x}Sr{sub 1-x}TiO{sub 3}-based barium boronaluminosilicate glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Xiu, Shaomei; Xiao, Shi; Zhang, Wenqin; Xue, Shuangxi; Shen, Bo, E-mail: shenbo@tongji.edu.cn; Zhai, Jiwei, E-mail: apzhai@tongji.edu.cn

    2016-06-15

    Ba{sub x}Sr{sub 1-x}TiO{sub 3}-based barium boroaluminosilicate (BST-BBAS) glass-ceramics added with La{sub 2}O{sub 3}, Gd{sub 2}O{sub 3} and Yb{sub 2}O{sub 3} were fabricated through the melting method followed by controlled crystallization, respectively. The X-ray diffraction and the field emission scanning electron microscopy were investigated the phase composition and microstructure for the BST-BBAS glass-ceramics added with rare-earth additions, then the temperature-dependent dielectric properties and the voltage-withstand measurements were applied to study the effect of rare-earth additions on the dielectric energy storage density. These results show that the certain content of rare-earth additions can optimize the microstructure and phase structure effectively. And with the decrease of ionic radiuses of rare-earth elements, the microstructure of the glass-ceramics become more uniform. When added with 0.5 mol% Yb{sup 3+}, the theoretical energy storage density of the BST-BBAS glass-ceramics gets the largest value of 3.5 J/cm{sup 3} which is about 1.8 times compared to the undoped one. - Highlights: • A certain content of Yb{sub 2}O{sub 3} can restrain the formation of BaSi{sub 2}O{sub 5}and SiO{sub 2} phases. • The addition of rare earth can optimize the microstructure. • With 0.5 mol% Yb{sup 3+}, the dielectric energy storage density got the largest value of 3.5 J/cm{sup 3}.

  17. Optical properties of gold nanoparticle embedded Er{sup 3+} doped lead–tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sazali, E.S.; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.; Arifin, R.; Rohani, M.S.; Awang, A.

    2014-09-01

    Highlights: • Er{sup 3+} doped lead–tellurite glass with and without GNPs has been synthesized. • The existence of Au NPs with average diameter of 6.09 nm dispersed in glass matrix. • Plasmonic effect from Au NPs exert prominent enhancement in UC. - Abstract: Enhanced optical properties of rare earth doped glasses for sundry applications are current challenges in materials science and technology. Series of gold nanoparticles (GNPs) embedded Er{sup 3+} doped TeO{sub 2}–PbO–PbO{sub 2} glasses are synthesized and the influences of GNPs on the optical behaviors are examined. XRD spectra confirm the amorphous nature of all the glass samples. TEM images display the existence of a broad distribution of spherical crystalline GNPs with average diameter ∼6.09 nm. UV–Vis–NIR spectra reveal seven absorption bands centered at 490, 526, 551, 652, 800, 982 and 1520 nm due to the absorptions from the ground state to different excited states. Two surface plasmon resonance bands of gold (Au{sup 0}) are evidenced at 556 and 585 nm. The sizable decrease in the optical band gap (2.82–1.09 eV) with the increase of GNPs concentration from 0.025 to 0.1 mol% is attributed to the generation of higher NPs nucleation sites. The intensity parameters related to the radiative transitions within 4f{sup n} configuration of Er{sup 3+} ion are determined and analyzed using Judd–Ofelt (J–O) theory. The room temperature up-conversion emission spectra under 779 nm excitations shows three peaks centered at 520, 550 and 660 nm corresponding to the transitions from {sup 2}H{sub 11/2}, {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} excited states to {sup 4}I{sub 15/2} ground state. Significant enhancement in the luminescence intensity is primarily ascribed to surface plasmon resonance mediated strong local field effect of GNPs in the proximity Er{sup 3+} ion and radiative energy transfer. The maximum enhancement are evident for green and red bands at 0.05 mol% of Au. The stimulated

  18. Partitioning of the rare earths and actinides between R7T7 nuclear glass alteration products and solution according to disposal conditions; Partage des terres rares et des actinides entre solution et produits d`alteration du verre nucleaire type R7T7 en fonction des conditions de stockage

    Energy Technology Data Exchange (ETDEWEB)

    Menard, O

    1995-10-25

    The alteration of nuclear glass by water is liable to release radionuclides into the environment. Determining the release kinetics of these elements and their aqueous chemical forms are therefore essential steps in establishing the safety of a geological repository site. Leach tests were conducted with a nonradioactive specimen of the French ``R7T7`` light water containment glass spiked with U and Th, and with two R7T7 specimens spiked with {sup 237}Np and {sup 239}Pu, respectively. The alteration solution compositions were representative of deep groundwater and contained carbonate, sulfate, phosphate, fluorine and chlorine ions. The release of U, Th, Np and Pu, as well as of the rare earths La, Ce and Nd were monitored by ICP mass spectrometry and by {alpha} spectrometry. Scanning and transmission electron microscopic examination of the nonradioactive altered glass surfaces was also performed to assess the partitioning balance for the rare earths, U and Th between the glass alteration products and solution. The mobility of these elements depends on two competing mechanisms. The rare earths and thorium are incorporated in the alteration products (gel); the retention process is assumed to involve chemisorption or coprecipitation, enhanced in the gel layer by the presence of phosphate ions in particular. Conversely, the aqueous species in the alteration solutions (mainly anions) form complexes with the actinides and rare earths; this phenomenon is particularly evident with U and Np. The presence of carbonate ions favors this mobility. Plutonium differs from U and Np in that it is adsorbed mainly on colloids formed by glass dissolution, the principal factors governing its chemical evolution in solution. (author). refs., 122 figs., 185 tabs.

  19. Rare earth point defects in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, S.

    2007-12-14

    In this work we investigate rare earth doped GaN, by means of theoretical simulations. The huge unit cells necessary to model the experimental system, where dilute amount of rare earth ions are used, are handled with the charge self consistent density-functional based-tight binding (SCC-DFTB) calculational scheme. The method has been extended to include LDA+U and simplified self interaction corrected (SIC)-like potentials for the simulation of systems with localised and strongly correlated electrons. A set of tight-binding parameters has been created to model the interaction of GaN with some dopants, including a selection of lanthanide ions interesting due to their optical or magnetic properties (Pr, Eu, Gd, Er and Tm). The f-electrons were treated as valence electrons. A qualitatively correct description of the band gap is crucial for the simulation of rare earth doped GaN, because the luminescence intensity of the implanted samples depends on the size of the host band gap and because the rare earths could introduce charge transition levels near the conduction band. In this work these levels are calculated with the Slater-Janak (SJ) transition state model, which allows an approximate calculation of the charge transition levels by analysing the Kohn-Sham eigenvalues of the DFT. (orig.)

  20. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    The alkaline earth borate glasses containing heavy metal oxides show good solubility of rare-earth ions. Glasses containing PbO exhibit low glass transition temperature (Tg) and high ..... These oxygen ions carry a partial negative charge and.

  1. First principles investigation of structural, electronic, elastic and thermal properties of rare-earth-doped titanate Ln2TiO5

    Directory of Open Access Journals (Sweden)

    Hui Niu

    2012-09-01

    Full Text Available Systematic first-principles calculations based on density functional theory were performed on a wide range of Ln2TiO5 compositions (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy and Y in order to investigate their structural, elastic, electronic, and thermal properties. At low temperature, these compounds crystallize in orthorhombic structures with a Pnma symmetry, and the calculated equilibrium structural parameters agree well with experimental results. A complete set of elastic parameters including elastic constants, Hill's bulk moduli, Young's moduli, shear moduli and Poisson's ratio were calculated. All Ln2TiO5 are ductile in nature. Analysis of densities of states and charge densities and electron localization functions suggests that the oxide bonds are highly ionic with some degree of covalency in the Ti-O bonds. Thermal properties including the mean sound velocity, Debye temperature, and minimum thermal conductivity were obtained from the elastic constants.

  2. Nanostructured rare earth doped Nb{sub 2}O{sub 5}: Structural, optical properties and their correlation with photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Rafael Ramiro; Aquino, Felipe Thomaz [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP CEP 14040-901 (Brazil); Ferrier, Alban [PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris (France); Goldner, Philippe [PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Gonçalves, Rogéria R., E-mail: rrgoncalves@ffclrp.usp.br [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP CEP 14040-901 (Brazil)

    2016-02-15

    In the present work, we report on a systematic study on structural and spectroscopic properties Eu{sup 3+} and Er{sup 3+}-doped Nb{sub 2}O{sub 5} prepared by sol–gel method. The Eu{sup 3+} ions were used as structural probe to determine the symmetry sites occupied by lanthanide ions. The Eu{sup 3+}-doped Nb{sub 2}O{sub 5} nanocrystalline powders were annealed at different temperatures to verify how the different Nb{sub 2}O{sub 5} crystalline phases affect the structure and the luminescence properties. Er{sup 3+}-doped Nb{sub 2}O{sub 5} was prepared showing an intense NIR luminescence, and, visible luminescence on the green and red, deriving from upconversion process. The synthetized materials can find widespread applicability in photonics as red luminophor for white LED (with tricolor), optical amplifiers and upconverter materials. - Highlights: • Vis and NIR emission from nanostructured lanthanide doped Nb{sub 2}O{sub 5}. • Eu{sup 3+}-doped Nb{sub 2}O{sub 5} as Red luminophor. • Multicolor tunability of intense upconversion emission from lanthanide doped Nb{sub 2}O{sub 5}. • Potential application as biological markers. • Broad band NIR emission.

  3. Optical and magnetic spectroscopy of rare-earth-doped yttrium aluminium borate (YAl sub 3 (BO sub 3) sub 4) single crystals

    CERN Document Server

    Watterich, A; Borowiec, M T; Zayarnyuk, T; Szymczak, H; Beregi, E; Kovács, L G

    2003-01-01

    For Ce sup 3 sup + , Er sup 3 sup + and Yb sup 3 sup + ions, electron paramagnetic resonance (EPR) spectra typical for S' = 1/2 ions are measured for YAl sub 3 (BO sub 3) sub 4 (YAB) single crystal. The spectra show axial symmetry indicating that all three dopants replace Y sup 3 sup + at the given dopant concentration. Corresponding g-tilde - and hyperfine A-tilde -tensors are determined. The EPR linewidth of Ce broadens with increasing temperature due to an Orbach relaxation process. Fitting the curve with an exponential, the energy difference is found to be equal to 270 +- 16 cm sup - sup 1. The optical absorption and excitation spectra of Ce in YAB single crystal measured at 300 K are similar to those found for polycrystalline materials. High-resolution polarized emission from the lowest excited to the sup 2 F sub 5 sub / sub 2 ground state, measured at 4.2 K, indicates a splitting of the ground state into three levels. The second level is located 277 +- 18 cm sup - sup 1 above the first one, in excellent...

  4. Magnetic properties of rare-earth-doped La.sub.0.7./sub.Sr.sub.0.3./sub.MnO.sub.3./sub.

    Czech Academy of Sciences Publication Activity Database

    Veverka, Pavel; Kaman, Ondřej; Knížek, Karel; Novák, Pavel; Maryško, Miroslav; Jirák, Zdeněk

    2017-01-01

    Roč. 29, č. 3 (2017), 1-9, č. článku 035803. ISSN 0953-8984 R&D Projects: GA ČR GA15-10088S Institutional support: RVO:68378271 Keywords : crystal field splitting * Tb 3+ electronic levels * ab initio calculations * perovskite manganite * bulk versus nanoparticles Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics , supercond.) Impact factor: 2.649, year: 2016

  5. Near-infrared (1550 nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly(4-vinylbenzylphosphonate)

    Science.gov (United States)

    Kamimura, Masao; Kanayama, Naoki; Tokuzen, Kimikazu; Soga, Kohei; Nagasaki, Yukio

    2011-09-01

    A novel poly(ethylene glycol) (PEG)-based block copolymer possessing a 4-vinylbenzylphosphonate repeating unit in another segment (PEG-block-poly(4-vinylbenzylphosphonate)) (PEG-b-PVBP) was designed and successfully synthesized. As a control, an end-functionalized PEG possessing a mono-phosphonate group (PEG-PO3H2) was also synthesized. The surface of near-infrared (NIR) phosphors (i.e., ytterbium (Yb) and erbium (Er) ion-codoped Y2O3 nanoparticles (YNPs)) were modified with PEG-b-PVBP (PEG-YNP(b)s) and PEG-PO3H2 (PEG-YNP(1)s). The adsorption of PEG-b-PVBP and PEG-PO3H2 was estimated by Fourier transform infrared (FT-IR) measurements and thermal gravimetric analysis (TGA). The physicochemical characteristics of the obtained YNP samples were analyzed by ζ-potential and dynamic light scattering (DLS) measurements. The ζ-potentials of YNPs modified by these polymers were close to zero, indicating the effective coverage of the YNP surface by our new PEG derivatives. However, the dispersion stability of the PEGylated YNPs was strongly affected by the structure of the PEG terminus. The average diameter of the PEG-YNP(1)s increased, and aggregates precipitated after less than 1 h in phosphate buffer saline (PBS). In contrast, the size did not change at all in the case of PEG-YNP(b)s and the dispersion in PBS was stable for over 1 week. PEG-YNP(b)s also showed high erosion resistance under acidic conditions. The multiple coordinated PVBP segment of the block copolymer on the YNP surface plays a substantial role in improving such dispersion stability. The excellent dispersion stability and strong NIR luminescence of the obtained PEG-YNP(b)s were also confirmed in fetal bovine serum (FBS) solution over 1 week. Furthermore, in vivo NIR imaging of live mice was performed, and the 1550 nm NIR emission of PEG-YNP(b)s from the organ of live mice was confirmed without dissection.A novel poly(ethylene glycol) (PEG)-based block copolymer possessing a 4-vinylbenzylphosphonate repeating unit in another segment (PEG-block-poly(4-vinylbenzylphosphonate)) (PEG-b-PVBP) was designed and successfully synthesized. As a control, an end-functionalized PEG possessing a mono-phosphonate group (PEG-PO3H2) was also synthesized. The surface of near-infrared (NIR) phosphors (i.e., ytterbium (Yb) and erbium (Er) ion-codoped Y2O3 nanoparticles (YNPs)) were modified with PEG-b-PVBP (PEG-YNP(b)s) and PEG-PO3H2 (PEG-YNP(1)s). The adsorption of PEG-b-PVBP and PEG-PO3H2 was estimated by Fourier transform infrared (FT-IR) measurements and thermal gravimetric analysis (TGA). The physicochemical characteristics of the obtained YNP samples were analyzed by ζ-potential and dynamic light scattering (DLS) measurements. The ζ-potentials of YNPs modified by these polymers were close to zero, indicating the effective coverage of the YNP surface by our new PEG derivatives. However, the dispersion stability of the PEGylated YNPs was strongly affected by the structure of the PEG terminus. The average diameter of the PEG-YNP(1)s increased, and aggregates precipitated after less than 1 h in phosphate buffer saline (PBS). In contrast, the size did not change at all in the case of PEG-YNP(b)s and the dispersion in PBS was stable for over 1 week. PEG-YNP(b)s also showed high erosion resistance under acidic conditions. The multiple coordinated PVBP segment of the block copolymer on the YNP surface plays a substantial role in improving such dispersion stability. The excellent dispersion stability and strong NIR luminescence of the obtained PEG-YNP(b)s were also confirmed in fetal bovine serum (FBS) solution over 1 week. Furthermore, in vivo NIR imaging of live mice was performed, and the 1550 nm NIR emission of PEG-YNP(b)s from the organ of live mice was confirmed without dissection. Electronic supplementary information (ESI) available: 1H-NMR spectra of PEG-b-PCMS, PEG-b-PDEVBP and PEG-b-PVBP, 31P-NMR spectra of PEG-b-PDEVBP and PEG-b-PVBP, schematic representation of PEG-PO3H2 synthesis, 1H-NMR spectra of PEG-PO3Et2 and PEG-PO3H2, FT-IR spectra of YNP samples, PEG brush density on the YNP surface, and size distribution of YNP samples under acidic conditions are described. See DOI: 10.1039/c1nr10466g

  6. Design, processing and characterization of mechanically alloyed galfenol & lightly rare-earth doped FeGa alloys as smart materials for actuators and transducers

    Science.gov (United States)

    Taheri, Parisa

    Smart materials find a wide range of application areas due to their varied response to external stimuli. The different areas of application can be in our day to day life, aerospace, civil engineering applications, and mechatronics to name a few. Magnetostrictive materials are a class of smart materials that can convert energy between the magnetic and elastic states. Galfenol is a magnetostrictive alloy comprised primarily of the elements iron (Fe) and gallium (Ga). Galfenol exhibits a unique combination of mechanical and magnetostrictive (magnetic) properties that legacy smart materials do not. Galfenol's ability to function while in tension, mechanical robustness and high Curie temperature (600 °C) is attracting interest for the alloy's use in mechanically harsh and elevated temperature environments. Applications actively being investigated include transducers for down-hole use, next-generation fuel injectors, sensing, and energy harvesting devices. Understanding correlations between microstructure, electronic structure, and functional response is key to developing novel magnetostrictive materials for sensor and actuator technologies. To this end, in the first part of this thesis we report successful fabrication and investigation of magnetic and magnetostrictive properties of mechanically alloyed Fe81Ga19 compounds. For the first time, we could measure magnetostrictive properties of mechanically alloyed FeGa compounds. A maximum saturation magnetostriction of 41 ppm was achieved which is comparable to those measured from polycrystalline FeGa alloys prepared by other processing techniques, namely gas atomization and cold rolling. Overall, this study demonstrates the feasibility of large-scale production of FeGa polycrystalline alloys powders by a simple and cost-effective mechanical alloying technique. In the second part of this work, we report for the first time, experimental results pertaining to successful fabrication and advanced characterization of a series of Er/Gd-doped [110]-textured polycrystalline alloys of nominal composition, Fe83Ga17Erx (0 In the second part of this work, we report for the first time, experimental results pertaining to successful fabrication and advanced characterization of a series of Er/Gd-doped [110]-textured polycrystalline alloys of nominal composition, Fe83Ga 17Erx (0.

  7. An investigation of down-conversion luminescence properties of rare earth doped CaMoO4 phosphors for solar cell application

    Science.gov (United States)

    Verma, Akta; Sharma, S. K.

    2018-05-01

    In the present work, we have synthesized a CaMoO4:(1%)Er3+,(1%)Yb3+ down-converting phosphor by hydrothermal method. The primary goal of studying down-conversion is to enhance the conversion efficiency of Si-solar cell by converting one high energy (UV) photon into two low energy (NIR) photons. The various characterization such as XRD, FESEM and Photoluminescence (PL) were carried out. The X-ray diffraction (XRD) pattern exhibit tetragonal crystal structure and has a space group of I41a (88). The FESEM microphotograph shows surface morphology having a abundance of particles in spherical shape. The PL emission spectra were recorded both in Visible and NIR regions. There is hypertensive emission peak at 555 nm in the visible region due to 4S3/2 → 4I15/2 transition of Er3+ ions and an emission at 980 nm (2F5/2 → 2F7/2) due to Yb3+ ions. The result shows a demand of this down-converting material in the field of solar energy to improve the efficiency of Si-solar-cell.

  8. Broadband Luminescence in Rare Earth Doped Sr2SiS4: Relating Energy Levels of Ce3+ and Eu2+

    Directory of Open Access Journals (Sweden)

    Anthony B. Parmentier

    2013-08-01

    Full Text Available Sr2SiS4:Ce3+ is an efficient blue-emitting (460 nm phosphor, excitable with light of wavelengths up to 420 nm. From the excitation spectrum, we construct the energy level scheme and use it to check the predictive power of the Dorenbos model, relating the positions of the Ce3+ energy levels with those of Eu2+ in the same host. For strontium thiosilicate, this method gives excellent results and allows us to determine which of two available crystallographic sites is occupied by cerium. We use the Dorenbos method for extracting information on the coordination of Ce3+ from the observed crystal field splitting.

  9. Rare-earth Doped GaN - An Innovative Path Toward Area-scalable Solid-state High Energy Lasers Without Thermal Distortion (2nd year)

    Science.gov (United States)

    2010-06-01

    temperature for two Ga fluxes: Ga = 1.5×10–7 torr BEP (blue) and Ga= 3.5×10–7 torr BEP (red). ...........................................4  Figure 4...850–1025 °C, and the Ga flux, measured as beam equivalent pressure ( BEP ), was varied from 9.8×10–6 to 5.6×10–7 torr. The secondary ion mass...temperature for two Ga fluxes: Ga = 1.5×10–7 torr beam equivalent pressure (blue) and Ga= 3.5×10–7 torr BEP (red). 3.2 Optical Studies of Nd Doped

  10. Preparation and optical characterization of PbCl(2)-Sb(2)O(3)-TeO(2) glasses doped with rare earth elements

    Czech Academy of Sciences Publication Activity Database

    Kostka, Petr; Zavadil, Jiří; Pedlíková, Jitka; Poulain, M.

    2011-01-01

    Roč. 208, č. 8 (2011), s. 1821-1826 ISSN 1862-6300 R&D Projects: GA ČR GA104/08/0734 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z20670512 Keywords : glass * heavy metal oxides * optical properties * photoluminescence Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.463, year: 2011

  11. Glass microspheres for brachytherapy

    International Nuclear Information System (INIS)

    Prado, Miguel O.; Prastalo, Simon; Blaumann, Herman; Longhino, Juan M.; Repetto Llamazares, A.H.V.

    2007-01-01

    We developed the capacity to produce glass microspheres containing in their structure one or more radioactive isotopes useful for brachytherapy. We studied the various facts related with their production: (Rare earth) alumino silicate glass making, glass characterization, microspheres production, nuclear activation through (n,γ) nuclear reactions, mechanical characterization before and after irradiation. Corrosion tests in simulated human plasma and mechanical properties characterization were done before and after irradiation. (author) [es

  12. structural and luminescence characterization of lithium ...

    African Journals Online (AJOL)

    Bulus et al.

    1Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, ... Rare earth doped glasses have been a great deal of research ... optical industry. ... bubble-free molten was poured on a stainless steel plate in.

  13. The red-shift of ultraviolet spectra and the relation to optical basicity of Ce-doped alkali rare-earth phosphate glasses

    Czech Academy of Sciences Publication Activity Database

    Chen, G.; Baccaro, S.; Nikl, Martin; Cecilia, A.; Du, Y. Y.; Mihóková, Eva

    2004-01-01

    Roč. 87, č. 7 (2004), s. 1378-1380 ISSN 0002-7820 R&D Projects: GA MŠk ME 621 Institutional research plan: CEZ:AV0Z1010914 Keywords : scintillation glass * Ce 3+ * luminescence * absorption Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.710, year: 2004

  14. Rare-Earth Oxide Ion (Tm3+, Ho3+, and U3+) Doped Glasses and Fibres for 1.8 to 4 Micrometer Coherent and Broadband Sources

    National Research Council Canada - National Science Library

    Richards, Billy; Shen, Shaoxiong; Jha, Animesh

    2006-01-01

    ... (TeO2), fluorine-containing silicate (SiOF2) and germanate (GeOF2) glass hosts for each dopant by characterising the spectroscopic properties, including absorption and emission cross-sections and the lifetimes of the lasing levels...

  15. Prominent spectral features of Sm3+ ion in disordered zinc tellurite glass

    Directory of Open Access Journals (Sweden)

    Y.A. Tanko

    Full Text Available Trivalent rare earth doped glasses with modified spectroscopic features are essential for solid state lasers and diverse photonic applications. Glass composition optimisation may fulfil such demand. Stimulating the spectral properties of samarium (Sm3+ ions in tellurite glass host with desired enhancement is the key issue. Glasses with composition (80 − xTeO2–20ZnO–(xSm2O3, where 0 ⩽ x ⩽ 1.5 mol% are prepared using melt quenching method. The role of varying Sm3+ contents to improving the absorption and emission properties of the prepared glasses are determined. XRD pattern verifies amorphous nature of synthesised glasses. FTIR spectroscopy has been used to observe the structural modification of (TeO4 trigonal bipyramid structural units. DTA traces display prominent transition peaks for glass transition, crystallisation and melting temperature. Samples are discerned to be stable with desired Hruby parameter and superior glass forming ability. The UV–Vis–NIR absorption spectra reveals nine peaks centred at 470, 548, 947, 1085, 1238, 1385, 1492, 1550 and 1589 nm. These bands arise due to 6H5/2 → 4I11/2, 4G5/2, 6F11/2, 6F9/2, 6F7/2, 6F5/2, 6F3/2, 6H15/2 and 6F1/2 transitions, respectively. The direct, indirect band gap and Urbach energy calculated from the absorption edge of UV–Vis–NIR spectra are found to appear within (2.75–3.18 eV, (3.22–3.40 eV, and (0.20–0.31 eV, respectively. The observed increase in refractive index from 2.45 to 2.47 is ascribed to the generation of non-bridging oxygen atoms via the conversion of TeO4 into TeO3 units. Conversely the decrease in refractive index to 2.39 is attributed to the lower ionic radii (1.079 Å of Sm3+. PL spectra under the excitation of 452 nm display four emission bands centred at 563, 600, 644 and 705 nm corresponding to 4G5/2 → 6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions of samarium ions. Excellent features of the results nominate these compositions

  16. Nitrate glass

    International Nuclear Information System (INIS)

    Kirilenko, I.A.; Vinogradov, E.E.

    1977-01-01

    Experimental evidence on behaviour of nitrate glasses is reviewed in terms of relationships between the presence of water in vitrescent nitrate systems and the properties of the systems. The glasses considered belong to systems of Mg(NO 3 ) 2 - Nd(NO 3 ) 3 ; Hg(NO 3 ) 2 -Nd(NO 3 ) 3 ; NaNO 3 -Mg(NO 3 ) 2 -Nd(NO 3 ) 3 ; M-Zn(NO 3 ) 3 , where M is a mixture of 20% mass NaNO 3 and 80% mass Mg(NO 3 ) 2 , and Zn is a rare earth ion. Nitrate glass is shown to be a product of dehydration. Vitrification may be regarded as a resusl of formation of molecular complexes in the chain due to hydrogen bonds of two types, i.e. water-water, or water-nicrate group. Chain formation, along with low melting points of the nitrates, hinder crystallization of nitrate melts. Provided there is enough water, this results in vitrification

  17. Glass Membrane For Controlled Diffusion Of Gases

    Science.gov (United States)

    Shelby, James E.; Kenyon, Brian E.

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  18. New Trends in Amplifiers and Sources via Chalcogenide Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    L. Mescia

    2012-01-01

    Full Text Available Rare-earth-doped chalcogenide glass fiber lasers and amplifiers have great applicative potential in many fields since they are key elements in the near and medium-infrared (mid-IR wavelength range. In this paper, a review, even if not exhaustive, on amplification and lasing obtained by employing rare-earth-doped chalcogenide photonic crystal fibers is reported. Materials, devices, and feasible applications in the mid-IR are briefly mentioned.

  19. Superconducting properties of Ca1−xRExFe2As2 (RE: Rare Earths)

    International Nuclear Information System (INIS)

    Tamegai, T.; Ding, Q.P.; Ishibashi, T.; Nakajima, Y.

    2013-01-01

    Highlights: ► Superconducting properties in rare-earth doped CaFe 2 As 2 single crystals are characterized. ► Sharp resistive transitions with small anisotropy parameter of ∼1.75 are observed. ► Average critical current density is much smaller than other iron-based superconductors. ► Magneto-optical imaging confirms very inhomogeneous superconducting state. -- Abstract: We have grown rare-earth doped CaFe 2 As 2 single crystals and characterized their normal and superconducting properties. Temperature dependence of resistivity and its absolute value suggest good metallic conduction, suppressing antiferromagnetic (AF) transition in the undoped sample. Hall coefficient shows little temperature dependence, consistent with the suppression AF state. Superconducting transitions characterized by resistivity drops in magnetic fields for both parallel to c-axis and ab-plane are reasonably sharp with a weak anisotropy parameter ∼1.75. Despite these observations, average critical current density estimated from the bulk magnetization is orders of magnitude smaller than other typical iron-based superconductors. Magneto-optical imaging confirms very inhomogeneous superconducting state

  20. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  1. Electrochromic Glasses.

    Science.gov (United States)

    1980-07-31

    this glass and that dipole-dipole correlations contribute to the "ferroelectric-like" character of this amorphous system. The TeO2 -W03 glasses can only...shows the dielectric constant and Fig. I(b) glass from pure TeO2 ot pure WO. In addition, glass the tan 8 of the WO glass as a function of temperature... glasses containing WO, in various glass forming nitworks of LifO-B1O0, Na:O-BzO,, and TeO2 were prepared from reagent grade oxides at 800 C - 9SO C in

  2. Apollo 12 ropy glasses revisited

    Science.gov (United States)

    Wentworth, S. J.; Mckay, D. S.; Lindstrom, D. J.; Basu, A.; Martinez, R. R.; Bogard, D. D.; Garrison, D. H.

    1994-01-01

    We analyzed ropy glasses from Apollo 12 soils 12032 and 12033 by a variety of techniques including SEM/EDX, electron microprobe analysis, INAA, and Ar-39-Ar-40 age dating. The ropy glasses have potassium rare earth elements phosphorous (KREEP)-like compositions different from those of local Apollo 12 mare soils; it is likely that the ropy glasses are of exotic origin. Mixing calculations indicate that the ropy glasses formed from a liquid enriched in KREEP and that the ropy glass liquid also contained a significant amount of mare material. The presence of solar Ar and a trace of regolith-derived glass within the ropy glasses are evidence that the ropy glasses contain a small regolith component. Anorthosite and crystalline breccia (KREEP) clasts occur in some ropy glasses. We also found within these glasses clasts of felsite (fine-grained granitic fragments) very similar in texture and composition to the larger Apollo 12 felsites, which have a Ar-39-Ar-40 degassing age of 800 +/- 15 Ma. Measurements of 39-Ar-40-Ar in 12032 ropy glass indicate that it was degassed at the same time as the large felsite although the ropy glass was not completely degassed. The ropy glasses and felsites, therefore, probably came from the same source. Most early investigators suggested that the Apollo 12 ropy glasses were part of the ejecta deposited at the Apollo 12 site from the Copernicus impact. Our new data reinforce this model. If these ropy glasses are from Copernicus, they provide new clues to the nature of the target material at the Copernicus site, a part of the Moon that has not been sampled directly.

  3. Concentration dependent luminescence quenching of Er{sup 3+}-doped zinc boro-tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Said Mahraz, Zahra Ashur; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.; Reza Dousti, M.

    2013-12-15

    Understanding the mechanism of luminescence quenching in rare earth doped tellurite glass is an important issue. The Er{sup 3+}-doped boro-tellurite glasses with compositions 30B{sub 2}O{sub 3}+10ZnO+(60−x)TeO{sub 2}+xEr{sub 2}O{sub 3} (where x=0, 0.5, 1, 1.5 and 2 mol%) were prepared by melt quenching method. Structural and optical properties of the proposed glasses were characterized using XRD, FTIR, density, UV–vis-IR absorption and PL spectroscopy. The amorphous nature of these glasses was confirmed by XRD technique. The IR-spectrum reveals five absorption bands assigned to different B–O and Te–O vibrational groups. UV–vis-IR absorption spectrum exhibits seven absorption bands at 6553, 10,244, 12,547, 15,360, 19,230, 20,661 and 22,522 cm{sup −1} corresponding to {sup 4}I{sub 13/2}, {sup 4}I{sub 11/2}, {sup 4}I{sub 9/2}, {sup 4}F{sub 9/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 7/2} and {sup 4}F{sub 3/2} excited states of Er{sup 3+} ion respectively. The optical band gap energy (E{sub opt}) corresponding to the direct and indirect allowed transitions decreased, while the Urbach energy and cut-off wavelengths are increased by the introduction of Er{sup 3+} ions. The refractive index, density and phonon cut-off edge of the samples are increased and the molar volume decreased with the further addition of dopants. The Judd–Ofelt parameter (Ω{sub 2}) decreased from 5.73 to 3.13×10{sup −20} cm{sup 2} with the increase of erbium ions concentration from 0.5 to 2 mol%. The PL spectra show green emissions for the transition from {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} excited states to {sup 4}I{sub 15/2} ground state, which show strong quenching due to the addition of Er{sup 3+} ions. -- Highlights: • Er{sup 3+}-doped zinc boro-tellurite glass has been synthesized by melt quench method. • Spectroscopic properties dependent concentration is analyzed by different techniques. • Judd–Ofelt intensity parameter (Ω{sub 2}) decreased by increase in erbium

  4. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  5. Colloidal glasses

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Colloidal glasses. Glassy state is attained when system fails to reach equilibrium due to crowding of constituent particles. In molecular glasses, glassy state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the ...

  6. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  7. Rare earths: occurrence, production and applications

    International Nuclear Information System (INIS)

    Murthy, T.K.S.; Mukherjee, T.K.

    2002-01-01

    The mining and processing of rare earth minerals, particularly of monazite, began in a modest way in 1880s for commercialized production of mantle for gas lighting. For all major applications up to mid-twentieth century- production of lighter flints, misch metal as a metallurgical alloying agent, colouring, decolourizing and polishing agents for glass, petroleum cracking catalysts and arc-carbons, unseparated or partially separated rare earths were adequate. These applications continue till today. With the development and industrial application of powerful techniques like ion exchange and solvent extraction for the separation of rare earths, the decades after 1960 saw increasing utilization of the specific properties of the individual rare earths. Some of these advanced technological applications include: special glass for optical systems including camera lenses, phosphors for colour television, cathode ray tubes and fluorescent lighting, X-ray intensification screens, high intensity permanent magnets, electro optical devices, lasers, hydrogen storage materials, hydride rechargeable batteries, photomagnetic data storage systems, autoexhaust catalysts, special ceramics of unusual toughness, artificial diamonds and nonpoisonous plastic colorants. The topics covered in the book include rare earths: their story identity, rare earth resources, processing of ores and recovery of mixed rare earths products, separation and purification of rare earths, nonmetallic applications of rare earths, rare earth metals: production and applications, rare earth alloys and their applications, analysis of rare earth, processing of rare earth resources in India by Indian Rare Earth Ltd. and availability and market conditions

  8. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  9. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  10. Cosmos & Glass

    DEFF Research Database (Denmark)

    Beim, Anne

    1996-01-01

    The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne....

  11. Glass Glimpsed

    DEFF Research Database (Denmark)

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  12. Rare particles

    International Nuclear Information System (INIS)

    Kutschera, W.

    1984-01-01

    The use of Accelerator Mass Spectrometry (AMS) to search for hypothetical particles and known particles of rare processes is discussed. The hypothetical particles considered include fractionally charged particles, anomalously heavy isotopes, and superheavy elements. The known particles produced in rare processes discussed include doubly-charged negative ions, counting neutrino-produced atoms in detectors for solar neutrino detection, and the spontaneous emission of 14 C from 223 Ra. 35 references

  13. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  14. Photoluminescence of rare-earth-doped Ca{sub 4}Ga{sub 2}S{sub 7}; Fotolyuminestsentsiya Ca{sub 4}Ga{sub 2}S{sub 7}:RZEh

    Energy Technology Data Exchange (ETDEWEB)

    Tagiev, B G; Tagiev, O B; Dzhabbarov, R B; Musaeva, N N; Kasumov, U F [Inst. Fiziki im. G.M. Abdullaeva AN Azerbajdzhana, Baku (Azerbaijan)

    2001-12-01

    One obtained Ca{sub 4}Ga{sub 2}S{sub 7}:REM crystals and studied their photoluminescent (PL) properties. One used Nd, Ce, Pr and Tb as promoters. It is shown that in all investigated crystals one observed PL intensity maximums at {lambda} 543 nm that result from intracentre transitions of Nd{sup 3+} ions. The excitation energy is effectively transferred nonradiatingly from Ce{sup 3+}, Pr{sup 3+}, Tb{sup 3+} ions to Nd{sup 3+} ion. In the case, Ce{sup 3+}, Pr{sup 3+}, Tb{sup 3+} are the effective ions-sensitizers.

  15. Stabilization of the ferromagnetic metallic state in rare earth-doped La0.49X0.01Ca0.50MnO3+δ (X=Nd, Sm, Gd and Yb)

    International Nuclear Information System (INIS)

    Aslam, Affia; Hasanain, S.K.; Akhtar, M.J.; Nadeem, M.

    2006-01-01

    We report the effects of disorder induced by a small amount of substitution of the smaller cations (Nd, Sm, Gd and Yb) for La in the La 0.50 Ca 0.50 MnO 3+δ system. With decreasing size of the dopant, the ferromagnetic and metallic state is stabilized while the AFM and insulating behaviour is completely eliminating. The magnetic moment below T c increases in general, with decreasing dopant size. The behaviour is interpreted in terms of the destabilization of the charge ordering (CO) due to the disorder induced by the size mismatch of the cations. Our data support the view that close to the COI-FM phase boundary, the effect of disorder is to weaken the CO that is more sensitive to disorder, whereas it leaves the more robust double exchange relatively unaffected, thereby extending the region in phase space where the FM phase is stable

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Optical spectroscopy of rare earth-doped oxyfluoro-tellurite glasses to probe local environment. GAJANAN V HONNAVAR K P RAMESH ... Keywords. Tellurite glasses; Raman spectroscopy; photoluminscence; Stark level splitting; UV visible spectroscopy.

  17. Random magnetism in amorphous rare-earth alloys (invited)

    Science.gov (United States)

    Sellmyer, D. J.; Nafis, S.

    1985-04-01

    Several aspects of the magnetic transitions seen in rare-earth metallic glasses are discussed, particularly with reference to recent theoretical work. These include: (a) apparent double transitions observed in Gd glasses where exchange fluctuations are important, (b) evidence for a correlated speromagnetic state recently predicted by Chudnovsky and Serota, and (c) the analysis of a Tb glass with strong random anisotropy in terms of an Ising-type spin-glass transition.

  18. Rare earth element and rare metal inventory of central Asia

    Science.gov (United States)

    Mihalasky, Mark J.; Tucker, Robert D.; Renaud, Karine; Verstraeten, Ingrid M.

    2018-03-06

    Rare earth elements (REE), with their unique physical and chemical properties, are an essential part of modern living. REE have enabled development and manufacture of high-performance materials, processes, and electronic technologies commonly used today in computing and communications, clean energy and transportation, medical treatment and health care, glass and ceramics, aerospace and defense, and metallurgy and chemical refining. Central Asia is an emerging REE and rare metals (RM) producing region. A newly compiled inventory of REE-RM-bearing mineral occurrences and delineation of areas-of-interest indicate this region may have considerable undiscovered resources.

  19. GLASS BOX

    National Research Council Canada - National Science Library

    Curtis, Laura

    2008-01-01

    The goals of this effort were to develop Glass Box capabilities to allow for the capturing of analyst activities and the associated data resources, track and log the results of automated processing...

  20. Superconducting properties of Ca{sub 1−x}RE{sub x}Fe{sub 2}As{sub 2} (RE: Rare Earths)

    Energy Technology Data Exchange (ETDEWEB)

    Tamegai, T., E-mail: tamegai@ap.t.u-tokyo.ac.jp [Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST, Transformative Research-Project on Iron Pnictides (TRIP), Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ding, Q.P. [Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST, Transformative Research-Project on Iron Pnictides (TRIP), Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ishibashi, T. [Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakajima, Y. [Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST, Transformative Research-Project on Iron Pnictides (TRIP), Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2013-01-15

    Highlights: ► Superconducting properties in rare-earth doped CaFe{sub 2}As{sub 2} single crystals are characterized. ► Sharp resistive transitions with small anisotropy parameter of ∼1.75 are observed. ► Average critical current density is much smaller than other iron-based superconductors. ► Magneto-optical imaging confirms very inhomogeneous superconducting state. -- Abstract: We have grown rare-earth doped CaFe{sub 2}As{sub 2} single crystals and characterized their normal and superconducting properties. Temperature dependence of resistivity and its absolute value suggest good metallic conduction, suppressing antiferromagnetic (AF) transition in the undoped sample. Hall coefficient shows little temperature dependence, consistent with the suppression AF state. Superconducting transitions characterized by resistivity drops in magnetic fields for both parallel to c-axis and ab-plane are reasonably sharp with a weak anisotropy parameter ∼1.75. Despite these observations, average critical current density estimated from the bulk magnetization is orders of magnitude smaller than other typical iron-based superconductors. Magneto-optical imaging confirms very inhomogeneous superconducting state.

  1. Rare Events

    Science.gov (United States)

    2009-10-01

    Limited Operational Exercise 1. 1A Limited Operational Exercise is a multiplayer experiment designed to exploit and study information sharing and...1.4 Summary of the Study The “rare event” of interest is an extreme, deliberate act of violence , destruction or socioeconomic disruption, such as an...connection with terrorism inves- tigations. The programs then use some combination of doctrinal revision and rewards to induce the people to abandon violence

  2. Effet des terres rares sur la structure et l'altération des verres borosilicatés

    OpenAIRE

    Molières , Estelle

    2012-01-01

    This work is related to the question of the geological deep repository of high-level waste glass. These wastes include fission products and minor actinides, elements which can be simulated by rare earths. As new glass compositions could enable increased rare earth concentrations, it is crucial to know and understand rare earth impact on glass structure on the one hand, and on glass alteration kinetics or their incorporation into an altered layer. This work studied simplified borosilicate glas...

  3. Glass compositions

    Energy Technology Data Exchange (ETDEWEB)

    France, P W

    1985-05-30

    A fluoride glass for use in the production of optical fibres has an enhanced D/H ratio, preferably such that OD:OH is at least 9:1. In the example, such a glass is prepared by treating with D/sub 2/O a melt comprising 51.53 mole per cent ZrF/sub 4/, 20.47 mole per cent BaF/sub 2/, 5.27 mole per cent LaF/sub 3/, 3.24 mole per cent AlF/sub 3/, and 19.49 mole per cent LiF.

  4. Glass formation ability, structure and magnetocaloric effect of a heavy rare-earth bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, C.-L. [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)], E-mail: jochollong@163.com; Xia Lei; Ding Ding; Dong Yuanda; Gracien, Ekoko [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)

    2008-06-30

    The glass formation ability, the structure and the magnetocaloric effect of the bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy were investigated. Bulk metallic glassy (BMGs) alloys were prepared by a copper-mold casting method. The glass forming ability and their structure were studied by using X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The XRD analysis revealed that the as-cast cylinder of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed fully amorphous structure in 2 mm diameter. The DSC revealed that the bulk cylinder of the Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed a distinct glass transition temperature and a relatively wide supercooled liquid region before crystallization. SQUID investigated the magnetic properties and the entropy changes. The Curie temperature of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} BMGs alloy was about 130 K, but the maximum magnetic entropy changes(-{delta}S{sub M}) showed at about 125 K, a little lower than the Curie temperature 130 K. The reason could probably be due to the presence of a little amount of nanocrystalline particles between amorphous phases. The BMG alloy has the characteristic of second-order transition (SOT) on Arrott plots. The results showed that the amorphous sample had a relatively improved magnetocaloric effect, indicating that the amorphous alloy could be considered as a candidate for magnetic refrigeration applications in the temperature interval range of 100-200 K.

  5. Glass: Rotary Electric Glass Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.

  6. Measurements of defect structures by positron annihilation lifetime spectroscopy of the tellurite glass TeO2-P2O5-ZnO-LiNbO3 doped with ions of rare earth elements: Er3+, Nd3+ and Gd3+

    Science.gov (United States)

    Golis, E.; Yousef, El. S.; Reben, M.; Kotynia, K.; Filipecki, J.

    2015-12-01

    The objective of the study was the structural analysis of the TeO2-P2O5-ZnO-LiNbO3 tellurite glasses doped with ions of the rare-earth elements: Er3+, Nd3+ and Gd3+ based on the PALS (Positron Annihilation Lifetime Spectroscopy) method of measuring positron lifetimes. Values of positron lifetimes and the corresponding intensities may be connected with the sizes and number of structural defects, such as vacancies, mono-vacancies, dislocations or pores, the sizes of which range from a few angstroms to a few dozen nanometres. Experimental positron lifetime spectrum revealed existence of two positron lifetime components τ1 and τ2. Their interpretation was based on two-state positron trapping model where the physical parameters are the annihilation velocity and positron trapping rate.

  7. X-ray luminescent glasses

    International Nuclear Information System (INIS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    X-ray luminescent glasses comprising a divalent cation such as an alkaline earth metal or other divalent cations such as pb, cd, or zn, and certain rare earth metaphosphates are suitable as vitreous, x-ray phosphors or x-ray luminescent glass fibers in an x-ray intensifying screen. The glasses have the composition n(Mo X p2o5)((1-y)tb2o3 X yce2o3 X 3p2o5) wherein N is greater than zero but less than or equal to 16, M is an alkaline earth metal or other divalent cation such as pb, cd, or zn, and Y is greater than or equal to zero but less than one

  8. Rare Earth-Activated Silica-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    C. Armellini

    2007-01-01

    Full Text Available Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented.

  9. Thulium-based bulk metallic glass

    International Nuclear Information System (INIS)

    Yu, H. B.; Yu, P.; Wang, W. H.; Bai, H. Y.

    2008-01-01

    We report the formation and properties of a thulium-based bulk metallic glass (BMG). Compared with other known rare-earth (RE) based BMGs, Tm-based BMGs show features of excellent glass formation ability, considerable higher elastic modulus, smaller Poisson's ratio, high mechanical strength, and intrinsic brittleness. The reasons for the different properties between the Tm-based and other RE-based BMGs are discussed. It is expected that the Tm-based glasses with the unique properties are appropriate candidates for studying some important issues in BMGs

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 2. Thermoluminescence dosimetry of rare earth doped calcium aluminate phosphors. K Madhukumar K Rajendra Babu K C Ajith Prasad J James T S Elias V Padmanabhan C M K Nair. Ceramics and Glasses Volume 29 Issue 2 April 2006 pp 119-122 ...

  11. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  12. Crystallization In Multicomponent Glasses

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  13. Optical properties of samarium doped zinc–tellurite glasses

    Indian Academy of Sciences (India)

    Unknown

    Optical absorption spectra of these glasses were recorded in the range 300–700 nm at room ... cause of their potential as hosts of rare earth elements for ... nature of these glasses was examined by X-ray diffraction ... absorption coefficient).

  14. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  15. Ouch! Or ESL and the Glass Ceiling.

    Science.gov (United States)

    Migliacci, Naomi

    The realities of the glass ceiling, which prevents qualified women, minorities, and many English-as-a-Second-Language (ESL) students from advancement and promotion, are rarely discussed in English for Special Purposes (ESP)/ESL programs and courses. This paper explores the barriers to success, focusing on the sociolinguistic factors of verbal and…

  16. Spin glasses

    International Nuclear Information System (INIS)

    Mookerjee, Abhijit

    1976-01-01

    ''Spin glasses'', are entire class of magnetic alloys of moderate dilution, in which the magnetic atoms are far enough apart to be unlike the pure metal, but close enough so that the indirect exchange energy between them (mediated by the s-d interaction between local moments and conduction electrons) dominates all other energies. Characteristic critical phenomena displayed such as freezing of spin orientation at 'Tsub(c)' and spreading of magnetic ordering, are pointed out. Anomalous behaviour, associated with these critical phenomena, as reflected in : (i) Moessbauer spectroscopy giving hyperfine splitting at Tsub(c), (ii) maxima in susceptibility and remanent magnetism, (iii) thermopower maxima and change in slope, (iv) Characteristic cusp in susceptibility and its removal by very small magnetic fields, and (v) conductivity-resistivity measurements, are discussed. Theoretical developments aimed at explaining these phenomena, in particular, the ideas from percolation and localisation theories, and the approach based on the gellations of polymers, are discussed. Finally, a new approach based on renormalisation group in disordered systems is also briefly mentioned. (K.B.)

  17. Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping

    Science.gov (United States)

    Zhong, X. C.; Guo, X. J.; Zou, S. Y.; Yu, H. Y.; Liu, Z. W.; Zhang, Y. F.; Wang, K. X.

    2018-04-01

    Mn-Zn ferrites doped with different Sm2O3, Gd2O3, Ce2O3 or Y2O3 were prepared by traditional ceramic technology using industrial pre-sintered powders. A small amount of Sm2O3, Gd2O3, Ce2O3 or Y2O3 can significantly improve the microstructure and magnetic properties. The single spinel phase structure can be maintained with the doping amount up to 0.07 wt.%. A refined grain structure and uniform grain size distribution can be obtained by doping. For all rare earth oxides, a small amount of doping can significantly increase the permeability and reduce the coercivity and magnetic core loss. The optimized doping amount for Sm2O3 or Gd2O3 is 0.01 wt.%, while for Ce2O3 or Y2O3 is 0.03 wt.%. A further increase of the doping content will lead to reduced soft magnetic properties. The ferrite sample with 0.01 wt.% Sm2O3 exhibits the good magnetic properties with permeability, loss, and coercivity of 2586, 316 W/kg, and 24A/m, respectively, at 200 mT and 100 kHz. The present results indicate that rare earth doping can be suggested to be one of the effective ways to improve the performance of soft ferrites.

  18. Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping

    Directory of Open Access Journals (Sweden)

    X. C. Zhong

    2018-04-01

    Full Text Available Mn-Zn ferrites doped with different Sm2O3, Gd2O3, Ce2O3 or Y2O3 were prepared by traditional ceramic technology using industrial pre-sintered powders. A small amount of Sm2O3, Gd2O3, Ce2O3 or Y2O3 can significantly improve the microstructure and magnetic properties. The single spinel phase structure can be maintained with the doping amount up to 0.07 wt.%. A refined grain structure and uniform grain size distribution can be obtained by doping. For all rare earth oxides, a small amount of doping can significantly increase the permeability and reduce the coercivity and magnetic core loss. The optimized doping amount for Sm2O3 or Gd2O3 is 0.01 wt.%, while for Ce2O3 or Y2O3 is 0.03 wt.%. A further increase of the doping content will lead to reduced soft magnetic properties. The ferrite sample with 0.01 wt.% Sm2O3 exhibits the good magnetic properties with permeability, loss, and coercivity of 2586, 316 W/kg, and 24A/m, respectively, at 200 mT and 100 kHz. The present results indicate that rare earth doping can be suggested to be one of the effective ways to improve the performance of soft ferrites.

  19. Investigation of crystallization in glasses containing fission products

    International Nuclear Information System (INIS)

    Malow, G.

    1979-01-01

    Five potential solidification products for high-level waste (four borosilicate glasses and one celsian glass ceramic) have been investigated in terms of crystallization. In all glasses and in the glass ceramic, crystallization, and recrystallization, respectively, were observed by heating above 773 0 K, however, at very different periods of time (0.1d greater than or equal to 100d). The noble metals precipitated into various phases. Crystal growth proceeded at the phase boundary glass-noble metal. In all products rare earth phases crystallized. Silicate phases rarely formed. The leach resistance (by the grain titration and Soxhlet tests) decreased after heat treatment in all cases. The changes were found to be within one order of magnitude for all products. 2 figures, 4 tables

  20. Rare-earth elements

    Science.gov (United States)

    Van Gosen, Bradley S.; Verplanck, Philip L.; Seal, Robert R.; Long, Keith R.; Gambogi, Joseph; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    The rare-earth elements (REEs) are 15 elements that range in atomic number from 57 (lanthanum) to 71 (lutetium); they are commonly referred to as the “lanthanides.” Yttrium (atomic number 39) is also commonly regarded as an REE because it shares chemical and physical similarities and has affinities with the lanthanides. Although REEs are not rare in terms of average crustal abundance, the concentrated deposits of REEs are limited in number.Because of their unusual physical and chemical properties, the REEs have diverse defense, energy, industrial, and military technology applications. The glass industry is the leading consumer of REE raw materials, which are used for glass polishing and as additives that provide color and special optical properties to the glass. Lanthanum-based catalysts are used in petroleum refining, and cerium-based catalysts are used in automotive catalytic converters. The use of REEs in magnets is a rapidly increasing application. Neodymium-iron-boron magnets, which are the strongest known type of magnets, are used when space and weight are restrictions. Nickel-metal hydride batteries use anodes made of a lanthanum-based alloys.China, which has led the world production of REEs for decades, accounted for more than 90 percent of global production and supply, on average, during the past decade. Citing a need to retain its limited REE resources to meet domestic requirements as well as concerns about the environmental effects of mining, China began placing restrictions on the supply of REEs in 2010 through the imposition of quotas, licenses, and taxes. As a result, the global rare-earth industry has increased its stockpiling of REEs; explored for deposits outside of China; and promoted new efforts to conserve, recycle, and substitute for REEs. New mine production began at Mount Weld in Western Australia, and numerous other exploration and development projects noted in this chapter are ongoing throughout the world.The REE-bearing minerals are

  1. Glass Masonry - Experimental Verification of Bed Joint under Shear

    Science.gov (United States)

    Fíla, J.; Eliášová, M.; Sokol, Z.

    2017-10-01

    Glass is considered as a traditional material for building industry but was mostly used for glazing of the windows. At present, glass is an integral part of contemporary architecture where glass structural elements such as beams, stairs, railing ribs or columns became popular in the last two decades. However, using glass as structural material started at the beginning of 20th century, when masonry from hollow glass blocks were used. Using solid glass brick is very rare and only a few structures with solid glass bricks walls have been built in the last years. Pillars and walls made from solid glass bricks are mainly loaded by compression and/or bending from the eccentricity of vertical load or wind load. Due to high compressive strength of glass, the limiting factor of the glass masonry is the joint between the glass bricks as the smooth surface requires another type of mortar / glue compared to traditional masonry. Shear resistance and failure modes of brick bed joint was determined during series of tests using various mortars, two types of surface treatment and different thickness of the mortar joint. Shear tests were completed by small scale tests for mortar - determination of flexural and compressive strength of hardened mortar.

  2. lead glass brick

    CERN Multimedia

    When you look through the glass at a picture behind, the picture appears raised up because light is slowed down in the dense glass. It is this density (4.06 gcm-3) that makes lead glass attractive to physicists. The refractive index of the glass is 1.708 at 400nm (violet light), meaning that light travels in the glass at about 58% its normal speed. At CERN, the OPAL detector uses some 12000 blocks of glass like this to measure particle energies.

  3. Rare earths production and marketing opportunities

    International Nuclear Information System (INIS)

    Falconnet, P.G.

    1988-01-01

    The rare earths (RE) market is relatively small. The total production during 1968 was only 10000 tons (REO) which rose to 27000 tons (REO) during 1985. The three major areas of application, which are volume market for ceric rare earths are catalysts, glass ceramics and metallurgy. Among the other uses of rare earths, the permanent magnets, lamp phosphors and fine ceramics have registered significant growth in RE consumption. Monazite and bastnasite are the main natural source for rare earths and processing of these for one of the rare earths in high demand leads to over production of some others not in demand, thus creating a balance problem. The growth in RE market has always been influenced by the technology shifts and product substitution. For example, the RE consumption during 1974/76 for desulfurization of steel had substantially decreased due to the usage of calcium. Similarly, 1985 had witnessed a drastic cut in the use of REs in fluid cracking due to the introduction of stabilized zeolites which contain less REO. Thus, the overall compound growth rate of demand was only 3.9 % per year during the period 1970-1985. At present, 37 % of the rare earths production goes to the glass/ceramics industry, 33 % for catalyst and 25 % to metallurgy. The price of REs constantly shows a downward trend. This trend coupled with the rapid changes taking place in the various technological fields, demands greater flexibility and high marketing skills from the RE producers. The key factor for future expansion of RE market will be the development of 'high volume' application of ceric rare earths. (author) 2 figs., 8 tabs

  4. Glass and nuclear wastes

    International Nuclear Information System (INIS)

    Sombret, C.

    1982-10-01

    Glass shows interesting technical and economical properties for long term storage of solidified radioactive wastes by vitrification or embedding. Glass composition, vitrification processes, stability under irradiation, thermal stability and aqueous corrosion are studied [fr

  5. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  6. Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics

    International Nuclear Information System (INIS)

    Stambouli, W.; Elhouichet, H.; Gelloz, B.; Férid, M.

    2013-01-01

    Tellurite glasses doped with trivalent europium were prepared by the conventional melt quenching technique, in the chemical composition of (85−x) TeO 2 +5La 2 O 3 +10TiO 2 +xEu 2 O 3 by varying the concentration of the rare-earth ion in the order 0.5, 1 and 1.5 mol%. Using Judd–Ofelt analysis, we calculated intensity parameters (Ω 2 and Ω 4 ), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors, the quantum yield of luminescence, and the stimulated emission cross-sections for 5 D 0 → 7 F 2 transition. The change in optical properties with the variation of Eu 3+ ion concentration have been discussed and compared with other glasses. The luminescence intensity ratio, quantum efficiency and emission cross-section values support that the TeEu1.5 tellurite glass is a suitable candidate for red laser source applications. Optical properties for Eu 3+ doped tellurite glass, heated for different temperature, were investigated. Crystalline phases for α-TeO 2 , γ-TeO 2 and TiTe 3 O 8 system were determined by the XRD method. The effect of heat treatment on luminescence properties in the tellurite glass was discussed. By using Eu 3+ as a probe, the local structure of rare-earth ion in tellurite glass, vitro-ceramic and ceramic glass has been investigated. The evaluated J–O intensity parameters have been used to calculate different radiative and laser characteristic parameters of the 5 D 0 excited level. The large magnitudes of stimulated emission cross-section (σ e ), branching ratio (β) and Gain bandwidth (σ e ×Δλ eff ) obtained for 5 D 0 → 7 F 2 (613 nm) transition for ceramic glass indicate that the present glass ceramic is promising host material for Eu 3+ doped fiber amplifiers. The measured lifetime of 5 D 0 excited state increases with increase of the heat treatment which further indicate that some Eu 3+ ions were successfully embedded in the crystal phase and prove the low phonon energy environment of Eu 3+ ions

  7. Time domain optical memories using rare earth ions

    International Nuclear Information System (INIS)

    Sellars, M.J.; Dyke, T.; Pryde, G.J.; Manson, N.B.

    1998-01-01

    Full text: Rare earth doped crystals are the chosen materials for the next generation of optical memories where the process of spectral holeburning can be employed to provide an extra dimension of frequency or time to spatial dimensions and with certain rare earth ions increases of the order of 10 7 in storage capacity can be achieved over conventional optical memories. Time domain techniques are preferred over frequency domain techniques and are now well developed. In these techniques arbitrary pulse sequences are stored in the material and read out at some later time with a single read pulse using a stimulated photon echo process. Long pulse sequences will enable more data to be stored but necessitates the use of materials with long dephasing times (corresponding to narrow spectral lines) and it is this characteristic of rare earth systems that makes them the preferred material for the new time domain optical memories. The storage time can range from hours to days but in a practical device will require refreshing or re-enforcing and this puts special requirements on the stability of the laser used for storing the information. The storage process itself can also be weak and more reliable storage can be achieved by recording the data several times with the same pulse sequence. For this to be successful the laser must be at held at a constant frequency and be stable in phase over the entire duration of the pulse sequence. The procedure of reinforcing the data sequence has been proposed before and attempted without attention to the laser frequency stability. However, if the laser is not stable although some data bits will be reinforced or increased in size others will be decreased or even erased. Indeed the reliability of the memory is degraded by the introducing the rewrite process. For our work we have developed a laser with the excellent stability and able to demonstrate reproducible reinforcement of the data sequence. Thus with the rewrite sequence we are able to

  8. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  9. Measurement of optical glasses

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1978-11-01

    The possibilities of measurement of the optical glasses parameters needed in building optical devices especially in lasers devices are presented. In the first chapter the general features of the main optical glasses as well as the modalities of obtaining them are given. Chapter two defines the optical glass parameters, and the third chapter describes the measuring methods of the optical glass parameters. Finally, the conclusions which point out the utilization of this paper are presented. (author)

  10. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    laminated float glass beam is constructed and tested in four-point bending. The beam consist of 4 layers of glass laminated together with a slack steel band glued onto the bottom face of the beam. The glass parts of the tested beams are \\SI{1700}{mm} long and \\SI{100}{mm} high, and the total width of one...

  11. Mining with Rare Cases

    Science.gov (United States)

    Weiss, Gary M.

    Rare cases are often the most interesting cases. For example, in medical diagnosis one is typically interested in identifying relatively rare diseases, such as cancer, rather than more frequently occurring ones, such as the common cold. In this chapter we discuss the role of rare cases in Data Mining. Specific problems associated with mining rare cases are discussed, followed by a description of methods for addressing these problems.

  12. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  13. Multiple Glass Ceilings

    OpenAIRE

    Russo, Giovanni; Hassink, Wolter

    2011-01-01

    Both vertical (between job levels) and horizontal (within job levels) mobility can be sources of wage growth. We find that the glass ceiling operates at both margins. The unexplained part of the wage gap grows across job levels (glass ceiling at the vertical margin) and across the deciles of the intra-job-level wage distribution (glass ceiling at the horizontal margin). This implies that women face many glass ceilings, one for each job level above the second, and that the glass ceiling is a p...

  14. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...

  15. Radiation hardening techniques for rare-earth based optical fibers and amplifiers

    International Nuclear Information System (INIS)

    Girard, Sylvain; Marcandella, Claude; Vivona, Marilena; Prudenzano, Luciano Mescia F.; Laurent, Arnaud; Robin, Thierry; Cadier, Benoit; Pinsard, Emmanuel; Ouerdane, Youcef; Boukenter, Aziz; Cannas, Marco; Boscaino, Roberto

    2012-01-01

    Er/Yb doped fibers and amplifiers have been shown to be very radiation sensitive, limiting their integration in space. We present an approach including successive hardening techniques to enhance their radiation tolerance. The efficiency of our approach is demonstrated by comparing the radiation responses of optical amplifiers made with same lengths of different rare-earth doped fibers and exposed to gamma-rays. Previous studies indicated that such amplifiers suffered significant degradation for doses exceeding 10 krad. Applying our techniques significantly enhances the amplifier radiation resistance, resulting in a very limited degradation up to 50 krad. Our optimization techniques concern the fiber composition, some possible pre-treatments and the interest of simulation tools used to harden by design the amplifiers. We showed that adding cerium inside the fiber phospho-silicate-based core strongly decreases the fiber radiation sensitivity compared to the standard fiber. For both fibers, a pre-treatment with hydrogen permits to enhance again the fiber resistance. Furthermore, simulations tools can also be used to improve the tolerance of the fiber amplifier by helping identifying the best amplifier configuration for operation in the radiative environment. (authors)

  16. Leaching of glass

    International Nuclear Information System (INIS)

    Hench, L.L.

    1977-01-01

    Understanding surface compositional profiles of glasses over a range of 0-2000 A with a variety of analytical instruments shows that five general types of glass surfaces exist. The surface character of a glass article depends upon bulk composition and environmental history during which surface dealkalization, film formation, and network dissolution can occur. Environmental-surface interactions generally result in complex compositional profiles of all the constituents in a glass. Durable glasses almost always develop a stable surface film which has a higher concentration of network formers than the bulk composition. Compositional effects that are used to improve glass durability usually improve the stability of the surface films. Durability tests or service conditions that lead to film destruction are especially severe for the most silicate glasses. 43 references

  17. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  18. Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers

    International Nuclear Information System (INIS)

    Seneschal, Karine; Smektala, Frederic; Bureau, Bruno; Floch, Marie Le; Jiang Shibin; Luo, Tao; Lucas, Jacques; Peyghambarian, Nasser

    2005-01-01

    New phosphate glasses have been developed in order to incorporate high rare-earth ions concentrations. These glasses present a great chemical stability and a high optical quality. The phosphate glass network is open, very flexible, with a linkage of the tetrahedrons very disordered and contains a larger number of non-bridging oxygens (66%). The great stability and resistance against crystallization associated with the possibility to incorporate high doping concentration of rare-earth ions in these phosphate glasses make them very good candidates for the realization of ultra short single mode amplifiers with a high gain at 1.55 μm

  19. Rare lung cancers

    International Nuclear Information System (INIS)

    Berzinec, P.

    2013-01-01

    The RARECARE Project (Rare Cancers in the Europe) supported by the European Union defined the rare cancers by the incidence rate of less than 6/100 000. There are several variants of lung cancer which are rare according to this definition. From the clinical point of view the most interesting are the rare adenocarcinomas and large cell neuroendocrine carcinoma. There are important differences in the diagnostic probability of EGFR and ALK mutations in the mutinous and non-mucin ous adenocarcinomas, in the signet ring cell adenocarcinomas, and large cell carcinomas. The optimal chemotherapy for neuroendocrine large cell carcinomas remains undefined. There is only very limited number of clinical trials aimed on the rare lung cancers and actually none phase III trial. Rare lung cancers continue to be a challenge both for the laboratory and the clinical research. (author)

  20. Gamma radiation induced changes in nuclear waste glass containing Eu

    Science.gov (United States)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  1. Towards Rare Itemset Mining

    OpenAIRE

    Szathmary , Laszlo; Napoli , Amedeo; Valtchev , Petko

    2007-01-01

    site de la conférence : http://ictai07.ceid.upatras.gr/; International audience; We describe here a general approach for rare itemset mining. While mining literature has been almost exclusively focused on frequent itemsets, in many practical situations rare ones are of higher interest (e.g., in medical databases, rare combinations of symptoms might provide useful insights for the physicians). Based on an examination of the relevant substructures of the mining space, our approach splits the ra...

  2. Fractography of glass

    CERN Document Server

    Tressler, Richard

    1994-01-01

    As the first major reference on glass fractography, contributors to this volume offer a comprehensive account of the fracture of glass as well as various fracture surface topography Contributors discuss optical fibers, glass containers, and flatglass fractography In addition, papers explore fracture origins; the growth of the original flaws of defects; and macroscopic fracture patterns from which fracture patterns evolve This volume is complete with photographs and schematics

  3. Diamond turning of glass

    Energy Technology Data Exchange (ETDEWEB)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  4. Glass to contain wastes

    International Nuclear Information System (INIS)

    Moncouyoux, M.; Jacquet-Francillon, M.

    1994-01-01

    Here are the tables and figures presented during the conference on the glass to confine high level radioactive wastes: definition, fabrication, storage and disposal. The composition of glasses are detailed, their properties and the vitrification proceeding. The behaviour of these glasses in front of water, irradiation and heat are shown. The characteristics of parcels are given according to the radiation protection rule, ALARA principle, the concept of multi-barriers and the geological stability

  5. Rare earth octacyanomolybdates(4)

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Sergeeva, A.N.; Pisak, Yu.V.

    1980-01-01

    Optimal conditions for synthesis of rare-earth octacyanomolybdates(4) of the Ln 4 [Mo(CN) 8 ] 3 xnH 2 O composition (where Ln is a rare-earth element, other than Pr, Pm, Lu, Tb) have been worked out. The synthesis has been accomplished by neutralization with octacianomolybdic acid with rare-earth carbonates. The composition and structure of the compounds synthesized have been studied by infrared-spectroscopy. It has been established that rare-earth octacyanomolybdates(4) form three isostructural groups

  6. Silicate glasses. Chapter 1

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e. borosilicate glass. A historical overview of waste form development programs in nine countries is followed by a summary of the design criteria for borosilicate glass compositions glass compositions. In the sections on glass properties the waste form is characterized in terms of potential alterations under the influence of heat, thermal gradients, radiation, aqueous solutions and combinations thereof. The topics are phase transformations, mechanical properties, radiation effects and chemical durability. The results from studies of volcanic glasses, as natural analogues for borosilicate nuclear waste glasses in order to verify predictions obtained from short-term tests in the laboratory, have been compiled in a special section on natural analogues. A special section on advanced vitrification techniques summarizes the various actual and potential processing schemes and describes the facilities. The literature has been considered until 1985. (author). 430 refs.; 68 figs.; 29 tabs

  7. Glass and vitrification

    International Nuclear Information System (INIS)

    Barton, J.L.; Vacher, R.; Moncouyoux, J.P.; Vernaz, E.

    1997-01-01

    Most glasses used as materials are oxides glasses that are produced by a quick quench of a liquid. Glasses are characterized by the absence of periodicity in the atomic arrangements, they do not have symmetries and do not present order over a long distance. This series of 4 short articles present: 1) the properties of glass and its industrial story, 2) the glass structure, 3) a forty years long story of glass as dies used to confine wastes and 4) the methodology used to study the behaviour of glass over very long periods of time. This methodology is based on 5 steps: 1) define and specify the material to study (the prediction of long term alteration of a material is nonsense unless you know well its initial properties), 2) identify all the alteration processes that are likely to happen, determine their kinetics and the influence of environmental parameters, 3) develop mathematical models in order to simulate long-term behaviour of glasses, 4) determine the release rates of the radionuclides confined in the glass, and 5) validate data and models, it is not possible to expect a complete validation of a model that will be extrapolated over tens of thousands of years, nevertheless some ways of validation can lead to a satisfactory level of confidence taking into account reasonable uncertainties. (A.C.)

  8. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  9. Relaxations in spin glasses: Similarities and differences from ordinary glasses

    International Nuclear Information System (INIS)

    Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.

    1984-01-01

    Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter

  10. Evaluation of Structural Cellular Glass

    Science.gov (United States)

    Adams, M. A.; Zwissler, J. G.

    1984-01-01

    Preliminary design information presented. First report discusses state of structural-cellular-glass programs as of June 1979. Second report gives further details of program to develop improved cellular glasses and to characterize properties of glasses and commercially available materials.

  11. Electric glass capturing markets

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, K.; Wikstroem, T.

    1996-11-01

    Electric glass has found its place on the construction market. In public buildings, electrically heatable windows are becoming the leading option for large glass walls. Studies on detached houses, both new and renovated, show that floor heating combined with electrically heatable windowpanes is the best choice with respect to resident`s comfort. (orig.)

  12. Radioresistance of inorganic glasses

    International Nuclear Information System (INIS)

    Vorob'ev, A.A.; Zavadovskaya, E.K.; Fedorov, B.V.; Starodubtsev, V.A.

    1977-01-01

    Regularities are considered in the variation of properties of glass due to irradiations. On the basis of previous theoretical statements and experimental investigations, it is inferred that the irradiation resistance of glasses of the same type, synthesis conditions, content of impurities and amount of imperfections, is a function of the ''element-oxygen'' bond energy. The irradiation resistance depends on the number and the nature of glass structure imperfections. The averaged level of bonding forces is indicative of the glass formation temperature; the imperfections in glasses are formed in structure elements whose amount predominates as compared to the others. Electric charges which accumulate on the crack surface tend to increase its size, thus lessening even further the electric strength of the dielectric. The greater the irradiation time, the greater the number of irradiation imperfections causing a drop in the electric strength of glass. When choosing a glass for service in a radiation field, it is necessary to select those of a highest temperature of glass formation and with a least amount of imperfections

  13. Nucleation in ZBLAN glasses

    NARCIS (Netherlands)

    de Leede, G.L.A.; Waal, de H.

    1989-01-01

    Nucleation rates were detd. in a ZrF4-BaF2-NaF-LaF3-AlF3 glass (ZBLAN) using an optical method. The results were compared with a similar glass having a slightly different compn. The difference in the nucleation rate is explained by classical nucleation theory using calcd. free-energy differences

  14. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  15. Polymorphism in glasses

    International Nuclear Information System (INIS)

    Landa, L.M.; Nikolaeva, I.N.

    1979-01-01

    To defect phase interfaces and spasmodic properties change, the inhomogeneity and the second radiation effects in quartz glass, metamict phase and intermediate states have been investigated. When irradiating with fast neutrons the transformation of quartz glass - metamict phase occurs completely. The transformation is completed at 2x10 20 part./cm 2 dose. Thermal treatment not only increases the number of inhomogeneities but also results in increasing quartz glass density. Annealing transforms the metamict phase into common quartz glass at 1400 K. The fact, that thermal treatment results in the complete transformation of metamict phase into quartz glass, and the inverse transformation occurs only partially, is quite regular, as the metamict phase has a lesser entropy and is a more ordered state. It is shown that different amorphous phases of a chemical composition have different structures and properties, that there are interfaces between them, and the transformation from one state to another in microvolumes is realized spasmodically and requires expenditure of energy

  16. Glass leaching performance

    International Nuclear Information System (INIS)

    Chick, L.A.; Turcotte, R.P.

    1983-05-01

    Current understanding of the leaching performance of high-level nuclear waste (HLW) glass is summarized. The empirical model of waste glass leaching behavior developed shows that at high water flow rates the glass leach rate is kinetically limited to a maximum value. At intermediate water flow rates, leaching is limited by the solution concentration of silica and decreases with decreasing water flow rates. Release of soluble elements is controlled by silica dissolution because silica forms the binding network of the glass. At low water flow rates, mass loss rates reach values controlled by formation rates of alteration minerals, or by diffusion of dissolution products through essentially stagnant water. The parameters reviewed with respect to their quantifiable influence on leaching behavior include temperature, pH, leachant composition, glass composition, thermal history, and radiation. Of these, temperature is most important since the rate of mass loss approximately doubles with each 10 0 C increase in dilute solutions. The pH has small effects within the 4 to 10 range. The chemical composition of the leachant is most important with regard to its influence on alteration product formation. Glass composition exhibits the largest effects at high flow rates where improved glasses leach from ten to thirty times slower than glass 76 to 68. The effects of the thermal history (devitrification) of the glass are not likely to be significant. Radiation effects are important primarily in that radiolysis can potentially drive pH values to less than 4. Radiation damage to the glass causes insignificant changes in leaching performance

  17. Investigation of Er doped zinc borate glasses by low-temperature photoluminescence

    Czech Academy of Sciences Publication Activity Database

    Kostka, Petr; Kabalci, I.; Tay, T.; Gladkov, Petar; Zavadil, Jiří

    2017-01-01

    Roč. 192, DEC 2017 (2017), s. 1104-1109 ISSN 0022-2313 Institutional support: RVO:67985891 ; RVO:67985882 Keywords : borate glasses * rare-earth ions * stark levels * photoluminiscence Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass; JH - Ceramics, Fire-Resistant Materials and Glass (URE-Y) OBOR OECD: Ceramics; Ceramics (URE-Y) Impact factor: 2.686, year: 2016

  18. Rare Disease Video Portal

    OpenAIRE

    Sánchez Bocanegra, Carlos Luis

    2011-01-01

    Rare Disease Video Portal (RD Video) is a portal web where contains videos from Youtube including all details from 12 channels of Youtube. Rare Disease Video Portal (RD Video) es un portal web que contiene los vídeos de Youtube incluyendo todos los detalles de 12 canales de Youtube. Rare Disease Video Portal (RD Video) és un portal web que conté els vídeos de Youtube i que inclou tots els detalls de 12 Canals de Youtube.

  19. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  20. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  1. Connectivity of glass structure. Oxygen number

    Science.gov (United States)

    Medvedev, E. F.; Min'ko, N. I.

    2018-03-01

    With reference to mathematics, crystal chemistry and chemical technology of synthesis of glass structures in the solution (sol-gel technology), the paper is devoted to the study of the degree of connectivity of a silicon-oxygen backbone (fSi) and the oxygen number (R) [1]. It reveals logical contradictions and uncertainty of mathematical expressions of parameters, since fSi is not similar to the oxygen number. The connectivity of any structure is a result of various types of bonds: ion-covalent, donor-acceptor, hydrogen bonds, etc. Besides, alongside with SiO2, many glass compositions contain other glass-forming elements due to tetrahedral sites thus formed. The connectivity function of a glassy network with any set of glass-forming elements is roughly ensured by connectivity factor Y [2], which has monovalent elements loosening a glassy network. The paper considers the existence of various structural motives in hydrogen-impermeable glasses containing B2O3, Al2O3, PbO, Na2O, K2O and rare-earth elements. Hence, it also describes gradual nucleation, change of crystal forms, and structure consolidation in the process of substance intake from a matrix solution according to sol-gel technology. The crystal form varied from two-dimensional plates to three-dimensional and dendritical ones [3]. Alternative parameters, such as the oxygen number (O) and the structure connectivity factor (Y), were suggested. Functional dependence of Y=f(O) to forecast the generated structures was obtained for two- and multicomponent glass compositions.

  2. Analysis of rare categories

    CERN Document Server

    He, Jingrui

    2012-01-01

    This book focuses on rare category analysis where the majority classes have smooth distributions and the minority classes exhibit the compactness property. It focuses on challenging cases where the support regions of the majority and minority classes overlap.

  3. Effect of different glasses in glass bonded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-01-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  4. SYMPOSIUM: Rare decays

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-04-15

    Late last year, a symposium entitled 'Rare Decays' attracted 115 participants to a hotel in Vancouver, Canada. These participants were particle physicists interested in checking conventional selection rules to look for clues of possible new behaviour outside today's accepted 'Standard Model'. For physicists, 'rare decays' include processes that have so far not been seen, explicitly forbidden by the rules of the Standard Model, or processes highly suppressed because the decay is dominated by an easier route, or includes processes resulting from multiple transitions.

  5. Oxynitride glasses: a review

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.R.; Clausell, C.; Barba, A.

    2016-07-01

    Oxynitride glasses are special types of silicates or silicoaluminates which have been the object of many studies over the last forty years. They can be prepared by means of various complex methods, leading to variable levels of nitrogen incorporation, though in all cases giving limited transparency in the visible range. More recently, a new family of oxynitride glasses incorporating fluorine has been investigated. This paper outlines the effect of composition, in particular nitrogen and fluorine content, on properties such as glass transition temperature, hardness, Young's modulus, compactness and molar volume. (Author)

  6. Orbital glass in HTSC

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-10-01

    The physical reasons why the orbital glass may exist in granular high-temperature superconductors and the existing experimental data appeared recently are discussed. The orbital glass is characterized by the coexistence of the orbital paramagnetic state with the superconducting state and occurs at small magnetic fields H c0 c1 . The transition in orbital glass arises at the critical field H c0 which is inversely proportional to the surface cross-area S of an average grain. In connection with theoretical predictions the possible experiments are proposed. (author). 10 refs

  7. Bioactive glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2007-04-01

    Full Text Available Since the late 1960´s, a great interest in the use of bioceramic materials for biomedical applications has been developed. In a previous paper, the authors reviewed crystalline bioceramic materials “sensus stricto”, it is to say, those ceramic materials, constituted for non-metallic inorganic compounds, crystallines and consolidates by thermal treatment of powders at high temperature. In the present review, the authors deal with those called bioactive glasses and glassceramics. Although all of them are also obtained by thermal treatment at high temperature, the first are amorphous and the second are obtained by devitrification of a glass, although the vitreous phase normally prevails on the crystalline phases. After an introduction to the concept of bioactive materials, a short historical review of the bioactive glasses development is made. Its preparation, reactivity in physiological media, mechanism of bonding to living tissues and mechanical strength of the bone-implant interface is also reported. Next, the concept of glass-ceramic and the way of its preparation are exposed. The composition, physicochemical properties and biological behaviour of the principal types of bioactive glasses and glass-ceramic materials: Bioglass®, Ceravital®, Cerabone®, Ilmaplant® and Bioverit® are also reviewed. Finally, a short review on the bioactive-glass coatings and bioactive-composites and most common uses of bioactive-glasses and glass-ceramics are carried out too.

    Desde finales de los años sesenta, se ha despertado un gran interés por el uso de los materiales biocerámicos para aplicaciones biomédicas. En un trabajo previo, los autores hicieron una revisión de los denominados materiales biocerámicos cristalinos en sentido estricto, es decir, de aquellos materiales, constituidos por compuestos inorgánicos no metálicos, cristalinos y consolidados mediante tratamientos térmicos a altas temperaturas. En el presente trabajo, los autores

  8. Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering

    International Nuclear Information System (INIS)

    Ahn, Byung Gil; Park, Hwan Seo; Kim, Hwan Young; Lee, Han Soo; Kim, In Tae

    2010-01-01

    In the pyroprocessing of spent nuclear fuels, LiCl-KCl waste salt containing radioactive rare earth chlorides are generated. The radioactive rare earth oxides are recovered by co-oxidative precipitation of rare earth elements. The powder phase of rare earth oxide waste must be immobilized to produce a monolithic wasteform suitable for storage and ultimate disposal. The immobilization of these waste developed in this study involves a solid state sintering of the waste with host borosilicate glass and zinc titanate based ceramic matrix (ZIT). And the rare-earth monazite which synthesised by reaction of ammonium di-hydrogen phosphate with the rare earth oxides waste, were immobilized with the borosilicate glass. It is shown that the developed ZIT ceramic wasteform is highly resistant the leaching process, high density and thermal conductivity.

  9. Managers' Beliefs about the Glass Ceiling: Interpersonal and Organizational Factors

    Science.gov (United States)

    Elacqua, Tina C.; Beehr, Terry A.; Hansen, Curtiss P.; Webster, Jennica

    2009-01-01

    The glass ceiling refers to the difficulty of women trying to be promoted into the top management levels. The present study examined managers' potential explanations, implicit or explicit, for why women rarely reach the top hierarchical levels in their own organization. Among 685 managers at a large Midwestern insurance company, a model was…

  10. Fun with Singing Wine Glasses

    Science.gov (United States)

    Boone, Christine; Galloway, Melodie; Ruiz, Michael J.

    2018-01-01

    A fun activity is presented using singing wine glasses for introductory physics students. Students tune a white wine glass and a red wine glass to as many semitones as possible by filling the glasses with the appropriate amounts of water. A smart phone app is used to measure the frequencies of equal-temperament tones. Then plots of frequency…

  11. Waste glass weathering

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.

    1994-01-01

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  12. Super ionic conductive glass

    Science.gov (United States)

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  13. Phosphate glasses, containing nitrogen

    International Nuclear Information System (INIS)

    Lisitsyna, E.A.; Khalilev, V.D.; Koryavin, A.A.; Goncharova, L.N.

    1987-01-01

    Possibilities of nitrogen-containing glass synthesis by the introduction into the charge of ammonium salts, as well as aluminium nitride, are studied. Zinc alumoyttrium phosphate glass (mol. %) Zn(PO 3 ) 2 - 4O, Al(PO 3 ) 3 - 3O, Y(PO 3 ) 3 -3O is suggested as a matrix. It is shown that the effect of amide and imide groups on the properties of the glass is less noticeable than the effect of nitride groups. Direct introduction of nitride constituent was realized using AlN, but aluminium introduction was taken into account so that the oxide was subtracted. The attempt to introduce more than 2.5 mass % of nitrogen into initial matrix by aluminium nitride has failed due to repeated restoration of glass with amorphous phosphorus isolation

  14. Baseline LAW Glass Formulation Testing

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina; Pegg, Ian L.; Hight, Kenneth; Lai, Shan Tao; Buechele, Andrew; Rielley, Elizabeth; Gan, Hao; Muller, Isabelle S.; Cecil, Richard

    2013-01-01

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements

  15. Rare earths and actinides

    International Nuclear Information System (INIS)

    Coqblin, B.

    1982-01-01

    This paper reviews the different properties of rare-earths and actinides, either as pure metals or as in alloys or compounds. Three different cases are considered: (i) First, in the case of 'normal' rare-earths which are characterized by a valence of 3, we discuss essentially the magnetic ordering, the coexistence between superconductivity and magnetism and the properties of amorphous rare-earth systems. (ii) Second, in the case of 'anomalous' rare-earths, we distinguish between either 'intermediate-valence' systems or 'Kondo' systems. Special emphasis is given to the problems of the 'Kondo lattice' (for compounds such as CeAl 2 ,CeAl 3 or CeB 6 ) or the 'Anderson lattice' (for compounds such as TmSe). The problem of neutron diffraction in these systems is also discussed. (iii) Third, in the case of actinides, we can separate between the d-f hybridized and almost magnetic metals at the beginning of the series and the rare-earth like the metals after americium. (orig.)

  16. Calorimetric investigation of an yttrium-dysprosium spin glass

    International Nuclear Information System (INIS)

    Wenger, L.E.

    1978-01-01

    In an effort to compare the spin glass characteristics of yttrium--rare earth alloys with those of the noble-metal spin glasses, the susceptibility and heat capacity of Y/sub 0.98/Dy/sub 0.02/ have been measured in the temperature range 2.5--40 K. The low-field ac susceptibility measurement shows the characteristic cusp-like peak at 7.64 K. The magnetic specific heat of the same sample shows a peak at 7.0 K and may be qualitatively described as a semi-cusp. The magnetic entropy change from absolute zero to 7 K is approximately 0.52 of cR ln(2J+1). These results are qualitatively different than previous calorimetric results on the archetypal spin glasses, AuFe and CuMn, where rounded maxima are observed at temperatures above the spin glass transition temperatures

  17. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  18. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  19. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...... additives. In this work we recycle the CRT panel glass to synthesize the foam glass as a crucial component of building and insulating materials. The synthesis conditions such as foaming temperature, duration, glass particle size, type and concentrations of foaming agents, and so on are optimized...... by performing systematic experiments. In particular, the concentration of foaming agents is an important parameter that influences the size of bubbles and the distribution of bubbles throughout the sample. The foam glasses are characterised regarding density and open/closed porosity. Differential scanning...

  20. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    International Nuclear Information System (INIS)

    Adamson, D.; Pickenheim, Bradley

    2008-01-01

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  1. SYMPOSIUM: Rare decays

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Late last year, a symposium entitled 'Rare Decays' attracted 115 participants to a hotel in Vancouver, Canada. These participants were particle physicists interested in checking conventional selection rules to look for clues of possible new behaviour outside today's accepted 'Standard Model'. For physicists, 'rare decays' include processes that have so far not been seen, explicitly forbidden by the rules of the Standard Model, or processes highly suppressed because the decay is dominated by an easier route, or includes processes resulting from multiple transitions

  2. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  3. Rare muon processes: Experiment

    International Nuclear Information System (INIS)

    Walter, H.K.

    1998-01-01

    The decay properties of muons, especially their rare decays, can be used to study very accurately deviations from the Standard Model. Muons with extremely low energies and good spatial definition are preferred for the majority of such studies. With the upgrade of the 590-MeV ring accelerator, PSI possesses the most powerful cyclotron in the world. This makes it possible to operate high-intensity beams of secondary pions and muons. A short review on rare muon processes is presented, concerning μ-e conversion and muonium-antimuonium oscillations. A possible new search for μ→eγ is also mentioned

  4. XPS and ion beam scattering studies of leaching in simulated waste glass containing uranium

    International Nuclear Information System (INIS)

    Karim, D.P.; Pronko, P.P.; Marcuso, T.L.M.; Lam, D.J.; Paulikas, A.P.

    1980-01-01

    Glass samples (consisting of 2 mole % UO 3 dissolved in a number of complex borosilicate simulated waste glasses including Battelle 76-68) were leached for varying times in distilled water at 75 0 C. The glass surfaces were examined before and after leaching using x-ray photoemission spectroscopy and back-scattered ion beam profiling. Leached samples showed enhanced surface layer concentrations of several elements including uranium, titanium, zinc, iron and rare earths. An experiment involving the leaching of two glasses in the same vessel showed that the uranium surface enhancement is probably not due to redeposition from solution

  5. Estimation of centerline temperature of the waste form for the rare earth waste generated from pyrochemical process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Hoon, E-mail: mrchoijh@kaeri.re.kr; Eun, Hee-Chul; Lee, Tae-Kyo; Lee, Ki-Rak; Han, Seung-Youb; Jeon, Min-Ku; Park, Hwan-Seo; Ahn, Do-Hee

    2017-01-15

    Estimation of centerline temperature of nuclear glass waste form for each waste stream is very essential in the period of storage because the centerline temperature being over its glass transition temperature results in the increase of leaching rate of radioactive nuclides due to the devitrification of glass waste form. Here, to verify the effects of waste form diameter and transuranic element content in the rare earth waste on the centerline temperature of the waste form, the surrogate rare earth glass waste generated from pyrochemical process was immobilized with SiO{sub 2}−Al{sub 2}O{sub 3}−B{sub 2}O{sub 3} glass frit system, and thermal properties of the rare earth glass waste form were determined by thermomechanical analysis and thermal conductivity analysis. The estimation of centerline temperature was carried out using the experimental thermal data and steady-state conduction equation in a long and solid cylinder type waste form. It was revealed that thermal stability of waste form in case of 0.3 m diameter was not affected by the TRU content even in the case of 80% TRU recovery ratio in the electrowinning process, meaning that the waste form of 0.3 m diameter is thermally stable due to the low centerline temperature relative to its glass transition temperature of the rare earth glass waste form.

  6. Characterization of leached surface layers on simulated high-level waste glasses by sputter-induced optical emission

    International Nuclear Information System (INIS)

    Houser, C.; Tsong, I.S.T.; White, W.B.

    1979-01-01

    The leaching process in simulated waste encapsulant glasses was studied by measuring the compositional depth-profiles of H (from water), the glass framework formers Si and B, the alkalis Na and Cs, the alkaline earths Ca and Sr, the transition metals Mo and Fe, the rare-earths La, Ce, and Nd, using the technique of sputter-induced optical emission. The leaching process of these glasses is highly complex. In addition to alkali/hydrogen exchange, there is breakdown of the glass framework, build-up of barrier layers on the surface, and formation of layered reaction zones of distinctly different chemistry all within the outer micrometer of the glass

  7. Nuclear waste glass corrosion mechanisms

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1987-04-01

    Dissolution of nuclear waste glass occurs by corrosion mechanisms similar to those of other solids, e.g., metallurgical and mineralogic systems. Metallurgical phenomena such as active corrosion, passivation and immunity have been observed to be a function of the glass composition and the solution pH. Hydration thermodynamics was used to quantify the role of glass composition and its effect on the solution pH during dissolution. A wide compositional range of natural, lunar, medieval, and nuclear waste glasses, as well as some glass-ceramics were investigated. The factors observed to affect dissolution in deionized water are pertinent to the dissolution of glass in natural environments such as the groundwaters anticipated to interact with nuclear waste glass in a geologic repository. The effects of imposed pH and oxidation potential (Eh) conditions existing in natural environments on glass dissolution is described in the context of Pourbaix diagrams, pH potential diagrams, for glass

  8. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  9. Surveillance of rare cancers

    NARCIS (Netherlands)

    van der Zwan, Johannes Martinus

    2016-01-01

    The widespread incidence and effects of cancer have led to a growing development in cancer prevention in the form of screening and research programs and cancer registries. Because of the low number of patients with rare cancers this improvement is not applied to the same extent to all cancer

  10. Afganistan and rare earths

    Directory of Open Access Journals (Sweden)

    Emilian M. Dobrescu

    2013-05-01

    Full Text Available On our planet, over a quarter of new technologies for the economic production of industrial goods, are using rare earths, which are also called critical minerals and industries that rely on these precious items being worth of an estimated nearly five trillion dollars, or 5 percent of world gross domestic product. In the near future, competition will increase for the control of rare earth minerals embedded in high-tech products. Rare minerals are in the twenty-first century what oil accounted for in the twentieth century and coal in the nineteenth century: the engine of a new industrial revolution. Future energy will be produced increasingly by more sophisticated technological equipment based not just on steel and concrete, but incorporating significant quantities of metals and rare earths. Widespread application of these technologies will result in an exponential increase in demand for such minerals, and what is worrying is that minerals of this type are almost nowhere to be found in Europe and in other industrialized countries in the world, such as U.S. and Japan, but only in some Asian countries, like China and Afghanistan.

  11. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  12. Theory of glass

    International Nuclear Information System (INIS)

    Rivier, N.

    1985-01-01

    The physical properties of glass are direct consequences of its non-crystalline structure. The structure is described from a topological point of view, since topology is the only geometry surviving non-crystallinity, i.e. absence of metric and trivial space group. This fact has two main consequences: the overall homogeneity of glass is a gauge symmetry, and the only extended, structurally stable constituents are odd lines (or 2π-disclinations in the elastic continuum limit). A gauge theory of glass, based on odd lines as sources of frozen-in strain, can explain those properties of glasses which are both specific to, and universal in amorphous solids: low-temperature excitations, and relaxation at high temperatures. The methods of statistical mechanics can be applied to give a minimal description of amorphous structures in statistical equilibrium. Criteria for statistical equilibrium of the structure and detailed balance are given, together with structural equations of state, which turn out to be well-known empirically among botanists and metallurgists. This review is based on lectures given in 1984 in Niteroi. It contains five parts: I - Structure, from a topological viewpoint; II - gauge invariance; III - Tunneling modes; IV - Supercooled liquid and the glass transitions; V - Statistical crystallography. (Author) [pt

  13. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  14. Ion exchange for glass strengthening

    International Nuclear Information System (INIS)

    Gy, Rene

    2008-01-01

    This paper presents a short overview of silicate glass strengthening by exchange of alkali ions in a molten salt, below the glass transition temperature (chemical tempering). The physics of alkali inter-diffusion is briefly explained and the main parameters of the process, which control the glass reinforcement, are reviewed. Methods for characterizing the obtained residual stress state and the strengthening are described, along with the simplified modelling of the stress build-up. The fragmentation of chemically tempered glass is discussed. The concept of engineered stress profile glass is presented, and finally, the effect of glass and salt compositions is overviewed

  15. Perspectives on spin glasses

    CERN Document Server

    Contucci, Pierluigi

    2013-01-01

    Presenting and developing the theory of spin glasses as a prototype for complex systems, this book is a rigorous and up-to-date introduction to their properties. The book combines a mathematical description with a physical insight of spin glass models. Topics covered include the physical origins of those models and their treatment with replica theory; mathematical properties like correlation inequalities and their use in the thermodynamic limit theory; main exact solutions of the mean field models and their probabilistic structures; and the theory of the structural properties of the spin glass phase such as stochastic stability and the overlap identities. Finally, a detailed account is given of the recent numerical simulation results and properties, including overlap equivalence, ultrametricity and decay of correlations. The book is ideal for mathematical physicists and probabilists working in disordered systems.

  16. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  17. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  18. Using physical properties of molten glass to estimate glass composition

    International Nuclear Information System (INIS)

    Choi, Kwan Sik; Yang, Kyoung Hwa; Park, Jong Kil

    1997-01-01

    A vitrification process is under development in KEPRI for the treatment of low-and medium-level radioactive waste. Although the project is for developing and building Vitrification Pilot Plant in Korea, one of KEPRI's concerns is the quality control of the vitrified glass. This paper discusses a methodology for the estimation of glass composition by on-line measurement of molten glass properties, which could be applied to the plant for real-time quality control of the glass product. By remotely measuring viscosity and density of the molten glass, the glass characteristics such as composition can be estimated and eventually controlled. For this purpose, using the database of glass composition vs. physical properties in isothermal three-component system of SiO 2 -Na 2 O-B 2 O 3 , a software TERNARY has been developed which determines the glass composition by using two known physical properties (e.g. density and viscosity)

  19. Chemistry of glass corrosion in high saline brines

    International Nuclear Information System (INIS)

    Grambow, B.; Mueller, R.

    1990-01-01

    Corrosion data obtained in laboratory tests can be used for the performance assessment of nuclear waste glasses in a repository if the data are quantitatively described in the frame of a geochemical model. Experimental data were obtained for conventional pH values corrected for liquid junction, amorphous silica solubility and glass corrosion in concentrated salt brines. The data were interpreted with a geochemical model. The brine chemistry was described with the Pitzer formalism using a data base which allows calculation of brine compositions in equilibrium with salt minerals at temperatures up to 200C. In MgCl 2 dominated brines Mg silicates form and due to the consumption of Mg the pH decreases with proceeding reaction. A constant pH (about 4) and composition of alteration products is achieved, when the alkali release from the glass balances the Mg consumption. The low pH results in high release of rare earth elements REE (rare earth elements) and U from the glass. In the NaCl dominated brine MgCl 2 becomes exhausted by Mg silicate formation. As long as there is still Mg left in solution the pH decreases. After exhaustion of Mg the pH rises with the alkali release from the glass and analcime is formed

  20. Superductile bulk metallic glass

    International Nuclear Information System (INIS)

    Yao, K.F.; Ruan, F.; Yang, Y.Q.; Chen, N.

    2006-01-01

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<2%) at room temperature. We report a newly developed Pd-Si binary bulk metallic glass, which exhibits a uniform plastic deformation and a large plastic engineering strain of 82% and a plastic true strain of 170%, together with initial strain hardening, slight strain softening and final strain hardening characteristics. The uniform shear deformation and the ultrahigh plasticity are mainly attributed to strain hardening, which results from the nanoscale inhomogeneity due to liquid phase separation. The formed nanoscale inhomogeneity will hinder, deflect, and bifurcate the propagation of shear bands

  1. Sharing Rare Attitudes Attracts.

    Science.gov (United States)

    Alves, Hans

    2018-04-01

    People like others who share their attitudes. Online dating platforms as well as other social media platforms regularly rely on the social bonding power of their users' shared attitudes. However, little is known about moderating variables. In the present work, I argue that sharing rare compared with sharing common attitudes should evoke stronger interpersonal attraction among people. In five studies, I tested this prediction for the case of shared interests from different domains. I found converging evidence that people's rare compared with their common interests are especially potent to elicit interpersonal attraction. I discuss the current framework's theoretical implications for impression formation and impression management as well as its practical implications for improving online dating services.

  2. Investigations of glass structure using fluorescence line narrowing and moleuclar dynamics simulations

    International Nuclear Information System (INIS)

    Weber, M.J.; Brawer, S.A.

    1982-01-01

    The local structure at individual ion sites in simple and multicomponent glasses is simulated using methods of molecular dynamics. Computer simulations of fluoroberyllate glasses predict a range of ion separations and coordination numbers that increases with increasing complexity of the glass composition. This occurs at both glass forming and glass modifying cation sites. Laser-induced fluorescence line-narrowing techniques provide a unique probe of the local environments of selected subsets of ions and are used to measure site to site variations in the electronic energy levels and transition probabilities of rare earth ions. These and additional results from EXAFS, neutron and x-ray diffraction, and NMR experiments are compared with simulated glass structures

  3. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Sushama, D., E-mail: sushasukumar@gmail.com [Research Awardee, LAMP, Dept. of Physics, Nit, Calicut, India and Dept. of Physics, M.S.M. College, Kayamkulam, Kerala (India)

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  4. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    International Nuclear Information System (INIS)

    Sushama, D.

    2014-01-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er 2 O 3 doped TeO 2 ‐WO 3 ‐La 2 O 3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption

  5. Structure and properties of TeO2-WO3 system glasses

    International Nuclear Information System (INIS)

    Kolobkov, V.P.; Ovcharenko, N.V.; Morozova, I.N.; Chebotarev, S.A.; Chikovskij, A.N.; Arkatova, T.G.

    1987-01-01

    Study of TeO 2 -WO 3 system is of interest for production of high-refractive-glasses with comparatively low crystallizability. Results of investigating some properties and structural features of this system glasses are presented. Composition and properties of studied glasses are presented. The properties were studied using the following techniques: the density was measured by hydrostatic weighing in toluene; thermal expansion coefficient was measured in quartz dilatometer DKV-5A; dilatometric temperature of glass softening (T g ) was defined as an intersection point of linear and curved parts of the plot of thermal expansion coefficient; refractive index (RI) - by immersion method; dielectric properties are measured. Consideration of vibronic spectra permits to conclude that in tungsten-tellurium glasses rare earth activator ions are arranged near tellurite and tungstate groupings proportional to glass-forming component content

  6. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Science.gov (United States)

    Sushama, D.

    2014-10-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er2O3 doped TeO2-WO3-La2O3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  7. Drugs for rare disorders.

    Science.gov (United States)

    Cremers, Serge; Aronson, Jeffrey K

    2017-08-01

    Estimates of the frequencies of rare disorders vary from country to country; the global average defined prevalence is 40 per 100 000 (0.04%). Some occur in only one or a few patients. However, collectively rare disorders are fairly common, affecting 6-8% of the US population, or about 30 million people, and a similar number in the European Union. Most of them affect children and most are genetically determined. Diagnosis can be difficult, partly because of variable presentations and partly because few clinicians have experience of individual rare disorders, although they may be assisted by searching databases. Relatively few rare disorders have specific pharmacological treatments (so-called orphan drugs), partly because of difficulties in designing trials large enough to determine benefits and harms alike. Incentives have been introduced to encourage the development of orphan drugs, including tax credits and research aids, simplification of marketing authorization procedures and exemption from fees, and extended market exclusivity. Consequently, the number of applications for orphan drugs has grown, as have the costs of using them, so much so that treatments may not be cost-effective. It has therefore been suggested that not-for-profit organizations that are socially motivated to reduce those costs should be tasked with producing them. A growing role for patient organizations, improved clinical and translational infrastructures, and developments in genetics have also contributed to successful drug development. The translational discipline of clinical pharmacology is an essential component in drug development, including orphan drugs. Clinical pharmacologists, skilled in basic pharmacology and its links to clinical medicine, can be involved at all stages. They can contribute to the delineation of genetic factors that determine clinical outcomes of pharmacological interventions, develop biomarkers, design and perform clinical trials, assist regulatory decision

  8. RARE BRANCHIAL ARCH ANOMALIES

    Directory of Open Access Journals (Sweden)

    Jayanta Kumar

    2016-03-01

    Full Text Available AIM Amongst the branchial arch anomalies third arch anomaly occurs rarely and more so the fourth arch anomalies. We present our experience with cases of rare branchial arch anomalies. PATIENTS AND METHODS From June 2006 to January 2016, cases having their external opening in the lower third of sternocleidomastoid muscle with the tract going through thyroid gland and directing to pyriform sinus (PFS or cysts with internal opening in the PFS were studied. RESULTS No fourth arch anomaly was encountered. One cyst with internal opening which later on formed a fistula, three fistulae from beginning and two sinuses were encountered. The main stay of diagnosis was the fistula in the PFS and the tract lying posterior to the internal carotid artery. Simple excision technique with a small incision around the external opening was done. There was no recurrence. CONCLUSION Third arch fistula is not very rare as it was thought. Internal fistula is found in most of the cases. Though radiological investigations are helpful, fistulae can be diagnosed clinically and during operation. Extensive operation of the neck, mediastinum and pharynx is not required.

  9. Aging in a Structural Glass

    OpenAIRE

    Kob, Walter; Barrat, Jean-Louis

    1998-01-01

    We discuss the relaxation dynamics of a simple structural glass which has been quenched below its glass transition temperature. We demonstrate that time correlation functions show strong aging effects and investigate in what way the fluctuation dissipation theorem is violated.

  10. Foam Glass for Construction Materials

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  11. Glass ceilings of professionalisation.

    Science.gov (United States)

    Stott, Dawn L

    2016-04-01

    The term glass ceiling is a political term often used to describe an unbreakable barrier that isnot visible with the human eye, but it keeps minorities from rising up i.e. it is a barrier to minoritygroups, in the past (and sometimes still) for women, that stops them from achieving theirtrue potential.

  12. What Glass Ceiling?

    Science.gov (United States)

    Lynch, Michael; Post, Katherine

    1996-01-01

    A recent study drawing on data from the Census Bureau and the Bureau of Labor Statistics suggests that the wage gap between men and women has virtually disappeared, and that the so-called "glass ceiling" results more from age and qualifications than from explicit discrimination. (SLD)

  13. Metallic glasses: structural models

    International Nuclear Information System (INIS)

    Nassif, E.

    1984-01-01

    The aim of this work is to give a summary of the attempts made up to the present in order to discribe by structural models the atomic arrangement in metallic glasses, showing also why the structure factors and atomic distribution functions cannot be always experimentally determined with a reasonable accuracy. (M.W.O.) [pt

  14. Microchips on glass

    NARCIS (Netherlands)

    Nanver, L.; De Vreede, L.; Keulemans, M.

    2007-01-01

    Microchips on glass. What about a mobile phone that uses a single microchip to receive all the available frequency bands, plus extras such as television, gps, and Internet access? Or, in due time, see-though implants that will monitor your state of health, and equipment that will let you see through

  15. Glass as matter

    DEFF Research Database (Denmark)

    Beim, Anne

    2000-01-01

    Refraiming the Moderns - Substitute Windows and Glass. In general terms, the seminar has contributed to the growing interest in the problems concerning the restoration of Modern Movement architecture. More particularly, it has of course drawn our attention to modern windows, which are increasingly...

  16. Glass ... current issues

    International Nuclear Information System (INIS)

    Wright, A.F.; Dupuy, J.

    1985-01-01

    The objectives of the School were twofold. Firstly to inform participants of actual and developing technological applications of glassy materials in which fundamental science makes a strong contribution, and secondly to bring together scientists from the widely different backgrounds of glass science and technology to promote mutual understanding and collaboration. (orig.)

  17. Stained Glass and Flu

    Centers for Disease Control (CDC) Podcasts

    2017-02-01

    Dr. Robert Webster, an Emeritus member of the Department of Infectious Diseases at St. Jude Children's Research Hospital, discusses his cover art story on stained glass and influenza.  Created: 2/1/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/1/2017.

  18. Glasses and nuclear waste vitrification

    International Nuclear Information System (INIS)

    Ojovan, Michael I.

    2012-01-01

    Glass is an amorphous solid material which behaves like an isotropic crystal. Atomic structure of glass lacks long-range order but possesses short and most probably medium range order. Compared to crystalline materials of the same composition glasses are metastable materials however crystallisation processes are kinetically impeded within times which typically exceed the age of universe. The physical and chemical durability of glasses combined with their high tolerance to compositional changes makes glasses irreplaceable when hazardous waste needs immobilisation for safe long-term storage, transportation and consequent disposal. Immobilisation of radioactive waste in glassy materials using vitrification has been used successfully for several decades. Nuclear waste vitrification is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting wasteform. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro- and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material. Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes. In addition to relatively homogeneous glasses novel glass composite materials are used to immobilise problematic waste streams. (author)

  19. Mie scattering in heavy-metal fluoride glasses

    International Nuclear Information System (INIS)

    Edgar, A.

    1996-01-01

    Heavy-metal fluoride glasses comprise mixtures of heavy-cation fluorides such as those of zirconium, barium, and lanthanum together with some stabilising fluorides such as AlF 3 . For particular relative proportions, the mixtures form a glass rather than a polycrystalline material when quenched from the melt. The particularly useful features of these glasses are the wide spectral region (∼200nm-8000nm) over which they are transparent, the low minimum attenuation at the centre of the spectral window, and the ease with which optically-active rare-earth ions can be incorporated, leading to potential applications in passive and active fibre optics. The minimal attenuation, which is potentially lower than for silica fibre, is generally limited by wavelength-independent scattering by particle and gas bubble inclusions. We have observed a new wavelength-dependent scattering effect in fluoride glass of the well-known composition ZLABN20. In this paper, we report on work in progress on the optical extinction and scattering spectrum of the fluoride glasses, and discuss the spectra in terms of Mie's scattering theory. The chemical nature of the scattering centres in these nominally 'pure' glasses is at present a puzzle, and relative merits of various possible models will be compared

  20. Correlations between elastic moduli and properties in bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang Weihua

    2006-01-01

    A survey of the elastic, mechanical, fragility, and thermodynamic properties of bulk metallic glasses (BMGs) and glass-forming liquids is presented. It is found that the elastic moduli of BMGs have correlations with the glass transition temperature, melting temperature, mechanical properties, and even liquid fragility. On the other hand, the elastic constants of available BMGs show a rough correlation with a weighted average of the elastic constants for the constituent elements. Although the theoretical and physical reasons for the correlations are to be clarified, these correlations could assist in understanding the long-standing issues of glass formation and the nature of glass and simulate the work of theorists. Based on the correlation, we show that the elastic moduli can assist in selecting alloying components for controlling the elastic properties and glass-forming ability of the BMGs and thus can guide BMG design. As case study, we report the formation of the families of rare-earth-based BMGs with controllable properties

  1. Production and characterization of phosphorescent nanopowders doped with rare earth ions

    International Nuclear Information System (INIS)

    Montes, Paulo Jorge Ribeiro

    2009-01-01

    In this work the feasibility of employing the synthesis process using a methodology developed by Macedo and Sasaki (Macedo, M. A. e Sasaki, J. M. Fabrication process nano particulate powders. INPI 0203876-5 1998) to produce pore and rare earths doped ceramic nano powders of SrAl 2 O 4 and Ca 12 Al 14 O 33 was investigated. In this new methodology, coconut water is used as a start solvent for the production of the samples. Thermal analysis techniques were employed in order to obtain the best calcination conditions. The structural and microstructural characterizations of the samples were made using powder X-ray diffraction and Atomic Force Microscopy techniques. The analysis by X-ray diffraction showed the formation of the SrAl 2 O 4 and Ca 12 Al 14 O 33 phases in the calcined powders. The emission/excitation spectra exhibited the typical transitions of the rare earth elements indicating the incorporation of the dopant in the nano crystals. Emission characteristics of divalent europium show that the reduction of Eu ions is induced during the synthesis stage. The doped samples show an intense bright emission when exposed to X-rays. That emission is associated with divalent europium transitions, indicating that irradiation also induces the reduction of the valence state of Eu ions from Eu 3+ to Eu 2+ . Radioluminescence spectra (RL) versus time show a decay of the RL intensity to 40% of the initial intensity after 20 minutes of exposure to X-rays. Irradiation also causes a change in color of the samples indicating the production of radiation damage. Analysis of the results of X-ray spectroscopy (XAS- X-ray Absorption Spectroscopy) and the luminescent emission of samples excited by X-rays (XEOL - X-ray Excited Optical Luminescence) enabled the creation of a model that explains that behavior. DXAS technique (Dispersive X-ray Absorption Spectroscopy) was used to monitor the kinetics of the reduction process of Eu ions during irradiation, in order to verify the

  2. The electrorheological properties of nano-sized SiO2 particle materials doped with rare earths

    International Nuclear Information System (INIS)

    Liu Yang; Liao Fuhui; Li Junran; Zhang Shaohua; Chen Shumei; Wei Chenguan; Gao Song

    2006-01-01

    Electrorheological (ER) materials of pure SiO 2 and SiO 2 doped with rare earths (RE = Ce, Gd, Y) (non-metallic glasses (silicates)) were prepared using Na 2 SiO 3 and RECl 3 as starting materials. The electrorheological properties are not enhanced by all rare earth additions. The material doped with Ce exhibits the best ER performance

  3. Rare Earth Polyoxometalates.

    Science.gov (United States)

    Boskovic, Colette

    2017-09-19

    Longstanding and important applications make use of the chemical and physical properties of both rare earth metals and polyoxometalates of early transition metals. The catalytic, optical, and magnetic features of rare earth metal ions are well-known, as are the reversible multielectron redox and photoredox capabilities of polyoxomolybdates and polyoxotungstates. The combination of rare earth ions and polyoxometalates in discrete molecules and coordination polymers is of interest for the unique combination of chemical and physical properties that can arise. This Account surveys our efforts to synthesize and investigate compounds with rare earth ions and polyoxometalates (RE-POMs), sometimes with carboxylate-based organic coligands. Our general synthetic approach is "bottom-up", which affords well-defined nanoscale molecules, typically in crystalline form and amenable to single-crystal X-ray diffraction for structure determination. Our particular focus is on elucidation of the physical properties conferred by the different structural components with a view to ultimately being able to tune these properties chemically. For this purpose, we employ a variety of spectroscopic, magnetochemical, electrochemical, and scattering techniques in concert with theoretical modeling and computation. Studies of RE-POM single-molecule magnets (SMMs) have utilized magnetic susceptibility, inelastic neutron scattering, and ab initio calculations. These investigations have allowed characterization of the crystal field splitting of the rare earth(III) ions that is responsible for the SMM properties of slow magnetic relaxation and magnetization quantum tunneling. Such SMMs are promising for applications in quantum computing and molecular spintronics. Photophysical measurements of a family of hybrid RE-POMs with organic ligands have afforded insights into sensitization of Tb(III) and Eu(III) emission through both organic and polyoxometalate chromophores in the same molecule. Detailed

  4. Alteration of medieval stained-glasses. Contribution to the long-term behaviour of vitrified wastes

    International Nuclear Information System (INIS)

    Sterpenich, J.

    1998-01-01

    In this work, the behaviour of glasses during alteration have been studied in two different ways: 1)study of the alteration of medieval stained-glasses 2)experimental leaching of modelled glasses. Medieval stained-glasses have a silico-calcic and alkaline composition. It appears three different alteration modes for these glasses: 1)by condensation waters 2)by atmospheric agents 3)by porosity waters and humic acids. A chemical study of the altered areas has allowed to understand the alteration behaviour of a lot of elements: in particular transition elements, heavy metals and some rare earths. On the other hand, two vitrified wastes and a glass having the same composition of the potassic medieval stained-glasses have been leached in a static mode (pH=1 to 10, T=20 to 80 degrees Celsius, T=12 hours to 6 months). These experiments have revealed that the alteration mechanisms depend on the pH of the solution and on the chemical composition of the glass. An increasing durability of glasses in terms of the global polymerization degree has been revealed too. At last, the behaviours of glasses during alteration, observed with natural and experimental conditions, show that it is necessary to study natural analogous for predicting the long-term behaviour of vitrified wastes. (O.M.)

  5. Glass bead cultivation of fungi

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, H.

    2013-01-01

    Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum...... and Fusarium solani cultivated on agar plates, in shaking liquid culture or on glass beads was compared. Agar plate culture and glass bead cultivation yielded comparable results while liquid culture had lower production of secondary metabolites. RNA extraction from glass beads and liquid cultures was easier...... to specific nutrient factors. •Fungal growth on glass beads eases and improves fungal RNA extraction....

  6. Sodium diffusion in boroaluminosilicate glasses

    DEFF Research Database (Denmark)

    Smedskjaer, Morten M.; Zheng, Qiuju; Mauro, John C.

    2011-01-01

    of isothermal sodium diffusion in BAS glasses by ion exchange, inward diffusion, and tracer diffusion experiments. By varying the [SiO2]/[Al2O3] ratio of the glasses, different structural regimes of sodium behavior are accessed. We show that the mobility of the sodium ions decreases with increasing [SiO2]/[Al2O......Understanding the fundamentals of alkali diffusion in boroaluminosilicate (BAS) glasses is of critical importance for advanced glass applications, e.g., the production of chemically strengthened glass covers for personal electronic devices. Here, we investigate the composition dependence...

  7. Rare B decays at LEP

    CERN Document Server

    Kluit, P M

    2001-01-01

    The results of the LEP experiments for rare B decays will be reviewed, covering hadronic final states, radiative and other rare decays and results for the inclusive charmless branching ratio. (8 refs).

  8. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  9. Fun with singing wine glasses

    Science.gov (United States)

    Boone, Christine; Galloway, Melodie; Ruiz, Michael J.

    2018-05-01

    A fun activity is presented using singing wine glasses for introductory physics students. Students tune a white wine glass and a red wine glass to as many semitones as possible by filling the glasses with the appropriate amounts of water. A smart phone app is used to measure the frequencies of equal-temperament tones. Then plots of frequency against water volume percent are made using a spreadsheet. Students can also play combinations of pitches with several glasses. A video (Ruiz 2018 Video: Singing glasses http://mjtruiz.com/ped/wineglasses/) is provided which includes an excerpt of a beautiful piece written for singing glasses and choir: Stars by Latvian composer Ēriks Ešenvalds.

  10. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  11. The borosilicate glass for 'PAMELA'

    International Nuclear Information System (INIS)

    Schiewer, E.

    1986-01-01

    The low enriched waste concentrate (LEWC) stored at Mol, Belgium, will be solidified in the vitrification plant 'PAMELA'. An alkali-borosilicate glass was developed by the Hahn-Meitner-Institut, Berlin, which dissolves (11 +- 3)wt% waste oxides while providing sufficient flexibility for changes in the process parameters. The development of the glass labelled SM513LW11 is described. Important properties of the glass melt (viscosity, resistivity, formation of yellow phase) and of the glass (corrosion in aqueous solutions, crystallization) are reported. The corrosion data of this glass are similar to those of other HLW-glasses. Less than five wt% of crystalline material are produced upon cooling of large glass blocks. Crystallization does not affect the chemical durability. (Auth.)

  12. A rare sight

    CERN Multimedia

    Antonella Del Rosso and The LHCb Collaboration

    2012-01-01

    Today, at the Hadron Collider Physics Symposium in Kyoto, the LHCb collaboration has presented the evidence of a very rare B decay, the rarest ever seen. The result further shrinks the region in which scientists can still look for supersymmetry.   The graph showing evidence of the Bs0 → μ+ μ- decay. The result was presented Monday 12 November at the HCP Conference in Kyoto (photo courtesy of the LHCb Collaboration). Particle decays tell us about the inner properties and functioning of Nature’s physics processes. By studying them and their occurrence, physicists infer the rules that control them. Often, it turns out that some rare decays, which are very difficult to observe, are those in which Nature could reveal the presence of new physics. This is the case of some decays of the Bs0 particle (a particle made of a bottom anti-quark bound to a strange quark), and in particular Bs0 → μ+ μ- whose...

  13. Production of glass or glass-ceramic to metal seals with the application of pressure

    Science.gov (United States)

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  14. Glasses for Mali

    CERN Multimedia

    PH Department

    2008-01-01

    We are collecting old pairs of glasses to take out to Mali, where they can be re-used by people there. The price for a pair of glasses can often exceed 3 months salary, so they are prohibitively expensive for many people. If you have any old spectacles you can donate, please put them in the special box in the ATLAS secretariat, Bldg.40-4-D01 before the Christmas closure on 19 December so we can take them with us when we leave for Africa at the end of the month. (more details in ATLAS e-news edition of 29 September 2008: http://atlas-service-enews.web.cern.ch/atlas-service-enews/news/news_mali.php) many thanks! Katharine Leney co-driver of the ATLAS car on the Charity Run to Mali

  15. Glass manufacturing through induction

    International Nuclear Information System (INIS)

    Boen, R.; Paya, B.; Roscini, M.; Fautrelle, Y.; Tuaz, F.; Delage, D.

    1991-01-01

    Oxides and glasses are electrical and thermal insulators, but show the characteristic of being weakly conductors of electricity when they are melt. It is then possible to heat them through HF induction. This interesting property allows the development of a melting process in cold crucible induction furnace. The process is being studied and developed by a consortium made up of CFEI, CEA Marcoule, ELECTRICITE DE FRANCE and MADYLAM laboratory. The studies include 2 parts: a) One experimental part to develop the technology and research for satisfying configurations, through a small size platform (10 to 30 kg/h). The long run continuous pouring melting tests made on different kinds of glass allow to go-on with industrial range units. b) One theoretical part to understand the magneto-thermo-hydraulic phenomenon hardly in relation with the heavy dependence of the physical characteristics (electrical and heat conductivities, viscosity) according to temperature. 6 refs., 4 figs [fr

  16. Glass matrix armor

    International Nuclear Information System (INIS)

    Calkins, N.C.

    1991-01-01

    This patent describes an armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the insides surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material

  17. Breaking the glass ceiling.

    Science.gov (United States)

    Lazarus, A

    1997-03-01

    The glass ceiling is a form of organizational bias and discrimination that prevents qualified professionals from achieving positions of top governance and leadership. This article examines glass ceiling barriers that keep physicians from the upper reaches of management. While these factors apply mainly to women and minority physicians in academia, and are attributable to sexual harassment and discrimination, physicians as a class are frequently denied executive management positions. Such denial results from inadequate preparation for a career in health care administration. Important issues in the professional development of physician executives include mentoring, training and education, administrative experience, and cultural and personality factors. All of those must be considered when making the transition from medicine to management.

  18. HLW immobilization in glass

    International Nuclear Information System (INIS)

    Leroy, P.; Jacquet-Francillon, N.; Runge, S.

    1992-01-01

    The immobilization of High Level Waste in glass in France is a long history which started as early as in the 1950's. More than 30 years of Research and Development have been invested in that field. Two industrial facilities are operating (AVM and R7) and a third one (T7), under cold testing, is planned to start active operation in the mid-92. While vitrification has been demonstrated to be an industrially mastered process, the question of the quality of the final waste product, i.e. the HLW glass, must be addressed. The scope of the present paper is to focus on the latter point from both standpoints of the R and D and of the industrial reality

  19. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fedotovs, A; Rogulis, U; Sarakovskis, A; Dimitrocenko, L, E-mail: andris-f@navigator.l [Institute of Solid State Physics, University of Latvia, Kengaraga st. 8, LV-1063, Riga (Latvia)

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF{sub 3} crystalline phase.

  20. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    Science.gov (United States)

    Fedotovs, A.; Rogulis, U.; Sarakovskis, A.; Dimitrocenko, L.

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF3 crystalline phase.

  1. Nuclear traces in glass

    International Nuclear Information System (INIS)

    Segovia A, M. de N.

    1978-01-01

    The charged particles produce, in dielectric materials, physical and chemical effects which make evident the damaged zone along the trajectory of the particle. This damaged zone is known as the latent trace. The latent traces can be enlarged by an etching of the detector material. This treatment attacks preferently the zones of the material where the charged particles have penetrated, producing concavities which can be observed through a low magnification optical microscope. These concavities are known as developed traces. In this work we describe the glass characteristics as a detector of the fission fragments traces. In the first chapter we present a summary of the existing basic theories to explain the formation of traces in solids. In the second chapter we describe the etching method used for the traces development. In the following chapters we determine some chatacteristics of the traces formed on the glass, such as: the development optimum time; the diameter variation of the traces and their density according to the temperature variation of the detector; the glass response to a radiation more penetrating than that of the fission fragments; the distribution of the developed traces and the existing relation between this ditribution and the fission fragments of 252 Cf energies. The method which has been used is simple and cheap and can be utilized in laboratories whose resources are limited. The commercial glass which has been employed allows the registration of the fission fragments and subsequently the realization of experiments which involve the counting of the traces as well as the identification of particles. (author)

  2. Amorphous gauge glass theory

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Bennett, D.L.

    1987-08-01

    Assuming that a lattice gauge theory describes a fundamental attribute of Nature, it should be pointed out that such a theory in the form of a gauge glass is a weaker assumption than a regular lattice model in as much as it is not constrained by the imposition of translational invariance; translational invariance is, however, recovered approximately in the long wavelength or continuum limit. (orig./WL)

  3. Laser-excited fluorescence spectroscopy of oxide glasses

    International Nuclear Information System (INIS)

    Weber, M.J.

    1977-01-01

    Laser-induced fluorescence line narrowing was applied to investigate the local fields and interactions of paramagnetic ions in oxide glasses. Studies included the site dependence of energy levels, radiative and nonradiative transition probabilities, homogeneous line broadening, and ion--ion energy transfer of rare earth ions. These results and the experimental techniques are reviewed briefly; the use of paramagnetic ions other than the rare earths is also considered. Recently, laser-excited fluorescence spectroscopy was used to investigate modifications in the local structure of lithium borate glass caused by compositional changes and phase separation and the site dependence of nonradiative relaxation of paramagnetic ions by multiphonon processes. These results and their implications are discussed. 6 figures

  4. High-entropy bulk metallic glasses as promising magnetic refrigerants

    International Nuclear Information System (INIS)

    Huo, Juntao; Huo, Lishan; Li, Jiawei; Men, He; Wang, Xinmin; Chang, Chuntao; Wang, Jun-Qiang; Li, Run-Wei; Inoue, Akihisa

    2015-01-01

    In this paper, the Ho 20 Er 20 Co 20 Al 20 RE 20 (RE = Gd, Dy, and Tm) high-entropy bulk metallic glasses (HE-BMGs) with good magnetocaloric properties are fabricated successfully. The HE-BMGs exhibit a second-order magnetic phase transition. The peak of magnetic entropy change (ΔS M pk ) and refrigerant capacity (RC) reaches 15.0 J kg −1 K −1 and 627 J kg −1 at 5 T, respectively, which is larger than most rare earth based BMGs. The heterogeneous nature of glasses also contributes to the large ΔS M pk and RC. In addition, the magnetic ordering temperature, ΔS M pk and RC can be widely tuned by alloying different rare earth elements. These results suggest that the HE-BMGs are promising magnetic refrigerant at low temperatures

  5. Polyamorphism in metalic glass.

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  6. Diffusion in glass

    Energy Technology Data Exchange (ETDEWEB)

    Mubarak, A S

    1991-12-31

    Rutherford backscattering spectromertry technique (RBS) was used to characterize and investigate the depth distribution profiles of Ca-impurities of Ca-doped soda-time glass. The purposely added Ca-impurities were introduced inti the glass matrix by a normal ion exchange diffusion process. The measurements and analysis were performed using 2 MeV {sup 2}He{sup +} ions supplied from the University of Jordan Van de Graff acceierator (JOVAG). The normalized concetration versus depth profile distributions for the Ca-imourities were determined, both theoretically and experimentally. The theoretical treatment was carried out by setting up and soiving the diffusion equation under the conditions of the experiment. The resulting profiles are characterized by a compiementary error function. the theoretical treeatment was extended to include the various methods of enhancing the diffusion process, e.g. using an electric field. The diffusion coefficient, assumed constant, of the Ca-impurities exchanged in the soda-lime glass was determined to be 1.23 x 10{sup 13} cm{sup 2}/s. A comparison between theoretically and experimentally determined profiles is made and commented at, where several conclusions are drawn and suggestions for future work are mentioned. (author). 38 refs., 21 figs., 10 Tabs.

  7. Radiation shielding glass

    International Nuclear Information System (INIS)

    Kido, Kazuhiro; Ueda, Hajime.

    1997-01-01

    It was found that a glass composition comprising, as essential ingredients, SiO 2 , PbO, Gd 2 O 3 and alkali metal oxides can provide a shielding performance against electromagnetic waves, charged particles and neutrons. The present invention provides radiation shielding glass containing at least from 16 to 46wt% of SiO 2 , from 47 to 75wt% of PbO, from 1 to 10wt% of Gd 2 O 3 , from 0 to 3wt% of Li 2 O, from 0 to 7wt% of Na 2 O, from 0 to 7wt% of K 2 O provided that Li 2 O + Na 2 O + K 2 O is from 1 to 10wt%, B 2 O 3 is from 0 to 10wt%, CeO 2 is from 0 to 3wt%, As 2 O 3 is from 0 to 1wt% and Sb 2 O 3 is from 0 to 1wt%. Since the glass can shield electromagnetic waves, charged particles and neutrons simultaneously, radiation shielding windows can be designed and manufactured at a reduced thickness and by less constitutional numbers in a circumstance where they are present altogether. (T.M.)

  8. Helium behaviour in nuclear glasses

    International Nuclear Information System (INIS)

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  9. Rare earth superlattices

    International Nuclear Information System (INIS)

    McMorrow, D.F.

    1997-01-01

    A review is given of recent experiments on the magnetism of rare earth superlattices. Early experiments in this field were concerned mainly with systems formed by combining a magnetic and a non-magnetic element in a superlattice structure. From results gathered on a variety of systems it has been established that the propagation of magnetic order through the non-magnetic spacer can be understood mostly on the basis of an RKKY-like model, where the strength and range of the coupling depends on the details of the conduction electron susceptibility of the spacer. Recent experiments on more complex systems indicate that this model does not provide a complete description. Examples include superlattices where the constituents can either be both magnetic, adopt different crystal structures (Fermi surfaces), or where one of the constituents has a non-magnetic singlet ground state. The results from such systems are presented and discussed in the context of the currently accepted model. (au)

  10. Rare nocturnal headaches.

    Science.gov (United States)

    Cohen, Anna S; Kaube, Holger

    2004-06-01

    This review describes rare headaches that can occur at night or during sleep, with a focus on cluster headaches, paroxysmal hemicrania, short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing, hypnic headache and exploding head syndrome. It is known that cluster headaches and hypnic headache are associated with rapid eye movement sleep, as illustrated by recent polysomnographic studies. Functional imaging studies have documented hypothalamic activation that is likely to be of relevance to circadian rhythms. These headache syndromes have been shown to respond to melatonin and lithium therapy, both of which have an indirect impact on the sleep-wake cycle. There is growing evidence that cluster headache and hypnic headache are chronobiological disorders.

  11. Rare earth (3) pivalates

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Martynenko, L.I.; Zoan An' Tu; Ch'eu Tkhi Nguet; Troyanov, S.I.; Rykov, A.N.; Korenev, Yu.M.

    1994-01-01

    Depending on synthesis conditions rare earth pivalates can be obtained in the form of either adducts NPiv·HPiv or hydrates MPiv 3 ·mH 2 O. Adducts are the most stable form of pivalates. Heating of adducts result in formation of corresponding MPiv 3 . MPiv 3 ·nHPiv compounds are characterized by IR-spectroscopy and thermal analysis data. Behaviour of MPiv 3 was studied in the regime of vacuum sublemation. Using mass spectroscopy of NdPiv 3 it was shown that gaseous phase above MPiv 3 had complex composition and contained ligomer fragments. X-ray structure analysis of [NdPiv 3 ·3HPiv] was conducted

  12. A Rare Stapes Abnormality

    Directory of Open Access Journals (Sweden)

    Hala Kanona

    2015-01-01

    Full Text Available The aim of this study is to increase awareness of rare presentations, diagnostic difficulties alongside management of conductive hearing loss and ossicular abnormalities. We report the case of a 13-year-old female reporting progressive left-sided hearing loss and high resolution computed tomography was initially reported as normal. Exploratory tympanotomy revealed an absent stapedius tendon and lack of connection between the stapes superstructure and footplate. The footplate was fixed. Stapedotomy and stapes prosthesis insertion resulted in closure of the air-bone gap by 50 dB. A review of world literature was performed using MedLine. Middle ear ossicular discontinuity can result in significant conductive hearing loss. This can be managed effectively with surgery to help restore hearing. However, some patients may not be suitable or decline surgical intervention and can be managed safely conservatively.

  13. Rare Decays at LHCb

    CERN Document Server

    Belyaev, Ivan

    2006-01-01

    Rare loop-induced decays are sensitive to New Physics in many Standard Model extensions. In this paper we discuss the reconstruction of the radiative penguin decays $B^0_d \\to K^{*0} \\gamma, B^0_s \\to \\phi \\gamma , B^0_d \\to \\omega \\gamma, \\Lambda_b \\to \\Lambda \\gamma$, the electroweak penguin decays $B^0_d \\to K^{*0} \\mu^+ \\mu^-, B^+_u \\to K^+ \\mu^+ \\mu^-$, the gluonic penguin decays $B^0_d \\to \\phi K^0_S, B^0_s \\to \\phi \\phi$, and the decay $B^0_s \\to \\mu^+\\mu^-$ at LHCb. The selection criteria, evaluated efficiencies, expected annual yields and $B/S$ estimates are presented.

  14. Laboratory testing of LITCO glasses

    International Nuclear Information System (INIS)

    Ellison, A.; Wolf, S.; Buck, E.; Luo, J.S.; Dietz, N.; Bates, J.K.; Ebert, W.L.

    1995-01-01

    The purpose of this program is to measure, the intermediate and long-term durability of glasses developed by Lockheed Idaho Technology Co. (LITCO) for the immobilization of calcined radioactive wastes. The objective is to use accelerated corrosion tests as an aid in developing durable waste form compositions. This is a report of tests performed on two LITCO glass compositions, Formula 127 and Formula 532. The main avenue for release of radionuclides into the environment in a geologic repository is the reaction of a waste glass with ground water, which alters the glass and releases its components into solution. These stages in glass corrosion are analyzed by using accelerated laboratory tests in which the ratio of sample surface area to solution volume, SA/V, is varied. At low SA/V, the solution concentrations of glass corrosion products remain low and the reaction approaches the forward rate. At higher SA/V the solution approaches saturation levels for glass corrosion products. At very high SA/V the solution is rapidly saturated in glass corrosion products and secondary crystalline phases precipitate. Tests at very high SA/V provide information about the composition of the solution at saturation or, when no solution is recovered, the identities and the order of appearance of secondary crystalline phases. Tests were applied to Formula 127 and Formula 532 glasses to provide information about the interim and long-term stages in glass corrosion

  15. Glass containing radioactive nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1985-01-01

    Lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level-radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800 C, since they exhibit very low melt viscosities in the 800 to 1050 C temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550 C and are not adversely affected by large doses of gamma radiation in H 2 O at 135 C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear waste forms. (author)

  16. Transferability of glass lens molding

    Science.gov (United States)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  17. Analytical Plan for Roman Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

    2011-01-01

    Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

  18. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  19. Rare cancers are not so rare: The rare cancer burden in Europe

    NARCIS (Netherlands)

    Gatta, Gemma; van der Zwan, Jan Maarten; Casali, Paolo G.; Siesling, Sabine; Dei Tos, Angelo Paolo; Kunkler, Ian; Otter, Renee; Licitra, Lisa

    2011-01-01

    Purpose: Epidemiologic information on rare cancers is scarce. The project Surveillance of Rare Cancers in Europe (RARECARE) provides estimates of the incidence, prevalence and survival of rare cancers in Europe based on a new and comprehensive list of these diseases. Materials and methods: RARECARE

  20. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  1. Influence of Glass Property Restrictions on Hanford HLW Glass Volume

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2001-01-01

    A systematic evaluation of Hanford High-Level Waste (HLW) loading in alkali-alumino-borosilicate glasses was performed. The waste feed compositions used were obtained from current tank waste composition estimates, Hanford's baseline retrieval sequence, and pretreatment processes. The waste feeds were sorted into groups of like composition by cluster analysis. Glass composition optimization was performed on each cluster to meet property and composition constraints while maximizing waste loading. Glass properties were estimated using property models developed for Hanford HLW glasses. The impacts of many constraints on the volume of HLW glass to be produced at Hanford were evaluated. The liquidus temperature, melting temperature, chromium concentration, formation of multiple phases on cooling, and product consistency test response requirements for the glass were varied one- or many-at-a-time and the resultant glass volume was calculated. This study shows clearly that the allowance of crystalline phases in the glass melter can significantly decrease the volume of HLW glass to be produced at Hanford.

  2. Ball-milled nano-colloids of rare-earth compounds as liquid gain media for capillary optical amplifiers and lasers

    Science.gov (United States)

    Patel, Darayas; Blockmon, Avery; Ochieng, Vanesa; Lewis, Ashley; Wright, Donald M.; Lewis, Danielle; Valentine, Rueben; Valentine, Maucus; Wesley, Dennis; Sarkisov, Sergey S.; Darwish, Abdalla M.; Sarkisov, Avedik S.

    2017-02-01

    Nano-colloids and nano-crystals doped with ions of rare-earth elements have recently attracted a lot of attention in the scientific community due to their potential applications as biomarkers, fluorescent inks, gain media for lasers and optical amplifiers. Many rare-earth doped materials of different compositions, shapes and size distribution have been prepared by different synthetic methods, such as chemical vapor deposition, sol-gel process, micro-emulsion techniques, gas phase condensation methods, hydrothermal methods and laser ablation. In this paper micro-crystalline powder of the rare-earthdoped compound NaYF4:Yb3+, Er3+ was synthesized using a simple wet process followed by baking in open air. Under 980 nm diode laser excitation strong fluorescence in the 100 nm band around 1531-nm peak was observed from the synthesized micro-powder. The micro-powder was pulverized using a ball mill and prepared in the form of nano-colloids in different liquids. The particle size of the obtained nano-colloids was measured using an atomic force microscope and a dynamic light scatterometer. The size of the nano-particles was close to 100-nm. The nano-colloids were utilized as a filling media in capillary optical amplifiers and lasers. The gain of a 7-cm-long capillary optical amplifier (150-micron inner diameter) was as high as 6 dB at 200 mW pump power. The synthesized nano-colloids and the active optical components using them can be potentially used in optical communication, signal processing, optical computing, and other applications.

  3. Analysis of glass fibre sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2014-01-01

    Glass fibre reinforced polymer composites are widely used for industrial and engineering applications which include construction, aerospace, automotive and wind energy industry. During the manufacturing glass fibres, they are surface-treated with an aqueous solution. This process and the treated...... surfaces are called sizing. The sizing influences the properties of the interface between fibres and a matrix, and subsequently affects mechanical properties of composites. In this work the sizing of commercially available glass fibres was analysed so as to study the composition and chemical structures....... Soxhlet extraction was used to extract components of the sizing from the glass fibres. The glass fibres, their extracts and coated glass plates were analysed by Thermo-Gravimetric Analysis combined with a mass spectrometer (TGA-MS), and Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  4. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  5. Complexity of Curved Glass Structures

    Science.gov (United States)

    Kosić, T.; Svetel, I.; Cekić, Z.

    2017-11-01

    Despite the increasing number of research on the architectural structures of curvilinear forms and technological and practical improvement of the glass production observed over recent years, there is still a lack of comprehensive codes and standards, recommendations and experience data linked to real-life curved glass structures applications regarding design, manufacture, use, performance and economy. However, more and more complex buildings and structures with the large areas of glass envelope geometrically complex shape are built every year. The aim of the presented research is to collect data on the existing design philosophy on curved glass structure cases. The investigation includes a survey about how architects and engineers deal with different design aspects of curved glass structures with a special focus on the design and construction process, glass types and structural and fixing systems. The current paper gives a brief overview of the survey findings.

  6. Effect of concentration on the photoluminescence properties of Sm3+ and Dy3+: cadmium lithium boro tellurite glasses.

    Science.gov (United States)

    Raju, K Vemasevana; Sailaja, S; Reddy, M Bhushana; Giridhar, P; Raju, C Nageswara; Reddy, B Sudhakar

    2012-02-01

    Rare-earth (Sm3+ or Dy3+) ions doped cadmium lithium boro tellurite glasses have been prepared by melt quenching method for their spectral studies. From X-ray diffraction (XRD) patterns the glass amorphous nature has been confirmed. Vis-NIR absorption, excitation and emission spectra of these glasses have been analyzed systematically and also rare earth ion concentration is optimised Sm3+: CLiBT glasses have shown strong orange-reddish emission at 598 nm (4G5/2-->6H7/2) with an excitation wavelength lambda(exci) = 401 nm and Dy3+: CLiBT glasses have shown strong yellow emission at 574 nm (6F9/2-->6H13/2) with lambda(exci) = 451 nm.

  7. Electronic structure of metallic glasses

    International Nuclear Information System (INIS)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (ΔH) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides

  8. PLZT capacitor on glass substrate

    Science.gov (United States)

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  9. Low emissivity Ag/Ta/glass multilayer thin films deposited by sputtering

    International Nuclear Information System (INIS)

    Park, Sun Ho; Lee, Kee Sun; Sivasankar Reddy, A.

    2011-01-01

    Ta is deposited on a glass substrate as an interlayer for the two-dimensional growth of Ag thin films because Ta has good thermal stability and can induce a negative surface-energy change in Ag/glass. From the transmission electron microscopy results, we concluded that the Ag crystals in the bottom layer (seemingly on Ag/Ta) were flattened; this was rarely observed in the three-dimensional growth mode. Comparing Ag/Ta/glass with Ag/glass, we found that the Ta interlayer was effective in reducing both the resistance and the emissivity, accompanied by the relatively high transmittance in the visible region. In particular, Ag(9 nm)/Ta(1 nm)/glass film showed 0.08 of the emissivity, including ∼61% of the transmittance in the visible region (wavelength: 550 nm).

  10. Fluorescence of Er3+ doped La2S3.3Ga2S3 glasses

    International Nuclear Information System (INIS)

    Reisfeld, R.; Bornstein, A.

    1978-01-01

    In this paper the authors report the preparation and fluorescence of Er 3+ in chalcogenide glasses. In the oxide glasses it has been shown that the multiphonon transition rates of the RE are independent of the coupling between a given oxide glass and rare earth ion, but dependent exponentially on the number of phonons of highest energy bridging the emitting and next-lower level. It is of interest to establish whether changing the glass matrix will affect the amount of electron phonon coupling. In addition, because of their low phonon energy and high refractive index, the RE doped chalcogenide glasses will form a new type of fluorescent material. This may be of interest in new RE lasers. (Auth.)

  11. Characterization of selenium doped silica glasses synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Kobayashi, R.A.; Toffoli, S.M.

    2012-01-01

    Selenium is a rare element in nature. It is used in the food, pharmaceutical, and glass industries. In commercial glasses, selenium is the element responsible for most of the pink or light red color, but its effect is primarily dependent on the oxidation state of the element in the glassy matrix. Besides, selenium is highly volatile, and as high as 80 wt% may be lost in the furnace during the industrial glass elaboration. The sol– gel method yields synthesized materials of high purity and homogeneity, and uses low processing temperatures. Samples of silica glass were obtained by sol-gel method, incorporating precursors of selenium, with the main objective of reducing selenium losses during its heating. The results of optical absorption, XRD and thermal analysis (TGA, DSC) of the glasses are presented and discussed. (author)

  12. Effect of reducing conditions of synthesis on the character of the crystallization of phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, I.P.; Karapetyan, G.O.; Milyukov, E.M.; Rusan, V.V.

    1986-03-01

    The authors investigate the effect of synthesis conditions on the properties of phosphate glasses with a high concentration of rare-earth elements (REE) which are promising materials for quantum electronics. Particular attention was paid to the character of the crystallization of the glasses. A model glass of the composition La/sub 2/O/sub 3/ X 3P/sub 2/O/sub 5/ was studied which is transparent in the visible and near-IR regions of the spectrum and produced commercially.

  13. Glass corrosion in natural environments

    Science.gov (United States)

    Thorpe, Arthur N.; Barkatt, Aaron

    1992-01-01

    Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were

  14. Crystallization of copper metaphosphate glass

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  15. Fabrication of Radiation Shielding Glass

    International Nuclear Information System (INIS)

    Tavichai, Nattaya; Pormsean, Suriyont; Dararutana, Pisutti; Sirikulrat, Narin

    2003-06-01

    In this work, lead glass doped with 50%, 55%,60%, 65%, and 70% w/w Pb 3 O 4 . After that, glass mixtures were melt at 1,250οC with 4 hours soaking time. Molten glass was shaped by mould casting technique then annealed at 700οC and cooled down to room temperature. It was found that the glass with 60%w/w Pb 3 O 4 show maximum absorption coefficient of about 0.383 cm -1 with I-131 at energy 364 keV. The observed refractive indices of the samples range between 1.5908 to 1.5922

  16. Compositional threshold for Nuclear Waste Glass Durability

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-01-01

    Within the composition space of glasses, a distinct threshold appears to exist that separates 'good' glasses, i.e., those which are sufficiently durable, from 'bad' glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region

  17. Rare psi decays

    International Nuclear Information System (INIS)

    Partridge, R.

    1986-01-01

    Slightly more than ten years have passed since the psi was discovered, yet the study of psi decays continues to be an active and fruitful area of research. One reason for such longevity is that each successive experiment has increased their sensitivity over previous experiments either by improving detection efficiency or by increasing statistics. This has allowed the observation and, in some cases, detailed studies of rare psi decays. Branching ratios of ≅10-/sup 4/ are now routinely studied, while certain decay channels are beginning to show interesting effects at the 10-/sup 5/ level. Future experiments at the Beijing Electron Positron Collider (BEPC) have the potential for increasing sensitivities by one or two orders of magnitude, thus enabling many interesting studies impossible with current data samples. The author first examines the extent to which psi decays can be used to study electroweak phenomena. The remainder of this work is devoted to the more traditional task of using the psi to study quarks, gluons, and the properties of the strong interaction. Of particular interest is the study of radioactive psi decays, where a number of new particles have been discovered. Recent results regarding two of these particles, the θ(1700) and iota(1450), are discussed, as well as a study of the quark content of the eta and eta' using decays of the psi to vector-pseudoscalar final states

  18. Component effects on crystallization of RE-containing aluminoborosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Fadzil, Syazwani, E-mail: syazwanimf@ukm.edu.my [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 790784 Pohang (Korea, Republic of); School of Applied Physics, Faculty of Science and Technology, The National University of Malaysia, 43650 Bandar Baru Bangi, Selangor (Malaysia); Hrma, Pavel [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 790784 Pohang (Korea, Republic of); Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States); Schweiger, Michael J.; Riley, Brian J. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States)

    2016-09-15

    Lanthanide-aluminoborosilicate (LABS) glass is one option for immobilizing rare earth (RE) oxide fission products generated during reprocessing of pyroprocessed fuel. This glass system can accommodate a high loading of RE oxides and has excellent chemical durability. The present study describes efforts to model equilibrium crystallinity as a function of glass composition and temperature as well as liquidus temperature (T{sub L}) as a function of glass composition. The experimental method for determining T{sub L} was ASTM C1720-11. Typically, three crystalline phases were formed in each glass: Ce-borosilicate (Ce{sub 3}BSi{sub 2}O{sub 10}), mullite (Al{sub 10}Si{sub 2}O{sub 19}), and corundum (Al{sub 2}O{sub 3}). Cerianite (CeO{sub 2}) was a common minor crystalline phase and Nd-silicate (Nd{sub 2}Si{sub 2}O{sub 7}) occurred in some of the glasses. In the composition region studied, T{sub L} decreased as SiO{sub 2} and B{sub 2}O{sub 3} fractions increased and strongly increased with increasing fractions of RE oxides; Al{sub 2}O{sub 3} had a moderate effect on the T{sub L} but, as expected, it strongly affected the precipitation of Al-containing crystals. - Highlights: • We investigated equilibrium crystal fraction in glasses versus temperature. • We fitted empirical models to measured data obtaining component coefficients. • Liquidus temperature increased as SiO{sub 2} and B{sub 2}O{sub 3} fractions decreased. • Liquidus temperature increased as CeO{sub 2}, Nd{sub 2}O{sub 3}, and Al{sub 2}O{sub 3} fractions increased.

  19. 3 and 4 oxidation state element solubilities in borosilicate glasses. Implement to actinides in nuclear glasses

    International Nuclear Information System (INIS)

    Cachia, J.N.

    2005-12-01

    In order to ensure optimal radionuclides containment, the knowledge of the actinide loading limits in nuclear waste glasses and also the comprehension of the solubilization mechanisms of these elements are essential. A first part of this manuscript deals with the study of the differences in solubility of the tri and tetravalent elements (actinides and surrogates) particularly in function of the melting temperature. The results obtained indicate that trivalent elements (La, Gd, Nd, Am, Cm) exhibit a higher solubility than tetravalent elements (Hf, Th, Pu). Consequently, it was planned to reduce plutonium at the oxidation state (III), the later being essentially tetravalent in borosilicate glasses. An innovating reduction process of multi-valent elements (cerium, plutonium) using silicon nitride has been developed in a second part of this work. Reduced plutonium-bearing glasses synthesized by Si 3 N 4 addition made it possible to double the plutonium solubility from 2 to 4 wt% at 1200 deg C. A structural approach to investigate the differences between tri and tetravalent elements was finally undertaken. These investigations were carried out by X-rays Absorption Spectroscopy (EXAFS) and NMR. Trivalent rare earth and actinide elements seem to behave as network modifiers while tetravalent elements rather present true intermediaries' behaviour. (author)

  20. Rare B decays at LHCb

    CERN Document Server

    Puig Navarro, Albert

    2017-01-01

    Rare decays are flavour changing neutral current processes that allow sensitive searches for phenomena beyond the Standard Model (SM). In the SM, rare decays are loop-suppressed and new particles in SM extensions can give significant contributions. The very rare decay $B^0_s\\to\\mu^+\\mu^-$ in addition helicity suppressed and constitutes a powerful probe for new (pseudo) scalar particles. Of particular interest are furthermore tests of lepton universality in rare $b\\to s\\ell^+\\ell^-$ decays. The LHCb experiment is designed for the study of b-hadron decays and ideally suited for the analysis of rare decays due to its high trigger efficiency, as well as excellent tracking and particle identification performance. Recent results from the LHCb experiment in the area of rare decays are presented, including tests of lepton universality and searches for lepton flavour violation.

  1. Effect of CeO2 addition on electrical and optical properties of lithium borate glasses

    International Nuclear Information System (INIS)

    Gedam, R.S.; Ramteke, D.D.

    2011-01-01

    Rare earth (RE) ions play an important role in modern technology as an active ion in many optical materials. RE-doped glasses were used in many optical devices because of abundant number of the absorption and emission bands arising from the transitions between the RE elements energy levels. Among all rare earth, glasses containing CeO 2 are extensively studied for scintillating applications. Radiation length of CeO 2 containing lithium silicate glasses decreases and absorption edge in transmittance shift towards longer wavelength. In the present study an attempt has been made to verify similar results in borate containing glasses. Therefore glass series 15Li 2 O-xCeO 2 -(85''x)B 2 O 3 where x= 0.25, 0.5, 0.75, 1 mol% was prepared by conventional melt quench technique. Their electrical and optical properties have been investigated. It is observed that the conductivity of these glasses decreases while density, glass transition temperature and refractive index increases with the addition of CeO 2 . The conductivity of the glasses is mostly controlled by the activation energy. Since the lithium fraction in the present series is kept constant, the decrease in conductivity for glasses may be attributed to the reduction in the number of available vacant sites for the mobile lithium ions when boron is substituted with CeO 2 . The radiation length was determined using density values and it was found to decrease with the addition of CeO 2 . The absorption coefficient a were determined near the absorption edge of different photon energy for all glass samples and plot of (αhν) 1/2 Vs. hν (Tauc's plot) is shown. It is observed that the optical band gap energy (E g Opt ) decreases with the addition of CeO 2

  2. Restorative Glass : Reversible, discreet restoration using structural glass components

    NARCIS (Netherlands)

    Oikonomopoulou, F.; Bristogianni, T.; Barou, L.; van Hees, R.P.J.; Nijsse, R.; Veer, F.A.; Henk, Schellen; van Schijndel, Jos

    2016-01-01

    The application of structural glass as the principal material in restoration and conservation practices is a distinguishable, yet discreet approach. The transparency of glass allows the simultaneous perception of the monument at both its original and present condition, preserving its historical and

  3. The glass sphinx: a massive stacked glass structure

    NARCIS (Netherlands)

    Bos, F.P.; Heijden, van der T.; Schreurs, P.; Bos, F.; Louter, C.; Nijsse, R.; Veer, F.

    The refurbishment of the Meuse river boulevard in Venlo instigated Scheuten Glass to donate a giant-sized, 6 metre high version of the stacked glass statue the Sphinx, which had originally been made as a 80 cm sculpture to commemorate the city's 650th anniversary back in 1993. Many hurdles had to be

  4. Structural Glass Beams with Embedded Glass Fibre Reinforcement

    NARCIS (Netherlands)

    Louter, P.C.; Leung, Calvin; Kolstein, M.H.; Vambersky, J.N.J.A.; Bos, Freek; Louter, Pieter Christiaan; Veer, Fred

    2010-01-01

    This paper investigates the possibilities of pultruded glass fibre rods as embedded reinforcement in SentryGlas (SG) laminated glass beams. To do so, a series of pullout tests, to investigate the bond strength of the rods to the laminate, and a series of beam tests, to investigate the post-breakage

  5. EXAFS analysis of full color glasses and glass ceramics: local order and color

    International Nuclear Information System (INIS)

    Santa Cruz, Petrus A.; Sa, Gilberto F. de; Malta, Oscar L.; Silva, Jose expedito Cavalcante

    1996-01-01

    The generation and control of the relative intensities of the primary additive colors in solid state light emitters is very important to the development of higher resolution media, used in color monitors, solid state sensors, large area and flat displays and other optoelectronic devices. We have developed a multi-doped glassy material named FCG (full color glass, to generate and to control the primary light colors, allowing the simulation of any color of light by additive synthesis. Tm(III), Tb(III) and Eu(III) ions were used (0.01 to 5.0 mol%) as blue, green and red narrow emitters. A wide color gamut was obtained under ultraviolet excitation by varying the material composition. The chromaticity diagram is covered, including the white simulation. We proposed a mechanism to control the chromaticity of a fixed composition of the material, using the Er (III) as a selective quencher that may be deactivated by infrared excitation. Although this new material presents at this time a high efficiency, it may be improved because the energy transfer between the rare earth triad may be still reduced. Optical spectroscopy measurements confirms that it is still possible to improve the efficiency of the FCC material. EXAFS analysis will be used to probe the local environment around the triad of rare earth that generates the primary colors. For this purpose we have prepared single doped glasses with each component of the triad with the same concentration than FCG. The devitrification of these glasses will be analyzed in order to produce glassceramics with ion segregation. (author)

  6. Glass ceramic fibres

    International Nuclear Information System (INIS)

    Blaschek, O.; Paulitsch, P.

    1983-01-01

    As the correlation between mineralogical phase and chemical composition influences the type of application at different high temperatures, we studied the mineralogical phases of nine crystal glass fibres of the temperature ranges 1 150 degrees Celsius (Type 1), 1 400 degrees Celsius (Type 2) and 1 500 degrees Celsius (Type 3) at various high temperatures. The methods used in the study were microscopy, X-ray diffraction, transmission electron microscopy and differential thermal analysis. The investigations showed that mullite forms in glassy fibres of the system Al 2 O 3 . SiO 2 from 850 degrees Celsius to 990 degrees Celsius as 2/1 mullite; 3/2 mullite appeared above 990 degrees Celsius besides the crystallization of cristobalite. Fibres with 95 per cent Al 2 O 3 include the phases delta-Al 2 O 3 and alpha- Al 2 O 3 and mullite. Delta- Al 2 O 3 is stable up to 1 100 degrees Celsius. Alpha-Al 2 O 3 and mullite are only stable phases at 1 400 degrees Celsius. These different crystal phases influence the quality of the technical fibre according to the stability field of glass and crystals. This study has determined that it is possible to identify different fibres from different productions by their mineralogical compositions and to relate them to the high temperature application

  7. Spheroidization of glass powders for glass ionomer cements.

    Science.gov (United States)

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  8. Compositional Dependence of Solubility/Retention of Molybdenum Oxides in Aluminoborosilicate-Based Model Nuclear Waste Glasses.

    Science.gov (United States)

    Brehault, Antoine; Patil, Deepak; Kamat, Hrishikesh; Youngman, Randall E; Thirion, Lynn M; Mauro, John C; Corkhill, Claire L; McCloy, John S; Goel, Ashutosh

    2018-02-08

    Molybdenum oxides are an integral component of the high-level waste streams being generated from the nuclear reactors in several countries. Although borosilicate glass has been chosen as the baseline waste form by most of the countries to immobilize these waste streams, molybdate oxyanions (MoO 4 2- ) exhibit very low solubility (∼1 mol %) in these glass matrices. In the past three to four decades, several studies describing the compositional and structural dependence of molybdate anions in borosilicate and aluminoborosilicate glasses have been reported in the literature, providing a basis for our understanding of fundamental science that governs the solubility and retention of these species in the nuclear waste glasses. However, there are still several open questions that need to be answered to gain an in-depth understanding of the mechanisms that control the solubility and retention of these oxyanions in glassy waste forms. This article is focused on finding answers to two such questions: (1) What are the solubility and retention limits of MoO 3 in aluminoborosilicate glasses as a function of chemical composition? (2) Why is there a considerable increase in the solubility of MoO 3 with incorporation of rare-earth oxides (for example, Nd 2 O 3 ) in aluminoborosilicate glasses? Accordingly, three different series of aluminoborosilicate glasses (compositional complexity being added in a tiered approach) with varying MoO 3 concentrations have been synthesized and characterized for their ability to accommodate molybdate ions in their structure (solubility) and as a glass-ceramic (retention). The contradictory viewpoints (between different research groups) pertaining to the impact of rare-earth cations on the structure of aluminoborosilicate glasses are discussed, and their implications on the solubility of MoO 3 in these glasses are evaluated. A novel hypothesis explaining the mechanism governing the solubility of MoO 3 in rare-earth containing aluminoborosilicate

  9. Characterization and Morphological Properties of Glass Fiber ...

    African Journals Online (AJOL)

    PROF HORSFALL

    used as the matrix for the glass fibre-epoxy resin formation. E- Glass fibre ... reinforcement of composites, coatings of materials, and other ..... composite for the manufacture of glass-ceramic materials ... reinforced epoxy composites with carbon.

  10. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  11. Properties of gallium lanthanum sulphide glass

    OpenAIRE

    Bastock, P.; Craig, C.; Khan, K.; Weatherby, E.; Yao, J.; Hewak, D.W.

    2015-01-01

    A series of gallium lanthanum sulphide (GLS) glasses has been studied in order to ascertain properties across the entire glass forming region. This is the first comprehensive study of GLS glass over a wide compositional range.

  12. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  13. Rare earths 1998 market update

    International Nuclear Information System (INIS)

    Tourre, J.M.

    1998-01-01

    The rare earth industry has always been a world of rapid change with the emergence of new markets, new ores and new players, as well as the disappearance of old applications. Rare earth based products are used in a great diversity of applications such as hard disk drives, CD drives, batteries, capacitors, pigments, ceramics, polishing powders, fuel cells, flints, catalyst converter, fluid cracking catalysts, etc. South East Asia holds the largest share of the known reserve of rare earth ores and is one of the major markets for rare earth compounds; in the last ten years, China has become the largest producer of rare earth intermediates as well as an important exporter of separated rare earth elements. Today, China has approximately 150 factories producing rare earth compounds, most of which are experiencing financial difficulties due to the lack of knowledge of true market needs, lack of control of their distribution channels and production over-capacity. Recently the Chinese rare earth producers have recognized the situation and efforts are underway to rationalize rare earth production. Japan has dominated many of the major application markets, and is by far the largest market for metal and alloy products. This will remain the case for the next five years; however, new countries are emerging as significant users of rare earth products such as Korea, Taiwan and Malaysia. During the last ten years rare earth producers adjusted to several radical changes that affected the raw materials, the application mix and the price structure. New producers have emerged, especially from China; some have subsequently stopped their activities while others have focused their efforts in a specific market segment

  14. Who will buy smart glasses?

    DEFF Research Database (Denmark)

    Rauschnabel, Philipp; Brem, Alexander; Ivens, Bjørn S.

    2015-01-01

    Recent market studies reveal that augmented reality (AR) devices, such as smart glasses, will substantially influence the media landscape. Yet, little is known about the intended adoption of smart glasses, particularly: Who are the early adopters of such wearables? We contribute to the growing bo...

  15. Superconductive analogue of spin glasses

    International Nuclear Information System (INIS)

    Feigel'man, M.; Ioffe, L.; Vinokur, V.; Larkin, A.

    1987-07-01

    The properties of granular superconductors in magnetic fields, namely the existence of a new superconductive state analogue of the low-temperature superconductive state in spin glasses are discussed in the frame of the infinite-range model and the finite-range models. Experiments for elucidation of spin-glass superconductive state in real systems are suggested. 30 refs

  16. Zirconium based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dey, G.K.; Neogy, S.; Savalia, R.T.; Tewari, R.; Srivastava, D.; Banerjee, S.

    2006-01-01

    Metallic glasses have come into prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. In this study, bulk glasses have been obtained in Zr based multicomponent alloy by induction melting these alloys in silica crucibles and casting these in form of rods 3 and 6 mm in diameter in a copper mould

  17. International Congress on Glass XII

    Energy Technology Data Exchange (ETDEWEB)

    Doremus, R H; LaCourse, W C; Mackenzie, J D; Varner, J R; Wolf, W W [eds.

    1980-01-01

    A total of 158 papers are included under nine headings: structure and glass formation; optical properties; electrical and magnetic properties; mechanical properties and relaxation; mass transport; chemical durability and surfaces; nucleation; crystallization; and glass ceramics; processing; and automatic controls. Separate abstracts were prepared for eight papers; four of the remaining papers had been processed previously for the data base. (DLC)

  18. OPAL Various Lead Glass Blocks

    CERN Multimedia

    These lead glass blocks were part of a CERN detector called OPAL (one of the four experiments at the LEP particle detector). OPAL uses some 12 000 blocks of glass like this to measure particle energies in the electromagnetic calorimeter. This detector measured the energy deposited when electrons and photons were slowed down and stopped.

  19. Lead-iron phosophate glass

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1988-01-01

    The lead-iron phosphate nuclear waste glasses (LIPNWG) are the subject of the present chapter. They were discovered in 1984 while the authors were attempting to find a sintering aid for certain types of crystalline monazite ceramic high-level nuclear waste forms. In the present chapter, the term waste glass is synonymous with nuclear waste glass (NWG), and the acronym LIP is often used for lead-iron phosphate. Lead-iron phosphate glasses, like many of the previously studied phosphate glasses, are corrosion resistant in aqueous solutions at temperatures below 100 degrees C, and they can be melted and poured at temperatures that are relatively low in comparison with the processing temperatures required for current silicate glass compositions. Unlike the phosphate glasses investigated previously, however, LIPNWGs do not suffer from alteration due to devitrification during realistic and readily, achievable cooling periods. Additionally, lead-iron phosphate glass melts are not nearly as corrosive as the sodium phosphate melts investigated during the 1960s; and, therefore, they can be melted and processed using crucibles made from a variety of materials

  20. Plutonium dioxide dissolution in glass

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Alexander, D.L.; Li, Hong [and others

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy`s (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation`s defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO{sub 2} feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO{sub 2} dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides.

  1. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  2. Plutonium dioxide dissolution in glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Alexander, D.L.; Li, Hong

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy's (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation's defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO 2 feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO 2 dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides

  3. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Melo, B. M. G.; Graça, M. P. F., E-mail: mpfg@ua.pt; Prezas, P. R.; Valente, M. A. [Physics Department (I3N), Aveiro University, Campus Universitário de Santiago, Aveiro (Portugal); Almeida, A. F.; Freire, F. N. A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Bih, L. [Equipe Physico-Chimie la Matière Condensée, Faculté des Sciences de Meknès, Meknès (Morocco)

    2016-08-07

    In this work, phosphate-borate based glasses with molar composition 20.7P{sub 2}O{sub 5}–17.2Nb{sub 2}O{sub 5}–13.8WO{sub 3}–34.5A{sub 2}O–13.8B{sub 2}O{sub 3}, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σ{sub ac} and σ{sub dc}, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz–1 MHz.

  4. Preparation and spectral analysis of a new Tb3+-doped CaO-MgO-SiO2 glass ceramics

    International Nuclear Information System (INIS)

    Cheng Jinshu; Tian Peijing; Zheng Weihong; Xie Jun; Chen Zhenxia

    2009-01-01

    Tb 3+ -doped CaO-MgO-SiO 2 glass ceramics have been prepared and characterized. The structure and optical properties of the glass ceramics were studied by XRD, SEM, Raman, and fluorescence spectra. The precipitated crystalline phase in the glass ceramics was columnar CaMgSi 2 O 6 . Raman spectra showed the introduction of rare earth nearly had no influence on the sample structure. Fluorescence measurements showed that Tb 3+ ions entered into the diopside crystalline phase and induced a much stronger emission in the glass ceramics than that in the corresponding glass. With increase of Tb 3+ content and the introduction of Gd 3+ , the fluorescence intensity of the luminescent glass ceramic increased

  5. Phonon scattering in metallic glasses

    International Nuclear Information System (INIS)

    Black, J.L.

    1979-01-01

    The purpose of this article is to review some recent theoretical and experimental developments in the study of metallic glasses at temperatures near or below 1K. In this temperature regime, it appears that practically all glasses, whether metallic or insulating, behave in a similar fashion. The fact that such similarities occur, despite substantial structural differences between metallic and insulating glasses, constitutes a major theoretical challenge. This challenge, however, is not directly addressed in what follows. Instead, the evidence for universal behavior and the theory which is necessary to understand this evidence are emphasized. It turns out that most of this evidence involves a comparison of phonon scattering in metallic glasses with its counterpart in insulating glasses

  6. Zebra: searching for rare diseases

    DEFF Research Database (Denmark)

    Dragusin, Radu; Petcu, Paula; Lioma, Christina

    2012-01-01

    disease diagnostic hypotheses in the domain of medical IR. In this work, we build upon an existing vertical medical search engine, Zebra, that is focused on rare disease diagnosis. In previous work, Zebra has been evaluated using real-life medical cases of rare and difficult diseases, and has been found...

  7. Glass Ceramic Formulation Data Package

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-01-01

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  8. Rare-earth magnets and their applications. Vol. 2. Proceedings

    International Nuclear Information System (INIS)

    Schultz, L.; Mueller, K.H.

    1998-01-01

    The following topics were dealt with: permanent magnets, rare- earth magnets, manufacturing, markets, powder metallurgy, sintering, mechanical alloying, nanocrystalline magnets, Curie temperature, domain structure, exchange coupling, stoichiometry effects, coercive force, remanence, magnetisation distribution, demagnetisation, mechanical properties, deformation behaviour, microstructure, grain size effects, texture, magnetic anisotropy, hydrogen assisted processing, nitriding, hydrogen embrittlement, permanent magnet motors, permanent magnet generators, brushless machines, linear motors, DC motors, AC motors, servomotors, magnetic levitation, magnetic field calculations, magnetic damping, magnet system design, system optimisation, corrosion protection, magnetometers, hard magnetic films, magnetostriction, magnetic multilayers, spin glass behaviour

  9. Database and Interim Glass Property Models for Hanford HLW Glasses

    International Nuclear Information System (INIS)

    Hrma, Pavel R; Piepel, Gregory F; Vienna, John D; Cooley, Scott K; Kim, Dong-Sang; Russell, Renee L

    2001-01-01

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region

  10. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading

  11. Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED

    International Nuclear Information System (INIS)

    Pawar, P.P.; Munishwar, S.R.; Gautam, S.; Gedam, R.S.

    2017-01-01

    Rare earth (RE) doped glasses have potential applications due to their emission efficiencies of 4f–4 f and 4f–5d electronic transitions. Among all the rare earths, Dy 3+ doped glasses have drawn much interest among the researchers for their intense emission in the visible region from 470 to 500 nm and around 570 to 600 nm. The physical, thermal, structural and optical properties of Dy 3+ doped lithium alumino-borate glasses (LABD glasses) have been studied for white LED (W-LED) application. The glasses were synthesized by conventional melt quench technique. X-ray diffraction spectra revealed the amorphous nature of the glass sample. An FTIR spectrum was carried out to study the glass structure and various functional groups present in the LABD glasses. Optical absorption spectra were recorded by UV–vis-NIR spectrometer. Allowed direct and indirect band gaps were obtained by Tauc's plot. Thermal parameters like glass thermal stability (∆T), Hruby's parameter (K gl ), etc. were calculated by DTA graph. Photoluminescence excitation and emission spectra's were measured at room temperature. The emission spectra shows two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponds to the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions respectively along with one feeble band at 662 nm (red) corresponds to 4 F 9/2 → 6 H 11/2 transition. The CIE chromaticity co-ordinates were calculated for all glass samples. CIE chromaticity diagram shows glass LABD-4 containing 0.5 mol% Dy 2 O 3 with colour co-ordinates X = 0.34 and Y = 0.38 have highest emission intensity. These glasses having emission in the white region and thus can be used for bright white LED.

  12. Joints in Tempered Glass Using Glass Dowel Discs

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Poulsen, Peter Noe

    One of the major reasons for using glass in structures is its transparency; however, traditional mechanical joints such as friction joints and steel dowel pinned connections are compromising the transparency. The present paper describes a novel joint which is practically maintaining the complete...... transparency of the glass. This is achieved by using a dowel disc made entirely of tempered glass. The concept of the joint is proved by pilot tests and numerical models. From the work it is seen that the load-carrying capacity of such a connection is similar to what is found for traditionally in-plane loaded...

  13. Luminescence properties of erbium doped sodium barium borate glass with silver nanoparticles

    Science.gov (United States)

    Rajeshree Patwari, D.; Eraiah, B.

    2018-02-01

    Alteration in the absorption features of rare earth (RE) doped glasses with silver nanoparticles is ever-challenging in photonics. Erbium (Er3+) doped glasses with composition (60-x-y)B2O3-30Na2CO3-10BaO-xEr2O3-yAgCl where (x=0.5, 1.0 and y=1.0 mol %) are synthesized using melt-quenching method. The density is determined by Archimedes principle and molar volumes are calculated. Glass samples were characterized by XRD and UV-Visible spectroscopy. UV-Visible spectra shows eleven prominent absorption peaks centred around 366, 378, 408, 442, 452, 489, 521, 547, 652, 800 and 977 nm equivalent to the rare earth (Er3+) ion transitions. The sample without rare earth shows no peaks which specifies that rare earth ion plays a spirited role in the glass matrix. The glass samples with silver and without rare earth ion shows plasmon peak on heat treatment. The energy band gap values calculated for direct and indirect transitions are in the range of 3.126-3.440eV and 2.58-3.177eV respectively. The refractive indices and Urbach energies are also determined. Photoluminescence spectra are recorded and studied for excitation of the most intense peaks of wavelengths 378 and 521nm. The luminescence of erbium ion is enhanced by the presence of silver when the concentration of rare earth ion is less than that of silver.

  14. Study of powellite-rich glass-ceramics for nuclear waste immobilization

    International Nuclear Information System (INIS)

    Taurines, T.

    2012-01-01

    MoO 3 is poorly soluble in borosilicate glasses which can lead to the crystallization of undesired phases when its concentration or the charge load (minor actinides and fission products concentration) is too high. Crystallization control is needed to guarantee good immobilization properties. We studied powellite-rich glass-ceramics obtained from a simplified nuclear glass in the system SiO 2 - B 2 O 3 - Na 2 O - CaO - Al 2 O 3 - MoO 3 - RE 2 O 3 (RE = Gd, Eu, Nd) by various heat treatments. Rare earth elements (REE) were added as minor actinides surrogates and as spectroscopic probes. The influence of MoO 3 and RE 2 O 3 content on powellite (CaMoO 4 ) crystallization was investigated. Various glass-ceramics (similar residual glass + powellite) were obtained with large crystal size distributions. Phase separation due to molybdenum occurs during quenching when [MoO 3 ] ≥ 2.5 mol%. We showed that increasing the rare earth content can suppress the phase separation due to molybdenum but it leads to spinodal decomposition of the residual glass. Furthermore, we studied the effects of parent glass complexifying and the insertion of Gd 3+ ions into the powellite structure. In order to understand the influence of microstructure on evolutions under β-irradiation, we studied point defects creation and structural changes. We showed that the damage induced by electronic excitations in the glass-ceramics is driven by the damage in the residual glass. (author) [fr

  15. Glass packages in interim storage

    International Nuclear Information System (INIS)

    Jacquet-Francillon, N.

    1994-10-01

    This report summarize the current state of knowledge concerning the behavior of type C waste packages consisting of vitrified high-level solutions produced by reprocessing spent fuel. The composition and the physical and chemical properties of the feed solutions are reviewed, and the vitrification process is described. Sodium alumino-borosilicate glass compositions are generally employed - the glass used at la Hague for LWR fuel solutions, for example, contains 45 % SiO 2 . The major physical, chemical, mechanical and thermal properties of the glass are reviewed. In order to allow their thermal power to diminish, the 3630 glass packages produced (as of January 1993) in the vitrification facilities at Marcoule and La Hague are placed in interim storage for several decades. The actual interim storage period has not been defined, as it is closely related to the concept and organization selected for the final destination of the packages: a geological repository. The glass behavior under irradiation is described. Considerable basic and applied research has been conducted to assess the aqueous leaching behavior of nuclear containment glass. The effects of various repository parameters (temperature, flow rate, nature of the environmental materials) have been investigated. The experimental findings have been used to specify a model describing the kinetics of aqueous corrosion of the glass. More generally all the ''source term'' models developed in France by the CEA or by ANDRA are summarized. (author). 152 refs., 33 figs

  16. Glass ceramic seals to inconel

    Science.gov (United States)

    McCollister, Howard L.; Reed, Scott T.

    1983-11-08

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65-80% SiO.sub.2, 8-16%, Li.sub.2 O, 2-8% , Al.sub.2 O.sub.3, 1-8% K.sub.2 O, 1-5% P.sub.2 O.sub.5 and 1.5-7% B.sub.2 O.sub.3, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to cause growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  17. Spectroscopic properties of highly Nd-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Novais, A.L.F. [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil); Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Guedes, I. [Departamento de Física, Universidade Federal do Ceará, Campus do PICI, Caixa Postal 6030, 60455-760 Fortaleza, CE (Brazil); Vermelho, M.V.D., E-mail: vermelho@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil)

    2015-11-05

    The spectroscopic characteristics of highly Nd{sup 3+}-doped lead phosphate glasses (xNd:Pb{sub 3}(PO{sub 4}){sub 2}) have been investigated. The X-ray spectra show that the matrices are glassy up to 25 wt% of Nd{sup 3+} doping. From the Judd–Ofelt analysis we observe that while the Ω{sub (2)} parameter remains constant indicating that the 4f{sup N} and 4f{sup N−1}5 d{sup 1} configurations are not affected by the Nd{sup 3+} doping, the behavior of both Ω{sub (4)} and Ω{sub (6)} changes for 15 wt% of Nd{sup 3+} doping. The reduction of the Ω{sub (6)} parameter is related to the increase of the covalence bonding between the ligands and the Nd{sup 3+} ions. At this particular concentration, the radiative lifetime has a four-fold enhancement. Such behaviors are likely to be related to a modification in the glass structure for high Nd{sup 3+} concentrations. - Graphical abstract: Highly doped lead-phosphate glass matrix, with nominal concentration of up to 25 wt%, maintain the spectroscopic properties without deterioration. The analysis concerning the point of view of Nd{sup 3+} ions showed that high concentrations only affects the rare earth electronic charge density distribution. - Highlights: • Spectroscopic characterization of Nd{sub 2}O{sub 3} highly doped lead phosphate glasses. • Phosphate glass doped with Nd{sup 3+} for applications in photonic devices. • Judd–Ofelt analysis in phosphate glasses doped with Neodymium.

  18. Analysis of leachants from strontium chlorapatite glass ceramics

    International Nuclear Information System (INIS)

    Vijayalakshmi, S.; Ushalakshmi, K.; Annapoorani, S.; Sriram, S.; Uma Maheshwari, R.; Deivanayaki, R.; Sekar, J.K.; Sankaran, K.

    2013-01-01

    Strontium chlorapatite glass ceramics is being tried out as one of the candidate matrices for immobilizing pyrochemical salt waste produced in the nuclear industry. To find-out the suitability of such material for immobilising the waste, leaching of various constituents of the ceramics in water is required. Therefore, in Chemistry Group of IGCAR experiments are being carried out with simulated salt waste (chlorides of Li, Na, K, Cs, Ba, Nd and Ce) of pyrochemical reprocessing method for studying the utilisation of strontium chlorapatite glass ceramics towards the immobilization of radioactive waste. Leaching behaviour study requires the determination of alkali, alkaline earth and rare earth elements in the leachant solutions of the glass ceramic material. Apart from cations, leaching study of anions especially chloride is required as the chloride salts are used in pyrochemical experiments. Considering the good sensitivity of alkali elements in Flame-AES method, all the alkali elements were determined by flame-AES. Ba, Sr and rare earth elements in the leachant solutions were determined using ICP-OES. Chloride was determined using ISE and IC. Standardisation of instrumental techniques and the application of various techniques for the sample analysis will be discussed in the paper. (author)

  19. Poster "Maladies rares & sciences sociales"

    OpenAIRE

    Duysens, Fanny

    2018-01-01

    Le poster "Maladies rares & sciences sociales" visait à présenter la recherche doctorale de l'auteure au grand public dans le cadre de la Journée des Maladies Rares du Centre Hospitalier Universitaire de Liège dont le thème était "la recherche sur les maladies rares". Réalisé spécialement pour l'occasion, le poster explicitait de manière synthétique le sujet de recherche, la méthodologie, certains résultats, ainsi que les apports possibles des échanges entre chercheurs en sciences et sociales...

  20. Rare metal and rare earth pegmatites of Western India

    International Nuclear Information System (INIS)

    Maithani, P.B.; Nagar, R.K.

    1999-01-01

    Rajasthan Mica Belt in western India is one of the three major mica-producing Proterozoic pegmatite belts of India, the others being in Bihar and Andhra Pradesh. The pegmatites of these mica belts, in general, are associated with the rare metal (RM) and rare earth element (REE)-bearing minerals like columbite-tantalite, beryl, lepidolite and other multiple oxides. RM-REE pegmatites of Gujarat are devoid of commercially workable mica. These pegmatites are geologically characterised in this paper, based on their association with granite plutons geochemistry, and RM and REE potential. In addition to RM and RE-bearing pegmatites, granites of the Umedpur area, Gujarat also show anomalous concentration (0.97 wt%) of rare metals (6431 ppm Nb, 1266 ppm Ta, 454 ppm Sn, 173 ppm W), (1098 ppm Ce 1.36% Y 2 O 3 ) rare earths, and uranium (0.40% eU 3 O 8 ). Eluvial concentrations in the soil and panned concentrate (0.04-0.28 wt%) analysed up to 7.4%Nb 2 O 5 , 836 ppm Ta, and 1.31% Y. Discrete columbite-tantalite and betafite have been identified in these concentrates in addition to other minerals like zircon, rutile, sphene and xenotime. This area with discrete RM R EE mineral phases could be significant as a non-pegmatite source for rare metal and rare earths. (author)

  1. International strategic minerals inventory summary report; rare-earth oxides

    Science.gov (United States)

    Jackson, W.D.; Christiansen, Grey

    1993-01-01

    density and heat resistance of sintered ceramics. Yttrium and gadolinium contribute to the efficiency of electronic switches and sensors. Cerium improves the effectiveness of catalysts in the petroleum and automotive industries. Cerium oxides speed glass melting and are used to polish glass by chemical, rather than mechanical, means. Cerium, europium, terbium, and yttrium, as phosphoric compounds, promote the vivid colors of television screens. Consumption of rare earths is expected to grow by about 2.6 percent per year.

  2. A method for making a glass supported system, such glass supported system, and the use of a glass support therefor

    NARCIS (Netherlands)

    Unnikrishnan, S.; Jansen, Henricus V.; Berenschot, Johan W.; Fazal, I.; Louwerse, M.C.; Mogulkoc, B.; Sanders, Remco G.P.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2008-01-01

    The invention relates to a method for making a glass supported micro or nano system, comprising the steps of: i) providing a glass support; ii) mounting at least one system on at least one glass support; and iii) bonding the system to the glass support, such that the system is circumferentially

  3. Glass enamel and glass-ceramic coatings for chemical apparatus

    International Nuclear Information System (INIS)

    Es'kov, A.S.; Oleinik, M.I.; Shabrova, E.A.

    1984-01-01

    Among the known anticorrosion coatings used in chemical engineering, glass enamel base coatings are distinguished by such advantages as a high degree of continuity and chemical resistance. The paper describes basic principles for the creation of acid and alkali resistant glass enamel and ceramic coatings for chemical apparatus. As the result of investgations, glass enamel coatings with increased electrical conductivity and also experimental production compositions of chemical, temperature and radiation resistant coatings for protection of chemical equipment of 12Kh18N10T stainless steel have been developed. The coatings have successfully passed testing under service conditions. A new type of coating is short-term glass enamel, which may be recommended for use in chemical machinery manufacturing and other branches of industry in oxidation-free heating and forming of stainless steels

  4. Restorative glass: reversible, discreet restoration using structural glass components

    Directory of Open Access Journals (Sweden)

    Faidra Oikonomopoulou

    2017-12-01

    Full Text Available The application of structural glass as the principal material in restoration and conservation practices is a distinguishable, yet discreet approach. The transparency of glass allows the simultaneous perception of the monument at both its original and present condition, preserving its historical and aesthetical integrity. Concurrently, the material’s unique mechanical properties enable the structural consolidation of the monument. As a proof of concept, the restoration of Lichtenberg Castle is proposed. Solid cast glass units are suggested to complete the missing parts, in respect to the existing construction technique and aesthetics of the original masonry. Aiming for a reversible system, the glass units are interlocking, ensuring the overall stability without necessitating permanent, adhesive connections. This results in an elegant and reversible intervention.

  5. GLASS COMPOSITION-TCLP RESPONSE MODEL FOR WASTE GLASSES

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2004-01-01

    A first-order property model for normalized Toxicity Characteristic Leaching Procedure (TCLP) release as a function of glass composition was developed using data collected from various studies. The normalized boron release is used to estimate the release of toxic elements based on the observation that the boron release represents the conservative release for those constituents of interest. The current TCLP model has two targeted application areas: (1) delisting of waste-glass product as radioactive (not mixed) waste and (2) designating the glass wastes generated from waste-glass research activities as hazardous or non-hazardous. This paper describes the data collection and model development for TCLP releases and discusses the issues related to the application of the model

  6. The ions displacement through glasses

    International Nuclear Information System (INIS)

    Sevegnani, F.X.

    1980-01-01

    A method to introduce sodium, potassium, lithium, calcium, iron and other ions in vacuum or gas light bulb by mean of a strong stationay electric field. The experiments showed that the mass deposited inside the bulbs obey Faraday's law of electrolysis, although the process of mass transfer is not that of a conventional electrolysis. A method which allows to show that hydrogen ions do not penetrate the glass structure is also described. Using radioactive tracers, it is shown that heavy ions, such PO 4 --- do not penetrate the glass structure. The vitreous state and the glass properties were studied for interpreting experimental results. (Author) [pt

  7. Recent developments in laser glasses

    International Nuclear Information System (INIS)

    Weber, M.J.

    1983-01-01

    The past decade has witnessed a proliferation of new glass-forming compositions including oxides, halides, oxyhalides, and chalcogenides. Many of these glasses are applicable to lasers and have greatly expanded the range of optical properties and spectroscopic parameters available to the laser designer. Our knowledge and understanding of many properties of interest for laser action - transparency, linear and nonlinear refractive indices, and damage threshold of the host glass and the absorption spectrum, radiative and nonradiative transition probabilities, fluorescence wavelength, stimulated emission cross section, and spectroscopic inhomogeneities of the lasing ion Nd 3 + - are reviewed

  8. Mechanism of luminescent emission in BaY2F8 scintillators doped with rare earths

    International Nuclear Information System (INIS)

    Santos, Ana Carolina de Mello

    2013-01-01

    with an analysis of X-ray absorption spectroscopy (XAS) and X-rays Excited Optical Luminescence (XEOL) allowed the development of a model for the scintillation mechanism for the rare earth doped BaYF systems. (author)

  9. Shattered glass seeking the densest matter: the color glass condensate

    CERN Multimedia

    Appell, D

    2004-01-01

    "Physicists investigating heavy-particle collisions believe they are on the track of a universal form of matter, one common to very high energy particles ranging from protons to heavy nuclei such as uranium. Some think that this matter, called a color glass condensate, may explain new nuclear properties and the process of particle formation during collisions. Experimentalists have recently reported intriguing data that suggest a color glass condensate has actually formed in past work" (1 page)

  10. Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials

    Czech Academy of Sciences Publication Activity Database

    Hamzaoui, M.; Soltani, M.; Baazouzi, M.; Tioua, B.; Ivanova, Z.G.; Lebullenger, R.; Poulain, M.; Zavadil, Jiří

    2012-01-01

    Roč. 249, č. 11 (2012), s. 2213-2221 ISSN 0370-1972 R&D Projects: GA ČR GAP106/12/2384 Institutional support: RVO:67985882 Keywords : Glasses * Rare earths * Photoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2012

  11. Organizational Learning in Rare Events

    DEFF Research Database (Denmark)

    Andersen, Kristina Vaarst; Tyler, Beverly; Beukel, Karin

    When organizations encounter rare events they often find it challenging to extract learning from the experience. We analyze opportunities for organizational learning in one such rare event, namely Intellectual Property (IP) litigation, i.e., when organizations take disputes regarding their intell......When organizations encounter rare events they often find it challenging to extract learning from the experience. We analyze opportunities for organizational learning in one such rare event, namely Intellectual Property (IP) litigation, i.e., when organizations take disputes regarding...... the organization little discretion to utilize any learning from past litigation success. Thus, learning appears be to most beneficial in infringement cases. Based on statistical analysis of 10,211 litigation court cases in China, we find support for our hypotheses. Our findings suggest that organizations can learn...

  12. Economic aspects of rare diseases.

    Science.gov (United States)

    Borski, Krzysztof

    2015-01-01

    Economic problems related to the prevention, diagnosis and treatment of rare diseases are presented paying particular attention to the costs of financing treatment, including the issue of its refund, which is a fundamental and difficult to solve economic problem of the health care system. Rare diseases, despite the low frequency of occurrence, together cover a large group of diseases being a serious medical, social and economic problem. The adoption of Polish National Plan for Rare Diseases resulting from the recommendations of the Council of the European Union, the extension of institutional activities related to the area of public health and social initiatives seeking innovative solutions to create a model of social support for patients and their families, with very high complexity of the issues regarding rare diseases, results in the need for a coherent, comprehensive, system operations and adoption of comprehensive solutions.

  13. Glass-based confined structures enabling light control

    Energy Technology Data Exchange (ETDEWEB)

    Chiappini, Andrea; Normani, Simone; Chiasera, Alessandro [IFN–CNR CSMFO Lab., and FBK Photonics Unit via alla Cascata 56/C Povo, 38123 Trento (Italy); Lukowiak, Anna [Institute of Low Temperature and Structure Research PAS, Okolna St. 2, 50-422 Wroclaw (Poland); Vasilchenko, Iustyna [IFN–CNR CSMFO Lab., and FBK Photonics Unit via alla Cascata 56/C Povo, 38123 Trento (Italy); Dipartimento di Fisica, Università di Trento, via Sommarive 14 Povo, 38123Trento (Italy); Ristic, Davor [Institut Ruđer Bošković, Bijenička cesta 54, 10000 Zagreb (Croatia); Boulard, Brigitte [IMMM, CNRS Equipe Fluorures, Université du Maine, Av. Messiaen, 72085 Le Mans cedex 9 (France); Dorosz, Dominik [Department of Power Engineering, Photonics and Lighting Technology, Bialystok University of Technology, Wiejska Street 45D, 15-351 Bialystok (Poland); Scotognella, Francesco [Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133, Milan (Italy); Politecnico di Milano, Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Vaccari, Alessandro [FBK -CMM, ARES Unit, 38123 Trento (Italy); Taccheo, Stefano [College of Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea (United Kingdom); Pelli, Stefano; Righini, Giancarlo C. [IFAC - CNR, MiPLab., 50019 Sesto Fiorentino (Italy); Museo Storico della Fisica e Centro di Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 1, 00184 Roma (Italy); Conti, Gualtiero Nunzi [IFAC - CNR, MiPLab., 50019 Sesto Fiorentino (Italy); Ramponi, Roberta [Politecnico di Milano, Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); and others

    2015-04-24

    When a luminescent ion is confined in a system characterized by one or more specific properties such as spatial size, geometrical dimension and shape, refractive index, local crystal field, cut-off vibrational energy and so on, it's possible to control its emission. The control of branching ratios as a function of the composition, the luminescence enhancement induced by a photonic crystal, or the laser action in a microresonator, are well known examples of light control. Photonic glass-based structures are extremely viable systems to exploit the above mentioned properties and in our research team we have successfully fabricated luminescent photonic structures by different techniques, including sol-gel, rf sputtering, drawing, melting, and physical vapour deposition. Here we will discuss some of them with the aim to make the reader aware of the chemical-physical properties related to each specific system. We will demonstrate that glass ceramic waveguides in some cases present superior spectroscopic properties in respect to the parent glass, that compositional properties can play a positive role in reducing luminescence quenching and in developing novel planar waveguides and fibers, that colloids allow to obtain high internal quantum efficiency and that photonic crystals, microcavities and microresonators can enable the handling of the rare earth luminescence. Finally, the pros and cons of the systems and of the different techniques employed for their fabrication will be discussed and some perspectives concerning the glass photonics will be proposed looking at both possible applications and investigation of physical properties.

  14. Glass-based confined structures enabling light control

    International Nuclear Information System (INIS)

    Chiappini, Andrea; Normani, Simone; Chiasera, Alessandro; Lukowiak, Anna; Vasilchenko, Iustyna; Ristic, Davor; Boulard, Brigitte; Dorosz, Dominik; Scotognella, Francesco; Vaccari, Alessandro; Taccheo, Stefano; Pelli, Stefano; Righini, Giancarlo C.; Conti, Gualtiero Nunzi; Ramponi, Roberta

    2015-01-01

    When a luminescent ion is confined in a system characterized by one or more specific properties such as spatial size, geometrical dimension and shape, refractive index, local crystal field, cut-off vibrational energy and so on, it's possible to control its emission. The control of branching ratios as a function of the composition, the luminescence enhancement induced by a photonic crystal, or the laser action in a microresonator, are well known examples of light control. Photonic glass-based structures are extremely viable systems to exploit the above mentioned properties and in our research team we have successfully fabricated luminescent photonic structures by different techniques, including sol-gel, rf sputtering, drawing, melting, and physical vapour deposition. Here we will discuss some of them with the aim to make the reader aware of the chemical-physical properties related to each specific system. We will demonstrate that glass ceramic waveguides in some cases present superior spectroscopic properties in respect to the parent glass, that compositional properties can play a positive role in reducing luminescence quenching and in developing novel planar waveguides and fibers, that colloids allow to obtain high internal quantum efficiency and that photonic crystals, microcavities and microresonators can enable the handling of the rare earth luminescence. Finally, the pros and cons of the systems and of the different techniques employed for their fabrication will be discussed and some perspectives concerning the glass photonics will be proposed looking at both possible applications and investigation of physical properties

  15. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  16. Rare earth industries: Downstream business

    International Nuclear Information System (INIS)

    2011-01-01

    The value chain of the rare earths business involves mining, extraction, processing, refining and the manufacture of an extensive range of downstream products which find wide applications in such industries including aerospace, consumer electronics, medical, military, automotive, renewable wind and solar energy and telecommunications. In fact the entire gamut of the high-tech industries depends on a sustainable supply of rare earths elements. The explosive demand in mobile phones is an excellent illustration of the massive potential that the rare earths business offers. In a matter of less than 20 years, the number of cell phones worldwide has reached a staggering 5 billion. Soon, going by the report of their growth in sales, the world demand for cell phones may even exceed the global population. Admittedly, the rare earths business does pose certain risks. Top among the risks are the health and safety risks. The mining, extraction and refining of rare earths produce residues and wastes which carry health and safety risks. The residues from the extraction and refining are radioactive, while their effluent waste streams do pose pollution risks to the receiving rivers and waterways. But, as clearly elaborated in a recent report by IAEA experts, there are technologies and systems available to efficiently mitigate such risks. The risks are Rare Earth manageable. However, it is crucial that the risk and waste management procedures are strictly followed and adhered to. This is where effective monitoring and surveillance throughout the life of all such rare earths facilities is crucial. Fortunately, Malaysia's regulatory standards on rare earths follow international standards. In some areas, Malaysia's regulatory regime is even more stringent than the international guidelines. (author)

  17. Rare earth metal alloy magnets

    International Nuclear Information System (INIS)

    Harris, I.R.; Evans, J.M.; Nyholm, P.S.

    1979-01-01

    This invention relates to rare earth metal alloy magnets and to methods for their production. The technique is based on the fact that rare earth metal alloys (for e.g. cerium or yttrium) which have been crumbled to form a powder by hydride formation and decomposition can be used for the fabrication of magnets without the disadvantages inherent in alloy particle size reduction by mechanical milling. (UK)

  18. Rare beauty and charm decays

    International Nuclear Information System (INIS)

    Blake, T.

    2016-01-01

    Rare beauty and charm decays can provide powerful probes of physics beyond the Standard Model. These proceedings summarise the latest measurements of rare beauty and charm decays from the LHCb experiment at the end of Run 1 of the LHC. Whilst the majority of the measurements are consistent with SM predictions, small differences are seen in the rate and angular distribution of b → sℓ"+ℓ"− decay processes.

  19. Properties Of Soda/Yttria/Silica Glasses

    Science.gov (United States)

    Angel, Paul W.; Hann, Raiford E.

    1994-01-01

    Experimental study of glass-formation compositional region of soda/ yttria/silicate system and of selected physical properties of glasses within compositional region part of continuing effort to identify glasses with high coefficients of thermal expansion and high softening temperatures, for use as coatings on superalloys and as glass-to-metal seals.

  20. Structural principles in network glasses

    International Nuclear Information System (INIS)

    Boolchand, P.

    1986-01-01

    Substantial progress in decoding the structure of network glasses has taken place in the past few years. Crucial insights into the molecular structure of glasses have emerged by application of Raman bond and Moessbauer site spectroscopy. In this context, the complimentary role of each spectroscopy as a check on the interpretation of the other, is perhaps one of the more significant developments in the field. New advances in the theory of the subject have also taken place. It is thus appropriate to inquire what general principles if any, have emerged on the structure of real glasses. The author reviews some of the principal ideas on the structure of inorganic network glasses with the aid of specific examples. (Auth.)