WorldWideScience

Sample records for rare earth-activated sr3alo4f

  1. Structures and self-activating photoluminescent properties of Sr3−xAxGaO4F (A=Ba, Ca) materials

    International Nuclear Information System (INIS)

    Green, Robert; Vogt, Thomas

    2012-01-01

    The synthesis, structures and photoluminescent properties of mixed oxyfluorides of the type Sr 3−x A x GaO 4 F are compared to Sr 3−x A x AlO 4 F (A=Ca, Ba) materials. In these compounds the F − and O 2− ions are ordered and located on two distinct crystallographic sites. When substituting Sr 2+ by Ba 2+ and Ca 2+ , we find in Sr 3−x A x GaO 4 F materials an ordering of the alkaline earth cations over the two crystallographic sites. The amount of Ba 2+ ions that can be substituted into Sr 3−x A x GaO 4 F is x≤1.2, which is slightly more than can be incorporated into the previously reported Al-analog Sr 3−x A x AlO 4 F (x=1.0). Conversely, the amount of Ca 2+ ions that can be substituted into Sr 3−x Ca x GaO 4 F (x=0.3) is significantly less than in Sr 3−x Ca x AlO 4 F (x=1.0). A post-synthesis reduction step causes these materials to exhibit self-activating broad band photoluminescence where the emitted colors vary with the amount of ions substituted into the host lattice. - Graphical abstract: TOC Statement The structures of the self-activating phosphors Sr 3−x A x MO 4 F (A=Ba, Ca and M=Al, Ga) can be rationalized as alternating layers of bond compression and elongation, which impact the photoluminescence. Highlights: ► Comparison of the structural changes in Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca) and its influence on the photoluminescence of these self-activating phosphors. ► Analysis of the Global Instability Index of the Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca). ► Comparison of the photoluminescence between the self-activating phosphors Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca).

  2. Neodymium-doped Sr5(PO4)3F and Sr5(VO4)3F

    International Nuclear Information System (INIS)

    Corker, D.L.; Nicholls, J.; Loutts, G.B.

    1995-01-01

    Neodymium-doped Sr 5 (PO 4 ) 3 F [neodymium strontium fluoride phosphate, (Nd,Sr) 5 (PO 4 ) 3 F] and neodymium-doped Sr 5 (VO 4 ) 3 F [neodymium strontium fluoride vanadate, (Nd,Sr) 5 (VO 4 ) 3 F] crystallize in space group P6 3 /m and are isostructural with calcium fluorophosphate, Ca 5 (PO 4 ) 3 F. There are two different Sr sites in Sr 5 (XO 4 ) 3 F, denoted Sr(1) and Sr(2). Using single-crystal X-ray diffraction the two structures were refined to R factors of 2.3 and 2.2%, respectively, showing that Nd is present at both Sr sites in (Sr,Nd) 5 (VO 4 ) 3 F but only at the Sr(2) site in (Sr,Nd) 5 (PO 4 ) 3 F. (orig.)

  3. Luminescent phosphors, based on rare earth substituted oxyfluorides in the A(1)3-x A(2)xMO4F family with A(1)/A(2)=Sr, Ca, Ba and M=Al, Ga

    International Nuclear Information System (INIS)

    Park, Sangmoon; Vogt, Thomas

    2009-01-01

    A new family of UV-activated phosphors made by substituting rare-earth activators such as trivalent Eu, Tb, Tm and Er into A(1) 3-x A(2) x MO 4 F host lattices (A(1)/A(2)=Sr, Ca, Ba; M=Al, Ga) are introduced and their activation and emission spectra as well as their CIE values reported. The Tm-substituted system can be activated using light with a wavelength of 360 nm. Relative intensities of a family of Tb-substituted green phosphors activated at 254 nm and with emissions centered near 548 nm are discussed.

  4. Luminescent phosphors, based on rare earth substituted oxyfluorides in the A(1){sub 3-x} A(2){sub x}MO{sub 4}F family with A(1)/A(2)=Sr, Ca, Ba and M=Al, Ga

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangmoon, E-mail: spark@silla.ac.k [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Vogt, Thomas [NanoCenter and Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29208, SC (United States)

    2009-09-15

    A new family of UV-activated phosphors made by substituting rare-earth activators such as trivalent Eu, Tb, Tm and Er into A(1){sub 3-x}A(2){sub x}MO{sub 4}F host lattices (A(1)/A(2)=Sr, Ca, Ba; M=Al, Ga) are introduced and their activation and emission spectra as well as their CIE values reported. The Tm-substituted system can be activated using light with a wavelength of 360 nm. Relative intensities of a family of Tb-substituted green phosphors activated at 254 nm and with emissions centered near 548 nm are discussed.

  5. Photoluminescent properties of LiSrxBa1-xPO4:RE3+ (RE = Sm3+, Eu3+) f-f transition phosphors

    International Nuclear Information System (INIS)

    Tu Dong; Liang Yujun; Liu Rong; Cheng Zheng; Yang Fan; Yang Wenlong

    2011-01-01

    Highlights: → Novel phosphors LiSr x Ba 1-x PO 4 : Sm 3+ and LiSr x Ba 1-x PO 4 : Eu 3+ have been synthesized by solid-state reaction method. → The LiSr x Ba 1-x PO 4 : Sm 3+ and LiSr x Ba 1-x PO 4 : Eu 3+ phosphors may be potential f-f transition phosphors used in LED. → The emission intensity of the LiSr x Ba 1-x PO 4 : Sm 3+ and LiSr x Ba 1-x PO 4 : Eu 3+ phosphors can be enhanced by increasing the value of x. - Abstract: Rare-earth ions (Sm 3+ or Eu 3+ ) doped LiSr x Ba 1-x PO 4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) f-f transition phosphor powders were prepared by a high temperature solid-state reaction. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the phase structure of the sample changes from LiBaPO 4 to LiSrPO 4 when x changes from 0 to 1.0. The excitation spectra indicate that only direct excitation of rare earth ions (Sm 3+ or Eu 3+ ) can be observed. The doped rare earth ions show their characteristic emission in LiSr x Ba 1-x PO 4 , i.e., Eu 3+5 D 0 - 7 F J (J = 0, 1, 2, 3, 4), Sm 3+4 G 5/2 → 6 H J (J = 5/2, 7/2, 9/2, 11/2), respectively. The dependence of the emission intensities of the LiSr x Ba 1-x PO 4 :Sm 3+ and LiSr x Ba 1-x PO 4 :Eu 3+ phosphors on the x value and Ln 3+ (Ln 3+ = Sm 3+ , Eu 3+ ) concentration is also investigated.

  6. Structural distortions in Sr3-xAxMO4F (A=Ca, Ba; M=Al, Ga, In) anti-Perovskites and corresponding changes in photoluminescence

    International Nuclear Information System (INIS)

    Sullivan, Eirin; Avdeev, Maxim; Vogt, Thomas

    2012-01-01

    The ordered oxyfluoride family Sr 3 − x A x MO 4 F (A=Ca, Ba and M=Al, Ga) has formed the basis of several new inorganic phosphors, and shows great potential for use in phosphor-conversion LED lamp devices. This study examines the correlation between subtle structural changes and photoluminescent behaviour in some of these materials. In order to ascertain whether cation charge compensation has any influence on structure and subsequent photoluminescent behaviour, a comparison was carried out between phases with the nominal compositions Sr 2.975 Ce 0.025 AlO 4 F and Sr 2.95 Ce 0.025 Na 0.025 AlO 4 F using structural characterisation based upon high-resolution neutron powder diffraction (NPD) data. Additionally, NPD data has been used to elucidate the role of different M cations in these materials, using Sr 2.25 Ba 0.6 Eu 0.1 M 0.95 In 0.05 O 4−α F 1−δ (M=Al, Ga) to determine the effect M cation size has on structure and photoluminescent properties. - Graphical abstract: The structure of Sr3-xAxMO4F (A=Ca, Ba and M=Al, Ga) and excitation and emission spectra for Sr 2.25 Ba 0.6 Eu 0.1 Ga 0.95 In 0.05 O 4−α F 1−δ . Highlights: ► Correlation between structural changes and photoluminescence in Sr 3−x A x MO 4 F (A=Ca, Ba, M=Al, Ga). ► Comparison of Sr 2.975 Ce 0.025 AlO 4 F and Sr 2.95 Ce 0.025 Na 0.025 AlO 4 F using high-resolution NPD. ► Study of the effect of cation charge-compensation on structure and photoluminescent behaviour. ► Examination of high-resolution NPD data for Sr 2.25 Ba 0.6 Eu 0.1 M 0.95 In 0.05 O 4−α F 1−δ (M=Al, Ga). ► Determination of the effect M cation size has on structure and photoluminescent properties.

  7. Effect of compositional variations on charge compensation of AlO4 and BO4 entities and on crystallization tendency of a rare-earth-rich aluminoborosilicate glass

    International Nuclear Information System (INIS)

    Quintas, A.; Caurant, D.; Majerus, O.; Charpentier, T.; Dussossoy, J.-L.

    2009-01-01

    This paper presents the structural and crystallization study of a rare-earth-rich aluminoborosilicate glass that is a simplified version of a new nuclear glass proven to be a potential candidate for the immobilization of highly concentrated radioactive wastes that will be produced in the future. In this work, we studied the impact of changing the nature of alkali (Li + , Na + , K + , Rb + , Cs + ) or alkaline-earth (Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ ) cations present in glass composition on glass structure (by 27 Al and 11 B nuclear magnetic resonance spectroscopy) and on its crystallization tendency during melt cooling at 1 K/min (average cooling rate during industrial process). From these composition changes, it was established that alkali cations were preferentially involved in charge compensation of (AlO 4 ) - and (BO 4 ) - entities in the glassy network comparatively to alkaline-earth cations. Whatever the nature of alkali cations, glass compositions containing calcium gave way to the crystallization of an apatite silicate phase bearing calcium and rare-earth (RE) cations (Ca 2 RE 8 (SiO 4 ) 6 O 2 , RE = Nd or La) but melt crystallization tendency during cooling strongly varied with the nature of alkaline-earth cations.

  8. Influence of rare-earth addition on microstructure and dielectric behavior of Ba0.6Sr0.4TiO3 ceramics

    International Nuclear Information System (INIS)

    Zhang Jingji; Zhai Jiwei; Chou Xiujian; Yao Xi

    2008-01-01

    Ba 0.6 Sr 0.4 TiO 3 (BST) ceramics with 0.5 mol% various trivalent rare-earth additions prepared by a solid-state route are investigated. A strong correlation is observed between the microstructure, dielectric properties and rare-earth element dopant. The results display that comparing with the lattice constants of undoped and doped rare-earth BST, the structure transforms from cubic to tetragonal structure. In addition, the dopant improves the tetragonal distortion with the ionic radius of rare earth decreasing, and then deteriorates it with further decreasing. Large ions rare-earth additions effectively suppress the grain growth of BST. It is found that the temperature-permittivity characteristics for the BSTR (R, namely, rare earth) system could be controlled using various rare-earth elements. Especially, such as Sm, Eu, Gd dopants are effective to satisfy the tunable microwave devices application due to the decrease of permittivity and the improvement of dissipation factors of BST ceramic with the accompanying high-tunability

  9. Computer modelling of defect structure and rare earth doping in LiCaAlF sub 6 and LiSrAlF sub 6

    CERN Document Server

    Amaral, J B; Valerio, M E G; Jackson, R A

    2003-01-01

    This paper describes a computational study of the mixed metal fluorides LiCaAlF sub 6 and LiSrAlF sub 6 , which have potential technological applications when doped with a range of elements, especially those from the rare earth series. Potentials are derived to represent the structure and properties of the undoped materials, then defect properties are calculated, and finally solution energies for rare earth elements are calculated, enabling preferred dopant sites and charge compensation mechanisms to be predicted.

  10. High pressure {mu}SR studies: rare earths and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Kalvius, G.M., E-mail: kalvius@ph.tum.de; Schreier, E. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Ekstroem, M.; Hartmann, O. [Uppsala University, Physics Department (Sweden); Henneberger, S., E-mail: kalvius@ph.tum.de; Kratzer, A. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Waeppling, R. [Uppsala University, Physics Department (Sweden); Martin, E., E-mail: kalvius@ph.tum.de; Burghart, F.J. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Ballou, R.; Deportes, J. [CNRS, Laboratoire Louis Neel (France); Niedermayer, Ch. [University of Constance, Faculty of Physics (Germany)

    2000-11-15

    After a short introduction to {mu}SR with respect to the study of magnetic properties, followed by a brief outline of the principle of the high pressure-low temperature {mu}SR spectrometer installed at the Paul Scherrer Institute, we discuss some measurements on rare earth materials employing this instrument. They are concerned with: (1) The pressure dependence of the spin turning process in ferromagnetic Gd. (2) The volume dependence of the internal magnetic field in the heavy rare earth metals Gd, Dy, and Ho in their ordered magnetic states. (3) The response of the (first order) magnetic transition in the frustrated antiferromagnets of type RMn{sub 2} (R = Y,Gd) to pressure. (4) The variation of magnetic parameters with pressure in La{sub 2}CuO{sub 4} (powder sample), the antiferromagnetic parent compound of the high T{sub C} superconductors of type La{sub 2-x}(Sr, Ba){sub x}CuO{sub 4}. In conclusion a short outlook on further developments is given.

  11. Rare earth octacyanomolybdates(4)

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Sergeeva, A.N.; Pisak, Yu.V.

    1980-01-01

    Optimal conditions for synthesis of rare-earth octacyanomolybdates(4) of the Ln 4 [Mo(CN) 8 ] 3 xnH 2 O composition (where Ln is a rare-earth element, other than Pr, Pm, Lu, Tb) have been worked out. The synthesis has been accomplished by neutralization with octacianomolybdic acid with rare-earth carbonates. The composition and structure of the compounds synthesized have been studied by infrared-spectroscopy. It has been established that rare-earth octacyanomolybdates(4) form three isostructural groups

  12. Combustion synthesis of Eu and Dy activated Sr3(VO4)2 phosphor ...

    Indian Academy of Sciences (India)

    phosphor as well as Sr3(VO4)2:Dy is blue and yellow emitting phosphor for solid state lighting i.e. white LEDs. The ... 2004; Pang et al 2004) doped with rare earth has expanded ... controlled since the LED light output (intensity and colour).

  13. Studies on the Ln/sub 2/O/sub 3/ (Ln: rare-earth elements)-SrO-V/sub 2/O/sub 3/ system, 1. Phase diagrams at 1400/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Shin-ike, T [Osaka Dental Coll., Hirakata (Japan); Adachi, G; Shiokawa, J

    1980-11-01

    Rare-earth oxides Ln/sub 2/O/sub 3/ (Ln : Nd, Eu or Er), strontium oxide SrO and vanadium oxide V/sub 2/O/sub 3/ were mixed in a given molecular ratio, heated at 1400/sup 0/C in vacuum. The products were examined by an x-ray diffraction method to study the phase relations of the ternary systems. On heating, part of the trivalent vanadium was oxidized to the tetravalent state by atmospheric oxygen. In this experimental condition, the following ternary-phase solid solutions were identified: perovskite type Nd sub(1-x)Sr sub(x)VO sub(3-0.1x) (x > 0.3. cubic, x < 0.3: orthorhombic) and Eu sub(1-x)Sr sub(x)VO sub(3-0.1x) (x > 0.4: cubic, x < 0.4: orthorhombic), K/sub 2/NiF/sub 4/ type SrO.Nd sub(1-x)Sr sub(x)VO sub(3-0.1x) (x > 0.3) and SrO.Eu sub(1-x)Sr sub(x)VO sub(3-0.1x) (x > 0.4) and Eu/sub 3/Ti/sub 2/O/sub 7/ type SrO.2Nd sub(1-x)Sr sub(x)VO sub(3-0.1x) (x > 0.3) and SrO.2Eu sub(1-x)Sr sub(x)VO sub(3-0.1x) (x > 0.4). For the Er/sub 2/O/sub 3/-SrO-V/sub 2/O/sub 3/ system, only a mixture of Er/sub 2/O/sub 3/, SrVO sub(2.9), ErVO/sub 3/, SrO and V/sub 2/O/sub 3/ was obtained.

  14. Fluorine-ion conductivity of different technological forms of solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (LaF{sub 3} Type ) (M = Ca, Sr, Ba; R Are Rare Earth Elements)

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, N. I., E-mail: nsorokin1@yandex.ru; Sobolev, B. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2016-05-15

    We have investigated the conductivity of some representatives of different technological forms of fluoride-conducting solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (M = Ca, Sr, Ba; R are rare earth elements) with an LaF{sub 3} structure: single crystals, cold- and hot-pressing ceramics based on a charge prepared in different ways (mechanochemical synthesis, solid-phase synthesis, and fragmentation of single crystals), polycrystalline alloys, etc. It is shown (by impedance spectroscopy), that different technological forms of identical chemical composition (R, M, y) exhibit different electrical characteristics. The maximum conductivity is observed for the single-crystal form of R{sub 1–y}M{sub y}F{sub 3–y} tysonite phases, which provides (in contrast to other technological forms) the formation of true volume ion-conducting characteristics.

  15. SUM-RULES FOR MAGNETIC DICHROISM IN RARE-EARTH 4F-PHOTOEMISSION

    NARCIS (Netherlands)

    THOLE, BT; VANDERLAAN, G

    1993-01-01

    We present new sum rules for magnetic dichroism in spin polarized photoemission from partly filled shells which give the expectation values of the orbital and spin magnetic moments and their correlations in the ground state. We apply this to the 4f photoemission of rare earths, where the

  16. SEPARATION OF TRANSURANIC ELEMENTS FROM RARE EARTH COMPOUNDS

    Science.gov (United States)

    Kohman, T.P.

    1961-11-21

    A process of separating neptunium and plutonium values from rare earths and alkaline earth fission products present on a solid mixed actinide carrier (Th or U(IV) oxalate or fluoride) --fission product carrier (LaF/sub 3/, CeF/sub 3/, SrF/sub 2/, CaF/sub 2/, YF/sub 3/, La oxalate, cerous oxalate, Sr oxalate, Ca oxalate or Y oxalate) by extraction of the actinides at elevated temperature with a solution of ammonium fluoride and/or ammonium oxalate is described. Separation of the fission-product-containing carriers from the actinide solution formed and precipitation of the neptunium and plutonium from the solution with mineral acid are also accomplished. (AEC)

  17. Magnetic interactions in rhenium-containing rare earth double perovskites Sr{sub 2}LnReO{sub 6} (Ln=rare earths)

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Atsuhide; Doi, Yoshihiro; Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp

    2017-04-15

    The perovskite-type compounds containing both rare earth and rhenium Sr{sub 2}LnReO{sub 6} (Ln=Y, Tb-Lu) have been prepared. Powder X-ray diffraction measurements and Rietveld analysis show that Ln{sup 3+} and Re{sup 5+} ions are structurally ordered at the B site of the perovskite SrBO{sub 3}. Magnetic anomalies are found in their magnetic susceptibility and specific heat measurements at 2.6–20 K for Ln=Y, Tb, Dy, Yb, Lu compounds. They are due to magnetic interactions between Re{sup 5+} ions. The results of the magnetic hysteresis and remnant magnetization measurements for Sr{sub 2}YReO{sub 6} and Sr{sub 2}LuReO{sub 6} indicate that the antiferromagnetic interactions between Re{sup 5+} ions below transition temperatures have a weak ferromagnetic component. The analysis of the magnetic specific heat data for Sr{sub 2}YbReO{sub 6} shows that both the Yb{sup 3+} and Re{sup 5+} ions magnetically order at 20 K. For the case of Sr{sub 2}DyReO{sub 6}, magnetic ordering of the Re{sup 5+} moments occurs at 93 K, and with decreasing temperature, the moments of Dy{sup 3+} ferromagnetically order at 5 K from the measurements of magnetic susceptibility and specific heat. - Graphical abstract: Crystal structure of double perovskite Sr{sub 2}LnReO{sub 6}. Red and black lines show cubic and monoclinic unit cells, respectively. - Highlights: • Double perovskites Sr{sub 2}LnReO{sub 6} (Ln=rare earths) were prepared. • They show an antiferromagnetic transition at 2.6–20 K. • In Sr{sub 2}DyReO{sub 6}, Dy and Re moments magnetically order at 5 and 93 K, respectively.

  18. Tunable luminescence in Bi{sup 3+} and Eu{sup 3+} co-doped Sr{sub 3}AlO{sub 4}F Oxyfluorides phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Minhee [Center for Green Fusion Technology and Department of Engineering in Energy & Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Cho, So-Hye [Center for Materials Architecturing, Institute of Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Park, Sangmoon, E-mail: spark@silla.ac.kr [Center for Green Fusion Technology and Department of Engineering in Energy & Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of)

    2015-05-15

    Luminescent materials composed of Sr{sub 33(m+n)/2}Bi{sub m}Eu{sub n}AlO{sub 4}F (m=0.001–0.05, n=0–0.1) were prepared by the solid-state reaction method. The excitation and emission spectra of Sr{sub 33m/2}Bi{sub m}AlO{sub 4}F (m=0.001–0.05) were investigated using photoluminescence spectroscopy; broad-band emission peaks owing to the {sup 3}P{sub 1}→{sup 1}S{sub 0} transitions of the Bi{sup 3+} activator were observed centered near 427 nm. Critical emission quenching, as a function of Bi{sup 3+} content in Sr{sub 33m/2}Bi{sub m}AlO{sub 4}F, was observed at relatively low concentrations of the activator. The quantum efficiency of Sr{sub 2.985}Bi{sub 0.01}AlO{sub 4}F in comparison with sodium salicylate was explored. When Sr{sup 2+} ions in the oxyfluoride host were replaced by Bi{sup 3+} and Eu{sup 3+} ions, the effective s{sup 2}–sp and f–f transitions of the Bi{sup 3+} and Eu{sup 3+} ions, respectively, were simultaneously observed. The diverse excitation and emission photoluminescence spectra and color CIE coordinates, as well as the blue to orange-red emission, obtained using Sr{sub 33(m+n)/2}Bi{sub m}Eu{sub n}AlO{sub 4}F (m=0–0.05, n=0–0.1) phosphors are also discussed. - Highlights: • Sr{sub 33(m+n)/2}Bi{sub m}Eu{sub n}AlO{sub 4}F (m=0.001–0.05, n=0–0.1) phosphors was prepared. • Emission owing to the {sup 3}P{sub 1}→{sup 1}S{sub 0} transitions of the Bi{sup 3+} activator was observed. • Quantum efficiency of Sr{sub 2.985}Bi{sub 0.01}AlO{sub 4}F was explored. • s{sup 2}–sp and f–f transitions of the Bi{sup 3+} and Eu{sup 3+} ions were simultaneously observed. • CIE values including the emissions from blue to red regions were achieved.

  19. Measurement of solubility of plutonium trifluoride and rare-earth fluorides in molten LiF-BeF2-ZrF4

    International Nuclear Information System (INIS)

    Naumov, V.S.; Bychkov, A.V.; Kormilitsyn, M.V.

    1996-12-01

    Data on behavior of plutonium fluoride and fission products (FP) dissolved in fuel composition are needed to calculate the duration of an operating cycle of the ADTT facility (Accelerator-Driver Transmutation Technologies) and to determine the effect of their equilibrium concentrations on nuclear-physical characteristics of reactor operation. The data on the FP fluoride solubility in the molten salts are of great important for some industrial processes (electrolytical metal deposition, development of physical-chemical mean for processes of chemical technology, etc.) As noted above, some information on this question is given in monography and articles. Data concerning fluoride salts are given in reports. However, it was impossible to make the substantial analysis of mutual solubility of fluoride melts. The primary investigation of CeF 3 and neodymium, samarium and lanthanum fluorides showed that the solubility of the melt LiF-BeF 2 and LiF-BeF 2 -ThF 4 was a linear function of reverse temperature and increases from lanthanum to samarium in the row of rare-earth elements. Disagreement in estimation of plutonium trifluoride solubility and incomplete data on the solubility of rare-earth elements prompted this study

  20. Thermochemistry of rare-earth trifluorides

    International Nuclear Information System (INIS)

    Kim, K.Y.; Johnson, C.E.

    1981-01-01

    Using the most recent crystallographic data, the Born-Lande equation was employed to calculate lattice energies of the rare-earth trifluorides. The excellent agreement ( 0 sub(f)(MX 3 ,c,298.15K) can be estimated. The magnitude of the monotonic change of ΔH 0 sub(f)(MX 3 ) for the rare-earth trihalides series (14 4f electrons) is comparable to the energy change between Sc and Ti in which only one 3d electron is added. This energy change is consistent with the chemical evidence that the electrons in the f-orbitals of rare earths contribute negligibly to the bonding. (author)

  1. Phase relations in Ca(Sr)MoO4-Ln2(NoO4)3 systems (Ln = Pr-Lu)

    International Nuclear Information System (INIS)

    Vakalyuk, V.V.; Evdokimov, A.A.; Berezina, T.A.

    1982-01-01

    Using the methods of X-ray phase and differential thermal analyses phase ratios in the systems Ca(Sr)MoO 4 -Ln 2 (MoO 4 ) 3 at Ln=Pr-Lu are studied and phase diagrams of the systems CaMoO 4 -Ln 2 (MoO 4 ) 3 , for Ln=Nd, Gd, Yb and SrMoO 4 -Sm 2 (MoO 4 ) 3 are built. It is shown that phase ratios in the systems are similar for the following groups of rare earths: Pr-Sm, Eu-Tb, Ho-Lu. In the first group of systems ordered phase over all subsolidus region are formed, in the second one - ordered phases with scheelite-like structure and wide regions of homogeneity on the basis of Ca(Sr)MoO 4 are formed above the temperature of polymorphous transformation of rare earth molybdates, for the third group of systems intermediate compounds are not detected

  2. Rare Earth-Activated Silica-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    C. Armellini

    2007-01-01

    Full Text Available Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented.

  3. Some particularities of impurity center structure in concentrated solid solutions MeF2-GdF3, where Me-Ca2+, Sr2+ and Ba2+

    International Nuclear Information System (INIS)

    Karelin, V.V.; Orlov, Yu.N.; Bozhevol'nov, V.E.; Ivanov, L.N.

    1981-01-01

    The monocrystalline CaF 2 -GdF 3 , SrF 2 -GdF 3 and BaF 2 -GdF 3 systems are studied using the methods of EPR, photo-, radio-, cathode- and thermoluminescence. It is shown that the structure of fluorite solid solutions changes considerably with the growth of the rare earth component concentration. At that, in the systems investigated at least three concentration regions can be singled out: (up to 1%; from 1 to 15%, and > 15% GdF 3 ) which are characterized by their certain selection of impurity centres [ru

  4. Structural, magnetic and electronic properties of rare earth ternary oxides Li Ln(II) 2 Ln(III)O4

    International Nuclear Information System (INIS)

    Malki, M.

    1987-06-01

    Properties of a new class of rare earth ternary oxides Li Ln(II) 2 Ln(III)O 4 where Ln(II) is a divalent metal (Sr, Eu) and Ln(III) a trivalent rare earth (Eu, Gd, Dy, Er and Y). These orthorhombic compounds (type Li Eu 3 O 4 ) allow the study of many magnetic phenomena and their evolution in function of the nature of Ln(II) and Ln(III): diamagnetic ions Sr 2+ , Y 3+ ; isotrope magnetic ions: Eu 2+ , Gd 3+ and anisotrope magnetic ions Dy 3+ , Er 3+ . Magnetic and electric properties are obtained by classical techniques and from hyperfine interaction by Moessbauer spectroscopy. The possibility to use several Moessbauer resonance (nuclei Eu 151, Gd 155, Dy 161 and Er 166) completes informations obtained by the macroscopic study [fr

  5. LiCa{sub 4}Si{sub 4}N{sub 8}F and LiSr{sub 4}Si{sub 4}N{sub 8}F. Nitridosilicate fluorides with a BCT-zeolite-type network structure

    Energy Technology Data Exchange (ETDEWEB)

    Horky, Katrin; Schnick, Wolfgang [Department of Chemistry, Inorganic Solid-State, Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, 81377, Munich (Germany)

    2017-02-17

    LiCa{sub 4}Si{sub 4}N{sub 8}F and LiSr{sub 4}Si{sub 4}N{sub 8}F were synthesized from Si{sub 3}N{sub 4}, LiNH{sub 2}, CaH{sub 2}/SrH{sub 2}, and LiF through a metathesis reaction in a radiofrequency furnace. The crystal structures of both compounds were solved and refined on the basis of single-crystal X-ray diffraction data [LiCa{sub 4}Si{sub 4}N{sub 8}F: P2{sub 1}/c (no. 14), a = 10.5108(3), b = 9.0217(3), c = 10.3574(3) Aa, β = 117.0152(10) , R{sub 1} = 0.0422, wR{sub 2} = 0.0724, Z = 4; LiSr{sub 4}Si{sub 4}N{sub 8}F: P4nc (no. 104), a = 9.3118(4), b = 9.3118(4), c = 5.5216(2) Aa, R{sub 1} = 0.0160, wR{sub 2} = 0.0388, Z = 2]. The silicate substructure of both compounds is built up of vertex-sharing SiN{sub 4} tetrahedra, thereby forming a structure analogous to the BCT zeolite with Ca{sup 2+}/Sr{sup 2+}, Li{sup +}, and F{sup -} ions filling the voids. The crystal structure of LiSr{sub 4}Si{sub 4}N{sub 8}F is homeotypic with that of Li{sub 2}Sr{sub 4}Si{sub 4}N{sub 8}O as it exhibits the same zeolite-type [SiN{sub 2}]{sup 2-} framework, but incorporates LiF instead of Li{sub 2}O. In contrast to the respective Sr compound, LiCa{sub 4}Si{sub 4}N{sub 8}F shows a distortion of the BCT-zeolite-type network as well as an additional site for F. Both F sites in LiCa{sub 4}Si{sub 4}N{sub 8}F exhibit different coordination spheres to LiSr{sub 4}Si{sub 4}N{sub 8}F. The title compounds are the first reported lithium alkaline-earth nitridosilicates containing fluorine. The crystal structures were confirmed by lattice-energy calculations (MAPLE), energy-dispersive X-ray spectroscopy (EDX) measurements, and powder X-ray diffraction. IR spectra confirmed the absence of N-H bonds. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Characterization of rare-earth doped Si 3 N4 /SiC micro/nanocomposites

    Directory of Open Access Journals (Sweden)

    Peter Tatarko

    2010-03-01

    Full Text Available Influence of various rare-earth oxide additives (La2O3, Nd2O3, Sm2O3, Y2O3, Yb2O3 and Lu2O3 on the mechanical properties of hot-pressed silicon nitride and silicon nitride/silicon carbide micro/nano-composites has been investigated. The bimodal character of microstructures was observed in all studied materials where elongated β-Si3N4 grains were embedded in the matrix of much finer Si3N4 grains. The fracture toughness values increased with decreasing ionic radius of rare-earth elements. The fracture toughness of composites was always lower than that of monoliths due to their finer Si3N4/SiC microstructures. Similarly, the hardness and bending strength values increased with decreasing ionic radius of rare-earth elements either in monoliths or composites. On the other hand, the positive influence of finer microstructure of the composites on strength was not observed due to the present defects in the form of SiC clusters and non-reacted carbon zones. Wear resistance at room temperature also increased with decreasing ionic radius of rare-earth element. Significantly improved creep resistance was observed in case either of composite materials or materials with smaller radius of RE3+.

  7. Novel and easy access to highly luminescent Eu and Tb doped ultra-small CaF2, SrF2 and BaF2 nanoparticles - structure and luminescence.

    Science.gov (United States)

    Ritter, Benjamin; Haida, Philipp; Fink, Friedrich; Krahl, Thoralf; Gawlitza, Kornelia; Rurack, Knut; Scholz, Gudrun; Kemnitz, Erhard

    2017-02-28

    A universal fast and easy access at room temperature to transparent sols of nanoscopic Eu 3+ and Tb 3+ doped CaF 2 , SrF 2 and BaF 2 particles via the fluorolytic sol-gel synthesis route is presented. Monodisperse quasi-spherical nanoparticles with sizes of 3-20 nm are obtained with up to 40% rare earth doping showing red or green luminescence. In the beginning luminescence quenching effects are only observed for the highest content, which demonstrates the unique and outstanding properties of these materials. From CaF 2 :Eu10 via SrF 2 :Eu10 to BaF 2 :Eu10 a steady increase of the luminescence intensity and lifetime occurs by a factor of ≈2; the photoluminescence quantum yield increases by 29 to 35% due to the lower phonon energy of the matrix. The fast formation process of the particles within fractions of seconds is clearly visualized by exploiting appropriate luminescence processes during the synthesis. Multiply doped particles are also available by this method. Fine tuning of the luminescence properties is achieved by variation of the Ca-to-Sr ratio. Co-doping with Ce 3+ and Tb 3+ results in a huge increase (>50 times) of the green luminescence intensity due to energy transfer Ce 3+ → Tb 3+ . In this case, the luminescence intensity is higher for CaF 2 than for SrF 2 , due to a lower spatial distance of the rare earth ions.

  8. Clear Evidence of Carcinogenic Activity by a Whole-Leaf Extract of Aloe barbadensis Miller (Aloe vera) in F344/N Rats

    Science.gov (United States)

    Boudreau, Mary D.

    2013-01-01

    Aloe barbadensis Miller (Aloe vera) is an herbal remedy promoted to treat a variety of illnesses; however, only limited data are available on the safety of this dietary supplement. Drinking water exposure of F344/N rats and B6C3F1 mice to an Aloe vera whole-leaf extract (1, 2, and 3%) for 13 weeks resulted in goblet cell hyperplasia of the large intestine in both species. Based upon this observation, 2-year drinking water studies were conducted to assess the carcinogenic potential of an Aloe vera whole-leaf extract when administered to F344/N rats (48 per sex per group) at 0.5, 1, and 1.5%, and B6C3F1 mice (48 per sex per group) at 1, 2, and 3%. Compared with controls, survival was decreased in the 1.5% dose group of female rats. Treatment-related neoplasms and nonneoplastic lesions in both species were confined primarily to the large intestine. Incidences of adenomas and/or carcinomas of the ileo-cecal and cecal-colic junction, cecum, and ascending and transverse colon were significantly higher than controls in male and female rats in the 1 and 1.5% dose groups. There were no neoplasms of the large intestine in mice or in the 0 or 0.5% dose groups of rats. Increased incidences of mucosa hyperplasia of the large intestine were observed in F344/N rats, and increased incidences of goblet cell hyperplasia of the large intestine occurred in B6C3F1 mice. These results indicate that Aloe vera whole-leaf extract is an intestinal irritant in F344/N rats and B6C3F1 mice and a carcinogen of the large intestine in F344/N rats. PMID:22968693

  9. Scintillation properties of LiF–SrF2 and LiF–CaF2 eutectic

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kawaguchi, Noriaki; Fujimoto, Yutaka; Fukuda, Kentaro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira

    2013-01-01

    Dopant free eutectic scintillators 6 LiF–SrF 2 and 6 LiF–CaF 2 were developed by the vertical Bridgeman method for the purpose of thermal neutron detection. The molar ratio of LiF and Ca/SrF 2 was 4:1 on its eutectic composition. The α-ray induced radioluminescence spectra of the scintillators showed intense emission peak at 300 nm due to the emission from the self-trapped exciton in Ca/SrF 2 layers. When the samples were irradiated with 252 Cf neutrons, 6 LiF–SrF 2 and 6 LiF–CaF 2 exhibited the light yields of 4700 and 9400 ph/n, respectively. Scintillation decay times of 6 LiF–SrF 2 and 6 LiF–CaF 2 were accepted for scintillation detectors, 90 and 250 ns, respectively. -- Highlights: • Nondoped LiF–CaF 2 and LiF–SrF 2 eutectic scinitillators are reported for the first time. • Two sample showed self-trapped exciton emission. • LiF–SrF 2 sample exhibited the light yield of 9400 ph/n and this value was comparable to conventional materials doped with rare earth ions. • Scintillation decay times of LiF–CaF 2 and LiF–SrF 2 were 250 and 90 ns, respectively

  10. Rare earth activated yttrium aluminate phosphors with modulated luminescence.

    Science.gov (United States)

    Muresan, L E; Popovici, E J; Perhaita, I; Indrea, E; Oro, J; Casan Pastor, N

    2016-06-01

    Yttrium aluminate (Y3 A5 O12 ) was doped with different rare earth ions (i.e. Gd(3+) , Ce(3+) , Eu(3+) and/or Tb(3+) ) in order to obtain phosphors (YAG:RE) with general formula,Y3-x-a Gdx REa Al5 O12 (x = 0; 1.485; 2.97 and a = 0.03). The synthesis of the phosphor samples was done using the simultaneous addition of reagents technique. This study reveals new aspects regarding the influence of different activator ions on the morpho-structural and luminescent characteristics of garnet type phosphor. All YAG:RE phosphors are well crystallized powders containing a cubic-Y3 Al5 O12 phase as major component along with monoclinic-Y4 Al2 O9 and orthorhombic-YAlO3 phases as the impurity. The crystallites dimensions of YAG:RE phosphors vary between 38 nm and 88 nm, while the unit cell slowly increase as the ionic radius of the activator increases. Under UV excitation, YAG:Ce exhibits yellow emission due to electron transition in Ce(3+) from the 5d level to the ground state levels ((2) F5/2 , (2) F7/2 ). The emission intensity of Ce(3+) is enhanced in the presence of the Tb(3+) ions and is decreased in the presence of Eu(3+) ions due to some radiative or non-radiative processes that take place between activator ions. By varying the rare earth ions, the emission colour can be modulated from green to white and red. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Rare earth activated NaY (MoO4)2 phosphors for NIR emission

    Science.gov (United States)

    Tawalare, P. K.; Bhatkar, V. B.; Talewar, R. A.; Joshi, C. P.; Moharil, S. V.

    2018-05-01

    Efficient NIR emission is reported for NaY(MoO4)2 activated with Nd3+ or Yb3+. Characteristic emission of rare earth ions is sensitized by MoO4-2 group. The excitation is in the near UV region of 350-400 nm. These phosphors could be useful for modifying the solar spectrum so as to match with the spectral response of c-Si solar cells.

  12. Energy transfer and color tunable emission in Tb3+,Eu3+ co-doped Sr3LaNa(PO4)3F phosphors.

    Science.gov (United States)

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-05

    A group of color tunable Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369nm excitation, owing to efficient energy transfer of Tb 3+ →Eu 3+ , the emission spectra both have green emission of Tb 3+ and red emission of Eu 3+ . An efficient energy transfer occur in Tb 3+ , Eu 3+ co-doped Sr 3 LaNa(PO 4 ) 3 F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb 3+ and Eu 3+ was confirmed by the variations of emission and excitation spectra and Tb 3+ /Eu 3+ decay lifetimes in Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ . The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb 3+ content by changing Eu 3+ concentrations. The results show that the prepared Tb 3+ , Eu 3+ co-doped color tunable Sr 3 LaNa(PO 4 ) 3 F phosphor can be used for white LED. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Energy transfer and color tunable emission in Tb3 +,Eu3 + co-doped Sr3LaNa(PO4)3F phosphors

    Science.gov (United States)

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-01

    A group of color tunable Sr3LaNa(PO4)3F:Tb3 +,Eu3 + phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369 nm excitation, owing to efficient energy transfer of Tb3 + → Eu3 +, the emission spectra both have green emission of Tb3 + and red emission of Eu3 +. An efficient energy transfer occur in Tb3 +, Eu3 + co-doped Sr3LaNa(PO4)3F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb3 + and Eu3 + was confirmed by the variations of emission and excitation spectra and Tb3 +/Eu3 + decay lifetimes in Sr3LaNa(PO4)3F:Tb3 +,Eu3 +. The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb3 + content by changing Eu3 + concentrations. The results show that the prepared Tb3 +, Eu3 + co-doped color tunable Sr3LaNa(PO4)3F phosphor can be used for white LED.

  14. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  15. On fluorozirconates and fluorohafnates of rare earths

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Antipov, P.I.; Novoselova, A.V.

    1980-01-01

    It has been shown by the method of X-ray phase analysis that on interaction between rare-earth fluorides and zirconium and hafnium tetrafluorides, compounds with 1:1, 1:2, 1:3 molar ratios of components are formed. Compounds of the LnHfF 4 type are prepared for all rare-earths. Fluoro-metals of the LnHf 2 F 11 composition are typical only of light lanthanides from lanthanum to neodymium, while pentafluorated salts Ln(EF 5 ) 3 are formed in the reaction between EF 4 with fluorides of heavy rare-earth elements from samarium to lutecium, as well as with yttrium trifluoride. Parameters of unit cells of heptafluohafnates and pentafluometallates are determined

  16. Structure and spectroscopy of rare earth – Doped lead phosphate glasses

    International Nuclear Information System (INIS)

    Pisarski, Wojciech A.; Żur, Lidia; Goryczka, Tomasz; Sołtys, Marta; Pisarska, Joanna

    2014-01-01

    Highlights: • Lead phosphate glasses doped with rare earth ions were prepared. • The local structure was examined using X-ray diffraction and spectroscopic methods. • Different structural phosphate groups are present in lead phosphate glasses. • The electron–phonon coupling strength and phonon energy of the glass host was determined. • Several observed emission bands are due to 4f–4f electronic transitions of rare earth ions. -- Abstract: Lead–gallium phosphate glasses doped with rare the earth ions (Eu 3+ , Dy 3+ , Tb 3+ , Er 3+ ) were synthesized. The structure of obtained glasses was examined by means of use: X-ray diffraction (XRD), nuclear magnetic resonance ( 207 Pb and 31 P NMR), fourier transform infrared (FT-IR) and Raman spectroscopy. In contrast to fully amorphous Ln-doped samples (Ln = Eu, Dy, Tb), in Er-doped sample the GaPO 4 crystalline phase was identified. It was found from the NMR, FT-IR and Raman spectroscopic techniques that, different structural phosphate groups were present in lead phosphate glasses. Based on absorption measurements, the UV–VIS cut-off wavelength for lead phosphate glass was determined and its value is close to 305 nm. Excitation and emission spectra of rare earths were also detected. From excitation spectra of Eu 3+ the electron–phonon coupling strength and phonon energy of the glass host were determined. Due to 4f 6 –4f 6 (Eu 3+ ), 4f 8 –4f 8 (Tb 3+ ), 4f 9 –4f 9 (Dy 3+ ) and 4f 11 –4f 11 (Er 3+ ) electronic transitions of trivalent rare earth ions several luminescence bands were stated

  17. Synthesis and structure of alkaline earth and rare earth metal doped C70

    International Nuclear Information System (INIS)

    Takenobu, Taishi; Iwasa, Yoshihiro; Ito, Takayoshi; Mitani, Tadaoki

    2001-01-01

    We have investigated the structure sequence of alkaline earth (A=Ba, Sr) and rare earth metal (R=Eu) doped C 70 binary system. X-ray diffraction measurements revealed that there exist at least four stable phases at x=3, 4, 6, and 9 in A x C 70 and two stable phases at x=3, and 9 in R x C 70 . Among them, structural models are presented for Ba 4 C 70 , Sr 3 C 70 , and Eu 3 C 70 . Ba 4 C 70 takes an analogous structure to orthorhombic Ba 4 C 60 . Sr 3 C 70 and Eu 3 C 70 have monoclinic cell and their diffraction patterns are quite similar to that of Sm 3 C 70 , which involves a unique C 70 -metal-C 70 dimer structure. Preliminary results of Raman spectroscopy and magnetization measurement suggest the highly reduction state for A 9 C 70 and ferromagnetic interaction for Eu x C 70

  18. Luminescent properties of Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F oxyfluorides

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangmoon, E-mail: spark@silla.ac.kr [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of)

    2012-04-15

    Effective orange Sm{sup 3+}-doped Sr{sub 2.5}Ba{sub 0.5}AlO{sub 4}F phosphors excited at 254 and 408 nm excitation were prepared by the solid-state method. The excitation and emission spectra of Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F and Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4-{alpha}}F{sub 1-{delta}} (x=0.001{approx}0.1) based on photoluminescence spectroscopy are investigated. The defects in anion-deficient Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4-{alpha}}F{sub 1-{delta}} (x=0.001, 0.01) are monitored by broad-band photoluminescence emission centered near 480 nm along with the orange emission transitions of Sm{sup 3+}. CIE values and relative luminescent intensities of Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F and Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4-{alpha}}F{sub 1-{delta}} by changing the Sm{sup 3+} content (x=0.001{approx}0.1) are discussed. - Highlights: Black-Right-Pointing-Pointer Under the excitation of 408 nm competent orange emitting Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F phosphor is initiated. Black-Right-Pointing-Pointer Sm{sup 3+}-activated oxyfluoride phosphor is quite effective to prepare white-emitting light for near-UV LED applications. Black-Right-Pointing-Pointer Defects could be visibly created in the Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}Al O{sub 4}F host lattices when Sm{sup 3+} ions are doped less than 5 mol %. Black-Right-Pointing-Pointer The gradual substitution of Sm{sup 3+} contents in oxyfluoride hosts is amenable to change CIE values and desired emitting intensity.

  19. Photoluminescence of trivalent rare earths in perovskite stacking polytypes Ba/sub 2/Lasub(2-x)REsub(x)/sup 3 +/MgW/sub 2/vacantO/sub 12/, Ba/sub 6/Ysub(2-x)REsub(x)/sup 3 +/W/sub 3/vacantO/sub 18/, and Sr/sub 8/SrGdsub(2-x)REsub(x)/sup 3 +/W/sub 4/vacantO/sub 24/

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1981-12-01

    Rhombohedral 12 L staking polytypes Ba/sub 2/Lasub(2-x)REsub(x)/sup 3 +/MgW/sub 2/vacantO/sub 12/ show with RE/sup 3 +/ = Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm; the 18 L stacking polytypes Ba/sub 6/Ysub(2-x)REsub(x)/sup 3 +/W/sub 3/vacantO/sub 18/ and the polymorphic perovskites Sr/sub 8/SrGdsub(2-x)REsub(x)/sup 3 +/W/sub 4/vacantO/sub 24/ with RE/sup 3 +/ = Sm, Eu, Dy, Ho, Er visible photoluminescence. The concentration dependence and the influence of the coordination number of the rare earth are reported.

  20. Tuning the Origin of Magnetic Relaxation by Substituting the 3d or Rare-Earth Ions into Three Isostructural Cyano-Bridged 3d-4f Heterodinuclear Compounds.

    Science.gov (United States)

    Zhang, Yan; Guo, Zhen; Xie, Shuang; Li, Hui-Li; Zhu, Wen-Hua; Liu, Li; Dong, Xun-Qing; He, Wei-Xun; Ren, Jin-Chao; Liu, Ling-Zhi; Powell, Annie K

    2015-11-02

    Three isostructural cyano-bridged 3d-4f compounds, [YFe(CN)6(hep)2(H2O)4] (1), [DyFe(CN)6(hep)2(H2O)4] (2), and [DyCo(CN)6(hep)2(H2O)4] (3), were successfully assembled by site-targeted substitution of the 3d or rare-earth ions. All compounds have been structurally characterized to display slightly distorted pentagonal-bipyramidal local coordination geometry around the rare-earth ions. Magnetic analyses revealed negligible magnetic coupling in compound 1, antiferromagnetic intradimer interaction in 2, and weak ferromagnetic coupling through dipolar-dipolar interaction in 3. Under an applied direct-current (dc) field, 1 (Hdc = 2.5 kOe, τ0 = 1.3 × 10(-7) s, and Ueff/kB = 23 K) and 3 (Hdc = 2.0 kOe, τ0 = 7.1 × 10(-11) s, and Ueff/kB = 63 K) respectively indicated magnetic relaxation behavior based on a single [Fe(III)]LS ion and a Dy(III) ion; nevertheless, 2 (Hdc = 2.0 kOe, τ0 = 9.7 × 10(-8) s, and Ueff/kB = 23 K) appeared to be a single-molecule magnet based on a cyano-bridged DyFe dimer. Compound 1, which can be regarded as a single-ion magnet of the [Fe(III)]LS ion linked to a diamagnetic Y(III) ion in a cyano-bridged heterodimer, represents one of the rarely investigated examples based on a single Fe(III) ion explored in magnetic relaxation behavior. It demonstrated that the introduction of intradimer magnetic interaction of 2 through a cyano bridge between Dy(III) and [Fe(III)]LS ions negatively affects the energy barrier and χ″(T) peak temperature compared to 3.

  1. Syntheses, crystal structures, NMR spectroscopy, and vibrational spectroscopy of Sr(PO{sub 3}F).H{sub 2}O and Sr(PO{sub 3}F)

    Energy Technology Data Exchange (ETDEWEB)

    Jantz, Stephan G.; Hoeppe, Henning A. [Lehrstuhl fuer Festkoerperchemie, Institut fuer Physik, Universitaet Augsburg (Germany); Wuellen, Leo van; Fischer, Andreas [Lehrstuhl fuer Chemische Physik und Materialwissenschaften, Institut fuer Physik, Universitaet Augsburg (Germany); Libowitzky, Eugen [Institute for Mineralogy and Crystallography, Faculty of Geosciences, Geography and Astronomy, University of Vienna (Austria); Baran, Enrique J. [Centro de Quimica Inorganica (CEQUINOR/CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (Argentina); Weil, Matthias [Institute for Chemical Technologies and Analytics, Division Structural Chemistry, Vienna University of Technology (Austria)

    2016-03-15

    Single crystals of Sr(PO{sub 3}F).H{sub 2}O {P2_1/c, Z = 4, a = 7.4844(2) Aa, b = 7.0793(2) Aa, c = 8.4265(2) Aa, β = 108.696(1) , V = 422.91(2) Aa"3, 2391 F_o"2, 70 parameters, R_1[F"2 > 2σ(F"2)] = 0.036; wR_2(F"2 all) = 0.049, S = 1.054} were grown from an aqueous solution by a metathesis reaction. The structure comprises [SrO{sub 8}] polyhedra and PO{sub 3}F tetrahedra that form a layered arrangement parallel to (100). The topotactic dehydration of this phase proceeds between 80 and 140 C to afford Sr(PO{sub 3}F). The monazite-type crystal structure of Sr(PO{sub 3}F) was elucidated from the X-ray powder data by simulated annealing [P2{sub 1}/c, Z = 4, a = 6.71689(9) Aa, b = 7.11774(11) Aa, c = 8.66997(13) Aa, β = 128.0063(7) , V = 326.605(8) Aa{sup 3}, R{sub p} = 0.010, R{sub wp} = 0.015, R{sub F} = 0.030]. During dehydration, the structure of Sr(PO{sub 3}F) .H{sub 2}O collapses along [100] from a layered arrangement into a framework structure, accompanied by a change of the coordination number of the Sr{sup 2+} ions from eight to nine. The magic-angle spinning (MAS) NMR and vibrational spectroscopy data of both phases are discussed. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Synthesis, crystal structure, and ionic conductivity of a new layered metal phosphate, Li2Sr2Al(PO4)3

    International Nuclear Information System (INIS)

    Kim, Sung-Chul; Kwak, Hyun-Jung; Yoo, Chung-Yul; Yun, Hoseop; Kim, Seung-Joo

    2016-01-01

    A new layered metal phosphate, Li 2 Sr 2 Al(PO 4 ) 3 , was synthesized in the form of either a single-crystal or polycrystalline powder using the molten hydroxide flux method or a solid-state reaction, respectively. Li 2 Sr 2 Al(PO 4 ) 3 crystallizes to the P2 1 /n (Z=4) monoclinic space group with lattice parameters a≈4.95 Å, b≈22.06 Å, c≈8.63 Å, and β≈91.5°. The structure is composed of stacked [LiSrAl(PO 4 ) 2 ] layers alternating regularly with [LiSrPO 4 ] layers. In the [LiSrAl(PO 4 ) 2 ] sublattice, the AlO 6 octahedra and PO 4 tetrahedra are tilted cooperatively to form an anionic, corrugated, two-dimensional [Al(PO 4 ) 2 ] 3− framework that can be regarded as a “distorted-glaserite” structure. The [LiSrPO 4 ] sublattice is that of a layered block containing a six-membered ring formed from alternating linkages of LiO 4 and PO 4 tetrahedra. The six-membered rings show a boat-type arrangement with the up(U) or down(D) pointing sequence, UUDUUD. The interspace between the two sublattices generates a two-dimensional pathway for Li + ion conduction. The impedance measurement indicated that Li 2 Sr 2 Al(PO 4 ) 3 had a moderate ion conductivity (σ≈1.30×10 −4 S cm −1 at 667 K), with an activation energy E a ≈1.02 eV. - Graphical abstract: Polyhedral view of Li 2 Sr 2 Al(PO 4 ) 3 . Li + ions are represented by green spheres, Sr atoms by white spheres, AlO 6 groups by octahedra, and PO 4 groups by tetrahedra. - Highlights: • New compound Li 2 Sr 2 Al(PO 4 ) 3 is reported. • The crystal structure is investigated by single-crystal XRD analysis. • The structure is formed by the alternate stacking of two different sublattices. • Correlation between the crystal structure and ionic conductivity is discussed.

  3. Crystal structures of KM(AsF6)3 (M2+ = Mg, Co, Mn, Zn), KCu(SbF6)3 and [Co(HF)2]Sr[Sr(HF)]2-[Sr(HF)2]2[AsF6]12

    International Nuclear Information System (INIS)

    Mazej, Zoran; Goreshnik, Evgeny

    2015-01-01

    The KM(AsF 6 ) 3 (M 2+ = Mg, Co, Mn, Zn) and KCu(SbF 6 ) 3 compounds crystallize isotypically to previously known KNi(AsF 6 ) 3 . The main features of the structure of these compounds are rings of MF 6 octahedra sharing apexes with AsF 6 octahedra connected into infinite tri-dimensional frameworks. In this arrangement cavities are formed where K + cations are placed. Single crystals of CoSr 5 (AsF 6 ) 12 .8HF were obtained as one of the products after the crystallization of 3KF/CoF 2 /SrF 2 mixture in the presence of AsF 5 in anhydrous HF. The CoSr 5 (AsF 6 ) 12 .8HF is monoclinic, C/2c (No.15), with a = 26.773(5) Aa, b = 10.087(2) Aa, c = 21.141(5) Aa, β = 93.296(13) circle , V = 5699.9(19) Aa 3 at 200 K, and Z = 4. There are three crystallographically non-equivalent Sr 2+ cations in the crystal structure of CoSr 5 (AsF 6 ) 12 .8HF. The Sr1 is coordinated by ten fluorine atoms from eight different [AsF 6 ]- anions, meanwhile Sr2 and Sr3 are bound to nine fluorine atoms provided by one HF and eight AsF 6 units or by two HF and six AsF 6 units, respectively. The Co 2+ is coordinated distorted-octahedrally by six fluorine atoms from two HF molecules and four different AsF 6 units. All those moieties in the crystal structure of [Co(HF) 2 ]Sr[Sr(HF)] 2 [Sr(HF) 2 ] 2 [AsF 6 ] 12 are connected into tridimensional framework. The CoSr 5 (AsF 6 ) 12 .8HF is a unique example of compound where HF molecules are directly bound via fluorine atoms to two different metal centres.

  4. Magnetic properties of 3d-transition metal and rare earth fluoride glasses

    International Nuclear Information System (INIS)

    Renard, J.P.; Dupas, C.; Velu, E.; Jacobini, C.; Fonteneau, G.; Lucas, J.

    1981-01-01

    The ac susceptibility of fluoride glasses in the ternary systems PbF 2 -MnF 2 -FeF 3 , ThF 4 -BaF 2 -MnF 2 , ZnF 2 -BaF 2 -RF 3 (R = Dy-Ho) has been studied down to 0.3 K. The susceptibility of rare earth glasses exhibits a broad maximum strongly dependent on the measuring frequency ν while a spin glass transition with a sharp susceptibility cusp nearly independent on ν is observed in 3d-transition metal glasses. Magnetic after effects are observed below the spin freezing temperature. (orig.)

  5. Blue to bluish-green tunable phosphor Sr2LiSiO4F:Ce3+,Tb3+ and efficient energy transfer for near-ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Xie, Mubiao; Zeng, Lihua; Ye, TingLi; Yang, Xi; Zhu, Xianmei; Peng, Siyun; Lei, Lei

    2014-01-01

    Ce 3+ and Tb 3+ activated Sr 2 LiSiO 4 F phosphors were prepared by a solid state reaction technique at high temperature, and their ultraviolet (UV)-visible spectroscopic properties were investigated. Under ultraviolet light excitation, Ce 3+ -doped Sr 2 LiSiO 4 F phosphors emit blue light (420 nm), while Tb 3+ -doped phosphors show yellowish green emission. Efficient energy transfer from Ce 3+ to Tb 3+ ions in co-doped samples was confirmed in terms of corresponding excitation and emission spectra. The energy transfer mechanism between Ce 3+ and Tb 3+ was discussed and demonstrated to be dipole–dipole interaction in Sr 2 LiSiO 4 F:Ce 3+ ,Tb 3+ phosphors. Due to energy transfer from Ce 3+ to Tb 3+ , Ce 3+ and Tb 3+ co-doped Sr 2 LiSiO 4 F phosphors show intense absorption in near-UV region, and present tunable emission from blue to bluish green under 360 nm light excitation. The results indicate that these phosphors can be considered as candidates for white LEDs pumped by n-UV chips. (paper)

  6. Scintillation properties of LiF–SrF{sub 2} and LiF–CaF{sub 2} eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: yanagida@lsse.kyutech.ac.jp [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196 (Japan); Kawaguchi, Noriaki [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Fujimoto, Yutaka [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196 (Japan); Fukuda, Kentaro [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira [Quantum Science and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-12-15

    Dopant free eutectic scintillators {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} were developed by the vertical Bridgeman method for the purpose of thermal neutron detection. The molar ratio of LiF and Ca/SrF{sub 2} was 4:1 on its eutectic composition. The α-ray induced radioluminescence spectra of the scintillators showed intense emission peak at 300 nm due to the emission from the self-trapped exciton in Ca/SrF{sub 2} layers. When the samples were irradiated with {sup 252}Cf neutrons, {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} exhibited the light yields of 4700 and 9400 ph/n, respectively. Scintillation decay times of {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} were accepted for scintillation detectors, 90 and 250 ns, respectively. -- Highlights: • Nondoped LiF–CaF{sub 2} and LiF–SrF{sub 2} eutectic scinitillators are reported for the first time. • Two sample showed self-trapped exciton emission. • LiF–SrF{sub 2} sample exhibited the light yield of 9400 ph/n and this value was comparable to conventional materials doped with rare earth ions. • Scintillation decay times of LiF–CaF{sub 2} and LiF–SrF{sub 2} were 250 and 90 ns, respectively.

  7. In Situ Neutron Diffraction of Rare-Earth Phosphate Proton Conductors Sr/Ca-doped LaPO4 at Elevated Temperatures

    Science.gov (United States)

    Al-Wahish, Amal; Al-Binni, Usama; Bridges, C. A.; Huq, A.; Bi, Z.; Paranthaman, M. P.; Tang, S.; Kaiser, H.; Mandrus, D.

    Acceptor-doped lanthanum orthophosphates are potential candidate electrolytes for proton ceramic fuel cells. We combined neutron powder diffraction (NPD) at elevated temperatures up to 800° C , X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) to investigate the crystal structure, defect structure, thermal stability and surface topography. NPD shows an average bond length distortion in the hydrated samples. We employed Quasi-Elastic Neutron Scattering (QENS) and electrochemical impedance spectroscopy (EIS) to study the proton dynamics of the rare-earth phosphate proton conductors 4.2% Sr/Ca-doped LaPO4. We determined the bulk diffusion and the self-diffusion coefficients. Our results show that QENS and EIS are probing fundamentally different proton diffusion processes. Supported by the U.S. Department of Energy.

  8. Photoluminescence Properties of Red-Emitting Ca3Sr3-x(PO4)4:xEu3+ Phosphors for White Light-Emitting Diodes.

    Science.gov (United States)

    Hakeem, D A; Park, K

    2015-07-01

    The photoluminescent properties of the Eu(3+)-activated Ca3Sr3(PO4)4 phosphors prepared by a solution combustion method were investigated. The excitation spectra of Ca3Sr3-x(PO4)4:xEu3+ (0.05 ≤ x ≤ 0.6) phosphors under 614 nm wavelength showed a broad band centered at 266 nm along with other peaks at 320, 362, 381, 394, 414, 464, and 534 nm. The emission spectra observed in the range of 450 to 750 nm under excitation at 394 nm were ascribed to the 5D0-7F1-4 transitions of Eu3+ ions. The Ca3Sr3-x(PO4)4:xEu3+ phosphors showed the strongest red emission at 614 nm due to the electric dipole 5DO -->7F2 transition of Eu3+. The strongest emission intensity was obtained for the Eu3+ ions of x = 0.5. The prepared Ca3Sr3-x(PO4)4:xEu3+ can be used as an efficient red phosphor for UV-based white LEDs.

  9. The electronic structure of rare-earth luminescent centre in alkaline-earth sulphides

    International Nuclear Information System (INIS)

    Zheng Qingqi; Pan Wei; Huang Maichun; He Xiaoguang

    1988-09-01

    The cluster method is used to investigate the electronic structure of rare-earth Eu 2+ and Ce 3+ doped SrS and CaS alkaline-earth sulphides in the local density theory regime. The ground state is obtained self-consistently by the DV-X α method, while the transition state theory is used to calculate the excited states. The energy difference between ground state and excited state is 2.95 eV (420 nm) for CaS:Eu is in good agreement with the experimental data of 430 nm for the absorption peak in SrS:Cu. The composition of ground state and excited state is also calculated which can give information about the EL excitation mechanism. (author). 7 refs, 4 figs, 3 tabs

  10. The F-BAR domains from srGAP1, srGAP2 and srGAP3 regulate membrane deformation differently

    Science.gov (United States)

    Coutinho-Budd, Jaeda; Ghukasyan, Vladimir; Zylka, Mark J.; Polleux, Franck

    2012-01-01

    Summary Coordination of membrane deformation and cytoskeletal dynamics lies at the heart of many biological processes critical for cell polarity, motility and morphogenesis. We have recently shown that Slit-Robo GTPase-activating protein 2 (srGAP2) regulates neuronal morphogenesis through the ability of its F-BAR domain to regulate membrane deformation and induce filopodia formation. Here, we demonstrate that the F-BAR domains of two closely related family members, srGAP1 and srGAP3 [designated F-BAR(1) and F-BAR(3), respectively] display significantly different membrane deformation properties in non-neuronal COS7 cells and in cortical neurons. F-BAR(3) induces filopodia in both cell types, though less potently than F-BAR(2), whereas F-BAR(1) prevents filopodia formation in cortical neurons and reduces plasma membrane dynamics. These three F-BAR domains can heterodimerize, and they act synergistically towards filopodia induction in COS7 cells. As measured by fluorescence recovery after photobleaching, F-BAR(2) displays faster molecular dynamics than F-BAR(3) and F-BAR(1) at the plasma membrane, which correlates well with its increased potency to induce filopodia. We also show that the molecular dynamic properties of F-BAR(2) at the membrane are partially dependent on F-Actin. Interestingly, acute phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] depletion in cells does not interfere with plasma membrane localization of F-BAR(2), which is compatible with our result showing that F-BAR(2) binds to a broad range of negatively-charged phospholipids present at the plasma membrane, including phosphatidylserine (PtdSer). Overall, our results provide novel insights into the functional diversity of the membrane deformation properties of this subclass of F-BAR-domains required for cell morphogenesis. PMID:22467852

  11. Determination of individual rare earth elements in Vietnamese monazite by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Nguyen Mong Sinh

    1993-01-01

    Radiochemical neutron activation analysis (RNAA) has been applied for determination of rare earth elements (REE) in Vietnamese monazite. The chemical separation procedure used is based on the chromatographic elution of rare earth groups, after the separation of 233 Pa(Th) in irradiated monazite samples by coprecipitation with MnO 2 , the rare earth elements were retained by Biorad AG1 x 8 resin column in 10% 15.4M HNO 3 -90% methanol solution. The elution of heavy rare earth (HREE) and middle rare earth (MREE) groups was carried out with 10% 1M HNO 3 - 90% methanol and 10% 0.05M HNO 3 -90% methanol solution, respectively; while the light rare earths (LREE) were eluted from the column by 0.1M HNO 3 solution. The accuracy of the method was checked by the analysis of granodiorite GSP-I and the rare earth values were in good agreement. (author) 7 refs.; 3 tabs

  12. Magnetic properties of rare earth oxides with perovskite structure

    International Nuclear Information System (INIS)

    Hinatsu, Yukio

    2008-01-01

    A perovskite composite oxide is represented by the general formula of ABO 3 . Cations at the B site characterize magnetic properties of the oxide. Many studies have been accumulated for transition metal elements at the B sites. In this report the studies of rare earth elements at the B sites are reviewed. In rare elements, tetravalent ions such as Ce 4+ , Pr 4+ and Tb 4+ can occupy the B sites with Ba and Sr ions at the A sites. Both the SrTbO 3 and BaTbO 3 have an orthorhombic structure and show the antiferromagnetic transition at about 33 K, which is originated from terbium ions coupled antiferromagnetically with the six neighboring terbium ions. A tetravalent praseodymium perovskite SrPrO 3 shows no existence of the magnetic ordering down to 2.0 K. This is in contrast to the result of isomorphous BaPrO 3 , which shows an antiferromagnetic transition at 11.5 K. A double perovskite structure is represented by the formula A 2 LnMO 6 (A=Ba, Sr, Ca; M=Ru, Ir). In a double perovskite compound Ba 2 PrRuO 6 , the Pr 3+ and Ru 5+ ions are arranged with regularity over the six-coordinate B sites. This compound transforms to an antiferromagnetic state below 117 K. Antiferromagnetic transition temperatures T N for isomorphous Sr and Ca show a clear tendency, T N (A=Ba)>T N (Sr)>T N (Ca), in the compounds with the same rare earth elements (Ln). The 6H-perovskite structure Ba 3 LnRu 2 O 9 consists of linkages between LnO 6 octahedra and Ru 2 O 9 dimers made from face-shared RuO 6 octahedra. The 6H-perovskite structure Ba 3 MRu 2 O 9 (M=Sc, Y, La, Nd-Gd, Dy-Lu) have the valence state of Ba 3 M 3+ Ru 2 4.5+ O 9 . The magnetic susceptibilities show a broad maximum at 135-370 K. This magnetic behavior is ascribed to the antiferromagnetic coupling between two Ru ions in a Ru 2 O 9 dimer and to the magnetic interaction between the Ru 2 O 9 dimers. (author)

  13. Electro-kinetic separation of rare earth elements using a redox-active ligand

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Huayi; Cole, Bren E.; Qiao, Yusen; Bogart, Justin A.; Cheisson, Thibault; Manor, Brian C.; Carroll, Patrick J.; Schelter, Eric J. [Department of Chemistry, University of Pennsylvania, Philadelphia, PA (United States)

    2017-10-16

    Purification of rare earth elements is challenging due to their chemical similarities. All of the deployed separation methods rely on thermodynamic properties, such as distribution equilibria in solvent extraction. Rare-earth-metal separations based on kinetic differences have not been examined. Herein, we demonstrate a new approach for rare-earth-element separations by exploiting differences in the oxidation rates within a series of rare earth compounds containing the redox-active ligand [{2-(tBuN(O))C_6H_4CH_2}{sub 3}N]{sup 3-}. Using this method, a single-step separation factor up to 261 was obtained for the separation of a 50:50 yttrium-lutetium mixture. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Rare-earth doping of high T/sub c/ superconducting perovskites

    International Nuclear Information System (INIS)

    Mc Kinnon, W.R.; Tarascon, J.M.; Greene, L.H.; Hull, G.W.

    1987-01-01

    In most superconductors, the magnetic moments of rare-earth (Re) ions interact with the conduction electrons and break the Cooper pairs, supressing or destroying superconductivity. But in the perovskite-based superconductors discovered recently, the rare-earth ions are separated from the copper and oxygen where the superconducting electrons are believed to be located. The authors study the effects of rare-earth doping in both the 40K La/sub 2-x/Sr/sub x/CuO/sub 4-y/ system and 90K YBa/sub 2/Cu/sub 3/O/sub 7-x/ system. In these materials, the RE ions only weakly affect superconductivity, and the effects we do see are more strongly correlated with changes in the volume of the crystal than with the magnetism of the rare earths

  15. Single-phased white-light-emitting Sr3NaLa(PO4)3F: Eu2+,Mn2+ phosphor via energy transfer

    International Nuclear Information System (INIS)

    Shanshan, Hu; Wanjun, Tang

    2014-01-01

    Single-phased white-light-emitting Sr 3 NaLa(PO 4 ) 3 F:Eu 2+ ,Mn 2+ phosphor is synthesized via the combustion-assisted synthesis technique. Upon excitation of 344 nm ultraviolet (UV) light, two intense broad bands have clearly been obtained due to the allowed 5d–4f transition of Eu 2+ and the forbidden 4 T 1 − 6 A 1 transition of Mn 2+ , respectively. As a result of fine-tuning of the emission composition of the Eu 2+ and Mn 2+ ions, white-light emission can be realized by combining the emission of Eu 2+ and Mn 2+ in a single host lattice under UV light excitation. The obtained phosphor exhibits a strong excitation band between 250 and 420 nm, matching well with the dominant emission band of a UV light-emitting-diode (LED) chip, which could be a promising candidate for UV-converting white-light-emitting diodes (LEDs). -- Highlights: • Single-phased Sr 3 NaLa(PO 4 ) 3 F:Eu 2+ ,Mn 2+ phosphors are synthesized. • Sr 3 NaLa(PO 4 ) 3 F:Eu 2+ ,Mn 2+ shows a blue emission band and a yellow emission band. • White-emitting can be obtained by tuning the compositions of the Eu 2+ and Mn 2+

  16. Investigation into the MgF2-NiF2, CaF2-NiF2, SrF2-NiF2 systems

    International Nuclear Information System (INIS)

    Ikrami, D.D.; Petrov, S.V.; Fedorov, P.P.; Ol'khovaya, L.A.; Luginina, A.A.; AN SSSR, Moscow. Inst. Fizicheskikh Problem; AN SSSR, Moscow. Inst. Kristallografii)

    1984-01-01

    Using the methods of differential thermal and X-ray phase analyses the systems MgF 2 -NiF 2 , CaF 2 -NiF 2 , SrF 2 -NiF 2 have been studied. In the system SrF 2 -NiF 2 the only orthorhombic compounds SrNiF 4 (a=14.43; b=3.93; c=5.66 (+-0.01 A)) is formed. SrNiF 4 density constitutes: dsub(X-ray)=4.60+-0.01 g/cm 3 , dsub(exp.)=4.60+-0.03 g/cm 3 . Refraction indices are as follows SrNiF 4 :Ng=1.500; Nsub(m)=1.497; Nsub(p)=1.479. SrNiF 4 magnetic ordering temperature Tsub(N) approximately 100 K

  17. Rare earths and actinides

    International Nuclear Information System (INIS)

    Coqblin, B.

    1982-01-01

    This paper reviews the different properties of rare-earths and actinides, either as pure metals or as in alloys or compounds. Three different cases are considered: (i) First, in the case of 'normal' rare-earths which are characterized by a valence of 3, we discuss essentially the magnetic ordering, the coexistence between superconductivity and magnetism and the properties of amorphous rare-earth systems. (ii) Second, in the case of 'anomalous' rare-earths, we distinguish between either 'intermediate-valence' systems or 'Kondo' systems. Special emphasis is given to the problems of the 'Kondo lattice' (for compounds such as CeAl 2 ,CeAl 3 or CeB 6 ) or the 'Anderson lattice' (for compounds such as TmSe). The problem of neutron diffraction in these systems is also discussed. (iii) Third, in the case of actinides, we can separate between the d-f hybridized and almost magnetic metals at the beginning of the series and the rare-earth like the metals after americium. (orig.)

  18. Determination of active oxygen content in rare earth peroxides

    International Nuclear Information System (INIS)

    Queiroz, Carlos A.S.; Abrao, Alcidio

    1993-01-01

    The content of active oxygen in rare earth peroxides have been determined after the dissolution of the samples with hydrocloridic acid in the presence of potassium iodide. The free generated iodine is titrated with sodium thiosulfate using starch as indicator. The oxidation of iodide to the free iodine indicates the presence of a higher valence state rare earth oxide, until now specifically recognized for the oxides of cerium (Ce O 2 ), praseodymium (Pr 6 O 1 1) and terbium (TB 4 O 7 ). recently the authors synthesized a new series of rare earth compounds, the peroxides. These new compounds were prepared by precipitating the rare earth elements complexed with carbonate ion by addition of hydrogen peroxide. the authors demonstrated that all rare earth elements, once solubilized by complexing with carbonate ion, are quantitatively precipitated as peroxide by addition of hydrogen peroxide. (author)

  19. Luminescence properties of Sr{sub 3-x-3y/2}M{sub x}Ce{sub y}AlO{sub 4}F (M=Ca, Ba, 0{<=}x{<=}0.9, 0.001{<=}y{<=}0.05) phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye-Min [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Park, Sangmoon, E-mail: spark@silla.ac.kr [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of)

    2012-09-15

    Luminescent materials composed of Sr{sub 3-x-3y/2}M{sub x}Ce{sub y}AlO{sub 4}F (M=Ca, Ba, 0{<=}x{<=}0.9, 0.001{<=}y{<=}0.05) were prepared by the solid-state reaction method. X-ray diffraction (XRD) patterns of the obtained oxyfluorides are exhibited for indexing peak positions. Dynamic excitation and emission spectra of the Ce{sup 3+}-activated oxyfluoride phosphors are clearly monitored. The critical emission quenching as a function of Ce{sup 3+} contents in Sr{sub 2.5-3y/2}M{sub 0.5}Ce{sub y}AlO{sub 4}F phosphors is revealed at quite low concentrations of the activator. CIE coordinates of blue and green Sr{sub 2.5-3y/2}M{sub 0.5}Ce{sub y}AlO{sub 4}F phosphors are clearly measured. The relative quantum efficiency of Sr{sub 2.4985}Ca{sub 0.5}Ce{sub 0.005}AlO{sub 4}F based on the integrated emission is determined. The Sr{sub 3-x-3y/2}M{sub x}Ce{sub y}AlO{sub 4}F phosphors excited near 410 nm light could be prominent phosphors in applications of NUV-LED. - Highlights: Black-Right-Pointing-Pointer Blue and green emitting oxyfluoride phosphors are excitated near 410 nm Black-Right-Pointing-Pointer Ce{sup 3+}-activated oxyfluoride phosphors are quite effective to prepare white light for near-UV LED applications. Black-Right-Pointing-Pointer Gradual substitution of Ce{sup 3+} content in the oxyfluoride hosts changes CIE values.

  20. Relative recoilless F-factors in REFeO{sub 3} (RE = rare-earth La, Pr, Nd and Sm) orthoferrites synthesized by self-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Morales, L.A; Sierra-Gallego, G. [Departamento de Materiales y Minerales, Facultad de Minas, Universidad Nacional de Colombia, Calle 75 # 79A-51, Bloque M17, Medellín (Colombia); Barrero, C.A. [Grupo de Estado Sólido, Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, A.A. 1226, Medellín (Colombia); Arnache, O., E-mail: oscar.arnache@udea.edu.co [Grupo de Estado Sólido, Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, A.A. 1226, Medellín (Colombia)

    2016-09-15

    Highlights: • Rare-earth orthoferrites were successfully synthesized by the self-combustion method. • The relative recoilless F-factors for REFeO{sub 3} with respect to α-Fe were calculated. • Magnetic hyperfine fields, cell volumes and Fe−O−Fe bond angles are correlated. - Abstract: In this work, rare-earth orthoferrites polycrystalline compounds REFeO{sub 3} (REFO) with RE = rare-earth La, Pr, Nd and Sm were synthesized by the self-combustion method. A direct correlation between the magnitude of the magnetic hyperfine field and the Fe−O{sub 1}−Fe bond angles was observed. From transmission Mössbauer spectra recorded at room-temperature, relative recoilless F-factors for these REFO compounds were estimated. The method applied to perform this calculation was based on the determination of two subspectral areas present in a mixture of known amounts of the compound under study and a standard sample (α-Fe). For that purpose spectra were thickness-corrected and fitted using lorentzian lines. The so obtained factors were F-{sub REFeO3} (RE = rare-earth La, Pr, Nd and Sm): 1.30 ± 0.02, 1.08 ± 0.04, 1.15 ± 0.05, 1.18 ± 0.08 respectively. The absolute recoilless factors obtained by this method had an average relative error around 11% in comparison with the values predicted by the Debye model.

  1. Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Janek, Joanna, E-mail: janek.joanna@gmail.com; Sołtys, Marta; Żur, Lidia; Pietrasik, Ewa; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-09-01

    Series of lead-free borate glasses with different oxide modifiers and lanthanide ions were prepared. The effect of oxide modifiers MO (M = Ca, Sr, Ba) on spectroscopic properties of trivalent Ln{sup 3+} (Ln = Eu, Er, Pr) were systematically investigated. Especially, the luminescence spectra of Ln{sup 3+}-doped lead-free borate glasses are presented and discussed in relation to the impact of selective components (CaO, SrO and BaO). Several spectroscopic parameters, such as the fluorescence intensity ratio R/O (Eu{sup 3+}) and measured luminescence lifetimes for the {sup 5}D{sub 0} (Eu{sup 3+}), {sup 4}I{sub 13/2} (Er{sup 3+}) and {sup 1}D{sub 2} (Pr{sup 3+}) excited states of lanthanide ions were analyzed in details. The research proved that spectroscopic properties of trivalent Ln{sup 3+} depend significantly on kind of presence oxide modifiers MO (M = Ca, Sr, Ba) in glass host matrices. - Highlights: • Luminescence of Ln{sup 3+}-doped borate glasses was presented and discussed. • Effect of glass modifiers on spectroscopic properties of rare earths was studied. • Measured luminescence lifetimes of Ln{sup 3+} (Ln = Eu, Er, Pr) were analyzed. • Luminescence intensity ratios R/O (Eu{sup 3+}) were determined.

  2. Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite

    International Nuclear Information System (INIS)

    Pahuja, Poonam; Kotnala, R.K.; Tandon, R.P.

    2014-01-01

    Highlights: • Rare earth ions Dy 3+ , Gd 3+ and Sm 3+ have been substituted in Ba 0.95 Sr 0.05 TiO 3 (BST). • Ni 0.8 Co 0.2 Fe 2 O 4 has been used as ferrimagnetic phase to obtain composites. • Substitution of these ions increases dielectric constant of BST and composites. • Magnetoelectric coefficient of composites increases on substitution of these ions. - Abstract: Effect of substitution of rare earth ions (Dy 3+ , Gd 3+ and Sm 3+ ) on various properties of Ba 0.95 Sr 0.05 TiO 3 (BST) i.e. the composition Ba 0.95−1.5x Sr 0.05 R x TiO 3 (where x = 0.00, 0.01, 0.02, 0.03 and R are rare earths Dy, Gd, Sm) and that of their multiferroic composite with Ni 0.8 Co 0.2 Fe 2 O 4 (NCF) has been studied. Shifting of peaks corresponding to different compositions in the X-ray diffraction pattern confirmed the substitution of rare earth ions at both Ba 2+ and Ti 4+ sites in BST. It is clear from scanning electron microscopy (SEM) images that rare earth substitution in BST increases its grain size in both pure and composite samples. Substitution of rare earth ions results in increase in value of dielectric constant of pure and composite samples. Sm substitution in BST significantly decreases its Curie temperature. Dy substituted pure and composite samples possess superior ferroelectric properties as confirmed by polarization vs electric field (P–E) loops. Composite samples containing Dy, Gd and Sm substituted BST as ferroelectric phase possess lower values of remanent and saturation magnetizations in comparison to composite sample containing pure BST as ferroelectric phase (BSTC). Rare earth substituted composite samples possess higher value of magnetoelectric coefficient as compared to that for BSTC

  3. Influence of rare-earth ions on fluorogallate glass formation and properties

    International Nuclear Information System (INIS)

    Zhang Guoyin; Poulain, M.J.

    1998-01-01

    Various rare earths have been incorporated in a lead fluorogallate glass with the following chemical composition: 30PbF 2 -20GaF 3 -15InF 3 -20CdF 2 -15ZnF 2 (PGICZ). Selected rare earths are La, Ce, Pr, Nd, Gd, Er, Yb and Lu, and the doping level varies between 1 and 10 mol%. The influence of rare earth fluorides on glass forming ability and on physical properties is investigated. At low concentration ( 3 in a modified PGCIZ glass have been cast. Experimental results suggest that rare earths act as modifiers rather than vitrifies in this fluorogallate system. The effect of rare earths on the values of glass transition temperature, refractive index, density and thermal expansion is reported. (orig.)

  4. Rare earth element lithogeochemistry of granitoid mineral deposits

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.P.; Fryer, B.J. (Memorial Univ. of Newfoundland, St. John' s (Canada). Dept. of Earth Sciences)

    1983-12-01

    As a monitor of the processes involved in the formation of granitoid mineral deposits the coherent group behaviour of the rare earth elements (REE) actively reflects changing fluid characteristics. For example, in the porphyry environment, magmatic-hydrothermal fluids produce potassic alteration with strong enrichment in the light rare earth elements, reflecting their high pH, low fluid/rock ratios, and the dominant role of Cl/sup -/ complexing in metal (i.e. Cu, Au) transport. With increasing fluid/rock ratios and decreasing pH accompanying the progressive involvement of meteoric fluids (and the production of propylitic, argillic, and phyllic alteration) anionic species such as F/sup -/ and CO/sub 3//sup 2 -/ become important in metal (e.g. Mo, W) transport through complexing, and their activity in the hydrothermal fluids is illustrated by mobilization of the heavy rare earth elements. The relative involvement of Cl/sup -/ versus F/sup -/ versus CO/sub 3//sup 2 -/ in metal transport in other granite-related systems can also be monitored through REE behaviour. Hence granitoid tin-tungsten mineralization and associated greisenization typically exhibit heavy rare earth enrichment and evidence the importance of F/sup -/ and CO/sub 3//sup 2 -/ in metal transport. Similarly, heavy rare earth element enrichment in hydrothermal uranium deposits can be related to the transport of uranium as carbonate complexes. REE are widely accepted as powerful tools in the study of rock petrogenesis, but their use has been neglected in the investigation of mineral deposits. The recognition of the systematic variation of REE distributions in granitoid mineral deposits suggests that the application of REE geochemistry, particularly when integrated with fluid inclusion and isotope studies, can provide l) an effective method for identifying the physiochemical controls of metal transport and 2) a useful criterion of elucidating metal distribution.

  5. Rare earth element lithogeochemistry of granitoid mineral deposits

    International Nuclear Information System (INIS)

    Taylor, R.P.; Fryer, B.J.

    1983-01-01

    As a monitor of the processes involved in the formation of granitoid mineral deposits the coherent group behaviour of the rare earth elements (REE) actively reflects changing fluid characteristics. For example, in the porphyry environment, magmatic-hydrothermal fluids produce potassic alteration with strong enrichment in the light rare earth elements, reflecting their high pH, low fluid/rock ratios, and the dominant role of Cl - complexing in metal (i.e. Cu, Au) transport. With increasing fluid/rock ratios and decreasing pH accompanying the progressive involvement of meteoric fluids (and the production of propylitic, argillic, and phyllic alteration) anionic species such as F - and CO 3 2- become important in metal (e.g. Mo, W) transport through complexing, and their activity in the hydrothermal fluids is illustrated by mobilization of the heavy rare earth elements. The relative involvement of Cl - versus F - versus CO 3 2- in metal transport in other granite-related systems can also be monitored through REE behaviour. Hence granitoid tin-tungsten mineralization and associated greisenization typically exhibit heavy rare earth enrichment and evidence the importance of F - and CO 3 2- in metal transport. Similarly, heavy rare earth element enrichment in hydrothermal uranium deposits can be related to the transport of uranium as carbonate complexes. REE are widely accepted as powerful tools in the study of rock petrogenesis, but their use has been neglected in the investigation of mineral deposits. The recognition of the systematic variation of REE distributions in granitoid mineral deposits suggests that the application of REE geochemistry, particularly when integrated with fluid inclusion and isotope studies, can provide l) an effective method for identifying the physiochemical controls of metal transport and 2) a useful criterion of elucidating metal distribution

  6. Hexagonal perovskites with cationic vacancies. 32. Photoluminescence of trivalent rare earth in the systems Ba/sub 2-y/Sr/sub y/La/sub 2-x/RE/sub x/MgW/sub 2/vacantO/sub 12/

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1982-06-01

    In the series Ba/sub 2-y/Sr/sub y/La/sub 2-x/RE/sub x/MgW/sub 2/vacantO/sub 12/ the Ba/sup 2 +/ can be completely substituted by Sr/sup 2 +/. All compounds crystallize in the rhombohedral 12 L-type (space group R-3m; sequence (hhcc)/sub 3/). By doping the stacking polytypes with some of the trivalent rare earths efficient visible photoluminescence is obtained. The simultaneous incorporation of two different rare earth ions leads to two-color-phosphors, which, according to the excitation energy used, emit either mainly the typical spectrum from one or the other activator; the corresponding luminescence mechanism are discussed.

  7. Recovery and separation of rare-earth elements, barium, and strontium from bastnasite with sulfuric acid

    International Nuclear Information System (INIS)

    Eisele, J.A.; Bauer, D.J.

    1974-01-01

    A bench-scale investigation was made of a concentrated H 2 SO 4 reaction for recovering and separating rare earth elements, barium, and strontium from a bastnaesite ore and byproduct. Barium and strontium were dissolved in the concentrated acid and precipitated as a mixed product by water dilution. Separation of strontium from barium was effected by reaction with Na 2 CO 3 solution, followed by a dilute acid leach of the SrCO 3 formed. After removing the barium and strontium from bastnaesite ore, the rare-earth elements were roasted to water-soluble sulfates. The rare earth sulfate solution was subsequently processed by solvent extraction to produce rare-earth oxides low in lead and magnesium. (U.S.)

  8. Bistable luminescence of trivalent rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Sole, Jose Garcia; Ramirez O, Maria de la; Rodenas, Airan; Jaque, Daniel; Bausa, Luisa; Bettinelli, Marco; Speghini, Adolfo; Cavalli, Enrico; Ivleva, Lioudmila

    2006-01-01

    In this work, we have examined three new bistable systems based on the luminescence of three different crystals activated with trivalent rare earth ions. We have focussed our attention on Yb 3+ ions activators, for which the most relevant results are obtained. The first crystal, Sr 0.6 Ba 0.4 Nb 2 O 6 , is a ferroelectric material with a relatively low phase transition temperature (∼370 K), which provides bistability in the luminescence of Yb 3+ ions due to the thermal hysteresis associated with phase transition. The second crystal, LiNbO 3 , provides an intrinsic bistability in the luminescence of Yb 3+ ions, which is driven by changes in the excitation intensity. In the third crystal, NdPO 4 , a new mechanism of excitation intensity driven bistability is obtained when activated with Yb 3+ ions, due to a interplay between the Nd 3+ ↔Yb 3+ energy transfer and back transfer processes

  9. Study on luminescence and thermal stability of blue-emitting Sr_5(PO_4)_3F: Eu"2"+phosphor for application in InGaN-based LEDs

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Zhi-Ming; Wu, Zhan-Chao; Wang, Fang-Fang; Li, Zhen-Jiang

    2017-01-01

    Highlights: • A blue phosphor Sr_5(PO_4)_3F: Eu"2"+ was prepared at low temperature of 800 °C. • The broad excitation band of the phosphor matches well with NUV LED chips. • The phosphor shows high color purity and good color stability. • A bright blue-emitting LED was fabricated with this phosphor on an InGaN chip. - Abstract: A series of blue-emitting phosphors Sr_5(PO_4)_3F: Eu"2"+ were synthesized by traditional high temperature solid-state reaction method. The micro-morphology and photoluminescence properties of the phosphors were investigated. The Sr_5(PO_4)_3F: Eu"2"+ phosphors exhibit broad excitation spectra ranging from 250 to 420 nm, and an intense asymmetric blue emission band peaking at 435 nm. Two different Eu"2"+ emission centers in Sr_5(PO_4)_3F: Eu"2"+ phosphors were confirmed via their fluorescence properties. The concentration quenching mechanism, fluorescence lifetime and thermal stability of Sr_5(PO_4)_3F: Eu"2"+ phosphors were studied in detail. The thermal stability can be improved obviously by anion substitution. The CIE chromaticity coordinates of Sr_5(PO_4)_3F: Eu"2"+ phosphors with different Eu"2"+-doped concentrations were calculated. A blue light-emitting diode was fabricated by combination of a 370 nm InGaN chip and the prepared phosphor Sr_5(PO_4)_3F: Eu"2"+. The present work suggests that Sr_5(PO_4)_3F: Eu"2"+ is a potential phosphor applied in InGaN-based LEDs.

  10. Activation analysis of rare-earth elements in opium and cannabis samples

    International Nuclear Information System (INIS)

    Henke, G.

    1977-01-01

    Rare-earth concentrations in 65 Opium, Cannabis and Cannabis resin samples seized from various parts of the world were determined by destructive NAA. Because of the greater concentrations of Ca, P, K, Fe, Na and Si in plant materials, rare-earth elements were isolated after neutron irradiation and determined by gamma-spectrometry. The main steps of the method are: Preashing of 1 g Cannabis resin, 2.5 g Cannabis or 7.5 g Opium, respectively, in quartz ampoules (5 h, 500 deg C). Neutron irradiation, 24 h at 5x10 13 n cm -2 sec -1 . Cooling period 2-3 days. After addition of 0.1 μCi 139 Ce and rare-earth carriers wet ashing of irradiated samples with H 2 SO 4 /HNO 3 , followed by alternate addition of HNO 3 and H 2 O 2 (30%). Precipitation and removal of silicates, precipitation of fluorides, precipitation of hydroxides. Dissolution of hydroxides in HCl. Extraction with di-(2-ethylhexyl)phosphate (DEHP)/toluene and twice back-extraction of rare earths, gamma-spectrometry of HCl phase. Due to sample activity and half-life of nuclides, three measurements were made on each sample: 2 days (for La, Sm, Gd, Ho, Er, Yb); 14 days (for Nd, Lu) and 30 days after irradiation (for Ce, Eu, Tb). Great variations in absolute element concentrations, but only small significant differences of rare earth concentration ratios were found, indicating inconsiderable biogeochemical fractionation. The mean values of these ratios correspond to the relative abundances of the rare earths in the upper continental earth's crust. (T.G.)

  11. Energies of rare-earth ion states relative to host bands in optical materials from electron photoemission spectroscopy

    Science.gov (United States)

    Thiel, Charles Warren

    There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence

  12. Tunable blue-green color emitting phosphors Sr{sub 3}YNa(PO{sub 4}){sub 3}F:Eu{sup 2+}, Tb{sup 3+} based on energy transfer for near-UV white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yahong, E-mail: yhjin@gdut.edu.cn; Lv, Yang; Hu, Yihua, E-mail: huyh@gdut.edu.cn; Chen, Li; Ju, Guifang; Mu, Zhongfei

    2017-05-15

    A series of Eu{sup 2+} and Tb{sup 3+} doped Sr{sub 3}YNa(PO{sub 4}){sub 3}F phosphors have been synthesized via a high temperature solid state reaction method. Eu{sup 2+} activated Sr{sub 3}YNa(PO{sub 4}){sub 3}F phosphors can be efficiently excited by light in the range of 220–420 nm, which matches well with the commercial n-UV LEDs, and show intense blue emission centered at 456 nm. The optimal doping concentration of Eu{sup 2+} is determined to be 1 mol%. The concentration quenching mechanism of Eu{sup 2+} in SYNPF host is mainly attributed to the dipole-dipole interaction. Energy transfer from Eu{sup 2+} to Tb{sup 3+} is observed when Eu{sup 2+} and Tb{sup 3+} are co-doped into Sr{sub 3}YNa(PO{sub 4}){sub 3}F host. Under excitation of 380 nm, the emission color can be varied from blue to green along with the increase of Tb{sup 3+} doping concentration. Based on decay curves, the energy transfer from the Eu{sup 2+} to Tb{sup 3+} ions is demonstrated to be a dipole–dipole mechanism. According to thermal quenching study by yoyo experiments of heating-cooling, Sr{sub 3}YNa(PO{sub 4}){sub 3}F:Eu{sup 2+}, Tb{sup 3+} shows good thermal stability. The thermal quenching mechanism is also discussed. The results indicate that as-prepared samples might be of potential application in w-LEDs.

  13. Studies on the Ln/sub 2/O/sub 3/ (Ln: rare-earth elements)-SrO-V/sub 2/O/sub 3/ system, 2. Some physical properties for Ln sub(1-x)Sr sub(x)VO sub(3-0. 1x) and SrO. Ln sub(1-x)Sr sub(x)VO sub(3-0. 1x) (Ln: Nd or Eu)

    Energy Technology Data Exchange (ETDEWEB)

    Shin-ike, T [Osaka Dental Coll., Hirakata (Japan); Adachi, G; Shiokawa, J

    1981-01-01

    Electrical and magnetic properties of the perovskite type solid solutions, Ln sub(1-x)Sr sub(x)VO sub(3-0.1x) (Ln: Nd or Eu), and the K/sub 2/NiF/sub 4/ type solid solutions, SrO.Ln sub(1-x)Sr sub(x)VO sub(3-0.1x) (Ln: Nd or Eu), were studied in the temperature range 77 - 300 K. The electrical conductivity increased with x for the perovskite type solid solutions and the reverse behavior was observed for the K/sub 2/NiF/sub 4/ type compounds. All the solid solutions examined exhibited a metal-insulator transition at some values of x. Both Nd sub(1-x)Sr sub(x)VO sub(3-0.1x) and Eu sub(1-x)Sr sub(x)VO sub(3-0.1x) were antiferromagnets having a weak ferromagnetism at a low value of x at a low temperature. The K/sub 2/NiF/sub 4/ type solid solutions revealed a weak ferromagnetism at a high value of x at a low temperature.

  14. Crystal growth and electronic structure of low-temperature phase SrMgF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, Victor V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Functional Electronics Laboratory, Tomsk State University, Tomsk 634050 (Russian Federation); Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Goloshumova, Alina A. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090 (Russian Federation); Isaenko, Ludmila I. [Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090 (Russian Federation); Jiang, Xingxing [BCCRD, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Lobanov, Sergey I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090 (Russian Federation); Zhang, Zhaoming [Australian Nuclear Science & Technology Organisation, Lucas Heights, NSW 2234 (Australia); Lin, Zheshuai, E-mail: zslin@mail.ipc.ac.cn [BCCRD, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-04-15

    Using the vertical Bridgman method, the single crystal of low temperature phase SrMgF{sub 4} is obtained. The crystal is in a very good optical quality with the size of 10×7×5 mm{sup 3}. Detailed photoemission spectra of the element core levels are determined by a monochromatic AlKa (1486.6 eV) X-ray source. Moreover, the first-principles calculations are performed to investigate the electronic structure of SrMgF{sub 4}. A good agreement between experimental and calculated results is achieved. It is demonstrated that almost all the electronic orbitals are strongly localized and the hybridization with the others is very small, but the Mg–F bonds covalency is relatively stronger than that of Sr–F bonds. - Graphical abstract: Large size of low-temperature phase SrMgF{sub 4} crystal was obtained (right) and its electronic structure was investigated by X-ray photoelectron spectroscopy and first-principles calculation (left). - Highlights: • Large size single crystal of low-temperature phase SrMgF{sub 4} is obtained. • Electronic structure of SrMgF{sub 4} is measured by X-ray photoelectron spectroscopy. • Partial densities of states are determined by first-principles calculation. • Good agreement between experimental and calculated results is achieved. • Strong ionic characteristics of chemical bonds are exhibited in SrMgF{sub 4}.

  15. High-precision, systematic study of hyperfine structure in the 4f/sup N/6s2 configuration of the neutral rare earths

    International Nuclear Information System (INIS)

    Childs, W.J.; Goodman, L.S.; Pfeufer, V.

    1983-01-01

    Although the hyperfine structure (hfs) of many-electron atoms has been studied intensively in recent years, it is still difficult to distinguish between the competing effects of relativity and configuration interaction. The 4f/sup N/6s 2 configuration of the neutral rare earths is of particular interest because (a) the low-lying terms are relatively free of configuration interaction, and (b) trends can be examined systematically as one proceeds through the long 4f-shell. The procedure is to deduce, from the measured hfs constants of low levels, the underlying hyperfine radial integrals for comparison with ab initio predictions. Since some of these integrals are extremely sensitive to any configuration interaction and others are not, it is possible to determine both the extent and type of configuration interaction present in some cases. Prior to the start of the present research no precise hfs information existed for the entire second half of the 4f shell of the rare earths. The present measurements were designed both to provide such data and to make possible a systematic study of the hfs throughout the 4f shell. The atomic-beam, laser-rf, double-resonance method was used for the measurements. With this technique, the occurrence of a radiofrequency transition between atomic hfs levels is detected by noting an increase in the laser-induced fluorescence

  16. Sol–gel glass-ceramics comprising rare-earth doped SnO2 and LaF3 nanocrystals: an efficient simultaneous UV and IR to visible converter

    International Nuclear Information System (INIS)

    Yanes, A. C.; Castillo, J. del; Méndez-Ramos, J.; Rodríguez, V. D.

    2011-01-01

    We report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO 2 semiconductor nanocrystal (quantum dot), and LaF 3 , presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO 2 quantum dot and subsequent efficient energy transfer to Eu 3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb 3+ –Er 3+ partitioned into low phonon LaF 3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.Graphical AbstractWe report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO 2 semiconductor nanocrystal (quantum dot) and LaF 3 , presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO 2 quantum dot and subsequent efficient energy transfer to Eu 3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb 3+ –Er 3+ partitioned into low phonon LaF 3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.

  17. Reversible white-purple photochromism in europium doped Sr{sub 3}GdLi(PO{sub 4}){sub 3}F powders

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yang; Jin, Yahong, E-mail: yhjin@gdut.edu.cn; Wang, Chuanlong; Ju, Guifang; Xue, Feihong; Hu, Yihua, E-mail: huyh@gdut.edu.cn

    2017-06-15

    Inorganic photochromic materials have attracted growing attention in recent years. Here, a reversible white-purple photochromic powder material Sr{sub 3}GdLi(PO{sub 4}){sub 3}F:Eu{sup 2+} was synthesized by conventional solid-state method. The surface color shows reversible white-purple changes after irradiated alternatively by UV and visible light (or thermal treat). Diffuse reflectance spectra were used to characterize the photochromic properties including coloring and bleaching. The results indicated that the optimal Eu{sup 2+} doping concentration was found to be about 0.5 mol%. Several cycles measurements including photo- and thermal-induced bleaching indicates that Sr{sub 3}GdLi(PO{sub 4}){sub 3}F:Eu{sup 2+} posses high fatigue resistance in photochromism performance. Based on thermoluminescence curves, the photochromism property related factors that the critical role of traps and the motion of charge carriers between traps were discussed. Finally, a schematic diagram for illustrating the photochromic mechanism was proposed.

  18. Bioleaching of rare earth elements from monazite sand.

    Science.gov (United States)

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance. © 2015 Wiley Periodicals, Inc.

  19. Resonance electronic Raman scattering in rare earth crystals

    International Nuclear Information System (INIS)

    Williams, G.M.

    1988-01-01

    The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce 3+ (4f 1 ) in single crystals of LuPO 4 and Er 3+ (4f 11 ) in single crystals of ErPO 4 . 134 refs., 92 figs., 33 tabs

  20. Magnetism in rare-earth metals and rare-earth intermetallic compounds

    International Nuclear Information System (INIS)

    Johansson, B.; Nordstroem, L.; Eriksson, O.; Brooks, M.S.S.

    1991-01-01

    Some of out recent local spin density electronic structure calculations for a number of ferromagnetic rare-earth systems are reviewed. A simplified model of the level densities for rare-earth (R) transition metal (M) intermetallic compounds, R m M n , is used to describe in a simple way the main features of their basic electronic structure. Explicit calculations for LuFe 2 and RFe 2 (R=Gd-Yb) systems are presented, where a method to treat simultaneously the localized 4f and the conduction electron spin magnetism is introduced. Thereby it becomes possible to calculate the K RM exchange coupling constant. This method is also used to study theoretically the permanent magnet material Nd 2 Fe 14 B. The electronic structure of the anomalous ferromagnets CeFe 2 and CeCo 5 is discussed and an induced 4f itinerant magnetism is predicted. The γ-α transition in cerium metal is considered, and results from calculations including orbital polarization are presented, where a volume collapse of 10% is obtained. On one side of the transition the 4f electrons are calculated to be essentially non-bonding (localized) and on the other side they are found to contribute to the metallic bonding and this difference in behaviour gives rise to the volume collapse. Recent calculations by Wills, Eriksson and Boring for the crystal structure changes in cerium metal under high pressure are discussed. Their successful results imply an itinerant picture for the 4f electrons in α-cerium. Consequently this strongly supports the view that the γ-α phase transformation is caused by a Mott transition of the 4f electrons. (orig.)

  1. A major light rare-earth element (LREE) resource in the Khanneshin carbonatite complex, southern Afghanistan

    Science.gov (United States)

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Horton, Forrest; Buttleman, Kim; Scott, Emily R.

    2012-01-01

    The rapid rise in world demand for the rare-earth elements (REEs) has expanded the search for new REE resources. We document two types of light rare-earth element (LREE)-enriched rocks in the Khanneshin carbonatite complex of southern Afghanistan: type 1 concordant seams of khanneshite-(Ce), synchysite-(Ce), and parisite-(Ce) within banded barite-strontianite alvikite, and type 2 igneous dikes of coarse-grained carbonatite, enriched in fluorine or phosphorus, containing idiomorphic crystals of khanneshite-(Ce) or carbocernaite. Type 1 mineralized barite-strontianite alvikite averages 22.25 wt % BaO, 4.27 wt % SrO, and 3.25 wt % ∑ LREE2O3 (sum of La, Ce, Pr, and Nd oxides). Type 2 igneous dikes average 14.51 wt % BaO, 5.96 wt % SrO, and 3.77 wt % ∑ LREE2O3. A magmatic origin is clearly indicated for the type 2 LREE-enriched dikes, and type 1 LREE mineralization probably formed in the presence of LREE-rich hydrothermal fluid. Both types of LREE mineralization may be penecontemporaneous, having formed in a carbonate-rich magma in the marginal zone of the central vent, highly charged with volatile constituents (i.e., CO2, F, P2O5), and strongly enriched in Ba, Sr, and the LREE. Based on several assumptions, and employing simple geometry for the zone of LREE enrichment, we estimate that at least 1.29 Mt (million metric tonnes) of LREE2O3 is present in this part of the Khanneshin carbonatite complex.

  2. Effect of rare-earth additions on the structure and dielectric energy storage properties of Ba{sub x}Sr{sub 1-x}TiO{sub 3}-based barium boronaluminosilicate glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Xiu, Shaomei; Xiao, Shi; Zhang, Wenqin; Xue, Shuangxi; Shen, Bo, E-mail: shenbo@tongji.edu.cn; Zhai, Jiwei, E-mail: apzhai@tongji.edu.cn

    2016-06-15

    Ba{sub x}Sr{sub 1-x}TiO{sub 3}-based barium boroaluminosilicate (BST-BBAS) glass-ceramics added with La{sub 2}O{sub 3}, Gd{sub 2}O{sub 3} and Yb{sub 2}O{sub 3} were fabricated through the melting method followed by controlled crystallization, respectively. The X-ray diffraction and the field emission scanning electron microscopy were investigated the phase composition and microstructure for the BST-BBAS glass-ceramics added with rare-earth additions, then the temperature-dependent dielectric properties and the voltage-withstand measurements were applied to study the effect of rare-earth additions on the dielectric energy storage density. These results show that the certain content of rare-earth additions can optimize the microstructure and phase structure effectively. And with the decrease of ionic radiuses of rare-earth elements, the microstructure of the glass-ceramics become more uniform. When added with 0.5 mol% Yb{sup 3+}, the theoretical energy storage density of the BST-BBAS glass-ceramics gets the largest value of 3.5 J/cm{sup 3} which is about 1.8 times compared to the undoped one. - Highlights: • A certain content of Yb{sub 2}O{sub 3} can restrain the formation of BaSi{sub 2}O{sub 5}and SiO{sub 2} phases. • The addition of rare earth can optimize the microstructure. • With 0.5 mol% Yb{sup 3+}, the dielectric energy storage density got the largest value of 3.5 J/cm{sup 3}.

  3. Longitudinal conductivity of LaF3/SrF2 multilayer heterostructures.

    Science.gov (United States)

    Vergentev, Tikhon; Banshchikov, Alexander; Filimonov, Alexey; Koroleva, Ekaterina; Sokolov, Nikolay; Wurz, Marc Christopher

    2016-01-01

    LaF 3 /SrF 2 multilayer heterostructures with thicknesses of individual layers in the range 5-100 nm have been grown on MgO(100) substrates using molecular beam epitaxy. The longitudinal conductivity of the films has been measured using impedance spectroscopy in the frequency range 10 -1 -10 6  Hz and a temperature range 300-570 K. The ionic DC conductivities have been determined from Nyquist impedance diagrams and activation energies from the Arrhenius-Frenkel equation. An increase of the DC conductivity has been observed to accompany decreased layer thickness for various thicknesses as small as 25 nm. The greatest conductivity has been shown for a multilayer heterostructure having thicknesses of 25 nm per layer. The structure has a conductivity two orders of magnitude greater than pure LaF 3 bulk material. The increasing conductivity can be understood as a redistribution of charge carriers through the interface due to differing chemical potentials of the materials, by strong lattice-constant mismatch, and/or by formation of a solid La 1-x Sr x F 3-x solution at the interface during the growth process.

  4. Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties.

    Science.gov (United States)

    Li, Haifeng; Zhao, Ran; Jia, Yonglei; Sun, Wenzhi; Fu, Jipeng; Jiang, Lihong; Zhang, Su; Pang, Ran; Li, Chengyu

    2014-03-12

    A series of novel red-emitting Sr1.7Zn0.3CeO4:Eu(3+) phosphors were synthesized through conventional solid-state reactions. The powder X-ray diffraction patterns and Rietveld refinement verified the similar phase of Sr1.7Zn0.3CeO4:Eu(3+) to that of Sr2CeO4. The photoluminescence spectrum exhibits that peak located at 614 nm ((5)D0-(7)F2) dominates the emission of Sr1.7Zn0.3CeO4:Eu(3+) phosphors. Because there are two regions in the excitation spectrum originating from the overlap of the Ce(4+)-O(2-) and Eu(3+)-O(2-) charge-transfer state band from 200 to 440 nm, and from the intra-4f transitions at 395 and 467 nm, the Sr1.7Zn0.3CeO4:Eu(3+) phosphors can be well excited by the near-UV light. The investigation of the concentration quenching behavior, luminescence decay curves, and lifetime implies that the dominant mechanism type leading to concentration quenching is the energy transfer among the nearest neighbor or next nearest neighbor activators. The discussion about the dependence of photoluminescence spectra on temperature shows the better thermal quenching properties of Sr1.7Zn0.3CeO4:0.3Eu(3+) than that of Sr2CeO4:Eu(3+). The experimental data indicates that Sr1.7Zn0.3CeO4:Eu(3+) phosphors have the potential as red phosphors for white light-emitting diodes.

  5. Quantum Theory of Rare-Earth Magnets

    Science.gov (United States)

    Miyake, Takashi; Akai, Hisazumi

    2018-04-01

    Strong permanent magnets mainly consist of rare earths (R) and transition metals (T). The main phase of the neodymium magnet, which is the strongest magnet, is Nd2Fe14B. Sm2Fe17N3 is another magnet compound having excellent magnetic properties comparable to those of Nd2Fe14B. Their large saturation magnetization, strong magnetocrystalline anisotropy, and high Curie temperature originate from the interaction between the T-3d electrons and R-4f electrons. This article discusses the magnetism of rare-earth magnet compounds. The basic theory and first-principles calculation approaches for quantitative description of the magnetic properties are presented, together with applications to typical compounds such as Nd2Fe14B, Sm2Fe17N3, and the recently synthesized NdFe12N.

  6. Crystal structures of KM(AsF{sub 6}){sub 3} (M{sup 2+} = Mg, Co, Mn, Zn), KCu(SbF{sub 6}){sub 3} and [Co(HF){sub 2}]Sr[Sr(HF)]{sub 2}-[Sr(HF){sub 2}]{sub 2}[AsF{sub 6}]{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Mazej, Zoran; Goreshnik, Evgeny [Jozef Stefan Institute, Ljubljana (Slovakia). Dept. of Inorganic Chemisrty and Technology

    2015-05-01

    The KM(AsF{sub 6}){sub 3} (M{sup 2+} = Mg, Co, Mn, Zn) and KCu(SbF{sub 6}){sub 3} compounds crystallize isotypically to previously known KNi(AsF{sub 6}){sub 3}. The main features of the structure of these compounds are rings of MF{sub 6} octahedra sharing apexes with AsF{sub 6} octahedra connected into infinite tri-dimensional frameworks. In this arrangement cavities are formed where K{sup +} cations are placed. Single crystals of CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF were obtained as one of the products after the crystallization of 3KF/CoF{sub 2}/SrF{sub 2} mixture in the presence of AsF{sub 5} in anhydrous HF. The CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF is monoclinic, C/2c (No.15), with a = 26.773(5) Aa, b = 10.087(2) Aa, c = 21.141(5) Aa, β = 93.296(13) {sup circle}, V = 5699.9(19) Aa{sup 3} at 200 K, and Z = 4. There are three crystallographically non-equivalent Sr{sup 2+} cations in the crystal structure of CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF. The Sr1 is coordinated by ten fluorine atoms from eight different [AsF{sub 6}]- anions, meanwhile Sr2 and Sr3 are bound to nine fluorine atoms provided by one HF and eight AsF{sub 6} units or by two HF and six AsF{sub 6} units, respectively. The Co{sup 2+} is coordinated distorted-octahedrally by six fluorine atoms from two HF molecules and four different AsF{sub 6} units. All those moieties in the crystal structure of [Co(HF){sub 2}]Sr[Sr(HF)]{sub 2}[Sr(HF){sub 2}]{sub 2}[AsF{sub 6}]{sub 12} are connected into tridimensional framework. The CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF is a unique example of compound where HF molecules are directly bound via fluorine atoms to two different metal centres.

  7. X-ray dichroism of rare earth materials

    International Nuclear Information System (INIS)

    Goedkoop, J.B.

    1989-01-01

    The theme of this thesis is the investigation of the strong polarization dependende, or dichroism, that occur in the X-ray absorption spectra of rare earth materials. The rare earth elements distinguish themselves from the other elements through the behaviour of the 4f electrons which form the valence shell. This shell lies deep inside the atom, with the result that influences from the surrounding solid are well screened off by the outer electrons, so that even in the solid the 4f shell behaves very much like a in free atom or ion, and is almost completely spherically symmetric. Perturbations from the solid environment however always disturb this symmetry to some extend, with the result that the absorption spectrum becomes dependent on the mutual orientation of the polarization vector of the radiation and the ion. Earlier the existence of a strong magnetic X-ray dichroism (MXD) in the 3d→4f transitions of rare earths. In this thesis this work is extended, to a small degree theoretically but mainly experimentally. MXD is used in experiments on bulk sample, terbium iron garnet, and on rare earth overlayers on a ferromagnetic surface, Ni(110). The results of the latter study show unequivocally the potential of the MXD technique. The second theme of the thesis concerns experimental developments in soft X-ray spectroscopy. A description is given of a double crystal monochromator beamline that was constructed by our group at LURE, France. Results of the use of an organic crystal - multilayer comination in such a monochromator is described. Also a method is described for the characterization of the resolution of soft X-ray monochromators. Finally a contribution to the characterization of the electron yield technique in the soft X-ray range is given. (author). 296 refs.; 64 figs.; 59 schemes; 9 tabs

  8. The lattice dynamical studies of rare earth compounds: electron-phonon interactions

    International Nuclear Information System (INIS)

    Jha, Prafulla K.; Sanyal, Sankar P.; Singh, R.K.

    2002-01-01

    During the last two decades chalcogenides and pnictides of rare earth (RE) atoms have drawn considerable attention of the solid state physicists because of their peculiar electronic, magnetic, optical and phonon properties. Some of these compounds e.g. sulphides and selenides of cerium (Ce), samarium (Sm), yttrium (Y), ytterbium (Yb), europium (Eu) and thulium (Tm) and their alloys show nonintegral valence (between 2 and 3), arising due to f-d electron hybridization at ambient temperature and pressure. The rare earth mixed valence compounds (MVC) reviewed in this article crystallize in simple cubic structure. Most of these compounds show the existence of strong electron-phonon coupling at half way to the zone boundary. This fact manifests itself through softening of the longitudinal acoustic mode, negative value of elastic constant C 12 etc. The purpose of this contribution is to review some of the recent activities in the fields of lattice dynamics and allied properties of rare earth compounds. The present article is primarily devoted to review the effect of electron-phonon interactions on the dynamical properties of rare earth compounds by using the lattice dynamical model theories based on charged density deformations and long-range many body forces. While the long range charge transfer effect arises due to f-d hybridization of nearly degenerate 4f-5d bands of rare earth ions, the density deformation comes into the picture of breathing motion of electron shells. These effects of charge transfer and charge density deformation when considered in the lattice dynamical models namely the three body force rigid ion model (TRM) and breathing shell model (BSM) are quite successful in explaining the phonon anomalies in these compounds and undoubtedly unraveled many important physical process governing the phonon anomalies in rare earth compounds

  9. Effect of rare earth doping on optical and spectroscopic characteristics of BaZrO3:Eu3+,Tb3+ perovskites

    Science.gov (United States)

    Katyayan, Shambhavi; Agrawal, Sadhana

    2018-06-01

    This paper reports structural investigations of rare earth doped BaZrO3 phosphors synthesized by Solid state reaction technique with varying concentrations of Eu3+ and Tb3+ from 0 mol% to 2 mol%. The synthesized phosphors show enhanced variable emissions in the visible region corresponding to different hypersensitive electronic transitions of Eu3+ and Tb3+ ions. With cubic structure confirmed in XRD analysis, the FESEM images show uniform grain connectivity and homogeneity of prepared samples. The TEM micrographs of the synthesized phosphors show agglomerated irregular structures. The synthesized phosphors were also subjected to FTIR, Raman, EDXS analysis along with studies of thermoluminescent and photoluminescent characteristics. On subjecting to 229 nm (UV) excitation, the phosphors show enhanced PL emissions corresponding to 571 nm (5D0-7F0), 591 nm (5D0-7F1), 615 nm (5D0-7F2) and 678 nm (5D0-7F4) hypersensitive transitions of Eu3+ ions and emission peaks at 489 nm (5D4-7F6), 539 nm (5D4-7F5), 589 nm (5D4-7F4) and 632 nm (5D4-7F3) accounting for electronic transitions of Tb3+ ions respectively. The computed average PL lifetime is 14.014 s. In the TL analysis, the second order of kinetics with the activation energy varying from 5.0 × 10‑1 eV to 6.6 × 10‑1 eV is reported. The maximum TL lifetime is estimated as 19.4985 min in the TL lifetime analysis.

  10. Tailored white light emission in Eu3+/Dy3+ doped tellurite glass phosphors containing Al3+ ions

    Science.gov (United States)

    Walas, Michalina; Piotrowski, Patryk; Lewandowski, Tomasz; Synak, Anna; Łapiński, Marcin; Sadowski, Wojciech; Kościelska, Barbara

    2018-05-01

    Tellurite glass systems modified by addition of aluminum fluoride AlF3 have been successfully synthesized as host matrices for optically active rare earth ions RE3+ (RE3+ = Eu3+, Dy3+). Samples with different Eu3+ to Dy3+ molar ratio have been studied in order to determine possibility of white light emission via UV excitation. Structural investigations confirmed amorphous character of materials whereas spectroscopic studies brought more insight into glass network's nature. FTIR results shown presence of two features related to tellurite glass matrix (in 490-935 cm-1 spectral region) and another one (940-1250 cm-1) due to aluminum addition. Especially, Al-O and Te-O-Al bonds of AlO4 tetrahedrons have been found. AlO4 units are considered as glass formers that improve network's strength and thermal resistivity against devitrification. Based on XPS studies of Al3+ photoelectron band the existence of Al-O and also Al-F bonds have been examined. Moreover, signals originating from Eu3+ and Dy3+ have been found confirming their valence state. Luminescence results revealed possibility of simultaneous UV excitation of Eu3+ and Dy3+ ions. Excitation with λexc = 390 and 393 nm resulted in white light generation starting from warm white to neutral and cool white depending on Eu3+ concentration and used excitation wavelength. Additionally, increase of decay lifetime of Eu3+ induced by Al3+ presence have been revealed based on luminescence decay analysis. Thus, tellurite glass systems modified by AlF3 and doped with Eu3+/Dy3+ may be considered as promising candidates for white light emitting sources.

  11. Recovery of rare earths from used polishes by chemical vapor transport process

    International Nuclear Information System (INIS)

    Ozaki, T.; Machida, K.; Adachi, G.

    1998-01-01

    Full text: Rare earth oxide polishes are widely used in the glass industry because of its mechanical and chemical polishing action. The Japanese glass industry use 2000 tons per year of the polishes, and a large portion of them are thrown away after their polishing lifetime. A dry recovery processes for rare earths from the used polishes have been investigated by using a chemical vapor transport method via the formation of vapor complexes RAl n Cl 3+3n (R = rare earths). A flow type reactor with various temperature gradients was employed for the process. The used polishes were mixed with active carbon, and chlorinated with N 2 + Cl 2 mixture at 1273 K. Aluminium oxide were also chlorinated at lower temperature and the resulting AlCl 3 were introduced to the reactor. The rare earth chlorides and AlCl 3 were converted to the vapor complexes. These were driven along the temperature gradient, decomposed according to the reverse reaction, and regenerated RCl 3 . About 90 % of the used polish were chlorinated after 2 hours. Rare earth chlorides, AlCl 3 , and FeCl 3 were fully transported after 82 hours. The rare earth chlorides were mainly condensed over the temperature range 1263-903 K. On the other hand, AlCl 3 and FeCl 3 were deposited at the temperature range below 413 K. CaCl 2 and SrCl 2 were hardly transported and remained in the residue. When the temperature gradient with the smaller slope was used, mutual separation efficiencies among the rare earths was improved. The highest CeCl 3 purity of 80% was obtained in the process

  12. Synthesis and structure of a new layered oxyfluoride Sr{sub 2}ScO{sub 3}F with photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongkun; Tang, Kaibin, E-mail: kbtang@ustc.edu.cn; Zhu, Baichuan; Wang, Dake; Hao, Qiaoyan; Wang, Yan

    2015-05-15

    Highlights: • A new oxyfluoride compound Sr{sub 2}ScO{sub 3}F was prepared by a solid state route. • The structure of this compound was determined by GSAS program based on XRD data. • The photocatalytic property was investigated under UV irradiation. - Abstract: A new Ruddlesden–Popper type scandium oxyfluoride, Sr{sub 2}ScO{sub 3}F, was synthesized by a conventional solid state reaction route. The detailed structure of Sr{sub 2}ScO{sub 3}F was investigated using X-ray diffraction (XRD) and selected area electron diffraction (SAED). The disorder distribution pattern of fluorine anions was determined by the {sup 19}F nuclear magnetic resonance (NMR) spectrum. The compound crystallizes in a K{sub 2}NiF{sub 4}-type tetragonal structure (space group I4/mmm) with O/F anions disordered over the apical sites of the perovskite-type Sc(O,F){sub 6} octahedron layers interleaved with strontium cations. Ultraviolet–visible (UV–vis) diffuse reflection spectrum of the prepared Sr{sub 2}ScO{sub 3}F indicates that it has an absorption in the UV–vis region. The photocatalytic activity of Sr{sub 2}ScO{sub 3}F was further investigated, showing an effective photodegradation of Rhodamine-B (RB) within 2 h under UV light irradiation.

  13. Rare Earth Free Zn3V2O8 Phosphor with Controlled Microstructure and Its Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Hom Nath Luitel

    2013-01-01

    Full Text Available Microsphere of rare earth free phosphor, Zn3V2O8, with broadband yellowish white emission was synthesized by combustion route and compared with the hydrothermal, sol-gel, and solid state reaction methods. The phosphor samples were characterized by X-ray diffraction and scanning electron microscopy. UV-visible absorption and photoluminescence (PL emission and excitation spectra were investigated for these phosphors. Zn3V2O8 phosphor containing 10 mol% of H3BO3 flux exhibited enhanced PL emission showing broadband from 450 nm to 750 nm. Effect of stoichiometry of Zn and V on the host lattice and its effect on the PL emission spectra were studied. Series of Mg3V2O8, Ca3V2O8, and Sr3V2O8 phosphors were also synthesized and compared to the Zn3V2O8 phosphor in terms of PL emission and internal quantum yield, and it was found that Zn3V2O8 is the most efficient phosphor among the other phosphors studied with quantum yield of 60%. The visible light irradiated photocatalytic activity of these phosphors was investigated and it was found that the hydrothermal Zn3V2O8 exhibited enhanced activity.

  14. Study On Beneficiation Technology Of Dong Pao Rare-Earth-Barite-Fluorite With Two Product Plans About Content And Recovery Of Rare-Earth Fine Ores

    International Nuclear Information System (INIS)

    Duong Van Su; Truong Thi Ai; Bui Ba Duy; Bui Thi Bay; Nguyen Hong Ha; Le Thi Hong Ha; Doan Thi Mo; Doan Dac Ban; Nguyen Hoang Son

    2014-01-01

    The ore sample used in the research was taken from the F3 ore bodies and the sample of the F7, F9 and F16 ore bodies which contain the average of 5.98% TR 2 O 3 ; they are multi-metals ore which is difficult to enrich, highly weather with very complex ingredients. The process of the experiment is the ore is crushed, ground, screened and classified reasonably to -0.1 mm and divided into 3 particle size with the following technique: (1) -0.020 mm is primary sludge and the rare-earth fine ore; (2) 0.075-1 mm is gotten through the sludge concentrating table with the output is the 2 parts: the heavy part which is dried magnetic separator with high magnetism to get the rare-earth fine ore and the light one; (3) Light minerals, non-magnetic and ferromagnetic minerals group are ground together to 85% of them get size within -0.075 mm then mix it with 0.020-0.075 mm group. Using flotation separator, get barite-rare earth mixture and fluorite. After that, we separate this mixture by secondary flotation and get refined rare earth, barite and fluorite mineral. The result of the theme: (1) product plan A-rare-earth fine ore has TR 2 O 3 content archive 42.07% with recovery is 69.70%; (2) product plan B-rare-earth fine ore has TR 2 O 3 content archive 29.64% with recovery is 80.01%. (author)

  15. B(IS4;0GS+→4γ+) systematics in rare-earth nuclei: SU sdg (3) description

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1993-01-01

    The observed variation of B(IS4; 0 GS + →4 γ + ) with mass number A, that gives information about hexadecupole component in γ-vibration, in rare-earth nuclei is studied in the SU sdg (3) limit of sdg interacting boson model empoloying IBM-2 to IBM-1 projected hexadecupole transition operator with effective charges determined using a multi-j shell mapping procedure. The SU sdg (3) limit provides a reasonably good description of the data. (orig.)

  16. New NaSrPO4:Sm phosphor as orange-red emitting material

    Indian Academy of Sciences (India)

    Because NaSr1−xPO4:xSm3+ phosphor features a high colour-rendering index and chemical stability, it is potentially ... use blue LED chips (GaN or InGaN) with a yellow phosphor ... excitation by doping Sm3+ rare earth ions into a suitable.

  17. Properties and Crystallization Phenomena in Li2Si2O5–Ca5(PO4)3F and Li2Si2O5–Sr5(PO4)3F Glass–Ceramics Via Twofold Internal Crystallization

    Science.gov (United States)

    Rampf, Markus; Dittmer, Marc; Ritzberger, Christian; Schweiger, Marcel; Höland, Wolfram

    2015-01-01

    The combination of specific mechanical, esthetic, and chemical properties is decisive for the application of materials in prosthodontics. Controlled twofold crystallization provides a powerful tool to produce special property combinations for glass–ceramic materials. The present study outlines the potential of precipitating Ca5(PO4)3F as well as Sr5(PO4)3F as minor crystal phases in Li2Si2O5 glass–ceramics. Base glasses with different contents of CaO/SrO, P2O5, and F− were prepared within the glasses of the SiO2–Li2O–K2O–CaO/SrO–Al2O3–P2O5–F system. Preliminary studies of nucleation by means of XRD and scanning electron microscopy (SEM) of the nucleated base glasses revealed X-ray amorphous phase separation phenomena. Qualitative and quantitative crystal phase analyses after crystallization were conducted using XRD in combination with Rietveld refinement. As a main result, a direct proportional relationship between the content of apatite-forming components in the base glasses and the content of apatite in the glass–ceramics was established. The microstructures of the glass–ceramics were investigated using SEM. Microstructural and mechanical properties were found to be dominated by Li2Si2O5 crystals and quite independent of the content of the apatite present in the glass–ceramics. Biaxial strengths of up to 540 MPa were detected. Ca5(PO4)3F and Sr5(PO4)3F influence the translucency of the glass–ceramics and, hence, help to precisely tailor the properties of Li2Si2O5 glass–ceramics. The authors conclude that the twofold crystallization of Li2Si2O5–Ca5(PO4)3F or Li2Si2O5–Sr5(PO4)3F glass–ceramics involves independent solid-state reactions, which can be controlled via the chemical composition of the base glasses. The influence of the minor apatite phase on the optical properties helps to achieve new combinations of features of the glass–ceramics and, hence, displays new potential for dental applications. PMID:26389112

  18. Rare-earth-metal nitridophosphates through high-pressure metathesis

    International Nuclear Information System (INIS)

    Kloss, Simon David; Schnick, Wolfgang

    2015-01-01

    Developing a synthetic method to target an broad spectrum of unknown phases can lead to fascinating discoveries. The preparation of the first rare-earth-metal nitridophosphate LiNdP_4N_8 is reported. High-pressure solid-state metathesis between LiPN_2 and NdF_3 was employed to yield a highly crystalline product. The in situ formed LiF is believed to act both as the thermodynamic driving force and as a flux to aiding single-crystal formation in dimensions suitable for crystal structure analysis. Magnetic properties stemming from Nd"3"+ ions were measured by SQUID magnetometry. LiNdP_4N_8 serves as a model system for the exploration of rare-earth-metal nitridophosphates that may even be expanded to transition metals. High-pressure metathesis enables the systematic study of these uncharted regions of nitride-based materials with unprecedented properties. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Effect of the kind of alkaline and rare earth ions on the structure of a glass rich in earth

    International Nuclear Information System (INIS)

    Quintas, Arnaud; Caurant, Daniel; Majerus, Odile; Lenoir, Marion; Dussossoy, Jean-Luc; Charpentier, Thibault; Neuville, Daniel R.; Gervais, C.

    2006-01-01

    In the framework of a structural study of a nuclear wastes containment glass of type alumino borosilicate and rich in rare earths, the influence of the kind of alkaline or rare earth ions is analyzed. For that, two glasses series have been prepared in which the Na + ion (respectively Ca 2+ ions) present in the standard composition is totally substituted by another alkaline ion Li + , K + , Rb + or Cs + (respectively another rare earth ion Mg 2+ , Sr 2+ or Ba 2+ ). These glasses, analyzed by optical absorption, Raman and 27 Al or 11 B NMR spectroscopies have revealed the strong impact of the kind of the modifying ion as well as the structure of the vitreous lattice (variation of the ratio BO 3 /BO 4 and local variations of the polymerization degree) than the local surroundings of the rare earth (decrease of the covalency degree of the bond Nd-O with the increase of the field force of the modifying ion). (O.M.)

  20. Synthesis and photoluminescence properties of microcrystalline Sr{sub 2}ZnWO{sub 6}:RE{sup 3+} (RE = Eu, Dy, Sm and Pr) phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Dabre, K.V. [Department of Physics, Arts, Commerce and Science College, Koradi, Nagpur 441111 (India); Park, K. [Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 143-747 (Korea, Republic of); Dhoble, S.J., E-mail: sjdhoble@rediffmail.com [Department of Physics, R.T.M. Nagpur University, Nagpur 440033 (India)

    2014-12-25

    Graphical abstract: CIE chromaticity coordinate diagram (1931) indicating different colors of Sr{sub 2}ZnWO{sub 6}:RE{sup 3+} (RE = Eu (a), Dy (b and c), Sm (d–f) and Pr (g and h)) phosphor under different excitation 466 nm (a), 312 nm (b), 454 nm (c), 313 nm (d), 408 nm (e), 482 nm (f), 315 nm (g) and 450 nm (h). - Highlights: • Microcrystalline Sr{sub 2}ZnWO{sub 6}:RE{sup 3+} (RE = Eu, Dy, Sm and Pr) phosphors were synthesized by solid state method. • Photoluminescence properties of phosphor were investigated. • Color of the phosphor for different excitation has been verified by chromaticity diagram. • The host absorption and energy transfer were investigated. - Abstract: The novel microcrystalline Sr{sub 2}ZnWO{sub 6}:RE{sup 3+} (RE = Eu, Dy, Sm and Pr) phosphors were synthesized by solid-state reaction method at 1250 °C and their photoluminescence properties were investigated. The Eu{sup 3+} and Dy{sup 3+} activated phosphors show intense red (616 nm) and yellow (574 nm) emission respectively; which indicate that the rare earth ions are substituted at non-centrosymmetric site in the host lattice. Near white (Dy{sup 3+}) and reddish-orange (Sm{sup 3+}) emissions of rare earth ions in the host lattice show strong host absorption and energy transfer from the host to activator ion. Pr{sup 3+} activated phosphor shows a series of emission peaks in the visible region with the most intense peak in the blue region at 491 and 499 nm.

  1. Production of rare earth-silicon-iron alloys

    International Nuclear Information System (INIS)

    Mehra, O.K.; Bose, D.K.; Gupta, C.K.

    1987-01-01

    At Metallurgy Division, BARC, improved procedures for producing rare earth-silicon alloys have been investigated. In these methods, reduction of mixed rare earth oxide by a ferro-silicon and aluminium mixture in combination with CaO-MgO flux/CaO-CaF 2 flux have been tried to prepare an alloy product with a higher rare earth recovery at a higher rare earth content than the present commercial production method. The rare earth recovery using CaO-CaF 2 was 85 per cent while in the case of CaO-MgO flux it was 76 per cent. The corresponding rare earth contents in the alloy correspond to 40 per cent and 55 per cent by weight respectively. (author)

  2. Luminescence and surface properties of Tb3+ doped Sr3(VO4)2 nanophosphors

    International Nuclear Information System (INIS)

    Bedyal, A.K.; Kumar, Vinay; Sharma, Vishal

    2013-01-01

    In this paper, we present a detailed investigation of the luminescence and surface properties of Tb 3+ doped Sr 3 (VO 4 ) 2 nanocrystalline phosphors, synthesized by the combustion method. X-ray diffraction (XRD) peaks in the patterns corresponding to the reflection of rhombohedral pure phase of Sr 3 (VO 4 ) 2 . The average particle sizes have been found in the range of 30-34 nm. Scanning electron microscopy (SEM) indicated that an agglomerated peanut like morphology was obtained. Photoluminescence (PL) spectroscopy has been utilized to investigate the spectral properties of the phosphor. Under 237 nm excitation, it shows several bands centered at 487, 544, 588 and 624 nm, which result from 5 D 4 → 7 F J (J = 6, 5, 4 and 3) transitions of Tb 3+ , and the green emission band ( 5 D 4 → 7 F 5 ) located at 544 nm is dominant. The chemical states and homogeneous dopants' distribution in the host were analyzed with X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectroscopy (TOF-SIMS), respectively. A ToF-SIMS imaging shows an uniform distribution of Tb 3+ in the Sr 3 (VO 4 ) 2 . (author)

  3. Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+ : SrF2 and Er3+ : CaF2 crystals

    International Nuclear Information System (INIS)

    Basiev, Tasoltan T; Orlovskii, Yu V; Polyachenkova, M V; Fedorov, Pavel P; Kuznetsov, S V; Konyushkin, V A; Osiko, Vyacheslav V; Alimov, Olimkhon K; Dergachev, Alexey Yu

    2006-01-01

    CW lasing is obtained in Er 3+ (5%) : CaF 2 and Er 3+ (5%) : SrF 2 crystals near 2.75 μm with 0.4 and 2 W of output powers, respectively, upon transverse diode laser pumping into the upper 4 I 11/2 laser level of erbium ions at 980 nm. Continuous tuning of the laser wavelength between 2720 and 2760 nm is realised in the Er 3+ : SrF 2 crystal. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  4. Chemical Bond Parameters in Sr3MRhO6 (M=Rare earth)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chemical bond parameters, that is, bond covalency, bond valence, macroscopic linear susceptibility, and oxidation states of elements in Sr3MRhO6 (M=Sm, Eu, Tb, Dy, Ho, Er, Yb) have been calculated. The results indicate that the bond covalency of M-O decreases sharply with the decrease of ionic radius of M3+ from Sm to Yb, while no obvious trend has been found for Rh-O and Sr-O bonds. The global instability index indicates that the crystal structures of Sr3MrhO6 (M = Sm, Eu, Tb, Dy, Ho) have strained bonds.

  5. Activation analysis of rare-earth elements in opium and cannabis samples. [Neutron reactions

    Energy Technology Data Exchange (ETDEWEB)

    Henke, G [Muenster Univ. (Germany, F.R.). Inst. fuer Pharmazeutische Chemie

    1977-01-01

    Rare-earth concentrations in 65 Opium, Cannabis and Cannabis resin samples seized from various parts of the world were determined by destructive NAA. Because of the greater concentrations of Ca, P, K, Fe, Na and Si in plant materials, rare-earth elements were isolated after neutron irradiation and determined by gamma-spectrometry. The main steps of the method are: Preashing of 1 g Cannabis resin, 2.5 g Cannabis, or 7.5 g Opium, respectively, in quartz ampoules (5 h, 500 deg C). Neutron irradiation, 24 h at 5x10/sup 13/n cm/sup -2/sec/sup -1/. Cooling period 2-3 days. After addition of 0.1 ..mu..Ci /sup 139/Ce and rare-earth carriers wet ashing of irradiated samples with H/sub 2/SO/sub 4//HNO/sub 3/, followed by alternate addition of HNO/sub 3/ and H/sub 2/O/sub 2/ (30%). Precipitation and removal of silicates, precipitation of fluorides, precipitation of hydroxides. Dissolution of hydroxides in HCl. Extraction with di-(2-ethylhexyl)phosphate (DEHP)/toluene and twice back-extraction of rare earths, gamma-spectrometry of HCl phase. Due to sample activity and half-life of nuclides, three measurements were made on each sample: 2 days (for La, Sm, Gd, Ho, Er, Yb); 14 days (for Nd, Lu) and 30 days after irradiation (for Ce, Eu, Tb). Great variations in absolute element concentrations, but only small significant differences of rare earth concentration ratios were found, indicating inconsiderable biogeochemical fractionation. The mean values of these ratios correspond to the relative abundances of the rare earths in the upper continental earth's crust.

  6. Laser site selective spectroscopy of rare-earth defects in fluorites

    International Nuclear Information System (INIS)

    Murdoch, K.M.

    1998-01-01

    Full text: Rare-earth (R 3+ ) doped fluorites (CaF 2 , SrF 2 , and BaF 2 ) have long been a model system for investigating the defect chemistry of crystalline solids. The trivalent R 3+ ions substitute for the divalent cations of the host and are charge compensated by the inclusion of additional interstitial fluoride ions (F - j ). A variety of R 3+ centres arise, including cubic symmetry R 3+ sites remote from any F - j , single R 3+ ions associated with one neighbouring F - j , and clusters of R 3+ associated with multiple F - j . Additional R 3+ centres are produced by chemical modifications involving the substitution of host anions or cations. Numerous experimental studies have shown that the relative populations of these centres are determined by the size of the R 3+ ions, the R 3+ concentration in the crystal, the crystals thermal history, and any pressure treatments. A considerable volume of theoretical work has also been presented to interpret these results. Laser site selective spectroscopy has proved a powerful technique for probing the defect chemistry of R 3+ doped fluorites. Some of the important results and conclusions of these experiments will be reviewed. A detailed account, with references to the original studies, has also been published recently

  7. Application of Sm/Eu/, Rb/Sr, Ce/Yb and F-Rb ratios to discriminate between Tin mineralized and non-mineralized S-type granites

    International Nuclear Information System (INIS)

    Karimpour, M.H.

    1998-01-01

    Mash had granites and Gran diorites are divided into three groups bas sed on their ages and composition: (1) Deh Now-Vakilabad-Kuhsangi Granodiorites and Quartz monzodiorites, (2) Sang bast Granite and (3) Khalaj- Gheshlagh Biotite-muscovite Granite. All these intrusive s belong to S-type granite, The oldest are in the range of intermediate and the youngest are acidic in composition. Intrusive rocks in the area of Deh now to Kuhsangi show trend of differentiation. Major, trace and rare earth elements within the source rocks of porphyry Sn, Mo, and Cu deposits were compared and very distinct differences were noticed. Differentiation index, Rb/Sr, Ce/Yb, and (Sr 87 /Sr 86 ) ratios can be used to identify the source rocks for porphyry Sn, Mo, or Cu. Major, as well as trace and rare earth elements of Mash had Granites and Granodiorites were compared with tin mineralized granites of the world. As a result, four diagrams were presented to be utilized in order to discriminate between Sn mineralized and non-mineralized granites. Such as Rb to the ratio of Sm/Eu, F to Rb and the three angle of F, Rb, Sr + Ba

  8. Structural study of caesium-based britholites Sr7La2Cs(PO4)5(SiO4)F2

    International Nuclear Information System (INIS)

    Boughzala, K.; Gmati, N.; Bouzouita, K.; Ben Cherifa, A.; Gravereau, P.

    2010-01-01

    Several studies demonstrated the ability of britholites to retain radionuclides such as the caesium and actinides. Therefore, three compounds with formulas Sr 8 LaCs(PO 4 ) 6 F 2 , Sr 7 La 2 Cs(PO 4 ) 5 (SiO 4 )F 2 and Sr 2 La 7 Cs(SiO 4 ) 6 F 2 , were prepared by solid state reaction. However, it seems that only the mono-silicated composition was obtained in a pure state. In this present work, the X-ray diffraction and magnetic nuclear resonance have been used to investigate the structure for this composition. The results showed that in fact this phase was not pure, but it was mixed with a secondary phase, SrLaCs(PO 4 ) 2 . The refinement by the Rietveld method allowed also to precise the distribution of La 3+ and Cs + ions between the two cationic sites of the apatite. (authors)

  9. Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 250C. I. The rare earth chlorides

    International Nuclear Information System (INIS)

    Spedding, F.H.; Weber, H.O.; Saeger, V.W.; Petheram, H.H.; Rard, J.A.; Habenschuss, A.

    1976-01-01

    The osmotic coefficients of the aqueous trichlorides of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y were determined from 0.1 M to saturation at 25 0 C. Semiempirical least-squares equations were obtained for the osmotic coefficients as a function of molality and these equations were used to calculate water activities and mean molal activity coefficients. The water activities of the light rare earth chlorides at constant molalities are higher than for the heavy rare earths, while the mean molal activity coefficients are larger for the heavy rare earths than for the light ones. The above effects are discussed in terms of changes in the cationic radii and hydration of the rare earth ions

  10. Effect of Rare Earth Metals, Sr, and Ti Addition on the Microstructural Characterization of A413.1 Alloy

    Directory of Open Access Journals (Sweden)

    M. G. Mahmoud

    2017-01-01

    Full Text Available The present work was performed on A413.1 alloy containing 0.2–1.5 wt% rare earth metals (lanthanum or cerium, 0.05–0.15% Ti, and 0–0.02 wt% Sr. These elements were either added individually or combined. Thermal analysis, image analysis, and electron probe microanalysis were the main techniques employed in the present study. The results show that the use of the depression in the eutectic temperature as a function of alloy modification cannot be applied in the case when the alloy is treated with rare earth metals. Increasing the concentration of RE increases the solidification zone especially in Sr-modified alloys leading to poor feeding ability. This observation is more prominent in the case of Ce addition. Depending upon the amount of added Ti, two RE based intermetallics can be formed: (i a white phase, mainly platelet-like (approximately 2.5 μm thick, that is rich in RE, Si, Cu, and Al and (ii a second phase made up of mainly grey sludge particles (star-like branching in different directions. The grey phase is rich in Ti with some RE (almost 20% of that in the white phase with traces of Si and Cu. There is a strong interaction between RE and Sr leading to a reduction in the efficiency of Sr as a eutectic Si modifier causing particle demodification.

  11. Neutron activation analysis of rare earths in uranium containing rocks

    International Nuclear Information System (INIS)

    May, S.; Pinte, G.

    1984-01-01

    The determination of rare earths by activation analysis in uranium rocks is disturbed either by fission-produced rare earths, or by neptunium-239 originating from uranium-238. In order to eliminate these interferencies, the chemical separation of rare earths from uranium prior to activation should be performed. The chemical process is as follows: the rock sample is fused with sodium borate, then, after addition of hydrochloric acid, the resulting solution is passed through a Dowex 1x8 column. Uranium is retained on the resin, and rare earths and scandium are eluted. Aluminium is added as a carrier to the solution, and rare earths and scandium are coprecipitated with aluminium hydroxide. This precipitate is irradiated in the nuclear reactor. Gamma spectrometry is used for the determination of earth radionuclide. Activity measurements are performed in successive steps during one month. The following elements are determined: Pr, La, Sm, Nd, Yb, Lu, Ce, Tb, Eu and Sc. The chemical yield is measured by using scandium as an internal standard. (author)

  12. Chromates (3) and chromates (5) of rare earths

    International Nuclear Information System (INIS)

    Suponitskij, Yu.L.

    1986-01-01

    Data on preparation methods, structure and properties of chromates (3, 5) and mixed chromates (3) of rare earths, scandium and yttrium are generalized. Phase diagrams of systems Ln 2 O 3 -Cr 2 O 3 (Ln - rare earths, Sc, Y), chemical and thermodynamic properties of chromates (3, 5), their crystal structure and character of thermal decomposition are considered. Application fields of the compounds mentioned are suggested

  13. A comparative study of CaWO4 and rare earth intensifying screens

    International Nuclear Information System (INIS)

    Ambiger, T.Y.; Ayappan, P.

    1978-01-01

    Three brands of commercially available calcium tungstate intensifying screens and a brand of rare earth screen emitting blue light have been used with two types of fast medical x-ray films, one imported and the other indigenous in various film-screen combinations and their sensitometric properties have been determined and compared. The rare earth screen has been found to be about 3 to 4 times faster than the tungstate screens without reduction in contrast. This indicates that the use of rare earth screen in medical radiography will help to reduce the patient dose by the same factor. (M.G.B.)

  14. The synthesis and crystal structures of the first rare-earth alkaline-earth selenite chlorides MNd10(SeO3)12Cl8 (M=Ca and Sr)

    International Nuclear Information System (INIS)

    Berdonosov, P.S.; Olenev, A.V.; Dolgikh, V.A.; Lightfoot, P.

    2007-01-01

    Two new alkaline-earth Nd selenite chlorides MNd 10 (SeO 3 ) 12 Cl 8 (M=Ca, Sr) were obtained using crystal growth from alkaline-earth chloride melts in quartz tubes. These new compounds crystallize in the orthorhombic system in space group C cca (no. 68). The compounds were studied by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction. It was shown that both compounds adopt the same structure type, constructed by complex [M 11 (SeO 3 ) 12 ] 8+ slabs separated by chloride anion layers perpendicular to the longest cell parameter. The SeO 3 groups show a pyramidal shape and may be described as SeO 3 E tetrahedra. Such SeO 3 groups decorate the Nd-O skeletons forming the [M 11 (SeO 3 ) 12 ] 8+ slabs. - Graphical abstract: Two new alkaline-earth Nd selenite chlorides MNd 10 (SeO 3 ) 12 Cl 8 (M=Ca, Sr) were synthesized. These structures are constructed by [M 11 (SeO 3 ) 12 ] 8+ slabs separated by chloride anion layers

  15. Investigation of rare earth natural radionuclide in Gannan region, Jiangxi province

    International Nuclear Information System (INIS)

    Liu Huiping; Zhong Minglong; Hu Yongmei

    2014-01-01

    In order to identify the types, level and migration law of natural radionuclide in ionic rare earth during its development and utilization process, the natural radionuclide in raw ore, waste residues and wastewater of south ionic rare of Gannan region, Jiangxi province were investigated. The results showed that: the natural radionuclide in rare earth raw ore in An'yuan and Longnan is with high content, in which the specific activities of natural U, 226 Ra and 232 Th are 3.69 × l0 4 , 8.33 × l0 3 and 3,40 × l0 3 Bq/ kg respectively; And the specific activities of the acid-soluble slag are 2.58 × l0 4 , 2.81 × l0 4 and 2.75 × l0 4 Bq/kg respectively; The radioactive level of natural U and 232 Th in some rare earth tailings, and the specific activity of natural U in the neutralizing slag of some individual enterprises is higher than national standards' exemption level (1000 Bq/kg). Also, the total content of Th and U in the efflux wastewater of some rare earth enterprises efflux wastewater are higher than the national emission standards limit (0.1 mg/L). (authors)

  16. Distribution behavior of uranium, neptunium, rare-earth elements (Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiCl-KCl eutectic salt and liquid cadmium or bismuth

    International Nuclear Information System (INIS)

    Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.

    1995-01-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCl eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system. (orig.)

  17. Study on luminescence and thermal stability of blue-emitting Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+}phosphor for application in InGaN-based LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie; Zhang, Zhi-Ming [State Key Laboratory Base of Eco-chemical Engineering, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wu, Zhan-Chao, E-mail: wuzhan_chao@163.com [State Key Laboratory Base of Eco-chemical Engineering, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Fang-Fang [State Key Laboratory Base of Eco-chemical Engineering, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Li, Zhen-Jiang, E-mail: zjli126@126.com [State Key Laboratory Base of Eco-chemical Engineering, College of Sino-German Science and Technology, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, Shandong (China)

    2017-07-15

    Highlights: • A blue phosphor Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} was prepared at low temperature of 800 °C. • The broad excitation band of the phosphor matches well with NUV LED chips. • The phosphor shows high color purity and good color stability. • A bright blue-emitting LED was fabricated with this phosphor on an InGaN chip. - Abstract: A series of blue-emitting phosphors Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} were synthesized by traditional high temperature solid-state reaction method. The micro-morphology and photoluminescence properties of the phosphors were investigated. The Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} phosphors exhibit broad excitation spectra ranging from 250 to 420 nm, and an intense asymmetric blue emission band peaking at 435 nm. Two different Eu{sup 2+} emission centers in Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} phosphors were confirmed via their fluorescence properties. The concentration quenching mechanism, fluorescence lifetime and thermal stability of Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} phosphors were studied in detail. The thermal stability can be improved obviously by anion substitution. The CIE chromaticity coordinates of Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} phosphors with different Eu{sup 2+}-doped concentrations were calculated. A blue light-emitting diode was fabricated by combination of a 370 nm InGaN chip and the prepared phosphor Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+}. The present work suggests that Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} is a potential phosphor applied in InGaN-based LEDs.

  18. Synthesis, structural and luminescent aspect of Tb3+ doped Sr2SnO4 phosphor

    International Nuclear Information System (INIS)

    Taikar, Deepak R.

    2016-01-01

    A novel green emitting, Tb 3+ doped Sr 2 SnO 4 phosphor was synthesized by the co-precipitation method and its photoluminescence characterization was performed. Sr 2 SnO 4 has an ordered tetragonal K 2 NiF 4 -type structure with space group I4/mmm. The structure of Sr 2 SnO 4 consists of SnO 6 octahedra. From the structure of Sr 2 SnO 4 , it was observed that the sites of Sn 4+ ions have inverse symmetry while the Sr 2+ ions have the low symmetry. X-ray powder diffraction (XRD) analysis confirmed the formation of Sr 2 SnO 4 :Tb 3+ . Photoluminescence measurements showed that the phosphor exhibited bright green emission at about 543 nm attributed to 5 D 4 à 7 F 5 transition of Tb 3+ ion under UV excitation. The emission spectra did not exhibit conventional blue emission peaks of Tb 3+ ions due to 5 D 3 → 7 F J transitions in the spectral region 350-470 nm. The excitation spectra indicate that this compound may be useful as a lamp phosphor. (author)

  19. Aloe vera extract activity on human corneal cells.

    Science.gov (United States)

    Woźniak, Anna; Paduch, Roman

    2012-02-01

    Ocular diseases are currently an important problem in modern societies. Patients suffer from various ophthalmologic ailments namely, conjunctivitis, dry eye, dacryocystitis or degenerative diseases. Therefore, there is a need to introduce new treatment methods, including medicinal plants usage. Aloe vera [Aloe barbadensis Miller (Liliaceae)] possesses wound-healing properties and shows immunomodulatory, anti-inflammatory or antioxidant activities. NR uptake, MTT, DPPH• reduction, Griess reaction, ELISA and rhodamine-phalloidin staining were used to test toxicity, antiproliferative activity, reactive oxygen species (ROS) reduction, nitric oxide (NO) and cytokine level, and distribution of F-actin in cells, respectively. The present study analyzes the effect of Aloe vera extracts obtained with different solvents on in vitro culture of human 10.014 pRSV-T corneal cells. We found no toxicity of ethanol, ethyl acetate and heptane extracts of Aloe vera on human corneal cells. No ROS reducing activity by heptane extract and trace action by ethanol (only at high concentration 125 µg/ml) extract of Aloe vera was observed. Only ethyl acetate extract expressed distinct free radical scavenging effect. Plant extracts decreased NO production by human corneal cells as compared to untreated controls. The cytokine (IL-1β, IL-6, TNF-α and IL-10) production decreased after the addition of Aloe vera extracts to the culture media. Aloe vera contains multiple pharmacologically active substances which are capable of modulating cellular phenotypes and functions. Aloe vera ethanol and ethyl acetate extracts may be used in eye drops to treat inflammations and other ailments of external parts of the eye such as the cornea.

  20. Study of polyoxide catalysts of methane combustion on Mn, Cu, Ni, rare earth elements, alkaline earth elements base by the X-ray fluorescence analysis method

    International Nuclear Information System (INIS)

    Grigor'eva, V.P.; Popova, N.M.; Zheksenbaeva, Z.T.; Sass, A.S.; Salakhova, R.Kh.; Dosumov, K.D.

    2002-01-01

    The results of X-ray fluorescence analysis of polyoxide catalysts on of Mn, Cu, Ni, rare earth elements, alkaline earth elements base supported on 2 % Ce/θ-Al 2 O 3 are presented. This polyoxide catalysts are using for deep methane oxidation. DRON-4-7 X-ray diffractometers was applied for the analysis. It was found, that oxides in Ni-Cu-Cr catalysts after long time heating up to 1200 deg. C have been interacted with catalyst supports with Ni(Cu)Al 2 O 3 aluminates formation and due to its decomposition transformation degree of CH 4 to CO 2 are reduced. Activity of MnBaSrCeLa catalysts after heating up to 1200 deg. C does not changed

  1. Linear optical properties of Ca4EuO(BO3)3 and Eu3+ : Ca4GdO(BO3)3 crystals

    International Nuclear Information System (INIS)

    Antic-Fidancev, E.; Lemaitre-Blaise, M.; Porcher, P.; Caramanian, A.; Aka, G.

    1998-01-01

    Full text: The title compounds are now intensively studied due to their quadratic nonlinear properties in view of applications, e.g. high power laser frequency conversion. Rare earth calcium oxoborates, Ca 4 REO(BO 3 ) 3 , constitute an isostructural family along the rare earth series with RE = La - Lu, Y included. These compounds crystallize in the monoclinic biaxial crystal system with Cm (N 8) space group. They are isostructural to the calcium fluoroborate Ca 5 (BO 3 ) 3 F which is related to the fluoroapatite structure Ca 5 (PO 4 ) 3 F. The rare earth ions are located in the distorted octahedron with C s point site symmetry in the mirror plane. Two types of distorted octahedral sites exist for calcium ions. The existence of some disorder between calcium and rare earth atoms is suspected from the structural analysis. Good optical quality crystals of europium (or gadolinium) oxoborate, EuCOB (GdCOB) have been grown from the stoichiometric melt by the Czochralski pulling method. From the luminescence of the Eu 3+ doped gadolinium or in the europium stoichiometric compound very complex emission spectra have been obtained. It principally depends on the preparation method of studied samples: i) for a monocrystalline sample, a single phase with a single site is observed; ii) for a polycrystalline sample complex feature occurs. It is probably due to an expanded disorder between calcium and rare earth atoms. Practically, there is one principal site corresponding to the low symmetry site of the rare earth as expected from the structural investigation. Other minor sites are attributed to the local distortion created around the active rare earth ion. The intensity of the emission lines of Eu 3+ used as a local structural probe related to these minor sites increases when the gadolinium in Ca 4 GdO(BO 0 ) 3 is substituted by lanthanum or yttrium ions. It seems therefore evident that the synthesis of these rare earth calcium oxoborates must be realised carefully. The crystal

  2. Transferred hyperfine interaction between the rare-earth ions and the fluorine nuclei in rare-earth trifluorides

    DEFF Research Database (Denmark)

    Hansen, P. E.; Nevald, Rolf; Guggenheim, H. G.

    1978-01-01

    The isotropic and anisotropic transferred hyperfine interactions between F ions in the two chemically inequivalent sites and the rare-earth ions (R) have been derived from 19F NMR measurements in the temperature region 100-300 K on single crystals of TbF3 and DyF3. The isotropic interactions are ...... to vary only slightly with temperature. They are further assigned to definite R's in the unit cell, which cannot be done from macroscopic magnetic measurements....

  3. Hydrogen storage properties of the Zintl phase alloy SrAl{sub 2} doped with TiF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Yunfeng, E-mail: yfzhu@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009 (China); Zhang Wei; Liu Zhibing; Li Liquan [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009 (China)

    2010-03-04

    In this paper, the structural and hydrogenation characteristics of TiF{sub 3}-doped Zintl phase alloy SrAl{sub 2} were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and hydrogenation measurements. The results show that the hydrogenation kinetics of the Zintl phase alloy SrAl{sub 2} is improved greatly after doping with TiF{sub 3}. By adjusting the doping amount and ball milling time, the optimal doping conditions were obtained. The catalytic mechanism of TiF{sub 3} for the hydrogenation of SrAl{sub 2} was also investigated. SrAl{sub 2} does not react with TiF{sub 3} during the ball milling process. However, it reacts with TiF{sub 3} to form SrAl{sub 2}H{sub 2}, SrF{sub 2}, SrAl{sub 4} and Ti during the hydrogenation process, among which Ti plays an important role in the hydrogenation kinetics of SrAl{sub 2}.

  4. Prospecting and exploration of rare earth bearing mineral resources in India: an overview

    International Nuclear Information System (INIS)

    Mohanty, R.

    2014-01-01

    Rare earth elements (REE) have a wide range of applications including nuclear and the REE bearing minerals occur in varied geological environments.The commercial rare earth bearing minerals are monazite ((Ce,La,Pr,Nd,Th,Y)PO 4 ), xenotime (YPO 4 ), bastnasite ((Ce,La,Y)CO 3 F) and pyrochlore ((Na,Ca) 2 Nb 2 O 6 (OH,F) which occur either as placer concentrations or in tracer quantities in rocks. While Monazite contains dominantly LREE, Xenotime and Bastnasite are richer in HREE. The exploration and evaluation of these two types of occurrences follow different methodologies

  5. Preparation of Sr7Mn4O13F2 by the topotactic reduction and subsequent fluorination of Sr7Mn4O15.

    Science.gov (United States)

    Saratovsky, Ian; Lockett, Michelle A; Rees, Nicholas H; Hayward, Michael A

    2008-06-16

    The topotactic reduction and subsequent fluorination of Sr7Mn4O15 yields a phase of composition Sr7Mn4O13F2. Characterization of this phase utilizing powder neutron diffraction and 19F NMR shows that the fluoride ions are located on a single anion site, the same crystallographic site that is vacant in the reduced intermediate Sr7Mn4O13.

  6. Electric conductivity of double fluorides in the systems M1F-Th(U)F4(M1=K, Tl) and M2F2-ThF4(M2=Ca, Sr, Ba)

    International Nuclear Information System (INIS)

    Murin, I.V.; Andreev, A.M.; Amelin, Yu.V.

    1982-01-01

    The temperature dependence of electric conductivity of some double fluorides formed in the systems M 1 F-Th(U)F 4 (M 1 =K, Tl) and M 2 F 2 -ThF 4 (M 2 =Ca, Sr, Ba) as well as UF 3 in a wide temperature range is studied. It is shown that the values of electric conductivity and activation energy of these fluorides depend on the compound structure and cation nature. The temperature electric conductivity dependence for double fluorides with the tysonite structure is close to the lanthanum fluoride dependence. Taking into account low electron electric conductivity component the conclusion is drawn that the investigated compounds can be used as solid electrolytes

  7. Phase extraction equilibria in systems rare earth (3) nitrates-ammonium nitrate-water-trialkylmethylammonium nitrate

    International Nuclear Information System (INIS)

    Pyartman, A.K.; Kopyrin, A.A.; Puzikov, E.A.

    1995-01-01

    The distribution of rare earth metals (3) between aqueous and organic phases in the systems rare earth metal (3) (praseodymium-lutetium (3), yttrium (3)) nitrate-ammonium nitrate-water-trialkylmethylammonium (kerosene diluent nitrate has been studied. It is shown that in organic phase di- and trisolvates of metals (3) with tralkylmethylammonium nitrate are formed. The influence of concentration of rare earth metal (3) nitrate and ammonium nitrate on the values of extraction concentrational constants has been ascertained: they decrease with increase in the ordinal number of lanthanide (3). 11 refs., 4 figs. 1 tab

  8. Crystallographic and spectroscopic investigations on nine metal-rare-earth silicates with the apatite structure type

    International Nuclear Information System (INIS)

    Wierzbicka-Wieczorek, Maria; Goeckeritz, Martin; Kolitsch, Uwe; Lenz, Christoph; Giester, Gerald

    2015-01-01

    Nine silicates with the apatite structure type (space group P6 3 /m) containing both rare-earth elements (REEs: Pr, Nd, Sm, Tb, Ho and Er) and various metals (K, Sr, Ba and Cd) were synthesised by high-temperature flux-growth techniques and characterised by single-crystal X-ray diffraction, scanning electron microscopy, Raman spectroscopy and laser-induced photoluminescence spectroscopy. In all of the compounds, the 6h Wyckoff position is predominantly or solely occupied by REE 3+ cations, whereas the cations shows a mixed occupancy at the larger, nine-coordinate 4f site with 55-75 % of REE 3+ cations and 45-25 % of other metal cations. The O4 (''free'' oxygen) site is fully occupied by O 2- anions, except for a Ba-Pr member with full occupancy by F - anions. The refined formulas are Cd 2 Er 8 (SiO 4 ) 6 O 2 , Cd 2 Tb 8 (SiO 4 ) 6 O 2 , KHo 9 (SiO 4 ) 6 O 2 , KTb 9 (SiO 4 ) 6 O 2 , KSm 9 (SiO 4 ) 6 O 2 , Sr 2 Nd 8 (SiO 4 ) 6 O 2 , Ba 2 Nd 8 (SiO 4 ) 6 O 2 , Ba 2 Sm 8 (SiO 4 ) 6 O 2 and Ba 4 Pr 6 (SiO 4 ) 6 F 2 . Changes in the metaprism twist angle (φ) and correlations between the unit-cell parameters, average cationic radii (of M + /M 2+ -REE 3+ pairs) and the chemistry of both the synthesised M + /M 2+ -REE 3+ silicate apatites and those reported previously are evaluated. Photoluminescence measurements of undoped samples yielded emission bands in the visible region from green to red; therefore, these compounds are potential candidates for luminescent materials. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Rare earth elements and permanent magnets (invited)

    Science.gov (United States)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  10. Laser excited fluorescence spectrum of Ho3+:SrF2 single crystal

    International Nuclear Information System (INIS)

    Lal, Bansi; Ramachandra Rao, D.

    1980-01-01

    The fluorescence spectrum of Ho 3+ : SrF 2 single crystal excited by the various lines of an Ar + laser, is reported. The three fluorescence groups recorded in the region 5300-7700 A, correspond to the transitions from ( 5 F 4 , 5 S 2 ) to 5 I 8 , 5 F 5 to 5 I 8 , 5 F 3 to 5 I 7 and ( 5 F 4 , 5 S 2 ) to 5 I 7 . Marked changes in the total integrated intensity of the various fluorescence groups with the change in the exciting wavelength are observed. (author)

  11. Preparation and up-conversion luminescence of SrAlF{sub 5}:Yb{sup 3+}/Er{sup 3+} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China); Hua, Ruinian, E-mail: rnhua@dlnu.edu.cn [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Zhang, Wei; Feng, Zhiqing; Tang, Dongxin; Na, Liyan [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Chen, Baojiu, E-mail: chenmbj@sohu.com [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China)

    2014-03-05

    Graphical abstract: The SrAlF{sub 5} nanorods co-doped with various Yb{sup 3+}/Er{sup 3+} concentrations was synthetized via a microemulsion-hydrothermal process for the first time. It was found that the optimum doping concentration of Yb{sup 3+} and Er{sup 3+} in SrAlF{sub 5} matrix was about 4 mol%. Furthermore, the temperature effect of upconversion luminescence was investigated. It was also found that the post heat-treatment could greatly improve upconversion luminescence. Highlights: • SrAlF{sub 5}:Yb{sup 3+}/Er{sup 3+} nanorods were synthesized via a microemulsion-hydrothermal process. • Crystal structure and morphology were characterized by using XRD and FESEM. • The upconversion luminescence intensity depend on LD working current was studied. • The post heat-treatment could greatly improve upconversion luminescence. -- Abstract: Yb{sup 3+} and Er{sup 3+} co-doped SrAlF{sub 5} nanorods with average diameter of 35 nm and average length of 400 nm were synthesized via a microemulsion-hydrothermal process, and their crystal structure and morphology were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The optimum doping concentration of Yb{sup 3+}/Er{sup 3+} in SrAlF{sub 5} matrix was about 4 mol%. The upconversion luminescence intensity dependence on the laser diode (LD) working current was studied and the possible upconversion mechanism was analyzed. Furthermore, the temperature effect of upconversion luminescence was investigated. It was also found that the post heat-treatment could greatly improve upconversion luminescence.

  12. Optimized photoluminescence of SrB 2O 4:Eu 3+ red-emitting phosphor by charge compensation

    Science.gov (United States)

    Zhao, Lai-Shi; Liu, Jie; Wu, Zhan-Chao; Kuang, Shao-Ping

    2012-02-01

    A novel red-emitting phosphor, SrB 2O 4:Eu 3+, was synthesized by high temperature solid-state reaction and its photoluminescence properties were studied. The emission spectrum consists of four major emission bands. The emission peaks are located at 593, 612, 650 and 703 nm, corresponding to the 5D0 → 7F1, 5D0 → 7F2, 5D0 → 7F3 and 5D0 → 7F4 typical transitions of Eu 3+, respectively. The effects of Eu 3+ doping content and charge compensators (Li +, Na +, K +) on photoluminescence of SrB 2O 4:Eu 3+ phosphor were studied. The results show that the emission intensity can be affected by above factors and Na + is the optimal charge compensator for SrB 2O 4:Eu 3+. The photoluminescence of NaSrB 2O 4:Eu 3+ was compared with that of Y 2O 2S:Eu 3+. It implies that SrB 2O 4:Eu 3+ is a good candidate as a red-emitting phosphor pumped by near-ultraviolet (NUV) InGaN chip for fabricating white light-emitting diodes (WLEDs).

  13. Magnetic properties of lithium rare-earth fluorides: Ferromagnetism in LiErF4 and LiHoF4 and crystal-field parameters at the rare-earth and Li sites

    DEFF Research Database (Denmark)

    Hansen, P. E.; Johansson, Torben; Nevald, Rolf

    1975-01-01

    Single crystals of LiErF4 and LiHoF4 have been grown and their magnetic properties measured from 1.3 K to 300 K. LiHoF4 turned out to be a nearly ideal Ising ferromagnet with TC=1.30±0.05 K and a saturation magnetization along the crystalline c axis of (6.98±0.02)μB. In LiErF4 no ordering...... was observed, but extrapolation indicates that below 0.5 K it will be ferromagnetic with the magnetic moments in the crytalline ab plane. From the susceptibilities the crystal-field parameters Bnm with (n, m)=(2, 0), (4, 0), (4, 4), (6, 0), (6, 4) have been extracted giving for Er3+ in LiErF4: 430., -985......., 1185., -5., 740.+i135. (cm-1) and for Ho3+ in LiHoF4: 470., -825., 1050., -10., 760.+i150 (cm-1). The exchange constants were found to be small compared to the dipole interactions. Furthermore the 7Li NMR spectra have been obtained in these materials as well as in LiTbF4 thereby determining the second...

  14. Structural and crystallisation study of a rare earth alumino borosilicate glass designed for nuclear waste confinement

    International Nuclear Information System (INIS)

    Quintas, A.

    2007-09-01

    This work is devoted to the study of a rare earth alumino borosilicate glass, which molar composition is 61,81 SiO 2 - 3,05 Al 2 O 3 - 8,94 B 2 O 3 - 14,41 Na 2 O - 6,33 CaO - 1,90 ZrO 2 - 3,56 Nd 2 O 3 , and envisaged for the immobilization of nuclear wastes originating from the reprocessing of high discharge burn up spent fuel. From a structural viewpoint, we investigated the role of the modifier cations on the arrangement of the glass network through different modifications of the glass composition: variation of the Na/Ca ratio and modification of the nature of the alkali and alkaline earth cations. The NMR and Raman spectroscopic techniques were useful to determine the distribution of modifier cations among the glass network and also to cast light on the competition phenomena occurring between alkali and alkaline earth cations for charge compensation of [AlO 4 ] - and [BO 4 ] - species. The neodymium local environment could be probed by optical absorption and EXAFS spectroscopies which enabled to better understand the insertion mode of Nd 3+ ions among the silicate domains of the glass network. Concerning the crystallization behavior we were interested in how the glass composition may influence the crystallization processes and especially the formation of the apatite phase of composition Ca 2 Nd 8 (SiO 4 ) 6 O 2 . In particular, this work underlined the important role of both alkaline earth and rare earth cations on the crystallization of the apatite phase. (author)

  15. Rare earth ion controlled crystallization of mica glass-ceramics

    International Nuclear Information System (INIS)

    Garai, Mrinmoy; Karmakar, Basudeb

    2016-01-01

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO_2, Nd_2O_3, Sm_2O_3 and Gd_2O_3 doped K_2O−MgO−B_2O_3−Al_2O_3−SiO_2−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm"−"3) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T_g) and crystallization temperature (T_c). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg_3(AlSi_3O_1_0)F_2 by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10"−"6/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque fluorophlogopite mica glass-ceramics by single-step heat treatment. • Nanocrystalline glass

  16. Enzymatic determination of rare earth elements using pyrophosphatases

    International Nuclear Information System (INIS)

    Shekhovtsova, T.N.; Pirogova, S.V.; Fedorova, O.M.; Dolmanova, I.F.; Bajkov, A.A.

    1993-01-01

    A highly sensitive(determination limit 8x10 -6 -4x10 -4 μ g/m) and selective enzymatic method for determination of rare earth elements has been developed. The method is based on inhibition action of rare earths on the catalytic activity of pyrophosphates isolated from bakery geast and E.Coli. The mechanism of the rare earth element action, corresponding to competitive inhibition, has been established

  17. Rare earth element abundances and distribution patterns in plant materials

    International Nuclear Information System (INIS)

    Aidid, S.B.

    1994-01-01

    Eight out of the fourteen rare earth elements were estimated from the leaves of Pelthophorum pterocarpum, the leaves and roots of Impatiens balsamina, and the soils from four sampling sites by instrumental neutron activation analysis. The chondrite normalized rare earth element abundances and distribution patterns in the plant materials were found to be significantly correlated to the abundances of the rare earth elements occurring in the soils. The extent of accumulation of the rare earth elements in some plant materials was also governed by the age of the plants and the plant organs. (author) 16 refs.; 4 figs.; 3 tabs

  18. Phase transitions of rare earth compounds during immobilization by foamed corundum

    International Nuclear Information System (INIS)

    Potemkina, T.I.; Zakharov, M.A.; Plotnikova, T.E.

    1992-01-01

    Expansion of work on the environmentally safe handling of radioactive materials has become very important in recent years. The proposed method for immobilizing radionuclides by injection into a porous matrix and subsequent fixation has a definite advantage over other techniques, because of its simplicity and low cost. This raises a number of problems that require careful study. The authors can distinguish the following: choice of porous matrix materials; thermal decomposition of nitrates directly in the matrix itself, which determines the minimum firing temperature; behavior and properties of oxides produced in nitrate decomposition; conditions for compound formation between injected solutions and matrix material; processes occurring during immobilizer storage. The rare earth nitrate series can be divided into two groups on the basis of behavior during thermal decomposition: the elements preceding and following Gd. The first group includes La, Pr, And Eu, for which decomposition begins simultaneously with conclusion of dehydration; the second includes Dy, Tb, and Yb, for which nitrate group decomposition begins before dehydration is complete. The authors utilized DTA, XPA, and IR analysis to study the physicochemical properties of the immobilizer produced by a single impregnation of the foamed corundum with rare earth (La, Eu, Dy, Tb, and Yb) nitrate solutions and subsequent firing at 900 degrees C for 30 min. The choice of these rare earths was dictated by the fact that the Ln 2 O 3 -AlO 3 system can be divided into three groups on the basis of phase ratios: La-Nd, Sm-Eu, and Gd-Lu. Lanthanide monoaluminates are formed in all these groups, and the difference lies in the other reaction products generated: LnAl 11 O 18 for La-Nd, LnAl 11 O 18 and Ln 4 Al 2 O 9 for Sm-Eu, and Ln 4 Al 2 O 9 and Ln 3 Al 5 O 12 for Gd-Lu

  19. Rare-Earth Oxide Ion (Tm3+, Ho3+, and U3+) Doped Glasses and Fibres for 1.8 to 4 Micrometer Coherent and Broadband Sources

    Science.gov (United States)

    2006-07-24

    oxide ( TeO2 ) , fluorine- containing silicate (SiOF2) and germanate (GeOF2) glass hosts for each dopant by characterising the spectroscopic properties...Earth Oxide Ion (Tm3+, Ho3+, And U3+) Doped Glasses And Fibres For 1.8 To 4 Micrometer Coherent And Broadband Sources 5c. PROGRAM ELEMENT NUMBER 5d...Rare-earth oxide ion (Tm3+, Ho3+, and U3+) doped glasses and fibres for 1.8 to 4 micrometer coherent and broadband sources Report prepared

  20. Upconversion luminescence of Er3+/Yb3+ doped Sr5(PO4)3OH phosphor powders

    Science.gov (United States)

    Mokoena, P. P.; Swart, H. C.; Ntwaeaborwa, O. M.

    2018-04-01

    Sr5(PO4)3OH co-doped with Er3+and Yb3+ powder phosphors were synthesized by urea combustion method. The crystal structure was analyzed using X-ray diffraction (XRD). Particle morphology was analyzed using a Jeol JSM 7800F thermal field emission scanning electron microscope (FE-SEM) and the chemical composition analysis was carried out using an Oxford Instruments AzTEC energy dispersive spectrometer (EDS) attached to the FE-SEM. Upconversion emission was measured by using a FLS980 Spectrometer equipped with a 980 nm NIR laser as the excitation source, and a photomultiplier (PMT) detector. The XRD data of the Sr5(PO4)3OH powder exhibited characteristic diffraction patterns of the hexagonal structure referenced in the standard JCPDS card number 00-033-1348. The sharp peaks revealed the formation of crystalline Sr5(PO4)3OH. The powders were made up of hexagonal nanospheres. The enhanced red emission due to the 4F9/2 → 4I15/2 transitions of Er3+ was observed and was attributed to up conversion (UC) energy transfer from Yb3+. The upconversion energy transfer mechanism from Yb3+ to Er3+ is discussed.

  1. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  2. Activity of RE/sub 2/O/sub 3/ in liquid La/sub 2/O/sub 3/-Al/sub 2/O/sub 3/-CaF/sub 2/ and Ce/sub 2/O/sub 3/-CaO-CaF/sub 2/ slags

    International Nuclear Information System (INIS)

    Changzhen, W.; Shuqing, Y.; Qieng, D.

    1985-01-01

    In the course of electro-slag refining, if the slag contains rare earth oxides, the amount of rare earth introduced to the steel depends on the composition of the slag and other conditions. The main aim of this investigation is to study the activity of RE/sub 2/O/sub 3/ in the electro-slags of various compositions. One is the La/sub 2/O/sub 3/-CaO-CaF/sub 2/ ternary slag system and the other is the Ce/sub 2/O/sub 3/-CaO-CaF/sub 2/ slag system. The iso-activity diagram for RE/sub 2/O/sub 3/ and the liquid boundary for slags system were estimated

  3. Activation analysis of trace amounts of rare earth in high purity tantalum

    International Nuclear Information System (INIS)

    Ishibashi, Wataru; Saito, Shinichi; Hirayama, Tooru.

    1975-01-01

    It is necessary to separate rare earth from tantalum by rapid methods in order to remove effects of a strong radioactivity and a short half-life. Tantalum is extracted with 10%N-lauryl (trialkylmethyl) amino-benzene pre-equilibrated with a solution of 9 M hydrochloric and 0.15 M hydrofluoric acid. A non-radioactive rare earth element is added to this aqueous solution, a precipitate of trace amounts of radioactive rare earth in aqueous solution is formed by this addition of rare earth. Some factors in the determination are: 1) the effect of the irradiation position of the sample in the atomic reactor, 2) the effect on the extraction with 10%N-lauryl (trialkylmethyl) amino-benzene for the radioactive rare earth, 3) the effect of the concentration of hydrofluoric acid, ammonia water and nitric acid on co-precipitation. As a result of the investigation we obtained the following satisfactory results: 1) Rare earth was not effected by the extraction of tantalum with 10%N-lauryl (trialkylmethyl) amino-benzene. 2) The recovery of rare earth by co-precipitation increases when an ammonium ion coexists, and when the concentration of hydrofluoric acid decreases, but the recovery decreases with the increase of nitric acid concentration. 3) The time required for the extraction is 9 hours. In case of determination for dysprosium, tantalum extracted with 10%N-lauryl (trialkylmethyl) amino-benzene before activation and the time for separation is 2 hours. (auth.)

  4. Synthesis and physicochemical investigation of 3-nitro-5-aminobenzoates of rare earths

    International Nuclear Information System (INIS)

    Makushova, G.N.; Zakharova, T.V.; Shilova, L.I.

    1994-01-01

    The compounds of cerium subgroup rare earth with 3-nitro-5-aminobenzoic acid of composition Ln(C 7 H 5 N 2 O 4 ) 3 ·nH 2 O, where Ln-La, Ce, Pr, Nd, Sm, Eu; n=4-14 not yet described in literature were obtained. Rare earth 3-nitro-5-aminobenzoates were individual crystal substances, as shown by X-ray diffraction; their interplanar distances were calculated. Thermal stability of the derived compounds was studied by means of thermography and thermal gravimetry. The interval of dehydration and start of decomposition of anhydrous salts was determined

  5. PROPAGATION TECHNIQUES AND AGRONOMIC REQUIREMENTS FOR THE CULTIVATION OF BARBADOS ALOE (ALOE VERA (L. BURM. F. - A REVIEW.

    Directory of Open Access Journals (Sweden)

    Barbara De Lucia

    2016-09-01

    Full Text Available Barbados aloe (Aloe vera (L. Burm. f. has traditionally been used for healing in natural medicine. However, aloe is now attracting great interest in the global market due to its bioactive chemicals which are extracted from the leaves and used in industrial preparations for pharmaceutical, cosmetic and food products. Aloe originated from tropical and sub-tropical Africa, but it is also now cultivated in warm climatic areas of Asia, Europe and America.In this review, the most important factors affecting aloe production are described. We focus on propagation techniques, sustainable agronomic practices and efficient post harvesting and processing systems.

  6. Development of constraint algorithm for the number of electrons in molecular orbitals consisting mainly 4f atomic orbitals of rare-earth elements and its introduction to tight-binding quantum chemical molecular dynamics method

    International Nuclear Information System (INIS)

    Endou, Akira; Onuma, Hiroaki; Jung, Sun-ho

    2007-01-01

    Our original tight-binding quantum chemical molecular dynamics code, Colors', has been successfully applied to the theoretical investigation of complex materials including rare-earth elements, e.g., metal catalysts supported on a CeO 2 surface. To expand our code so as to obtain a good convergence for the electronic structure of a calculation system including a rare-earth element, we developed a novel algorithm to provide a constraint condition for the number of electrons occupying the selected molecular orbitals that mainly consist of 4f atomic orbitals of the rare-earth element. This novel algorithm was introduced in Colors. Using Colors, we succeeded in obtaining the classified electronic configurations of the 4f atomic orbitals of Ce 4+ and reduced Ce ions in a CeO 2 bulk model with one oxygen defect, which makes it difficult to obtain a good convergence using a conventional first-principles quantum chemical calculation code. (author)

  7. Precipitation of the rare earth double sodium and rare earths from the sulfuric liquor and the conversion into rare earth hydroxides through meta ethic reaction

    International Nuclear Information System (INIS)

    Abreu, Renata D.; Oliveira, Ester F.; Brito, Walter de; Morais, Carlos A.

    2007-01-01

    This work presents the purification study of the rare earths through precipitation of rare earth and sodium (Na TR (SO 4 ) 2 . x H 2 O)) double sulfate and his conversion to rare earths hydroxide TR(OH) 3 by meta ethic reaction through the addition of sodium hydroxide solution to the solid double sulfate. The study used the sulfuric liquor as rare earth sample, generated in the chemical processing of the monazite with sulfuric acid by the Industrias Nucleares do Brasil - INB, Brazil, after the thorium and uranium extraction. The work investigated the influence of the main variables involved in the precipitation of Na TR(SO 4 ) 2 .xH 2 O and in the conversion for the TR(OH) 3 , as follows: type and excess of the precipitation agent, temperature and time reaction. The obtained solid composites were characterized by X-ray diffraction, infrared and chemical analysis. The double sulfate diffractogram indicated the Na TR(SO 4 ) 2 mono-hydrated. The characterization of the metatese products has shown that, for obtaining the complete conversion of NaTR(SO 4 ) 2 .H 2 O into TR(OH) 3 , the reaction must be hot processed (∼70 deg C) and with small excess of Na OH (≤ 5 percent). (author)

  8. Rare earth (3) pivalates

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Martynenko, L.I.; Zoan An' Tu; Ch'eu Tkhi Nguet; Troyanov, S.I.; Rykov, A.N.; Korenev, Yu.M.

    1994-01-01

    Depending on synthesis conditions rare earth pivalates can be obtained in the form of either adducts NPiv·HPiv or hydrates MPiv 3 ·mH 2 O. Adducts are the most stable form of pivalates. Heating of adducts result in formation of corresponding MPiv 3 . MPiv 3 ·nHPiv compounds are characterized by IR-spectroscopy and thermal analysis data. Behaviour of MPiv 3 was studied in the regime of vacuum sublemation. Using mass spectroscopy of NdPiv 3 it was shown that gaseous phase above MPiv 3 had complex composition and contained ligomer fragments. X-ray structure analysis of [NdPiv 3 ·3HPiv] was conducted

  9. Correlations in rare-earth transition-metal permanent magnets

    International Nuclear Information System (INIS)

    Skomski, R.; Manchanda, P.; Kashyap, A.

    2015-01-01

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo 5 . On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy

  10. Correlations in rare-earth transition-metal permanent magnets

    Science.gov (United States)

    Skomski, R.; Manchanda, P.; Kashyap, A.

    2015-05-01

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo5. On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy.

  11. Port Pirie rare earths plant stage 3

    International Nuclear Information System (INIS)

    1990-08-01

    SX Holdings Limited intends to establish a rare earths plant at Port Pirie, South Australia. The proposal involves three stages of development, Stage 3 being to develop a monazite cracking plant and associated rare earths separation facility with the capacity to process up to 8,000 t/a of monazite-type ores. The proposed initial capacity is 4,000 t/a. This Draft Environmental Impact Statement relates to Stage 3 and is based on a monazite processing capacity of 8,000 t/a. The justification of the project is given in terms of use and the market for rare earths, the economic and environmental benefits of the proposal, the site selection process, site rehabilitation, and the consequences of not proceeding. A detailed description of the project is given, including the treatment process, site development and facilities, the supply of raw materials, product and waste handling, transport and storage, plant commissioning, operation and decommissioning, construction and staffing. The environmental issues entailed in the proposed development are discussed and include social effects, land use and infrasturcture considerations, risk management and transport. Occupational and environmental radiation issues, including assessments of exposure pathways and doses, management and monitoring, disposal of monosite residue are also discussed. It is estimated that the effects of disposal of 2,330 t/year of radioactive slurry in the sub-aerial tailing disposal system at Olympic Dam will be negligible. Moreover, the gamma dose increases would not result in any significant increase in occupational exposures. 38 refs., tabs., ills

  12. The operator technique in the theory of the rare earth ion interaction with ligand nuclei

    International Nuclear Information System (INIS)

    Anikeenok, O.A.; Eremin, M.V.; Khutsishvili, O.G.

    1986-01-01

    The tensor structure of the operator of rare earth ion interaction with nuclei of close ligands conditioned by virtual processes of charge transport is established. It is taken into account that virtual processes of electron transport from the ligand can take place to the non-filled 4f-, void 5d- and 6s- and preliminarily excited 5p-shells of the rare earth ion. Effects of 4f- and 5d-state mixing by the odd crystal field are considered for the first time. In contrast to the usual multipole-dipole interaction the given one is characterized by anomalously greater significance of highest multipole momenta of the rare earth ion and in the common case it does not have axial symmetry. The theory is compared with data on double electron-nuclear resonance and radiofrequency discrete saturation, taking CaF 2 :Ce 3+ impurity centers as an example

  13. Interaction between the magnetic moments of the 3d and the 4f electrons in manganite, probed by Ga substitution

    International Nuclear Information System (INIS)

    Ling Langsheng; Zhang Lei; Tong Wei; Qu Zhe; Pi Li; Zhang Yuheng

    2012-01-01

    The substitution of Ga for Mn in manganite Nd 0.6 Dy 0.1 Sr 0.3 MnO 3 with a ferromagnetic (FM) ground state has been performed to study the influence of the Mn-sublattice magnetic ordering on the magnetic rare-earth sublattice. It is found that the substitution of Mn 3+ with Ga 3+ ions results in a sharp decrease of T C , reflecting the reduction of the double-exchange interactions strength J Mn–Mn . At the same time, a depinning effect of the rare-earth magnetic moment has been observed. This behavior unambiguously proves that the exchange interaction between Mn and rare-earth ions J Mn–R strongly influences the rare-earth magnetic ordering at temperatures below T C and stabilizes the rare-earth magnetic ground state.

  14. Neutron activation analysis of the rare earth elements in Nasu hot springs

    International Nuclear Information System (INIS)

    Ikeda, Nagao; Takahashi, Naruto.

    1978-01-01

    Eleven rare earth elements (lanthanum, cerium, neodymium, samarium, europium, gadolinium, terbium, holmium, thulium, ytterbium and lutetium) in hot spring waters and sinter deposits in the Nasu area were determined by the neutron activation method. The rare earth elements in hot spring water were preconcentrated in ferric hydroxide precipitate and neutron-irradiated. The rare earth elements were chemically separated into lighter and heavier groups and the activity of each group was measured with a Ge(Li) detector. Distribution of the rare earth elements between the hot spring water and the sinter deposit was also discussed. (auth.)

  15. Magnetic properties of RT2Zn20; R = rare earth, T = Fe, Co, Ru, Rh, Os and Ir

    International Nuclear Information System (INIS)

    Jia, Shuang

    2008-01-01

    It is well known that rare earth intermetallic compounds have versatile, magnetic properties associated with the 4f electrons: a local moment associated with the Hund's rule ground state is formed in general, but a strongly correlated, hybridized state may also appear for specific 4f electronic configuration (eg. for rare earth elements such as Ce or Yb). On the other hand, the conduction electrons in rare earth intermetallic compounds, certainly ones associated with non hybridizing rare earths, usually manifest non-magnetic behavior and can be treated as a normal, non-interacted Fermi liquid, except for some 3d-transition metal rich binary or ternary systems which often manifest strong, itinerant, d electron dominant magnetic behavior. Of particular interest are examples in which the band filling of the conduction electrons puts the system in the vicinity of a Stoner transition: such systems, characterized as nearly or weakly ferromagnet, manifest strongly correlated electronic properties (Moriya, 1985). For rare earth intermetallic compounds, such systems provide an additional versatility and allow for the study of the behaviors of local moments and hybridized moments which are associated with 4f electron in a correlated conduction electron background.

  16. Ammonothermal synthesis of alkali-alkaline earth metal and alkali-rare earth metal carbodiimides. K{sub 5-x}M{sub x}(CN{sub 2}){sub 2+x}(HCN{sub 2}){sub 1-x} (M = Sr, Eu) and Na{sub 4.32}Sr{sub 0.68}(CN{sub 2}){sub 2.68}(HCN{sub 2}){sub 0.32}

    Energy Technology Data Exchange (ETDEWEB)

    Mallmann, Mathias; Haeusler, Jonas; Cordes, Niklas; Schnick, Wolfgang [Department of Chemistry, University of Munich (LMU) (Germany)

    2017-12-13

    Alkali-alkaline earth metal and alkali-rare earth metal carbodiimides, namely K{sub 5-x}M{sub x}(CN{sub 2}){sub 2+x}(HCN{sub 2}){sub 1-x} (x = 0 - 1) (M = Sr, Eu) and Na{sub 4.32}Sr{sub 0.68}(CN{sub 2}){sub 2.68}(HCN{sub 2}){sub 0.32}, were synthesized under ammonothermal conditions in high-pressure autoclaves. The structures of the three compounds can be derived from homeotypic K{sub 5}H(CN{sub 2}){sub 3} and Na{sub 5}H(CN{sub 2}){sub 3} by partial substitution of K{sup +} or Na{sup +}by Sr{sup 2+} or Eu{sup 2+}. The reactions were carried out in two step syntheses (T{sub 1} = 673 K, T{sub 2} = 823 K) starting from sodium or potassium azide, dicyandiamide and strontium or Eu(NH{sub 2}){sub 2}, respectively. The crystal structures were solved and refined from single-crystal X-ray diffraction data [K{sub 4.16}Sr{sub 0.84}(CN{sub 2}){sub 2.84}(HCN{sub 2}){sub 0.16}: space group Im3m (no. 229), a = 7.8304(5) Aa, Z = 2, R{sub 1} = 0.024, wR{sub 2} = 0.052; K{sub 4.40}Eu{sub 0.60}(CN{sub 2}){sub 2.60}(HCN{sub 2}){sub 0.40}: space group Im anti 3m (no. 229), a = 7.8502(6) Aa, Z = 2, R{sub 1} = 0.022, wR{sub 2} = 0.049]. In contrast to the potassium carbodiimides, the sodium-strontium carbodiimide was only synthesized as microcrystalline powder. The crystal structure was determined by powder X-ray diffraction and refined by the Rietveld method [Na{sub 4.32}Sr{sub 0.68}(CN{sub 2}){sub 2.68}(HCN{sub 2}){sub 0.32}: space group Im3m (no. 229), a = 7.2412(1) Aa, Z = 2, R{sub wp} = 0.050]. The presence of hydrogencyanamide units ([HNCN]{sup -}) next to carbodiimide units ([CN{sub 2}]{sup 2-}) in all compounds was confirmed by FT-IR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Rare earth ion controlled crystallization of mica glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garai, Mrinmoy; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in

    2016-09-05

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO{sub 2}, Nd{sub 2}O{sub 3}, Sm{sub 2}O{sub 3} and Gd{sub 2}O{sub 3} doped K{sub 2}O−MgO−B{sub 2}O{sub 3}−Al{sub 2}O{sub 3}−SiO{sub 2}−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm{sup −3}) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T{sub g}) and crystallization temperature (T{sub c}). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg{sub 3}(AlSi{sub 3}O{sub 10})F{sub 2} by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10{sup −6}/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque

  18. Propagation Techniques and Agronomic Requirements for the Cultivation of Barbados Aloe (Aloe vera (L.) Burm. F.)—A Review

    Science.gov (United States)

    Cristiano, Giuseppe; Murillo-Amador, Bernardo; De Lucia, Barbara

    2016-01-01

    Barbados aloe (Aloe vera (L.) Burm. F.) has traditionally been used for healing in natural medicine. However, aloe is now attracting great interest in the global market due to its bioactive chemicals which are extracted from the leaves and used in industrial preparations for pharmaceutical, cosmetic, and food products. Aloe originated from tropical and sub-tropical Africa, but it is also now cultivated in warm climatic areas of Asia, Europe, and America. In this review, the most important factors affecting aloe production are described. We focus on propagation techniques, sustainable agronomic practices and efficient post harvesting and processing systems. PMID:27721816

  19. A study on artificial rare earth (RE2O3) based neutron absorber

    International Nuclear Information System (INIS)

    KIM, Kyung-O; Kyung KIM, Jong

    2015-01-01

    A new concept of a neutron absorption material (i.e., an artificial rare earth compound) was introduced for criticality control in a spent fuel storage system. In particular, spent nuclear fuels were considered as a potential source of rare earth elements because the nuclear fission of uranium produces a full range of nuclides. It was also found that an artificial rare earth compound (RE 2 O 3 ) as a High-Level Waste (HLW) was naturally extracted from pyroprocessing technology developed for recovering uranium and transuranic elements (TRU) from spent fuels. In this study, various characteristics (e.g., activity, neutron absorption cross-section) were analyzed for validating the application possibility of this waste compound as a neutron absorption material. As a result, the artificial rare earth compound had a higher neutron absorption probability in the entire energy range, and it can be used for maintaining sub-criticality for more than 40 years on the basis of the neutron absorption capability of Boral™. Therefore, this approach is expected to vastly improve the efficiency of radioactive waste management by simultaneously keeping HLW and spent nuclear fuel in a restricted space. - Highlights: • Quantitative analysis of rare earth elements in PWR spent fuels. • Extraction of artificial rare earth compound using pyroprocessing technology. • Characteristic analysis of artificial rare earth elements. • Performance evaluation of artificial rare earth for criticality control.

  20. The role of rare-earth dopants in tailoring the magnetism and magnetic anisotropy in Fe4N

    Science.gov (United States)

    Li, Zirun; Mi, Wenbo; Bai, Haili

    2018-05-01

    The magnetism and magnetic anisotropy of the rare-earth (RE) atom-substituted Fe4N are investigated by first-principles calculations. It is found that the substitution of one RE atom results in an antiferromagnetic coupling with the Fe atoms. The 4f-3d exchange interaction has an important influence on the density of states of Fe near the Fermi level. PrFe3N and NdFe3N with a tetragonal structure exhibit giant magnetic anisotropy energy larger than 5 meV/atom. The magnetic anisotropy depends on the distribution of partial states of d or f orbital near the Fermi level. As Eu substitutes Fe in Fe4N, the magnetic moment of Eu3FeN even exceeds 23 μB. Our theoretical predictions point out the possibilities of tuning the magnetism and magnetic anisotropy of Fe4N upon RE doping.

  1. Final report on the safety assessment of AloeAndongensis Extract, Aloe Andongensis Leaf Juice,aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice,aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract.

    Science.gov (United States)

    2007-01-01

    in acute oral studies using mice and rats. In parenteral studies, the LD(50) using mice was > 200 mg/kg, rats was > 50 mg/kg, and using dogs was > 50 mg/kg. In intravenous studies the LD(50) using mice was > 80 mg/kg, rats was > 15 mg/kg, and dogs was > 10 mg/kg. The 14-day no observed effect level (NOEL) for the Aloe polysaccharide, acemannan, in the diet of Sprague-Dawley rats, was 50,000 ppm or 4.1 to 4.6 g/kg day(-1). In a 3-month study using mice, Aloe vera (extracted in ethanol) given orally in drinking water at 100 mg/kg produced reproductive toxicity, inflammation, and mortality above that seen in control animals. Aloe vera extracted in methanol and given to mice at 100 mg/kg in drinking water for 3 months caused significant sperm damage compared to controls. Aloe barbadensis extracted with water and given to pregnant Charles Foster albino rats on gestational days (GDs) 0 through 9 was an abortifacient and produced skeletal abnormalities. Both negative and positive results were found in bacterial and mammalian cell genotoxicity assays using Aloe barbadensis-derived material, Aloe Ferox-derived material, and various anthraquinones derived from Aloe. Aloin (an anthraquinone) did not produce tumors when included in the feed of mice for 20 weeks, nor did aloin increase the incidence of colorectal tumors induced with 1,2-dimethylhydrazine. Aloe-emodin (an anthraquinone) given to mice in which tumor cells had been injected inhibited growth of malignant tumors. Other animal data also suggest that components of Aloe inhibit tumor growth and improve survival. Various in vitro assays also demonstrated anticarcinogenic activity of aloe-emodin. Diarrhea was the only adverse effect of note with the use of Aloe-derived ingredients to treat asthma, ischemic heart disease, diabetes, ulcers, skin disease, and cancer. Case reports include acute eczema, contact urticaria, and dermatitis in individuals who applied Aloe-derived ingredients topically. The Cosmetic Ingredient

  2. Synthesis and photoluminescence of Sm3+ doped alkali alkaline earth borate hosts NaBa4 (BO3)3 and LiSr4(BO3)3

    International Nuclear Information System (INIS)

    Chauhan, A.V.; Nagpure, P.A.; Omanwar, S.K.

    2012-01-01

    In this paper we report the photoluminescence of Sm 3+ doped alkali alkaline borate hosts NaBa 4 (BO 3 ) 3 and LiSr 4 (BO 3 ) 3 . For the synthesis of alkali alkaline borate hosts NaBa 4 (BO 3 ) 3 and LiSr 4 (BO 3 ) 3 doped with different concentrations of Sm 3+ ions, we used the novel combustion technique. The phase purity of the hosts was confirmed by the powder XRD technique. The photoluminescence of the phosphors were carried out within 300 to 700 nm wavelength range. The phosphor shows intense orange red (602 nm) emission for near UV excitation. The FTIR spectra of the phase pure hosts have also been reported. (author)

  3. Effect of crystalline electric fields and long-range magnetic order on superconductivity in rare earth alloys and compounds

    International Nuclear Information System (INIS)

    McCallum, R.W.

    1977-01-01

    The behavior of rare earth ions in a superconducting matrix has been studied in two distinct regimes. First, the effects of crystal field splitting of the 4f levels of a magnetic rare earth ion in the alloy system (LaPr)Sn 3 were investigated in the limit of low Pr 3+ concentration. In this system the rare earth impurity ions occupy random La sites in the crystal lattice. Second, the interaction of long-range magnetic order and superconductivity was explored in the ternary rare earth molybdenum chalcogenide systems. In these compounds the rare earth ions occupy periodic lattice sites in contrast to the random distribution of magnetic ions in dilute impurity alloy systems such as (LaPr)Sn 3

  4. Processing of Pakistani carbonatites for separation of cerium from adjacent rare earths

    International Nuclear Information System (INIS)

    Akram, M.; Qazi, N.K.; Khan, M.F.; Hasan, G.H.; Ahmed, N.; Chughtai, N.A.

    2003-01-01

    Carbonatite rock of Loe-Shilman area in North Western Frontier Province (NWFP) of Pakistan contains rare earth elements. This rock was upgraded in terms of its rare earths content from 2,000 ppm to 10,000 ppm rare earths oxide (REO) by crushing, calcination at 1000 deg. C for 3 hrs and cold leaching with 2% HCl for 1 hr. 80% to 95% of rare earths present in carbonatite powder were digested in nitric acid at 60 deg. C after 2 hrs stirring. Tributyl phosphate (TBP), diluted with dodecane, was used as extractant for extraction of rare earths. Since extraction is dependent on pH of the aqueous feed solution, the role of nitrate ions concentration in the solvent extraction of rare earth elements (REEs) was studied. It was observed that extraction of REEs was maximum at pH 1.1. The solvent had been unable to extract REEs from high acidic feed solutions. Solvents of different molarities were also tried against aqueous phase of pH 1.1. Studies showed a poor gain at 0 M and 0.5 M of organic phase while no gain observed beyond 2 molar solvent. 1 M organic phase gave maximum yield of rare earths salt, Ln(OH)/sub 3/, when stripped solution precipitated with ammonium hydroxide solution. It was also observed that if aqueous solution of 3.0 N was treated with blank solvent (i.e. Molarity = 0), it gave almost the same result. It was further established that optimum quantity of caging agent, Al(NO/sub 3/)/sub 3/-9H/sub 2/O added to aqueous solution prior to pH adjustment (i.e. 10 gm/100 gm powder dissolved) suppressed fluoride ions (F') which were hindering the extraction of rare earths. This improved the extraction efficiency of desired elements. To optimise the process parameters like solvent dilution, aqueous to organic ratio and extraction/stripping times, a' series of experiments were performed. Recovery for the desired elements had been between 78% to 86%. The optimum extraction parameters were found to be TBP concentration 40% (v/v) for aqueous to organic ratio 1:5 and 50

  5. Caracterización morfoanatómica comparativa entre Aloe vera (L.) Burm. F., Aloe arborescens Mill., Aloe saponaria Haw. y Aloe ciliaris Haw. (Aloeaceae)

    OpenAIRE

    Carpano, Stella Maris; Castro, María Teresa; Spegazzini, Etile Dolores

    2009-01-01

    Aloe vera (L.) Burm. F. (= Aloe barbadensis Miller) conhecida como "a planta da imortalidade" no antigo Egito é utilizada em fitoterapia como humectante, antibacteriana, antifúngica, antiviral e antioxidante. Com a finalidade de contribuir para identificação da droga vegetal, foram realizados estudos morfoanatômicos da folha. A utilização de plantas com características terapêuticas reconhecidas determina que, por analogia, popularmente sejam utilizadas com a mesma finalidade outras espécies d...

  6. X-ray diffraction study of rare earth epitaxial structures grown by MBE onto (111) GaAs

    International Nuclear Information System (INIS)

    Bennett, W.R.; Farrow, R.F.C.; Parkin, S.S.P.; Marinero, E.E.; Segmuller, A.P.

    1989-01-01

    The authors report on the new epitaxial system LaF 3 /Er/Dy/Er/LaF 3 /GaAs(111) grown by molecular beam epitaxy. X-ray diffraction studies have been used to determine the epitaxial relationships between the rare earths, the LaF 3 and the substrate. Further studies of symmetric and asymmetric reflections yielded the in-plane and perpendicular strain components of the rare earth layers. Such systems may be used to probe the effects of magnetoelastic interactions and dimensionality on magnetic ordering in rare earth metal films

  7. Synthesis and luminescence properties of novel Sr{sub 3}Gd(PO{sub 4}){sub 3}:Dy{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiguang; Sun, Jiayue, E-mail: Jiayue_sun@126.com; Cui, Dianpeng; Di, Qiumei; Zeng, Junhui

    2015-02-15

    Sr{sub 3}(Gd{sub 1−x}Dy{sub x})(PO{sub 4}){sub 3} phosphors for white light-emitting diodes (w-LEDs) were prepared by the conventional solid-state reaction. X-ray diffraction (XRD) and photoluminescence spectra were utilized to characterize the structure and luminescence properties of the as-synthesized phosphors. Luminescence properties shows that the phosphor can be efficiently excited by the ultraviolet visible light in the region from 300 to 450 nm, and it exhibits blue (483 nm) and yellow (575 nm) emission corresponding to {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} transition and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transition, respectively. It has been found that concentration quenching occurs via dipole–dipole interaction according to Dexter's theory. The temperature dependence of photoluminescence properties is investigated from 25 to 250 °C and the prepared Sr{sub 3}Gd(PO{sub 4}){sub 3}:Dy{sup 3+} phosphors show good thermal quenching properties. - Highlights: • Sr{sub 3}Gd(PO{sub 4}){sub 3}:Dy{sup 3+} phosphors were synthesized by a solid-state reaction method. • The phosphor could be efficiently excited by the UV–vis light region from 300 to 450 nm. • Sr{sub 3}Gd(PO{sub 4}){sub 3}:Dy{sup 3+} phosphors exhibited blue (483 nm) and yellow (575 nm) emission. • The Sr{sub 3}Gd(PO{sub 4}){sub 3}:Dy{sup 3+} phosphors concentration quenching occurred as a result of dipole–dipole interaction. • Sr{sub 3}Gd(PO{sub 4}){sub 3}:Dy{sup 3+} phosphors showed good thermal quenching properties.

  8. Rare earth metal bis(amide) complexes bearing amidinate ancillary ligands: synthesis, characterization, and performance as catalyst precursors for cis-1,4 selective polymerization of isoprene.

    Science.gov (United States)

    Luo, Yunjie; Fan, Shimin; Yang, Jianping; Fang, Jianghua; Xu, Ping

    2011-03-28

    A family of rare earth metal bis(amide) complexes bearing monoanionic amidinate [RC(N-2,6-Me(2)C(6)H(3))(2)](-) (R = cyclohexyl (Cy), phenyl (Ph)) as ancillary ligands were synthesized and characterized. One-pot salt metathesis reaction of anhydrous LnCl(3) with one equivalent of amidinate lithium [RC(N-2,6-Me(2)C(6)H(3))(2)]Li, following the introduction of two equivalents of NaN(SiMe(3))(2) in THF at room temperature afforded the neutral and unsolvated mono(amidinate) rare earth metal bis(amide) complexes [RC(N-2,6-Me(2)C(6)H(3))(2)]Y[N(SiMe(3))(2)](2) (R = Cy (1); R = Ph (2)), and the "ate" mono(amidinate) rare earth metal bis(amide) complex [CyC(N-2,6-Me(2)C(6)H(3))(2)]Lu[N(SiMe(3))(2)](2)(μ-Cl)Li(THF)(3) (3) in 61-72% isolated yields. These complexes were characterized by elemental analysis, NMR spectroscopy, FT-IR spectroscopy, and X-ray single crystal diffraction. Single crystal structural determination revealed that the central metal in complexes 1 and 2 adopts a distorted tetrahedral geometry, and in complex 3 forms a distorted trigonal bipyramidal geometry. In the presence of AlMe(3), and in combination with one equimolar amount of [Ph(3)C][B(C(6)F(5))(4)], complexes 1 and 2 showed high activity towards isoprene polymerization to give high molecular weight polyisoprene (M(n) > 10(4)) with good cis-1,4 selectivity (>90%).

  9. Spectroscopic properties of Er3+ and Yb3+ co-doped glass ceramics containing SrF2 nanocrystals

    International Nuclear Information System (INIS)

    Qiao Xvsheng; Fan Xianping; Wang Minquan; Zhang Xianghua

    2009-01-01

    The spectroscopic properties of Er 3+ /Yb 3+ co-doped 50SiO 2 -10Al 2 O 3 -20ZnF 2 -20SrF 2 glass and glass ceramic containing SrF 2 nanocrystals were investigated. The formation of SrF 2 nanocrystals in the glass ceramic was confirmed by XRD. The oscillator strengths for several transitions of the Er 3+ ions in the glass ceramic have been obtained and the Judd-Ofelt parameters were then determined. The XRD result and Judd-Ofelt parameters suggested that Er 3+ and Yb 3+ ions had efficiently enriched in the SrF 2 nanocrystals in the glass ceramic. The lifetime of excited states has been used to reveal the surroundings of luminescent Er 3+ and Yb 3+ and energy transfer (ET) mechanism between Er 3+ and Yb 3+ . Much stronger upconversion luminescence and longer lifetime of the Er 3+ /Yb 3+ co-doped glass ceramic were observed in comparison with the Er 3+ /Yb 3+ co-doped glass, which could be ascribed to more efficient ET from Yb 3+ to Er 3+ due to the enrichment of Yb 3+ and Er 3+ and the shortening of the distance between lanthanide ions in the precipitated SrF 2 nanocrystals.

  10. A systemic study of stepwise chlorination-chemical vapor transport characteristics of pure rare earth oxides from Sc2O3 to Lu2O3 mediated by alkaline chlorides as complex former

    International Nuclear Information System (INIS)

    Sun Yanhui; He Peng; Chen Huani

    2007-01-01

    A systematic study has been carried out for the stepwise chlorination-chemical vapor transport (SC-CVT) characteristics of pure rare earth oxides from Sc 2 O 3 to Lu 2 O 3 mediated by the vapor complexes KLnCl 4 and NaLnCl 4 (Ln = Sc, Y and La-Lu) used NaCl and KCl as complex former, respectively. The results showed that the SC-CVT characteristics are similarly for NaCl and KCl as complex former, the main deposition temperature of the rare earth chlorides LnCl 3 is in the increasing order ScCl 3 3 3 , and then with a systematically decreasing trend from the early lanthanide chlorides to the end one. The results also showed that the total transported amount of the produced chlorides is YCl 3 > ScCl 3 , and they are much higher than that of most lanthanoid chlorides. For lanthanoids, the total transported amount of chloride increases systematically from the early lanthanoid chlorides to the end one except for EuCl 3 and GdCl 3 mediated by KCl and NaCl as complex former, respectively, which showed the divergence effect of Gd in the total transport efficiency. But there are some differences in SC-CVT characteristics of pure rare earth oxide mediated by KCl and NaCl as complex former, that is the main deposition temperature region for the same rare earth element was lower for KCl than that for NaCl as complex former except for LaCl 3 , CeCl 3 , YbCl 3 and LuCl 3 , while the total transport amount of rare earth chloride for KCl as complex former is higher than that for NaCl except for LaCl 3 and EuCl 3 . More over, the discussion was carried out for Sc and Y on the one hand and the lanthanides contain 4f electron as another hand based on the 4f electron hybridization assumption. Further more, the transport characteristics of rare earth oxides with alkaline chlorides as complex former in this study were compared to that with AlCl 3 as complex former

  11. Investigation and modelling of rare-earth activated waveguide structures

    International Nuclear Information System (INIS)

    Wolinski, W.; Malinowski, M.; Mossakowska-Wyszynska, A.; Piramidowicz, R.; Szczepanski, P.

    2005-01-01

    In this paper the overview of the recent study on the rare-earth activated waveguides performed in the Optoelectronic Department of IMiO is presented. We reported on the development of rare earth-doped fluorozirconate (ZBLAN) glass fibers that allow a construction of a new family of visible and ultraviolet fiber lasers pumped by upconversion. Especially the performance of holmium devices is presented. The properties of laser planar waveguides obtained by the LPE process and the growth conditions of rare earths doped YAG layers are presented. In this paper we present also the theoretical study of the nonlinear operation of planar waveguide laser, as an example the microdisk Nd:YAG structure is discussed. We derived an approximate formula which relates the small signal gain in the Nd:YAG active medium and the laser characteristics, obtained for whispering-gallery modes and radial modes, to the output power and real parameters of the laser structure (authors)

  12. Enhancement of white-light-emission from single-phase Sr5(PO4)3F:Eu(2+),Mn(2+) phosphors for near-UV white LEDs.

    Science.gov (United States)

    Feng, Yaomiao; Huang, Jinping; Liu, Lili; Liu, Jie; Yu, Xibin

    2015-09-07

    A series of single-phase broadband white-light-emitting Sr5(PO4)3F:Eu(2+),Mn(2+) phosphors were prepared by a solid state reaction. The luminescence property, and the crystal and electronic structures of the fluorophosphates were studied by photoluminescence analysis, XRD Rietveld refinement and density functional theory calculation (DFT), respectively. Under near ultraviolet excitation in the 250 to 430 nm wavelength range, the phosphors exhibit two emission bands centered at 440 and 556 nm, caused by the Eu(2+) and Mn(2+) ions. By altering the relative ratios of Eu(2+) and Mn(2+) in the compounds, the emission color could be modulated from blue to white. The efficient energy transfer from the Eu(2+) to Mn(2+) ions could be ascribed to the well crystallized host lattice and the facile substitution of Eu(2+) and Mn(2+) for Sr(2+) sites due to similar ionic radii. A series of fluxes were investigated to improve the photoluminescence intensity. When KCl was used as flux in the synthesis, the photoluminescence intensity of Sr5(PO4)3F:Eu(2+),Mn(2+) was enhanced by 85% compared with no fluxes added. These results demonstrate that the single-phase Sr5(PO4)3F:Eu(2+),Mn(2+) with enhanced luminescence efficiency could be promising as a near UV-convertible direct white-light-emitting phosphor for WLED applications.

  13. Study on trace and rare earth elements in Indonesian oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Liu, Hong-peng; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Major, trace elements and rare earth and mineral composition of the oil sand samples (ST1, ST2, ST3) and the oil sand retorting residue (semi-coke: SC1, SC2, SC3) from Indonesian were determined by XFS, ICP-MS and XRD methods. The trace elements content in oil sand is pretty much the same thing in Earth's Clarke value. The trace element is abundantly in earth's Clarke, in oil sand yet, for Ti, Mn, Ba, Sr, but these elements are lower enrichment. However, the Cr (EF = 16.8) and Mo (EF = 11.8) are ''enrichment'' in ST1; the Ni (EF =10.5), Se (EF = 17.5), Sr (EF = 28.7), Mo (EF = 106.5), Sc (EF = 12.8) and U (EF = 43.2) are ''enrichment'' in ST2; the Se (EF = 12.6), Sr (EF = 18.4), Mo (EF = 47.5), and U (EF = 27.8) are ''enrichment'' in ST3. Calculations show that trace elements in sime-coke have lower evaporation rate during Fischer Assay. Trace elements in raw oil sand are so stable that trace elements can't move easily to other pyrolysis product but enrich to sime-coke. After retorting, more elements are EF > 10, such as B, V, Ni, As, Se, Sr, Mo, Hg, Cs and U. It is essential to take the pollution produced by trace elements in sime-coke during the sime-coke utilization into consideration. The REEs content had a high correlation with the ash in oil sand. The REE is closely related to terrigenous elastic rocks.

  14. Thermochemistry of certain rare earth and ammonium double chlorides

    International Nuclear Information System (INIS)

    Usubaliev, D.U.; Abramtsev, V.A.; Kydynov, M.K.; Vilyaev, A.N.

    1987-01-01

    In a calorimeter with isothermal casing at 25 deg C dissolution enthalpies of double chlorides of rare earths and ammonium LnCl 3 x2NH 4 Cl (Ln=La, Sm) and LnCl 3 x3NH 4 Cl (Ln=Gd, Tb, Ho) in water, as well as dissolution enthalpy of rare earth chlorides in solution of ammonium chloride and NH 4 Cl in solution of rare earth chloride, have been measured. Formation enthalpies, standard formation enthalpies, dissociation enthalpies of the above-mentioned double chlorides are calculated

  15. Diode-pumped Yb:Sr5(PO4)3F laser performance

    International Nuclear Information System (INIS)

    Marshall, C.D.; Payne, S.A.; Smith, L.K.

    1995-01-01

    The performance of the first diode-pumped Yb 3+ -doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) laser is discussed. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0 x 10 -20 cm 2 that falls within error bars of the previously reported value of 7.3 x 10 -20 cm 2 , obtained from spectroscopic techniques. Up to 1.7 J/cm 3 of stored energy density was achieved in a 6 x 6 x 44 mm Yb:S-FAP amplifier rod. An InGaAs diode array has been fabricated that has suitable specifications for pumping a 3 x 3 x 30 mm Yb:S-FAP rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to ∼0.5 J per 1 ms pulse. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz and 500 μs pulses

  16. Squeezing clathrate cages to host trivalent rare-earth guests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Iowa State Univ., Ames, IA (United States). Department of Chemistry; Ames Lab., Ames, IA (United States); He, Yuping [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Mordvinova, Natalia E. [Laboratoire CRISMAT, ENSICAEN, CNRS UMR (France); Lebedev, Oleg [Laboratoire CRISMAT, ENSICAEN, CNRS UMR (France); Kovnir, Kirill [Iowa State Univ., Ames, IA (United States). Department of Chemistry; Ames Lab., Ames, IA (United States)

    2017-11-01

    Strike difference of the trivalent rare-earth cations from their alkali and alkaline-earth peers is in the presence of localized 4f-electrons and strong spin-orbit coupling. Placing trivalent rare-earth cations inside the fullerene molecules or in between the blocks of itinerant magnetic intermetallics gave rise to plethora of fascinating properties and materials. A long-time missing but hardly desired piece is the semiconducting or metallic compound where rare-earth cations are situated inside the oversized polyhedral cages of three-dimensional framework. In this work we present a synthesis of such compounds, rare-earth containing clathrates Ba8-xRxCu16P30. The unambiguous proofs of their composition and crystal structure were achieved by a combination of synchrotron powder diffraction, time-of-flight neutron powder diffraction, scanning-transmission electron microscopy, and electron energy-loss spectroscopy. Our quantum-mechanical calculations and experimental characterizations show that the incorporation of the rare-earth cations significantly enhances the hole mobility and concentration which results in the drastic increase in the thermoelectric performance.

  17. Synthesis and luminescence properties of novel LiSrPO{sub 4}:Dy{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayue, E-mail: jiayue_sun@126.com [School of Science, Beijing Technology and Business University, Beijing 100048 (China); Zhang, Xiangyan [School of Science, Beijing Technology and Business University, Beijing 100048 (China); Xia, Zhiguo, E-mail: xiazg426@yahoo.com.cn [School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083 (China); Du, Haiyan [School of Science, Beijing Technology and Business University, Beijing 100048 (China)

    2011-11-15

    Graphical abstract: Novel LiSrPO4:Dy{sup 3+} phosphors were synthesized by solid-state reaction, and Dy{sup 3+}-doped concentration dependent luminescence properties, concentration quenching effect and the decay times were investigated in detail. Highlights: {yields} LiSrPO{sub 4}:Dy{sup 3+} could be excited by UV light and exhibited blue and yellow emission. {yields} Concentration quenching effect of LiSrPO{sub 4}:Dy{sup 3+} samples were investigated in detail. {yields} Decay times are estimated to be 0.57-0.89 ms for Dy{sup 3+} in LiSrPO{sub 4} host. -- Abstract: Novel LiSrPO{sub 4}:Dy{sup 3+} phosphors for white light-emitting diodes (w-LEDs) were synthesized by the conventional solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the phase formation of LiSrPO{sub 4}:Dy{sup 3+} materials. Luminescence properties results showed that the phosphor could be efficiently excited by the UV-vis light region from 250 to 460 nm, and it exhibited blue (483 nm) and yellow (574 nm) emission corresponding to {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 15/2} transitions and {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 13}/{sub 2} transitions, respectively. The luminescence intensity of LiSrPO{sub 4}:xDy{sup 3+} phosphor firstly increased and then decreased with increasing Dy{sup 3+} concentration, and reached the maximum at x = 0.03. It was found that concentration quenching occurred as a result of dipole-dipole interaction according to the Dexter's theory. The decay time was also determined for various concentrations of Dy{sup 3+} in LiSrPO{sub 4}.

  18. Solvent Extraction of Rare Earths by Di-2 Ethylhexyl Phosphoric Acid

    International Nuclear Information System (INIS)

    Srinuttrakul, Wannee; Kranlert, Kannika; Kraikaew, Jarunee; Pongpansook, Surasak; Chayavadhanangkur, Chavalek; Kranlert, Kannika

    2004-10-01

    Solvent extraction has been widely applied for individual rare earth separation because the separation time is rapid and a large quantity of products is obtained. In this work, this technique was utilized to extract mixed rare earths, obtained from monazite digestion process. Di-2-ethylhexyl phosphoric acid (D2EHPA) was used as an extractant. The factors affected the extraction including HNO 3 concentration in mixed rare earth nitrate solution and the amount of D2EHPA were studied. The appropriate concentrations of HNO 3 and D2EHPA were found to be 0.01 and 1.5 M, respectively. From the result of equilibrium curve study, it was observed that heavy rare earths were extracted more efficient than light rare earths. A 6-stage continuous countercurrent solvent extraction was simulated for rare earth extraction. The optimum ratio of solvent to feed solution (S/F) was 2. Because of the high cost of D2EHPA, 1.0 M of D2EHPA was suitable for the rare earth extraction by the continuous countercurrent solvent extraction

  19. Metallic and Insulating Interfaces of Amorphous SrTiO3-Based Oxide Heterostructures

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Pryds, Nini; Kleibeuker, Josée E.

    2011-01-01

    AlO3, SrTiO3, and yttria-stabilized zirconia films. On the other hand, samples of amorphous La7/8Sr1/8MnO3 films on SrTiO3 substrates remain insulating. The interfacial conductivity results from the formation of oxygen vacancies near the interface, suggesting that the redox reactions on the surface...

  20. Oxygen influence on luminescence properties of rare-earth doped NaLaF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Tuomela, A., E-mail: anu.tuomela@oulu.fi [Research Center of Molecular Materials, University of Oulu, P.O. Box 3000, FIN-90014 (Finland); Pankratov, V., E-mail: vladimirs.pankratovs@oulu.fi [Research Center of Molecular Materials, University of Oulu, P.O. Box 3000, FIN-90014 (Finland); Sarakovskis, A.; Doke, G.; Grinberga, L. [Institute of Solid State Physics, University of Latvia, 8 Kengaraga, LV-1063 Riga (Latvia); Vielhauer, S. [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Huttula, M. [Research Center of Molecular Materials, University of Oulu, P.O. Box 3000, FIN-90014 (Finland)

    2016-11-15

    Luminescence properties of erbium and europium doped NaLaF{sub 4} with different oxygen content have been studied. Vacuum ultraviolet (VUV) excitation luminescence spectroscopy technique has been applied by using synchrotron radiation excitation. It was found that oxygen impurity leads to significant degradation of Er{sup 3+} or Eu{sup 3+} emission under VUV excitation. The intensive O{sup 2−}–Er{sup 3+} charge transfer excitation band has been detected from oxygen abundant NaLaF{sub 4} in the 150–165 nm spectral range. This band reveals a competing absorption mechanism in oxygen containing NaLaF{sub 4}. It is clearly demonstrated that one reason for the Er{sup 3+} emission degradation in oxygen abundant NaLaF{sub 4} is strong suppression of 4f–5d transitions in Er{sup 3+} ion. The degradation of the Eu{sup 3+} emission under VUV excitation was explained by diminishing of F{sup −}–Eu{sup 3+} charge transfer absorption band as well as by competing relaxation centers in the oxygen abundant NaLaF{sub 4}.

  1. Ash layer at ∼ 8 Ma in ODP site 758 from the Bay of Bengal: evidence from Sr, Nd isotopic compositions and rare earth elements

    International Nuclear Information System (INIS)

    Padmakumari, V.M.; Ahmad, S.M.

    2004-01-01

    Strontium and neodymium isotopic compositions are widely used to delineate the provenance of sedimentary formations. These isotopes have characteristic signatures for crust and mantle material and therefore can distinguish between volcanic and other rock types. 87 Sr/ 86 Sr. ε Nd (0) and rare earth elements REE of clay sediments from ODP site 758 in the Bay of Bengal is reported here. Our results clearly show that Sr and Nd isotopes can identify thin ash layers that otherwise may not easily be recognized

  2. Enzymatic determination of rare earth elements by use of pyrophosphotases

    International Nuclear Information System (INIS)

    Shekhovtseva, T.N.; Pirogova, S.V.; Fedorova, O.M.; Dolmanova, I.F.; Bajkov, A.A.

    1993-01-01

    A highly sensitive (determination limit 8 x 10 -6 - 4 x 10 -4 μg/ml) and selective enzymatic method for determination of rare earth elements has been developed. The method is based on inhibition action of rare earths on the catalytic activity of pyrophosphates isolated from bakery geast and E. Coli. The mechanism of the rare earth element action, corresponding to competitive inhibition, has been established

  3. Some thermoelectric properties of the light rare earth sesquiselenides (R2Se/sub 3-x/)

    International Nuclear Information System (INIS)

    Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

    1981-01-01

    Rare earth sesquiselenides of the Th 3 P 4 structure show variable electric properties over their homogeneity range, i.e., ranging from metallic (R 3 Se 4 ) to semimetallic (R 2 Se/sub 3-x/, where 0.14 > x > 0) to semiconducting (R 2 Se 3 ). The composition change is due to the formation of metal vacancies in the Th 3 P 4 structure with no vacancies at R 3 Se 4 and 4.75 at. % vacancies at R 2 Se 3 . The rare earth sesquiselenides are also refractory materials and therefore are of interest for high temperature thermoelectric applications. Preliminary results of thermoelectric power and electrical resistivity measurements on the light lanthanide sesquiselenides (La through Sm) are presented

  4. Batch Simulation of Rare Earths Extractive Separation by Di (2-Ethylhexyl) Phosphoric Acid and Tributylphosphate in Kerosene

    International Nuclear Information System (INIS)

    Kraikaew, Jarunee; Srinuttakul, Wanee

    2004-01-01

    Liquid-liquid extraction is applied to separate individual rare earths. In this research, 6-stage continuous countercurrent solvent extraction was simulated to extract rare earths from rare earth nitrate solution, which was obtained from monazite processing, to estimate the possible optimum operating conditions for pilot or industrial plants. The solvent(S) per feed(F) ratio (S/F) was varied from 1 to 3. The organic are 1.0 and 1.5 Molars (M) Di (2-ethylhexyl) phosphoric acid (D2EHPA) in kerosene. 50% tributylphosphate (TBP) in kerosene was applied for comparison. It was found that D2EHPA was a good extracting agent for heavy rare earths while TBP extracted well both light and heavy rare earths. After extraction with TBP and D2EHPA, the extraction efficiency at solvent per feed ratio (S/F) =2 and 3 showed a slight difference. S/F =2 was selected commercially for operation

  5. Enhanced pinning in mixed rare earth-123 films

    Science.gov (United States)

    Driscoll, Judith L [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2009-06-16

    An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.

  6. Pressure dependence of magnetic ordering temperatures of rare earth-Sn/sub 3/ compounds

    Energy Technology Data Exchange (ETDEWEB)

    Foner, S [Massachusetts Inst. of Tech., Cambridge (USA). Francis Bitter National Magnet Lab.

    1979-12-01

    Measurements of the hydrostatic pressure dependence of the Neel temperatures, Tsub(N), are reported for PrSn/sub 3/, NdSn/sub 3/, GdSn/sub 3/ and CeIn/sub 3/. Tsub(N) is found to increase with applied pressure for PrSn/sub 3/ and NdSn/sub 3/, whereas Tsub(N) is pressure independent within experimental error for GdSn/sub 3/ and CeIn/sub 3/. Slightly Sn-deficient RESn/sub 3/ (RE = rare earth) compounds are found consistently to be weakly ferromagnetic. The physical properties of the RESn/sub 3/ compounds exhibit analogies with the corresponding properties of dilute superconducting (LaRE)Sn/sub 3/ alloys. The high pressure data for PrSn/sub 3/ and CeIn/sub 3/ are qualitatively consistent with a 'Kondo necklace' model for magnetically ordered RE compounds with unstable 4f shells.

  7. Pressure dependence of magnetic ordering temperatures of rare earth - Sn/sub 3/ compounds

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, L E [Virginia Univ., Charlottesville (USA). Dept. of Physics; Guertin, R P; Foner, S

    1979-12-01

    Measurements of the hydrostatic pressure dependence of the Neel temperatures, Tsub(N), are reported for PrSn/sub 3/, NdSn/sub 3/, GdSn/sub 3/ and CeIn/sub 3/. Tsub(N) is found to increase with applied pressure for PrSn/sub 3/ and NdSn/sub 3/, whereas Tsub(N) is pressure independent within experimental error for GdSn/sub 3/ and CeIn/sub 3/. Slightly Sn-deficient RESn/sub 3/ (RE=rare earth) compounds are found consistently to be weakly ferromagnetic. The physical properties of the RESn/sub 3/ compounds exhibit analogies with the corresponding properties of dilute superconducting (LaRE)Sn/sub 3/ alloys. The high pressure data for PrSn/sub 3/ and CeIn/sub 3/ are qualitatively consistent with a 'Kondo necklace' model for magnetically ordered RE compounds with unstable 4f shells.

  8. Nature and Significance of the High-Sr Aleutian Lavas

    Science.gov (United States)

    Yogodzinski, G. M.; Arndt, S.; Turka, J. R.; Kelemen, P. B.; Vervoort, J. D.; Portnyagin, M.; Hoernle, K.

    2011-12-01

    Results of the Western Aleutian Volcano Expedition and German-Russian KALMAR cruises include the discovery of seafloor volcanism at the Ingenstrem Depression and at unnamed seamounts 300 km west of Buldir, the westernmost emergent volcano in the Aleutian arc. These discoveries indicate that the surface expression of active Aleutian volcanism goes below sea level just west of Buldir, but is otherwise continuous along the full length of the arc. Many lavas dredged from western Aleutian seamounts are basalts, geochemically similar to basalts from elsewhere in Aleutians and other arcs (La/Yb 4-8, Sr/Y700 ppm Sr), which are mostly plagioclase-hornblende andesites and dacites with low Y and middle-heavy rare-earth elements, fractionated trace element patterns (Sr/Y=50-200, La/Yb=9-25) and MORB-like isotopes (87Sr/86Sr 0.65) with 1250-1700 ppm Sr, 4-7 ppm Y, low abundances of all rare-earth elements (LaMexico. [1] Zimmer et al., 2010, J. Petrology, v. 51, p. 2411

  9. Handbook on the physics and chemistry of rare earths

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Eyring, L.

    1982-01-01

    This handbook is a six-volume work which covers the entire rare earth field in an integrated manner. Each chapter is a comprehensive, up-to-date, critical review of a particular segment of the field. The first volume is devoted to the rare earth metals, the second to rare earth alloys and intermetallics, and the third and fourth volumes to the non-metallic rare earth materials, including solutions, complexes and bioinorganic substances, in addition to solid inorganic compounds. The electronic structure of these unique elements is the primary basis of understanding their physical, metallurgical and chemical natures. The interrelationship of the 4f and valence electrons and the observed optical, electrical, magnetic, crystallographic, elastic, thermal, mechanical, chemical, geochemical and biological behaviors is brought forth time and again throughout the chapters. Also discussed are the preparative, separation and solution chemistry of the elements and their compounds and the various chemical and physical analytical methods for determining the rare earths in various materials and impurities in a rare earth matrix. Vol. 5 is a update complement of the previous volumes. Volume 6 is concerned with ternary and higher order materials. (Auth.)

  10. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling.

    Science.gov (United States)

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; de la Fuente, César; Arnaudas, José Ignacio

    2015-09-03

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths.

  11. Enhancing the Photocatalytic Activity of Sr4 Al14 O25 : Eu2+ , Dy3+ Persistent Phosphors by Codoping with Bi3+ Ions.

    Science.gov (United States)

    García, Carlos R; Oliva, Jorge; Romero, Maria Teresa; Diaz-Torres, Luis A

    2016-03-01

    The photocatalytic activity of Bismuth-codoped Sr 4 Al 14 O 25 : Eu 2+ , Dy 3+ persistent phosphors is studied by monitoring the degradation of the blue methylene dye UV light irradiation. Powder phosphors are obtained by a combustion synthesis method and a postannealing process in reductive atmosphere. The XRD patterns show a single orthorhombic phase Sr 4 Al 14 O 25 : Eu 2+ , Dy 3+ , Bi 3+ phosphors even at high Bismuth dopant concentrations of 12 mol%, suggesting that Bi ions are well incorporated into the host lattice. SEM micrographs show irregular micrograins with sizes in the range of 0.5-20 μm. The samples present an intense greenish-blue fluorescence and persistent emissions at 495 nm, attributed to the 5d-4f allowed transitions of Eu 2+ . The fluorescence decreases as Bi concentration increases; that suggest bismuth-induced traps formation that in turn quench the luminescence. The photocatalytic evaluation of the powders was studied under both 365 nm UV and solar irradiations. Sample with 12 mol% of Bi presented the best MB degradation activity; 310 min of solar irradiation allow 100% MB degradation, whereas only 62.49% MB degradation is achieved under UV irradiation. Our results suggest that codoping the persistent phosphors with Bi 3+ can be an alternative to enhance their photocatalytic activity. © 2016 The American Society of Photobiology.

  12. Spin-disorder resistivity of heavy rare-earth metals from Gd to Tm: An ab-initio study

    Science.gov (United States)

    Glasbrenner, James; Belashchenko, Kirill

    2010-03-01

    Electrical resistivity of heavy rare-earth metals has a dominant contribution from thermal spin disorder scattering. In the paramagnetic state, this spin-disorder resistivity (SDR) decreases through the Gd-Tm series. Models based on the assumption of fully localized 4f states treated as S or J multiplets predict that SDR is proportional to S^2 (S is the 4f shell spin) times a quantum correction (S+1)/S or (J+1)/J. The interpretation of this correction using experimental results is ambiguous. Since the 4f bandwidth is not small compared to the multiplet splitting, it is not clear whether the 4f shells in rare-earth metals behave as if they were fully localized and have a good quantum number S or J. To address this issue, in this work we calculate the paramagnetic SDR of the rare-earth metal Gd-Tm series using a non-collinear implementation of the tight-binding linear muffin-tin orbital method. The conductance is found using the Landauer-B"uttiker approach applied to the active region of a varying size, averaging the conductance over random spin-disorder configurations and fitting its size dependence to Ohm's law. The results are compared with experiment and discussed. The sensitivity to basis set and the treatment of the 4f electrons, as well as the role of exchange enhancement in the conduction band is considered. The issue of the quantum correction is examined in light of the new results.

  13. Mechanism of the high transition temperature for the 1111-type iron-based superconductors R FeAsO (R =rare earth ): Synergistic effects of local structures and 4 f electrons

    Science.gov (United States)

    Zhang, Lifang; Meng, Junling; Liu, Xiaojuan; Yao, Fen; Meng, Jian; Zhang, Hongjie

    2017-07-01

    Among the iron-based superconductors, the 1111-type Fe-As-based superconductors REFeAs O1 -xFx (RE = rare earth) exhibit high transition temperatures (Tc) above 40 K. We perform first-principles calculations based on density functional theory with the consideration of both electronic correlations and spin-orbit couplings on rare earths and Fe ions to study the underlying mechanism as the microscopic structural distortions in REFeAsO tuned by both lanthanide contraction and external strain. The electronic structures evolve similarly in both cases. It is found that there exist an optimal structural regime that will not only initialize but also optimize the orbital fluctuations due to the competing Fe-As and Fe-Fe crystal fields. We also find that the key structural features in REFeAsO, such as As-Fe-As bond angle, intrinsically induce the modification of the Fermi surface and dynamic spin fluctuation. These results suggest that the superconductivity is mediated by antiferromagnetic spin fluctuations. Simultaneously, we show that the rare-earth 4 f electrons play important roles on the high transition temperature whose behavior might be analogous to that of the heavy-fermion superconductors. The superconductivity of these 1111-type iron-based superconductors with high-Tc is considered to originate from the synergistic effects of local structures and 4 f electrons.

  14. Magnetic properties of RT2Zn20; R = rare earth, T = Fe, Co, Ru, Os and Ir

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shuang [Ames Lab. and Iowa State Univ., Ames, IA (United States)

    2008-01-01

    It is well known that rare earth intermetallic compounds have versatile, magnetic properties associated with the 4f electrons: a local moment associated with the Hund's rule ground state is formed in general, but a strongly correlated, hybridized state may also appear for specific 4f electronic configuration (eg. for rare earth elements such as Ce or Yb). On the other hand, the conduction electrons in rare earth intermetallic compounds, certainly ones associated with non hybridizing rare earths, usually manifest non-magnetic behavior and can be treated as a normal, non-interacted Fermi liquid, except for some 3d-transition metal rich binary or ternary systems which often manifest strong, itinerant, d electron dominant magnetic behavior. Of particular interest are examples in which the band filling of the conduction electrons puts the system in the vicinity of a Stoner transition: such systems, characterized as nearly or weakly ferromagnet, manifest strongly correlated electronic properties [Moriya, 1985]. For rare earth intermetallic compounds, such systems provide an additional versatility and allow for the study of the behaviors of local moments and hybridized moments which are associated with 4f electron in a correlated conduction electron background.

  15. Recovery and purification of rare earth elements and thorium

    International Nuclear Information System (INIS)

    Sungur, A.; Saygi, Z.; Yildiz, H.

    1985-01-01

    Rare earth elements and thorium found in the low-grade Eskisehir-Beylikahir ore have been recovered by HCl leaching, Lanthanides and thorium were separated and purified from the leach solutions through the precipitation sequence as double sulphate, hydroxide and oxalate. The Ln 2 O 3 and Th(OH) 4 products, finally obtained contained 36% Ce and 65% Th. The analysis of rare earth elements, thorium and other present ingredients were carried out by instrumental neutron activation analysis, atomic absorption spectroscopy, vis-spectroscopy and gravimetry. (author)

  16. Broadband Luminescence in Rare Earth Doped Sr2SiS4: Relating Energy Levels of Ce3+ and Eu2+

    Directory of Open Access Journals (Sweden)

    Anthony B. Parmentier

    2013-08-01

    Full Text Available Sr2SiS4:Ce3+ is an efficient blue-emitting (460 nm phosphor, excitable with light of wavelengths up to 420 nm. From the excitation spectrum, we construct the energy level scheme and use it to check the predictive power of the Dorenbos model, relating the positions of the Ce3+ energy levels with those of Eu2+ in the same host. For strontium thiosilicate, this method gives excellent results and allows us to determine which of two available crystallographic sites is occupied by cerium. We use the Dorenbos method for extracting information on the coordination of Ce3+ from the observed crystal field splitting.

  17. Luminescence studies of SrAl_2O_4:Dy"3"+ nanophosphors

    International Nuclear Information System (INIS)

    Sharma, Ravi

    2016-01-01

    Nanosized strontium aluminate phosphors activated by Dy"3"+ were prepared by combustion as well as by solid state reaction method. Nanophosphor was prepared by these methods at reaction temperatures 600°C and 1200°C respectively. Powder X-ray diffraction (XRD), scanning electron microscope analysis was used to characterize the prepared product. Themonoclinic phase was observed in the XRD pattern. The particle size of the samples was calculated around 35 nm. The SEM images show irregular shape of the prepared nanophosphor. Two peaks were found in the Mechanoluminescence (ML) response curve plotted between time and ML intensity. The H_3BO_3 added strontium aluminate phosphors activated with Dy show more bright ML peak as compared to the powders of SrAl_2O_4:Dy"3"+ without H_3BO_3. It was found that the PL and ML intensity increases with increasing concentration of Dy. The intensity becomes maximum for 3% of Dy. The photoluminescence emission shows two intense fluorescence transitions peaks at 498 nm and 583 nm, "4F_9_/_2 → "6H_1_5_/_2 in the blue and "4F_9_/_2 → "6H_1_3_/_2 in the yellow-orange wavelength region. (author)

  18. Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures.

    Science.gov (United States)

    Nogales, E; Hidalgo, P; Lorenz, K; Méndez, B; Piqueras, J; Alves, E

    2011-07-15

    Rare earth (RE) doped gallium oxide and germanium oxide micro- and nanostructures, mostly nanowires, have been obtained and their morphological and optical properties have been characterized. Undoped oxide micro- and nanostructures were grown by a thermal evaporation method and were subsequently doped with gadolinium or europium ions by ion implantation. No significant changes in the morphologies of the nanostructures were observed after ion implantation and thermal annealing. The luminescence emission properties have been studied with cathodoluminescence (CL) in a scanning electron microscope (SEM). Both β-Ga(2)O(3) and GeO(2) structures implanted with Eu show the characteristic red luminescence peak centered at around 610 nm, due to the (5)D(0)-(7)F(2) Eu(3+) intraionic transition. Sharpening of the luminescence peaks after thermal annealing is observed in Eu implanted β-Ga(2)O(3), which is assigned to the lattice recovery. Gd(3+) as-implanted samples do not show rare earth related luminescence. After annealing, optical activation of Gd(3+) is obtained in both matrices and a sharp ultraviolet peak centered at around 315 nm, associated with the Gd(3+) (6)P(7/2)-(8)S(7/2) intraionic transition, is observed. The influence of the Gd ion implantation and the annealing temperature on the gallium oxide broad intrinsic defect band has been analyzed.

  19. Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures

    International Nuclear Information System (INIS)

    Nogales, E; Hidalgo, P; Mendez, B; Piqueras, J; Lorenz, K; Alves, E

    2011-01-01

    Rare earth (RE) doped gallium oxide and germanium oxide micro- and nanostructures, mostly nanowires, have been obtained and their morphological and optical properties have been characterized. Undoped oxide micro- and nanostructures were grown by a thermal evaporation method and were subsequently doped with gadolinium or europium ions by ion implantation. No significant changes in the morphologies of the nanostructures were observed after ion implantation and thermal annealing. The luminescence emission properties have been studied with cathodoluminescence (CL) in a scanning electron microscope (SEM). Both β-Ga 2 O 3 and GeO 2 structures implanted with Eu show the characteristic red luminescence peak centered at around 610 nm, due to the 5 D 0 - 7 F 2 Eu 3+ intraionic transition. Sharpening of the luminescence peaks after thermal annealing is observed in Eu implanted β-Ga 2 O 3 , which is assigned to the lattice recovery. Gd 3+ as-implanted samples do not show rare earth related luminescence. After annealing, optical activation of Gd 3+ is obtained in both matrices and a sharp ultraviolet peak centered at around 315 nm, associated with the Gd 3+ 6 P 7/2 - 8 S 7/2 intraionic transition, is observed. The influence of the Gd ion implantation and the annealing temperature on the gallium oxide broad intrinsic defect band has been analyzed.

  20. Re-entrant spin glass and stepped magnetization in mixed-valence SrFe3(PO4)3

    International Nuclear Information System (INIS)

    Shang Mingyu; Chen Yan; Tian Ge; Yuan Hongming; Feng Shouhua

    2013-01-01

    The 2 D channel mixed-valent iron (II/III) monophosphate SrFe 3 (PO 4 ) 3 was synthesized via one step mild hydrothermal method at 210 °C and characterized by X-ray diffraction techniques and magnetization measurements. Coexistence of antiferromagnetic superexchange and ferromagnetic superexchange interactions was supposed to be in the lattice according to the Goodenough-Kanamori-Anderson rules. Temperature dependent DC magnetization measurement shows that SrFe 3 (PO 4 ) 3 is ferrimagnet with three magnetic transitions between 2 and 350 K. Through AC magnetization measurement, re-entrant spin glass was observed due to the competition between ferromagnetic and antiferromagnetic interactions. Furthermore, an interesting field induced stepped magnetization was observed in SrFe 3 (PO 4 ) 3 at 2 K with the saturation magnetization Ms=2.4 μ B /f.u. at 5 T.

  1. The calcium and rare earth oxo-borates, Ca4ReO(BO3)3 (Re = Gd, Y, La): synthesis and investigations of new non-critical phase matching configurations for frequency conversion at specific laser wavelengths

    International Nuclear Information System (INIS)

    Reino, E.

    2002-12-01

    Visible and UV lasers are currently investigated for many applications as data storage, medicine, etc. Intracavity frequency doubling appears as a good solution. Thus, the non-linear family Ca 4 REO(BO 3 ) 3 (RE = rare earth, RECOB) has shown a considerable interest to produce compact visible laser. In addition, it is possible to tune the compositions of RECOB by partial substitutions in order to achieve non-critical phase matching (NCPM). In the present work, various cationic substitutions have been studied in solid solutions as Gd 1-x Y x COB, Gd 1-x La x COB, Gd 1-x Sc x COB (for the first time), Re 1-x Bi x COB (REe = Gd or Y) and (Ca 1-x Sr x ) 4 GdO(BO 3 ) 3 in order to investigate their crystal growth and adjust the NCPM wavelength by composition. The wavelength range is related to neodymium doped laser materials emitting on the 4F3/2-4I9/2 transition, for example Nd:YAP (YAlO 3 ) at 930 nm, Nd:YAG (Y 3 Al 5 O 12 ) at 946 nm or Nd:ASL (Sr 1-x Nd y La x-y Mg x Al 11-x O 19 ) at 900 nm. We have also demonstrated that the compositions for NCPM can be determined from the refractive index of both lattices M 1-x M' x COB (M, M' RE) with x = 0 or 1, using the Clausius-Mosotti relation. Two new blue laser systems, constituted of a laser crystal and a non-linear crystal optimized for type-I NCPM second harmonic generation, were achieved: a 946 nm Nd:YAG laser with Gd 0.87 Y 0.13 COB and a 900 nm Nd:ASL laser with Gd 0.56 Y 0.44 COB. Moreover, we have performed for the first time a CW laser action at 900 nm with Nd:ASL. (author)

  2. BaY2F8 single crystals doped with rare-earth ions as promising up-conversion media for UV and VUV lasers

    International Nuclear Information System (INIS)

    Pushkar', A A; Uvarova, T V; Molchanov, V N

    2008-01-01

    BaY 2 F 8 crystals are studied as promising active media for UV and VUV lasers. The up-conversion pumping of rare-earth activators is proposed to solve problems related to the solarisation of the medium and the selection of pump sources. The technology of growing oriented BaY 2 F 8 single crystals is developed and the influence of the crystal orientation on the growth rate and quality of single crystals is determined. (active media)

  3. Luminescent properties of red-emitting LiSr4B3O(9−3x/2)Nx:Eu2+ phosphor for white-LEDs

    International Nuclear Information System (INIS)

    Yu Hua; Deng Degang; Xu Shiqing; Yu Cuiping; Yin Haoyong; Nie Qiulin

    2012-01-01

    An Eu 2+ -activated oxynitride LiSr (4−y) B 3 O (9−3x/2) N x :yEu 2+ red-emitting phosphor was synthesized by solid-state reactions. The synthesized phosphor crystallized in a cubic system with space group Ia–3d. The LiSr 4 B 3 O (9−3x/2) N x :Eu 2+ phosphors exhibited a broad red emission band with a peak at 610 nm and a full width at half maximum of 106 nm under 410 nm excitation, which is ascribed to the 4f 6 5d 1 →4f 7 transition of Eu 2+ . The optimal doped nitrogen concentration was observed to be x=0.75. The average decay times of two different emission centers were estimated to be 568 and 489 ns in the LiSr 3.99 B 3 O 8.25 N 0.5 :0.01Eu 2+ phosphors, respectively. Concentration quenching of Eu 2+ ions occurred at y=0.07, and the critical distance was determined as 17.86 Å. The non-radiative transitions via dipole–dipole interactions resulted in the concentration quenching of Eu 2+ -site emission centers in the LiSr 4 B 3 O 9 host. These results indicate LiSr 4 B 3 O (9−3x/2) N x :Eu 2+ phosphor is promising for application in white near-UV LEDs. - Highlights: ► An oxynitride LiSr 4 B 3 O 9 N:Eu 2+ red-emitting phosphor was prepared at low synthesis temperature. ► The introduced nitrogen improved the excitation and emission intensity of the phosphor. ► The wide excitation band matches well with near-UV LED chips. ► The emission spectrum of the phosphor showed a broad full width at half maximum of about 106 nm.

  4. Effect of annealing on the structural, optical and emissive properties of SrWO4:Ln3+ (Dy3+, Eu3+ and Sm3+) nanoparticles

    Science.gov (United States)

    Maheshwary; Singh, B. P.; Singh, R. A.

    2016-01-01

    Lanthanide ions, Ln3+ (Dy3+, Eu3+ and Sm3+) doped SrWO4 nanoparticles were synthesized using ethylene glycol (EG) as a capping agent as well as reaction medium. The X-ray diffraction (XRD) study reveals that all the Ln3+ (Dy3+, Eu3+ and Sm3+) doped samples are well crystalline in nature with a tetragonal scheelite structure of SrWO4 phase. TG study reveals that the nanophosphors are thermally stable. Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy techniques were used to obtain the information about internal and external vibrational modes present in the SrWO4 structure. Optical properties were investigated using UV-vis and photoluminescence (PL) spectroscopy. The average crystallite size was calculated using Debye-Scherrer's for as-prepared and 800 °C annealed samples and is found to be in the range of ∼35-70 nm. The luminescence intensity of Eu3+ doped SrWO4 nanoparticles under 364 nm excitation wavelength reveals that 5D0 → 7F2 transition at ∼613 nm (red) is more prominent than that of 5D0 → 7F1 transition at ∼590 nm (orange). Also upon excitation by UV radiation, the SrWO4:Dy3+ phosphor shows the yellow and blue transition lines appearing at ∼572 and 484 nm which are the characteristic electronic transitions of 4F9/2-6H13/2 and 4F9/2-6H15/2 emission line of Dy3+, respectively. Also Sm3+ doped SrWO4 nanophosphor shows its characteristic emission lines in the range of 550-720 nm, corresponding to 4G5/2 → 6HJ (J = 5/2, 7/2, 9/2 and 11/2) transitions of Sm3+ ions. The predominant orange red color can be attributed to 4G5/2 → 6H9/2 located at ∼642 nm. This is related to the polarizing effect due to the energy transfer from WO42- to the Eu3+, Dy3+ and Sm3+ sites, respectively. Effect of annealing on the photoluminescence properties of samples has been studied and it was found that luminescence intensity increases up to ∼3 times on heating the samples at 800 °C. This may be due to reduction in non-radiative decay channels

  5. Energy transfer in Pr3+ and Mn2+ co-doped SrB6O10 and SrB4O7

    International Nuclear Information System (INIS)

    Chen Yonghu; Yan Wuzhao; Shi Chaoshu

    2007-01-01

    The luminescent properties of Pr 3+ and Mn 2+ -doped SrB 6 O 10 and SrB 4 O 7 powder samples were investigated from the point of view of energy transfer between Pr 3+ and Mn 2+ . The emission from the 1 S 0 level of Pr 3+ was found in the SrB 6 O 10 :Pr 3+ sample as well as in the SrB 4 O 7 :Pr 3+ sample, indicating the 1 S 0 level is below the lowest 4f5d energy level in these hosts. The spectral overlaps between the emission spectra of Pr 3+ -doped samples and the excitation spectra of Mn 2+ -doped sample were found in both kinds of strontium borates. These spectral overlaps are in favor of the energy transfer from Pr 3+ to Mn 2+ . However, in the emission spectra of the SrB 6 O 10 :Pr 3+ , Mn 2+ , no indication of energy transfer was observed, though the emission spectra of SrB 4 O 7 :Pr 3+ , Mn 2+ did show evidence of energy transfer from Pr 3+ to Mn 2+ . The possible reasons were discussed

  6. High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles

    NARCIS (Netherlands)

    Huotari, Simo; Suljoti, Edlira; Sahle, Christoph J.; Raedel, Stephanie; Monaco, Giulio; de Groot, Frank M. F.

    2015-01-01

    We report high-resolution x-ray Raman scattering studies of high-order multipole spectra of rare earth 4d -> 4f excitations (the N-4,N-5 absorption edge) in nanoparticles of the phosphates LaPO4, CePO4, PrPO4, and NdPO4. We also present corresponding data for La 5p -> 5d excitations (the O-2,O-3

  7. Gamma irradiation improves the antioxidant activity of Aloe vera (Aloe barbadensis miller) extracts

    International Nuclear Information System (INIS)

    Lee, Eun Mi; Bai, Hyoung-Woo; Lee, Seung Sik; Hong, Sung Hyun; Cho, Jae-Young; Byung, Yeoup Chung

    2012-01-01

    Aloe has been widely used in food products, pharmaceuticals, and cosmetics because of its aromatic and therapeutic properties. In the present study, the ethanolic extracts of aloe gel were gamma-irradiated from 10 to 100 kGy. After gamma irradiation, the color of the ethanolic extracts of aloe gel changed to red; this color persisted up to 40 kGy but disappeared above 50 kGy. Liquid chromatography/mass spectrometry analysis demonstrated the production of a new, unknown compound (m/z=132) after gamma irradiation of the ethanolic extracts of aloe gel. The amount of this unknown compound increased with increasing irradiation up to 80 kGy, and it was degraded at 100 kGy. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by the 1,1-diphenyl-2-picrylhydrazyl-radical scavenging capacity. The antioxidant activity of aloe extract was dramatically increased from 53.9% in the non-irradiated sample to 92.8% in the sample irradiated at 40 kGy. This strong antioxidant activity was retained even at 100 kGy. These results indicate that gamma irradiation of aloe extract can enhance its antioxidant activity through the formation of a new compound. Based on these results, increased antioxidant activity of aloe extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  8. Gamma irradiation improves the antioxidant activity of Aloe vera (Aloe barbadensis miller) extracts

    Science.gov (United States)

    Mi Lee, Eun; Bai, Hyoung-Woo; Sik Lee, Seung; Hyun Hong, Sung; Cho, Jae-Young; Yeoup Chung, Byung

    2012-08-01

    Aloe has been widely used in food products, pharmaceuticals, and cosmetics because of its aromatic and therapeutic properties. In the present study, the ethanolic extracts of aloe gel were gamma-irradiated from 10 to 100 kGy. After gamma irradiation, the color of the ethanolic extracts of aloe gel changed to red; this color persisted up to 40 kGy but disappeared above 50 kGy. Liquid chromatography/mass spectrometry analysis demonstrated the production of a new, unknown compound (m/z=132) after gamma irradiation of the ethanolic extracts of aloe gel. The amount of this unknown compound increased with increasing irradiation up to 80 kGy, and it was degraded at 100 kGy. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by the 1,1-diphenyl-2-picrylhydrazyl-radical scavenging capacity. The antioxidant activity of aloe extract was dramatically increased from 53.9% in the non-irradiated sample to 92.8% in the sample irradiated at 40 kGy. This strong antioxidant activity was retained even at 100 kGy. These results indicate that gamma irradiation of aloe extract can enhance its antioxidant activity through the formation of a new compound. Based on these results, increased antioxidant activity of aloe extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  9. Microhardness of epitaxial layers of GaAs doped with rare earths

    International Nuclear Information System (INIS)

    Kulish, U.M.; Gamidov, Z.S.; Kuznetsova, I.Yu.; Petkeeva, L.N.; Borlikova, G.V.

    1989-01-01

    Results of the study of microhardness of GaAS layer doped by certain rare earths - Gd, Tb, Dy - are presented. The assumption is made that the higher is the value of the first potential of rare earth impurity ionization (i.e. the higher is the filling of 4f-shell), the lower is the effect of the element on electric and mechanical properties of GaAs epitaxial layers

  10. Novel precursors for the deposition of rare earth oxides

    International Nuclear Information System (INIS)

    Ahlers, Mareike

    2010-01-01

    During this work rare earth solvates with nitrate and perchlorate anions have been investigated. All compounds have been structurally characterized and analyzed using thermal gravimetric analysis. The decomposition residues were analyzed using powder diffraction methods. Almost all compounds showed a characteristically intense exothermic decomposition step during the thermal decomposition, most likely caused by an intramolecular redox reaction between the nitrate or perchlorate anion respectively and the organic solvent molecules. The nitrates RE(NO 3 ) 3 (CH(OCH 3 ) 3 ) 2 (RE = Sm, Eu) were isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. The known compound group of dimethoxyethane solvates was then expanded with RE(NO 3 ) 3 (O 2 C 4 H 10 ) (RE = La, Sm, Eu). Considering the possible use as precursor material the already described neodymium compound is also discussed. The thermal decomposition of these compounds yields the respective cubic rare earth oxide and shows the typical intense exothermic decomposition reaction. A variety of different precursor system based on nitrate solvates for the deposition of rare earth oxide layers on a silicon surface was developed and investigated in collaboration with the group of Prof. Dr. Al-Shamery (Univ. Oldenburg). Ultra thin films on a H-Si(111) surface were obtained via the deposition of the precursor, which was dissolved in organic solvents. An oxide layer was detected after the heating of the sample. The film thickness was measured as < 10 nm, whereas the thickness of the film was controlled by the concentration of the precursor solution. Sm(ClO 4 ) 3 (CH(OCH 3 ) 3 ) 3 was isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. Eu(ClO 4 ) 3 (CH(OCH 3 ) 3 ) 2 (MeOH) 2 was obtained without recrystallization. The methanol molecules, formed during the hydrolysis of the trimethyl

  11. Aloe Vera

    Science.gov (United States)

    ... Health Topics A-Z # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Aloe Vera Share: On This Page Background How Much Do ... Supplement Subset Web ... extract of Aloe barbadensis Miller (aloe vera) in F344/N rats . Toxicological Sciences. 2013;131( ...

  12. Energy Transfer between Post-Transition Elements & Rare Earths in Oxide & Chalcogenide Glasses.

    Science.gov (United States)

    1979-08-27

    Caird [13]. A calculation of reduced matrix elements of Pr3 in 20 Na O • 80 TeO2 glass [14] showed that they differ slightly from data of ref. [121... glasses Transition (lass 35 ZnO 65 TeO2 20 Na2 O 80 TeO 2 fX 106 fX 106 l.,eas 3a, a) Ia’l. faI f.me.s f al f+ I fal 3 H4 - 3 H6 1.56 1.65 1.12...Rare-Earth Doped Glasses 20. jIST HAEV CCnFn~m ,i cn,on ra e sideit If c."*Ar’ -- ~ 14-r by t?-h.c .: r Intensity parameters, radiative transition

  13. Characterization of the electronic and magnetic structure of multifunctional NaREF{sub 4} (RE = rare earth) core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Lilli; Kuepper, Karsten [Physics Department, University of Osnabrueck (Germany); Rinkel, Thorben; Haase, Markus [Institute of Chemistry, University of Osnabrueck (Germany); Chrobak, Artur [Institute of Physics, University of Silesia (Poland)

    2014-07-01

    Rare earth (RE) based nanoparticles of type NaREF{sub 4} have attracted lot of attention in the last few years due to their upconverting luminescence. Here, we want to concentrate on electronic and magnetic properties of NaREF{sub 4}/NaGdF{sub 4} nanocrystals, since the magnetic behaviour of these fluorescent nanoparticles are of utmost importance from fundamental and applicative point of view as well. Hexagonal β-phase nanocrystals (3-22 nm) were prepared and characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). A detailed study of the electronic structure and magnetic coupling phenomena of the different core-shell nanoparticles is performed using X-ray photoelectron spectroscopy (XPS), magnetometry (SQUID) and X-ray magnetic circular dichroism (XMCD). First SQUID measurements of NaEuF{sub 4}/NaGdF{sub 4} core-shell nanoparticles show butterfly shaped hysteresis loops at low temperature (2 K) in contrast to superparamagnetic behaviour observed for the corresponding ''pure'' NaEuF{sub 4} and NaGdF{sub 4} nanoparticles.

  14. Investigations on the determination of traces of some rare earths (Eu, Sm, Gd, Y) in oxides of rare earths (Y2O3, Sm2O3, Gd2O3) by emission spectrography in d.c. arc

    International Nuclear Information System (INIS)

    Dittrich, K.; Gajek, M.; Luan, P.

    1978-01-01

    The evaporation of traces and matrices of rare earth elements was investigated in different atmospheres. It was found, that low-boiling rare earths elements, because of their extended formation of carbides evaporate more slowly than high-boiling rare earths elements. The evaporation of the traces depends on the matrices. 3 cases for the determination of traces of rare earths elements in oxides of other rare earths elements are derived from the results of the evaporation: Low- to high-boiling traces of rare earths elements in low-boiling matrices of rare earths elements, low-boiling traces in medium- to high-boiling matrices, and medium- to high-boiling traces in medium- to high-boiling matrices. The results of the determination are: in Y 2 O 3 : 14 ppm Sm, 2 ppm Eu; in Gd 2 O 3 : 18 ppm Y, 3 ppm Sm, 2 ppm Eu; in Sm 2 O 3 : 70 ppm Y, 370 ppm Gd, 16 ppm Eu. (author)

  15. Low-temperature SCR of NO with NH{sub 3} over activated semi-coke composite-supported rare earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinping; Yan, Zheng; Liu, Lili; Zhang, Yingyi; Zhang, Zuotai; Wang, Xidong, E-mail: xidong@pku.edu.cn

    2014-08-01

    The catalysts with different rare earth oxides (La, Ce, Pr and Nd) loaded onto activated semi-coke (ASC) via hydrothermal method are prepared for the selective catalytic reduction (SCR) of NO with NH{sub 3} at low temperature (150–300 °C). It is evidenced that CeO{sub 2} loaded catalysts present the best performance, and the optimum loading amount of CeO{sub 2} is about 10 wt%. Composite catalysts by doping La, Pr and Nd into CeO{sub 2} are prepared to obtain further improved catalytic properties. The SCR mechanism is investigated through various characterizations, including XRD, Raman, XPS and FT-IR, the results of which indicate that the oxygen defect plays an important role in SCR process and the doped rare earth elements effectively serve as promoters to increase the concentration of oxygen vacancies. It is also found that the oxygen vacancies in high concentration are favored for the adsorption of O{sub 2} and further oxidation of NO, which facilitates a rapid progressing of the following reduction reactions. The SCR process of NO with NH{sub 3} at low temperature over the catalysts of ASC composite-supported rare earth oxides mainly follows the Langmuir–Hinshlwood mechanism.

  16. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  17. Spectrographic determination of some rare earths in thorium compounds

    International Nuclear Information System (INIS)

    Brito, J. de.

    1977-01-01

    A method for spectrographic determination of Gd, Sm, Dy, Eu, Y, Yb, Tm and Lu in thorium compounds has been developed. Sensibilities of 0.01 μg rare earths/g Th02 were achieved. The rare earth elements were chromatographycally separated in a nitric acid-ether-cellulose system. The solvent mixture was prepared by dissolving 11% of concentrated nitric acid in ether. The method is based upon the sorption of the rare earths on activated cellulose, the elements being eluted together with 0.01 M HNO 3 . The retention of the 152 , 154 Eu used as tracer was 99,4%. The other elements showed recoveries varying from 95 to 99%. A direct carrier destillation procedure for the spectrochemical determination of the mentioned elements was used. Several concentrations of silver chloride were used to study the volatility behavior of the rare earths. 2%AgCl was added to the matrix as definite carrier, being lantanum selected as internal standard. The average coefficient of variation for this method was +- -+ 7%. The method has been appleid to the analysis of rare earths in thorium coumpounds prepared by Thorium Purification Pilot Plant at Atomic Energy Institute, Sao Paulo [pt

  18. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  19. Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises reendothelialization impaired by oxidized HDL through SR-B1

    Directory of Open Access Journals (Sweden)

    Dan He

    2018-05-01

    Full Text Available Disruption of endothelial monolayer integrity is the primary instigating factor for many cardiovascular diseases. High density lipoprotein (HDL oxidized by heme enzyme myeloperoxidase (MPO is dysfunctional in promoting endothelial repair. Apolipoprotein A-1 mimetic 4F with its pleiotropic benefits has been proven effective in many in vivo models. In this study we investigated whether 4F promotes endothelial repair and restores the impaired function of oxidized HDL (Cl/NO2-HDL in promoting re-endothelialization. We demonstrate that 4F and Cl/NO2-HDL act on scavenger receptor type I (SR-B1 using human aorta endothelial cells (HAEC and SR-B1 (-/- mouse aortic endothelial cells. Wound healing, transwell migration, lamellipodia formation and single cell migration assay experiments show that 4F treatment is associated with a recovery of endothelial cell migration and associated with significantly increased endothelial nitric oxide synthase (eNOS activity, Akt phosphorylation and SR-B1 expression. 4F increases NO generation and diminishes oxidative stress. In vivo, 4F can stimulate cell proliferation and re-endothelialization in the carotid artery after treatment with Cl/NO2-HDL in a carotid artery electric injury model but fails to do so in SR-B1(-/- mice. These findings demonstrate that 4F promotes endothelial cell migration and has a potential therapeutic benefit against early endothelial injury in cardiovascular diseases.

  20. Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe3O4 hybrid structures using one-pot hydrothermal method

    International Nuclear Information System (INIS)

    Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Sun, Rongjin; Shapter, Joseph G.; Yin, Ting; Cui, Daxiang

    2015-01-01

    Rechargeable lithium ion batteries (LIBs) are currently the dominant power source for all sorts of electronic devices due to their low cost and high energy density. The cycling stability of LIBs is significantly compromised due to the broad satellite peak for many anode materials. Herein, we develop a facile hydrothermal process for preparing rare-earth (Er, Tm) ions doped three-dimensional (3D) transition metal oxides/carbon hybrid nanocomposites, namely CNTs-GO-Fe 3 O 4 , CNTs-GO-Fe 3 O 4 -Er and CNTs-GO-Fe 3 O 4 -Tm. The GO sheets and CNTs are interlinked by ultrafine Fe 3 O 4 nanoparticles forming three-dimensional (3D) architectures. When evaluated as anode materials for LIBs, the CNTs-GO-Fe 3 O 4 hybrid composites have a bigger broad satellite peak. As for the CNTs-GO-Fe 3 O 4 -Er and CNTs-GO-Fe 3 O 4 -Tm hybrid composites, the broad satellite peak can be completely eliminated. When the current density changes from 5 C back to 0.1 C, the capacity of CNTs-GO-Fe 3 O 4 -Tm hybrid composites can recover to 1023.9 mAhg −1 , indicating an acceptable rate capability. EIS tests show that the charge transfer resistance does not change significantly after 500 cycles, demonstrating that the cycling stability of CNTs-GO-Fe 3 O 4 -Tm hybrid composites are superior to CNTs-GO-Fe 3 O 4 and CNTs-GO-Fe 3 O 4 -Er hybrid structures. - Graphical abstract: One-pot hydrothermal method for synthesis of rare-earth ions doped CNTs-GO-Fe 3 O 4 hybrid structures as anode materials of LIBs have been reported. - Highlights: • We report the synthesis of rare-earth ions doped CNTs-GO-Fe 3 O 4 hybrid structures. • The hybrid structures can improve the cycling stability of lithium storage. • As for anode materials, the broad satellite peak can be completely eliminated. • When the rate return back to 0.1 C, the capacity can recover to 1023.9 mAhg −1 . • After 500 cycles, the hybrid structures still exhibited excellent cycling stability

  1. Raman scattering of rare earth hexaborides

    International Nuclear Information System (INIS)

    Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru

    2009-01-01

    Raman scattering spectra were measured for the rare-earth hexaborides RB 6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B 6 vibrations were observed in the range 600 - 1400 cm -1 . Anomalous peaks were detected below 200 cm -1 , which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.

  2. Red-emitting SrIn2O4 : Eu3+ phosphor powders for applications in solid state white lamps

    International Nuclear Information System (INIS)

    Rodriguez-Garcia, C E; Perea-Lopez, N; Hirata, G A; Baars, S P den

    2008-01-01

    Red-emitting phosphor powders of SrIn 2 O 4 activated with Eu 3+ ions were fabricated by high pressure assisted combustion synthesis. X-ray diffraction analysis of these oxide phosphors revealed the formation of single-phase orthorhombic SrIn 2 O 4 for concentrations up to 4 at% Eu. A detailed photoluminescence (PL) and cathodoluminescence study showed bright red emission originated within the 5 D 0 → 7 F J intra-shell transitions of Eu 3+ . Furthermore, PL excitation spectroscopy revealed that an efficient energy transfer from the SrIn 2 O 4 host lattice onto the Eu ions is accomplished in addition to the excitation band peaked at 396 nm that directly excites the Eu ions, making this material an excellent candidate for applications in solid state white lamps. (fast track communication)

  3. Photoluminescence in Pb{sup 2+} activated SrB{sub 4}O{sub 7} and SrB{sub 2}O{sub 4} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Gawande, A.B., E-mail: gawandeab@gmail.com [Department of Physics, SGB Amravati University, Amravati-444602, Maharashtra (India); Ingle, J.T. [J. D. Institute of Engineering and Technology, Yavatmal, Maharashtra (India); Sonekar, R.P., E-mail: sonekar_rp@yahoo.com [Department of Physics, G.S. College, Khamgaon District, Buldhana, Maharashtra (India); Omanwar, S.K. [Department of Physics, SGB Amravati University, Amravati-444602, Maharashtra (India)

    2014-05-01

    The powder samples of SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} were prepared by solution combustion synthesis method. The synthesis is based on the exothermic reaction between the fuel (Urea) and Oxidizer (Ammonium nitrate). The synthesized materials were characterized using TG–DTA, powder XRD, SEM and the photoluminescence properties were studied using a Hitachi F-7000 spectrophotometer at room temperature. Both the samples SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} show broad emission of Pb{sup 2+} respectively at 307 nm and 360 nm (corresponds to {sup 3}P{sub 1} to {sup 1}S{sub 0} transition). The optimum concentrations of Pb{sup 2+} in both the phosphors SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} were found to be 3 mol% (relative to Sr) and for this concentration the critical transfer distance R{sub 0} were calculated to be 10.21 Å and 12.22 Å respectively. The Stokes shifts were calculated to be respectively 4464 cm{sup −1} and 8454 cm{sup −1}. The emission bands of both the phosphors are in the UV region and the phosphors can be potential candidates for application in UV lamps. - Highlights: • SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} have been synthesized by Novel solution combustion synthesis technique. • The synthesized materials were characterized using TG–DTA, powder XRD and SEM. • Photoluminescence spectra of synthesized materials showed the characteristic transition in Pb{sup 2+}. • Stokes shift, optimum concentration and critical transfer distance R{sub 0} were determined.

  4. Geochemical characteristics of trace and rare earth elements in Xiangyangping uranium deposit of Guangxi

    International Nuclear Information System (INIS)

    Chen Qi; Xiao Jianjun; Fan Liting; Wen Cheng

    2013-01-01

    The trace and rare earth elements analysis were performed on two kinds ore-hosting rocks (Xiangcaoping granite and Douzhashan granite), alternated cataclastic granite and uranium ores in Xiangyangping uranium deposit of Guangxi. The results show that both of the two kinds granites display similar maturity features of highly evolved crust with the enrichment of Rb, Th, U, Ta and Pb, the depletion of Ba and Sr, high Rb/Sr and low Nb/Ta ratio, moderately rich light rare earth elements, strong negative Eu anomaly. Moreover, Douzhashan granite have higher Rb/Sr ratio and U content, which indicate it experienced more sufficient magma evolution and have higher potential of uranium source. There are almost no change in the content of trace and rare earth elements and distribution patterns during chloritization, hydromicazation and potash feldspathization of granite, but there occurred uranium enrichment and mineralization and REE remobilization while hematitization was superposed. This suggest that hematitization is most closely correlated with uranium mineralization in the working area. Because Most hematitization cataclastic rocks and uranium ore display similar geochemical characteristics to Douzhashan granite with relative high Rb/Sr and low Nb/Ta, Zr/Hf, ΣREE, LREE/HREE ration, and the trace and rare earth elements content and distribution patterns of some Xiangcaoping hematitization cataclastic rocks are between the two kinds of granite, therefore it can be concluded that the mineralization materials were mainly from Douzhashan granite and partly from Xiangcaoping granite. (authors)

  5. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.

    Science.gov (United States)

    Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M

    2016-12-28

    Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.

  6. Fluorescence of europium in oxyhalides of rare earths

    International Nuclear Information System (INIS)

    Hoelsae, Jorma; Niinistoe, Lauri

    1980-01-01

    Fluorescence spectra of the Eu 3+ ion embedded in rare earth oxyhalides LnOX (Ln=Y, La, Gd; X=Cl, Br) have been obtained at 300, 77 and 4.2 K. The number of lines observed for each transition is compatible to the one allowed by the Csub(4v) point site symmetry predicted by crystallography. Positions of Stark levels have been analyzed in terms of nephelauxetic effect and strength of the crystal field parameters, versus host cation and anion. Moreover, the so-called 'forbidden' transition 5 D 0 → 7 F 0 exhibits a strong intensity, also varying versus the matrix [fr

  7. Production and characterization of phosphorescent nanopowders doped with rare earth ions

    International Nuclear Information System (INIS)

    Montes, Paulo Jorge Ribeiro

    2009-01-01

    In this work the feasibility of employing the synthesis process using a methodology developed by Macedo and Sasaki (Macedo, M. A. e Sasaki, J. M. Fabrication process nano particulate powders. INPI 0203876-5 1998) to produce pore and rare earths doped ceramic nano powders of SrAl 2 O 4 and Ca 12 Al 14 O 33 was investigated. In this new methodology, coconut water is used as a start solvent for the production of the samples. Thermal analysis techniques were employed in order to obtain the best calcination conditions. The structural and microstructural characterizations of the samples were made using powder X-ray diffraction and Atomic Force Microscopy techniques. The analysis by X-ray diffraction showed the formation of the SrAl 2 O 4 and Ca 12 Al 14 O 33 phases in the calcined powders. The emission/excitation spectra exhibited the typical transitions of the rare earth elements indicating the incorporation of the dopant in the nano crystals. Emission characteristics of divalent europium show that the reduction of Eu ions is induced during the synthesis stage. The doped samples show an intense bright emission when exposed to X-rays. That emission is associated with divalent europium transitions, indicating that irradiation also induces the reduction of the valence state of Eu ions from Eu 3+ to Eu 2+ . Radioluminescence spectra (RL) versus time show a decay of the RL intensity to 40% of the initial intensity after 20 minutes of exposure to X-rays. Irradiation also causes a change in color of the samples indicating the production of radiation damage. Analysis of the results of X-ray spectroscopy (XAS- X-ray Absorption Spectroscopy) and the luminescent emission of samples excited by X-rays (XEOL - X-ray Excited Optical Luminescence) enabled the creation of a model that explains that behavior. DXAS technique (Dispersive X-ray Absorption Spectroscopy) was used to monitor the kinetics of the reduction process of Eu ions during irradiation, in order to verify the

  8. Fluorination of chlorocomplexes of some rare earths by xenon difluoride. [None

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, Yu.M.; Goryachenkov, S.A.; Martynenko, L.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1984-01-01

    The results of studying the XeF/sub 2/ reaction with anhydrous hexachlorocomplexes of some RE(3) (Ce, Pr, Nd, Tb, Dy, Er, Yb) are presented. It is shown that cesium rare earth hexachlorocomplexes react with xenon difluoride at 100-400 deg C with complex formation of the Cs/sub 3/M/sup 4/F,L7 (M=Ce, Pr, Tb, Nd, Dy) composition. In case of Er and Yb under the same conditions only flouride RE derivatives corresponding to the Cs/sub 3/MF/sub 6/ formula are obtained. Possible mechanism of the process is discussed.

  9. Radiological aspects in a monazite based rare earth production facility

    International Nuclear Information System (INIS)

    Harikumar, M.; Sujata, R.; Chinnaesakki, S.; Tripathi, R.M.; Puranik, V.D.; Nair, N.N.G.

    2011-01-01

    One of the largest reserves of monazite in the world is present in the Indian subcontinent. Monazite ore has around 8-9% thorium oxide and nearly 60% Rare earth oxides. Selective acid extraction is used to separate the composite rare earths. The main radiological hazard arises from the presence of thorium and its daughter products. Monitoring of the radiation field and air activity in the rare earths plant is done routinely to reduce the radiation exposure to plant personnel. The separation of uranium and rare earths from Thorium concentrate separated from Monazite is being done as a part of the THRUST (Thorium Retrieval, Recovery of Uranium and Re-storage of Thorium) project from 2004 at Indian Rare Earths Limited, Udyogamandal. The radiological aspect for this extraction of uranium and rare earths was studied. The general radiation field in the rare earth production plant was 0.3-5.0 μGyh -1 and the average short lived air activity was 46 ± 7 mWL. The long lived air activity arising from 232 Th is very insignificant radiologically. The occupational radiation exposure for the rare earths separation plant is only 6 % of the total dose and the estimated average individual dose is 1.6 mSv per year. Studies were also done to estimate the residual radioactivity in the separated rare earth compounds using gamma spectrometry and the results showed significant presence of 227 Ac arising due to the protactinium fraction in the thorium concentrate. This activity is not detectable in a freshly separated rare earth compound but can buildup with time. (author)

  10. Isomerization of butene-1 on rare earth oxides. [Rare earths: La, Nd, Dy

    Energy Technology Data Exchange (ETDEWEB)

    Khodakov, Yu S; Nesterov, V K; Minachev, Kh M [AN SSSR, Moscow. Inst. Organicheskoj Khimii

    1975-09-01

    A study has been made into the isomerization of butene-1 on oxides of rare-earth elements. The dependence of the reaction rate at 20/sup 0/C on the baking temperature of La and Nd oxides have the maximum at 700/sup 0/C. A decrease in the activity of these oxides after bakinq at 800/sup 0/C is observed, as well as during experiments at -30 deq C. In the case of Dy/sub 2/O/sub 3/, the activity at 20/sup 0/C increases gradually with Tsub(bak)=500 to 800/sup 0/C Zeolite 0.57LaNaY exhibits maximum activity at Tsub(bak)=500/sup 0/C Similar data as to the effect of the baking temperature on the catalyst activity were obtained earlier for hydrogenation of ethylene. According to their maximum activity, oxides of rare-earth elements, in the isomerization as well as hydrogenation reactions, can be arranged as follows: La/sub 2/O/sub 3/>Nd/sub 2/O/sub 3/3/. LaNaY has a lower activity, with respect to La/sup 3 +/ cation, than La/sub 2/O/sub 3/. The Na-form of zeolite Y was not active. The regularities of variation in the catalytic activity of La, Nd, Dy oxides and zeolite 0.57LaNaY in the reactions of double bond shift in butenes and hydroqenation of ethylene are similar.

  11. Rare earths 1998 market update

    International Nuclear Information System (INIS)

    Tourre, J.M.

    1998-01-01

    The rare earth industry has always been a world of rapid change with the emergence of new markets, new ores and new players, as well as the disappearance of old applications. Rare earth based products are used in a great diversity of applications such as hard disk drives, CD drives, batteries, capacitors, pigments, ceramics, polishing powders, fuel cells, flints, catalyst converter, fluid cracking catalysts, etc. South East Asia holds the largest share of the known reserve of rare earth ores and is one of the major markets for rare earth compounds; in the last ten years, China has become the largest producer of rare earth intermediates as well as an important exporter of separated rare earth elements. Today, China has approximately 150 factories producing rare earth compounds, most of which are experiencing financial difficulties due to the lack of knowledge of true market needs, lack of control of their distribution channels and production over-capacity. Recently the Chinese rare earth producers have recognized the situation and efforts are underway to rationalize rare earth production. Japan has dominated many of the major application markets, and is by far the largest market for metal and alloy products. This will remain the case for the next five years; however, new countries are emerging as significant users of rare earth products such as Korea, Taiwan and Malaysia. During the last ten years rare earth producers adjusted to several radical changes that affected the raw materials, the application mix and the price structure. New producers have emerged, especially from China; some have subsequently stopped their activities while others have focused their efforts in a specific market segment

  12. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  13. High-pressure densified solid solutions of alkaline earth hexaborides (Ca/Sr, Ca/Ba, Sr/Ba) and their high-temperature thermoelectric properties

    International Nuclear Information System (INIS)

    Gürsoy, M.; Takeda, M.; Albert, B.

    2015-01-01

    Solid solutions of alkaline earth hexaborides were synthesized and densified by spark plasma sintering at 100 MPa. The high-temperature thermoelectric properties (Seebeck coefficients, electrical and thermal diffusivities, heat capacities) were measured between room temperature and 1073 K. CaB 6 , SrB 6 , BaB 6 and the ternary hexaborides Ca x Sr 1−x B 6 , Ca x Ba 1−x B 6 , Sr x Ba 1−x B 6 (x = 0.25, 0.5, 0.75) are n-type conducting compounds over the whole compositional and thermal ranges. The values of the figure of merit ZT for CaB 6 (ca. 0.3 at 1073 K) were found to be significantly increased compared to earlier investigations which is attributed to the densification process. - Highlights: • Solid solutions of alkaline earth hexaborides were synthesized. • High-temperature thermoelectric properties of mixed calcium borides are excellent. • Spark plasma source densification results in high ZT values. • Borides are rare-earth free and refractory materials

  14. Luminescent properties of Eu2+ and Ce3+ ions in strontium litho-silicate Li2SrSiO4

    International Nuclear Information System (INIS)

    Dotsenko, V.P.; Levshov, S.M.; Berezovskaya, I.V.; Stryganyuk, G.B.; Voloshinovskii, A.S.; Efryushina, N.P.

    2011-01-01

    The luminescent properties of Eu 2+ and Ce 3+ ions in Li 2 SrSiO 4 have been studied upon excitation in the 2-20 eV region. Based on the results of luminescent measurements, values of the crystal field splitting and the centroid shift of the Ce 3+ 5d configuration in Li 2 SrSiO 4 were found and compared with those of Ce 3+ ions in some other inorganic compounds. The Eu 2+ ions in Li 2 SrSiO 4 exhibit a broad band emission with a maximum at 576 nm, which is due to the 4f 6 5d→4f 7 transition. It was shown that the long-wavelength position of the Eu 2+ emission in Li 2 SrSiO 4 is caused by the large crystal-field splitting of the Eu 2+ 4f 6 5d configuration and relatively high degree of covalency of the Eu-O bond. The stabilization of Eu 2+ ions in Li 2 SrSiO 4 during the synthesis process requires a strong reducing agent. Two phenomenological approaches to explain the low stability of Eu 2+ in Li 2 SrSiO 4 are also discussed.

  15. Tetracyanidoborates with triply charged rare earth metal cations and their optical properties

    International Nuclear Information System (INIS)

    Hackbarth, Liisa

    2015-01-01

    The aim of this thesis is the description of the synthesis and characterization of a new group of tetracyanidoborates: tetracyanidoborates with trivalent rare earth metal cations. Their optical properties in the ultraviolet and visible range are also discussed. Common synthetic routes for tetracyanidoborates are adapted and applied to the preparation of the rare earth tetracyanidoborate hydrates. They are accessible with high yields and high purity through a reaction between the tetracyanidoboronic acid and rare earth hydroxides. It is shown that the rare earth tetracyanidoborates form isostructural groups, like the [LRE(H_2O)_5][B(CN)_4]_3.0.5 H_2O, where LRE"3"+ is La, Ce, Pr, Nd, Sm, Eu and Gd, the [HRE(H_2O)_7][B(CN)_4]_3 and the [HRE(H_2O)_8][B(CN)_4]_3.3 H_2O, where HRE"3"+ is Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. Furthermore, the coordination number 9 is noticed to be common among the light rare earth cations, whereas the minor coordination number 8 is prevalent for the heavy rare earth cations in their tetracyanidoborates. This different construction of the coordination spheres between light and heavy rare earth cations leads to different structures depending on the energetic efficiency of the structural arrangement. Generally, the rare earth tetracyanidoborate hydrates are found to crystallize in the monoclinic crystal system. Moreover, other different crystal structures are observed depending on the crystallization temperature and the type of coordinated ligands and co-crystallized solvent molecules. The tetracyanidoborate hydrates with triply charged rare earth cations are characterized comprehensively by X-ray diffraction, vibrational spectroscopy, NMR-spectroscopy as well as by thermal analysis. Furthermore, the optical properties of some dehydrated rare earth tetracyanidoborates are investigated by UV-spectroscopy and luminescence measurements. The results of the optical measurements indicate that the tetracyanidoborates with rare earth metal cations

  16. Separation and Recovery of Iron and Rare Earth from Bayan Obo Tailings by Magnetizing Roasting and (NH4)2SO4 Activation Roasting

    OpenAIRE

    Yan Zhou; He Yang; Xiang-xin Xue; Shuai Yuan

    2017-01-01

    A novel approach for recovery of iron and rare earth elements (REEs) from Bayan Obo tailings of Baotou, China, was developed by combining magnetizing roasting, magnetic separation, (NH4)2SO4 activation roasting, and water leaching. Thermodynamic analysis of carbothermal reduction was conducted to determine the temperature of magnetizing roasting, and it agreed well with the experimental results. The maximum recovery of Fe reached 77.8% at 600 °C, and the grade of total Fe in the magnetic conc...

  17. Eu and Sr2CeO4 : Eu phosphors suitable for near ultraviolet excitation

    Indian Academy of Sciences (India)

    Administrator

    The study on white light phosphors suitable for near- ultraviolet (nUV) ... Rare earth ion-doped phosphors have been used in varied fields ... practical applications. .... by naked eyes. ... induced by Sr2CeO4 host matrix (Arunachalam Laxmanan.

  18. X-ray Absorption Spectroscopy of the Rare Earth orthophosphates

    International Nuclear Information System (INIS)

    Shuh, D.K.; Terminello, L.J.; Boatner, L.A.; Abraham, M.M.

    1993-06-01

    X-ray Absorption Spectroscopy (XAS) of the Rare Earth (RE) 3d levels yields sharp peaks near the edges as a result of strong, quasi-atomic 3d 10 4f n → 3d- 9 4f n+1 transitions and these transitions exhibit a wealth of spectroscopic features. The XAS measurements of single crystal REPO 4 (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er) at the 3d edge were performed in the total yield mode at beam line 8-2 at the Stanford Synchrotron Radiation Laboratory (SSRL). The XAS spectra of the RE ions in the orthophosphate matrix generally resemble the XAS of the corresponding RE metal. This is not unexpected and emphasizes the major contribution of the trivalent state to the electronic transitions at the RE 3d edges. These spectra unequivocally identify the transitions originating from well-characterized RE cores and correlate well with previous theoretical investigations

  19. Rare metal and rare earth pegmatites of Western India

    International Nuclear Information System (INIS)

    Maithani, P.B.; Nagar, R.K.

    1999-01-01

    Rajasthan Mica Belt in western India is one of the three major mica-producing Proterozoic pegmatite belts of India, the others being in Bihar and Andhra Pradesh. The pegmatites of these mica belts, in general, are associated with the rare metal (RM) and rare earth element (REE)-bearing minerals like columbite-tantalite, beryl, lepidolite and other multiple oxides. RM-REE pegmatites of Gujarat are devoid of commercially workable mica. These pegmatites are geologically characterised in this paper, based on their association with granite plutons geochemistry, and RM and REE potential. In addition to RM and RE-bearing pegmatites, granites of the Umedpur area, Gujarat also show anomalous concentration (0.97 wt%) of rare metals (6431 ppm Nb, 1266 ppm Ta, 454 ppm Sn, 173 ppm W), (1098 ppm Ce 1.36% Y 2 O 3 ) rare earths, and uranium (0.40% eU 3 O 8 ). Eluvial concentrations in the soil and panned concentrate (0.04-0.28 wt%) analysed up to 7.4%Nb 2 O 5 , 836 ppm Ta, and 1.31% Y. Discrete columbite-tantalite and betafite have been identified in these concentrates in addition to other minerals like zircon, rutile, sphene and xenotime. This area with discrete RM R EE mineral phases could be significant as a non-pegmatite source for rare metal and rare earths. (author)

  20. A study on artificial rare earth (RE2O3) based neutron absorber.

    Science.gov (United States)

    Kim, Kyung-O; Kyung Kim, Jong

    2015-11-01

    A new concept of a neutron absorption material (i.e., an artificial rare earth compound) was introduced for criticality control in a spent fuel storage system. In particular, spent nuclear fuels were considered as a potential source of rare earth elements because the nuclear fission of uranium produces a full range of nuclides. It was also found that an artificial rare earth compound (RE2O3) as a High-Level Waste (HLW) was naturally extracted from pyroprocessing technology developed for recovering uranium and transuranic elements (TRU) from spent fuels. In this study, various characteristics (e.g., activity, neutron absorption cross-section) were analyzed for validating the application possibility of this waste compound as a neutron absorption material. As a result, the artificial rare earth compound had a higher neutron absorption probability in the entire energy range, and it can be used for maintaining sub-criticality for more than 40 years on the basis of the neutron absorption capability of Boral™. Therefore, this approach is expected to vastly improve the efficiency of radioactive waste management by simultaneously keeping HLW and spent nuclear fuel in a restricted space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  2. Blue photoluminescence and long lasting phosphorescence properties of a novel chloride phosphate phosphor: Sr5(PO4)3Cl:Eu2+

    International Nuclear Information System (INIS)

    Wu, Chuanqiang; Zhang, Jiachi; Feng, Pengfei; Duan, Yiming; Zhang, Zhiya; Wang, Yuhua

    2014-01-01

    A novel blue emitting long lasting phosphorescence phosphor Sr 5 (PO 4 ) 3 Cl:Eu 2+ is synthesized by solid state method at 1223 K in reducing atmosphere. The afterglow emission spectrum shows one broad band centered at 441 nm due to the 5d–4f transition of Eu 2+ at six coordinated Sr(II) sites and the color coordinates are calculated to be (0.149, 0.095) which is close to the light blue region. The excitation band is in 240–430 nm and partly overlaps the solar irradiation on Earth's surface. The long lasting phosphorescence of the optimal sample doping by 0.1 mol%Eu 2+ can be recorded for about 1040 s (0.32 mcd/m 2 ). Thermoluminescence shows that there are at least three types of traps corresponding to peaks at 340 K, 382 K, 500 K, respectively. The filling and fading experiments reveal that the traps in Sr 5 (PO 4 ) 3 Cl:Eu 2+ are independent. The shallow traps (340 K) essentially contribute to the visible long lasting phosphorescence, while the deep traps (382 K and 500 K) are proved to be very stable. Thus, the Sr 5 (PO 4 ) 3 Cl:Eu 2+ material shows potential applications as not only a long lasting phosphorescence phosphor, but also an optical storage material. -- Highlights: • The blue long lasting phosphorescence of Sr 5 (PO 4 ) 3 Cl:Eu 2+ is first reported. • Filling and fading experiments are carried out for revealing natures of traps. • The afterglow mechanism for independent traps of Sr 5 (PO 4 ) 3 Cl:Eu 2+ is proposed

  3. Supercritical Carbon Dioxide extraction of Aloe Emodin and Barbaloin from Aloe Vera L. leaves and their in-vitro cytotoxic activity

    International Nuclear Information System (INIS)

    Kabbash, A.; El-Soud, K.A.; Zalat, E.; Shoeib, N.; Yagi, A.

    2008-01-01

    Aloe emodin and barbaloin, isolated as the active principles of the medicinal plant Aloe vera L., were extracted by supercritical fluid extraction (SFE) and analyzed by high performance liquid chromatography (HPLC). With optimized operating conditions for SFE, aloe emodin and barbaloin were quantitatively extracted from A. Vera leaves within 20 minutes at a flow rate of 0.3 ml/min, temperature and pressure at 40C and 3200 Psi respectively with the addition of 1 ml of methanol as a modifier. Separation of aloe emodin and barbaloin, in a pure form, from the SFE extract was achieved using a semi-preparative column. The cytotoxic activity of both aloe emodin and barbaloin were evaluated using the in-vitro MTT colorimetric assay. Aloe emodin showed a cytotoxic activity on two human colon cancer cells lines (DLD-1 and HD-29) with IC 8.94 and 10.78 M respectively, while barbaloin had no effect. (author)

  4. CsSc{sub 3}F{sub 6}[SeO{sub 3}]{sub 2}. A new rare-earth metal(III) fluoride oxoselenate(IV) with sections of the ReO{sub 3}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Stefan; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany)

    2017-09-04

    A new representative of rare-earth metal(III) fluoride oxoselenates(IV) derivatized with alkali metals could be synthesized via solid-state reactions. Colorless single crystals of CsSc{sub 3}F{sub 6}[SeO{sub 3}]{sub 2} were obtained through the reaction of Sc{sub 2}O{sub 3}, ScF{sub 3}, and SeO{sub 2} (molar ratio 1:1:3) with CsBr as reactant and fluxing agent. For this purpose, corundum crucibles embedded as liners into evacuated silica ampoules were applied as containers for these reactions at 700 C for seven days. The new quintenary compound crystallizes in the trigonal space group P3m1 with a = 565.34(4) and c = 1069.87(8) pm (c/a = 1.892) for Z = 1. The crystal structure of CsSc{sub 3}F{sub 6}[SeO{sub 3}]{sub 2} contains two crystallographically different Sc{sup 3+} cations. Each (Sc1){sup 3+} is surrounded by six fluoride anions as octahedron, while the octahedra about (Sc2){sup 3+} are formed by three fluoride anions and three oxygen atoms from three terminal [SeO{sub 3}]{sup 2-} anions. The [(Sc1)F{sub 6}]{sup 3-} octahedra link via common F{sup -} vertices to six fac-[(Sc2)F{sub 3}O{sub 3}]{sup 6-} octahedra forming {sup 2}{sub ∞}{[Sc_3F_6O_6]"9"-} layers parallel to (001). These layers are separated by oxygen-coordinated Cs{sup +} cations (C.N. = 12), arranging for the charge compensation, while Se{sup 4+} cations within the layers surrounded by three oxygen atoms as ψ{sup 1}-tetrahedral [SeO{sub 3}]{sup 2-} units complete the structure. EDX measurements confirmed the composition of the title compound and single-crystal Raman studies showed the typical vibrational modes of isolated [SeO{sub 3}]{sup 2-} anions with ideal C{sub 3v} symmetry. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Ion conductivities of ZrF4-BaF2-CsF glasses

    International Nuclear Information System (INIS)

    Kawamoto, Yoji; Nohara, Ichiro

    1987-01-01

    The glass-forming region in the ZrF 4 -BaF 2 -CsF glass system has been determined and the ac conductivity and the transport number of fluoride ions have been measured. The conductivities of compounds β-Cs 2 ZrF 6 , α-SrZrF 6 , α-BaZrF 6 , β-BaZrF 6 and α-PbZrF 6 have also been measured. These results and a previous study of ZrF 4 -BaF 2 -MF n (M: the groups I-IV metals) glasses revealed the following: (1) the ZrF 4 -BaF 2 -CsF glasses are exclusively fluoride-ion conductors; (2) the ionic conductivities of ZrF 4 -based glasses are predominantly determined by the activation energies for conduction; (3) the activation energy for conduction decreases with an increase in the average polarizability of glass-constituting cations; (4) a decrease in average Zr-F bond length and a lowering of the average F coordination number of Zr are presumed to increase the activation energy for conduction. Principles of developing ZrF 4 -based glasses with higher conductivities have also been proposed. (Auth.)

  6. Laser action on rare earth doped nitride semiconductor thin layers

    International Nuclear Information System (INIS)

    Oussif, A.; Diaf, M.

    2010-01-01

    Complete text of publication follows. The structure, chemical composition, properties, and their relationships in solids lay the foundation of materials science. Recently, great interest in rare-earth (RE)-doped wide-bandgap semiconductors, which combine the electronic properties of semiconductors with the unique luminescence features of RE ions, is from the fundamental standpoint of structure-composition-properties of solids. At first, a significant amount of work has been reported on the study of infrared emissions from Er 3+- doped semiconductors because Er 3+ exhibits luminescence at 1.54 μm, a wavelength used in optical communications. Since Steckl and Birkhahn first reported visible emission associated with Er from GaN:Er films, the RE-doped semiconductors have received considerable interest for possible application in light emitting devices. Molecular-beam epitaxy (MBE) and metalorganic chemical vapour deposition (MOCVD) have been used mainly to grow GaN host films. The RE dopants were typically incorporated into the host films by in situ doping during the growth or by ion implantation after the growth. GaN doped with rare-earth elements (RE) hold significant potential for applications in optical devices, since they show sharp intense luminescence which is only minimally affected by temperature variations. Among the various RE dopants, Eu seems to be the most interesting, since it yields red luminescence 622 nm which has not been realized in commercially available light emitting devices (LEDs) that use InGaN active layers. We have earlier reported single crystalline growth of Eu-doped GaN and nearly temperature independent red luminescence at 622 nm originating from the intra-4f-4f transition of the Eu 3+ ion. The red luminescence was analyzed and determined to be generated through trap-level-mediated energy transfer from the semiconductor host.

  7. Rare Earth Garnet Selective Emitter

    Science.gov (United States)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  8. Hydrothermal synthesis, characterization and up/down-conversion luminescence of barium rare earth fluoride nanocrystals

    International Nuclear Information System (INIS)

    Jia, Li-Ping; Zhang, Qiang; Yan, Bing

    2014-01-01

    Graphical abstract: Lanthanide ions doped bare earth rare earth fluoride nanocrystals are synthesized by hydrothermal technology and characterized. The down/up-conversion luminescence of them are discussed. - Highlights: • Mixed hydrothermal system H 2 O–OA (EDA)–O-A(LO-A) is used for synthesis. • Barium rare earth fluoride nanocrystals are synthesized comprehensively. • Luminescence for down-conversion and up-conversion are obtained for these systems. - Abstract: Mixed hydrothermal system H 2 O–OA (EDA)–O-A(LO-A) is developed to synthesize barium rare earth fluorides nanocrystals (OA = oleylamine, EDA = ethylenediamine, O-A = oleic acid and LO-A = linoleic acid). They are presented as BaREF 5 (RE = Ce, Pr, Nd, Eu, Gd, Tb, Dy, Y, Tm, Lu) and Ba 2 REF 7 (RE = La, Sm, Ho, Er, Yb). The influence of reaction parameters (rare earth species, hydrothermal system and temperature) is checked on the phase and shape evolution of the fluoride nanocrystals. It is found that reaction time and temperature of these nanocrystals using EDA (180 °C, 6 h) is lower than those of them using OA (220 °C, 10 h). The photoluminescence properties of these fluorides activated by some rare earth ions (Nd 3+ , Eu 3+ , Tb 3+ ) are studied, and especially up-conversion luminescence of the four fluoride nanocrystal systems (Ba 2 LaF 7 :Yb, Tm(Er), Ba 2 REF 7 :Yb, Tm(Er) (RE = Gd, Y, Lu)) is observed

  9. Rare-earth-ion doped KY(WO4)2 optical waveguides grown by liquid-phase epitaxy

    NARCIS (Netherlands)

    Romanyuk, Y.E.; Apostolopoulos, V.; Utke, U.; Pollnau, Markus

    High-quality KY(WO4)2 thin layers doped with rare-earth-ions were grown using liquid-phase epitaxy. A low-temperature mixture of chlorides was used as the flux and undoped KY(WO4)2 crystals as substrates. The crystalline layers possessed thicknesses up to 10 µm. Passive and active planar waveguiding

  10. Electroluminescent devices based on rare-earth tetrakis β-diketonate complexes

    International Nuclear Information System (INIS)

    Quirino, W.G.; Legnani, C.; Santos, R.M.B. dos; Teixeira, K.C.; Cremona, M.; Guedes, M.A.; Brito, H.F.

    2008-01-01

    In this paper the synthesis, photoluminescence and electroluminescence investigation of the novel tetrakis β-diketonate of rare-earth complexes such as, M[Eu(dbm) 4 ] and M[Tb(acac) 4 ] with a variety of cationic ligands, M = Li + , Na + and K + have been investigated. The emission spectra of the Eu 3+ and Tb 3+ complexes displayed characteristic narrow bands arising from intraconfigurational transitions of trivalent rare-earth ions and exhibited red color emission for the Eu 3+ ion ( 5 D 0 → 7 F J , J = 0-6) and green for the Tb 3+ ion ( 5 D 4 → 7 F J , J = 6-0). The lack of the broaden emission bands arising from the ligands suggests the efficient intramolecular energy transfer from the dbm and acac ligands to Eu 3+ and Tb 3+ ions, respectively. In accordance to the expected, the values of PL quantum efficiency (η) of the emitting 5 D 0 state of the tetrakis(β-diketonate) complexes of Eu 3+ were higher compared with those tris-complexes. Therefore, organic electroluminescent (EL) devices were fabricated with the structure as follows: indium tin oxide (ITO)/hole transport layer (HTL) NPB or MTCD/emitter layer M[RE(β-diketonate) 4 ] complexes)/Aluminum (Al). All the films were deposited by thermal evaporation carried out in a high vacuum environment system. The OLED light emission was independent of driving voltage, indicating that the combination of charge carriers generates excitons within the M[RE(β-diketonate) 4 ] layers, and the energy is efficiently transferred to RE 3+ ion. As a best result, a pure red and green electroluminescent emission was observed from the Eu 3+ and Tb 3+ devices, confirmed by (X,Y) color coordinates

  11. A novel UV-emitting phosphor: LiSr4(BO3)3: Pb2+

    International Nuclear Information System (INIS)

    Pekgözlü, İlhan

    2013-01-01

    Pure and Pb 2+ doped LiSr 4 (BO 3 ) 3 materials were prepared by a solution combustion synthesis method. The phase analysis of all synthesized materials were determined using the powder XRD. The synthesized materials were investigated using spectrofluorometer at room temperature. The excitation and emission bands of LiSr 4 (BO 3 ) 3 : Pb 2+ were observed at 284 and 328 nm, respectively. The dependence of the emission intensity on the Pb 2+ concentration for the LiSr 4 (BO 3 ) 3 were studied in detail. It was observed that the concentration quenching of Pb 2+ in LiSr 4 (BO 3 ) 3 is 0.005 mol. The Stokes shifts of LiSr 4 (BO 3 ) 3 : Pb 2+ phosphor was calculated to be 4723 cm –1 . -- Highlights: • A novel UV-emitting phosphor: LiSr 4 (BO 3 ) 3 : Pb 2+ ” synthesized for the first time. • The emission band of LiSr 4 (BO 3 ) 3 : Pb 2+ was observed at 328 nm upon excitation with 284 nm. • LiSr 4 (BO 3 ) 3 : Pb 2+ is a good phosphor for broadband UV application

  12. Corrosion resistance of chromium-nickel steel containing rare earths

    International Nuclear Information System (INIS)

    Asatiani, G.N.; Mandzhgaladze, S.N.; Tavadze, L.F.; Chuvatina, S.N.; Saginadze, D.I.

    1983-01-01

    Effect of additional out-of-furnace treatment with complex alloy (foundry alloy) calcite-silicon-magnesium-rare earth metal on corrosion resistance of the 03Kh18N20M3D3C3B steel has been studied. It is shown that introduction of low additions of rare earths improves its corrosion resistance improves its corrosion resistance in agressive media (in 70% - sulfuric acid) in the range of transition from active to passive state. Effect of additional introduction of rare earth metals is not considerable, if potential of steel corrosion is in the range of stable passive state (32% - sulfuric acid). Additional out-of-furnace treatment with complex foundry alloy, containing rare earth metals, provides a possibility to use a steel with a lower content of Cr, Ni, Mo, than in conventional acid-resistant steels in highly agressive media

  13. Tetracyanidoborates with triply charged rare earth metal cations and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hackbarth, Liisa

    2015-11-24

    The aim of this thesis is the description of the synthesis and characterization of a new group of tetracyanidoborates: tetracyanidoborates with trivalent rare earth metal cations. Their optical properties in the ultraviolet and visible range are also discussed. Common synthetic routes for tetracyanidoborates are adapted and applied to the preparation of the rare earth tetracyanidoborate hydrates. They are accessible with high yields and high purity through a reaction between the tetracyanidoboronic acid and rare earth hydroxides. It is shown that the rare earth tetracyanidoborates form isostructural groups, like the [LRE(H{sub 2}O){sub 5}][B(CN){sub 4}]{sub 3}.0.5 H{sub 2}O, where LRE{sup 3+} is La, Ce, Pr, Nd, Sm, Eu and Gd, the [HRE(H{sub 2}O){sub 7}][B(CN){sub 4}]{sub 3} and the [HRE(H{sub 2}O){sub 8}][B(CN){sub 4}]{sub 3}.3 H{sub 2}O, where HRE{sup 3+} is Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. Furthermore, the coordination number 9 is noticed to be common among the light rare earth cations, whereas the minor coordination number 8 is prevalent for the heavy rare earth cations in their tetracyanidoborates. This different construction of the coordination spheres between light and heavy rare earth cations leads to different structures depending on the energetic efficiency of the structural arrangement. Generally, the rare earth tetracyanidoborate hydrates are found to crystallize in the monoclinic crystal system. Moreover, other different crystal structures are observed depending on the crystallization temperature and the type of coordinated ligands and co-crystallized solvent molecules. The tetracyanidoborate hydrates with triply charged rare earth cations are characterized comprehensively by X-ray diffraction, vibrational spectroscopy, NMR-spectroscopy as well as by thermal analysis. Furthermore, the optical properties of some dehydrated rare earth tetracyanidoborates are investigated by UV-spectroscopy and luminescence measurements. The results of the optical

  14. Chlorination of UO2, PuO2, and rare-earth oxides using ZrCl4

    International Nuclear Information System (INIS)

    Sakamura, Yoshiharu; Inoue, Tadashi; Iwai, Takashi; Moriyama, Hirotake

    2001-01-01

    A new chlorination method using ZrCl 4 , which has a high reactivity with oxygen, has been investigated for more efficient oxide treatment. After actinide oxides are chlorinated and dissolved in a molten salt bath, actinide metals can be selectively collected using the electrorefining process. This process is well suited for pyrochemical reprocessing of metallic fuels. In LiCl-KCI eutectic melts, rare-earth oxides (Y 2 O 3 , La 2 O 3 , CeO 2 , and Nd 2 O 3 ) and actinide oxides (UO 2 and PuO 2 ) were chlorinated by adding ZrCl 4 . As a result, rare-earth and actinide elements were dissolved into the salt as trivalent ions and ZrO 2 was precipitated. When an excess of ZrCI 4 was added, oxides in powder form were completely chlorinated in five hours. It was demonstrated that the ZrCI 4 chlorination method, free from corrosive gas such as chlorine, was very simple and useful. (author)

  15. Synthesis and luminescence studies of novel rare earth activated lanthanum pentaborate

    International Nuclear Information System (INIS)

    Nagpure, P.A.; Bajaj, N.S.; Omanwar, S.K.; Sonekar, R.P.

    2011-01-01

    The lanthanum pentaborate (LaB 5 O 9 ) is a novel material which exhibits excellent luminescence when doped with rare earth ions. It was prepared by a novel technique which is a slight variation of solution combustion synthesis. The synthesis is based on the exothermic reaction between the fuel (urea) and oxidizer (ammonium nitrate). The structure of the prepared material was confirmed by powder XRD technique. The photoluminescence of rare earth ions (Ce 3+ , Eu 3+ ) and sensitized luminescence of Gd 3+ (Pr 3+ -Gd 3+ and Bi 3+ -Gd 3+ ) in LaB 5 O 9 have been studied. LaB 5 O 9 :Ce 3+ shows broad band UV emission at 317 nm and LaB 5 O 9 :Eu 3+ shows orange red emission. LaB 5 O 9 : Pr 3+ -Gd 3+ and LaB 5 O 9 : Bi 3+ -Gd 3+ exhibit efficient luminescence of Gd 3+ in narrow UVB region at 310 nm. The material (La 0.5 Pr 0.4 )B 5 O 9 :Gd 0.1 exhibits intense narrow band UVB emission at 310 nm and could be a potential candidate for UVB phosphors used in phototherapy lamps. (author)

  16. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Tai [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  17. Effect of the nature of alkali and alkaline-earth oxides on the structure and crystallization of an alumino-borosilicate glass developed to immobilize highly concentrated nuclear waste solutions

    International Nuclear Information System (INIS)

    Quintas, A.; Caurant, D.; Majerus, O.; Charpentier, T.; Dussossoy, J.L.

    2008-01-01

    A complex rare-earth rich alumino-borosilicate glass has been proved to be a good candidate for the immobilization of new high level radioactive wastes. A simplified seven-oxides composition of this glass was selected for this study. In this system, sodium and calcium cations were supposed in other works to simulate respectively all the other alkali (R + = Li + , Rb + , Cs + ) and alkaline-earth (R 2+ = Sr 2+ , Ba 2+ ) cations present in the complex glass composition. Moreover, neodymium or lanthanum are used here to simulate all the rare-earths and actinides occurring in waste solutions. In order to study the impact of the nature of R + and R 2+ cations on both glass structure and melt crystallization tendency during cooling, two glass series were prepared by replacing either Na + or Ca 2+ cations in the simplified glass by respectively (Li + , K + , Rb + , Cs + ) or (Mg 2+ , Sr 2+ , Ba 2+ ) cations. From these substitutions, it was established that alkali ions are preferentially involved in the charge compensation of (AlO 4 ) - entities in the glass network comparatively to alkaline-earth ions. The glass compositions containing calcium give way to the crystallization of an apatite silicate phase bearing calcium and rare-earth ions. The melt crystallization tendency during cooling strongly varies with the nature of the alkaline-earth. (authors)

  18. Radiological safety in extraction of rare earths in India: regulatory control

    International Nuclear Information System (INIS)

    Sinha, S.; Bhattacharya, R.

    2011-01-01

    The term 'rare earths' refers to a group of f-block elements in the periodic table including those with atomic numbers 57 (Lanthanum) to 71 (Lutetium), as well as the transition metals Yttrium (39) and Scandium (21). Economically extractable concentrations of rare earths are found in minerals such as monazite, bastnaesite, cerites, xenotime etc. Of these, monazite forms the main source for rare earths in India, which along with other heavy minerals is found abundantly in the coastal beach sands. However, in addition to rare earths, monazite also contains 0.35% U 3 O 8 and 8-9% ThO 2 . Hence, extraction of rare earths involves chemical separation of the rare earths from thorium and uranium which are radioactive. The processing and extraction of rare earths from monazite therefore invariably results in occupational radiation exposure to the workers involved in these operations. In addition, in the process of removal of radioactivity from rare earths, radioactive solid waste gets generated which has 2 2 8Ra concentration in the range 2000-5000 Bq/g. Unregulated disposal of such high active waste would not only result in contamination of the soil but the radionuclides would eventually enter the food chain and lead to internal exposure of the general public. Therefore such facilities involved in recovery of rare earths from monazite attract the provisions of radiological safety regulations. Atomic Energy Regulatory Board of India has been enforcing the provisions of The Atomic Energy (Radiation Protection) Rules, 2004 and The Atomic Energy (Safe Disposal of Radioactive Waste) Rules, 1987 in these facilities. This paper shall discuss the associated radiological hazard involved in recovery of rare earths from monazite. It shall also highlight the regulatory requirements for controlling the occupational exposure of workers during design stage such as requirements on lay out of the building, ventilation, containment of radioactivity, etc and also the during operational

  19. Synthesis and crystal structure of the isotypic rare earth thioborates Ce[BS3], Pr[BS3], and Nd[BS3

    International Nuclear Information System (INIS)

    Hunger, Jens; Borna, Marija; Kniep, Ruediger

    2010-01-01

    The orthothioborates Ce[BS 3 ], Pr[BS 3 ] and Nd[BS 3 ] were prepared from mixtures of the rare earth (RE) metals together with amorphous boron and sulfur summing up to the compositions CeB 3 S 6 , PrB 5 S 9 and NdB 3 S 6 . The following preparation routes were used: solid state reactions with maximum temperatures of 1323 K and high-pressure high-temperature syntheses at 1173 K and 3 GPa. Pr[BS 3 ] and Nd[BS 3 ] were also obtained from rare earth chlorides RECl 3 and sodium thioborate Na 2 B 2 S 5 by metathesis type reactions at maximum temperatures of 1073 K. The crystal structure of the title compounds was determined from X-ray powder diffraction data. The thioborates are isotypic and crystallize in the orthorhombic spacegroup Pna2 1 (No. 33; Z=4; Ce: a=7.60738(6)A, b=6.01720(4)A, c=8.93016(6)A; Pr: a=7.56223(4)A, b=6.00876(2)A, c=8.89747(4)A; Nd: a=7.49180(3)A, b=6.00823(2)A, c=8.86197(3)A) . The crystal structures contain isolated [BS 3 ] 3- groups with boron in trigonal-planar coordination. The sulfur atoms form the vertices of undulated kagome nets, which are stacked along [100] according to the sequence ABAB. Within these nets every second triangle is occupied by boron and the large hexagons are centered by rare earth ions, which are surrounded by overall nine sulfur species. - Abstract: Graphical Abstract Legend (TOC Figure): Table of Contents Figure The isotypic orthothioborates Ce[BS 3 ], Pr[BS 3 ] and Nd[BS 3 ] were prepared using different preparation routes. The crystal structure of the title compounds was determined from X-ray powder diffraction data. The crystal structures contain isolated [BS 3 ] 3- groups with boron in trigonal-planar coordination. The sulfur atoms form the vertices of corrugated kagome nets (sketched with blue dotted lines), which are stacked along [100] according to the sequence ABAB. Within these nets every second triangle is occupied by boron and the large hexagons are centered by rare earth ions, which are surrounded by

  20. Solubility of rare earth-iron borates in the Bi2O3-B2O3 melt and their crystallization

    International Nuclear Information System (INIS)

    Al'shinskaya, L.I.; Leonyuk, N.I.; Nadezhnaya, T.B.; Timchenko, T.I.

    1979-01-01

    The temperature dependence of solubility of RFe 3 (BO 3 ) 4 (R=Y, Gd, Nd, Er) double borates in the Bi 2 O 3 -B 2 O 3 solution-melt is studied. The solubility curves in the range from 25 to 52 mol% are plotted. The character of curves is almost similar. At equal temperatures YFe 3 (BO 3 ) 4 and ErFe 3 (BO 3 ) 4 have the highest solubility and GaFe 3 (BO 3 ) 4 - the lowest one. It is shown that in the Bi 2 O 3 -B 2 O 3 base solution-melt the wide temperature range of monophase crystallization of rare earth - iron borates exists and the stratification is not observed. Thus, for the first time obtained are the crystals of rare earth-iron borates suitable for the investigation of their physical properties

  1. Upconversion improvement in KLaF{sub 4}:Yb{sup 3+}/Er{sup 3+} nanoparticles by doping Al{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haifang [Fuzhou University, School of Physics and Information Engineering, and Institute of Micro-Nano Devices and Solar Cells, Fuzhou (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou, Jiangsu (China); Wang, Xiechun; Lai, Yunfeng; Cheng, Shuying; Zheng, Qiao; Yu, Jinlin [Fuzhou University, School of Physics and Information Engineering, and Institute of Micro-Nano Devices and Solar Cells, Fuzhou (China)

    2017-10-15

    Rare-earth ion-doped upconversion (UC) materials show great potential applications in optical and optoelectronic devices due to their novel optical properties. In this work, hexagonal KLaF{sub 4}:Yb{sup 3+}/Er{sup 3+} nanoparticles (NPs) were successfully synthesized by a hydrothermal method, and remarkably enhanced upconversion luminescence in green and red emission bands in KLaF{sub 4}:Yb{sup 3+}/Er{sup 3+} NPs has been achieved by doping Al{sup 3+} ions under 980 nm excitation. Compared to the aluminum-free KLaF{sub 4}:Yb{sup 3+}/Er{sup 3+} NPs sample, the UC fluorescence intensities of the green and red emissions of NPs doped with 10 at.% Al{sup 3+} ions were significantly enhanced by 5.9 and 7.3 times, respectively. Longer lifetimes of the doped samples were observed for the {sup 4}S{sub 3/2} state and {sup 4}F{sub 9/2} state. The underlying reason for the UC enhancement by doping Al{sup 3+} ions was mainly ascribed to distortion of the local symmetry around Er{sup 3+} ions and adsorption reduction of organic ligands on the surface of NPs. In addition, the influence of doping Al{sup 3+} ions on the structure and morphology of the NPs samples was also discussed. (orig.)

  2. Determination of rare earths in their extraction processing

    International Nuclear Information System (INIS)

    You Jiannan; Zhang Yuqin

    1989-01-01

    A method for determination of rare earths in ores, ion-exchange resins and solution samples has been developed. The ore is molten with sodium peroxide and the molten sample is leached with triethenol amine and sodium citrate. In weak acid medium, the rare earths can be extracted by PMBP-phenol solution, and stripped with formic acid. In the acetic acidsodium acetate buffer medium of pH3, the spectrophotometric determination of rare earths with arsenazo M has been made. The rare earths in ion-exchange resins can be directly determined by spectrophotometry after being leached with hydrochloric acid and at heated condition. The rare earths with arsenazo M or a red complex. The maximum absorption of the complex is at 640 nm, and the molar absorption is 8.0 x 10 4 L centre dot mol -1 centre dot cm -1 . While the range of determination is 0.005%-0.5% and 0.001-1.0 g/L, the relative standard deviation is less than 5%, and recovery of rare earths is 98.5-105%. The method is rather simple and rapid

  3. Rare earth niobate coordination polymers

    Science.gov (United States)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May

    2018-03-01

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.

  4. HfO2 - rare earth oxide systems in the region with high content of rare earth oxide

    International Nuclear Information System (INIS)

    Shevchenko, A.V.; Lopato, L.M.

    1982-01-01

    Using the methods of annealing and hardenings (10 2 -10 4 deg/s cooling rate) and differential thermal analysis elements of state diagrams of HfO 2 - rare earth oxide (rare earths-La, Pr, Nd, Sm, Gd, Tb, Dy, Y, Er, Yb, Lu, Sc) systems from 1800 deg C up to melting in the range of 60-100 mol% rare earth oxide concentration were constructed. Regularities of HfQ 2 addition effect on high-temperature polymorphic transformations of rare earth oxides were studied. Results of investigation were discussed from viewpoint of crystal chemistry

  5. Caracterización morfoanatómica comparativa entre Aloe vera (L. Burm. F., Aloe arborescens Mill., Aloe saponaria Haw. y Aloe ciliaris Haw. (Aloeaceae

    Directory of Open Access Journals (Sweden)

    Stella Maris Carpano

    Full Text Available Aloe vera (L. Burm. F. (= Aloe barbadensis Miller conhecida como "a planta da imortalidade" no antigo Egito é utilizada em fitoterapia como humectante, antibacteriana, antifúngica, antiviral e antioxidante. Com a finalidade de contribuir para identificação da droga vegetal, foram realizados estudos morfoanatômicos da folha. A utilização de plantas com características terapêuticas reconhecidas determina que, por analogia, popularmente sejam utilizadas com a mesma finalidade outras espécies do mesmo gênero. Isto é o que ocorre com três espécies de Aloe spp., que se cultivam ou crescem acidentalmente na Argentina: A. arborescens Mill., A. saponaria Haw. e A. ciliaris Haw. (Aloaceae. Estabeleceram-se os caracteres morfoanatômicos de diagnóstico por microscopia óptica e microscopia eletrônica de varredura (apresentam-se desenhos e fotomicrografias dos mesmos. Obtiveram-se valores numéricos dos elementos histológicos de diagnóstico: magnitudes lineares e proporcionais. Realizaram-se reações histoquímicas de identificação dos princípios ativos para sua localização "in situ".

  6. The effects of rare earths on activity and surface properties of Ru/γ-Al2O3 catalyst for water gas shift reaction

    Directory of Open Access Journals (Sweden)

    Laitao Luo

    2007-04-01

    Full Text Available A series of Ru-RE/γ- Al2O3 (RE = Ce, Pr, La, Sm, Tb or Gd and Ru/γ- Al2O3 catalysts were prepared by impregnation method. The influence of rare earths on the catalytic performance of Ru/γ- Al2O3 catalyst for the water gas shift reaction was studied. The catalysts were characterized by X-ray diffraction (XRD, temperature programmed reduction (TPR, temperature programmed desorption (TPD, and CO chemisorption. The results show that the addition of rare earths increases the catalytic activity of Ru based catalyst. Among these cerium is the most remarkably. The addition of cerium increases the active surface area, improves the dispersion of ruthenium, and weakens the interaction between ruthenium and the support. Cerium also affects the adsorption and reduction properties of Ru/γ-Al2O3 catalyst.

  7. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping.

    Science.gov (United States)

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-11-21

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times.

  8. Rare earth impurities in high purity lanthanum oxide determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Desai, H.B.; Parthasarathy, R.; Gangadharan, S.

    1992-01-01

    Individual rare earth impurities in high purity La 2 O 3 (≥99.9%) have been determined by NAA after pre-separation of the matrix (La). The separation is carried out on an anion exchanger (Dowex 1x8) using different mixtures of methanol/nitric acid as eluants. The rare earth elements from Dy to Lu are eluted quantitatively using a 10% 1M HNO 3 - 90% methanol mixture, while the light rare earths from Ce to Gd are eluted quantitatively using a 10% 0.05M HNO 3 - 90% methanol mixture. La, which is retained on the column, is eluted using 0.1M HNO 3 . The recoveries of the various rare earth elements have been checked using radiotracers and also by spiking the sample with known amount of elements, and the recoveries are found to be quantitative. Results obtained on a typical high purity lanthanum oxide are reported here. (author) 5 refs.; 1 fig

  9. Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach

    Science.gov (United States)

    Delange, Pascal; Biermann, Silke; Miyake, Takashi; Pourovskii, Leonid

    2017-10-01

    We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4 f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4 f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo5. Applying it to R Fe12 and R Fe12X hard magnets (R =Nd , Sm and X =N , Li), we obtain in particular a large positive value of the crystal-field parameter A20〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A20〈r2〉 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe12Li . We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites.

  10. Synthesis of alkaline-earth metal tungstates in melts of [NaNO3-M(NO3)2]eut-Na2WO4 (M=Ca, Sr, Ba) system

    International Nuclear Information System (INIS)

    Shurdumov, G.K.; Shurdumova, Z.V.; Cherkesov, Z.A.; Karmokov, A.M.

    2006-01-01

    Synthesis of alkaline earth metal tungstates in melts of eutectics of NaNO 3 -M(NO 3 ) 2 ] (M=Ca, Sr, Ba) is done. Synthesis is based in exchange reaction of calcium, strontium, and barium nitrates with sodium tungstate [ru

  11. Yb3+:Sr5(VO4)3F: Crystal growth, spectroscopic characterization and laser development

    International Nuclear Information System (INIS)

    Bustamante, Andrea Nora Pino

    1999-01-01

    Crystal growth, spectroscopic characterization and laser development of Yb 3+ :SVAP [Sr 5 (VO 4 ) 3 F] was performed to demonstrate for the first time, operation of tunable laser emission centered at 1120 nm. Initially, SVAP crystals were grown with high dopant concentrations, up to 6.0 mol % of Yb 2 O 3 in the melt, in order to investigate the material for potential laser operation at a new laser wavelength. Additional research was performed to alleviate highly doped SVAP crystals of defects previously observed. Basic spectroscopic characterization including absorption and luminescent properties were measured to better understand the behavior of Yb 3+ ions in SVAP. Based upon these studies, discussion of the 1120 nm laser transition is presented as it arises from a ground state vibrational level. Investigations of the charge compensation process and the optical parameters as a function of dopant concentration are also presented. The laser development of Yb 3+ :SVAP included continuous and pulsed modes of operation of the 1044 nm and 1120 nm transitions. Initial laser action of the 1044 nm transition was achieved using a Yi: Saphire laser pump source in order to compare with previously results. Further development of a diode-pumped Yb 3+ :SVAP laser system demonstrated continuously tunable laser operation from 1103 nm for the first time. The laser investigations also proved that this high gain media does provide continuous wave laser action at 1044 nm and 1120 simultaneously without significant gain depletion. (author)

  12. Yttrium and rare earths separation by ion exchange resin

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Ayres, M.J.G.; Ribeiro, S.; Silva, G.L.J.P.; Silva, M.L.C.P.; Martins, A.H.

    1988-01-01

    The experimental results of yttrium and rare earths separation from Brazilian xenotime are presented. The research consist in five stage: 1) Preparation of yttrium, erbium and lutetium standard solutions, from solubilization of pure oxides 2) yttrium and rare earths separation by ion exchange chromatrography 3) Separation and recovery of EDTA 4) Precipitation and calcination and 4) Analytical control of process. (C.G.C.) [pt

  13. Optimisation of nitrogen and potassium for Aloe vera (L.) Burm.f. in a ...

    African Journals Online (AJOL)

    Aloe vera (L.) Burm.f. is highly appreciated due to its short growth period and high economic value among all Aloe species, and is used in pharmaceuticals, folk medicine, healthcare, cosmetic products and food products. Hydroponic systems have the potential to improve the cropping management and to achieve higher ...

  14. Voltage Control of Rare-Earth Magnetic Moments at the Magnetic-Insulator-Metal Interface

    Science.gov (United States)

    Leon, Alejandro O.; Cahaya, Adam B.; Bauer, Gerrit E. W.

    2018-01-01

    The large spin-orbit interaction in the lanthanides implies a strong coupling between their internal charge and spin degrees of freedom. We formulate the coupling between the voltage and the local magnetic moments of rare-earth atoms with a partially filled 4 f shell at the interface between an insulator and a metal. The rare-earth-mediated torques allow the power-efficient control of spintronic devices by electric-field-induced ferromagnetic resonance and magnetization switching.

  15. Preparation and Characterization of Rare Earth Doped Fluoride Nanoparticles

    Directory of Open Access Journals (Sweden)

    Timothy A. DeVol

    2010-03-01

    Full Text Available This paper reviews the synthesis, structure and applications of metal fluoride nanoparticles, with particular focus on rare earth (RE doped fluoride nanoparticles obtained by our research group. Nanoparticles were produced by precipitation methods using the ligand ammonium di-n-octadecyldithiophosphate (ADDP that allows the growth of shells around a core particle while simultaneously avoiding particle aggregation. Nanoparticles were characterized on their structure, morphology, and luminescent properties. We discuss the synthesis, properties, and application of heavy metal fluorides; specifically LaF3:RE and PbF2, and group IIA fluorides. Particular attention is given to the synthesis of core/shell nanoparticles, including selectively RE-doped LaF3/LaF3, and CaF2/CaF2 core/(multi-shell nanoparticles, and the CaF2-LaF3 system.

  16. Study on Yen Phu rare earth ore concentrate treatment technology and separation of major heavy rare earth elements by solvent extraction method

    International Nuclear Information System (INIS)

    Le Ba Thuan; Pham Quang Trung; Vu Lap Lai

    2003-01-01

    1. Yenphu rare earth ore concentrate treatment by alkali under pressure: On the base of studying mineral and chemical compositions of Yenphu rare earth ore concentrate containing 28% TREO and conditions for digestion of ore concentrate by alkali under pressure such as ore concentrate/ NaOH ratio, alkali concentration, pressure and temperature at bench scale (100 gram and 5 kg per batch), the optimal conditions for decomposition of REE ore concentrate have been determined. The yield of the decomposition stage is about 90%. The studies on alkali washing, REE leaching by HCl, pH for leaching process, and iron and radioactive impurities removing by Na 2 S + Na 2 PO 4 have been carried out. The obtained results show that mixture of Na 2 S 5% + Na2PO 4 1% is effective in iron and radioactive impurities removing. The obtained REE oxides get purity of > 99% and meet the need of solvent extraction (SX) individual separation of rare earth elements. The schema for recovery of REEs from Yenphu REE ore concentrate by alkali decomposition under high pressure has been proposed. 2. Fractionation of Yenphu rare earth mixture into subgroups by solvent extraction with PC88A: On the base of simulation program, the parameters for fractional process of rare earths mixture into subgroups by solvent extraction with PC88A have been proposed and determined by experimental verification on mixer-settler set. According to this process, rare earths mixture fractionated into yttrium and light subgroups. In their turn, the light subgroup was separated into light (La, Ce, Pr, Nd) and middle (Sm, Eu, Gd) subgroups. The average yield of the process reached value > 95%. The composition of light subgroup meets the needs for individual separation of Gd, Eu, and Sm. 3. Separation and purification of yttrium: The process for recovery of yttrium consists of two stages: upgrade to get high quality Y concentrate by PC88A and purification by Aliquat 336 in NH 4 SCN-NH 4 Cl medium. The process parameter for

  17. Synthesis and characterization of the novel rare earth orthophosphates Y0.5Er0.5PO4 and Y0.5Yb0.5PO4

    International Nuclear Information System (INIS)

    Schildhammer, Daniel; Petschnig, Lucas L.; Fuhrmann, Gerda; Heymann, Gunter; Schottenberger, Herwig; Huppertz, Hubert; Tribus, Martina

    2016-01-01

    The new mixed rare earth (RE) orthophosphates Y 0.5 Er 0.5 PO 4 and Y 0.5 Yb 0.5 PO 4 were synthesized by a classical solid state reaction in an electrical furnace at 1200 C. As starting materials, the corresponding rare earth oxides and diammonium hydrogen phosphate were used. The powder diffraction analyses revealed that the new compounds Y 0.5 Er 0.5 PO 4 and Y 0.5 Yb 0.5 PO 4 crystallize in a zircon-type structure being isostructural with the rare earth orthophosphate YPO 4 . Y 0.5 Er 0.5 PO 4 and Y 0.5 Yb 0.5 PO 4 crystallize in the tetragonal space group I4 1 /amd (no. 141) with four formula units in the unit cell. The structural parameters based on Rietveld refinements are a = 687.27(2), c = 601.50(2) pm, V = 0.28412(1) nm 3 , R p = 0.0143, and R wp = 0.0186 (all data) for Y 0.5 Er 0.5 PO 4 and a = 684.61(2), c = 599.31(2) pm, V = 0.28089(2) nm 3 , R p = 0.0242, and R wp = 0.0313 (all data) for Y 0.5 Yb 0.5 PO 4 . Furthermore, the structure of Y 0.5 Er 0.5 PO 4 was refined from single-crystal X-ray diffraction data: a = 687.78(5), c = 601.85(4) pm, V = 0.28470(5) nm 3 , R 1 = 0.0165, and wR 2 = 0.0385 (all data). In both compounds, the rare earth metal ions are eightfold coordinated by oxygen atoms, forming two unique interlocking tetrahedra with two individual RE-O distances. The tetrahedral phosphate groups [PO 4 ] 3- are slightly distorted in both compounds. The individual rare earth ions share a common position (Wyckoff site 4a). The presence of two rare earth ions in the structures of the new orthophosphates Y 0.5 Er 0.5 PO 4 and Y 0.5 Yb 0.5 PO 4 was additionally confirmed by single-crystal EDX spectroscopy revealing a ratio of 1:1.

  18. Rare earth minerals and resources in the world

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Yasuo [Human Resource Department, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568 (Japan)]. E-mail: y.kanazawa@aist.go.jp; Kamitani, Masaharu [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567 (Japan)

    2006-02-09

    About 200 rare earth (RE) minerals are distributed in a wide variety of mineral classes, such as halides, carbonates, oxides, phosphates, silicates, etc. Due to the large ionic radii and trivalent oxidation state, RE ions in the minerals have large coordination numbers (c.n.) 6-10 by anions (O, F, OH). Light rare earth elements (LREEs) tend to occupy the larger sites of 8-10 c.n. and concentrate in carbonates and phosphates. On the other hand, heavy rare earth elements (HREEs) and Y occupy 6-8 c.n. sites and are abundant in oxides and a part of phosphates. Only a few mineral species, such as bastnaesite (Ce,La)(CO{sub 3})F, monazite (Ce,La)PO{sub 4}, xenotime YPO{sub 4}, and RE-bearing clay have been recovered for commercial production. Bayan Obo, China is the biggest RE deposit in the world. One of probable hypotheses for ore geneses is that the deposit might be formed by hydrothermal replacement of carbonate rocks of sedimentary origin. The hydrothermal fluid may be derived from an alkaline-carbonatite intrusive series. Following Bayan Obo, more than 550 carbonatite/alkaline complex rocks constitute the majority of the world RE resources. The distribution is restricted to interior and marginal regions of continents, especially Precambrian cratons and shields, or related to large-scale rift structures. Main concentrated areas of the complexes are East African rift zones, northern Scandinavia-Kola peninsula, eastern Canada and southern Brazil. Representative sedimentary deposits of REE are placer- and conglomerate-types. The major potential countries are Australia, India, Brazil, and Malaysia. Weathered residual deposits have been formed under tropical and sub-tropical climates. Bauxite and laterite nickel deposit are the representative. Ion adsorption clay without radioactive elements is known in southern China. Weathering processes concentrate REE in a particular clay mineral-layer in the weathered crusts whose source were originally REE-rich rocks like granite

  19. Rare earth minerals and resources in the world

    International Nuclear Information System (INIS)

    Kanazawa, Yasuo; Kamitani, Masaharu

    2006-01-01

    About 200 rare earth (RE) minerals are distributed in a wide variety of mineral classes, such as halides, carbonates, oxides, phosphates, silicates, etc. Due to the large ionic radii and trivalent oxidation state, RE ions in the minerals have large coordination numbers (c.n.) 6-10 by anions (O, F, OH). Light rare earth elements (LREEs) tend to occupy the larger sites of 8-10 c.n. and concentrate in carbonates and phosphates. On the other hand, heavy rare earth elements (HREEs) and Y occupy 6-8 c.n. sites and are abundant in oxides and a part of phosphates. Only a few mineral species, such as bastnaesite (Ce,La)(CO 3 )F, monazite (Ce,La)PO 4 , xenotime YPO 4 , and RE-bearing clay have been recovered for commercial production. Bayan Obo, China is the biggest RE deposit in the world. One of probable hypotheses for ore geneses is that the deposit might be formed by hydrothermal replacement of carbonate rocks of sedimentary origin. The hydrothermal fluid may be derived from an alkaline-carbonatite intrusive series. Following Bayan Obo, more than 550 carbonatite/alkaline complex rocks constitute the majority of the world RE resources. The distribution is restricted to interior and marginal regions of continents, especially Precambrian cratons and shields, or related to large-scale rift structures. Main concentrated areas of the complexes are East African rift zones, northern Scandinavia-Kola peninsula, eastern Canada and southern Brazil. Representative sedimentary deposits of REE are placer- and conglomerate-types. The major potential countries are Australia, India, Brazil, and Malaysia. Weathered residual deposits have been formed under tropical and sub-tropical climates. Bauxite and laterite nickel deposit are the representative. Ion adsorption clay without radioactive elements is known in southern China. Weathering processes concentrate REE in a particular clay mineral-layer in the weathered crusts whose source were originally REE-rich rocks like granite and

  20. Evolution of Mg-5Al-0.4Mn microstructure after rare earth elements addition

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2011-04-01

    Full Text Available Mg-5Al-0.4Mn-xRE (x = 0, 1, 2, 3 wt.% magnesium alloys were prepared successfully by casting method. The microstructure wasinvestigated by light microscopy. The influence of rare earth (RE elements on the area fraction of eutectic was analysed. The obtainedresults revealed that the as-cast Mg-5Al-0.4Mn alloy consist of α - Mg matrix and eutectic α + γ (where γ is Mg17Al12. However, whilerare earth elements were added to the Mg-Al type alloy, Al11RE3 precipitates were formed. The amount of the Al11RE3 precipitatesincreased with increasing addition of RE, but the amount of γ - Mg17Al12 decreased.

  1. Theoretical study of the structure and optical properties of rare-earth-doped BeF2 glass

    International Nuclear Information System (INIS)

    Brawer, S.; Weber, M.J.

    1980-01-01

    We investigate the question of whether the local structure of a glass can be deduced directly from its optical spectra by testing such a procedure on a model system. The model system was Eu 3+ -doped BeF 2 glass generated the Monte Carlo technique of statistical mechanics. The optical energy levels of Eu 3+ were calculated from a point charge model. Using the resulting spectra as data, it is shown that details of the structure of the rare-earth ion sites of the simulated glass cannot be reconstructed uniquely from the data. Based on these results, it is concluded that reliable glass structure cannot be deduced from optical spectra

  2. Anomalous magnetoresistance in antiferromagnetic polycrystalline materials R2Ni3Si5 (R=rare earth)

    International Nuclear Information System (INIS)

    Mazumdar, C.; Nigam, A.K.; Nagarajan, R.; Gupta, L.C.; Chandra, G.; Padalia, B.D.; Godart, C.; Vijayaraghaven, R.

    1997-01-01

    Magnetoresistance (MR) studies on polycrystalline R 2 Ni 3 Si 5 , (R=Y, rare earth) which order antiferromagnetically at low temperatures, are reported here. MR of the Nd, Sm, and Tb members of the series exhibit positive giant magnetoresistance, largest among polycrystalline materials (85%, 75%, and 58% for Tb 2 Ni 3 Si 5 , Sm 2 Ni 3 Si 5 , and Nd 2 Ni 3 Si 5 , respectively, at 4.4 K in a field of 45 kG). These materials have, to the best of our knowledge, the largest positive GMR reported ever for any bulk polycrystalline compounds. The magnitude of MR does not correlate with the rare earth magnetic moments. We believe that the structure of these materials, which can be considered as a naturally occurring multilayer of wavy planes of rare earth atoms separated by Ni endash Si network, plays a role. The isothermal MR of other members of this series (R=Pr,Dy,Ho) exhibits a maximum and a minimum, below their respective T N close-quote s. We interpret these in terms of a metamagnetic transition and short-range ferromagnetic correlations. The short-range ferromagnetic correlations seem to be dominant in the temperature region just above T N . copyright 1997 American Institute of Physics

  3. Self-propagating high temperature synthesis, structural morphology and magnetic interactions in rare earth Ho{sup 3+} doped CoFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lohar, K.S. [Materials Research Laboratory, Srikrishna Mahavidyalaya Gunjoti, Omerga, Osmanabad 413 613, MS (India); Pachpinde, A.M.; Langade, M.M. [Department of Chemistry, Jawahar Art Science and Commerce College Andur, Osmanabad, MS (India); Kadam, R.H. [Materials Research Laboratory, Srikrishna Mahavidyalaya Gunjoti, Omerga, Osmanabad 413 613, MS (India); Shirsath, Sagar E., E-mail: shirsathsagar@hotmail.com [Spin Device Technology Center, Department of Information Engineering, Shinshu University, Nagano 380-8553 (Japan)

    2014-08-01

    Highlights: • Rare earth Ho{sup 3+} substituted CoFe{sub 2}O{sub 4.} • XRD and IR spectra reveal the spinel structure. • Magnetization and coercivity increased with Ho{sup 3+} substitution. - Abstract: Substitution effect of rare earth trivalent Ho{sup 3+} ions on the composition, Ho{sub x}CoFe{sub 2−x}O{sub 4}, with x varying from 0.0 to 0.1 in steps of 0.025 using sol–gel auto combustion route has been investigated. Examination of X-ray diffraction (XRD) patterns shows that all the samples consisted of ferrite phases of typical spinel cubic structure, and when Ho{sup 3+} ion content was x ⩾ 0.075, orthoferrite–HoFeO{sub 3} phase was detected. The micro and nanostructure of the synthesized Ho doped CoFe{sub 2}O{sub 4} ferrites were investigated by scanning and transmission electron microscopy respectively. With increasing doping content of Ho{sup 3+} ions, the lattice constant, particle size and bulk density increased, and after an increase to its maximum value, the sample particle size and density dropped down. Cation distribution estimated from XRD patter revealed that the Co{sup 2+} and Ho{sup 3+} ions prefer to occupy octahedral B-site whereas Fe{sup 3+} ions are distributed over tetra- and octa-hedral site. Oxygen positional parameter shows larger values than its ideal value. The analysis of magnetic properties revealed that the saturation magnetization and coercivity of CoFe{sub 2}O{sub 4} increased with the rare earth Ho{sup 3+} substitution.

  4. VUV spectroscopy of Tm3+ and Mn2+ doped LiSrAlF6

    International Nuclear Information System (INIS)

    True, M.; Kirm, M.; Negodine, E.; Vielhauer, S.; Zimmerer, G.

    2004-01-01

    LiSrAlF 6 (LiSAF) crystals doped with either Tm 3+ or Mn 2+ were obtained by solid-state reaction and investigated spectroscopically using synchrotron radiation in the vacuum-ultra-violet and ultra-violet spectral regions. In the Tm 3+ doped LiSAF crystals, the slow spin-forbidden 5d-4f emission peaking at 166 nm with a lifetime of at least 1 μs was observed. The respective excitation spectrum consists of several bands in the range of 160-110 nm arising due to the 4f-5d absorption. The f-f emissions of Tm 3+ are well excited in the range of 135-110 nm, but not under excitation into the lower lying d-bands. The excitation mechanisms of different emissions will be discussed including the F - to Tm 3+ charge transfer excitation peaking at 127 nm in LiSAF. The characteristic broad 4 T 1 → 6 A 1 emission band of Mn 2+ peaking at 508 (504) nm was observed in LiSAF:Mn 2+ crystal at 10 (300) K. Three intense excitation bands, tentatively ascribed to the 3d-4s transitions of Mn 2+ , were revealed in the range of 170-110 nm

  5. Preparation and characteristics of various rare earth nitrides

    International Nuclear Information System (INIS)

    Imamura, H.; Imahashi, T.; Zaimi, M.; Sakata, Y.

    2008-01-01

    Active nanocrystalline nitrides of EuN and YbN with high surface areas were successfully prepared by the thermal decomposition of the rare earth amides (Eu(NH 2 ) 2 , Yb(NH 2 ) 2 and Yb(NH 2 ) 3 ). For the preparation of CeN, PrN and NdN, the direct reaction of the rare earth metals with ammonia was extensively studied to determine optimal conditions. In the reaction of rare earth metals with ammonia, hydrides besides the nitrides were competitively formed. The reaction conditions such as temperatures and ratios of ammonia to rare earth metal were crucial in preferential formation of nitride. The nanocrystalline YbN and EuN readily absorbed large amounts of ammonia even at room temperature upon contact with ammonia (13.3 kPa). The absorbed ammonia existed in at least two forms on/in the nitride; the one was surface-adsorbed ammonia and the other ammonia absorbed in the nitride in a decomposed state. The properties of ammonia absorbed by the nitride were further evaluated by temperature-programmed desorption (TPD), FT-IR and XRD techniques

  6. Synthesis and luminescent properties of trivalent rare-earth (Eu{sup 3+}, Tb{sup 3+}) ions doped nanocrystalline AgLa(PO{sub 3}){sub 4} polyphosphates

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Bharat, L.; Jeon, Yong Il; Yu, Jae Su, E-mail: jsyu@khu.ac.kr

    2014-11-25

    Highlights: • AgLa(PO{sub 3}){sub 4}:Eu{sup 3+}, Tb{sup 3+} nanocrystalline phosphors were prepared by a sol–gel process. • The luminescent properties were studies by near-UV excitation. • The intense MD transition indicates the presence of high inversion symmetry site. • These results suggest that the compound is a good candidate for optical applications. - Abstract: The AgLa(PO{sub 3}){sub 4} phosphors activated with trivalent rare-earth (Eu{sup 3+}, Tb{sup 3+}) ions were prepared by a sol–gel synthesis method. The crystal structure of the compound was studied by X-ray diffraction patterns and found to be crystallized in the monoclinic system with a space group P2{sub 1}/c, indicating the calculated lattice parameters of a = 10.08 Å, b = 13.12 Å, and c = 7.314 Å. The Fourier-transform infrared spectrum, photoluminescence excitation/emission spectra, and decay curves were examined to study the optical properties. The analysis of the Eu{sup 3+} ions related emission spectrum revealed the presence of highly symmetric sites for the activator ions. The Tb{sup 3+} ions related emission spectrum exhibited a {sup 5}D{sub 3} emission due to the prolonged calcination at high temperatures, which reduces the residual hydroxyl ions. The optical properties show that this host material is suitable for phosphor materials and laser crystals.

  7. Features of rare earth element (3) complexing

    International Nuclear Information System (INIS)

    Martynenko, L.I.

    1991-01-01

    Reasons for nonobeyance to the regularity of tetrad ''W'' effect of rare earth chelate complex compounds are discussed in the review. The concept of metal-ligand ionic bond in rare earth complexes is put in the basis of the consideration. From this viewpoint mutual influence of ligands in lower, higher, polynuclear and different-ligand complexes, formed by the ligands of low, medium and high denticity, is discussed. Problems of intermolecular interaction of complexes with different structure are considered in relation to problems of variation of chelate volatility and selectivity in the processes of sublimation and precipitation

  8. Intense luminescence emission from rare-earth-doped MoO3 nanoplates and lamellar crystals for optoelectronic applications

    International Nuclear Information System (INIS)

    Vila, M; Díaz-Guerra, C; Jerez, D; Piqueras, J; Lorenz, K; Alves, E

    2014-01-01

    Strong and stable room-temperature photoluminescence (PL) emission is achieved in MoO 3 nanoplates and lamellar crystals doped with Er and Eu by ion implantation and subsequent annealing. Micro-Raman and PL spectroscopy reveal that optical activation of the rare earth ions and recovery of the original MoO 3 structure are achieved for shorter annealing treatments and for lower temperatures in nanoplates, as compared with lamellar crystals. Er seems to be more readily incorporated into optically active sites in the oxide lattice than Eu. The influence of the dimensionality of the host sample on the characteristics of the PL emission of both rare earth dopants is addressed. (paper)

  9. Synthesis of NaLuF4:Er3+, Yb3+, Ce3+ nanoparticles and study of photoluminescent properties in C - band

    Directory of Open Access Journals (Sweden)

    Khaydukov K.V.

    2017-01-01

    Full Text Available The novel core@shell nanocrystals β-NaLuF4@NaLuF4 co-doped with rare-earth ions Er3+, Yb3+, Ce3+ have been synthesized. The nano-particles indicate the intensive lines of anti-Stokes luminescence in the telecommunication С - band of spectrum when pumped at 970-980 nm. The nanoparticles have been characterized by transmission electron microscopy and spectrofluorimetry. The nanoparticles have a size 40-80 nm and possess the intensive photo-luminescence 73 nm bandwidth centered around 1530 nm. The photo-luminescence kinetics of β-NaLuF4: Er3+/ Yb3+/ Ce3+ has been studied in IR range of spectrum. We have demonstrated that doping with cerium ions prevents serial stepwise excitation of erbium ions. Consequently, the lifetime of transition in erbium 4I13/2→4I15/2 has risen up to 6.9 ms. Intensity of 1530 nm line in Er3+ ions excited at 980 nm has been increased up to 6 times. Therefore, the nanoparticles are applicable to fabrication of compact waveguide amplifiers for C - band.

  10. Effect of rare earth cations on activity of type Y zeolites in ethylene transformations

    International Nuclear Information System (INIS)

    Amezhnova, G.N.; Zhavoronkov, M.N.; Dorogochinskij, A.Z.; Proskurin, A.L.; Shmailova, V.I.

    1984-01-01

    The ethylene transformations on type Y rare earth zeolites with high degrees of sodium exchange are studied. It is shown that rare earth cations increase zeolites activity with growth of electronoacceptor capacity. The ethylene oligomerization occurs on polyvalent cations while subsequent oligomer transformations - on hydroxyl groups of zeolites

  11. Intermetallic precipitation in rare earth-treated A413.1 alloy. A metallographic study

    International Nuclear Information System (INIS)

    Samuel, Agnes M.; Samuel, Fawzy H.

    2018-01-01

    The present study was performed mainly on A413.1 alloy. Measured amounts of La, Ce or La+Ce, Ti and Sr were added to the molten alloy in the form of master alloys. Samples sectioned from castings obtained from thermal analysis experiments were used for preparing samples for metallographic examination. The results show that addition of rare earth (RE) metals to Al-Si alloys increased the α-Al nucleation temperature and depressed the Al-Si eutectic formation temperature, thereby increasing the solidification range. Depending upon the alloying elements/additives, a large number of RE-based intermetallics could be formed: Al 4 (Ce,La), Al 13 (Ce,La) 2 Cu 3 , Al 7 (Cu,Fe) 6 (Ce,La) 6 Si 2 , Al 4 La, Al 2 La 5 Si 2 , Al 2 Ce 5 Si 2 , Al 2 (Ce,La) 5 Si 2 . Under an electron microscope, these phases appear in backscatter imaging mode in the form of thin grayish-white platelets on the dark gray Al matrix. The average thickness of these platelets is about 1.5 μm. When the alloy is grain refined with Ti-based master alloys, precipitation of a gray phase in the form of sludge is observed: Al 12 La 3 Ti 2 , or Al 12 (Ce,La) 3 Ti 2 . Regardless the alloy composition, the RE/Al ratios remain constant in each type of intermetallic. Rare earth metals have a strong affinity to react with Sr (resulting in partial modification of the eutectic Si particles) as well as some transition elements, in particular Ti and Cu. Iron has a very low affinity for interaction with RE metals. It is only confined to Fe-based intermetallics.

  12. Intermetallic precipitation in rare earth-treated A413.1 alloy. A metallographic study

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Agnes M.; Samuel, Fawzy H. [Univ. du Quebec a Chicoutimi (Canada). Dept. des Sciences Appliquees; Doty, Herbert W. [General Motors, Pontiac, MI (United States). Materials Engineering; Valtierra, Salvador [Nemak, S.A., Garza Garcia (Mexico)

    2018-02-15

    The present study was performed mainly on A413.1 alloy. Measured amounts of La, Ce or La+Ce, Ti and Sr were added to the molten alloy in the form of master alloys. Samples sectioned from castings obtained from thermal analysis experiments were used for preparing samples for metallographic examination. The results show that addition of rare earth (RE) metals to Al-Si alloys increased the α-Al nucleation temperature and depressed the Al-Si eutectic formation temperature, thereby increasing the solidification range. Depending upon the alloying elements/additives, a large number of RE-based intermetallics could be formed: Al{sub 4}(Ce,La), Al{sub 13}(Ce,La){sub 2}Cu{sub 3}, Al{sub 7}(Cu,Fe){sub 6}(Ce,La){sub 6}Si{sub 2}, Al{sub 4}La, Al{sub 2}La{sub 5}Si{sub 2}, Al{sub 2}Ce{sub 5}Si{sub 2}, Al{sub 2}(Ce,La){sub 5}Si{sub 2}. Under an electron microscope, these phases appear in backscatter imaging mode in the form of thin grayish-white platelets on the dark gray Al matrix. The average thickness of these platelets is about 1.5 μm. When the alloy is grain refined with Ti-based master alloys, precipitation of a gray phase in the form of sludge is observed: Al{sub 12}La{sub 3}Ti{sub 2}, or Al{sub 12}(Ce,La){sub 3}Ti{sub 2}. Regardless the alloy composition, the RE/Al ratios remain constant in each type of intermetallic. Rare earth metals have a strong affinity to react with Sr (resulting in partial modification of the eutectic Si particles) as well as some transition elements, in particular Ti and Cu. Iron has a very low affinity for interaction with RE metals. It is only confined to Fe-based intermetallics.

  13. Cytotoxicity study of plant Aloe vera (Linn

    Directory of Open Access Journals (Sweden)

    Atul N Chandu

    2012-01-01

    Full Text Available Background: The objective of this study has been to evaluate the in-vitro antitumor activity of Aloe vera extract of in cultured B16F10 melanoma cell line by measuring cell viability using "Trypan blue exclusion assay" method. Aim: To find out such kind of anticancer drug which is a cheap, safe, less toxic, and more potent drug compared to chemotherapy drug. Materials and Methods: In-vitro antitumor activity cell culture1, drug treatment (standard and test extract and Trypan blue exclusion assay growth and viability test 1 were used. Treatment of Aloe vera extract against B16F10 melanoma cell line, in all concentration range, showed decrease in percent cell viability, as compared to that of negative when examined by "Trypan blue exclusion assay". Results: In overall variation of test samples, Aloe vera extract showed its best activity in the concentration of 300 μg/ml, which was approximately equal to the activity of standard drug doxorubicin. Evaluation of in-vitro antitumor activity revealed that Aloe vera extract exhibits good cytotoxic activity. The best cytotoxic activity by Aloe vera was shown at 200 μg/ml concentration. Conclusion: The study of cytoprotection against normal cells by micronucleus assay has shown that the herbal extracts have less toxic effects to the normal blood lymphocytes, as compared to that of standard anticancer drug.

  14. Electron paramagnetic resonance and optical spectroscopy of Yb sup 3 sup + ions in SrF sub 2 and BaF sub 2; an analysis of distortions of the crystal lattice near Yb sup 3 sup +

    CERN Document Server

    Falin, M L; Latypov, V A; Leushin, A M

    2003-01-01

    SrF sub 2 and BaF sub 2 crystals, doped with the Yb sup 3 sup + ions, have been investigated by electron paramagnetic resonance and optical spectroscopy. As-grown crystals of SrF sub 2 and BaF sub 2 show the two paramagnetic centres for the cubic (T sub c) and trigonal (T sub 4) symmetries of the Yb sup 3 sup + ions. Empirical diagrams of the energy levels were established and the potentials of the crystal field were determined. Information was obtained on the SrF sub 2 and BaF sub 2 phonon spectra from the electron-vibrational structure of the optical spectra. The crystal field parameters were used to analyse the crystal lattice distortions in the vicinity of the impurity ion and the F sup - ion compensating for the excess positive charge in T sub 4. Within the frames of a superposition model, it is shown that three F sup - ions from the nearest surrounding cube, located symmetrically with respect to the C sub 3 axis from the side of the ion-compensator, approach the impurity ion and cling to the axis of the...

  15. Preparation, thermodynamic property and antimicrobial activity of some rare-earth (III) complexes with 3-bromo-5-iodobenzoic acid and 1,10-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-Yu [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Ren, Ning [Department of Chemistry, Handan College, Handan 056005 (China); Zhang, Jian-Jun, E-mail: jjzhang6@126.com [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Cun-Ying [No.1 High School of Shijiazhuang, Shijiazhuang 050011 (China)

    2013-10-20

    Graphical abstract: Four new rare-earth complexes of general formula [Ln(3-Br-5-IBA){sub 3}phen]{sub 2} [Ln = Er (1), Tb (2), Dy (3) and Ho (4); 3-Br-5-IBA = 3-bromo-5-iodobenzoate; phen = 1,10-phenanthroline] were synthesized and characterized by elemental analysis, IR, UV and TG/DSC-FTIR technology. Heat capacities of the four complexes were measured by differential scanning calorimetry (DSC). The antimicrobial activity against Escherichia coli, Staphylococcus aureus and Candida albicans were tested using disc diffusion method. - Highlights: • Four new complexes [Ln(3-Br-5-IBA){sub 3}phen]{sub 2} were synthesized and characterized. • The non-isothermal kinetics of the first stage for the complexes was studied. • The heat capacities of the complexes were measured by differential scanning calorimeter. • The antimicrobial activities for these complexes were tested. • The fluorescence properties of the complexes 2 and 3 were studied. - Abstract: Four new rare-earth complexes of general formula [Ln(3-Br-5-IBA){sub 3}phen]{sub 2} (Ln(III) = Er (1), Tb (2), Dy (3) and Ho (4); 3-Br-5-IBA = 3-bromo-5-iodobenzoate; phen = 1,10-phenanthroline) were synthesized by solution-precipitation method, and investigated using elemental analysis, infrared spectra, ultraviolet spectra and TG/DSC-FTIR technology. The non-isothermal kinetics of the first stage for the complexes was studied by using non-linear integral isoconversional method and double equal-double steps method. The heat capacities of the complexes were measured between 263.15 and 485.55 K by means of differential scanning calorimeter, and the values of the experimental heat capacities were fitted to a polynomial equation with the least-squares method. And the thermodynamic functions [H{sub T} − H{sub 298.15}], [S{sub T} − S{sub 298.15}] and [G{sub T} − G{sub 298.15}] were also derived based on the fitted polynomials and thermodynamic relationships with temperature interval of 10 K. Moreover, the

  16. Bi4Sr3Ca3Cu4O16 galss and superconducting glass ceramics

    International Nuclear Information System (INIS)

    Zheng, H.; Mackenzie, J.D.

    1988-01-01

    Bi 4 Sr 3 Ca 3 Cu 4 O 16 glass has been successfully fabricated by the melting process. Glass transition temperature, crystallization temperature, and liquid temperature of the glass are 434, 478, and 833 0 C, respectively. After the glass is heat treated at 800 0 C, a glass ceramic is formed. A comparison of the x-ray-diffraction pattern of the superconducting Bi 4 Sr 3 Ca 3 Cu 4 O/sub 16+//sub x/ ceramic to the Bi 4 Sr 3 Ca 3 Cu 4 O 16 glass ceramic revealed preferred orientation in the glass ceramic crystals. The superconducting transition temperatures T/sub c//sub (onset)/ and T/sub c//sub (zero)/ of the glass ceramics are 100 and 45 K, respectively

  17. Thermodynamics of rare earths in steelmaking

    International Nuclear Information System (INIS)

    Vahed, A.; Kay, D.A.R.

    1976-01-01

    The standard free energies of formation of the oxides, sulfides and oxysulfides of cerium and lanthanum under steelmaking conditions have been calculated and used to predict the behavior of rare earths in steelmaking. Deoxidation and desulfurization constants, expressed in terms of Henrian activities, have been used to construct a precipitation diagram which indicates the sequence of rare earth inclusion formation. An enrichment of lanthanum in (RE)-oxysulfide and cerium in (RE)-sulfide is predicted. It is also predicted that rare earths should be able to reduce the soluble oxygen and sulfur contents of liquid steel well below the contents presently found in most industrial and laboratory practices. A simple method of calculating steelmaking additions for complete rare earth control of inclusion composition is presented

  18. Nonvolatile resistive switching in Pt/laALO3/srTiO3 heterostructures

    KAUST Repository

    Wu, S.

    2013-12-12

    Resistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures, where the conducting layer near the LaAlO3/SrTiO3 interface serves as the "unconventional"bottom electrode although both oxides are band insulators. Interestingly, the switching between low-resistance and high-resistance states is accompanied by reversible transitions between tunneling and Ohmic characteristics in the current transport perpendicular to the planes of the heterojunctions. We propose that the observed resistive switching is likely caused by the electric-field-induced drift of charged oxygen vacancies across the LaAlO3/SrTiO3 interface and the creation of defect-induced gap states within the ultrathin LaAlO3 layer. These metal-oxide-oxide heterojunctions with atomically smooth interfaces and defect-controlled transport provide a platform for the development of nonvolatile oxide nanoelectronics that integrate logic and memory devices.

  19. Extraction of rare earths from iron-rich rare earth deposits

    OpenAIRE

    Bisaka, K.; Thobadi, I.C.; Pawlik, C.

    2017-01-01

    Rare earth metals are classified as critical metals by the United Nations, as they have found wide application in the fabrication of magnets, particularly those used in green energy technologies which mitigate global warming. Processing of ores containing rare earth elements is complex, and differs according to the nature of each ore. In the conventional process, run of mine (ROM) ores are processed in a physical separation plant to produce a concentrate from which rare earth elements are ext...

  20. Comparative study of rare earth hexaborides using high resolution angle-resolved photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Ramankutty, S.V., E-mail: s.v.ramankutty@uva.nl [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Jong, N. de; Huang, Y.K.; Zwartsenberg, B. [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Massee, F. [Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Bay, T.V. [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Golden, M.S., E-mail: m.s.golden@uva.nl [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Frantzeskakis, E., E-mail: e.frantzeskakis@uva.nl [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

    2016-04-15

    Highlights: • ARPES electronic structure study of rare-earth (RE) hexaborides SmB{sub 6}, CeB{sub 6} and YbB{sub 6}. • Increasing RE valence Yb[II], Sm[II/III], Ce[III] increases d-band occupancy. • YbB{sub 6} and SmB{sub 6} posses 2D states at E{sub F}, whereas the Fermi surface of CeB{sub 6} is 3D. • ARPES, LEED and STM data prove structural relaxation of the SmB{sub 6}(001) surface. - Abstract: Strong electron correlations in rare earth hexaborides can give rise to a variety of interesting phenomena like ferromagnetism, Kondo hybridization, mixed valence, superconductivity and possibly topological characteristics. The theoretical prediction of topological properties in SmB{sub 6} and YbB{sub 6} has rekindled the scientific interest in the rare earth hexaborides, and high-resolution ARPES has been playing a major role in the debate. The electronic band structure of the hexaborides contains the key to understand the origin of the different phenomena observed, and much can be learned by comparing the experimental data from different rare earth hexaborides. We have performed high-resolution ARPES on the (001) surfaces of YbB{sub 6}, CeB{sub 6} and SmB{sub 6}. On the most basic level, the data show that the differences in the valence of the rare earth element are reflected in the experimental electronic band structure primarily as a rigid shift of the energy position of the metal 5d states with respect to the Fermi level. Although the overall shape of the d-derived Fermi surface contours remains the same, we report differences in the dimensionality of these states between the compounds studied. Moreover, the spectroscopic fingerprint of the 4f states also reveals considerable differences that are related to their coherence and the strength of the d–f hybridization. For the SmB{sub 6} case, we use ARPES in combination with STM imaging and electron diffraction to reveal time dependent changes in the structural symmetry of the highly debated SmB{sub 6

  1. Ground-state properties of rare-earth metals: an evaluation of density-functional theory

    International Nuclear Information System (INIS)

    Söderlind, Per; Turchi, P E A; Landa, A; Lordi, V

    2014-01-01

    The rare-earth metals have important technological applications due to their magnetic properties, but are scarce and expensive. Development of high-performance magnetic materials with less rare-earth content is desired, but theoretical modeling is hampered by complexities of the rare earths electronic structure. The existence of correlated (atomic-like) 4f electrons in the vicinity of the valence band makes any first-principles theory challenging. Here, we apply and evaluate the efficacy of density-functional theory for the series of lanthanides (rare earths), investigating the influence of the electron exchange and correlation functional, spin-orbit interaction, and orbital polarization. As a reference, the results are compared with those of the so-called ‘standard model’ of the lanthanides in which electrons are constrained to occupy 4f core states with no hybridization with the valence electrons. Some comparisons are also made with models designed for strong electron correlations. Our results suggest that spin–orbit coupling and orbital polarization are important, particularly for the magnitude of the magnetic moments, and that calculated equilibrium volumes, bulk moduli, and magnetic moments show correct trends overall. However, the precision of the calculated properties is not at the level of that found for simpler metals in the Periodic Table of Elements, and the electronic structures do not accurately reproduce x-ray photoemission spectra. (paper)

  2. Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe{sub 3}O{sub 4} hybrid structures using one-pot hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Guo, E-mail: guogao@sjtu.edu.cn [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Qiang; Cheng, Xin-Bing [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Sun, Rongjin [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Shapter, Joseph G., E-mail: joe.shapter@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide 5042 (Australia); Yin, Ting [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Cui, Daxiang, E-mail: dxcui@sjtu.edu.cn [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-15

    Rechargeable lithium ion batteries (LIBs) are currently the dominant power source for all sorts of electronic devices due to their low cost and high energy density. The cycling stability of LIBs is significantly compromised due to the broad satellite peak for many anode materials. Herein, we develop a facile hydrothermal process for preparing rare-earth (Er, Tm) ions doped three-dimensional (3D) transition metal oxides/carbon hybrid nanocomposites, namely CNTs-GO-Fe{sub 3}O{sub 4}, CNTs-GO-Fe{sub 3}O{sub 4}-Er and CNTs-GO-Fe{sub 3}O{sub 4}-Tm. The GO sheets and CNTs are interlinked by ultrafine Fe{sub 3}O{sub 4} nanoparticles forming three-dimensional (3D) architectures. When evaluated as anode materials for LIBs, the CNTs-GO-Fe{sub 3}O{sub 4} hybrid composites have a bigger broad satellite peak. As for the CNTs-GO-Fe{sub 3}O{sub 4}-Er and CNTs-GO-Fe{sub 3}O{sub 4}-Tm hybrid composites, the broad satellite peak can be completely eliminated. When the current density changes from 5 C back to 0.1 C, the capacity of CNTs-GO-Fe{sub 3}O{sub 4}-Tm hybrid composites can recover to 1023.9 mAhg{sup −1}, indicating an acceptable rate capability. EIS tests show that the charge transfer resistance does not change significantly after 500 cycles, demonstrating that the cycling stability of CNTs-GO-Fe{sub 3}O{sub 4}-Tm hybrid composites are superior to CNTs-GO-Fe{sub 3}O{sub 4} and CNTs-GO-Fe{sub 3}O{sub 4}-Er hybrid structures. - Graphical abstract: One-pot hydrothermal method for synthesis of rare-earth ions doped CNTs-GO-Fe{sub 3}O{sub 4} hybrid structures as anode materials of LIBs have been reported. - Highlights: • We report the synthesis of rare-earth ions doped CNTs-GO-Fe{sub 3}O{sub 4} hybrid structures. • The hybrid structures can improve the cycling stability of lithium storage. • As for anode materials, the broad satellite peak can be completely eliminated. • When the rate return back to 0.1 C, the capacity can recover to 1023.9 mAhg{sup −1}. • After 500

  3. Investigations on fabricating strategies and utilization of rare earth based multicomponent oxide powders in radiation detection

    International Nuclear Information System (INIS)

    Shinde, Seema; Pitale, S.S.; Banthia, S.; Ghosh, M.; Tyagi, M.; Sen, S.; Gadkari, S.C.

    2014-01-01

    Materials containing rare earths demonstrate a broad field of applications as high energy radiation detectors, mainly due to their fascinating optical properties. Currently, Ce 3+ -doped rare earth silicates and garnets dominate the scintillator market because they show a high light yield, fast decay time, and high chemical stability. Moreover, the emission wavelength of silicates (410-440 nm) matches the wavelength sensitivity of conventional PMTs while, Si-photo-detector readouts are possible with garnets (emission near 550 nm). The composition, structure and phase of rare earth silicates are rather complex. For example, there are many phases like oxyorthosilicate R 2 SiO 5 , disilicate R 2 Si 2 O 7 , hexagonal R x (SiO 4 ) 6 O 2 oxyapatite etc (where R= Rare earth element). The controlled synthesis of single phase rare earth silicates and garnets nanomaterials is not easy and can only be reached with precisely controlled experimental conditions. In this work, we provide a broad overview of our recent scientific developments linked to a few aspects of synthesizing cerium activated rare earth based silicates and garnet materials, namely Gd 2 SiO 5 :Ce 3+ , Gd 4.67 (SiO 4 ) 3 O, Gd 2 Si 2 O 7 :Ce 3+ and Gd 3 Al x Ga 1-x O 12 :Ce 3+ (where 0≤x≤5) exploiting the advantages of solution combustion, chemical co-precipitation and hydrothermal techniques. A brief summary of results based on synthesis strategy adopted, composition, size shape and corresponding luminescence features of Gd based compounds are tabulated. The room temperature photoluminescence (PL) features of compounds listed. Efforts towards finding new properties and new materials will be continued and several applications, in particular energy-conversion and scintillator detectors, will benefit from these rare earth materials

  4. Enhanced thermoelectric performance with participation of F-electrons in β-Zn4Sb3

    International Nuclear Information System (INIS)

    Liu, Mian; Qin, Xiaoying; Liu, Changsong; Li, Xiyu; Yang, Xiuhui

    2014-01-01

    Highlights: • Find an effective route to enhance the thermoelectric figure of merit of β-Zn 4 Sb 3 . • Provide the corresponding theoretical predictions. • Investigated the effects of doping Ce and Pr in β-Zn 4 Sb 3 . -- Abstract: The effects of rare-earth element impurities Ce and Pr on the electronic structure and thermoelectric properties of β-Zn 4 Sb 3 were investigated by performing self-consistent ab initio electronic structure calculations within density functional theory and solving the Boltzmann transport equations within the relaxation time approximation. The results demonstrated that these rare-earth element impurities with f orbitals could introduce giant sharp resonant peaks in the density of states (DOS) near the host valence band maximum in energy. And these deliberately engineered DOS peaks result in a sharp increase of the room-temperature Seebeck coefficient and power factor from those of impurity-free system by a factor of 100 and 22, respectively. Additionally, with the simultaneous declining of carrier thermal conductivity, a potential 5-fold increase at least with Ce doping and more than 3 times increase with Pr doping in the thermoelectric figure of merit of β-Zn 4 Sb 3 at room temperature are achieved. The effective DOS restructuring strategy opens up new opportunities for thermoelectric power generation and waste heat recovery at large scale

  5. A divalent rare earth oxide semiconductor: Yttrium monoxide

    Science.gov (United States)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    Rare earth sesquioxides like Y2O3 are known as widegap insulators with the highly stable closed shell trivalent rare earth ions. On the other hand, rare earth monoxides such as YO have been recognized as gaseous phase, and only EuO and YbO were thermodynamically stable solid-phase rock salt monoxides. In this study, solid-phase rock salt yttrium monoxide, YO, was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO possesses unusual valence of Y2+ ([Kr] 4d1) . In contrast with Y2O3, YO was narrow gap semiconductor with dark-brown color. The electrical conductivity was tunable from 10-1 to 103 Ω-1 cm-1 by introducing oxygen vacancies as electron donor. Weak antilocalization behavior was observed indicating significant spin-orbit coupling owing to 4 d electron carrier. The absorption spectral shape implies the Mott-Hubbard insulator character of YO. Rare earth monoixdes will be new platform of functional oxides. This work was supported by JST-CREST, the Japan Society for the Promotion of Science (JSPS) with Grant-in-Aid for Scientific Research on Innovative Areas (Nos. 26105002 and 26105006), and Nanotechnology Platform (Project No.12024046) of MEXT, Japan.

  6. Coprecipitation of rare earth elements with hydroxyapatite

    International Nuclear Information System (INIS)

    Fujino, Osamu

    1979-01-01

    The distribution behavior of trace rare earth elements between an aqueous phase and hydroxyapatite crystals was investigated. The apatite prepared by adding phosphate ion extremely slowly to an aqueous solution containing calcium, rare earth elements, ethylenediamine and nitrilotriacetate ion at 80 0 C. Apparently the coprecipitation reaction seems to be anomalous, because the apparent distribution coefficient did not have a constant value through the reaction. But when the true distribution coefficient was calculated by using the thermodynamic data at 80 0 C, it was revealed that rare earth ions were coprecipitated obeying logarithmic distribution law. The true distribution coefficient values of trivalent yttrium, scandium, europium and cerium ions were about 10sup(7.3), 10sup(9.8), 10sup(7.4) and 10sup(6.5) respectively. (author)

  7. Electrostatic analysis of n-doped SrTiO3 metal-insulator-semiconductor systems

    International Nuclear Information System (INIS)

    Kamerbeek, A. M.; Banerjee, T.; Hueting, R. J. E.

    2015-01-01

    Electron doped SrTiO 3 , a complex-oxide semiconductor, possesses novel electronic properties due to its strong temperature and electric-field dependent permittivity. Due to the high permittivity, metal/n-SrTiO 3 systems show reasonably strong rectification even when SrTiO 3 is degenerately doped. Our experiments show that the insertion of a sub nanometer layer of AlO x in between the metal and n-SrTiO 3 interface leads to a dramatic reduction of the Schottky barrier height (from around 0.90 V to 0.25 V). This reduces the interface resistivity by 4 orders of magnitude. The derived electrostatic analysis of the metal-insulator-semiconductor (n-SrTiO 3 ) system is consistent with this trend. When compared with a Si based MIS system, the change is much larger and mainly governed by the high permittivity of SrTiO 3 . The non-linear permittivity of n-SrTiO 3 leads to unconventional properties such as a temperature dependent surface potential non-existent for semiconductors with linear permittivity such as Si. This allows tuning of the interfacial band alignment, and consequently the Schottky barrier height, in a much more drastic way than in conventional semiconductors

  8. Luminescence investigation of R{sup 3+}-doped alkaline earth tungstates prepared by a soft chemistry method

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Helliomar P. [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Kai, Jiang [Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Química, Rio de Janeiro, RJ, Brazil (Brazil); Silva, Ivan G.N.; Rodrigues, Lucas C.V. [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Felinto, Maria C.F.C. [Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, SP (Brazil); Hölsä, Jorma [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Department of Chemistry, University of Turku,FI-20014 Turku (Finland); Turku University Centre for Materials and Surfaces (MatSurf), Turku (Finland); Malta, Oscar L. [Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.br [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil)

    2016-02-15

    Highly luminescent rare earth (R{sup 3+}) doped alkaline-earth tungstates MWO{sub 4}:R{sup 3+} (M{sup 2+}: Ca, Sr and Ba, R{sup 3+}: Eu, Tb, Gd) were prepared with a room temperature coprecipitation method. The phosphors were characterized by X-ray powder diffraction (XPD), thermal analysis (TG), infrared absorption spectroscopy (FTIR) and UV excited photoluminescence. The as-prepared MWO{sub 4}:R{sup 3+} particles belong to the tetragonal scheelite phase, and are well crystallized and are of the average size of 16–48 nm. The excitation and emission spectra of the materials were recorded at 300 and 77 K temperatures. The luminescent materials exhibit intense red (Eu{sup 3+}) and green (Tb{sup 3+}) colors under UV excitation. The excitation spectra of the Eu{sup 3+} doped materials show broad bands arising from the ligand-to-metal charge transfer transitions (O{sup 2−}→W{sup VI} and O{sup 2−}→Eu{sup 3+}) as well as narrow bands from 4f–4f intraconfigurational transitions of Eu{sup 3+}. 4f–4f emission data of the Eu{sup 3+} and Tb{sup 3+} in the MWO{sub 4} host matrices as well as the values of emission quantum efficiencies of the {sup 5}D{sub 0} level and the 4f–4f experimental intensity parameters of Eu{sup 3+} ion are presented and discussed. - Highlights: • Highly red Europium and green Terbium doped tungstate under UV excitation. • Efficient energy transfer process from tungstate to R{sup 3+} ion. • Promising candidates for a red (Eu{sup 3+}) and green (Tb{sup 3+}) emitting phosphors. • Ligand Metal charge transfer to R{sup 3+} ion. • Charge compensation with Na{sup +}.

  9. Research and development of tungsten electrodes added with rare earth oxides

    International Nuclear Information System (INIS)

    Zuoren Nie; Ying Chen; Meiling Zhou; Tieyong Zuo

    2001-01-01

    The recent research and development of tungsten electrodes used in TIG and Plasma technologies are introduced, and the tungsten materials as well as the effects of rare earth oxides are specially discussed. in W-La 2 O 3 , W-CeO 2 , W-Y 2 O 3 and W-ThO 2 electrode materials, the W-2.2mass%La 2 O 3 electrode exhibited the best properties when the current is of little or middle volume, and when the electrodes are used in large current, the W-Y 2 O 3 electrode is the best. By a comparative study between the tungsten electrodes activated with single metal oxides, as above-mentioned, and those containing two or three rare earth oxides, namely La 2 O 3 , CeO 2 and Y 2 O 3 , it was indicated that the welding arc properties of the tungsten electrodes activated with combined rare earth oxides additions is superior than that of the electrodes containing single oxides as above mentioned. It was also shown that the operating properties of tungsten electrodes depend intensively on the rare earth oxides contained in the electrodes, and the actions of rare earth oxides during arcing are the most important factors to the electrodes' operating properties, temperature, work function as well as the arc stability. (author)

  10. Mechanosynthesis and mechanical activation processes to the preparation of the Sr2[Srn-1TinO3n+1] Ruddlesden-Popper family

    International Nuclear Information System (INIS)

    Hungria, Teresa; Hungria, A.-B.; Castro, Alicia

    2004-01-01

    A novel mechanochemical activation route has been applied in order to obtain the n=1-4 and ∞ members of the Sr 2 [Sr n-1 Ti n O 3n+1 ] Ruddlesden-Popper series. The evolution of the (n+1)SrO:nTiO 2 powder mixtures during mechanical treatment was followed by X-ray powder diffraction in all cases. Except for the 2SrO:TiO 2 composition, SrTiO 3 was always mechanosynthesized. High-energy milling of 2SrO:TiO 2 sample resulted in the formation of nanosized Sr 2 TiO 4 , which is the only K 2 NiF 4 -type oxide prepared by mechanical treatment until now. The mechanical treatment was followed by annealing at different temperatures to establish the optimized protocol for synthesis of each member of the series. SrTiO 3 , Sr 2 TiO 4 and Sr 3 Ti 2 O 7 were obtained with very important decreases in the formation temperatures and reaction times as compared with the traditional ceramic method. Final and milled products were studied by X-ray powder diffraction at room and increasing temperatures, and by thermal analysis and scanning and high resolution transmission electron microscopy

  11. Process for lead removal from rare earth

    International Nuclear Information System (INIS)

    Bollat, A.; Sabot, J.L.

    1987-01-01

    An aqueous solution of rare earth chlorides and lead chlorides, with a chloride concentration of at least 2 moles/liter and a pH between 2 and 4, is extracted by an alkylphosphonic acid ester and rare earth(s) is (are) recovered from the organic phase [fr

  12. Oxidative dehydrogenation of ethane on rare-earth oxide-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Buyevskaya, O.; Baerns, M. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany)

    1998-12-31

    Results on the oxidative dehydrogenation of ethane on rare-earth oxide (REO) based catalysts (Na-P-Sm-O, Sm-Sr(Ca)-O, La-Sr-O and Nd-Sr-O) are described. Oxygen adsorption was found to be a key factor which determines the activity of this type of catalysts. Continuous flow experiments in the presence of catalysts which reveal strong oxygen adsorption showed that the reaction mixture is ignited resulting in an enhanced heat generation at the reactor inlet. The heat produced by the oxidative reactions was sufficient under the conditions chosen for the endothermic thermal pyrolysis which takes place preferentially in the gas phase. Ignition of the reaction mixture is an important catalyst function. Contrary to non-catalytic oxidative dehydrogenation, reaction temperatures above 700 C could be achieved without significant external heat input. Ethylene yields of up to 34-45% (S=66-73%) were obtained on REO-based catalysts under non-isothermal conditions (T{sub max}=810-865 C) at contact times in the order of 30 to 40 ms. (orig.)

  13. One- and two-photon spectra of Nd3+ clusters in CaF2 and SrF2 crystals

    International Nuclear Information System (INIS)

    Basiev, Tasoltan T; Voronov, Valerii V; Glotova, M Yu; Papashvili, A G; Karasik, Aleksandr Ya

    2003-01-01

    The polarised two-photon (IR) and one-photon (visible) luminescence excitation spectra of Nd 3+ nanoclusters in CaF 2 and SrF 2 crystals are measured at 10 K using a F - 2 :LiF colour centre laser tunable in spectral ranges 1090 - 1230 nm and 545 - 615 nm with an emission linewidth of ∼0.02 - 0.03 cm -1 , an average output power of ∼55 mW, and a pulse repetition rate of 10 Hz. The two-photon excitation spectra at the 4 I 9/2 → 4 G 5/2 transition reveal the structure, which is absent upon one-photon excitation, which can be explained by different selection rules for some Stark - Stark transitions upon one- and two-photon absorption. (special issue devoted to the memory of academician a m prokhorov)

  14. Synthesis and characterization of BaAl{sub 2}O{sub 4}:Eu{sup 2+} co-doped with different rare earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Lephoto, M.A. [Department of Physics, University of the Free State, Private bag X 13, Phuthaditjaba 9866, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Ntwaeaborwa, O.M., E-mail: ntwaeab@ufs.ac.za [Department of Physics, University of the Free State, Private bag X 13, Phuthaditjaba 9866, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Pitale, Shreyas S.; Swart, H.C. [Department of Physics, University of the Free State, Private bag X 13, Phuthaditjaba 9866, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth, ZA 6031 (South Africa); Mothudi, B.M. [Department of Physics, University of South Africa, P.O Box 392, Pretoria, ZA 6031 (South Africa)

    2012-05-15

    Combustion method was used in this study to prepare BaAl{sub 2}O{sub 4}:Eu{sup 2+} phosphors co-doped with different trivalent rare-earths (Re{sup 3+}=Dy{sup 3+}, Nd{sup 3+}, Gd{sup 3+}, Sm{sup 3+}, Ce{sup 3+}, Er{sup 3+}, Pr{sup 3+} and Tb{sup 3+}) ions at an initiating temperature of 600 Degree-Sign C. The phosphors were annealed at 1000 Degree-Sign C for 3 h. As confirmed from the X-ray diffraction (XRD) data, both as prepared and post annealed samples crystallized in the well known hexagonal structure of BaAl{sub 2}O{sub 4}. All samples exhibited bluish-green emission associated with the 4f{sup 6}5d{sup 1}{yields}4f{sup 7} transitions of Eu{sup 2+} at {approx}500 nm. Although the highest intensity was observed from Er{sup 3+} co-doping, the longest afterglow (due to trapping and detrapping of charge carriers) was observed from Nd{sup 3+} followed by Dy{sup 3+} co-doping. The traps responsible for the long afterglow were studied using thermoluminescence (TL) spectroscopy.

  15. Ab Initio Study of Chemical Reactions of Cold SrF and CaF Molecules with Alkali-Metal and Alkaline-Earth-Metal Atoms: The Implications for Sympathetic Cooling.

    Science.gov (United States)

    Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon

    2017-06-01

    We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.

  16. Chemiluminescent Diagnostics of Free-Radical Processes in an Abiotic System and in Liver Cells in the Presence of Nanoparticles Based on Rare-Earth Elements nReVO4:Eu3+ (Re = Gd, Y, La) and CeO2

    Science.gov (United States)

    Averchenko, E. A.; Kavok, N. S.; Klochkov, V. K.; Malyukin, Yu. V.

    2014-11-01

    We have used luminol-dependent chemiluminescence with Fenton's reagent to study the effect of nanoparticles based on rare-earth elements of different sizes and shapes on free-radical processes in abiotic and biotic cell-free systems, and also in isolated cells in vitro. We have estimated the effects of rare-earth orthovanadate nanoparticles of spherical (GdYVO4:Eu3+, 1-2 nm), spindle-shaped (GdVO4:Eu3+, 25 ×8 nm), and rod-shaped (LaVO4:Eu3+, 57 × (6-8) nm) nanoparticles and spherical CeO2 nanoparticles (sizes 1-2 nm and 8-10 nm). We have shown that in contrast to the abiotic system, in which all types of nanoparticles exhibit antiradical activity, in the presence of biological material, extra-small spherical (1-2 nm) nanoparticles of both types exhibit pro-oxidant activity, and also enhance pro-oxidant induced oxidative stress (for the pro-oxidants hydrogen peroxide and tert-butyl hydroperoxide). The effect of rare-earth orthovanadate spindle and rod shaped nanoparticles in this system was neutral; a moderate antioxidant effect was exhibited by 8-10 nm CeO2 nanoparticles.

  17. Hyperfine structure of 87,89Sr 5s4d3D-5snf transitions in collinear fast beam RIMS

    International Nuclear Information System (INIS)

    Bushaw, B. A.; Kluge, H.-J.; Lantzsch, J.; Schwalbach, R.; Schwarz, M.; Stenner, J.; Stevens, H.; Wendt, K.; Zimmer, K.

    1995-01-01

    The title transition, with n=20, 23, and 32 were measured for stable 87 Sr and the observed hfs was interpreted and strong hyperfine mixing of all four terms 1 F3 and 3 F2,3,4 in the upper configuration. The results of the analysis were used to predict the hfs for the radioactive isotope 89 Sr. Measurement were then performed on samples containing 10 9 atoms 89 Sr. The positions and intensities of the hfs components selected for study were found to agree well with the predicted values

  18. Alaska's rare earth deposits and resource potential

    Science.gov (United States)

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  19. Toxicology and carcinogenesis studies of a nondecolorized [corrected] whole leaf extract of Aloe barbadensis Miller (Aloe vera) in F344/N rats and B6C3F1 mice (drinking water study).

    Science.gov (United States)

    Boudreau, M D; Beland, F A; Nichols, J A; Pogribna, M

    2013-08-01

    Extracts from the leaves of the Aloe vera plant (Aloe barbadensis Miller) have long been used as herbal remedies and are also now promoted as a dietary supplement, in liquid tonics, powders or tablets, as a laxative and to prevent a variety of illnesses. We studied the effects of Aloe vera extract on rats and mice to identify potential toxic or cancer-related hazards. We gave solutions of nondecolorized extracts of Aloe vera leaves in the drinking water to groups of rats and mice for 2 years. Groups of 48 rats received solutions containing 0.5%, 1% or 1.5% of Aloe vera extract in the drinking water, and groups of mice received solutions containing 1%, 2%, or 3% of Aloe vera extract. Similar groups of animals were given plain drinking water and served as the control groups. At the end of the study tissues from more than 40 sites were examined for every animal. In all groups of rats and mice receiving the Aloe vera extract, the rates of hyperplasia in the large intestine were markedly increased compared to the control animals. There were also increases in hyperplasia in the small intestine in rats receiving the Aloe vera extract, increases in hyperplasia of the stomach in male and female rats and female mice receiving the Aloe vera extract, and increases in hyperplasia of the mesenteric lymph nodes in male and female rats and male mice receiving the Aloe vera extract. In addition, cancers of the large intestine occurred in male and female rats given the Aloe vera extract, though none had been seen in the control groups of rats for this and other studies at this laboratory. We conclude that nondecolorized Aloe vera caused cancers of the large intestine in male and female rats and also caused hyperplasia of the large intestine, small intestine, stomach, and lymph nodes in male and female rats. Aloe vera extract also caused hyperplasia of the large intestine in male and female mice and hyperplasia of the mesenteric lymph node in male mice and hyperplasia of the stomach

  20. Design, formulation and evaluation of Aloe vera chewing gum

    Science.gov (United States)

    Aslani, Abolfazl; Ghannadi, Alireza; Raddanipour, Razieh

    2015-01-01

    Background: Aloe vera has antioxidant, antiinflammatory, healing, antiseptic, anticancer and antidiabetic effects. The aim of the present study was to design and evaluate the formulation of Aloe vera chewing gum with an appropriate taste and quality with the indications for healing oral wounds, such as lichen planus, mouth sores caused by cancer chemotherapy and mouth abscesses as well as reducing mouth dryness caused by chemotherapy. Materials and Methods: In Aloe vera powder, the carbohydrate content was determined according to mannose and phenolic compounds in terms of gallic acid. Aloe vera powder, sugar, liquid glucose, glycerin, sweeteners and different flavors were added to the soft gum bases. In Aloe vera chewing gum formulation, 10% of dried Aloe vera extract entered the gum base. Then the chewing gum was cut into pieces of suitable sizes. Weight uniformity, content uniformity, the organoleptic properties evaluation, releasing the active ingredient in the phosphate buffer (pH, 6.8) and taste evaluation were examined by Latin square method. Results: One gram of Aloe vera powder contained 5.16 ± 0.25 mg/g of phenolic compounds and 104.63 ± 4.72 mg/g of carbohydrates. After making 16 Aloe vera chewing gum formulations, the F16 formulation was selected as the best formulation according to its physicochemical and organoleptic properties. In fact F16 formulation has suitable hardness, lack of adhesion to the tooth and appropriate size and taste; and after 30 min, it released more than 90% of its drug content. Conclusion: After assessments made, the F16 formulation with maltitol, aspartame and sugar sweeteners was selected as the best formulation. Among various flavors used, peppermint flavor which had the most acceptance between consumers was selected. PMID:26605214

  1. A far ultraviolet spectroscopic study of the reflectance, luminescence and electronic properties of SrMgF4 single crystals

    International Nuclear Information System (INIS)

    Ogorodnikov, I.N.; Pustovarov, V.A.; Omelkov, S.I.; Isaenko, L.I.; Yelisseyev, A.P.; Goloshumova, A.A.; Lobanov, S.I.

    2014-01-01

    The electronic properties of single crystals of SrMgF 4 have been determined using low-temperature (10–293 K) time-resolved vacuum ultraviolet synchrotron radiation spectroscopy, far ultraviolet (3.7–36 eV) reflectance spectra and calculations for the spectra of optical functions. The bandgap of investigated compound was found at E g =12.55eV, the energy threshold for creation of the unrelaxed excitons at E n=1 =11.37eV, and the low-energy fundamental absorption edge at 10.3 eV. Two groups of photoluminescence (PL) bands have been identified: the exciton-type emissions at 2.6–3.3 and 3.34.2 eV and defect-related emissions at 1.8–2.6 and 4.2–5.5 eV. It was shown that PL excitation (PLE) for the exciton-type emission bands occurs mainly at the low-energy tail of the fundamental absorption of the crystal with a maximum at 10.7 eV. At excitation energies above E g the energy transfer from the host lattice to the PL emission centers is inefficient. The paper discusses the origin of the excitonic-type PLE spectra taking into account the results of modeling the PLE spectra shape in the framework of a simple diffusion theory and surface energy losses. -- Highlights: • Far-ultraviolet reflection spectra of SrMgF 4 were studied. • Photoluminescence (PL) emission and PL excitation spectra were studied. • Optical function spectra were calculated on the basis of experimental data. • Electronic structure properties of undoped SrMgF 4 crystals were determined

  2. Charge and spin density in s-stable rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Graaf, H. de.

    1982-01-01

    This thesis deals with a study of the electronic structure of rare earth intermetallic compounds, in particular the electronic charge and spin density distribution. These are closely related to the properties of the rare earth ions, which carry the partly filled 4f shell. In chapter 1 a survey of the theory of hyperfine interaction as far as it has a bearing on the Moessbauer effect of 155 Gd and 151 Eu is given. Also some details of the Moessbauer spectra, which have practical importance are discussed. In chapter 2 the experimental set-up is described. Special attention is paid to the gamma radiation source and gamma detection requirements. In chapter 3 the author introduces the theoretical framework which will be used to interpret the measurements. In chapter 4 the results of the 155 Gd Moessbauer measurements are presented. Also it is discussed how the result can be understood in terms of the charge and spin density in rare earth intermetallic compounds. In order to lend support to the picture emerging from the previous chapter, in chapter 5 the conduction electron band structure of some representative Gd intermetallics is computed with an approximate semi-empirical LCAO method. The results are compared with those from chapter 4. Finally, in chapter 6, the 151 Eu resonance is used to investigate the temperature dependence of the hyperfine field and line width in the Eu intermetallic compounds Eu 2 Mg 17 and EuMg 5 . (Auth.)

  3. Highly-efficient mid-infrared CW laser operation in a lightly-doped 3 at.% Er:SrF2 single crystal.

    Science.gov (United States)

    Su, Liangbi; Guo, Xinsheng; Jiang, Dapeng; Wu, Qinghui; Qin, Zhipeng; Xie, Guoqiang

    2018-03-05

    3 at.% Er:SrF 2 laser crystals with high optical quality were successfully grown using the temperature gradient technique (TGT). The intense mid-infrared emission was observed around 2.7 μm with excitation by a 970 nm LD. Based on the Judd-Ofelt theory, the emission cross-sections of the 4 I 13/2 - 4 I 11/2 transition were calculated by using the Fuchtbauer-Ladenburg (FL) method. Efficient continuous-wave laser operation at 2.8 µm was achieved with the lightly-doped 3 at.% Er:SrF 2 crystal pumped by a 970 nm laser diode. The laser output power reached up to 1.06 W with a maximum slope efficiency of 26%.

  4. Mineral characterisation of Don Pao rare earth deposit in Vietnam

    International Nuclear Information System (INIS)

    XuanBen, T.

    1998-01-01

    Full text: The Don Pao Rare Earth Deposit was discovered in 1959 in Phon Tho district, about 450km North-West of Hanoi capital. Geological work was conducted between 1959-95, resulting in 60 ore bodies of various sizes being identified. The ore bodies are irregularly shaped nests, lenses and veins hosted in the shear zone, at the margin of a Paeleogene aged syenite massif. The mineral composition of Don Pao Deposit is very complex, consisting of more than 50 minerals. Among them, basnaesite, parisite, fluorite and barite are the main constituent minerals of the ore. All the minerals were identified by the modern methods of mineralogical studies. Based on the constituent mineral ratios, four ore types have been distinguished in the deposit: 1. Rare earth ore containing over 5 percent of RE 2 O 3 . 2. Rare Earth-Barite ore containing 0.5 to 30 percent of RE 2 O 3 . 3. Rare Earth-Barite-Fluorite ore containing 1 to 5 percent of RE 2 O 3 . 4. Rare Earth bearing Fluorite ore containing 1 to 5 percent of RE 2 O 3 . According to the benefication test, the ores in Don Pao can be enriched to a concentrate of 60 percent of RE 2 O 3 with a recover of 75 percent

  5. Preparation and physical properties of rare earth, alkaline earth, and transition metal ternary chalcogenides

    International Nuclear Information System (INIS)

    Georgobiani, A.N.

    1997-01-01

    A study was made on current-voltage characteristics, temperature dependences of electric conductivity and currents of thermoinduced depolarization of monocrystals, including EuGa 2 S 4 and (Ga 2 S 3 ) 1-x (Eu 2 O 3 ) x solid solutions. It is shown that these compounds, activated by europium, cerium, neodymium and other rare earths, manifest effective luminescence under the effect of ultraviolet and X-radiation, as well as under the effect of electron beams and electric field

  6. Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Petr, E-mail: petr.kostka@irsm.cas.cz [Institute of Rock Structure and Mechanics AS CR, V Holešovičkách 41, 182 09 Praha 8 (Czech Republic); Zavadil, Jiří [Institute of Photonics and Electronics AS CR, Chaberská 57, 182 51 Praha 8, Kobylisy (Czech Republic); Iovu, Mihail S. [Institute of Applied Physics, Academy of Sciences of Moldova, Str. Academiei 5, MD-28 Chisinau, Republic of Moldova (Moldova, Republic of); Ivanova, Zoya G. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Furniss, David; Seddon, Angela B. [Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2015-11-05

    Sulfide and oxysulfide bulk glasses Ga-La-S-O, Ge-Ga-S and Ge-Ga-As-S doped, or co-doped, with various rare-earth (RE{sup 3+}) ions are investigated for their room temperature transmission and low-temperature photoluminescence. Photoluminescence spectra are collected by using external excitation into the Urbach tail of the fundamental absorption edge of the host-glass. The low-temperature photoluminescence spectra are dominated by the broad-band luminescence of the host glass, with superimposed relatively sharp emission bands due to radiative transitions within 4f shells of RE{sup 3+} ions. In addition, the dips in the host-glass luminescence due to 4f-4f up-transitions of RE{sup 3+} ions are observed in the Ge-Ga-S and Ge-Ga-As-S systems. These superimposed narrow effects provide a direct experimental evidence of energy transfer between the host glass and respective RE{sup 3+} dopants. - Highlights: • An evidence of energy transfer from host-glass to doped-in RE ions is presented. • Energy transfer is manifested by dips in host-glass broad-band luminescence. • This channel of energy transfer is documented on selected RE doped sulfide glasses. • Photoluminescence spectra are dominated by broad band host-glass luminescence. • Presence of RE ions is manifested by superimposed narrow 4f-4f transitions.

  7. Estudio cinético de la descomposición térmica del carbonato de Estroncio en el sistema SrCO3-Al2O3-SrSO4

    Directory of Open Access Journals (Sweden)

    Torres T, J.

    2008-10-01

    Full Text Available The thermal decomposition of strontium carbonate in the SrCO3-Al2O3-SrSO4 system was studied by thermal analysis under isothermal experiments. Powder of reactive grade of SrCO3, Al2O3 y SrSO4 in molar ratio 3:3:1 were prepared. The powders were heat treated from 750 to 1000 °C for 4 h. Loss weight for each temperature was registered and the kinetics parameter were determine using the classical fit method. The effect of mechanical activation of SrCO3 was studied as well. The reaction mechanism for 750 to 900 °C temperature range corresponded to a geometric shrinkage in the grain boundary (R1.1 with an activation energy of 106. 21 Kjmol-1. The reaction mechanism for 900 to 1100 °C temperature range corresponded to a nucleation and growing (P1.1 with an activation energy of 44.87 Kjmol-1. The activation energy was reduced in 35% for the samples that contained SrCO3 mechanically activated.La cinética de descomposición térmica del carbonato de Estroncio (SrCO3 en el sistema SrCO3-Al2O3-SrSO4 se estudió por medio de análisis térmico gravimétrico (ATG, utilizando el método isotérmico. Se prepararon mezclas de polvos 3:3:1 molar de SrCO3, Al2O3 y SrSO4 grado reactivo, las cuales fueron homogenizadas y tratadas a temperaturas entre 750 hasta 1100°C, por periodo de 4 horas. Adicionalmente se estudio el efecto del tiempo de activación mecánica del SrCO3 sobre la cinética de descomposición. Se obtuvieron curvas representativas de la pérdida de peso de las muestras al incrementar la temperatura, a partir de ellas se realizó el estudio cinético. Para el rango de temperatura de 750 a 900°C, el mecanismo de reacción que rige el proceso de descomposición corresponde a una contracción geométrica mediante la frontera de grano (R1.1 con una energía de activación (Ea de 106.21KJmol-1. En el rango de temperatura de 950 a 1100°C, el mecanismo de reacción que rige la descomposición corresponde a un proceso de nucleación y crecimiento (P1

  8. Direct observation of multivalent states and 4 f3 d charge transfer in Ce-doped yttrium iron garnet thin films

    Science.gov (United States)

    Vasili, H. B.; Casals, B.; Cichelero, R.; Macià, F.; Geshev, J.; Gargiani, P.; Valvidares, M.; Herrero-Martin, J.; Pellegrin, E.; Fontcuberta, J.; Herranz, G.

    2017-07-01

    Due to their large magneto-optic responses, rare-earth-doped yttrium iron garnets, Y3F e5O12 (YIG), are highly regarded for their potential in photonics and magnonics. Here, we consider the case of Ce-doped YIG (Ce-YIG) thin films, in which substitutional C e3 + ions are magnetic because of their 4 f1 ground state. In order to elucidate the impact of Ce substitution on the magnetization of YIG, we have carried out soft x-ray spectroscopy measurements on Ce-YIG films. In particular, we have used the element specificity of x-ray magnetic circular dichroism to extract the individual magnetization curves linked to Ce and Fe ions. Our results show that Ce doping triggers a selective charge transfer from Ce to the Fe tetrahedral sites in the YIG structure. This, in turn, causes a disruption of the electronic and magnetic properties of the parent compound, reducing the exchange coupling between the Ce and Fe magnetic moments and causing atypical magnetic behavior. Our work is relevant for understanding magnetism in rare-earth-doped YIG and, eventually, may enable a quantitative evaluation of the magneto-optical properties of rare-earth incorporation into YIG.

  9. Recent development in clusters of rare earths and actinides. Chemistry and materials

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhiping (ed.) [Arizona Univ., Tucson, AZ (United States). Dept. of Chemistry and Biochemistry

    2017-02-01

    This book contains the following eight contributions: 1. Lanthanide Hydroxide Cluster Complexes via Ligand-Controlled Hydrolysis of the Lanthanide Ions (Zhonghao Zhang, Yanan Zhang, and Zhiping Zheng); 2. Synthesis and Structures of Lanthanide-Transition Metal Clusters (Xiu-Ying Zheng, Xiang-Jian Kong, and La-Sheng Long); 3. Hydrothermal Synthesis of Lanthanide and Lanthanide-Transition-Metal Cluster Organic Frameworks via Synergistic Coordination Strategy (Jian-Wen Cheng and Guo-Yu Yang); 4. Oxo Clusters of 5f Elements (Sarah Hickam and Peter C.); 5. Construction and Luminescence Properties of 4f and d-4f Clusters with Salen-Type Schiff Base Ligands (Xiaoping Yang, Shiqing Wang, Chengri Wang, Shaoming Huang, and Richard A.); 6. 4f-Clusters for Cryogenic Magnetic Cooling (Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang Tong); 7. Lanthanide Clusters Toward Single-Molecule Magnets (Tian Han, You-Song Ding, and Yan-Zhen Zheng); 8. Molecular Rare Earth Hydride Clusters (Takanori Shima and Zhaomin Hou).

  10. Recent development in clusters of rare earths and actinides. Chemistry and materials

    International Nuclear Information System (INIS)

    Zheng, Zhiping

    2017-01-01

    This book contains the following eight contributions: 1. Lanthanide Hydroxide Cluster Complexes via Ligand-Controlled Hydrolysis of the Lanthanide Ions (Zhonghao Zhang, Yanan Zhang, and Zhiping Zheng); 2. Synthesis and Structures of Lanthanide-Transition Metal Clusters (Xiu-Ying Zheng, Xiang-Jian Kong, and La-Sheng Long); 3. Hydrothermal Synthesis of Lanthanide and Lanthanide-Transition-Metal Cluster Organic Frameworks via Synergistic Coordination Strategy (Jian-Wen Cheng and Guo-Yu Yang); 4. Oxo Clusters of 5f Elements (Sarah Hickam and Peter C.); 5. Construction and Luminescence Properties of 4f and d-4f Clusters with Salen-Type Schiff Base Ligands (Xiaoping Yang, Shiqing Wang, Chengri Wang, Shaoming Huang, and Richard A.); 6. 4f-Clusters for Cryogenic Magnetic Cooling (Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang Tong); 7. Lanthanide Clusters Toward Single-Molecule Magnets (Tian Han, You-Song Ding, and Yan-Zhen Zheng); 8. Molecular Rare Earth Hydride Clusters (Takanori Shima and Zhaomin Hou).

  11. Spectrofluorimetric determination of rare earth elements using solidmatrix

    International Nuclear Information System (INIS)

    Suh, I.S.; Chi, K.Y.

    1982-01-01

    In this experiment, rare earth elements are separated from uranium by using the alumina column, anion exchange resin column, and 20% TOA in xylene and fluorescence characteristics were found in the solid matrix to analyze these elements without preseparation from each other. It becomes clear that the YVO 4 matrix is more sensitive than the Y 2 O 3 matrix when the red filter is used to minimized the second order peak intensity. And micro quantity of the rare earth elements in the yellow cake are analyzed by the using of the YVO 4 soid matrix. (Author)

  12. Synthesis, Characterization and Comparative Luminescence Studies of Rare-Earth-Doped Gd2O3 Nanoparticles

    Science.gov (United States)

    Pyngrope, D.; Singh, L. R.; Prasad, A. I.; Bora, A.

    2018-04-01

    A facile direct precipitation method was used for the synthesis of luminescence nanomaterial. Gd2O3 doped with rare earth element Eu3+ is synthesized by polyol route. The synthesized nanoparticles show their characteristic red emission. The nanoparticles are characterized by x-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and photoluminescence (PL) study. The synthesized nanoparticles are spherical particles with 30 nm size. The photoluminescence studies show the characteristic Eu3+ red emission. The PL study shows the intensity of the magnetic dipole transition ( 5 D0 \\to 7 F1 ) at 592 nm compared to that of the electronic dipole transition ( 5 D0 \\to 7 F2 ) at 615 nm. The nanomaterials can show significant application in various display devices and biomedical applications for tracking.

  13. Photoluminescence characterization of Dy3+ and Eu2+ ion in M5(PO4)3F (M = Ba, Sr, Ca) phosphors

    International Nuclear Information System (INIS)

    Nagpure, I.M.; Shinde, K.N.; Dhoble, S.J.; Kumar, Animesh

    2009-01-01

    Photoluminescence investigation of Eu and Dy activated phosphate based phosphors prepared by combustion synthesis, characterized by XRD (X-ray diffraction) and photoluminescence techniques, has been reported. PL excitation spectrum of M 5 (PO 4 ) 3 F:Dy phosphors shows the excitation peaks ranging from 300 to 400 nm due to 4f4f transitions of Dy 3+ ions. PL emission spectrum of Dy 3+ ion under 348 nm excitation gives PL emission at 482 nm (blue) due to 4 F 9/2 → 6 H 15/2 transitions, 574 nm (yellow) emission due to 4 F 9/2 → 6 H 13/2 transitions and 670 nm (red) due to 4 F 9/2 → 6 H 11/2 transitions, gives BYR (blue-yellow-red) emissions. The Eu 2+ broad band PL emission spectrum was observed in M 5 (PO 4 ) 3 F:Eu phosphor at 440 nm in the blue region of the spectrum due to 5d → 4f transition at 352 nm excitation. The 300-400 nm is Hg-free excitation (Hg excitation is 85% 254 nm wavelength of light and 15% other wavelengths), which is characteristic of solid-state lighting phosphors. Hence PL emission in divalent europium and trivalent dysprosium may be efficient photoluminescent materials for solid-state lighting phosphors.

  14. Long persistent luminescence property of a novel green emitting SrLaGaO{sub 4}: Tb{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xiaoyan, E-mail: fuxiaoyan@xmut.edu.cn [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing 210044 (China); Zheng, Shenghui [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Shi, Junpeng [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Li, Yuechan [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Zhang, Hongwu, E-mail: hwzhang@iue.ac.cn [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2017-04-15

    A novel long persistent green emitting phosphor SrLaGaO{sub 4}: Tb{sup 3+} was synthesized via a conventional high temperature solid-state method. The obtained results indicated that the green long persistent emitting was similar to the photoluminescence, originating from the f-f transitions of Tb{sup 3+} centers which were supposed to occupy the random distribution Sr{sup 2+} and La{sup 3+} sites. The duration of green afterglow can be observed in the dark by naked eyes even after more than 3.5 h. The thermoluminescence results revealed that SrLaGaO{sub 4}: Tb{sup 3+} possessed three main traps calculated to be 0.62, 0.68 and 0.77 eV, which were responsible for the long persistent green luminescence. The further structure analysis revealed that the Tb{sup 3+} dopants not only acted as emission centers but also significantly influenced the density of traps, and the trapping centers were postulated nonrandom distribution under the assistance of high temperature, which resulted in the efficient persistent luminescence of Tb{sup 3+}. All the results showed that SrLaGaO{sub 4}: Tb{sup 3+} was a potential long persistent luminescent material.

  15. Magnetism and the low-energy electronic structure of Mott insulators K{sub 2}CoF{sub 4} and SrMnO{sub 3} perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Nalecz, D.M., E-mail: sfnalecz@cyf-kr.edu.pl [Institute of Physics, Pedagogical University, 30-084, Krakow (Poland); Radwanski, R.J. [Institute of Physics, Pedagogical University, 30-084, Krakow (Poland); Center of Solid State Physics, S" n" t Filip 5, 31-150, Krakow (Poland); Ropka, Z. [Center of Solid State Physics, S" n" t Filip 5, 31-150, Krakow (Poland)

    2016-09-01

    For Mott insulators, K{sub 2}CoF{sub 4} and SrMnO{sub 3}, we have calculated, in the purely ionic model, the low-energy electronic structure both in the paramagnetic and magnetic state as well as zero-temperature magnetic moment, its direction and its temperature dependence. We have calculated the octahedral crystal-field strength 10Dq to be 0.98 and 2.25 eV. We claim that for an adequate theoretical description of magnetic properties even small local distortions and the intra-atomic relativistic spin-orbit coupling have to be taken into account. Our studies have revealed a strong interplay of the magnetism, the orbital moment in particular, with the local crystallographic structure. The calculated orbital moment in K{sub 2}CoF{sub 4} is very large, 1.06 μ{sub B}, giving 30% contribution to the total moment - this result points the necessity to “unquench” the orbital magnetism in 3d compounds. We consistently described magnetic and some optical properties of these compounds, containing atoms with incomplete 3d shell, in agreement with their insulating ground state. - Highlights: • The octahedral crystal-field 10Dq amounts to 0.98 and 2.25 eV in K{sub 2}CoF{sub 4} and SrMnO{sub 3}. • The low-energy electronic structures in the magnetic state is displayed. • There is a strong interplay of the magnetism and the local crystal structure. • Temperature dependence of the Mn{sup 4+}- ion magnetic moment has been described. • Relativistic spin-orbit coupling is indispensable for description of 3d magnetism.

  16. Rare earths and rare earth alloys electrolytic preparation process and device for this process

    International Nuclear Information System (INIS)

    Seon, F.; Barthole, G.

    1986-01-01

    Electrolysis of a molten salt of rare earth or rare earth alloy for preparation of the metal or alloy is described. The molten salt bath comprises at least a rare earth chloride, at least an alkaline or alkaline earth chloride and at least an alkaline or alkaline earth fluoride [fr

  17. Red-emitting SrIn{sub 2}O{sub 4} : Eu{sup 3+} phosphor powders for applications in solid state white lamps

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Garcia, C E [Physics of Materials Graduate Program, CICESE-UNAM, Km 107 Carretera Tijuana-Ensenada, Ensenada, B. C., 22860 (Mexico); Perea-Lopez, N; Hirata, G A [Center for Nanoscience and Nanotechnology-UNAM, Km 107 Carretera Tijuana-Ensenada, Ensenada, B. C., 22860 (Mexico); Baars, S P den [Solid State Lighting and Energy Center, University of California at Santa Barbara, Santa Barbara, CA 93106 (United States)], E-mail: ghirata@engineering.ucsb.edu

    2008-05-07

    Red-emitting phosphor powders of SrIn{sub 2}O{sub 4} activated with Eu{sup 3+} ions were fabricated by high pressure assisted combustion synthesis. X-ray diffraction analysis of these oxide phosphors revealed the formation of single-phase orthorhombic SrIn{sub 2}O{sub 4} for concentrations up to 4 at% Eu. A detailed photoluminescence (PL) and cathodoluminescence study showed bright red emission originated within the {sup 5} D{sub 0} {yields} {sup 7}F{sub J} intra-shell transitions of Eu{sup 3+}. Furthermore, PL excitation spectroscopy revealed that an efficient energy transfer from the SrIn{sub 2}O{sub 4} host lattice onto the Eu ions is accomplished in addition to the excitation band peaked at 396 nm that directly excites the Eu ions, making this material an excellent candidate for applications in solid state white lamps. (fast track communication)

  18. Contact hyperfine field of the 4p and 4f series elements (rare-earths)

    International Nuclear Information System (INIS)

    Doi, I.

    1973-01-01

    The Coulomb correlation effect in the description of the contact hyperfine magnetic structure was analysed. The hyperfine magnetic structure was calculated from the spin polarized Hartree-Fock formalism, using the free electron gas approximation to the exchange-correlation energy of the 4p series atoms and some atoms and ions of the 4f series. No one of the analysed approximations to the exchange-correlation energy describes satisfactorily the contact hyperfine magnetic structure of the 4p and 4f series elements, which were studied [pt

  19. Preparation of MAl 2 O 4 : Eu 2+ , Sm 3+ (M = Ca, Sr, Ba) Phosphors ...

    African Journals Online (AJOL)

    A series of MAl2O4: Eu2+, Sm3+ (M = Ca, Sr, Ba) phosphors was prepared by the combustion method, and the influence of these alkaline earth metals on the structure and luminescent performances for these phosphors was investigated. A relationship was established between their composition, crystallization capacity and ...

  20. Dependence of transfer number of fluorine on cation type in glasses of Ba(PO3)2-MeF2 systems (Me=Ba,Sr,Ca,Mg)

    International Nuclear Information System (INIS)

    Pronkin, A.A.

    1978-01-01

    The influence of Ba, Sr, Ca, Mg cations on transfer numbers of fluorine in glasses of Ba(PO 3 ) 2 - MeF 2 pseudobinary systems is studied. Transfer numbers are essentially different in one and the same fluorine ion concentration in glasses, containing various alkali-earth cations: increase of the cation field force brings about decrease of the transfer numbers of fluorine, and the glass-formation region in the Ba-Sr-Ca-Mg series rises. The dependence of transfer numbers of fluorine on the fluorine concentration logarithm is presented. It is established, that alkali-earth metals influence the transfer numbers of fluorine on account of selective interaction with the phosphate constituent of glass structure

  1. First-principles study of crystal and electronic structure of rare-earth cobaltites

    Energy Technology Data Exchange (ETDEWEB)

    Topsakal, M.; Leighton, C.; Wentzcovitch, R. M. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2016-06-28

    Using density functional theory plus self-consistent Hubbard U (DFT + U{sub sc}) calculations, we have investigated the structural and electronic properties of the rare-earth cobaltites RCoO{sub 3} (R = Pr – Lu). Our calculations show the evolution of crystal and electronic structure of the insulating low-spin RCoO{sub 3} with increasing rare-earth atomic number (decreasing ionic radius), including the invariance of the Co-O bond distance (d{sub Co–O}), the decrease of the Co-O-Co bond angle (Θ), and the increase of the crystal field splitting (Δ{sub CF}) and band gap energy (E{sub g}). Agreement with experiment for the latter improves considerably with the use of DFT + U{sub sc} and all trends are in good agreement with the experimental data. These trends enable a direct test of prior rationalizations of the trend in spin-gap associated with the spin crossover in this series, which is found to expose significant issues with simple band based arguments. We also examine the effect of placing the rare-earth f-electrons in the core region of the pseudopotential. The effect on lattice parameters and band structure is found to be small, but distinct for the special case of PrCoO{sub 3} where some f-states populate the middle of the gap, consistent with the recent reports of unique behavior in Pr-containing cobaltites. Overall, this study establishes a foundation for future predictive studies of thermally induced spin excitations in rare-earth cobaltites and similar systems.

  2. β4 systematics in rare-earth and actinide nuclei: sdg interacting boson model description

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1992-01-01

    The observed variation of hexadecupole deformation parameter β 4 with mass number A in rare-earth and actinide nuclei is studied in the sdg interacting boson model (IBM) using single j-shell Otsuka-Arima-Iachello mapped and IBM-2 to IBM-1 projected hexadecupole transition operator together with SU sdg (3) and SU sdg (5) coherent states. The SU sdg (3) limit is found to provide a good description of data

  3. Neutron activation analysis of the rare earth elements in rocks from the earth's upper mantle and deep crust

    International Nuclear Information System (INIS)

    Stosch, H.-G.; Koetz, J.; Herpers, U.

    1986-01-01

    Three techniques for analyzing rare earth elements (REE) in geological materials are described, i.e. instrumental neutron activation analysis (INAA), neutron activation analysis with pre-irradiation chemical REE separation (PCS-NAA) and radiochemical neutron activation analysis (RNAA). The knowledge of REE concentrationd in eclogites, peridotites and minerals from the earth's lower crust and upper mantle is very useful in constraining their petrogenetic history. (author)

  4. THE EFFECTS OF RARE EARTHS ON ACTIVITY AND SURFACE ...

    African Journals Online (AJOL)

    A series of Ru-RE/γ-AL2O3 (RE = Ce, Pr, La, Sm, Tb or Gd) and Ru/γ-AL2O3 catalysts were prepared by impregnation method. The influence of rare earths on the catalytic performance of Ru/γ-AL2O3 catalyst for the water gas shift reaction was studied. The catalysts were characterized by X-ray diffraction (XRD), ...

  5. Production of rare earth polishing powders in Russia

    International Nuclear Information System (INIS)

    Kosynkin, V.D.; Ivanov, E.N.; Kotrekhov, V.A.; Shtutza, M.G.; Grabko, A.I.

    1998-01-01

    in a suspension; polishing powder Ftoropol with addition of fluorine and higher contents of cerium dioxide (at least 70% by mass) that has a higher polishing ability and is attrition-proof, used for high-speed treatment of optical lenses, mirrors, TV screens and eyeglasses. The rare earth polishing powders made in Russia possess the following physico-chemical properties and performance characteristics; cerium dioxide content in solid REE solution - 50-90% by mass; F-ion content (in Ftoropol powder) - 8-14% by mass; non-REE content of sodium, calcium, strontium and iron impurities - at most 0.1% by mass of each element; natural radionuclide content of thorium, uranium, actinium, potassium-40 series, total standard specific activity - 0.45-0.85 Bq/g; - average particle size, 2.0-3.5 μm; density - 6.3-6.8 g/cm 3 ; pH of aqueous extract, 6-7; sedimentary stability - 10-20 minutes; polishing ability - 45-60 mg per 31 minutes (for polishing resin); abrasive inclusions - none. The report gives analysis of the. Russian powders compared against the best world analogues such as Cerox (Rhone Poulenc Company, France), Regipol (London and Scandinavian Division Chemical Company, England), etc. The analysis results imply, that the chief characteristics (granulometric composition, polishing ability and service life) of the Russian samples do not yield to the best foreign analogues, and in some properties (radionuclide content, sedimentary stability and scratching inclusions quantity) even surpass them

  6. Rare earths as a future resource

    International Nuclear Information System (INIS)

    Cornell, D.H.

    1988-01-01

    The fourteen rare earth or lanthanide elements have recently emerged as an important natural resource because of the rapidly growing demand in the electronic, chemical and metallurgical industries. The Symposium on rare earth elements as a future resource presented a multidisciplinary review of rare earth chemistry, geology, beneficiation, industrial applications and marketing. Papers by experts in many fields were presented on the following topics: chemical properties of the rare earth elements; the analysis of rare earth elements and minerals; beneficiation and extraction of rare earth elements; economic geochemistry and mineralogy of rare earths; present industrial uses of rare earth elements; the role of rare earth elements in high-temperature superconductors; the technical application of high-temperature superconductors; supply and demand for rare earth products - now and in the future, and the geology of rare earth deposits

  7. Cluster model calculation for X-ray magnetic circular dichroism at rare-earth (R) L sub 2 sub , sub 3 absorption edges in R sub 2 Fe sub 1 sub 4 B

    CERN Document Server

    Asakura, K; Harada, I; Ogasawara, H; Fukui, K; Kotani, A

    2002-01-01

    X-ray magnetic circular dichroism (MCD) at the L sub 2 sub , sub 3 absorption edges for the entire series of rare-earth (RE) elements in R sub 2 Fe sub 1 sub 4 B (R=RE) is studied based on a cluster model including 10 RE and 16 Fe atoms. The cluster model takes into account band effects of RE 5d states, to which the electric dipole transition occurs from the core 2p states, as well as spin polarization of the 5d states due to the interatomic hybridization with the spin polarized Fe 3d states. We also take into account spin and orbital polarization of the 5d states due to the 5d-4f intra-atomic exchange interaction, and the 2p to 4f quadrupole transition. The calculated results are in satisfactory agreement with experimental ones, suggesting that the cluster model calculation provides a new method to calculate quantitatively MCD spectra of RE systems with complicated atomic arrangements. (author)

  8. Group separation of rare earth elements by liquid-liquid extraction for the neutron activation analysis of silicate rocks

    International Nuclear Information System (INIS)

    Wyttenbach, A.; Bajo, S.; Tobler, L.

    1983-01-01

    Rare earth elements are isolated as a group from neutron activated rock samples by a new radiochemical procedure based on extraction with thenoyltrifluoracetone/phenanthroline in CHCl 3 . The procedure consists of three extraction steps, obviates the use of inactive carriers and gives practically quantitative chemical yields, thereby avoiding fractionation of the individual rare earths. Details of the dissolution, chemical separations. and counting procedure are given together with an analysis of BCR-1. (author)

  9. On halide derivatives of rare-earth metal(III) oxidomolybdates(VI) and -tungstates(VI)

    International Nuclear Information System (INIS)

    Schleid, Thomas; Hartenbach, Ingo

    2016-01-01

    Halide derivatives of rare-earth metal(III) oxidomolybdates(VI) have been investigated comprehensively over the last decade comprising the halogens fluorine, chlorine, and bromine. Iodide-containing compounds are so far unknown. The simple composition REXMoO 4 (RE=rare-earth element, X=halogen) is realized for X=F almost throughout the complete lanthanide series as well as for yttrium. While ytterbium and lutetium do not form any fluoride derivative, for lanthanum, only a fluoride-deprived compound with the formula La 3 FMo 4 O 16 is realized. Moreover, molybdenum-rich compounds with the formula REXMo 2 O 7 are also known for yttrium and the smaller lanthanoids. For X=Cl the composition REClMoO 4 is known for yttrium and the whole lanthanide series, although, four different structure types were identified. Almost the same holds for X=Br, however, only two different structure types are realized in this class of compounds. In the case of halide derivatives of rare-earth metal(III) oxidotungstates(VI) the composition REXWO 4 is found for chlorides and bromides only, so far. Due to the similar size of Mo 6+ and W 6+ cations, the structures found for the tungstates are basically the same as for the molybdates. With the larger lanthanides, the representatives for both chloride and bromide derivates exhibit similar structural motifs as seen in the molybdates, however, the crystal structure cannot be determined reliably. In case of the smaller lanthanoids, the chloride derivatives are isostructural with the respective molybdates, although the existence ranges differ slightly. The same is true for rare-earth metal(III) bromide oxidotungstates(VI).

  10. Advanced system for separation of rare-earth fission products

    International Nuclear Information System (INIS)

    Baker, J.D.; Gehrke, R.J.; Greenwood, R.C.; Meikrantz, D.H.

    1982-01-01

    A microprocessor-controlled radiochemical separation system has been further advanced to separate individual rare-earth elements from mixed fission products in times of a few minutes. The system was composed of an automated chemistry system fed by two approximately 300 μg 252 Cf sources coupled directly by a He-jet to transport the fission products. Chemical separations were performed using two high performance liquid chromatography columns coupled in series. The first column separated the rare-earth group by extraction chromatography using dihexyldiethylcarbamoylmethylphosphonate (DHDECMP) adsorbed on Vydac C 8 resin. The second column isolated the individual rare-earth elements by cation exchange chromatography using Aminex A-9 resin with α-hydroxyisobutyric acid (α-HIBA) as the eluent. Significant results, which have been obtained to date with this advanced system, are the identification of several new neutron-rich rare-earth isotopes including 155 Pm (T=48+-4 s) and 163 Gd (T=68+-3 s). In addition, a half-life of 41+-4 s is reported for 160 Eu. (author)

  11. Rare earth-based low-index films for IR and multispectral thin film solutions

    Science.gov (United States)

    Stolze, Markus; Neff, Joe; Waibel, Friedrich

    2017-10-01

    Non-thoriated rare-earth fluoride based coating solutions involving DyF3 and YbF3 based films as well as non-wetting fluorohydrocarbon cap layers on such films, have been deposited, analyzed and partly optimized. Intermediate results for DyF3 based films from ion assisted e-gun deposition with O2 and N2 alone and as base for the non-wetting to-player as well as for YbF3 starting material with or without admixtures of CaF2 are discussed for low-loss LWIR and multispectral solutions.

  12. Determination of free boron in rare earth hexaborides

    International Nuclear Information System (INIS)

    Kugaj, L.N.; Nazarchuk, T.N.

    1975-01-01

    The method of N.I. Timofeeva et al. (1968) for the determination of free B in rare earth hexaborides was modified by replacing the 1:10 HNO 3 by nonoxidizing 2:1 or 3:1 H 2 SO 4 to dissolve the hexaborides and leave free B in the residue. A sample of 0.5-1.0 g rare earth hexaboride was heated in 50-80 ml 3:1 H 2 SO 4 at 210 0 for 2 hr, and the cool solutions was diluted. The residue containing free B and B 4 C was filtered, rinsed, and heated in dilute HNO 3 at mild temperature for 15-20 min. The filtrate was separated from insoluble B 4 C, neutralized with 10% NaOH, and H 3 BO 3 was titrated with NaOH in the presence of inverted sugar vs. phenophthalein. The free B content was underestimated by less than or equal to 4.3% in nearly all cases. The proposed technique is applicalbe to hexaborides of La, Y, Ce, Pr, Nd, Sm, Gd, and Eu

  13. Effect of high-energy electron irradiation in an electron microscope column on fluorides of alkaline earth elements (CaF2, SrF2, and BaF2)

    International Nuclear Information System (INIS)

    Nikolaichik, V. I.; Sobolev, B. P.; Zaporozhets, M. A.; Avilov, A. S.

    2012-01-01

    The effect of high-energy (150 eV) electron irradiation in an electron microscope column on crystals of fluorides of alkaline earth elements CaF 2 , SrF 2 , and BaF 2 is studied. During structural investigations by electron diffraction and electron microscopy, the electron irradiation causes chemical changes in MF 2 crystals such as the desorption of fluorine and the accumulation of oxygen in the irradiated area with the formation of oxide MO. The fluorine desorption rate increases significantly when the electron-beam density exceeds the threshold value of ∼2 × 10 3 pA/cm 2 ). In BaF 2 samples, the transformation of BaO into Ba(OH) 2 was observed when irradiation stopped. The renewal of irradiation is accompanied by the inverse transformation of Ba(OH) 2 into BaO. In the initial stage of irradiation of all MF 2 compounds, the oxide phase is in the single-crystal state with a lattice highly matched with the MF 2 matrix. When the irradiation dose is increased, the oxide phase passes to the polycrystalline phase. Gaseous products of MF 2 destruction (in the form of bubbles several nanometers in diameter) form a rectangular array with a period of ∼20 nm in the sample.

  14. Behaviour of rare earth elements, thorium, uranium and strontium isotopes in soil samples of Bryansk region contaminated due to Chernobyl accident

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Yonehara, H.; Kurotaki, K.; Shiraishi, K.; Ramzaev, V.; Barkovski, A.

    2000-01-01

    The aim of this study was to characterise the processes which control retention of rare earth elements, U and Th in soil samples of Bryansk region in one of Russian territory contaminated due to Chernobyl accident. Acid sandy and loam sand podzolic soils are typical of this area. We have classified soil samples into forest, pasture, field, yard and kitchen garden. Rare earth elements, U and Th concentrations were measured by digestion soil samples using acid digestion and microwave digestion method followed by ICP-MS whereas Sr isotope ratio ( 87 Sr/ 86 Sr) was determined by using a thermal ionization mass spectrometer (TIMS). In case of forest soil samples, ratio of U/Th varied from 3.32 to 3.60. Though concentration of U and Th varies, ratio does not show much variation. Pasture soil showed higher concentration of REEs, U and Th. Chondrite normalized pattern of soil samples did not differ much from one another excep Ce and Eu and were similar to that for average concentration of continental crust. In case of 87 Sr/ 86 Sr ratio, top layer soil sample shows a relatively higher isotope ratio than lower layers. These data, within the study area, may be reflective of variations in the concentration of elements in reservoir rocks at depth. (author)

  15. Li4SrCa(SiO4)2:Ce3+, a highly efficient near-UV and blue emitting orthosilicate phosphor

    International Nuclear Information System (INIS)

    Zhang, Jilin; Zhang, Weilu; Qiu, Zhongxian; Zhou, Wenli; Yu, Liping; Li, Zhiqiang; Lian, Shixun

    2015-01-01

    High quantum efficiency is a vital parameter of phosphors for practical application. An efficient near-UV and blue emitting phosphor Li 4 SrCa(SiO 4 ) 2 :Ce 3+ was synthesized by a traditional solid-state reaction, and luminescent properties were studied in detail. The Ce 3+ -activated phosphor can emit both a near-UV light centred at 345 nm and a blue light peaking at 420 nm when Ce 3+ occupies the Sr and Ca site, respectively. The internal quantum efficiency (IQE) of Li 4 SrCa(SiO 4 ) 2 :0.03Ce 3+ is as high as 97% under the excitation at 288 nm, while the external quantum efficiency (EQE) is 66%. The IQE and EQE values of Li 4 SrCa(SiO 4 ) 2 :0.03Ce 3+ under the excitation at 360 nm are 82% and 31%, respectively. - Highlights: • Phosphor Li 4 SrCa(SiO 4 ) 2 :Ce 3+ emits a near-UV (345 nm) and a blue light (420 nm). • Emission band at 345 nm originates from Ce 3+ on Sr site. • Emission band at 420 nm belongs to Ce 3+ on Ca site. • Internal quantum efficiency is 97% for Li 4 SrCa(SiO 4 ) 2 :0.03Ce 3+ excited at 288 nm

  16. Thermodynamics and kinetics of the formation of rare earth intermetallics

    International Nuclear Information System (INIS)

    Deodhar, S.S.

    1975-01-01

    Heats of reaction of rare earth intermetallics with iron, cobalt and nickel were determined using Differential Thermal Analysis technique. The intermetallic compounds studied were of MgCu 2 type Laves phases and the rare earth elements studied were praseodymium, gadolinium, dyprosium and erbium. The reactions were exothermic and the heats of reaction were generally high. They varied from the low of -2.5 kcal/g mole for Fe 2 Gd to the high of -35.3 kcal/g mole for Ni 2 Er. The magnitudes of heats of reaction were always greater for the intermetallics of heavy rare earth elements. The rare earth intermetallics studied were either ferromagnetic or antiferromagnetic. The variations in the magnetic moments and the heats of reaction with respect to the atomic number of the rare earth elements followed certain trends. The similarities were observed in the trends of two properties. Electronic configuration for the MgCu 2 type rare earth intermetallics is proposed using Engel--Brewer correlation for metallic structures and the structural features of the Laves phase compounds. Kinetics of the reactions between the rare earth elements and iron, cobalt, and nickel was studied. The rate of reaction was diffusion controlled in each case. The Valensi--Carter equation for the diffusion mechanism satisfactorily described the kinetic behavior. The magnitudes of activation energies and frequency factors were determined. The reactions can be characterized by their reaction temperatures since they always begin at definite temperatures. It was observed that the reaction began at a higher temperature if the activation energy for the reaction was high

  17. Combustion synthesis of Eu 2+ and Dy 3+ activated Sr 3 (VO 4 ) 2 ...

    Indian Academy of Sciences (India)

    2:Eu,Dy phosphors are presented in this paper. PL emission of Sr3(VO4)2:Eu phosphor shows green broad emission band centring at 511 nm and a red sharp band at 614 nm by excitation wavelength of 342 nm. The PL emission spectrum of ...

  18. Novel 2D or 3D alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand

    Science.gov (United States)

    Du, Zi-Yi; Wen, He-Rui; Xie, Yong-Rong

    2008-11-01

    Three novel alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand, namely, [Ca(O 3SC 2H 4PO 3H)(H 2O) 2] ( 1), [Sr(O 3SC 2H 4PO 3H)] ( 2) and [Ba 2(O 3SC 2H 4PO 3H) 2] ( 3), have been synthesized by hydrothermal reactions. They represent the first structurally characterized alkaline-earth metal complexes of phosphonic acid attached with a sulfonate group. The structure of compound 1 features a 2D layer based on 1D chains of [Ca 2(PO 3) 2] bridged by -CH 2-CH 2-SO 3- groups. Compounds 2 and 3 show pillar-layer architecture based on two different inorganic layers linked by -CH 2-CH 2- groups. The inorganic layer in compound 2 features a 1D chain of edge-sharing SrO 8 polyhedra whereas that in compound 3 features an edge-sharing Ba 2O 14 di-polyhedral unit which is further corner-shared with four neighboring ones. The [O 3S-C 2H 4-PO 3H] 2- ligand shows diverse coordination modes in the three alkaline-earth metal sulfonate-phosphonates.

  19. Preparing rare earth-silicon-iron-aluminum alloys

    International Nuclear Information System (INIS)

    Marchant, J.D.; Morrice, E.; Herve, B.P.; Wong, M.M.

    1980-01-01

    As part of its mission to assure the maximum recovery and use of the Nation's mineral resources, the Bureau of Mines, investigated an improved procedure for producing rare earth-silicon alloys. For example, a charge consisting of 681 grams of mixed rare-earth oxides, 309 grams of ferrosilicon (75 wt-pct Si), and 182 grams of aluminum metal along with a flux consisting of 681 grams of CaO and 45 grams of MgO was reacted at 1500 0 C in an induction furnace. Good slag-metal separation was achieved. The alloy product contained, in weight-percent, 53 RE, 28 Si, 11 Fe, and 4 Al with a rare earth recovery of 80 pct. In current industrial practice rare earth recoveries are usually about 60 pct in alloy products that contain approximately 30 wt-pct each of rare earths and silicon. Metallurgical evaluations showed the alloys prepared in this investigation to be as effective in controlling the detrimental effect of sulfur in steel and cast iron as the commercial rare earth-silicon-iron alloys presently used in the steel industry

  20. Enhancement of photoluminescence properties and modification of crystal structures of Si3N4 doping Li2Sr0.995SiO4:0.005Eu2+ phosphors

    International Nuclear Information System (INIS)

    Song, Kaixin; Zhang, Fangfang; Chen, Daqin; Wu, Song; Zheng, Peng; Huang, Qingming; Jiang, Jun; Xu, Junming; Qin, Huibin

    2015-01-01

    Highlights: • Si 3 N 4 modified Li 2 Sr 0.995 SiO 4 :0.005Eu 2+ phosphors were prepared. • The luminescence intensity of Li 2 Sr 0.995 SiO 4 :Eu 2+ was enhanced by doping Si 3 N 4 . • The fluorescence decay times and thermal stability were enhanced by doping Si 3 N 4 . - Abstract: Si 3 N 4 modified Li 2 Sr 0.995 SiO 4 :0.005Eu 2+ (Li 2 Sr 0.995 SiO 43x/2 N x :0.005Eu 2+ ) phosphors were synthesized with the conventional solid-state reaction in the reduced atmosphere. The crystal structure and vibrational modes were analyzed by X-ray diffraction, Raman scattering spectroscopy and Rietveld crystal structure refinement. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra showed that Li 2 Sr 0.995 SiO 43x/2 N x :0.005Eu 2+ powder exhibited a broad yellow emission band centered at 560 nm under the excitation of 460 nm visible light, due to the 4f 6 5d 1 → 4f 7 transition of Eu 2+ . The partial nitridation of Li 2 Sr 0.995 SiO 43x/2 N x :0.005Eu 2+ (x = 0.01) phosphors led to a large enhancement in the luminescence intensity, as much as 190%. At the same time, the fluorescence decay behavior curves further showed that the photoluminescence efficiencies of Li 2 Sr 0.995 SiO 43x/2 N x :0.005Eu 2+ phosphors were enhanced by addition of Si 3 N 4 . The temperature quenching characteristics confirmed that the oxynitride based Li 2 Sr 0.995 SiO 43x/2 N x :0.005Eu 2+ showed slightly higher stability. It is implied that Li 2 Sr 0.995 SiO 43x/2 N x :0.005Eu 2+ phosphors had a possible potential application on white LEDs to match blue light chips

  1. Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implications for rare metal mineralization

    Science.gov (United States)

    Song, WenLei; Xu, Cheng; Veksler, Ilya V.; Kynicky, Jindrich

    2016-01-01

    Carbonatites host some unique ore deposits, especially rare earth elements (REE). Hydrothermal fluids have been proposed to play a significant role in the concentration and transport of REE and other rare metals in carbonatites, but experimental constraints on fluid-melt equilibria in carbonatitic systems are sparse. Here we present an experimental study of trace element (REE, Ba, Sr, Mo and W) partitioning between hydrous fluids and carbonatitic melts, bearing on potential hydrothermal activity associated with carbonatite ore-forming systems. The experiments were performed on mixtures of synthetic carbonate melts and aqueous fluids at 700-800 °C and 100-200 MPa using rapid-quench cold-seal pressure vessels and double-capsule assemblages with diamond traps for analyzing fluid precipitates in the outer capsule. Starting mixtures were composed of Ca, Mg and Na carbonates spiked with trace elements. Small amounts of F or Cl were added to some of the mixtures to study the effects of halogens on the element distribution. The results show that REE, Ba, Sr, Mo and W all preferentially partition into carbonatite melt and have fluid-melt distribution coefficients ( D f/m) below unity. The REE partitioning is slightly dependent on the major element (Ca, Mg and Na) composition of the starting mixtures, and it is influenced by temperature, pressure, and the presence of halogens. The fluid-melt D values of individual REE vary from 0.02 to 0.15 with D_{Lu}^{f} / {fm}{m} being larger than D_{La}^{f} / {fm}{m} by a factor of 1.1-2. The halogens F and Cl have strong and opposite effects on the REE partitioning. Fluid-melt D REE are about three times higher in F-bearing compositions and ten times lower in Cl-bearing compositions than in halogen-free systems. D_{W}^{f} / {fm}{m} and D_{Mo}^{f} / {fm}{m} are the highest among the studied elements and vary between 0.6 and 0.7; D_{Ba}^{f} / {fm}{m} is between 0.05 and 0.09, whereas D_{Sr}^{f} / {fm}{m} is at about 0.01-0.02. The

  2. Fiber-optic thermometer application of thermal radiation from rare-earth end-doped SiO2 fiber

    International Nuclear Information System (INIS)

    Katsumata, Toru; Morita, Kentaro; Komuro, Shuji; Aizawa, Hiroaki

    2014-01-01

    Visible light thermal radiation from SiO 2 glass doped with Y, La, Ce, Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu were studied for the fiber-optic thermometer application based on the temperature dependence of thermal radiation. Thermal radiations according to Planck's law of radiation are observed from the SiO 2 fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu at the temperature above 1100 K. Thermal radiations due to f-f transitions of rare-earth ions are observed from the SiO 2 fibers doped with Nd, Dy, Ho, Er, Tm, and Yb at the temperature above 900 K. Peak intensities of thermal radiations from rare-earth doped SiO 2 fibers increase sensitively with temperature. Thermal activation energies of thermal radiations by f-f transitions seen in Nd, Dy, Ho, Er, Tm, and Yb doped SiO 2 fibers are smaller than those from SiO 2 fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu. Thermal radiation due to highly efficient f-f transitions in Nd, Dy, Ho, Er, Tm, and Yb ions emits more easily than usual thermal radiation process. Thermal radiations from rare-earth doped SiO 2 are potentially applicable for the fiber-optic thermometry above 900 K

  3. Effect of Coulomb interaction on the X-ray magnetic circular dichroism spin sum rule in rare earths

    NARCIS (Netherlands)

    Teramura, Y; Tanaka, A; Thole, BT; Jo, T

    A deviation from the spin sum rule, which relates the integrated intensity of the X-ray magnetic circular dichroism (MCD) signal to the expectation value of the spin operator S-z ((S-z)), is numerically calculated in the case of the 3d --> 4f absorption for rare earths from the trivalent Ce to Tm.

  4. Studies of the rare earth-iron interactions in the orthoferrites GdFeO3 and HoFeO3

    International Nuclear Information System (INIS)

    Sakata, T.; Enomura, A.

    1979-01-01

    The magnetic behaviour of GdFeO 3 and HoFeO 3 is investigated by means of a Faraday type magnetic balance in a temperature range where rare earth ions are in the paramagnetic state. The results are analyzed in terms of an effective field at a rare earth ion site. Thereby the isotropic exchange field as well as the magnetic dipole field are taken into account. By this means the exchange integral, J/k(K), between an iron ion and a rare earth ion may be estimated to be 0.23 for GdFeO 3 and 0.25 for HoFeO 3 , respectively. (author)

  5. Rare earths: occurrence, production and applications

    International Nuclear Information System (INIS)

    Murthy, T.K.S.; Mukherjee, T.K.

    2002-01-01

    The mining and processing of rare earth minerals, particularly of monazite, began in a modest way in 1880s for commercialized production of mantle for gas lighting. For all major applications up to mid-twentieth century- production of lighter flints, misch metal as a metallurgical alloying agent, colouring, decolourizing and polishing agents for glass, petroleum cracking catalysts and arc-carbons, unseparated or partially separated rare earths were adequate. These applications continue till today. With the development and industrial application of powerful techniques like ion exchange and solvent extraction for the separation of rare earths, the decades after 1960 saw increasing utilization of the specific properties of the individual rare earths. Some of these advanced technological applications include: special glass for optical systems including camera lenses, phosphors for colour television, cathode ray tubes and fluorescent lighting, X-ray intensification screens, high intensity permanent magnets, electro optical devices, lasers, hydrogen storage materials, hydride rechargeable batteries, photomagnetic data storage systems, autoexhaust catalysts, special ceramics of unusual toughness, artificial diamonds and nonpoisonous plastic colorants. The topics covered in the book include rare earths: their story identity, rare earth resources, processing of ores and recovery of mixed rare earths products, separation and purification of rare earths, nonmetallic applications of rare earths, rare earth metals: production and applications, rare earth alloys and their applications, analysis of rare earth, processing of rare earth resources in India by Indian Rare Earth Ltd. and availability and market conditions

  6. Rare earth point defects in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, S.

    2007-12-14

    In this work we investigate rare earth doped GaN, by means of theoretical simulations. The huge unit cells necessary to model the experimental system, where dilute amount of rare earth ions are used, are handled with the charge self consistent density-functional based-tight binding (SCC-DFTB) calculational scheme. The method has been extended to include LDA+U and simplified self interaction corrected (SIC)-like potentials for the simulation of systems with localised and strongly correlated electrons. A set of tight-binding parameters has been created to model the interaction of GaN with some dopants, including a selection of lanthanide ions interesting due to their optical or magnetic properties (Pr, Eu, Gd, Er and Tm). The f-electrons were treated as valence electrons. A qualitatively correct description of the band gap is crucial for the simulation of rare earth doped GaN, because the luminescence intensity of the implanted samples depends on the size of the host band gap and because the rare earths could introduce charge transition levels near the conduction band. In this work these levels are calculated with the Slater-Janak (SJ) transition state model, which allows an approximate calculation of the charge transition levels by analysing the Kohn-Sham eigenvalues of the DFT. (orig.)

  7. Determination of rare earth elements, hafnium and cadmium in sintered pellets of mixed thorium and uranium oxides by neutron activation

    International Nuclear Information System (INIS)

    Cardoso, S.N.M.

    1987-01-01

    This work shows the development of a method for determination of the rare-earth elements (Eu, Sm, Dy and Gd), Hf and Cd contents in sinterized U and Th mixed oxides by neutron activation analysis. The sample is dissolved in nitric/fluoridric (0,1% HF) medium, to dryness and redissolved in 6N HCl solution. The Hf is extracted into organic phase (0,5 M TTA/benzene), irradiated and analysed through 181 Hf isotope energy peak. The aqueous phase is treated with NH 4 OH for the precipitation of hidroxides. Then, these are dissolved in 6N HNO 3 solution. The extraction of U and Th is made in two steps, one with TBP/CCl 4 and another with 0,5 M TTA/C 6 H 6 . Then the rare-earth elements and Cd are irradiated and determined by gamma spectrometry. (author) [pt

  8. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  9. Ionic thermocurrents and ionic conductivity of solid solutions of SrF2 and YbF3

    NARCIS (Netherlands)

    Meuldijk, J.; Hartog, den H.W.

    1983-01-01

    We report dielectric [ionic thermocurrent (!TC)] experiments and ionic conductivity of cubic solid solutions of the type Sr1-xYbxF2+x. These combined experiments provide us with new information concerning the ionic conductivity mechanisms which play an important role in solid solutions Sr1-xRxF2+x

  10. Luminescent features of sol–gel derived rare-earth multi-doped oxyfluoride nano-structured phosphors for white LED application

    International Nuclear Information System (INIS)

    Gouveia-Neto, A.S.; Silva, A.F. da; Bueno, L.A.; Costa, E.B. da

    2012-01-01

    Rare-earth doped oxyfluoride 75SiO 2 :25PbF 2 nano-structured phosphors for white-light-emitting diodes were synthesized by thermal treatment of precursor sol–gel derived glasses. Room temperature luminescence features of Eu 3+ , Sm 3+ , Tb 3+ , Eu 3+ /Tb 3+ , and Sm 3+ /Tb 3+ ions incorporated into low-phonon-energy PbF 2 nanocrystals dispersed in the aluminosilicate glass matrix and excited with UV light emitting diode were investigated. The luminescence spectra exhibited strong emission signals in the red (600, 610, 625, and 646 nm), green (548 and 560 nm), and blue (485 nm) wavelength regions. White-light emission was observed in Sm/Tb and Eu/Tb double-doped activated phosphors employing UV-LED excitation at 395 nm. The dependence of the luminescence emission intensities upon annealing temperature and rare-earth concentration was also examined. The results indicated that there exist optimum annealing temperature and activator ion concentration in order to obtain intense visible emission light with high color rendering index. The study suggests that the nanocomposite phosphor based upon 75SiO 2 :25PbF 2 host herein reported is a promising contender for white-light LED applications. - Highlights: ► White-light emission in double-doped activated phosphors employing UV-LED excitation. ► Luminescent features of europium, samarium, and terbium in nanocrystals dispersed in aluminosilicate glass. ► New nanocomposite phosphor host for white-light LED applications.

  11. Spectroscopic study of magnetic phase transitions and magnetic structures in rare earth ferroborates RFe3(BO3)4 (R = Y, Er, Tb, Gd)

    International Nuclear Information System (INIS)

    Popova, M.N.; Chukalina, E.P.; Stanislavchuk, T.N.; Bezmaternykh, L.N.

    2006-01-01

    One investigated into the absorption spectra of RFe 3 (BO 3 ) 4 , R=Y, Er, Tb, Gd rare earth borate single crystals containing erbium (1%) introduced to serve as a probe. On the basis of the temperature dependences of Er 3+ ion spectral line splittings one determined the values of the magnetic ordering temperatures of Er, Tb and Gd ferroborates and the temperatures of the spin reoriented first order phase transition in GdFe 3 (BO 3 ) 4 :Er 3+ (1%). On the basis of comparison of the splitting values of Er 3+ ion ground state in RFe 3 (BO 3 ) 4 (R=Y, Er, Tb) and in GdFe 3 (BO 3 )4 compounds the magnetic structure of which is known one makes a concussion about the orientation of iron magnetic moments in the magneto-ordered state: a lightly planar structure is observed for YFe 3 (BO 3 ) 4 and ErFe 3 (BO 3 ) 4 and a lightly axial one - for TbFe 3 (BO 3 ) 4 . One discusses the role of R 3+ ion single ion anisotropy when determining the magnetic structure type in RFe 3 (BO 3 ) 4 [ru

  12. Anti-tumor activity of Aloe vera against DMBA/croton oil-induced skin papillomagenesis in Swiss albino mice.

    Science.gov (United States)

    Saini, M; Goyal, Pradeep Kumar; Chaudhary, Geeta

    2010-01-01

    Human populations are increasingly exposed to various carcinogens such as chemicals, radiation, and viruses in the environment. Chemopreventive drugs of plant origin are a promising strategy for cancer control because they are generally nontoxic or less toxic than synthetic che-mopreventive agents, and can be effective at different stages of carcinogenesis. The present investigation was undertaken to explore the antitumor activity of topical treatment with aloe vera (Aloe vera) gel, oral treatment with aloe vera extract, and topical and oral treatment with both gel and extract in stage-2 skin carcinogenesis in Swiss albino mice induced by 7,12-dim ethylbenz(a)anthracene (DMBA) and promoted croton (Croton tiglium) oil. The animals were randomly divided into 4 groups and treated as follows: Group I, DMBA + croton oil only (controls); Group II, DMBA + croton oil + topical aloe vera gel; Group III, DMBA + croton oil + oral aloe vera extract; Group I V, DMBA + croton oil + topical aloe vera gel + oral aloe vera extract. Results showed that body weight was significantly increased from 78.6% in the control group (Group I) to 92.5%, 87.5%, and 90.0% in Groups II, III, and I V, respectively. A 100% incidence of tumor development was noted in Group I, which was decreased to 50%, 60%, and 40% in Groups II, III, and I V, respectively. Also in Groups II, III, and IV, the cumulative number of papillomas was reduced significantly from 36 to 12, 15, and 11; tumor yield from 3.6 to 1.2, 1.5, and 1.1; and tumor burden from 3.6 to 2.4, 2.50, and 2.75, respectively, after treatment with aloe vera. Conversely, the average latent period increased significantly from 4.9 (Group I) to 5.23, 5.0, and 6.01 weeks in Groups II, III, and I V, respectively. We conclude that aloe vera protects mice against DMBA/croton oil-induced skin papillomagenesis, likely due to the chemopreventive activity of high concentrations of antioxidants such as vitamins A, C, and E; glutathione peroxidase; several

  13. Antibacterial activity of aloe emodin and aloin A isolated from Aloe ...

    African Journals Online (AJOL)

    GRACE

    2006-06-02

    Jun 2, 2006 ... Aloe emodin and aloin A are known to occur in both commercial viable species of aloes (Aloe vera and A. ferox), but has not previously been isolated from A. excelsa. Although extensive research had been done with most Aloe species including chemical work. (Speranza et al., 1986; Speranza et al., 1990; ...

  14. The Chinese Society of Rare Earth is Studying The Feasibility of Marketing Rare Earth Futures

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Lin Donglu,secretary-general of the Chinese Society of Rare Earth recently said,the Chinese Society of Rare Earth undertook the research on subject of the National Social Science Fund Foundation on the reform of Chinese rare earth trading pricing mechanism on promoting RMB globalization,and is focusing on studying the feasibility of marketing rare earth futures variety.

  15. Spectrophotometric method for the analysis of rare earths by first and second order derivatives

    International Nuclear Information System (INIS)

    Deshpande, S.M.; Singh, H.

    1997-01-01

    Spectrophotometric methods are widely used for the analysis of rare earth elements as they are simple, fast, precise and accurate. Many of the rare earth ions in acidic solutions absorb in ultraviolet and visible region of the electromagnetic spectrum. Because of the restricted transition of the 4f electrons the absorption peaks are very sharp and these peaks are used for the qualitative and quantitative analysis of rare elements. When analysis of one or two minor constituents in the mixture of rare earths is involved, it is a straightforward and simple matter, but the analysis of multiple elements from a complex mixture is very difficult because of the mutual interference of the absorption bands. Simultaneous equations of the type: (OD) 1 = C A X Φ A1 + C B X Φ B1 and (OD) 2 = C A X Φ A2 + C B X Φ B2 are also employed to overcome the mutual interference. In this paper first order and second order derivative spectra are used for the analysis of rare earths. It is a simple and effective technique for accurate analysis of rare earths from a complex mixture. Absorption data in the first derivative mode is also presented. Analysis of Nd-Pr-Sm from their synthetic mixtures is reported. (author). 4 refs., 1 tab., 1 ill

  16. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  17. A comparative study of the magnetic properties and phase separation behavior of the rare earth cobaltates, Ln 0.5Sr0.5CoO3 (Ln=rare earth)

    International Nuclear Information System (INIS)

    Kundu, Asish; Sarkar, R.; Pahari, B.; Ghoshray, A.; Rao, C.N.R.

    2007-01-01

    A comparative study of the magnetic properties of a few members of the Ln 0.5 Sr 0.5 CoO 3 family with different radii of the A-site cations, A >, in the range 1.19-1.40 A has been carried out. The apparent T c (where the magnetization undergoes an abrupt increase) decreases markedly with A > as well as the size-disorder arising from the mismatch in the size of the A-site cations. The value of the magnetization at low temperatures decreases markedly with decrease in A > or increase in size-disorder, suggesting that the relative proportion of the ferromagnetic (FM) species decreases relative to that of the paramagnetic (PM) species. Such a variation of the FM/PM ratio with composition and temperature is evidenced from the Moessbauer spectra of La 0.5 Sr 0.5 CoO 3 as well. The variation of the FM/PM ratio with A > and size-disorder, as well as a local-probe study using 59 Co Nuclear magnetic resonance spectroscopy suggest that electronic phase separation is an inherent feature of the Ln 0.5 Sr 0.5 CoO 3 type cobaltates, with the nature of the different magnetic species in the phase-separated system varying with A > and size disorder. - Graphical abstract: Variation of (a) T c and (b) FC magnetization at 1000 Oe with A > at 120 K in Ln 0.5 Sr 0.5 CoO 3 and Dy 0.34 Nd 0.16 Sr 0.40 Ca 0.10 CoO 3

  18. Doping induced grain size reduction and photocatalytic performance enhancement of SrMoO{sub 4}:Bi{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yunjian, E-mail: wangyunjianmail@163.com; Xu, Hui; Shao, Congying; Cao, Jing, E-mail: caojing@mail.ipc.ac.cn

    2017-01-15

    Graphical abstract: Photocatalytic performance of SrMoO{sub 4} was greatly improved by Bi{sup 3+} doping effects, including crystalline size reduction, band gap narrowing, and lattice contraction. - Highlights: • An efficient SrMoO{sub 4} photocatalyst was fabricated by Bi{sup 3+} doping under hydrothermal condition. • Bi{sup 3+} doping effects, including crystalline size reduction, band gap narrowing, and lattice contraction were discovered in SrMoO{sub 4} nanomaterials. • The photocatalytic activity was great improved on account of Bi{sup 3+} doping effects. • Photoluminescence studies found that hydroxyl radical (·OH) is the main active species in the photocatalytic degradation process. - Abstract: Ion doping is one of the most effective ways to develop photocatalysts by creating impurity levels in the energy band structure. In this paper, novel Bi{sup 3+} doped SrMoO{sub 4} (SrMoO{sub 4}:Bi{sup 3+}) nanocrystals were prepared by a simple hydrothermal method. By systematic characterizations using x-ray diffraction, infrared spectra, UV–vis spectra, X-ray photoelectron spectroscopy and transmission electron microscopy, it is demonstrated that all the samples crystallized in a single phase of scheelite structure, and particle sizes of SrMoO{sub 4}:Bi{sup 3+} gradually decreased. The Bi{sup 3+} doped nanoparticles showed lattice contraction, and band-gap narrowing. The photocatalytic activity of the samples was measured by monitoring the degradation of methylene blue dye in an aqueous solution under UV-radiation exposure. It is found that SrMoO{sub 4}:Bi{sup 3+} showed excellent activity toward photodegradation of methylene blue solution under UV light irradiation compared to the pure SrMoO{sub 4}. These observations are interpreted in terms of the Bi{sup 3+} doping effects and the increased the surface active sites, which results in the improved the ratio of surface charge carrier transfer rate and reduced the electron–hole recombination rate. These

  19. Spectral and thermal behaviours of rare earth element complexes with 3,5-dimethoxybenzoic acid

    Directory of Open Access Journals (Sweden)

    JANUSZ CHRUŚCIEL

    2003-10-01

    Full Text Available The conditions for the formation of rare earth element 3,5-dimethytoxybenzoates were studied and their quantitative composition and solubilities in water at 293 K were determined. The complexes are anhydrous or hydrated salts and their solubilities are of the orders of 10-5 – 10-4 mol dm-3. Their FTIR, FIR and X-ray spectra were recorded. The compounds were also characterized by thermogravimetric studies in air and nitrogen atmospheres and by magnetic measurements. All complexes are crystalline compounds. The carboxylate group in these complexes is a bidentate, chelating ligand. On heating in air to 1173 K, the 3,5-dimethoxybenzoates of rare earth elements decompose in various ways. The hydrated complexes first dehydrate to form anhydrous salts which then decompose in air to the oxides of the respective metals while in nitrogen to mixtures of carbon and oxides of the respective metals. The complexes are more stable in air than in nitrogen.

  20. NONLINEAR OPTICAL PHENOMENA Intracavity SRS conversion in diode-pumpedmultifunctional Nd3+:SrMoO4 laser crystal

    Science.gov (United States)

    Basiev, Tasoltan T.; Smetanin, Sergei N.; Fedin, Aleksandr V.; Shurygin, Anton S.

    2010-10-01

    Lasing of a miniature all-solid-state SRS laser based on a Nd3+:SrMoO4 crystal with a LiF:F2--passive Q-switch is studied. The dependences of the laser and SRS self-conversion parameters on the initial transmission of the passive Q-switch are studied experimentally and theoretically. Simulation of the lasing kinetics has shown the possibility of nonlinear cavity dumping upon highly efficient SRS self-conversion of laser radiation. An increase in the active medium length from 1 to 3mm resulted in an increase in the energy of the output 1.17-μm SRS radiation from 20 μJ to record-high 60 μJ at the absorbed multimode diode pump energy of 3.7 mJ.

  1. Nonvolatile resistive switching in Pt/laALO3/srTiO3 heterostructures

    KAUST Repository

    Wu, S.; Luo, X.; Turner, S.; Peng, H.; Lin, W.; Ding, J.; David, A.; Wang, B.; Van, Tendeloo, G.; Wang, J.; Wu, Tao

    2013-01-01

    Resistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures

  2. Enhanced thermoelectric performance with participation of F-electrons in β-Zn{sub 4}Sb{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mian; Qin, Xiaoying, E-mail: xyqin@issp.ac.cn; Liu, Changsong; Li, Xiyu; Yang, Xiuhui

    2014-01-25

    Highlights: • Find an effective route to enhance the thermoelectric figure of merit of β-Zn{sub 4}Sb{sub 3}. • Provide the corresponding theoretical predictions. • Investigated the effects of doping Ce and Pr in β-Zn{sub 4}Sb{sub 3}. -- Abstract: The effects of rare-earth element impurities Ce and Pr on the electronic structure and thermoelectric properties of β-Zn{sub 4}Sb{sub 3} were investigated by performing self-consistent ab initio electronic structure calculations within density functional theory and solving the Boltzmann transport equations within the relaxation time approximation. The results demonstrated that these rare-earth element impurities with f orbitals could introduce giant sharp resonant peaks in the density of states (DOS) near the host valence band maximum in energy. And these deliberately engineered DOS peaks result in a sharp increase of the room-temperature Seebeck coefficient and power factor from those of impurity-free system by a factor of 100 and 22, respectively. Additionally, with the simultaneous declining of carrier thermal conductivity, a potential 5-fold increase at least with Ce doping and more than 3 times increase with Pr doping in the thermoelectric figure of merit of β-Zn{sub 4}Sb{sub 3} at room temperature are achieved. The effective DOS restructuring strategy opens up new opportunities for thermoelectric power generation and waste heat recovery at large scale.

  3. Warm white light generation from single phase Sr3Y(PO4)3:Dy3+, Eu3+ phosphors with near ultraviolet excitation

    International Nuclear Information System (INIS)

    Huang, B.Y.; Feng, B.L.; Luo, L.; Han, C.L.; He, Y.T.; Qiu, Z.R.

    2016-01-01

    Highlights: • Novel single phase phosphors were synthesized in an ambient air atmosphere. • A direct band gap about 4.5 eV of the host is calculated for the first time. • It is suitable for near UV chip excitation. • It emits warm white light with better CIE and lower CCT over previous reports. • The thermal quenching is similar to that of YAG:0.06Ce 3+ commercial phosphor. - Abstract: Novel Sr 3 Y(PO 4 ) 3 :Dy 3+ , Eu 3+ (SYP:Dy 3+ , Eu 3+ ) phosphors were synthesized by a standard solid-state reaction under an ambient air atmosphere and their structural and optical properties were investigated. XRD and diffuse reflectance spectra (DRS) were used to explore structural properties. The former showed that single phase phosphors were obtained and that the rare earth ions entered into the cubic host by substituting the smaller Y 3+ ions and thereby enlarging the unit cell. The DRS indicated that the host has a direct bandgap of 4.5 eV. Under 393 nm excitation, a strong and stable warm white light emission with high color purity was achieved in SY 0.92 P:0.06Dy 3+ , 0.04Eu 3+ . The energy transfer from Dy 3+ to Eu 3+ ions was investigated and the related mechanism was discussed based on the optical spectra and emission decay curves. The thermal quenching of emission is similar to that of YAG:0.06Ce 3+ . The results show the single phase phosphor is potential in warm white LED.

  4. Structure and Dielectric Properties of (Sr0.2Ca0.488Nd0.208) TiO3-Li3NbO4 Ceramic Composites

    Science.gov (United States)

    Xia, C. C.; Chen, G. H.

    2017-12-01

    The new ceramic composites of (1-x) Li3NbO4-x (Sr0.2Ca0.488Nd0.208)TiO3 were prepared by the conventional solid state reaction method. The sintering behavior, phase composition, microstructure and microwave dielectric properties of the ceramics were investigated specially. The SEM and XRD results show that (1-x) Li3NbO4-x (Sr0.2Ca0.488Nd0.208) TiO3 (0.35≤x≤0.5) composites were composed of two phase, i.e. perovskite and Li3NbO4. With the increase of x, the ɛr increases from 27.1 to 38.7, Q×f decreases from 55000 GHz to 16770 GHz, and the τ f increases from -49 ppm/°C to 226.7 ppm/°C. The optimized dielectric properties with ɛr∼31.4, Q×f~16770GHz and τf~-8.1ppm/°C could be obtained as x=0.4 sintered at 1100°C for 4h. The as-prepared ceramic is expected to be used in resonators, filters, and other microwave devices.

  5. Effect of the kind of alkaline and rare earth ions on the structure of a glass rich in earth; Effet de la nature des ions alcalins et alcalino-terreux sur la structure d un verre riche en terre

    Energy Technology Data Exchange (ETDEWEB)

    Quintas, Arnaud; Caurant, Daniel; Majerus, Odile [Laboratoire de Chimie Appliquee de l Etat Solide, UMR 7574, ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, (France); Lenoir, Marion; Dussossoy, Jean-Luc [Commissariat a l Energie Atomique, Centre d Etudes de la Vallee du Rhone, DIEC/SCDV/LEBM, 30207 Bagnols-sur-Ceze, (France); Charpentier, Thibault [Service de Chimie Moleculaire, DSM/DRECAM/CEA Saclay, 91191 Gif-sur-Yvette Cedex, (France); Neuville, Daniel R. [Laboratoire de Physique des Mineraux et des Magmas, UMR 7047-CNRS-IPGP, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, (France); Gervais, C. [Laboratoire de Chimie de la matiere condensee, UMR7574, Universite Pierre et Marie Curie, 4 place Jussieu, F-75252 Paris Cedex 05, (France)

    2006-07-01

    In the framework of a structural study of a nuclear wastes containment glass of type alumino borosilicate and rich in rare earths, the influence of the kind of alkaline or rare earth ions is analyzed. For that, two glasses series have been prepared in which the Na{sup +} ion (respectively Ca{sup 2+} ions) present in the standard composition is totally substituted by another alkaline ion Li{sup +}, K{sup +}, Rb{sup +} or Cs{sup +} (respectively another rare earth ion Mg{sup 2+}, Sr{sup 2+} or Ba{sup 2+}). These glasses, analyzed by optical absorption, Raman and {sup 27}Al or {sup 11}B NMR spectroscopies have revealed the strong impact of the kind of the modifying ion as well as the structure of the vitreous lattice (variation of the ratio BO{sub 3}/BO{sub 4} and local variations of the polymerization degree) than the local surroundings of the rare earth (decrease of the covalency degree of the bond Nd-O with the increase of the field force of the modifying ion). (O.M.)

  6. Luminescence studies of rare earth doped dosimeters

    International Nuclear Information System (INIS)

    Karali, T.

    1999-10-01

    from the rare earth sites, with signals characteristic of the RE 3+ states. Once more, the data suggest that the rare earth ions are active both in the trapping and luminescence processes where ionic radii influence the TL peak temperature. Finally, the research has expanded to include the analysis of high resolution RL spectra of CaSO 4 and MgB 4 O 7 doped with different concentrations of rare earths. This thesis presents the preliminary results and reveals that in higher concentrations, RE ions form a cluster which reduce the luminescence emission. (author)

  7. A divalent rare earth oxide semiconductor: Yttrium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kaminaga, Kenichi; Sei, Ryosuke [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Department of Chemistry, Tohoku University, Sendai 980-8578 (Japan); Hayashi, Kouichi [Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Happo, Naohisa [School of Information Sciences, Hiroshima City University, Hiroshima 731-3194 (Japan); Tajiri, Hiroo [Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, Sayo 679-5198 (Japan); Oka, Daichi; Fukumura, Tomoteru, E-mail: tomoteru.fukumura.e4@tohoku.ac.jp [Department of Chemistry, Tohoku University, Sendai 980-8578 (Japan); Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan)

    2016-03-21

    Rare earth oxides are usually widegap insulators like Y{sub 2}O{sub 3} with closed shell trivalent rare earth ions. In this study, solid phase rock salt structure yttrium monoxide, YO, with unusual valence of Y{sup 2+} (4d{sup 1}) was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO has been recognized as gaseous phase in previous studies. In contrast with Y{sub 2}O{sub 3}, YO was dark-brown colored and narrow gap semiconductor. The tunable electrical conductivity ranging from 10{sup −1} to 10{sup 3} Ω{sup −1 }cm{sup −1} was attributed to the presence of oxygen vacancies serving as electron donor. Weak antilocalization behavior observed in magnetoresistance indicated significant role of spin-orbit coupling as a manifestation of 4d electron carrier.

  8. Biogeochemical distribution of rare earths and other trace elements in plants and soils

    International Nuclear Information System (INIS)

    Laul, J.C.; Weimer, W.C.; Rancitelli, L.A.

    1977-01-01

    The rare earth concentrations in vegetables (corn, potatoes, peas, and butternut squash) were found to be extremely low: 10 -8 g/g to 10 -10 g/g. The chondritic normalized vegetable REE patterns are fractionated, including a negative Eu anomaly, and behave as a smooth function of the REE ionic radii. These patterns may be governed by the geochemistry of accessory minerals in the host soils. The depletion factors for various elements by vegetables relative to bulk soils are approx. 10 -4 for REE, Hf, Ta, Th, and U; approx. 10 -3 for Al, As, Ba, Cr, Fe, Mn, Sc, Se, And Sr; approx. 10 -2 for Co, Cs, Na, Ni, and Sb; approx. 10 -1 for Rb; and approx. 1 for K, Zn, and Br

  9. Quantum efficiency of silica-coated rare-earth doped yttrium silicate

    International Nuclear Information System (INIS)

    Cervantes-Vásquez, D.; Contreras, O.E.; Hirata, G.A.

    2013-01-01

    The photoluminescent properties of rare earth-activated white-emitting Y 2 SiO 5 :Ce,Tb nanocrystalline phosphor prepared by two different methods, pressure-assisted combustion synthesis and sol–gel, were studied. The synthesized phosphor samples were post-annealed at 1373 K and 1623 K in order to obtain the X1-Y 2 SiO 5 and X2-Y 2 SiO 5 phases, respectively, which were confirmed by X-ray diffraction measurements. Photoluminescence analysis showed the contribution of two blue-emission bands within the 380–450 nm region originating from 5d–4f transitions in Ce 3+ ions and a well-defined green emission of Tb 3+ ions located at 545 nm corresponding to 5 D 4 → 7 F 5 electronic transitions. Thereafter, Y 2 SiO 5 :Ce,Tb powders were coated with colloidal silica in order to investigate the effect of silica coatings on their luminescent properties. Absolute fluorescence quantum efficiency measurements were carefully performed, which revealed an increase of 12% of efficiency in coated compared with bare-Y 2 SiO 5 :Ce,Tb phosphor. -- Highlights: • Y 2 SiO 5 :Ce,Tb phosphor powders were successfully coated with colloidal silica. • Post-annealing treatments improved the quantum efficiency of silica-coated Y 2 SiO 5 :Ce,Tb phosphors. • Absolute fluorescence quantum efficiency measurements showed an increase of 12%

  10. Breathing mode distortion and magnetic order in rare-earth nickelates RNiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Alexander; Ederer, Claude [Materials Theory, ETH Zuerich (Switzerland)

    2016-07-01

    Rare-earth nickelate perovskites display a rich and not yet fully understood phase diagram, where all RNiO{sub 3} compounds with R from Sm to Lu undergo a non-magnetic metal-insulator transition (MIT). This transition is connected to a lattice distortion, which can be described as breathing mode of the oxygen octahedra surrounding the Ni cations. Between 100-250 K the RNiO{sub 3} compounds undergo a magnetic transition to an antiferromagnetic (AFM) state, with a wave-vector k= [(1)/(4) (1)/(4) (1)/(4)] relative to the underlying simple cubic perovskite structure. Here, we use density functional theory and its extensions (DFT+U, DFT+DMFT) together with distortion mode analysis to explore the interplay between lattice distortions, magnetic order, and the strength of the local Coulomb interaction U in rare earth nickelates. Our results show a strong dependency of the breathing mode amplitude on the magnetic order, with a much larger breathing mode obtained for the AFM state compared to the ferromagnetic case. Furthermore, we demonstrate that DFT+U is able to capture the correct trends of the lattice distortions across the nickelate series.

  11. Effect of Rare Earth Metals on the Microstructure of Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Saleh A. Alkahtani

    2016-01-01

    Full Text Available The present study was performed on A356 alloy [Al-7 wt %Si 0.0.35 wt %Mg]. To that La and Ce were added individually or combined up to 1.5 wt % each. The results show that these rare earth elements affect only the alloy melting temperature with no marked change in the temperature of Al-Si eutectic precipitation. Additionally, rare earth metals have no modification effect up to 1.5 wt %. In addition, La and Ce tend to react with Sr leading to modification degradation. In order to achieve noticeable modification of eutectic Si particles, the concentration of rare earth metals should exceed 1.5 wt %, which simultaneously results in the precipitation of a fairly large volume fraction of insoluble intermetallics. The precipitation of these complex intermetallics is expected to have a negative effect on the alloy performance.

  12. Determination of free boron in rare earth hexaborides

    Energy Technology Data Exchange (ETDEWEB)

    Kugai, L N; Nazarchuk, T N [AN Ukrainskoj SSR, Kiev. Inst. Problem Materialovedeniya

    1975-06-01

    The method of N.I. Timofeeva et al. (1968) for the determination of free B in rare earth hexaborides was modified by replacing the 1:10 HNO/sub 3/ by nonoxidizing 2:1 or 3:1 H/sub 2/SO/sub 4/ to dissolve the hexaborides and leave free B in the residue. A sample of 0.5-1.0 g rare earth hexaboride was heated in 50-80 ml 3:1 H/sub 2/SO/sub 4/ at 210/sup 0/ for 2 hr, and the cool solution was diluted. The residue containing free B and B/sub 4/C was filtered, rinsed, and heated in dilute HNO/sub 3/ at mild temperature for 15-20 min. The filtrate was separated from insoluble B/sub 4/C, neutralized with 10% NaOH, and H/sub 3/BO/sub 3/ was titrated with NaOH in the presence of inverted sugar vs. phenophthalein. The free B content was underestimated by less than or equal to 4.3% in nearly all cases. The proposed technique is applicalbe to hexaborides of La, Y, Ce, Pr, Nd, Sm, Gd, and Eu.

  13. Separation of Rare Earths from Uranium and Thorium

    International Nuclear Information System (INIS)

    Krebs, Damien

    2014-01-01

    Greenland Minerals and Energy - Key Highlights – A unique world class mining project: 1. World-class, large scale development project: • Economically robust, proven technology, large-scale, long life production of rare earths concentrate and uranium; • Large JORC resource base to produce ~7kt HREO, 37kt LREO & 3Mlbs U_3O_8 per annum over 30 year mine life; • Ideally located near international airport, existing towns and potential hydro-electric power source. 2. Very attractive commodity portfolio: • Heavy rare earths and uranium are both recognised as strategically important commodities for the future; • Rare earths market characterised by limited capacity and increasing demand (particularly Dy, Nd, Tb, Eu and Y). 3. Strong management and technical team: • Experienced management team with proven track record; • Well-respected and knowledgeable technical/project team in place with exceptional local expertise. 4. Highly advantageous ore-type, makes for simple cost-effective processing, highly scalable production: • High upgrade through beneficiation brings optionality to Kvanefjeld project; • Leaching can be done in Greenland, or owing to the high-grade concentrate, can be shipped to other locations; • Allows to single concentrator in Greenland, multiple refineries/partners globally. 5. Globally significant, long life, low cost, multi-commodity asset: • Company to become one of the largest producers of rare earths globally and a significant U_3O_8 mine; • Potential to supply >20% of global critical (including heavy) rare earth element demand; • Company has low cost of production due to multiple by-product opportunities. 6. Low political risk: • Stable, low-risk operating environment with government looking to develop new industries and employment; • GME fully permitted to evaluate the project, exploration licence now includes radioactive elements; • Management and board have a solid working relationship with the government and are

  14. Concentration Dependence of Luminescent Properties for Sr2TiO4:Eu3+ Red Phosphor and Its Charge Compensation

    Directory of Open Access Journals (Sweden)

    Zhou Lu

    2012-01-01

    Full Text Available Sr2TiO4:Eu3+ phosphors using M+ (M = Li+, Na+, and K+ as charge compensators were prepared by the solid-state reaction. The powders were investigated by powder X-ray diffraction (XRD and photoluminescence spectra (PL to study the phase composition, structure, and luminescent properties. The results showed that Li+ ion was the best charge compensator. The phase was Sr2TiO4 when the doping concentration was small (x≤10.0%. When x reached 15.0%, the phase turned into Sr3Ti3O7 because of the structure damage. The phosphor could be effectively excited by ultraviolet (365, 395 nm and blue light (465 nm, and thenitemitted intense red light that peaked at around 620 nm (5D0→7F2. In addition, the emission of 700 nm (5D0→7F4 enhanced the red light color purity. The CIE chromaticity coordinates of samples with the higher red emission were between (0.650, 0.344 and (0.635, 0.352. Doped layered titanate Sr2TiO4:Eu3+ is a promising candidate red phosphor for white LEDs which can be suited for both near-UV LED chip and blue LED chip.

  15. Safety aspects in rare earths recovery

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2014-01-01

    Recovery of rare earths involves mining of beach sands, mineral separation to obtain monazite and its chemical processing to obtain rare earth composites. The composites are then subjected to further chemical treatment to obtain individual rare earths. Although the separated out rare earths are not radioactive, the process for recovery of rare earths involve both radiological as well as conventional hazards. This paper highlights the safety aspects in the mining, mineral separation and chemical processing of monazite to obtain rare earths

  16. Yb{sup 3+}:Sr{sub 5}(VO{sub 4}){sub 3}F: Crystal growth, spectroscopic characterization and laser development; Yb{sup 3+}:Sr{sub 5}(VO{sub 4}){sub 3}F: Crescimento, caracterizacao espectroscopica e desenvolvimento do laser

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, Andrea Nora Pino

    1999-07-01

    Crystal growth, spectroscopic characterization and laser development of Yb{sup 3+}:SVAP [Sr{sub 5}(VO{sub 4}){sub 3}F] was performed to demonstrate for the first time, operation of tunable laser emission centered at 1120 nm. Initially, SVAP crystals were grown with high dopant concentrations, up to 6.0 mol % of Yb{sub 2} O{sub 3} in the melt, in order to investigate the material for potential laser operation at a new laser wavelength. Additional research was performed to alleviate highly doped SVAP crystals of defects previously observed. Basic spectroscopic characterization including absorption and luminescent properties were measured to better understand the behavior of Yb{sup 3+} ions in SVAP. Based upon these studies, discussion of the 1120 nm laser transition is presented as it arises from a ground state vibrational level. Investigations of the charge compensation process and the optical parameters as a function of dopant concentration are also presented. The laser development of Yb{sup 3+}:SVAP included continuous and pulsed modes of operation of the 1044 nm and 1120 nm transitions. Initial laser action of the 1044 nm transition was achieved using a Yi: Saphire laser pump source in order to compare with previously results. Further development of a diode-pumped Yb{sup 3+}:SVAP laser system demonstrated continuously tunable laser operation from 1103 nm for the first time. The laser investigations also proved that this high gain media does provide continuous wave laser action at 1044 nm and 1120 simultaneously without significant gain depletion. (author)

  17. Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials

    NARCIS (Netherlands)

    Li, Y.Q.; With, de G.; Hintzen, H.T.J.M.

    2006-01-01

    The luminescence properties of Ce3+, Li+ or Na+ co-doped alkaline-earth silicon nitride M2Si5N8 (M=Ca, Sr, Ba) are reported. The solubility of Ce3+ and optical properties of M2-2xCexLixSi5N8 (x0.1) materials have been investigated as function of the cerium concentration by X-ray powder diffraction

  18. Rare earth metal oxides as BH4-tolerance cathode electrocatalysts for direct borohydride fuel cells

    Institute of Scientific and Technical Information of China (English)

    NI Xuemin; WANG Yadong; GUO Feng; YAO Pei; PAN Mu

    2012-01-01

    Rare earth metal oxides (REMO) as cathode electrocatalysts in direct borohydride fuel cell (DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction and strong tolerance to the attack of BH4- in alkaline electrolytes.The simple membraneless DBFCs using REMO as cathode electrocatalyst and using hydrogen storage alloy as anodic electrocatalyst exhibited an open circuit of about 1 V and peak power of above 60 mW/cm2.The DBFC using Sm2O3 as cathode electrocatalyst showed a relatively better performance.The maximal power density of 76.2 mW/cm2 was obtained at the cell voltage of 0.52 V.

  19. Determination of contaminants in rare earth materials by prompt gamma activation analysis (PGAA)

    International Nuclear Information System (INIS)

    Perry, D.L.; English, G.A.; Firestone, R.B.; Molnar, G.L.; Revay, Zs.

    2005-01-01

    Prompt gamma activation analysis (PGAA) has been used to detect and quantify impurities in the analyses of rare earth (RE) oxides. The analytical results are discussed with respect to the importance of having a thorough identification and contaminant elements in these compounds regarding the function of the materials in their various applications. Also, the importance of using PGAA to analyze materials in support of other physico-chemical studies of the materials is discussed, including the study of extremely low concentrations of ions - such as the rare earth ions themselves - in bulk material matrices. (author)

  20. Thermoelectric transport in rare-earth compounds

    International Nuclear Information System (INIS)

    Koehler, Ulrike

    2007-01-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce 3 Rh 4 Sn 13 are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu 1-x Yb x Rh 2 Si 2 and Ce x La 1-x Ni 2 Ge 2 by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  1. Luminescence of rare-earth ions in Mg[sub 2]SiO[sub 4

    Energy Technology Data Exchange (ETDEWEB)

    Van der Voort, D; Maat-Gersdorf, I de; Blasse, G [Rijksuniversiteit Utrecht (Netherlands)

    1992-01-01

    The luminescence of the rare-earth ions Eu[sup 3+], Tb[sup 3+] and Ce[sup 3+] in Mg[sub 2]SiO[sub 4] is reported. The Tb[sup 3+] ion shows a change in emission colour from blue to green depending on the charge compensator. This is ascribed to a difference in coupling of the Tb[sup 3+] ion to the vibrational lattice modes. The Eu[sup 3+] ion has an average quantum efficiency under charge-transfer excitation of 60% at 4.2 and 20% at 300 K. The Ce[sup 3+] emission is situated in the blue and shows a Stokes shift of 3 500 cm[sup -1]. The relaxation of these ions in the excited state is discussed in terms of their positive effective charge and the stiffness of their surroundings.

  2. Structure, electronic properties, luminescence and chromaticity investigations of rare earth doped KMgBO{sub 3} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianghui; Cheng, Qijin [School of Energy Research, Xiamen University, Xiamen 361005 (China); Wu, Shunqing [Department of Physics, Xiamen University, Xiamen, 361005 (China); Zhuang, Yixi [College of Materials, Xiamen University, Xiamen 361005 (China); Guo, Ziquan; Lu, Yijun [Department of Electronic Science, Fujian Engineering Research Center for Solid-state Lighting, Xiamen University, Xiamen 361005 (China); Chen, Chao, E-mail: cchen@xmu.edu.cn [School of Energy Research, Xiamen University, Xiamen 361005 (China); Department of Physics, Xiamen University, Xiamen, 361005 (China); Department of Electronic Science, Fujian Engineering Research Center for Solid-state Lighting, Xiamen University, Xiamen 361005 (China)

    2015-09-01

    In this work, the optimization of the geometry and the electronic properties of the host matrix KMgBO{sub 3} were investigated using density functional theory, and the comprehensive photoluminescence and chromaticity properties on five rare earth ion-doped (RE = Ce{sup 3+}, Tm{sup 3+}, Tb{sup 3+}, Eu{sup 3+}, Dy{sup 3+}) KMgBO{sub 3} phosphors were also studied. By introducing RE ions into the KMgBO{sub 3} host, excellent purple, blue, green, red and white emitting light could be obtained under the near-ultraviolet light excitation. The results suggest that rare earth doped KMgBO{sub 3} phosphors are potential luminescence materials for the application in the near-ultraviolet white light-emitting diodes. - Highlights: • The electronic properties of the host matrix KMgBO{sub 3} were investigated. • The PL properties on rare earth ions doped KMgBO{sub 3} phosphors were studied. • The chromaticity properties on rare earth ions doped KMgBO{sub 3} samples were studied. • Tm{sup 3+} and Eu{sup 3+} doped KMgBO{sub 3} samples show higher color purity than commercial phosphors.

  3. Low-phonon-frequency chalcogenide crystalline hosts for rare earth lasers operating beyond three microns

    Science.gov (United States)

    Payne, Stephen A.; Page, Ralph H.; Schaffers, Kathleen I.; Nostrand, Michael C.; Krupke, William F.; Schunemann, Peter G.

    2000-01-01

    The invention comprises a RE-doped MA.sub.2 X.sub.4 crystalline gain medium, where M includes a divalent ion such as Mg, Ca, Sr, Ba, Pb, Eu, or Yb; A is selected from trivalent ions including Al, Ga, and In; X is one of the chalcogenide ions S, Se, and Te; and RE represents the trivalent rare earth ions. The MA.sub.2 X.sub.4 gain medium can be employed in a laser oscillator or a laser amplifier. Possible pump sources include diode lasers, as well as other laser pump sources. The laser wavelengths generated are greater than 3 microns, as becomes possible because of the low phonon frequency of this host medium. The invention may be used to seed optical devices such as optical parametric oscillators and other lasers.

  4. Hyperfine structure in 5s4d 3D-5snf transitions of 87Sr

    International Nuclear Information System (INIS)

    Bushaw, B.A.; Kluge, H.J.; Lantzsch, J.; Schwalbach, R.; Stenner, J.; Stevens, H.; Wendt, K.; Zimmer, K.

    1993-01-01

    The hyperfine spectra of the 5s4d 3 D 1 -5s20f, 5s4d 3 D 2 -5s23f, and 5s4d 3 D 3 -5s32f transitions of 87 Sr (I=9/2) have been measured by collinear fast beam laser spectroscopy. The structure in the upper configurations is highly perturbed by fine structure splitting that is of comparable size to the hyperfine interaction energy. These perturbations can be adequately treated with conventional matrix diagonalization methods, using the 5s-electron magnetic dipole interaction term a 5s and the unperturbed fine structure splittings as input parameters. Additionally, hyperfine constants for the lower 5s4d 3 D configurations, including the A- and B-factors and a separation of the individual s- and d-electron contributions to these factors, are derived. (orig.)

  5. Specific heat of rare earth cobaltates RCoO{sub 3} (R = La, Pr and Nd)

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Rasna, E-mail: rasnathakur@yahoo.com [Department of Physics, Barkatullah University, Bhopal 462026 (India); Srivastava, Archana [Department of Physics, Sri Sathya Sai College for Women, Bhopal 462024 (India); Thakur, Rajesh K.; Gaur, N.K. [Department of Physics, Barkatullah University, Bhopal 462026 (India)

    2012-03-05

    Highlights: Black-Right-Pointing-Pointer We have reported the temperature dependence (5 K {<=} T {<=} 1000 K) of the lattice contribution to the specific heat of rhombohedral LaCoO{sub 3} and orthocobaltates RCoO{sub 3} (R = Pr and Nd). Black-Right-Pointing-Pointer The strong electron phonon interactions are present in these compounds and lattice distortions can affect them substantially. Black-Right-Pointing-Pointer Thus Rigid Ion Model (RIM) is used for the first time to study the cohesive and thermal properties of the cobaltates RCoO{sub 3} with rare earth cation (R = La, Pr and Nd). Black-Right-Pointing-Pointer The values of specific heat calculated by us have shown remarkably good agreement with corresponding experimental data. Black-Right-Pointing-Pointer In addition, the results on the temperature dependence of cohesive energy ({phi}), molecular force constant (f), Reststrahlen frequency ({upsilon}), Debye temperature ({theta}{sub D}) and Gruneisen parameter ({gamma}) are also reported. - Abstract: We have reported the temperature dependence (5 K {<=} T {<=} 1000 K) of the lattice contribution to the specific heat of rhombohedral LaCoO{sub 3} and orthocobaltates RCoO{sub 3} (R = Pr and Nd). The strong electron phonon interactions are present in these compounds and lattice distortions can affect them substantially. Thus Rigid Ion Model (RIM) is used for the first time to study the cohesive and thermal properties of the cobaltates RCoO{sub 3} with rare earth cation (R = La, Pr and Nd). The values of specific heat calculated by us have shown remarkably good agreement with corresponding experimental data. In addition, the results on the temperature dependence of cohesive energy ({phi}), molecular force constant (f), Reststrahlen frequency ({upsilon}), Debye temperature ({theta}{sub D}) and Gruneisen parameter ({gamma}) are also reported.

  6. Electron states in thulium and other rare-earth metals

    International Nuclear Information System (INIS)

    Strange, P.; Fairbairn, W.M.; Lee, P.M.

    1983-01-01

    The LMTO method has been applied to calculate band structures for the heavier rare-earth metals. The calculations are relativistic. Thulium in particular has been considered, where a frozen core approximation is used, and the outer electrons are treated selfconsistently. Problems associated with the localisation and interactions of the 4f electrons are discussed. Teh comparisons between experimental data and calculated quantities are encouraging, but more data on high-purity single crystals would be helpful. (author)

  7. X-ray excited luminescence of polystyrene composites loaded with SrF{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Demkiv, T.M.; Halyatkin, O.O.; Vistovskyy, V.V. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine); Hevyk, V.B. [Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska St., 76019 Ivano-Frankivsk (Ukraine); Yakibchuk, P.M. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine); Gektin, A.V. [Institute for Scintillation Materials, NAS of Ukraine, 60 Lenina Ave, 61001 Kharkiv (Ukraine); Voloshinovskii, A.S. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine)

    2017-03-01

    The polystyrene film nanocomposites of 0.3 mm thickness with embedded SrF{sub 2} nanoparticles up to 40 wt% have been synthesized. The luminescent and kinetic properties of the polystyrene composites with embedded SrF{sub 2} nanoparticles upon the pulse X-ray excitation have been investigated. The luminescence intensity of the pure polystyrene scintillator film significantly increases when it is loaded with the inorganic SrF{sub 2} nanoparticles. The film nanocomposites show fast (∼2.8 ns) and slow (∼700 ns) luminescence decay components typical for a luminescence of polystyrene activators (p-Terphenyl and POPOP) and SrF{sub 2} nanoparticles, respectively. It is revealed that the fast decay luminescence component of the polystyrene composites is caused by the excitation of polystyrene by the photoelectrons escaped from the nanoparticles due to photoeffect, and the slow component is caused by reabsorption of the self-trapped exciton luminescence of SrF{sub 2} nanoparticles by polystyrene.

  8. Preparation of rare earth and other metal alloys containing aluminum and silicon

    International Nuclear Information System (INIS)

    Mitchell, A.; Goldsmith, J.R.; Gray, M.

    1981-01-01

    A method is provided for making alloys of aluminum and silicon with a third metal which may be a rare earth or a member of groups 4b, 5b, or 6b of the periodic table. The flux system CaF 2 -CaO-Al 2 O 3 is used as a solvent to provide a reactive medium for the alloy-forming reactions. Aluminum is supplied as a reducing agent, and silicon is added as a sink for the alloying metal. The resulting alloy may be used in steels. (L.L.)

  9. Magnetoresistance effect in perovskite-like RCu3Mn4O12 (R - rare earth ion, Th)

    International Nuclear Information System (INIS)

    Lobanovskij, L.S.; Troyanchuk, I.O.; Trukhanov, S.V.; Pastushonok, S.N.; Pavlov, V.I.

    2003-01-01

    The study on the electric properties and magnetoresistance effect in the RCu 3 Mn 4 O 12 (where R is the rare-earth ion, Th) is carried out. It is established that all the compositions of the given series demonstrate the magnetoresistive effect, the value whereof at the liquid nitrogen temperature reaches 20% in the field 0.9 T. The increase in the magnetoresistance with the temperature decrease and high sensitivity to the weak magnetic fields at low temperatures indicate that this effect is intergranular. The peak of the magnetoresistance is identified near the Curie temperature (T C ). It is supposed that the degree of the magnetoresistance near the temperature of the magnetic ordering depends on the conditions of the samples synthesis and the effect of the intergranular interlayer on the transport properties of these compositions [ru

  10. Computational search for rare-earth free hard-magnetic materials

    Science.gov (United States)

    Flores Livas, José A.; Sharma, Sangeeta; Dewhurst, John Kay; Gross, Eberhard; MagMat Team

    2015-03-01

    It is difficult to over state the importance of hard magnets for human life in modern times; they enter every walk of our life from medical equipments (NMR) to transport (trains, planes, cars, etc) to electronic appliances (for house hold use to computers). All the known hard magnets in use today contain rare-earth elements, extraction of which is expensive and environmentally harmful. Rare-earths are also instrumental in tipping the balance of world economy as most of them are mined in limited specific parts of the world. Hence it would be ideal to have similar characteristics as a hard magnet but without or at least with reduced amount of rare-earths. This is the main goal of our work: search for rare-earth-free magnets. To do so we employ a combination of density functional theory and crystal prediction methods. The quantities which define a hard magnet are magnetic anisotropy energy (MAE) and saturation magnetization (Ms), which are the quantities we maximize in search for an ideal magnet. In my talk I will present details of the computation search algorithm together with some potential newly discovered rare-earth free hard magnet. J.A.F.L. acknowledge financial support from EU's 7th Framework Marie-Curie scholarship program within the ``ExMaMa'' Project (329386).

  11. Enhance luminescence by introducing alkali metal ions (R+ = Li+, Na+ and K+) in SrAl2O4:Eu3+ phosphor by solid-state reaction method

    Science.gov (United States)

    Prasad Sahu, Ishwar

    2016-05-01

    In the present article, the role of charge compensator ions (R+ = Li+, Na+ and K+) in europium-doped strontium aluminate (SrAl2O4:Eu3+) phosphors was synthesized by the high-temperature, solid-state reaction method. The crystal structures of sintered phosphors were in a monoclinic phase with space group P21. The trap parameters which are mainly activation energy (E), frequency factor (s) and order of the kinetics (b) were evaluated by using the peak shape method. The calculated trap depths are in the range from 0.76 to 0.84 eV. Photoluminescence measurements showed that the phosphor exhibited emission peak with good intensity at 595 nm, corresponding to 5D0-7F1 (514 nm) orange emission and weak 5D0-7F2 (614 nm) red emission. The excitation spectra monitored at 595 nm show a broad band from 220 to 320 nm ascribed to O-Eu charge-transfer state transition and the other peaks in the range of 350-500 nm originated from f-f transitions of Eu3+ ions. The strongest band at 394 nm can be assigned to 7F0-5L6 transition of Eu3+ ions due to the typical f-f transitions within Eu3+ of 4f6 configuration. The latter lies in near ultraviolet (350-500 nm) emission of UV LED. CIE color chromaticity diagram and thermoluminescence spectra confirm that the synthesized phosphors would emit an orange-red color. Incorporating R+ = Li+, Na+ and K+ as the compensator charge, the emission intensity of SrAl2O4:Eu3+ phosphor can be obviously enhanced and the emission intensity of SrAl2O4:Eu3+ doping Li+ is higher than that of Na+ or K+ ions.

  12. Effects of Tb{sup 3+} concentration on the La{sub 2}Sr{sub 3}(BO{sub 3}){sub 4}: X% Tb{sup 3+} polycrystalline nanophosphor

    Energy Technology Data Exchange (ETDEWEB)

    Mlotswa, D.V. [Physics Department, University of the Free State, Private Bag x13, Phuthaditjhaba 9866 (South Africa); Madihlaba, R.M. [Chemistry Department, University of the Western Cape, Private Bag x17, Bellville 7535 (South Africa); Koao, L.F. [Physics Department, University of the Free State, Private Bag x13, Phuthaditjhaba 9866 (South Africa); Onani, M.O., E-mail: monani@uwc.ac.za [Chemistry Department, University of the Western Cape, Private Bag x17, Bellville 7535 (South Africa); Dejene, F.B. [Physics Department, University of the Free State, Private Bag x13, Phuthaditjhaba 9866 (South Africa)

    2016-01-01

    A new green phosphor, La{sub 2}Sr{sub 3}(BO{sub 3}){sub 4}): x% Tb{sup 3+} was fabricated by solution-combustion method using urea as a fuel and ammonium nitrate as an oxidizer. The phosphor was characterised using Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), Energy dispersive spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL. The results exhibit that La{sub 2}Sr{sub 3}(BO{sub 3}){sub 4}): x% Tb{sup 3+} phosphor has the strongest excitation at 209 nm with a full-width at half-maximum (FWHM) of 20 nm, and can emit bright green light at 545 nm under 209 nm excitation. The optimum concentration for Tb{sup 3+} in La{sub 2}Sr{sub 3}(BO{sub 3}){sub 4}): x% Tb{sup 3+} is 0.033 mol%. The prominent green luminescence was due to the {sup 5}D{sub 4}–{sup 7}F{sub 5} transition of Tb{sup 3+} ion. Herein, the green phosphors are promising good candidates employed in tri-color lamps.

  13. F-spin study of rare-earth nuclei using F-spin multiplets and angular momentum projected intrinsic states

    International Nuclear Information System (INIS)

    Diallo, A.F.

    1993-01-01

    The proton-neutron Interacting-Boson Model contains both symmetric and mixed-symmetry proton-neutron boson configurations. These states of different proton-neutron symmetry can be classified in terms of an SU(2) symmetry, called F-spin. This dissertation deals with some new applications of F-spin. Even-even nuclei drawn from the proton and neutron shells 50 + scissor mode, and the gyromagnetic ratios of the ground-band members, for which formulas are derived. A no-free-parameter calculation is performed for the summed M1 strength and the centroid energy of ( 146-158 )Sm isotopes. The g factors of deformed and transitional nuclei in the rare-earth mass region are also computed. The data in all cases are found to be well reproduced, in general. A weak L dependence is predicted for the g factors, and there appears to be no need to include two-body terms in the T(M1) operator for determining the M1 strength

  14. Structural and magentic characterization of rare earth and transition metal films grown on epitaxial buffer films on semiconductor substrates

    International Nuclear Information System (INIS)

    Farrow, R.F.C.; Parkin, S.S.P.; Speriosu, V.S.; Bezinge, A.; Segmuller, A.P.

    1989-01-01

    Structural and magnetic data are presented and discussed for epitaxial films of rare earth metals (Dy, Ho, Er) on LaF 3 films on the GaAs(TTT) surface and Fe on Ag films on the GaAs(001) surface. Both systems exhibit unusual structural characteristics which influence the magnetic properties of the metal films. In the case of rare earth epitaxy on LaF 3 the authors present evidence for epitaxy across an incommensurate or discommensurate interface. Coherency strain is not transmitted into the metal which behaves much like bulk crystals of the rare earths. In the case of Fe films, tilted epitaxy and long-range coherency strain are confirmed by X- ray diffractometry. Methods of controlling some of these structural effects by modifying the epitaxial structures are presented

  15. μSR-studies of magnetic properties of metallic rare earth compounds

    International Nuclear Information System (INIS)

    Asch, L.; Kalvius, G.M.; Chappert, J.; Yaouanc, A.; Hartmann, O.; Karlsson, E.; Wappling, R.

    1984-01-01

    Positive muons can probe the magnitude and the time dependence of the magnetic field at interstitial sites in condensed matter. Thus the relatively new techniques of muons spin rotation and muon spin relaxation have become unique tools for studying magnetism. After a brief introduction into the experimental method we then discuss measurements on the elemental rare earth metals and on intermetallic compounds, in particular on the cubic Laves phases REAl 2

  16. Separation and gravimetric determination of rare earths with N-(3-nitrobenzoyl), N-(3-tolyl) hydroxylamine

    International Nuclear Information System (INIS)

    Agrawal, Y.K.; Kapoor, H.L.

    1977-01-01

    The N-(3-nitrobenzoyl), N-(3-tolyl) hydroxylamine is used as a reagent for the separation and gravimetric determination of Ce 3+ , La 3+ , Pr 3+ , Nd 3+ , Sm 3+ and Gd 3+ . The optimum conditions of precipitation of these rare earths indicate that, by control of pH and judicious use of masking agents, these ions can be separated from, and determined gravimetrically among several other ions. Further, the stochiometric nature of the N-(3-nitrobenzoyl), N-(3-tolyl) hydroxylamine acid is advantageous for the direct determination by weighting of (C 14 H 11 N 2 O 4 ) 3 M complex without ignition to obtain oxides. These complexes are characterized by infrared spectra

  17. Phosphorescent and thermoluminescent properties of SrAl2O4:Eu2+, Dy3+ phosphors prepared by solid state reaction method

    International Nuclear Information System (INIS)

    Mothudi, B.M.; Ntwaeaborwa, O.M.; Kumar, A.; Sohn, K.; Swart, H.C.

    2012-01-01

    Long persistent SrAl 2 O 4 :Eu 2+ phosphors co-doped with Dy 3+ were prepared by the solid state reaction method. The main diffraction peaks of the monoclinic structure of SrAl 2 O 4 were observed in all the samples. The broad band emission spectra at 497 nm for SrAl 2 O 4 :Eu 2+ , Dy 3+ were observed and the emission is attributed to the 4f 6 5d 1 to 4f 7 transition of Eu 2+ ions. The samples annealed at 1100–1200 °C showed similar broad TL glow curves centered at 120 °C. The similar TL glow curves suggest that the traps responsible for them are similar. The long afterglow displayed by the phosphors annealed at different temperatures, may be attributed to the Dy 3+ ions acting as the hole trap levels, which play an important role in prolonging the duration of luminescence.

  18. Adducts of rare earth tris-acetylacetonates with dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Dzyubenko, N.G.; Kalenichenko, Yu.V.; Martynenko, L.I.

    1988-01-01

    Adducts of rare earth and yttrium (r.e.e., M) acetylacetonates with dimethyl sulfoxide (DMSO), MA 3 xnDMSO are synthesized. The acetylacetonates of light r.e.e. (M=La-Tb) are shown by different physico-chemical methods to form diadducts of the MA 3 x2DMSOxH 2 O composition, where A - -acetylacetonate-ion, and the acetyl-acetonates of heavy r.e.e. (M=Dy-Lu, Y)-monoadducts MA 3 xDMSO. The estimation of adduct thermal stability is carried out using the values of seeming activation energy of their thermal degradation. Monoadducts are shown to give volatile forms of rare earth acetylacetonates during heating in vacuum, and diadducts do not form volatile forms of acetylacetonates

  19. Optical properties of Sr3B2O6:Dy3+/PMMA polymer nanocomposites

    Science.gov (United States)

    Khursheed, Sumara; Kumar, Vinay; Singh, Vivek K.; Sharma, Jitendra; Swart, H. C.

    2018-04-01

    The paper presents a facile way to synthesize luminescent polymer nanocomposite (PNC) films consisting of nanophosphors (NPs) of rare earth ions doped alkaline earth borates (Sr3B2O6:Dy3+) dispersed in a polymer (PMMA) matrix via a solution casting method and the results of their detailed structural and optical properties measurements. The PNC films were characterized using X-ray diffraction (XRD), Photoluminescence (PL), and differential scanning calorimetry (DSC). The crystallinity of the dispersed NPs did not suffer on account of being dispersed in the PMMA. The Rhombohedral structure and the formation of a single phase of Sr3B2O6:Dy3+ were confirmed by the XRD data of both the NP powders and the PNC films with an average particle size of 43 nm. Also, the observed PL emission and excitation spectra of the PNC films amply suggested that embedding of the nanophosphors in the PMMA matrix preserves their typical luminescence emission. The chromaticity coordinates (x = 0.37, y = 0.39) of the PNC films also validated the yellowish white emission of the nanophosphor. DSC scans on the PMMA only and the Sr3B2O6:Dy3+/PMMA films suggested an increase in the thermal stability of the PNC films as compared to pure PMMA although no significant change in the glass transition temperature was observed.

  20. Electronic structure and properties of rare earth and actinide intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.R.

    1984-01-01

    There are 188 contributions, experimental and theoretical, a few on rare earth and actinide elements but mostly on rare earth and actinide intermetallic compounds and alloys. The properties dealt with include 1) crystal structure, 2) magnetic properties and magnetic structure, 3) magnetic phase transformations and valence fluctuations, 4) electrical properties and superconductivity and their temperature, pressure and magnetic field dependence. A few papers deal with crystal growth and novel measuring methods. (G.Q.)

  1. Rare-earth nickelates RNiO3: thin films and heterostructures

    Science.gov (United States)

    Catalano, S.; Gibert, M.; Fowlie, J.; Íñiguez, J.; Triscone, J.-M.; Kreisel, J.

    2018-04-01

    This review stands in the larger framework of functional materials by focussing on heterostructures of rare-earth nickelates, described by the chemical formula RNiO3 where R is a trivalent rare-earth R  =  La, Pr, Nd, Sm, …, Lu. Nickelates are characterized by a rich phase diagram of structural and physical properties and serve as a benchmark for the physics of phase transitions in correlated oxides where electron–lattice coupling plays a key role. Much of the recent interest in nickelates concerns heterostructures, that is single layers of thin film, multilayers or superlattices, with the general objective of modulating their physical properties through strain control, confinement or interface effects. We will discuss the extensive studies on nickelate heterostructures as well as outline different approaches to tuning and controlling their physical properties and, finally, review application concepts for future devices.

  2. Rare earths production and marketing opportunities

    International Nuclear Information System (INIS)

    Falconnet, P.G.

    1988-01-01

    The rare earths (RE) market is relatively small. The total production during 1968 was only 10000 tons (REO) which rose to 27000 tons (REO) during 1985. The three major areas of application, which are volume market for ceric rare earths are catalysts, glass ceramics and metallurgy. Among the other uses of rare earths, the permanent magnets, lamp phosphors and fine ceramics have registered significant growth in RE consumption. Monazite and bastnasite are the main natural source for rare earths and processing of these for one of the rare earths in high demand leads to over production of some others not in demand, thus creating a balance problem. The growth in RE market has always been influenced by the technology shifts and product substitution. For example, the RE consumption during 1974/76 for desulfurization of steel had substantially decreased due to the usage of calcium. Similarly, 1985 had witnessed a drastic cut in the use of REs in fluid cracking due to the introduction of stabilized zeolites which contain less REO. Thus, the overall compound growth rate of demand was only 3.9 % per year during the period 1970-1985. At present, 37 % of the rare earths production goes to the glass/ceramics industry, 33 % for catalyst and 25 % to metallurgy. The price of REs constantly shows a downward trend. This trend coupled with the rapid changes taking place in the various technological fields, demands greater flexibility and high marketing skills from the RE producers. The key factor for future expansion of RE market will be the development of 'high volume' application of ceric rare earths. (author) 2 figs., 8 tabs

  3. Neutron activation analysis in geological samples containing rare earths, uranium and thorium

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.; Figueiredo, A.M.G.; Berretta, J.R.; Soares, J.C.A.C.R.; Fratin, L.; Goncales, O.L.; Botelho, S.

    1990-01-01

    The neutron activation analysis method was used for determination of rare earths, uranium, thorium and other tracks in geological samples, under the geological standard JB-1 (Geological Survey of Japan) and S-8 and S-13 (IAEA). (L.C.J.A.)

  4. Spectroscopic and visible luminescence properties of rare earth ions in lead fluoroborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Anjaiah, G. [Department of Physics, Osmania University, Hyderabad 500007 (India); Nayab Rasool, SK. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Kistaiah, P., E-mail: pkistaiah@yahoo.com [Department of Physics, Osmania University, Hyderabad 500007 (India)

    2015-03-15

    The lanthanide doped lead lithium calcium zinc fluoroborate glasses (LLCZFB:Ln) of composition 20PbF{sub 2}+10Li{sub 2}O+5Cao+5ZnO+59B{sub 2}O{sub 3}+1Ln{sub 2}O{sub 3} (where Ln=Sm, Eu and Dy in mol%) were prepared by conventional melt quench technique. The amorphous nature of these glasses was confirmed by X-ray diffraction studies. The glass transition temperatures (T{sub g}) were studied by DSC analysis. The glass structure and spectroscopic properties were investigated using optical absorption, vibrational and fluorescence spectra. The FT-IR spectra and Raman spectra reveal the presence of BO{sub 3}, BO{sub 4} and non-bridging oxygen's. The Judd–Ofelt intensity parameters Ω{sub λ} (λ=2, 4, 6) were determined from the spectral intensities of absorption bands. These parameters were used to calculate the radiative parameters such as radiative transition probability (A{sub R}), radiative life time (τ{sub R}) and branching ratio (β{sub r}) for various excited luminescent states of rare earth ions. The visible emission spectra for different rare earth ions were recorded by exciting the samples at different wavelengths and the decay rates for the different rare earth ions were measured. Using the emission spectra, full width half maxima (FWFM), stimulated emission cross section (σ{sup E}{sub p}) were evaluated. The nature of decay profiles of {sup 4}F{sub 9/2}, {sup 4}G{sub 5/2} and {sup 5}D{sub 0} states of Dy, Sm and Eu ions respectively are analyzed. Comparison of luminescence features of these glasses and also with those reported for different glass hosts indicates that the LLCZFB:Dy glass has strong luminescence in the visible region. - Highlights: • LLCZFB:Ln glasses are prepared with Ln: Sm, Eu and Dy. • Glasses are characterized by XRD, FTIR, Raman, absorption and emission spectra. • J–O theory is used to calculate different radiative properties. • Green, yellow and red emissions are observed. • Glasses are useful for the development

  5. Characterisation and behaviour under irradiation of rare-earth doped powellite phases - Application to the long term behaviour of nuclear waste matrices

    International Nuclear Information System (INIS)

    Mendoza, C.

    2010-09-01

    This work deals with the behaviour under irradiation of a glass-ceramic made after heat treatment of a molybdenum rich R7/T7 type glass. Rare earth elements (Eu 3+ and Nd 3+ ) are used as surrogates of minor actinides and fission products as well as structural luminescent probes. We will focus on the behaviour of the crystalline phase which is a powellite type calcium molybdate that incorporated other elements including rare earth elements. In order to determine the crystalline-chemical properties of the powellite structure, Raman spectroscopy and photoluminescence analyses are led on natural powellite samples and synthetic ceramics with compositions from pure CaMoO 4 to Ca 0.76 Sr 0.1 Na 0.07 Eu 0.01 La 0.02 Nd 0.02 Pr 0.02 MoO 4 , a model composition of the crystalline phase of the glass-ceramic. The analyses of synthetic samples irradiated with He, Ar and Pb ions compared to the behaviour of a natural powellite sample that contains uranium indicate that powellite resist strongly to irradiation and never reach the amorphous state. (author)

  6. Rare earth materials research in European Community R and D programmes

    International Nuclear Information System (INIS)

    Gavigan, J.P.

    1992-01-01

    The level of involvement of EC research programmes in rare earth materials research is quite high. A total of 65 projects have been identified representing an involvement of 283 partners from all over Europe. This corresponds to a budget a 63.3 MECU (76MDollars) of which the EC contributes 40.7 MECU (49MDollars). In this paper, the various research activities will be discussed under the main themes of rare earth permanent magnets, high Tc superconductors, optical and other materials, with specific reference to the three main programmes involved, BRITE/EURAM, SCIENCE and ESPRIT. Two other programmes currently involved in rare earth research are RAW MATERIALS and JOULE. (orig.)

  7. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals

    Science.gov (United States)

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-11-01

    The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.

  8. Processes for the production of rare earths from monazite (Paper No. 36)

    International Nuclear Information System (INIS)

    Murthy, T.K.S.

    1979-01-01

    A few typical cases are briefly described to illustrate different methods available for rare earth concentration and separation from mixed rare earths chloride obtained for monazite. In the case of cerium, rare earths chloride mixture is treated with sodium sulphate to precipitate rare earths as double sulphates from which hydroxide cake is prepared. The cake is dried to oxidise cerium. Trivalent rare earths are selectively leached and the product is treated with HNO 3 . The resulting ceric nitrate solution is purified by liquid-liquid extraction using TBP. The scrubbed extract is reduced with H 2 O 2 and cerous nitrate is recovered by evaporation. Lanthanum is first concentrated by selective precipitation of hydroxides from rare earths chloride using air-ammonia mixture. The hydroxyde cake is dissolved in HNO 3 and NH 4 NO 3 to get the double nitrate which is subjected to counter current crystallisation for purification. Europium is present at a concentration of 0.01% in the rare earths chloride. It is concentrated in several steps by liquid-liquid extraction using di-2-ethyl hexyl phosphoric acid. The product is purified by selective reduction and europium is obtained as europium sulphate. In the same solvent extraction process samarium and gadolinium are also concentrated to about 25%. They are further upgraded to above 90% purity by repetion of liquid-liquid extraction technique. Cerium, lanthanum and europium obtained by the above processes analyse > 99% as oxides. (M.G.B.)

  9. Major enhancement of the thermoelectric performance in Pr/Nb-doped SrTiO3 under strain

    KAUST Repository

    Amin, B.

    2013-07-16

    The electronic structure and thermoelectric properties of strained (biaxially and uniaxially) Sr0.95Pr0.05TiO3 and SrTi0.95Nb0.05O3 are investigated in the temperature range from 300 K to 1200 K. Substitutions of Pr at the Sr site and Nb at the Ti site generate n-type doping and thus improve the thermoelectric performance as compared to pristine SrTiO3. Further enhancement is achieved by the application of strain, for example, of the Seebeck coefficient by 21% for Sr0.95Pr0.05TiO3 and 10% for SrTi0.95Nb0.05O3 at room temperature in the case of 5% biaxial strain. At 1200 K, we predict figures of merit of 0.58 and 0.55 for 2.5% biaxially strained Sr0.95Pr0.05TiO3 and SrTi0.95Nb0.05O3 , respectively, which are the highest values reported for rare earth doped SrTiO3.

  10. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, M. K. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  11. Investigation on structural properties of M-type strontium hexaferrite synthesized in presence of neem and aloe-vera plant leaves extract

    Science.gov (United States)

    Solanki, Neha; Jotania, Rajshree B.

    2017-05-01

    M-type strontium hexaferrite powder samples were synthesized using a green synthesis route with and without presence of Aloe vera and Neem leaves extract. The dry brownish precursors of strontium hexaferrite were recovered from a mixed solution of metal salts and leaves extract, heated at 100 °C. The obtained precursors were pre-heated at 500 °C for 4 hrs. followed by final heating at 950 °C for 4 hrs. in a muffle furnace to obtain SrFe12O19 hexaferrite powder. The obtained SrFe12O19 hexaferrite powder samples characterized at room temperature in order to check phase purity and structural properties. XRD analysis confirms that samples prepared without and with Aloe vera leaves extract (heated at 950 °C for 4 hrs.) show formation of α-Fe2O3 and M-phase; while the sample prepared in presence of Neem leaves extract (heated at 950 °C for 4 hrs.) show formation of mono phase of strontium hexaferrite. Lattice parameter (a) and cell volume (V) are found to increase in the samples prepared in presence of Aloe vera and Neem leaves extract.

  12. Potential tunable white-emitting phosphor LiSr4(BO3)3:Ce3+, Eu2+ for ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Wang Qian; Deng Degang; Hua Youjie; Huang Lihui; Wang Huanping; Zhao Shilong; Jia Guohua; Li Chenxia; Xu Shiqing

    2012-01-01

    A novel Ce 3+ /Eu 2+ co-activated LiSr 4 (BO 3 ) 3 phosphor has been synthesized by traditional solid-state reaction. The samples could display varied color emission from blue towards white and ultimately to yellow under the excitation of ultraviolet (UV) light with the appropriate adjustment of the relative proportion of Ce 3+ /Eu 2+ . The resonance-type energy transfer mechanism from Ce 3+ to Eu 2+ in LiSr 4 (BO 3 ) 3 :Ce 3+ , Eu 2+ phosphors is dominant by electric dipole–dipole interaction, and the critical distance is calculated to be about 29.14 Å by the spectra overlap method. White light was observed from LiSr 4 (BO 3 ) 3 :mCe 3+ , nEu 2+ phosphors with chromaticity coordinates (0.34, 0.30) upon 350 nm excitation. The LiSr 4 (BO 3 ) 3 :Ce 3+ , Eu 2+ phosphor has potential applications as an UV radiation-converting phosphor for white light-emitting diodes. - Highlights: ► White light was observed from the novel phosphor with chromaticity coordinate (0.34, 0.30). ► Resonant energy transfer between Ce 3+ and Eu 2+ occurs in the novel phosphor. ► This novel phosphor has potential applications as a UV-driven light-emitting phosphor.

  13. Synthesis and investigation of some physicochemical properties of rare earth nitrobarbiturates

    International Nuclear Information System (INIS)

    Biryulina, V.N.; Chupakhina, R.A.; Serebrennikov, V.V.

    1984-01-01

    Crystal depositions of L 3 MnH 2 O composition where L is anion of nitrobarbituric acid C 4 H 2 N 3 O 5 - ; M is rare earth ion excluding Ce 3+ and Pm 3+ ; n=12 are extracted under dissolution of freshly prepared hydroxides of rare earth elements (REE) in ethanol aqueous solution of nitrobarbituric acid. The method of IR spectroscopy has been applied to disclose relation of rare earth ion with groups of C=0 acid. The method of derivatography has been used to study thermolysis of REE nitrobarbiturates; dehydration proceeds in two stages with decrease of temperature of the beginning of dehydration by 20 deg C in the La 3+ → Lu 3+ series. The curve of dependence of REE nitrobarbiturate solubility in water at 25 deg C on serial number of REE passes through the minimum accounted for Sm 3+

  14. Identification and determination of natural radioactive impurities in rare earth chlorides

    International Nuclear Information System (INIS)

    Gu, M.J.; Cen, Y.H.; Tang, T.Y.; Chang, J.X.

    1988-01-01

    227 Ac, 228 Th, 226 Ra, 210 Po and 210 Pb can be present at rare earth chlorides. A radiochemical procedure is presented for the identification and determination of natural radioactive impurities in rare earth chlorides. The determination limits for these radionuclides were 1.5x10 -4 to 3x10 -1 Bq/g. The relative standard deviations for determining 10 -2 Bq/g radionuclides were usually less than +-7%. (author) 9 refs.; 3 figs.; 2 tabs

  15. Luminescence properties and energy transfer investigations of Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphors

    International Nuclear Information System (INIS)

    Yang, Zaifa; Xu, Denghui; Sun, Jiayue; Du, Jiangnan; Gao, Xuedong

    2016-01-01

    Highlights: • A phosphor Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ for UV-based white LEDs was firstly synthesized successfully. • The phase structure and photoluminescence properties of samples were studied in detail. • The energy transfer process from Ce"3"+ to Tb"3"+ ions was illustrated in detail. • Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor has potential applications as an UV-convertible phosphor for white light emitting diodes. - Abstract: A series of Ce"3"+ or Tb"3"+ doped and Ce"3"+/Tb"3"+ co-doped Sr_3Lu(PO_4)_3 phosphors were prepared via the conventional high temperature solid-state reaction. The phase structure, photoluminescence and energy transfer properties of samples were studied in detail. The optimal proportion of Ce"3"+ single doping is 4 mol% with maximal fluorescence intensity. The Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor shows both a blue emission (428 nm) from Ce"3"+ and a yellowish-green emission (545 nm) from Tb"3"+ with considerable intensity under ultraviolet (UV) excitation (268 nm). The energy transfer from Ce"3"+ to Tb"3"+ ions takes place in the Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor on the basis of the analysis of the luminescence spectra. The energy transfer mechanism from Ce"3"+ to Tb"3"+ ions was proved to be dipole–dipole interaction. The energy transfer behaviors in Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor is also investigated by the lifetime measurement. The results show that this phosphor has potential applications for UV white-light LEDs.

  16. Proceedings of the sixth international workshop on rare earth-cobalt permanent magnets and their applications, August 31 - September 2, 1982, and third international symposium on magnetic anisotropy and coercivity in rare earth-transition metal alloys, September 3, 1982

    International Nuclear Information System (INIS)

    Fidler, J.

    1982-01-01

    The first part (workshop) is concerned specifically with applications of rare earth-cobalt permanent magnets. The session headings are 1) electro-mechanical applications 2) electronic and miscellaneous applications 3) magneto-mechanical applications plus workshop on measurement methods 4) new materials and processes 5) industrial applications of REPM and future aspects. The second part (symposium) is concerned with physical properties of specific rare earth-transition metal alloys. (G.Q.)

  17. Distribution characteristics of rare earth elements in plants from a rare earth ore area

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; Wang, Y.Q.; Li, F.L.; Xiao, H.Q.; Chai, Z.F.

    2002-01-01

    The contents of eight rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in various plant species taken from a rare earth ore area were determined by instrumental neutron activation analysis. For a given plant, the REE patterns in root, leaf and host soil are different from each other. The REE distribution characteristics in roots of various species are very similar and resemble those in the surface water. The results of this study suggest that there is no significant fractionation between the REEs during their uptake by the plant roots from soil solution. However, the variation of the relative abundance of individual REE occurs in the process of transportation and deposition of REEs in plants. (author)

  18. Rare earth element recycling from waste nickel-metal hydride batteries.

    Science.gov (United States)

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Biogeochemical distribution of rare earths and other trace elements in plants and soils

    Energy Technology Data Exchange (ETDEWEB)

    Laul, J C; Weimer, W C; Rancitelli, L A

    1977-01-01

    The rare earth concentrations in vegetables (corn, potatoes, peas, and butternut squash) were found to be extremely low: 10/sup -8/ g/g to 10/sup -10/ g/g. The chondritic normalized vegetable REE patterns are fractionated, including a negative Eu anomaly, and behave as a smooth function of the REE ionic radii. These patterns may be governed by the geochemistry of accessory minerals in the host soils. The depletion factors for various elements by vegetables relative to bulk soils are approx. 10/sup -4/ for REE, Hf, Ta, Th, and U; approx. 10/sup -3/ for Al, As, Ba, Cr, Fe, Mn, Sc, Se, And Sr; approx. 10/sup -2/ for Co, Cs, Na, Ni, and Sb; approx. 10/sup -1/ for Rb; and approx. 1 for K, Zn, and Br.

  20. 4f and 5d magnetism in samarium

    International Nuclear Information System (INIS)

    Stunault, A.; Bernhoeft, N.; Vettier, C.; Dumesnil, K.; Dufour, C.

    2001-01-01

    We report on resonant magnetic X-ray scattering studies of a samarium epitaxial film at the samarium L 3 edge. We observe one quadrupolar resonance below the edge, reflecting the polarization of the 4f electrons, and two dipolar resonances above the edge, related to the polarization of the 5d band. We demonstrate, by following the thermal evolution of resonant magnetic intensities of both types, that the polarization of the 4f and 5d electrons present exactly the same temperature dependence, even very close to the ordering temperature, in agreement with the RKKY model for long-range magnetic order in rare earths

  1. Luminescent properties of MAl(SO4)2 Br:Eu(3+) (M = Sr or Mg) red phosphors for near-UV light-emitting diodes.

    Science.gov (United States)

    Deshmukh, Priti B; Puppalwar, S P; Dhoble, N S; Dhoble, S J

    2015-02-01

    Eu(3+) -activated MAl(SO4 )2 Br phosphors (where M = Mg or Sr) are successfully prepared using a wet chemical reaction technique. The samples are characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopies. The XRD pattern revealed that both the samples are microcrystalline in nature. PL of Eu(3+) -doped SrAl(SO4 )2 Br and MgAl(SO4 )2 Br phosphors exhibited characteristic red emission coming from the (5) D0  → (7) F2 (616 nm) electron transition, when excited by 396 nm wavelength of light. The maximum intensity of luminescence was observed at a concentration of 1 mol% Eu(3+) . The intensity of the electric dipole transition at 616 nm is greater than that of the magnetic dipole transition at 594 nm. The results showed that MAl(SO4 )2 Br:Eu(3+) , (M = Mg, Sr) phosphors have potential application in near-UV light-emitting diodes as efficient red-emitting phosphor. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Enhanced Photocatalytic Activity of Rare Earth Metal (Nd and Gd doped ZnO Nanostructures

    Directory of Open Access Journals (Sweden)

    P. Logamani

    2017-06-01

    Full Text Available Presence of harmful organic pollutants in wastewater effluents causes serious environmental problems and therefore purification of this contaminated water by a cost effective treatment method is one of the most important issue which is in urgent need of scientific research. One such promising treatment technique uses semiconductor photocatalyst for the reduction of recalcitrant pollutants in water. In the present work, rare earth metals (Nd and Gd doped ZnO nanostructured photocatalyst have been synthesized by wet chemical method. The prepared samples were characterized by X-ray diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM and energy dispersive X-ray spectroscopy (EDS. The XRD results showed that the prepared samples were well crystalline with hexagonal Wurtzite structure. The results of EDS revealed that rare earth elements were doped into ZnO structure. The effect of rare earth dopant on morphology and photocatalytic degradation properties of the prepared samples were studied and discussed. The results revealed that the rare earth metal doped ZnO samples showed enhanced visible light photocatalytic activity for the degradation of methylene blue dye than pure nano ZnO photocatalyst.

  3. Redox reactions in rare earth chloride molten electrolytes

    International Nuclear Information System (INIS)

    Khokhlov, V.A.; Novoselova, A.V.; Nikolaeva, E.V.; Tkacheva, O.Yu.; Salyulev, A.B.

    2007-01-01

    Rare earth (REM, Ln) solutions in chloride melts including MCI+LnCl 3 mixtures, where M - alkali metals, were investigated by potentiometry, voltammetry, conductometry in wide concentration and temperature intervals. Findings present complete and trusty information on the valent state of rare earths, structure and composition of complex ions affecting essentially on properties of electrolytes. It is demonstrated that the coexistence of rare earth ions with different oxidation level formed as a result of possible redox reactions: 2Ln 3+ + Ln ↔3Ln 2+ , Ln 2+ + Ln↔2Ln + and nM + + Ln↔nM + Ln n+ appears sharply in thermodynamic and transport properties of molten Ln-LnCl 3 and Ln-LnCl 3 -MCl systems [ru

  4. A novel UV-emitting phosphor: NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Pekgözlü, İlhan, E-mail: pekgozluilhan@yahoo.com

    2016-01-15

    Pb{sup 2+} doped NaSr{sub 4}(BO{sub 3}){sub 3} materials were prepared by a solution combustion synthesis method. The phase analysis of all synthesized materials was carried out using the powder XRD. The synthesized materials were investigated using spectrofluorometer at room temperature. The excitation and emission bands of NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+} were observed at 291 and 368 nm, respectively. The dependence of the emission intensity on the Pb{sup 2+} concentration for the NaSr{sub 4}(BO{sub 3}){sub 3} was studied in detail. It was observed that the concentration quenching of Pb{sup 2+} in NaSr{sub 4}(BO{sub 3}){sub 3} is 0.01 mol. The Stokes shifts of NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+} phosphor were calculated to be 7190 cm{sup −1}. - Highlights: • A novel UV-emitting phosphor, NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+}, was prepared by combustion method. • The excitation and emission bands of NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+} were observed at 291 and 368 nm, respectively. • It was observed that the concentration quenching of Pb{sup 2+} in NaSr{sub 4}(BO{sub 3}){sub 3} is 0.01 mol.

  5. Thermoelectric transport in rare-earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Ulrike

    2007-07-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce{sub 3}Rh{sub 4}Sn{sub 13} are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu{sub 1-x}Yb{sub x}Rh{sub 2}Si{sub 2} and Ce{sub x}La{sub 1-x}Ni{sub 2}Ge{sub 2} by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  6. Antibacterial activity of chrysophanol isolated from Aloe excelsa ...

    African Journals Online (AJOL)

    Extraction of the yellow colour compounds of leaves of Aloe excelsa were performed and 1,8-dihydroxy-3-methylanthracenedione (chrysophanol) was isolated and tested for antibacterial activities against four gram negative and five gram positive bacterial strains. The structures of chrysophanol was determined by chemical ...

  7. Variation in Phytochemical Composition Reveals Distinct Divergence of Aloe vera (L.) Burm.f. From Other Aloe Species: Rationale Behind Selective Preference of Aloe vera in Nutritional and Therapeutic Use

    Science.gov (United States)

    Dey, Priyankar; Dutta, Somit; Chowdhury, Anurag; Das, Abhaya Prasad; Chaudhuri, Tapas Kumar

    2017-01-01

    In the present study, we have phytochemically characterized 5 different abundant Aloe species, including Aloe vera (L.) Burm.f., using silylation followed by Gas Chromatography-Mass Spectrometry technique and compared the data using multivariate statistical analysis. The results demonstrated clear distinction of the overall phytochemical profile of A vera, highlighted by its divergent spatial arrangement in the component plot. Lowest correlation of the phytochemical profiles were found between A vera and A aristata Haw. (−0.626), whereas highest correlation resided between A aristata and A aspera Haw. (0.899). Among the individual phytochemicals, palmitic acid was identified in highest abundance cumulatively, and carboxylic acids were the most predominant phytochemical species in all the Aloe species. Compared to A vera, linear correlation analysis revealed highest and lowest correlation with A aspera (R 2 = 0.9162) and A aristata (R 2 = 0.6745), respectively. Therefore, A vera demonstrated distinct spatial allocation, reflecting its greater phytochemical variability. PMID:29228808

  8. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mi-Kyung [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  9. Stimulation of osteoblast activity by induction of Aloe vera and xenograft combination

    Directory of Open Access Journals (Sweden)

    Utari Kresnoadi

    2011-12-01

    Full Text Available Background: Tooth extraction is generally followed by alveolar ridge resorption that later can cause flat ridge. Aloe vera have biogenic stimulator and hormone activities for wound healing. Purpose: This study was aimed to know osteoblast activities in alveolar bone after induction of Aloe vera and XCB combination. Methods: Fifty four of Cavia cabaya were divided into three main groups. Group I was control group. Group II was filled with xenograft concelous bovine (XCB and group III was filled with the combination of Aloe vera gel and XCB. Then, each group was divided into three sub groups according to timing, they are 14, 30, and 60 days after tooth extraction and application. Histology and morphology examination were performed on the harvested specimens. Results: There were significant differences between the control group and the other groups filled with the combination of Aloe vera and XCB. Conclusion: In conclusion, the application of Aloe vera gel and xenograft combination decrease the number of osteoclast and increase the number of osteoblast in post tooth extraction alveolar bone structure indicating the new growth of alveolar bone.Latar belakang: Pencabutan gigi pada umumnya selalu diikuti resopsi tulang alveolar, sehingga bila terjadi dalam waktu yang lama ridge akan menjadi flat. Aloe vera adalah bahan stimulasi biogenik dan mempunyai aktivitas hormon untuk proses penyembuhan luka. Tujuan: Tujuan dari penelitian ini adalah untuk mengetahui aktivitas osteoblas pada tulang alveol dengan pemberian kombinasi Aloe vera gel dan xenograft concelous bovine (XCB. Metode: Lima puluh empat ekor Cavia cabaya, dibagi menjadi 3 kelompok besar, kelompok pertama adalah kelompok kontrol yaitu hanya dilakukan pencabutan saja tanpa perlakuan, kelompok ke-2 yaitu kelompok yang setelah dicabut diberi XCB saja dan kelompok ke-3 yaitu kelompok yang setelah pencabutan diberi kombinasi Aloe vera gel dengan XCB pada luka bekas pencabutan gigi. Kemudian masing

  10. Leach of the weathering crust elution-deposited rare earth ore for low environmental pollution with a combination of (NH4)2SO4 and EDTA.

    Science.gov (United States)

    Tang, Jie; Qiao, Jiyang; Xue, Qiang; Liu, Fei; Chen, Honghan; Zhang, Guochen

    2018-05-01

    High concentration of ammonium sulfate, a typical leaching agent, was often used in the mining process of the weathering crust elution-deposited rare earth ore. After mining, a lot of ammonia nitrogen and labile heavy metal fractions were residual in tailings, which may result in a huge potential risk to the environment. In this study, in order to achieve the maximum extraction of rare earth elements and reduce the labile heavy metal, extraction effect and fraction changes of lanthanum (La) and lead (Pb) in the weathering crust elution-deposited rare earth ore were studied by using a compound agent of (NH 4 ) 2 SO 4 -EDTA. The extraction efficiency of La was more than 90% by using 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA, which was almost same with that by using 2.0% (NH 4 ) 2 SO 4 solution. In contrast, the extraction efficiency of Pb was 62.3% when use 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA, which is much higher than that (16.16%) achieved by using 2.0% (NH 4 ) 2 SO 4 solution. The released Pb fractions were mainly acid extractable and reducible fractions, and the content of reducible fraction being leached accounted for 70.45% of the total reducible fraction. Therefore, the use of 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA can not only reduce the amount of (NH 4 ) 2 SO 4 , but also decrease the labile heavy metal residues in soil, which provides a new way for efficient La extraction with effective preventing and controlling environmental pollution in the process of mining the weathering crust elution-deposited rare earth ore. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Predictive model for ionic liquid extraction solvents for rare earth elements

    International Nuclear Information System (INIS)

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Shibata, Etsuro; Nakamura, Takashi; Eckert, Franck

    2015-01-01

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF 3 -ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF 3 were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests

  12. Metallothermic reduction of rare earth oxides

    International Nuclear Information System (INIS)

    Sharma, R.A.

    1986-01-01

    Rare earth oxides can be reduced to rare earth metals by a novel, high yield, metallothermic process. The oxides are dispersed in a suitable, molten, calcium chloride bath along with sodium metal. The sodium reacts with the calcium chloride to produce calcium metal which reduces the rare earth oxides to rare earth metals. The metals are collected in a discrete layer in the reaction vessel

  13. Rare earth industries: Downstream business

    International Nuclear Information System (INIS)

    2011-01-01

    The value chain of the rare earths business involves mining, extraction, processing, refining and the manufacture of an extensive range of downstream products which find wide applications in such industries including aerospace, consumer electronics, medical, military, automotive, renewable wind and solar energy and telecommunications. In fact the entire gamut of the high-tech industries depends on a sustainable supply of rare earths elements. The explosive demand in mobile phones is an excellent illustration of the massive potential that the rare earths business offers. In a matter of less than 20 years, the number of cell phones worldwide has reached a staggering 5 billion. Soon, going by the report of their growth in sales, the world demand for cell phones may even exceed the global population. Admittedly, the rare earths business does pose certain risks. Top among the risks are the health and safety risks. The mining, extraction and refining of rare earths produce residues and wastes which carry health and safety risks. The residues from the extraction and refining are radioactive, while their effluent waste streams do pose pollution risks to the receiving rivers and waterways. But, as clearly elaborated in a recent report by IAEA experts, there are technologies and systems available to efficiently mitigate such risks. The risks are Rare Earth manageable. However, it is crucial that the risk and waste management procedures are strictly followed and adhered to. This is where effective monitoring and surveillance throughout the life of all such rare earths facilities is crucial. Fortunately, Malaysia's regulatory standards on rare earths follow international standards. In some areas, Malaysia's regulatory regime is even more stringent than the international guidelines. (author)

  14. Rare earth industries: Strategies for Malaysia

    International Nuclear Information System (INIS)

    2011-01-01

    Evidently, many reports cite Malaysia as having reasonably substantial amounts of rare earths elements. In fact, based on the rare earths found in the residual tin deposits alone, Malaysia has about 30,000 tonnes. This does not take into account unmapped deposits which experts believe may offer more tonnages of rare earths. Brazil which is reported to have about 48,000 tonnes has announced plans to invest aggressively in the rare earths business. China has on record the largest reserves with about 36 million tonnes. This explains why China has invested heavily in the entire value chain of the rare earths business. Chinas committed investment in rare earths started many years ago when the country's foremost leaders proclaimed the strategic position of rare earths in the world economy. That forecast is now a reality where the rise in the green high-tech economy is seen driving global demand for rare earths in a big way. Malaysia needs to discover and venture into new economic growth areas. This will help fuel the country's drive to achieve a high income status by 2020 as articulated in the New Economic Model (NEM) and the many supporting Economic Transformation Plans that the Government has recently launched. Rare earths may be the new growth area for Malaysia. However, the business opportunities should not just be confined to the mining, extraction and production of rare earths elements alone if Malaysia is to maximise benefits from this industry. The industry's gold mine is in the downstream products. This is also the sector that China wants to expand. Japan which now controls about 50 % of the global market for downstream rare earths-based high-tech components is desperately looking for partners to grow their stake in the business. Malaysia needs to embark on the right strategies in order to build the rare earths industry in the country. What are the strategies? (author)

  15. Sustainable prevention of resource conflicts. New risks from raw materials for the future? Case study and scenarios for China and rare earths (Report 3.4); Rohstoffkonflikte nachhaltig vermeiden. Risikoreiche Zukunftsrohstoffe? Fallstudie und Szenarien zu China und seltene Erden (Teilbericht 3.4)

    Energy Technology Data Exchange (ETDEWEB)

    Taenzler, Dennis; Westerkamp, Meike [Adelphi Research, Berlin (Germany); Supersberger, Nikolaus; Ritthoff, Michael; Bleischwitz, Raimund [Wuppertal Institut (Germany)

    2011-04-15

    ''Rare earths are to China what oil is to the Middle East,'' stated Deng Xiaoping in 1992 (Wang 2007). China accounts for 97 percent of global rare earth production, and as such the world is more dependent on it than it is on oil from the Middle East. That situation is significant because rare earths, although usually used only in small amounts, are of great strategic relevance. They are not only key components of many military technologies, including guided missiles and radar; they are also to be found in many high-tech products which we use in our daily lives - primarily electronic devices such as computer hard disks, plasma screens and MP3 players. They also make alloys harder, and are used to grind precision lenses. Rare earths are of particular importance in the field of environmental technology however. They are key components of catalytic converters, wind turbines, energy-saving bulbs and electric motors - and new applications in the environmental field are emerging all the time. These technologies are increasing the importance of, and the demand for, rare earths. As rare earths become ever more important, however, the question also arises as to the risks and opportunities they bring for consumers and producers. Consequently, this report (3.4) investigates those risks and opportunities, with a particular focus on China. Its analysis follows on from reports 1 and 2, illustrating and expanding upon their results. Likewise, this empirical case study will feed into the proposed solutions and recommended action to be set out in reports 4 and 5. This report is divided into a case study and four scenarios. The case study serves as an analysis of the status quo. It sets out potential conflict risks and opportunities arising from the situation as it exists in 2010. The subsequent four scenarios depicted were devised in the course of a Scenario Workshop in conjunction with a group of experts. They make use of the case study to set forth a range of

  16. Unusual magnetic properties of rare-earth titanium oxides RTiO3: effect of the rare earth on the magnetic moment of titanium in Lasub(x)Ysub(1-x)Ti03 and GdTi03

    International Nuclear Information System (INIS)

    Greedan, J.E.; MacLean, D.A.

    1978-01-01

    The rare-earth orthotitanites, RTi0 3 are a relatively new series of materials with properties which are strongly dependent on the identity of the rare-earth ion. Low-temperature magnetization studies on the system Lasub(x)Ysub(1-x)Ti0 3 and the compound GdTi0 3 indicate that the magnitude of the Ti 3+ spontaneous moment depends on the average size of the rare-earth ion and on its magnetic moment. For most of the phases studied except GdTi0 3 the Ti 3+ moment is very much smaller than the 'spin only' value and is non-integral, yet semiconducting behaviour is simultaneously observed. (author)

  17. Thermochemical properties of rare earth complexes with salicylic acid

    International Nuclear Information System (INIS)

    Yang Xuwu; Sun Wujuan; Ke Congyu; Zhang Hangguo; Wang Xiaoyan; Gao Shengli

    2007-01-01

    Fourteen rare earth complexes with salicylic acid RE(HSal) 3 .nH 2 O (HSal = C 7 H 5 O 3 ; RE = La-Sm, n = 2; RE = Eu-Lu, n = 1) were synthesized and characterized by elemental analysis, and their thermal decomposition mechanism were studied with TG-DTG technology. The constant-volume combustion energies of complexes, Δ c U, were determined by a precise rotating-bomb calorimeter at 298.15 K. Their standard molar enthalpies of combustion, Δ c H m 0 , and standard molar enthalpies of formation, Δ f H m o , were calculated

  18. Effect of rare earth ion Ce3+ on the lactate dehydrogenase isozyme patterns of six mouse organs

    International Nuclear Information System (INIS)

    Jiangyan, L.; Guojun, S.; Hengyi, L.; Yinhua, L.; Ting, W.; Yansheng, Y.

    1998-01-01

    Full text: Effect of rare earth ion Ce 3+ on the lactate dehydrogenase (LDH) isozyme patterns of six organs of mouse (heart, liver, kidney, muscle, stomach) were investigated by utilizing polyacrylamide gel electrophoresis (PAGE) methods. The results indicated: Ce 3+ not only can make some LDH bands disappear but also can induce some new bands. Under the action of Ce 3+ , the shades of some LDH bands were changed and the shade variations were different from organ to organ. In the muscle, it appeared the shade of LDH bands was related to the rare earth concentration in the feed. Rare earth can affect the muscle LDH patterns widely and apparently

  19. Rare earth-iron-boron premanent magnets

    International Nuclear Information System (INIS)

    Ghendehari, M.H.

    1988-01-01

    This patent describes a method for producing rare earth-iron-boron permanent magnets containing added rare earth oxide, comprising the steps of: (a) mixing a particulate alloy containing at least one rare earth metal, iron, and boron with at least one particulate rare earth oxide; (b) aligning magnetic domains of the mixture in a magnetic field; (c) compacting the aligned mixture to form a shape; and (d) sintering the compacted shape

  20. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium.

    Science.gov (United States)

    Bogart, Justin A; Lippincott, Connor A; Carroll, Patrick J; Schelter, Eric J

    2015-07-06

    Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare-earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2-(t) BuNO)C6 H4 CH2 }3 N](3-) (TriNOx(3-) ), feature a size-sensitive aperture formed of its three η(2) -(N,O) ligand arms. Exposure of metal cations in the aperture induces a self-associative equilibrium comprising [M(TriNOx)thf]/ [M(TriNOx)]2 (M=rare-earth metal). Differences in the equilibrium constants (Keq ) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio SNd/Dy =359. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Rare earths refining by vacuum sublimation method

    International Nuclear Information System (INIS)

    Rytus, N.N.

    1983-01-01

    The process of rare earths refining by the sUblimation; method in high and superhigh oil-free vacuum, is investigated. The method is effective for rare earths obtaining and permits to prepare metal samples with a high value of electric resistance ratio γ=RsUb(298 K)/Rsub(4.2 K). The estimation of general purity is performed for Sm, Eu, Yb, Tm, Dy, Ho, Er and Se

  2. Chemical analysis of rare earth elements

    International Nuclear Information System (INIS)

    Tsukahara, Ryoichi; Sakoh, Takefumi; Nagai, Iwao

    1994-01-01

    Recently attention has been paid to ICP-AES or ICP-MS, and the reports on the analysis of rare earth elements by utilizing these methods continue to increase. These reports have become to take about 30% of the reports on rare earth analysis, and this is because these methods are highly sensitive to rare earth elements, and also these methods have spread widely. In ICP-AES and ICP-MS, mostly solution samples are measured, therefore, solids must be made into solution. At the time of quantitatively determining the rare earth elements of low concentration, separation and concentration are necessary. Referring to the literatures reported partially in 1990 and from 1991 to 1993, the progress of ICP-AES and ICP-MS is reported. Rare earth oxides and the alloys containing rare earth elements are easily decomposed with acids, but the decomposition of rocks is difficult, and its method is discussed. The separation of the rare earth elements from others in geochemical samples, cation exchange process is frequently utilized. Also solvent extraction process has been studied. For the separation of rare earth elements mutually, chromatography is used. The spectral interference in spectral analysis was studied. The comparison of these methods with other methods is reported. (K.I)

  3. Separation of rare earths from solutions of phosphoric acid

    International Nuclear Information System (INIS)

    Jones, E.A.

    1977-01-01

    Rare earths are separated from 6M phosphoric acid by adsorption onto cation resin BIORAD AG50W-X8. The phosphoric acid is then washed from the column, and the rare earths are eluted with 4M hydrochloric acid

  4. Color-tunable and highly thermal stable Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors

    International Nuclear Information System (INIS)

    Zhang, Haiming; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu; Deng, Jiankun; Liu, Wei-Ren; Zeng, Yuan; Zheng, Lingling; Zhao, Minyi

    2017-01-01

    Tb"3"+ activated Sr_2MgAl_2_2O_3_6 phosphor was prepared by a high-temperature solid-state reaction route. The X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy were used to characterize the as-prepared samples. The Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors show intense green light emission under UV excitation. The phosphor exhibit two groups of emission lines from about 370 to 700 nm, which originating from the characteristic "5D_3-"7F_J and "5D_4-"7F_J transitions of the Tb"3"+ ion, respectively. The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed. The emission colors of these phosphors can be tuned from bluish-green to green by adjusting the Tb"3"+ doping concentration. Furthermore, the thermal quenching temperature (T_1_/_2) is higher than 500 K. The excellent thermal stability and color-tunable luminescent properties suggest that the developed material is a promising green-emitting phosphor candidate for optical devices. - Highlights: • A Color-tunable emitting phosphor Sr_2MgAl_2_2O_3_6:Tb"3"+ was prepared successfully via high-temperature solid-state reaction. • The photoluminescence of Sr_2MgAl_2_2O_3_6:Tb"3"+ shows highly thermal stable. • The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed.

  5. Antifungal activity of aloe vera gel against plant pathogenic fungi

    International Nuclear Information System (INIS)

    Sitara, U.; Hassan, N.; Naseem, J.

    2011-01-01

    Aloe vera gel extracted from the Aloe vera leaves was evaluated for their antifungal activity at the rate of 0.15%, 0.25% and 0.35% concentration against five plants pathogenic fungi viz., Aspergillus niger, Aspergillus flavus, Alternaria alternata, Drechslera hawaiensis and Penicillum digitatum 0.35% concentration Aloe vera gel completely inhibited the growth of Drechslera hawaiensis and Alternaria alternata. (author)

  6. Mechanisms of charge transfer and redistribution in LaAlO3/SrTiO3 revealed by high-energy optical conductivity.

    Science.gov (United States)

    Asmara, T C; Annadi, A; Santoso, I; Gogoi, P K; Kotlov, A; Omer, H M; Motapothula, M; Breese, M B H; Rübhausen, M; Venkatesan, T; Ariando; Rusydi, A

    2014-04-14

    In condensed matter physics the quasi two-dimensional electron gas at the interface of two different insulators, polar LaAlO3 on nonpolar SrTiO3 (LaAlO3/SrTiO3) is a spectacular and surprising observation. This phenomenon is LaAlO3 film thickness dependent and may be explained by the polarization catastrophe model, in which a charge transfer of 0.5e(-) from the LaAlO3 film into the LaAlO3/SrTiO3 interface is expected. Here we show that in conducting samples (≥ 4 unit cells of LaAlO3) there is indeed a ~0.5e(-) transfer from LaAlO3 into the LaAlO3/SrTiO3 interface by studying the optical conductivity in a broad energy range (0.5-35 eV). Surprisingly, in insulating samples (≤ 3 unit cells of LaAlO3) a redistribution of charges within the polar LaAlO3 sublayers (from AlO2 to LaO) as large as ~0.5e(-) is observed, with no charge transfer into the interface. Hence, our results reveal the different mechanisms for the polarization catastrophe compensation in insulating and conducting LaAlO3/SrTiO3 interfaces.

  7. Rare earths: Market disruption, innovation, and global supply chains

    Science.gov (United States)

    Eggert, Roderick; Wadia, Cyrus; Anderson, Corby; Bauer, Diana; Fields, Fletcher; Meinert, Lawrence D.; Taylor, Patrick

    2016-01-01

    Rare earths, sometimes called the vitamins of modern materials, captured public attention when their prices increased more than ten-fold in 2010 and 2011. As prices fell between 2011 and 2016, rare earths receded from public view—but less visibly they became a major focus of innovative activity in companies, government laboratories and universities. Geoscientists worked to better understand the resource base and improve our knowledge about mineral deposits that will be mines in the future. Process engineers carried out research that is making primary production and recycling more efficient. Materials scientists and engineers searched for substitutes that will require fewer or no rare earths while providing properties comparable or superior to those of existing materials. As a result, even though global supply chains are not significantly different now than they were before the market disruption, the innovative activity motivated by the disruption likely will have far-reaching, if unpredictable, consequences for supply chains of rare earths in the future.

  8. Concentration of light rare earths process by amoniacal precipitation

    International Nuclear Information System (INIS)

    Aguilera, Y.; Rapado, M.; Consuegra, R.

    1996-01-01

    A procedure for the separation and concentration of light rare earths using a mixture of ammonia and water was developed. As a result technical concentrates of rare earths were obtained and the physical separation in the filtration step was improved. The filtration parameters (cake resistance r 0 and filtration web resistance R) were obtained for this process being they 5,5.10 11 cm/g and 3,4.10 13 cm -1 respectively. The proposed technology concentrates (Ce, La and Nd) with purities ranging from: 85-90 %, 85-87 % and 42-65 % respectively in only one precipitation step

  9. Procedure for the separation of cerium from rare earth phosphate mixtures

    International Nuclear Information System (INIS)

    Richter, H.; Grauss, H.; Schmitt, A.; Schade, H.; Lindeholz, M.; Lorenz, E.; Weickart, J.

    1986-01-01

    The invention is concerned with a procedure for the separation of cerium from rare earth concentrates originating from the partial neutralization of nitric crude phosphate decomposition solutions without preceding elimination of impurities from the raw material. The rare earth phosphates are treated with an excess of concentrated nitric acid through which the Ce 3+ , contained in the solution, is oxidized to Ce 4+ and precipitated as cerium(IV) phosphate by neutralization with alkalis

  10. The industry of metallic rare earths (R.E.)

    International Nuclear Information System (INIS)

    Poirier, P.

    1979-01-01

    The following subjects are discussed: rare earths resources (rare earths abondance and world reserves, main ores). Rare earths separation and purification (ionic exchange, solvent extraction). Metallic rare earths and their mixtures, metallothermic reduction of oxides or fluorides (Ca, Mg, Al, Si or rare earth metals), Co-reduction process for intermetallic compounds (SmCo 5 ). Industrial applications of metallic rare earths (traditional applications such as flints, nodular cast iron, steel refining, magnesium industrie, applications under development such as rare earths/cobalt magnets, LaNi 5 for hydrogen storage, special alloys (automotive post combustion), magnetostrictive alloys). Economical problems: rare earth are elements relatively abundant and often at easily accessible prices. However, this group of 15 elements are liable to certain economical restraints. It is difficult to crack ore for only one rare earth. Availability of one given rare earth must be associated with the other corresponding rare earths to absorb all the other rare earths in other applications. Rare-earth industry has a strong expanding rate. 20% per year average for 6 years with Rhone-Poulenc. Thanks to their exceptional, specific characteristics rare earths have a bright future particularly for their metals

  11. Spectroscopic and laser investigations of Nd3+ and Yb3+ in rare-earth oxyborates

    International Nuclear Information System (INIS)

    Lupei, A.; Lupei, V.; Gheorghe, L.; Aka, G.; Vivien, D.; Antic- Fidancev, E.

    2002-01-01

    Since 1997 a new class of non-linear crystals have been intensively investigated, the rare-earth and calcium oxyborates RECa 4 O(BO 3 ) 4 -RECOB (especially with RE 3+ = Y 3+ or Gd 3+ ). These crystals can be grown from melt and have large effective non-linear coefficients; they present a large transparence range from 0.2-5 mm, are non-hygroscopic, have a high damage threshold, can be doped with large concentrations of laser active ions, etc. Undoped these crystals are good doublers and doped with Nd 3+ or Yb 3+ they can be used in the self - conversion regime for transformation of the infrared radiation into green, blue or red. A series of fundamental structural, spectroscopic and laser emission characteristics of Nd 3+ or Yb 3+ doped RECOB are still under study. Thus, one important aspect discussed in literature is the degree of disorder of RECOB crystals. The research performed in the frame of CERES project was devoted to the growth of the of RECOB crystals doped with Nd 3+ or Yb 3+ , structural investigations and high-resolution optical spectral investigations and Nd 3+ laser emission. The growth of RECa 4 O(BO) 3 (Y 3+ and Gd 3+ ) single crystals was performed with an ADL furnace by using Czochralski method. Good optical crystals were obtained on direction; X-ray structural studies were also performed. The low temperatures high-resolution optical spectral measurements on Nd 3+ and Yb 3+ doped GdCOB and YCOB allowed the clarification of some structural characteristics of these crystals. Two problems were studied: the intrinsic structure of undoped crystals and the doping effects. Studies revealed for the first time by optical spectroscopy essential differences between GdCOB and YCOB crystals; they refer to the satellite structure of Yb 3+ or Nd 3+ and inhomogeneous broadening, indicating a disordered structure much larger for YCOB, qualitatively in accord with recent X-ray results. Based on spectral, emission decay and structural investigations, models for

  12. Soluble epoxide hydrolase inhibitory activity of anthraquinone components from Aloe.

    Science.gov (United States)

    Sun, Ya Nan; Kim, Jang Hoon; Li, Wei; Jo, A Reum; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2015-10-15

    Aloe is a short-stemmed succulent herb widely used in traditional medicine to treat various diseases and as raw material in cosmetics and heath foods. In this study, we isolated and identified two new anthraquinone derivatives, aloinoside C (6) and aloinoside D (7), together with six known compounds from an aqueous dissolved Aloe exudate. Their structures were identified by spectroscopic analysis. The inhibitory effects of the isolated compounds on soluble epoxide hydrolase (sEH) were evaluated. Compounds 1-8 inhibited sEH activity potently, with IC50 values ranging from 4.1±0.6 to 41.1±4.2 μM. A kinetic analysis of compounds 1-8 revealed that the inhibitory actions of compounds 1, 6 and 8 were non-competitive, whereas those of compounds 2-5 and 7 were the mixed-type. Molecular docking increases our understanding of receptor-ligand binding of all compounds. These results demonstrate that compounds 1-8 from Aloe are potential sEH inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Optical gain of LaF3:Nd nanoparticle doped polymers for active integrated optical devices

    NARCIS (Netherlands)

    Stouwdam, J.W.; Klunder, D.J.W.; Borreman, A.; Diemeer, Mart; Worhoff, Kerstin; Driessen, A.; de Ridder, R.M.; de Ridder, R.M; Altena, G; Altena, G.; Geuzebroek, D.H.; Dekker, R; Dekker, R.

    2003-01-01

    We report on rare earth doped LaF3 nanoparticles dispersed in PMMA and SU-8 photosensitive polymers. We observed optical gain after we applied these materials for waveguides. Experimental results on various samples will be discussed. We theoretically discuss the improvements that can be obtained and

  14. Separation and Recovery of Iron and Rare Earth from Bayan Obo Tailings by Magnetizing Roasting and (NH42SO4 Activation Roasting

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2017-05-01

    Full Text Available A novel approach for recovery of iron and rare earth elements (REEs from Bayan Obo tailings of Baotou, China, was developed by combining magnetizing roasting, magnetic separation, (NH42SO4 activation roasting, and water leaching. Thermodynamic analysis of carbothermal reduction was conducted to determine the temperature of magnetizing roasting, and it agreed well with the experimental results. The maximum recovery of Fe reached 77.8% at 600 °C, and the grade of total Fe in the magnetic concentrate was 56.3 wt. %. An innovative approach, using water to leach REEs after (NH42SO4 activation roasting, was used to extract REEs from magnetic separation tailings. The main influence factors of the leaching recovery during (NH42SO4 activation roasting, were investigated with the mass ratio of (NH42SO4 to magnetic separation tailings, roasting temperature and roasting time. The leaching recoveries of La, Ce and Nd reached 83.12%, 76.64% and 77.35%, respectively, under the optimized conditions: a mass ratio of 6:1, a roasting temperature of 400 °C and a roasting time of 80 min. Furthermore, the phase composition and reaction process during the (NH42SO4 activation roasting were analyzed with X-ray diffraction (XRD, energy dispersive X-ray spectroscopy & scanning electron microscopy (EDS-SEM and thermogravimetry & differential scanning calorimetry (TG-DSC, and the leaching solution and leaching residue were also characterized.

  15. Optimization of leaching process for sum of rare earth and calcium oxides

    International Nuclear Information System (INIS)

    Troyanier, L.S.; Elunkina, Z.A.; Nikonov, V.N.; Lobov, V.I.

    1978-01-01

    Presented are the results of investigation of leaching process for rare earth and calcium oxides by sulfuric acid. The method of planning experiment has been used for this investigation. Mixtures of cerium, yttrium and neodyum oxides, taken in the relation of 1:1:0.5, have been used as rare earth elements. Received are adequate models characterizing dependence of solubility of rare earth and calcium oxides on some factors (H 2 SO 4 concentration, CaO:R 2 O 3 relation, liquid to solid ratio, solution temperature, mixing time). Dependences of solubility of rare earth elements and calcium on the process parameters are received and presented in a form of regression equations. Dependences received can be used for choice of optimum regime of the process as well as for its control

  16. Vibrational spectra of double rare earth alkaline metal metaphosphates

    International Nuclear Information System (INIS)

    Madij, V.A.; Krasilov, Yu.I.; Kizel', V.A.; Denisov, Yu.V.; Chudinova, N.N.; Vinogradova, N.V.

    1978-01-01

    Joint analysis of the Raman and infrared absorption spectra, as well as X-ray structural data for binary metaphosphates, suggest a cyclic structure of the anion in RbEu(PO 3 ) 4 and a chain structure of the anions in HEu(PO 3 ) 4 and LiEu(PO 3 ) 4 . Spectroscopic criteria are proposed for distinguishing between cyclic and chain structures in binary metaphosphates of rare earth elements and alkali metals

  17. High purity neodymium acetate from mixed rare earth carbonates

    International Nuclear Information System (INIS)

    Queiroz, Carlos A. da Silva; Rocha, Soraya M. Rizzo da; Vasconcellos, Mari E. de; Lobo, Raquel M.; Seneda, Jose A.; Pedreira, Walter dos R.

    2011-01-01

    A simple and economical chemical process for obtaining high purity neodymium acetate is discussed. The raw material in the form rare earth carbonate is produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography technique with a strong cationic resin, proper to water treatment, and without the use of retention ions was used for the fractionating of the rare earth elements (REE). In this way, it was possible to obtain 99.9% pure Nd 2 O 3 in yields greater than or equal 80%, with the elution of the REE using ammonium salt of ethylenediaminetetraacetic acid (EDTA) solution in pH controlled. The complex of EDTA-neodymium was transformed into neodymium oxide, which was subsequently dissolved in acetic acid to obtain the neodymium acetates. Molecular absorption spectrophotometry was used to monitor the neodymium content during the process and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the neodymium acetates. The typical neodymium acetates obtained contain the followings contaminants in μg g -1 : Sc(5.1); Y (0.9); La (1.0); Ce (6.1); Pr (34,4); Sm (12.8); Eu (1.1); Gd (15.4); Tb (29.3); Dy (5.2), Ho(7.4); Er (14.6); Tm (0.3); Yb (2.5); Lu (1.0). The high purity neodymium acetates obtained from this procedure have been applied, replacing the imported product, in research and development area on rare earth catalysts. (author)

  18. Microstructure and emission ability of rare earth oxides doped molybdenum cathodes

    International Nuclear Information System (INIS)

    Yang Jiancan; Nie Zuoren; Wang Yiman

    2003-01-01

    We adopted high-resolution transmission electron microscopy (TEM) and scanning electron microscopy (SAM) to observe and analyze the microstructure of rare earth oxide (La 2 O 3 , Sc 2 O 3 ) doped molybdenum cathodes. The results show that there are many nanometer particles in the molybdenum matrix besides some sub-micrometer particles in the crystal interfaces. All these particles are rare earth oxides as determined through calculating the electron diffraction pattern. Then we determined the electron work function and the zero-field emission current of molybdenum cathodes by the electron emission measurement. To correlate the emission data with surface composition, we use Auger electron spectroscopy (AES) to analyze the elements on the activated cathode surface and their depth profiles. We found that there were about 20 nm thick layers on an activated cathode surface, which have a high content of rare earth elements. We also use AES to analyze the elements diffusion to the cathode surface from cathode body during heating up to its operating temperature to find out which element positively affects the electron emission

  19. Rare earth element recycling from waste nickel-metal hydride batteries

    International Nuclear Information System (INIS)

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-01-01

    Highlights: • Leaching kinetics of REEs has rarely been reported. • A new method, including hydrochloric acid leaching and oxalic acid precipitation, was proposed. • REEs recovery rate of 95.16% and pure rare earth oxides of 99% were obtained. • Leaching process was controlled by chemical reaction. • The kinetic equation was determined. - Abstract: With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70 °C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, −74 μm particle size, and 100 min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98 kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1−(1−x) 1/3 =A/ρr 0 [HCl] 0.64 exp((−439,800)/(8.314T) )t. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810 °C, a final product of 99% pure rare earth oxides was obtained

  20. Preconcentration of rare earth elements from rocks by thin-layer chromatography and their neutron-activation determination

    International Nuclear Information System (INIS)

    Ryabukhin, V.A.; Volynets, M.P.; Myasoedov, B.F.

    1990-01-01

    Conditions were studied for separation of rare earths and accompanying elements in rocks on Fixion 50x8 thin-layer plates using solutions of oxalic acid and ammonium chloride in ammonia medium. A simple technique was developed for TLC proconcentration of rare earths followed by gamma spectrometric analysis of the irradiated fractions that enabled to determine 8-10 elements in samples with a mass of up to 30 mg. The limits of detection (μg/g) were 0.05 (Eu), 0.1 (Sm), 0.2 (Tb), 0.3 (Yb), 0.4 (La), 1.0 (Tu), 2.0 (Ce), 10 (Nd). The relative standard deviation was 0.05-0.20 at element levels 5-10 times as high as the detection limits

  1. Separation and Recycling for Rare Earth Elements by Homogeneous Liquid-Liquid Extraction (HoLLE Using a pH-Responsive Fluorine-Based Surfactant

    Directory of Open Access Journals (Sweden)

    Shotaro Saito

    2015-08-01

    Full Text Available A selective separation and recycling system for metal ions was developed by homogeneous liquid-liquid extraction (HoLLE using a fluorosurfactant. Sixty-two different elemental ions (e.g., Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, Ir, La, Lu, Mg, Mn, Mo, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Re, Rh, Ru, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn, and Zr were examined. By changing pH from a neutral or alkaline solution (pH ≥ 6.5 to that of an acidic solution (pH < 4.0, gallium, zirconium, palladium, silver, platinum, and rare earth elements were extracted at >90% efficiency into a sedimented Zonyl FSA® (CF3(CF2n(CH22S(CH22COOH, n = 6–8 liquid phase. Moreover, all rare earth elements were obtained with superior extraction and stripping percentages. In the recycling of rare earth elements, the sedimented phase was maintained using a filter along with a mixed solution of THF and 1 M sodium hydroxide aqueous solution. The Zonyl FSA® was filtrated and the rare earth elements were recovered on the filter as a hydroxide. Furthermore, the filtrated Zonyl FSA was reusable by conditioning the subject pH.

  2. A study of emission property and microstructure of rare earth oxide-molybdenum cermet cathode materials made by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang Jinshu; Li Hongyi; Yang Sa; Cui Ying; Zhou Meiling

    2004-01-01

    A fast sintering method, spark plasma sintering (SPS) was used for the synthesis of rare earth oxide-molybdenum cathode material. The secondary emission property, microstructure, and phase constitution of materials have been studied in this paper. The experimental results show that the maximum secondary emission coefficient of this material can be high to 3.84, much higher than that of rare earth oxide-molybdenum cathode made by traditional sintering method. The grain size is less than 1 μm and rare earth distributed evenly in the material. After the material was activated at 1600 deg. C, a 4 μm layer of rare earth oxide which leads to the high secondary emission coefficient of the material, is formed on the surface of the cathode

  3. Rare earth elements: end use and recyclability

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  4. Electrospinning fabrication and luminescent properties of SrMoO4:Sm3+ nanofibers

    International Nuclear Information System (INIS)

    Du Pingfan; Song Lixin; Xiong Jie; Cao Houbao; Xi Zhenqiang; Guo Shaoyi; Wang Naiyan; Chen Jianjun

    2012-01-01

    Highlights: ► SrMoO 4 :Sm 3+ fluorescent nanofibers were fabricated by electrospinning. ► The properties of the SrMoO 4 :Sm 3+ nanofibers were investigated. ► The obtained nanofibers exhibit a fine orange-red fluorescent property. ► The PL intensity of the nanofibers is superior to the nanoparticles counterpart. ► The optimum doping concentration of Sm 3+ in the host lattice is 2 at.%. - Abstract: Samarium ions doped strontium molybdate (SrMoO 4 :Sm 3+ ) nanofibers (NFs) were fabricated by a simple electrospinning process. The obtained SrMoO 4 :Sm 3+ NFs are composed of scheelite-type tetragonal SrMoO 4 phase, and the NFs have an average diameter of ca. 90 nm. Under 275 nm ultraviolet (UV) excitation, the NFs show an orange-red fluorescent property symbolized by a characteristic emission (606 nm) resulting from the 4 G 5/2 → 6 H 7/2 energy level transition of Sm 3+ . And the photoluminescence (PL) emissi on intensity of the SrMoO 4 :Sm 3+ NFs is superior to that of the nanoparticles (NPs) counterpart under the same doping concentrations. The effect of Sm 3+ concentrations on the 4 G 5/2 → 6 H 7/2 emission intensity was also investigated. The result reveals that the concentration quenching will occur when the Sm 3+ content exceeds 2 at.%. In other words, the SrMoO 4 :Sm 3+ NFs have an optimal luminescent performance under such a doping concentration.

  5. Synthesis and characterization of the novel rare earth orthophosphates Y{sub 0.5}Er{sub 0.5}PO{sub 4} and Y{sub 0.5}Yb{sub 0.5}PO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Schildhammer, Daniel; Petschnig, Lucas L.; Fuhrmann, Gerda; Heymann, Gunter; Schottenberger, Herwig; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie; Tribus, Martina [Innsbruck Univ. (Austria). Inst. fuer Mineralogie und Petrographie

    2016-02-01

    The new mixed rare earth (RE) orthophosphates Y{sub 0.5}Er{sub 0.5}PO{sub 4} and Y{sub 0.5}Yb{sub 0.5}PO{sub 4} were synthesized by a classical solid state reaction in an electrical furnace at 1200 C. As starting materials, the corresponding rare earth oxides and diammonium hydrogen phosphate were used. The powder diffraction analyses revealed that the new compounds Y{sub 0.5}Er{sub 0.5}PO{sub 4} and Y{sub 0.5}Yb{sub 0.5}PO{sub 4} crystallize in a zircon-type structure being isostructural with the rare earth orthophosphate YPO{sub 4}. Y{sub 0.5}Er{sub 0.5}PO{sub 4} and Y{sub 0.5}Yb{sub 0.5}PO{sub 4} crystallize in the tetragonal space group I4{sub 1}/amd (no. 141) with four formula units in the unit cell. The structural parameters based on Rietveld refinements are a = 687.27(2), c = 601.50(2) pm, V = 0.28412(1) nm{sup 3}, R{sub p} = 0.0143, and R{sub wp} = 0.0186 (all data) for Y{sub 0.5}Er{sub 0.5}PO{sub 4} and a = 684.61(2), c = 599.31(2) pm, V = 0.28089(2) nm{sup 3}, R{sub p} = 0.0242, and R{sub wp} = 0.0313 (all data) for Y{sub 0.5}Yb{sub 0.5}PO{sub 4}. Furthermore, the structure of Y{sub 0.5}Er{sub 0.5}PO{sub 4} was refined from single-crystal X-ray diffraction data: a = 687.78(5), c = 601.85(4) pm, V = 0.28470(5) nm{sup 3}, R{sub 1} = 0.0165, and wR{sub 2} = 0.0385 (all data). In both compounds, the rare earth metal ions are eightfold coordinated by oxygen atoms, forming two unique interlocking tetrahedra with two individual RE-O distances. The tetrahedral phosphate groups [PO{sub 4}]{sup 3-} are slightly distorted in both compounds. The individual rare earth ions share a common position (Wyckoff site 4a). The presence of two rare earth ions in the structures of the new orthophosphates Y{sub 0.5}Er{sub 0.5}PO{sub 4} and Y{sub 0.5}Yb{sub 0.5}PO{sub 4} was additionally confirmed by single-crystal EDX spectroscopy revealing a ratio of 1:1.

  6. Structure-property relations in new fluorophosphate glasses singly- and co-doped with Er3+ and Yb3+

    International Nuclear Information System (INIS)

    Gonçalves, Tássia S.; Moreira Silva, Raphaell J.; Oliveira Junior, Marcos de; Ferrari, Cynthia R.; Poirier, Gäel Y.; Eckert, Hellmut; Camargo, Andrea S.S. de

    2015-01-01

    Rare earth (RE 3+ )-doped fluorophosphate glasses are among the most promising candidates for high-efficiency laser generation in the near-infrared spectral region. By proper choice of composition, these materials can combine the advantages of fluorides (low phonon energies, low refractive indices, extensive optical window, low hygroscopicity) and of oxides (high chemical and mechanical stability and high dopant solubility), resulting in enhancement of the RE 3+ emissive properties. In this work, we present the synthesis and structural/spectroscopic investigation of new glasses with composition 25BaF 2 25SrF 2 (30-x)Al(PO 3 ) 3 xAlF 3 (20-z)YF 3 :zREF 3 , where x = 20 or 15, RE = Er 3+ and/or Yb 3+ , z = 0.25–5.0 mol%. Results indicate considerable improvement of the emissive properties of both ions when compared to phosphate or even other fluorophosphate host compositions. Long excited state lifetimes (τ = 10 ms for the Er 3+ level 4 I 13/2 , and τ = 1.3 ms for the Yb 3+ level 2 F 5/2 ) imply high fluorescence quantum efficiencies η (up to 85% for both ions). Structural characterization by Raman and multinuclear solid state NMR spectroscopies indicate that the metaphosphate-type chain structure of the Al(PO 3 ) 3 vitreous framework is partially depolymerized and dominated by Q (0) and Q (1) units crosslinked by six-coordinate Al species. As revealed by 27 Al{ 31 P} rotational echo double resonance (REDOR) NMR results the average local aluminum environment of the x = 20 sample comprises 1.6 phosphate and 4.4 fluoride species. These results indicate a clear bonding preference between aluminum and phosphorus, which is consistent with the desired dominance of fluoride species in the local environment of the rare earth and alkaline earth atoms in these glasses. - Highlights: • New fluorophosphate glass composition with excellent photophysical properties. • Detailed structural insights by multinuclear solid state NMR. • Rare earth bonding preference to

  7. Lanthanide-doped Na xScF 3+ x nanocrystals: Crystal structure evolution and multicolor tuning

    KAUST Repository

    Teng, Xue

    2012-05-23

    Rare-earth-based nanomaterials have recently drawn considerable attention because of their unique energy upconversion (UC) capabilities. However, studies of Sc 3+-based nanomaterials are still absent. Herein we report the synthesis and fine control of Na xScF 3+x nanocrystals by tuning of the ratio of oleic acid (OA, polar surfactant) to 1-octadecene (OD, nonpolar solvent). When the OA:OD ratio was increased from low (3:17) to high (3:7), the nanocrystals changed from pure monoclinic phase (Na 3ScF 6) to pure hexagonal phase (NaScF 4) via a transition stage at an intermediate OA:OD ratio (3:9) where a mixture of nanocrystals in monoclinic and hexagonal phases was obtained and the coexistence of the two phases inside individual nanocrystals was also observed. More significantly, because of the small radius of Sc 3+, Na xScF 3+x:Yb/Er nanocrystals show different UC emission from that of NaYF 4:Yb/Er nanocrystals, which broadens the applications of rare-earth-based nanomaterials ranging from optical communications to disease diagnosis. © 2012 American Chemical Society.

  8. A rare earth-based metal-organic framework for moisture removal and control in confined spaces

    KAUST Repository

    Eddaoudi, Mohamed

    2017-04-13

    A method for preparing a metal-organic framework (MOF) comprising contacting one or more of a rare earth metal ion component with one or more of a tetratopic ligand component, sufficient to form a rare earth-based MOF for controlling moisture in an environment. A method of moisture control in an environment comprising adsorbing and/or desorbing water vapor in an environment using a MOF, the MOF including one or more of a rare earth metal ion component and one or more of a tetratopic ligand component. A method of controlling moisture in an environment comprising sensing the relative humidity in the environment comprising a MOF; and adsorbing water vapor on the MOF if the relative humidity is above a first level, sufficient to control moisture in an environment. The examples relate to a MOF created from 1,2,4,5-Tetrakis(4-carboxyphenyl )benzene (BTEB) as tetratopic ligand, 2-fluorobenzoic acid and Y(NO3)3, Tb(NO3)3 and Yb(NO3)3 as rare earth metals.

  9. Tunable emission in Ln3+ (Ce3+/Dy3+, Ce3+/Tb3+) doped KNa3Al4Si4O16 phosphor synthesized by combustion method

    Science.gov (United States)

    Kolte, M. M.; Pawade, V. B.; Bhattacharya, A. B.; Dhoble, S. J.

    2018-05-01

    Ln3+ (Ln = Ce3+/Dy3+, Ce3+/Tb3+) doped KNa3Al4Si4O16 phosphor has been synthesized by Combustion method (CS) at 550° C successfully. Ln3+ (Ln = Ce3+, Dy3+, Tb3+) ions when doped in KNa3Al4Si4O16 host lattice, it shows blue and green emission band under the near Ultraviolet (NUV) excitation wavelength. The Photoluminescence excitation (PLE) and emission spectra are observed due to f-f and d-f transition of rare earth ions. Also, an effective energy transfer (ET) study from Ce3+ → Dy3+ and Ce3+ → Tb3+ ions has been studied and confirmed on the basis of Dexter-Foster theory. Further synthesized phosphor is well characterized by XRD, SEM, TEM and decay time measurement. However, the analysis of crystallite size, lattice strain has been studied by using theoretical as well as experimental techniques. Hence, the observed tunable emission in Ln3+ doped KNa3Al4Si4O16 phosphor may be applicable for solid state lighting technology.

  10. Active listening in medical consultations: development of the Active Listening Observation Scale (ALOS-global).

    Science.gov (United States)

    Fassaert, Thijs; van Dulmen, Sandra; Schellevis, François; Bensing, Jozien

    2007-11-01

    Active listening is a prerequisite for a successful healthcare encounter, bearing potential therapeutic value especially in clinical situations that require no specific medical intervention. Although generally acknowledged as such, active listening has not been studied in depth. This paper describes the development of the Active Listening Observation Scale (ALOS-global), an observation instrument measuring active listening and its validation in a sample of general practice consultations for minor ailments. Five hundred and twenty-four videotaped general practice consultations involving minor ailments were observed with the ALOS-global. Hypotheses were tested to determine validity, incorporating patients' perception of GPs' affective performance, GPs' verbal attention, patients' self-reported anxiety level and gender differences. The final 7-item ALOS-global had acceptable inter- and intra-observer agreement. Factor analysis revealed one homogeneous dimension. The scalescore was positively related to verbal attention measured by RIAS, to patients' perception of GPs' performance and to their pre-visit anxiety level. Female GPs received higher active listening scores. The results of this study are promising concerning the psychometric properties of the ALOS-global. More research is needed to confirm these preliminary findings. After establishing how active listening differentiates between health professionals, the ALOS-global may become a valuable tool in feedback and training aimed at increasing listening skills.

  11. Paclitaxel conjugated Fe{sub 3}O{sub 4}@LaF{sub 3}:Ce{sup 3+},Tb{sup 3+} nanoparticles as bifunctional targeting carriers for Cancer theranostics application

    Energy Technology Data Exchange (ETDEWEB)

    Mangaiyarkarasi, Rajendiran; Chinnathambi, Shanmugavel; Karthikeyan, Subramani; Aruna, Prakasarao; Ganesan, Singaravelu, E-mail: sganesan@annauniv.edu

    2016-02-01

    The bi-functional Chitosan functionalized magnetite doped luminescent rare earth nanoparticles (Fe{sub 3}O{sub 4}@LaF{sub 3}: Ce{sup 3+},Tb{sup 3+}/chi NPs) as a carrier of paclitaxel (PTX) drug was designed using a co-precipitation and facile direct precipitation method. The synthesized nanoparticles are spherical in shape with a typical diameter of 19–37 nm respectively. They are water soluble, super paramagnetic and biocompatible, in which the amino groups on the nanoparticles surface are used for the conjugation with an anticancer drug, paclitaxel. The nature of PTX binding with Fe{sub 3}O{sub 4}@LaF{sub 3}: Ce{sup 3+},Tb{sup 3+}/chi nanoparticles were studied using X-ray diffraction, vibrating sample magnetometer and scanning electron micrograph. The nature of interactions between PTX and Fe{sub 3}O{sub 4}@LaF{sub 3}: Ce{sup 3+},Tb{sup 3+}/chi NPs due to complex formation were conceded out by various spectroscopic methods viz., UV–visible, steady state and excited state fluorescence spectroscopy. The photo-physical characterization reveals that the adsorption and release of PTX from Fe{sub 3}O{sub 4}@LaF{sub 3}:Tb{sup 3+}/chi nanoparticles is quicker when compared with other nanoparticles and also confirms that this may be due to the hydrogen bond formation between the hydroxyl group of drug and amino group of nanoparticles respectively. The maximum loading capacity and entrapment efficiency of 83.69% and 80.51% were attained at a ratio of 5:8 of PTX and Fe{sub 3}O{sub 4}@LaF{sub 3}: Ce{sup 3+},Tb{sup 3+}/chi NPs respectively. In addition with that, antitumoral activity study of PTX conjugated Fe{sub 3}O{sub 4}@LaF{sub 3}:Tb{sup 3+}/chi nanoparticles exhibits increased cytotoxic effects on A549 lung cancer cell lines than that of unconjugated PTX. - Highlights: • Fe{sub 3}O{sub 4}@LaF{sub 3}: Ce{sup 3+},Tb{sup 3+}/chi nanoparticles as a carrier of paclitaxel. • These particles are water soluble, super paramagnetic and biocompatible. • The maximum

  12. An operationally simple method for separating the rare-earth elements neodymium and dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Bogart, Justin A.; Lippincott, Connor A.; Carroll, Patrick J.; Schelter, Eric J. [Department of Chemistry, University of Pennsylvania, Philadelphia, PA (United States)

    2015-07-06

    Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare-earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2-"tBuNO)C_6H_4CH_2}{sub 3}N]{sup 3-} (TriNOx{sup 3-}), feature a size-sensitive aperture formed of its three η{sup 2}-(N,O) ligand arms. Exposure of metal cations in the aperture induces a self-associative equilibrium comprising [M(TriNOx)thf]/[M(TriNOx)]{sub 2} (M=rare-earth metal). Differences in the equilibrium constants (K{sub eq}) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio S{sub Nd/Dy}=359. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Luminescence in Eu2+ and Ce3+ doped SrCaP2O7 phosphors

    Directory of Open Access Journals (Sweden)

    K.N. Shinde

    Full Text Available Eu2+ and Ce3+ doped SrCaP2O7 has been achieved by modified solid state diffusion in reducing atmosphere. The prepared phosphor powders have been identified by their characteristic X-ray diffraction patterns. The mixed phases of α-Sr2P2O7 type with orthorhombic and α-Ca2P2O7 type with monoclinic form were investigated. Its excitation wavelength ranging from 250 to 430 nm fits well with the characteristic emission of UV light-emitting diode (LED. The excitation and emission spectra indicate that these phosphors can be effectively excited by the near-UV light, and emits blue (visible range due to 4f7 → 4f65d1 transition of Eu2+ particularly, SrCaP2O7: Eu2+ whereas, photoluminescence excitation spectrum measurements of Ce3+ activated SrCaP2O7 shows that the phosphor can be efficiently excited by UV–Vis light from 280 to 310 nm to realize emission in the near visible range due to the 5d–4f transition of Ce3+ ions which is applicable for scintillation purpose. The impacts of doping of divalent europium and trivalent cerium on photoluminescence properties on SrCaP2O7 pyrophosphate phosphors were investigated and I propose a feasible interpretation. Keywords: Phosphor, Luminescence, XRD, LED, FTIR

  14. Antiplasmodial potential and quantification of aloin and aloe-emodin in Aloe vera collected from different climatic regions of India.

    Science.gov (United States)

    Kumar, Sandeep; Yadav, Manila; Yadav, Amita; Rohilla, Pooja; Yadav, Jaya Parkash

    2017-07-17

    In this study, Aloe vera samples were collected from different climatic regions of India. Quantitative HPTLC (high performance thin layer chromatography) analysis of important anthraquinones aloin and aloe-emodin and antiplasmodial activity of crude aqueous extracts was done to estimate the effects of these constituents on antiplasmodial potential of the plant. HPTLC system equipped with a sample applicator Linomat V with CAMAG sample syringe, twin rough plate development chamber (20 x 10 cm), TLC Scanner 3 and integration software WINCATS 1.4.8 was used for analysis of aloin and aloe-emodin amount. The antiplasmodial activity of plant extracts was assessed against a chloroquine (CQ) sensitive strain of P. falciparum (MRC-2). Minimum Inhibitory Concentration (MIC) of aqueous extracts of selected samples was determined according to the World Health Organization (WHO) recommended method that was based on assessing the inhibition of schizont maturation in a 96-well microtitre plate. EC (effective concentration) values of different samples were observed to predict antiplasmodial potential of the plant in terms of their climatic zones. A maximum quantity of aloin and aloe-emodin i.e. 0.45 and 0.27 mg/g respectively was observed from the 12 samples of Aloe vera. The inhibited parasite growth with EC 50 values ranging from 0.289 to 1056 μg/ml. The antiplasmodial EC 50 value of positive control Chloroquine was observed 0.034 μg/ml and EC 50 values showed by aloin and aloe-emodin was 67 μg/ml and 22 μg/ml respectively. A positive correlation was reported between aloin and aloe-emodin. Antiplasmodial activity was increased with increase in the concentration of aloin and aloe-emodin. The quantity of aloin and aloe-emodin was decreased with rise in temperature hence it was negatively correlated with temperature. The extracts of Aloe vera collected from colder climatic regions showed good antiplasmodial activity and also showed the presence of higher amount of aloin and

  15. Low energy spin dynamics of rare-earth orthoferrites YFeO3 and LaFeO3

    Science.gov (United States)

    Park, Kisoo; Sim, Hasung; Leiner, Jonathan; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Yano, Shinichiro; Gardner, Jason; Park, Je-Geun

    YFeO3 and LaFeO3\\ are members of the rare-earth orthoferrites (RFeO3) family with Pbnm space group. With the strong superexchange interaction between Fe3 + ions, both compounds exhibit the room temperature antiferromagnetic order (TN >600 K) with a slight spin canting. Here we report low-energy magnetic excitation of YFeO3 and LaFeO3 using inelastic neutron scattering measurements, showing evidence of magnon mode splitting and a spin anisotropy gap at the zone center. Spin wave calculations with the spin Hamiltonian including both Dzyaloshinsky-Moriya interaction and single-ion anisotropy accounts for the observed features well. Our results offer insight into the underlying physics of other RFeO3\\ with magnetic rare-earth ions or related Fe3+-based multiferroic perovskites such as BiFeO3. The work at the IBS CCES (South Korea) was supported by the research program of the Institute for Basic Science (IBS-R009-G1).

  16. Structural and magnetic behavior of the cubic oxyfluoride SrFeO{sub 2}F studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Corey M., E-mail: thompco@mcmaster.ca [Department of Chemistry, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Brockhouse Institute of Materials Research, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Blakely, Colin K. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Flacau, Roxana [Canadian Neutron Beam Centre, National Research Council, Chalk River Laboratories, Chalk River, ON, Canada K0J 1J0 (Canada); Greedan, John E. [Department of Chemistry, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Brockhouse Institute of Materials Research, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Poltavets, Viktor V. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)

    2014-11-15

    The oxyfluoride SrFeO{sub 2}F has been prepared via a low temperature route involving the infinite-layer SrFeO{sub 2} and XeF{sub 2}. SrFeO{sub 2}F crystallizes in the cubic space group Pm-3m with disordered oxygen and fluorine atoms on the anion site. Recent reports demonstrated that SrFeO{sub 2}F is antiferromagnetic at room temperature and the zero field cooled and field cooled curves diverge at ∼150 K and ∼60 K, suggesting that the material has a spin glassy magnetic state at low temperatures. In this article, variable-temperature neutron diffraction (4–723 K) was performed to clarify the magnetic behavior observed in this material. Neutron powder diffraction measurements confirmed the antiferromagnetic (AFM) ordering of the system at room temperature. Below 710(1) K, the magnetic structure is a G-type AFM structure characterized by a propagation vector k=(1/2 , 1/2 , 1/2 ). The ordered moments on Fe{sup 3+} are 4.35(6)µ{sub B} at 4 K and 4.04(5)µ{sub B} at 290 K. Our results indicate that the cubic structure is retained all the way to base temperature (4 K) in contrast to PbFeO{sub 2}F. These results are compared with those of Pb and Ba analogs which exhibit very similar magnetic behavior. Furthermore, the observation of magnetic reflections at 4 K in the diffraction pattern shows the absence of the previously proposed spin glassy behavior at low temperatures. Previous proposals to explain the ZFC/FC divergences are examined. - Graphical abstract: Variable temperature powder neutron diffraction was employed to follow the evolution of the long range antiferromagnetic state in SrFeO{sub 2}F. - Highlights: • SrFeO{sub 2}F prepared via low temperature route involving SrFeO{sub 2} and XeF{sub 2}. • The cubic structure, Pm-3m, is retained at low temperatures, 4 K. • The magnetic structure is G-type AFM with T{sub N}=710 K and Fe{sup 3+} moment of 4.35µ{sub B}. • A small volume, bulk decoupled, spin glassy domain/cluster mechanism is proposed.

  17. Trace determination of yttrium and some heavy rare-earths by adsorptive stripping voltammetry

    International Nuclear Information System (INIS)

    Wang, J.; Zadeii, J.M.

    1986-01-01

    The interfacial and redox behaviour of rare-earth chelates the Solochrome Violet RS are exploited for developing a sensitive adsorptive stripping procedure. Yttrium and heavy rare earths such as dysprosium, holmium and ytterbium can thus be measured at ng/ml levels and below, by controlled adsorptive accumulation of the metal chelate at the hanging mercury drop electrode, followed by voltammetric measurement of the surface species. With a 3-min preconcentration time, the detection limit ranges from 5 x 10 -10 to 1.4 x 10 -9 M. The relative standard deviation at the 7 ng/ml level ranges from 4 to 7%. A separation method is required to differentiate between the individual rare-earth metals. (author)

  18. Toxicologic Assessment of a Commercial Decolorized Whole Leaf Aloe Vera Juice, Lily of the Desert Filtered Whole Leaf Juice with Aloesorb

    Science.gov (United States)

    Winters, Wallace D.; Scott, Michael; David, Andrew; Gillis, Glenn; Stoufflet, Thaya; Nair, Anand; Kousoulas, Konstantine

    2013-01-01

    Aloe vera, a common ingredient in cosmetics, is increasingly being consumed as a beverage supplement. Although consumer interest in aloe likely stems from its association with several health benefits, a concern has also been raised by a National Toxicology Program Report that a nondecolorized whole leaf aloe vera extract taken internally by rats was associated with intestinal mucosal hyperplasia and ultimately malignancy. We tested a decolorized whole leaf (DCWL) aloe vera, treated with activated charcoal to remove the latex portion of the plant, for genotoxicity in bacteria, acute/subacute toxicity in B6C3F1 mice, and subchronic toxicity in F344 rats. We found this DCWL aloe vera juice to be nongenotoxic in histidine reversion and DNA repair assays. Following acute administration, mice exhibited no adverse signs at 3- or 14-day evaluation periods. When fed to male and female F344 rats over 13 weeks, DCWL aloe led to no toxicity as assessed by behavior, stools, weight gain, feed consumption, organ weights, and hematologic or clinical chemistry profiles. These rats had intestinal mucosal morphologies—examined grossly and microscopically—that were similar to controls. Our studies show that oral administration of this DCWL aloe juice has a different toxicology profile than that of the untreated aloe juice at exposures up to 13 weeks. PMID:23554812

  19. Toxicologic Assessment of a Commercial Decolorized Whole Leaf Aloe Vera Juice, Lily of the Desert Filtered Whole Leaf Juice with Aloesorb

    Directory of Open Access Journals (Sweden)

    Inder Sehgal

    2013-01-01

    Full Text Available Aloe vera, a common ingredient in cosmetics, is increasingly being consumed as a beverage supplement. Although consumer interest in aloe likely stems from its association with several health benefits, a concern has also been raised by a National Toxicology Program Report that a nondecolorized whole leaf aloe vera extract taken internally by rats was associated with intestinal mucosal hyperplasia and ultimately malignancy. We tested a decolorized whole leaf (DCWL aloe vera, treated with activated charcoal to remove the latex portion of the plant, for genotoxicity in bacteria, acute/subacute toxicity in B6C3F1 mice, and subchronic toxicity in F344 rats. We found this DCWL aloe vera juice to be nongenotoxic in histidine reversion and DNA repair assays. Following acute administration, mice exhibited no adverse signs at 3- or 14-day evaluation periods. When fed to male and female F344 rats over 13 weeks, DCWL aloe led to no toxicity as assessed by behavior, stools, weight gain, feed consumption, organ weights, and hematologic or clinical chemistry profiles. These rats had intestinal mucosal morphologies—examined grossly and microscopically—that were similar to controls. Our studies show that oral administration of this DCWL aloe juice has a different toxicology profile than that of the untreated aloe juice at exposures up to 13 weeks.

  20. Rare earth conversion coatings grown on AA6061 aluminum alloys. Corrosion studies

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti S, S. B. [Instituto Tecnologico de Ciudad Madero, Av. 1o. de Mayo y Sor Juana I. de la Cruz, Col. Los Mangos, 89440 Ciudad Madero, Tanaulipas (Mexico); Dominguez C, M. A.; Torres H, A. M.; Onofre B, E. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Altamira, Carretera Tampico-Puerto Industrial Altamira Km. 14.5, 89600 Altamira, Tamaulipas (Mexico); De la Cruz H, W., E-mail: mdominguezc@ipn.mx [UNAM, Centro de Nanociencias y Nanotecnologia, Apdo. Postal 2681, 22800 Ensenada, Baja California (Mexico)

    2014-07-01

    The present work is aimed to investigate the corrosion resistance of rare earth protective coatings deposited by spontaneous deposition on AA6061 aluminum alloy substrates. Coatings were deposited from water-based Ce(NO{sub 3}){sub 3} and La(NO{sub 3}){sub 3} solutions by varing parameters such as rare earth solution concentration, bath temperature and immersion time. The values of the Tafel slopes indicate that the cathodic process is favored by concentration polarization rather than activation polarization. Chemical and morphological characterizations of the surface before and after electrochemical evaluations were performed by X-ray photoelectron spectroscopy and scanning electron microscopy. (Author)