WorldWideScience

Sample records for rare earth magnets

  1. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  2. Rare earth metal alloy magnets

    International Nuclear Information System (INIS)

    Harris, I.R.; Evans, J.M.; Nyholm, P.S.

    1979-01-01

    This invention relates to rare earth metal alloy magnets and to methods for their production. The technique is based on the fact that rare earth metal alloys (for e.g. cerium or yttrium) which have been crumbled to form a powder by hydride formation and decomposition can be used for the fabrication of magnets without the disadvantages inherent in alloy particle size reduction by mechanical milling. (UK)

  3. Rare earth permanent magnets

    International Nuclear Information System (INIS)

    Higuchi, Akira

    1992-01-01

    This paper is a review of the new technologies for Nd-Fe-B magnets, their markets and future perspectives. This type of magnet is a product approaching the ideal magnet, and is based upon the development history of two previous generations of Sm-Co alloy systems and the recent progress on physical and metallurgical research. (orig.)

  4. Rare earth permanent magnet with easy magnetization

    International Nuclear Information System (INIS)

    Kim, A.S.; Camp, F.E.

    1998-01-01

    Rare earth permanent magnets have high energy products and coercivities, and thus the volume miniaturization of magnetic devices has been possible with improved magnetic performance. Although the high energy products of these rare earth permanent magnets provide substantial advantages for magnetic design and application, the strong magnetic force of the magnetized magnets makes assembly difficult. Therefore, a special device is needed to assemble the magnetized magnets. On the other hand, unmagnetized magnets are assembled and then they are magnetized. The assembled magnets are generally more difficult to magnetize than unassembled magnets because a much less effective magnetic field may be applied to them. This is particularly true for the rare earth permanent magnets because they usually need a much higher magnetic field to be fully magnetized than alnico or ferrite magnets. To obtain optimum magnetic properties, the required minimum magnetizing fields for SmCo 5 , Sm 2 TM 17 and Nd 2 Fe 14 B magnets were reported as 25-30 kOe, 45-60 kOe and 25-30 kOe, respectively. If the required magnetizing field for full saturation could be lowered, the effective utilization of magnetic properties would be maximized and the magnetic design option could be expanded with reduced restrictions. To meet this demand, we have sought to lower the field required for full magnetic saturation, and found that an increase in Dy content in R-(Fe,Co,Cu)-B type magnets lowers the field required for full saturation as well as improves the temperature stability. By increasing the H ci with Dy addition from 14 kOe to 24 and 34 kOe, the field required for full magnetic saturation decreases from about 20 to 15 and 10 kOe, respectively. This dual benefit will open up new application areas with more freedom for magnet design options. The mechanism for the lower magnetizing fields will be discussed. (orig.)

  5. Rare earth-iron-boron premanent magnets

    International Nuclear Information System (INIS)

    Ghendehari, M.H.

    1988-01-01

    This patent describes a method for producing rare earth-iron-boron permanent magnets containing added rare earth oxide, comprising the steps of: (a) mixing a particulate alloy containing at least one rare earth metal, iron, and boron with at least one particulate rare earth oxide; (b) aligning magnetic domains of the mixture in a magnetic field; (c) compacting the aligned mixture to form a shape; and (d) sintering the compacted shape

  6. Magnetic Rare-Earth Superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Gibbs, D.; Böni, P.

    1988-01-01

    The magnetic structures of several single‐crystal, magnetic rare‐earth superlattice systems grown by molecular‐beam epitaxy are reviewed. In particular, the results of recent neutron diffraction investigations of long‐range magnetic order in Gd‐Y, Dy‐Y, Gd‐Dy, and Ho‐Y periodic superlattices...... are presented. In the Gd‐Y system, an antiphase domain structure develops for certain Y layer spacings, whereas modified helical moment configurations are found to occur in the other systems, some of which are commensurate with the chemical superlattice wavelength. References are made to theoretical interaction...

  7. Rare earth elements and permanent magnets (invited)

    Science.gov (United States)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  8. Non-rare earth magnetic nanoparticles

    Science.gov (United States)

    Carpenter, Everett E.; Huba, Zachary J.; Carroll, Kyler J.; Farghaly, Ahmed; Khanna, Shiv N.; Qian, Meichun; Bertino, Massimo

    2017-09-26

    Continuous flow synthetic methods are used to make single phase magnetic metal alloy nanoparticles that do not contain rare earth metals. Soft and hard magnets made from the magnetic nanoparticles are used for a variety of purposes, e.g. in electric motors, communication devices, etc.

  9. Quantum Theory of Rare-Earth Magnets

    Science.gov (United States)

    Miyake, Takashi; Akai, Hisazumi

    2018-04-01

    Strong permanent magnets mainly consist of rare earths (R) and transition metals (T). The main phase of the neodymium magnet, which is the strongest magnet, is Nd2Fe14B. Sm2Fe17N3 is another magnet compound having excellent magnetic properties comparable to those of Nd2Fe14B. Their large saturation magnetization, strong magnetocrystalline anisotropy, and high Curie temperature originate from the interaction between the T-3d electrons and R-4f electrons. This article discusses the magnetism of rare-earth magnet compounds. The basic theory and first-principles calculation approaches for quantitative description of the magnetic properties are presented, together with applications to typical compounds such as Nd2Fe14B, Sm2Fe17N3, and the recently synthesized NdFe12N.

  10. Rapid analysis of some rare earth magnets

    International Nuclear Information System (INIS)

    Raoot, K.N.; Raoot, Sarala; Rukmani Desikan, N.

    1978-01-01

    A simple complexometric method for the quick analysis of the constituent elements in some quaternary rare earth magnets of the type RE-Co-Cu-Fe and RE-Ni-Cu-Fe is described. The technique is based on a total titration, subsequent release of EDTA from rare earth with ammonium fluoride and that from copper (II) with ascorbic acid and thiourea followed by determination of the excess and liberated EDTA by lead nitrate in a weak acid medium using xylenol orange indicator. In another, aliquot iron (III) and rare earth are first masked with sodium fluoride, and copper (II) with ascorbic acid and thiourea before cobalt (II) or nickel (II) is estimated by back titration. Iron is calculated by difference. The new method yields accurate and reproducible results with error not exceeding 1%. A set of three samples can conveniently be analysed in two hours. (author)

  11. Rapid analysis of some rare earth magnets

    Energy Technology Data Exchange (ETDEWEB)

    Raoot, K N; Raoot, S; Rukmani Desikan, N [Defence Metallurgical Research Lab., Hyderabad (India)

    1978-12-01

    A simple complexometric method for the quick analysis of the constituent elements in some quaternary rare earth magnets of the type RE-Co-Cu-Fe and RE-Ni-Cu-Fe is described. The technique is based on a total titration, subsequent release of EDTA from rare earth with ammonium fluoride and that from copper (II) with ascorbic acid and thiourea followed by determination of the excess and liberated EDTA by lead nitrate in a weak acid medium using xylenol orange indicator. In another, aliquot iron (III) and rare earth are first masked with sodium fluoride, and copper (II) with ascorbic acid and thiourea before cobalt (II) or nickel (II) is estimated by back titration. Iron is calculated by difference. The new method yields accurate and reproducible results with error not exceeding 1%. A set of three samples can conveniently be analysed in two hours.

  12. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  13. Magnetic properties of rare-earth intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.

    1978-01-01

    A review is given of the concepts at present used to explain the magnetic properties of rare-earth intermetallics which have been the subject of numerous investigations in recent years. Rare-earth intermetallics with the formula Rsub(a)Bsub(b) are divided according to the magnetic moment of the B atom(s). If there is no magnetic moment present at the B-site, the exchange is only between the magnetic moments at the R-sites, which can only be of indirect character. One possible model is still the RKKY model, although it usually gives in practice only a qualitative description of the magnetic properties. Typical R-B compounds with the B-moment equal to zero are (for instance) the RA1 2 compounds, and related compounds such as the RZn and RCd compounds as well as compounds of the general formula RB 2 (B = Ni, Os, Ir, Pd, Ru or Rh). Of all intermetallics with nonzero B-moment, the R-3d intermetallics are the most important. These intermetallics can be formed with Mn, Fe, Co and Ni. In these systems there exist in principle three interactions, namely between the R-R, R-3d and 3d-3d atoms. The most important is usually the latter interaction. After a short discussion of the crystal structures which occur with R-3d intermetallics, the basic magnetic properties of R-3d intermetallics are presented. These properties are discussed with respect to the formation of a magnetic moment at the 3d site in the framework of present band theories. Special emphasis is given to a discussion of the localized or itinerant character of 3d electrons. (author)

  14. Magnetic form factors of rare earth ions

    International Nuclear Information System (INIS)

    Deckman, H.W.

    1976-01-01

    The magnetic scattering of neutrons by atoms has been investigated by exploiting its similarity to the radiation problem in spectroscopy. Expressions for the magnetic scattering amplitude were developed for cases in whcih an atom in the l/sup n/ electronic configuration is described either by a relativistic or nonrelativistic Hamiltonian. For each of these cases, it has been shown that the magnetic scattering amplitude can be expressed in terms of relativistic or nonrelativistic matrix elements of magnetic and electric multipole operators. For a nonrelativistic atom, the calculation of these matrix elements has been separated into evaluating radial matrix elements and matrix elements of Racah tensors W/(sup 0,k)k/ and W/(sup 1,k')k/. For a relativistic atom the effective operator approach has been used to define effective multipole operators so that a relativistic result is obtained by taking matrix elements of these effective operators between nonrelativistic states of the atom. The calculation of matrix elements of these effective operators has been reduced to evaluating relativistic radial integrals and matrix elements of the Racah tensors taken between nonrelativistic states of the atom. It is shown tha for the case of elastic scattering by either a relativistic or nonrelativistic atom in single Russel-Saunders state, the magnetic scattering amplitude can be written in the conventional form p(vector q)vector q/sub m/.vector sigma. General expressions for p(vector q) as well as elastic magnetic form factorshave been obtained. The formalism has been illustrated throughout by applying it to the case of scattering by rare earth ions

  15. Replacing critical rare earth materials in high energy density magnets

    Science.gov (United States)

    McCallum, R. William

    2012-02-01

    High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.

  16. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  17. Rare-earth magnets and their applications. Vol. 2. Proceedings

    International Nuclear Information System (INIS)

    Schultz, L.; Mueller, K.H.

    1998-01-01

    The following topics were dealt with: permanent magnets, rare- earth magnets, manufacturing, markets, powder metallurgy, sintering, mechanical alloying, nanocrystalline magnets, Curie temperature, domain structure, exchange coupling, stoichiometry effects, coercive force, remanence, magnetisation distribution, demagnetisation, mechanical properties, deformation behaviour, microstructure, grain size effects, texture, magnetic anisotropy, hydrogen assisted processing, nitriding, hydrogen embrittlement, permanent magnet motors, permanent magnet generators, brushless machines, linear motors, DC motors, AC motors, servomotors, magnetic levitation, magnetic field calculations, magnetic damping, magnet system design, system optimisation, corrosion protection, magnetometers, hard magnetic films, magnetostriction, magnetic multilayers, spin glass behaviour

  18. Magnetic strength and corrosion of rare earth magnets.

    Science.gov (United States)

    Ahmad, Khalid A; Drummond, James L; Graber, Thomas; BeGole, Ellen

    2006-09-01

    Rare earth magnets have been used in orthodontics, but their corrosion tendency in the oral cavity limits long-term clinical application. The aim of this project was to evaluate several; magnet coatings and their effects on magnetic flux density. A total of 60 neodymium-iron-boron magnets divided into 6 equal groups--polytetrafluoroethylene-coated (PTFE), parylene-coated, and noncoated--were subjected to 4 weeks of aging in saline solution, ball milling, and corrosion testing. A significant decrease in magnet flux density was recorded after applying a protective layer of parylene, whereas a slight decrease was found after applying a protective layer of PTFE. After 4 weeks of aging, the coated magnets were superior to the noncoated magnets in retaining magnetism. The corrosion-behavior test showed no significant difference between the 2 types of coated magnets, and considerable amounts of iron-leached ions were seen in all groups. Throughout the processes of coating, soaking, ball milling, and corrosion testing, PTFE was a better coating material than parylene for preserving magnet flux density. However, corrosion testing showed significant metal leaching in all groups.

  19. Local magnetism in rare-earth metals encapsulated in fullerenes

    NARCIS (Netherlands)

    De Nadai, C; Mirone, A; Dhesi, SS; Bencok, P; Brookes, NB; Marenne, [No Value; Rudolf, P; Tagmatarchis, N; Shinohara, H; Dennis, TJS; Marenne, I.; Nadaï, C. De

    Local magnetic properties of rare-earth (RE) atoms encapsulated in fullerenes have been characterized using x-ray magnetic circular dichroism and x-ray absorption spectroscopy (XAS). The orbital and spin contributions of the magnetic moment have been determined through sum rules and theoretical

  20. Micromagnetics of rare-earth efficient permanent magnets

    Science.gov (United States)

    Fischbacher, Johann; Kovacs, Alexander; Gusenbauer, Markus; Oezelt, Harald; Exl, Lukas; Bance, Simon; Schrefl, Thomas

    2018-05-01

    The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet’s microstructure is optimized.

  1. Magnetomigration of rare-earth ions in inhomogeneous magnetic fields.

    Science.gov (United States)

    Franczak, Agnieszka; Binnemans, Koen; Jan Fransaer

    2016-10-05

    The effects of external inhomogenous (gradient) magnetic fields on the movement of the rare-earth ions: Dy 3+ , Gd 3+ and Y 3+ , in initially homogeneous aqueous solutions have been investigated. Differences in the migration of rare-earth ions in gradient magnetic fields were observed, depending on the magnetic character of the ions: paramagnetic ions of Dy 3+ and Gd 3+ move towards regions of the sample where the magnetic field gradient is the strongest, while diamagnetic ions of Y 3+ move in the opposite direction. It has been showed that the low magnetic field gradients, such the ones generated by permanent magnets, are sufficient to observe the magnetomigration effects of the ions in solution. The present work clearly establishes the behavior of magnetically different ions in initially homogeneous aqueous solutions exposed to magnetic field gradients. To this avail, a methodology for measuring the local concentration differences of metal ions in liquid samples was developed.

  2. The Rare Earth Magnet Industry and Rare Earth Price in China

    Science.gov (United States)

    Ding, Kaihong

    2014-07-01

    In the past four years, the price of rare earth metal fluctuates sharply for many reasons. Currently, it has become more stable and more reasonable. This presentation is focused on the effect about the rare earth metal price. Some motor manufacturers have shifted from rare earth permanent magnet to ferrite magnet. Many motor manufacturers changed the design for the motor cooling system to make the motor function at a lower temperature. Thus the consumption of Dy can be markedly reduced. As for manufacturer of NdFeB magnet, we are also trying to optimize our process to reduce to dependence of HREE such as Dy and Tb. HS process have been introduced to solve the problem. With more and more people focusing and engaging on the REE industry, the price of REE will be more transparent without too many fluctuations. China is considering the problems of balancing the environment, energy sources, and labor sources. The application field about NdFeB such as wind turbine generator, HEV/EV, FA /OA is flourishing.

  3. The Rare Earth Magnet Industry and Rare Earth Price in China

    Directory of Open Access Journals (Sweden)

    Ding Kaihong

    2014-07-01

    Full Text Available In the past four years, the price of rare earth metal fluctuates sharply for many reasons. Currently, it has become more stable and more reasonable. This presentation is focused on the effect about the rare earth metal price. Some motor manufacturers have shifted from rare earth permanent magnet to ferrite magnet. Many motor manufacturers changed the design for the motor cooling system to make the motor function at a lower temperature. Thus the consumption of Dy can be markedly reduced. As for manufacturer of NdFeB magnet, we are also trying to optimize our process to reduce to dependence of HREE such as Dy and Tb. HS process have been introduced to solve the problem. With more and more people focusing and engaging on the REE industry, the price of REE will be more transparent without too many fluctuations. China is considering the problems of balancing the environment, energy sources, and labor sources. The application field about NdFeB such as wind turbine generator, HEV/EV, FA /OA is flourishing.

  4. Rare-earth magnet ingestion: a childhood danger reaches adolescence.

    Science.gov (United States)

    Agha, Beesan Shalabi; Sturm, Jesse J; Costello, Brian E

    2013-10-01

    Ingestion of multiple magnets may cause serious gastrointestinal morbidity, such as pressure necrosis, perforation, fistula formation, or intestinal obstruction due to forceful attraction across bowel wall. Although the consequences of multiple magnet ingestion are well documented in young children, the current popularity of small, powerful rare-earth magnets marketed as "desk toys" has heightened this safety concern in all pediatric age groups. A recent US Consumer Product Safety Commission product-wide warning additionally reports the adolescent practice of using toy high-powered, ball-bearing magnets to simulate tongue and lip piercings, a behavior that may increase risk of inadvertent ingestion. We describe 2 cases of older children (male; aged 10 and 13 years, respectively) with unintentional ingestion of multiple rare-earth magnets. Health care providers should be alerted to the potential for misuse of these high-powered, ball-bearing magnets among older children and adolescents.

  5. Rare earth magnets with high energy products

    International Nuclear Information System (INIS)

    Hirosawa, S.; Kaneko, Y.

    1998-01-01

    High energy-products exceeding 430 kj/m 3 (54 MGOe) have been realized on anisotropic permanent magnets based on the Nd 2 Fe 14 B phase, recently. To produce extremely high-energy-product permanent magnets, special processes have been designed in order to realize the minimum oxygen content, the maximum volume fraction of the hard magnetic Nd 2 Fe 14 B phase, the highest orientation of the easy axis of magnetization, and small and homogeneous crystalline grain sizes in the finished magnets. For the powder metallurgical process, special techniques such as low-oxygen fine powder processing and magnetic alignment using pulsed magnetic fields have been developed. It has been shown that a good control of both homogeneity of distribution of constituent phases and the narrowness of the size distribution in the starting powder have great influences on the magnetic energy products. It is emphasized that the recently developed techniques are applicable in a large-scale production, meaning that extremely high-energy-product magnets are available on commercial basis. (orig.)

  6. Rare earth permanent magnets in China: production and raw materials

    International Nuclear Information System (INIS)

    Luo, Y.

    1998-01-01

    With the development of computer, electronics, communication and modern information industries, NdFeB magnet industry is growing rapidly as a booming business worldwide. Based on the abundance of rare earth and manpower, supporting by the technical teams and the huge domestic market, China NdFeB magnet industry made big jump during the last decade. Its growth rate is the highest one among all other countries. Now China occupies number one place in the world not only due to its richest rare earth reserves, but also due to its output of rare earth, especially, its sales to the international market. China is the only country, who is able to meet the market needs of rare earth worldwide. The current situation of NdFeB magnet industry can be concluded as ''five highs'', i.e. ''high volume growth'', ''high grade development'', ''high expansion of capacity'', ''high value added product'' and ''high variation speed''. The connotations of these ''five highs'' and a brief review on Chinese rare earth industry will be given in this paper. (orig.)

  7. Crystal chemistry and magnetic properties of ternary rare earth sulfides

    International Nuclear Information System (INIS)

    Plug, C.M.; Rijksuniversiteit Leiden

    1977-01-01

    The results of magnetic measurements on two groups of ternary rare earth sulphides are described, the MLnS 2 (M=Li, Na, K) type of compounds and the series Ln 2 ZrS 5 , where Ln denotes one of the rare earths. None of these compounds is metallic, excluding the possibility of RKKY-interaction. In chapter II a survey of the relevant theory on magnetic properties and crystal field splitting is given. In spite of the similarity in chemical properties of the rare earths, the crystal chemistry of their compounds is rather complex. This is due to the lanthanide contraction. The third chapter deals with the description and classification of the numerous crystal structures of both ternary and binary rare earth sulphides that have been observed. Rather simple relations between various structures are presented using a new method of structure classification. The magnetic interactions expected to be based on superexchange via the anions, which is usually very structure dependent. Experiments to study the crystallographic ordering, applying both X-ray and electron diffraction methods and the results of the magnetic measurements on the compounds MLnS 2 are reported in chapter IV. The compounds Ln 2 ZrS 5 are candidates for a systematic study of the variation of the magnetic properties along the rare earth series. The results of magnetic measurements on these compounds are presented in chapter V, combined with the results of specific heat measurements. Also the magnetic structure of two representatives, Tb 2 ZrS 5 and Dy 2 ZrS 5 , determined by neutron diffraction experiments below the ordering temperature, is reported

  8. Magnetic anisotropy in rare-earth metals

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans; Lindgård, Per-Anker

    1970-01-01

    The magnetic field dependence of the energy of long- wavelength magnons in Tb-10%Ho has been studied by inelastic neutron scattering. The results agree with the `frozen-lattice' model, provided that the second-order magnetoelastic effect is taken into account. The planar anisotropy is almost...

  9. The symmetries of magnetic structures in rare earth tetraborides

    International Nuclear Information System (INIS)

    Schaefer, W.; Will, G.; Buschow, K.H.J.

    1975-01-01

    The collinear antiferromagnetic spin configurations, which are possible in the rare earth tetraboride structure (space group P 4/mbm) and their distinction by neutron diffraction are discussed. The symmetries of the different antiferromagnetic structures are described by the corrosponding magnetic space groups. Neutron diffraction data collected from ErB 4 are integrated in the structure discussion. (orig.) [de

  10. High coercivity rare earth-transition metal magnets

    International Nuclear Information System (INIS)

    Croat, J.J.

    1982-01-01

    Ferromagnetic compositions having intrinsic magnetic coercivities at room temperature of at least 1,000 Oersteds are formed by the controlled quenching of molten rare earth -transition metal alloys. Hard magnets may be inexpensively formed from the lower atomic weight lanthanide elements and iron. The preferable compositions lie within: at least one of Fe, Ni, Co (20 to 70 atomic percent); and at least one of Ce, Pr, Na, Sm, Eu, Tb, Dy, Ho, Er, Tm, Y (80 to 30 atomic percent). (author)

  11. High coercivity rare earth-transition metal magnets

    International Nuclear Information System (INIS)

    Croat, J.J.

    1982-01-01

    Ferromagnetic compositions having intrinsic magnetic coercivities at room temperature of at least 1,000 Oersteds are formed by the controlled quenching of molten rare earth-transition metal alloys. Hard magnets may be inexpensively formed from the lower atomic weight lanthanide elements and iron. The preferable compositions lie within: at least one of Fe, Ni, Co; 20 - 70 atomic percent: at least one of Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Y; 80 - 30 atomic percent. (author)

  12. Samarium-cobalt type rare earth permanent magnets

    International Nuclear Information System (INIS)

    Kamat, S.V.

    2014-01-01

    Permanent magnets are one of the oldest and largest applications of magnetic materials and form an integral part of our modern industrial society. They belong to a special class of functional materials and are characterized for remanence (flux output from the magnet), coercivity (resistance to demagnetization) and energy product (material energy density) from the second quadrant of the magnetic hysteresis loop. The reliability, stability, size, weight, cost and performance of many electro-technical devices depend mainly on the properties of permanent magnets used in them. There are three important families of permanent magnets viz., Ferrites, Alnicos and Rare Earth Permanent Magnets (REPMs) with energy product values ranging from 3 to 50 MGOe and among the front ranking high performance REPMs, SmCo 5 , Sm 2 Co 17 type and NdFeB alloys are technologically the most important materials. They are used in a wide range of applications ranging from consumer products to very specialized areas of tele-communications, microelectronics, defence, space, avionics etc. While NdFeB has the highest energy product, Sm-Co based magnets are preferred for most critical applications where temperature stability of magnetic properties is essential because of their significantly higher Curie temperatures. In this presentation some of the key challenges associated with these Sm-Co based rare earth permanent magnets will be highlighted. (author)

  13. Rare-earth magnet applications in energy conversion

    International Nuclear Information System (INIS)

    Tripathi, K.C.

    1998-01-01

    In recent years there has been considerable progress in the field of development and variety of new applications of rare-earth and rare-earth transition metal magnets. High energy content Nd-Fe-B magnet system which competes with superconducting magnets is very promising for the use in energy conversion machines, levitation systems, magnetic resonance investigation and other magnetic applications. Energy conversion machines such as motors and generators are of interest in this context. Motor converts electrical energy into mechanical energy using permanent magnets and ferromagnetic materials as its components. Electric generator converts mechanical energy into electricity using permanent magnets and ferromagnetic material. In both cases symmetry and symmetry breaking play an important role. Symmetry exists above curie temperature, as temperature is lowered symmetry is broken due to spontaneous magnetisation. Author and coworkers developed some new and highest efficiency, permanent magnet based, electronically controlled, dynamically synchronised pulsed dc linear and rotational motors which are briefly described here. Based on such experience and considering field interactions inside material under dynamical conditions and special geometrical situations, order-disorder processes, symmetry breaking and energy transfer on the basis of manifold aspects as a cooperative many body interaction, thermal fluctuations, zero-point energy, dissipation of energy, entropy exchange are discussed in context of conversion of environmental heat into electricity as suggested by Tripathi earlier. (orig.)

  14. Addressing Criticality in Rare Earth Elements via Permanent Magnets Recycling

    Science.gov (United States)

    Nlebedim, I. C.; King, A. H.

    2018-02-01

    Rare earth elements (REEs) are critical for many advanced technologies and are faced with potential supply disruptions. Recycling of permanent magnets (PMs) can be good sources for REEs which can help minimize global dependence on freshly mined REEs, but PMs are rarely recycled. Recycling of PMs has been discussed with respect to improving REEs resource sustainability. Some challenges to be addressed in order to establish industrially deployable technologies for PMs recycling have also been discussed, including profitability, energy efficiency and environmental impacts. Key considerations for promoting circular economy via PMs recycling is proposed with the focus on deciding the target points in the supply chain at which the recycled products will be inserted. Important technical considerations for recycling different forms of waste PMs, including swarfs, slags, shredded and intact hard disk drives magnets, have been presented. The aspects of circular economy considered include reusing magnets, remanufacturing magnets and recovering of REEs from waste PMs.

  15. Magnetic Partitioning Nanofluid for Rare Earth Extraction from Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, Bernard P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, Praveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nune, Satish K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-21

    Rare earth metals are critical materials in a wide variety of applications in generating and storing renewable energy and in designing more energy efficient devices. Extracting rare earth metals from geothermal brines is a very challenging problem due to the low concentrations of these elements and engineering challenges with traditional chemical separations methods involving packed sorbent beds or membranes that would impede large volumetric flow rates of geothermal fluids transitioning through the plant. We are demonstrating a simple and highly cost-effective nanofluid-based method for extracting rare earth metals from geothermal brines. Core-shell composite nanoparticles are produced that contain a magnetic iron oxide core surrounded by a shell made of silica or metal-organic framework (MOF) sorbent functionalized with chelating ligands selective for the rare earth elements. By introducing the nanoparticles at low concentration (≈0.05 wt%) into the geothermal brine after it passes through the plant heat exchanger, the brine is exposed to a very high concentration of chelating sites on the nanoparticles without need to pass through a large and costly traditional packed bed or membrane system where pressure drop and parasitic pumping power losses are significant issues. Instead, after a short residence time flowing with the brine, the particles are effectively separated out with an electromagnet and standard extraction methods are then applied to strip the rare earth metals from the nanoparticles, which are then recycled back to the geothermal plant. Recovery efficiency for the rare earths at ppm level has now been measured for both silica and MOF sorbents functionalized with a variety of chelating ligands. A detailed preliminary techno-economic performance analysis of extraction systems using both sorbents showed potential to generate a promising internal rate of return (IRR) up to 20%.

  16. Magnetism in rare-earth metals and rare-earth intermetallic compounds

    International Nuclear Information System (INIS)

    Johansson, B.; Nordstroem, L.; Eriksson, O.; Brooks, M.S.S.

    1991-01-01

    Some of out recent local spin density electronic structure calculations for a number of ferromagnetic rare-earth systems are reviewed. A simplified model of the level densities for rare-earth (R) transition metal (M) intermetallic compounds, R m M n , is used to describe in a simple way the main features of their basic electronic structure. Explicit calculations for LuFe 2 and RFe 2 (R=Gd-Yb) systems are presented, where a method to treat simultaneously the localized 4f and the conduction electron spin magnetism is introduced. Thereby it becomes possible to calculate the K RM exchange coupling constant. This method is also used to study theoretically the permanent magnet material Nd 2 Fe 14 B. The electronic structure of the anomalous ferromagnets CeFe 2 and CeCo 5 is discussed and an induced 4f itinerant magnetism is predicted. The γ-α transition in cerium metal is considered, and results from calculations including orbital polarization are presented, where a volume collapse of 10% is obtained. On one side of the transition the 4f electrons are calculated to be essentially non-bonding (localized) and on the other side they are found to contribute to the metallic bonding and this difference in behaviour gives rise to the volume collapse. Recent calculations by Wills, Eriksson and Boring for the crystal structure changes in cerium metal under high pressure are discussed. Their successful results imply an itinerant picture for the 4f electrons in α-cerium. Consequently this strongly supports the view that the γ-α phase transformation is caused by a Mott transition of the 4f electrons. (orig.)

  17. Random magnetism in amorphous rare-earth alloys (invited)

    Science.gov (United States)

    Sellmyer, D. J.; Nafis, S.

    1985-04-01

    Several aspects of the magnetic transitions seen in rare-earth metallic glasses are discussed, particularly with reference to recent theoretical work. These include: (a) apparent double transitions observed in Gd glasses where exchange fluctuations are important, (b) evidence for a correlated speromagnetic state recently predicted by Chudnovsky and Serota, and (c) the analysis of a Tb glass with strong random anisotropy in terms of an Ising-type spin-glass transition.

  18. Extreme magnetoresistance in magnetic rare-earth monopnictides

    Science.gov (United States)

    Ye, Linda; Suzuki, Takehito; Wicker, Christina R.; Checkelsky, Joseph G.

    2018-02-01

    The acute sensitivity of the electrical resistance of certain systems to magnetic fields known as extreme magnetoresistance (XMR) has recently been explored in a new materials context with topological semimetals. Exemplified by WTe2 and rare-earth monopnictide La(Sb,Bi), these systems tend to be nonmagnetic, nearly compensated semimetals and represent a platform for large magnetoresistance driven by intrinsic electronic structure. Here we explore electronic transport in magnetic members of the latter family of semimetals and find that XMR is strongly modulated by magnetic order. In particular, CeSb exhibits XMR in excess of 1.6 ×106% at fields of 9 T whereas the magnetoresistance itself is nonmonotonic across the various magnetic phases and shows a transition from negative magnetoresistance to XMR with fields above magnetic ordering temperature TN. The magnitude of the XMR is larger than in other rare-earth monopnictides including the nonmagnetic members and follows a nonsaturating power law to fields above 30 T. We show that the overall response can be understood as the modulation of conductivity by the Ce orbital state and for intermediate temperatures can be characterized by an effective medium model. Comparison to the orbitally quenched compound GdBi supports the correlation of XMR with the onset of magnetic ordering and compensation and highlights the unique combination of orbital inversion and type-I magnetic ordering in CeSb in determining its large response. These findings suggest a paradigm for magneto-orbital control of XMR and are relevant to the understanding of rare-earth-based correlated topological materials.

  19. Study on Magnetic Responsibility of Rare Earth Ferrite/Polyacrylamide Magnetic Microsphere

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Wang Zhifeng; Zhang Hong; Dai Shaojun; Qiu Guanming; Okamoto Hiroshi

    2005-01-01

    In inverse microemulsion, rare earth ferrite/polyacrylamide magnetic microsphere were prepared and their magnetic responsibility were studied by magnetic balance. Results indicate that the magnetic responsibility of microsphere relates to magnetic moment of rare earth ion, and it can be improved by the addition of dysprosium ion of high magnetic moment. Dysprosium content has an effect on magnetic responsibility of dysprosium ferrite/polyacrylamide magnetic microsphere. The microsphere displays strong magnetic responsibility when the molar ratio of Dy3+/iron is 0.20.

  20. Mimicking the magnetic properties of rare earth elements using superatoms.

    Science.gov (United States)

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A W

    2015-04-21

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel "magic boron" counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters.

  1. Correlations in rare-earth transition-metal permanent magnets

    International Nuclear Information System (INIS)

    Skomski, R.; Manchanda, P.; Kashyap, A.

    2015-01-01

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo 5 . On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy

  2. Correlations in rare-earth transition-metal permanent magnets

    Science.gov (United States)

    Skomski, R.; Manchanda, P.; Kashyap, A.

    2015-05-01

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo5. On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy.

  3. A magnetic filter with permanent magnets on the basis of rare earths

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel; Mucha, Pavel

    2004-01-01

    Roč. 268, - (2004), s. 219-226 ISSN 0304-8853 R&D Projects: GA AV ČR IBS3046004 Institutional research plan: CEZ:AV0Z3046908 Keywords : magnetic filtration * rare earth magnets * high gradient magnetic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.031, year: 2004

  4. Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina

    Science.gov (United States)

    Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya

    Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.

  5. Voltage Control of Rare-Earth Magnetic Moments at the Magnetic-Insulator-Metal Interface

    Science.gov (United States)

    Leon, Alejandro O.; Cahaya, Adam B.; Bauer, Gerrit E. W.

    2018-01-01

    The large spin-orbit interaction in the lanthanides implies a strong coupling between their internal charge and spin degrees of freedom. We formulate the coupling between the voltage and the local magnetic moments of rare-earth atoms with a partially filled 4 f shell at the interface between an insulator and a metal. The rare-earth-mediated torques allow the power-efficient control of spintronic devices by electric-field-induced ferromagnetic resonance and magnetization switching.

  6. Magnetic properties of rare earth oxides with perovskite structure

    International Nuclear Information System (INIS)

    Hinatsu, Yukio

    2008-01-01

    A perovskite composite oxide is represented by the general formula of ABO 3 . Cations at the B site characterize magnetic properties of the oxide. Many studies have been accumulated for transition metal elements at the B sites. In this report the studies of rare earth elements at the B sites are reviewed. In rare elements, tetravalent ions such as Ce 4+ , Pr 4+ and Tb 4+ can occupy the B sites with Ba and Sr ions at the A sites. Both the SrTbO 3 and BaTbO 3 have an orthorhombic structure and show the antiferromagnetic transition at about 33 K, which is originated from terbium ions coupled antiferromagnetically with the six neighboring terbium ions. A tetravalent praseodymium perovskite SrPrO 3 shows no existence of the magnetic ordering down to 2.0 K. This is in contrast to the result of isomorphous BaPrO 3 , which shows an antiferromagnetic transition at 11.5 K. A double perovskite structure is represented by the formula A 2 LnMO 6 (A=Ba, Sr, Ca; M=Ru, Ir). In a double perovskite compound Ba 2 PrRuO 6 , the Pr 3+ and Ru 5+ ions are arranged with regularity over the six-coordinate B sites. This compound transforms to an antiferromagnetic state below 117 K. Antiferromagnetic transition temperatures T N for isomorphous Sr and Ca show a clear tendency, T N (A=Ba)>T N (Sr)>T N (Ca), in the compounds with the same rare earth elements (Ln). The 6H-perovskite structure Ba 3 LnRu 2 O 9 consists of linkages between LnO 6 octahedra and Ru 2 O 9 dimers made from face-shared RuO 6 octahedra. The 6H-perovskite structure Ba 3 MRu 2 O 9 (M=Sc, Y, La, Nd-Gd, Dy-Lu) have the valence state of Ba 3 M 3+ Ru 2 4.5+ O 9 . The magnetic susceptibilities show a broad maximum at 135-370 K. This magnetic behavior is ascribed to the antiferromagnetic coupling between two Ru ions in a Ru 2 O 9 dimer and to the magnetic interaction between the Ru 2 O 9 dimers. (author)

  7. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  8. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis

    International Nuclear Information System (INIS)

    Smith Stegen, Karen

    2015-01-01

    This article sounds the alarm that a significant build-out of efficient lighting and renewable energy technologies may be endangered by shortages of rare earths and rare earth permanent magnets. At the moment, China is the predominant supplier of both and its recent rare earth industrial policies combined with its own growing demand for rare earths have caused widespread concern. To diversify supplies, new mining—outside of China—is needed. But what many observers of the “rare earth problem” overlook is that China also dominates in (1) the processing of rare earths, particularly the less abundant heavy rare earths, and (2) the supply chains for permanent magnets. Heavy rare earths and permanent magnets are critical for many renewable energy technologies, and it will require decades to develop new non-Chinese deposits, processing capacity, and supply chains. This article clarifies several misconceptions, evaluates frequently proposed solutions, and urges policy makers outside of China to undertake measures to avert a crisis, such as greater support for research and development and for the cultivation of intellectual capital. - Highlights: • Rare earths are needed for many efficient lighting and renewable energy technologies. • The industries for rare earths and permanent magnets are dominated by China. • China's reliability is compromised, necessitating non-Chinese mining and processing. • Recycling, substitution and reducing rare earth content are long-term solutions only. • Policy makers should support development of supply chains and intellectual capital

  9. Crystal Fields in Dilute Rare-Earth Metals Obtained from Magnetization Measurements on Dilute Rare-Earth Alloys

    DEFF Research Database (Denmark)

    Touborg, P.; Høg, J.

    1974-01-01

    Crystal field parameters of Tb, Dy, and Er in Sc, Y, and Lu are summarized. These parameters are obtained from magnetization measurements on dilute single crystals, and successfully checked by a number of different methods. The crystal field parameters vary unpredictably with the rare-earth solute....... B40, B60, and B66 are similar in Y and Lu. Crystal field parameters for the pure metals Tb, Dy, and Er are estimated from the crystal fields in Y and Lu....

  10. Crystal field symmetry and magnetic interactions in rare earth-silver amorphous alloys

    International Nuclear Information System (INIS)

    Pappa, Catherine.

    1979-01-01

    A study has been made of the following rare earth based amorphous alloys: Ndsub(x)Agsub(100-x), Prsub(x)Agsub(100-x), Gdsub(x)Agsub(100-x), Tlsub(x)Agsub(100-x). In rare earth based amorphous alloys, the symmetrical distribution of the crystal field is very wide and hence not very sensitive to the content of the alloys. The existence of preponderant negative magnetic interactions leads to an upset magnetic order, the magnetization of a small volume not being nil. The magnetic behaviour of alloys with a small concentration of rare earths is governed by the existence of clusters of statistical origin, within which a rare earth ion has at least one other rare earth ion in the position of first neighbour. The presence of a high anisotropy at low temperatures make the magnetic interactions between clusters inoperative [fr

  11. Magnetic Modes in Rare Earth Perovskites: A Magnetic-Field-Dependent Inelastic Light Scattering study.

    Science.gov (United States)

    Saha, Surajit; Cao, Bing-Chen; Motapothula, M; Cong, Chun-Xiao; Sarkar, Tarapada; Srivastava, Amar; Sarkar, Soumya; Patra, Abhijeet; Ghosh, Siddhartha; Ariando; Coey, J M D; Yu, Ting; Venkatesan, T

    2016-11-15

    Here, we report the presence of defect-related states with magnetic degrees of freedom in crystals of LaAlO 3 and several other rare-earth based perovskite oxides using inelastic light scattering (Raman spectroscopy) at low temperatures in applied magnetic fields of up to 9 T. Some of these states are at about 140 meV above the valence band maximum while others are mid-gap states at about 2.3 eV. No magnetic impurity could be detected in LaAlO 3 by Proton-Induced X-ray Emission Spectroscopy. We, therefore, attribute the angular momentum-like states in LaAlO 3 to cationic/anionic vacancies or anti-site defects. Comparison with the other rare earth perovskites leads to the empirical rule that the magnetic-field-sensitive transitions require planes of heavy elements (e.g. lanthanum) and oxygen without any other light cations in the same plane. These magnetic degrees of freedom in rare earth perovskites with useful dielectric properties may be tunable by appropriate defect engineering for magneto-optic applications.

  12. 77 FR 51046 - Certain Sintered Rare Earth Magnets, Methods of Making Same and Products Containing Same; Notice...

    Science.gov (United States)

    2012-08-23

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2908] Certain Sintered Rare Earth Magnets, Methods of... Certain Sintered Rare Earth Magnets, Methods of Making Same and Products Containing Same, DN 2908; the..., methods of making same and products [[Page 51047

  13. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Tai [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  14. Rare-earth-free high energy product manganese-based magnetic materials.

    Science.gov (United States)

    Patel, Ketan; Zhang, Jingming; Ren, Shenqiang

    2018-06-14

    The constant drive to replace rare-earth metal magnets has initiated great interest in an alternative. Manganese (Mn) has emerged to be a potential candidate as a key element in rare-earth-free magnets. Its five unpaired valence electrons give it a large magnetocrystalline energy and the ability to form several intermetallic compounds. These factors have led Mn-based magnets to be a potential replacement for rare-earth permanent magnets for several applications, such as efficient power electronics, energy generators, magnetic recording and tunneling applications, and spintronics. For past few decades, Mn-based magnets have been explored in many different forms, such as bulk magnets, thin films, and nanoparticles. Here, we review the recent progress in the synthesis and structure-magnetic property relationships of Mn-based rare-earth-free magnets (MnBi, MnAl and MnGa). Furthermore, we discuss their potential to replace rare-earth magnetic materials through the control of their structure and composition to achieve the theoretically predicted magnetic properties.

  15. Computational search for rare-earth free hard-magnetic materials

    Science.gov (United States)

    Flores Livas, José A.; Sharma, Sangeeta; Dewhurst, John Kay; Gross, Eberhard; MagMat Team

    2015-03-01

    It is difficult to over state the importance of hard magnets for human life in modern times; they enter every walk of our life from medical equipments (NMR) to transport (trains, planes, cars, etc) to electronic appliances (for house hold use to computers). All the known hard magnets in use today contain rare-earth elements, extraction of which is expensive and environmentally harmful. Rare-earths are also instrumental in tipping the balance of world economy as most of them are mined in limited specific parts of the world. Hence it would be ideal to have similar characteristics as a hard magnet but without or at least with reduced amount of rare-earths. This is the main goal of our work: search for rare-earth-free magnets. To do so we employ a combination of density functional theory and crystal prediction methods. The quantities which define a hard magnet are magnetic anisotropy energy (MAE) and saturation magnetization (Ms), which are the quantities we maximize in search for an ideal magnet. In my talk I will present details of the computation search algorithm together with some potential newly discovered rare-earth free hard magnet. J.A.F.L. acknowledge financial support from EU's 7th Framework Marie-Curie scholarship program within the ``ExMaMa'' Project (329386).

  16. Corrections for hysteresis curves for rare earth magnet materials measured by open magnetic circuit methods

    International Nuclear Information System (INIS)

    Nakagawa, Yasuaki

    1996-01-01

    The methods for testing permanent magnets stipulated in the usual industrial standards are so-called closed magnetic circuit methods which employ a loop tracer using an iron-core electromagnet. If the coercivity exceeds the highest magnetic field generated by the electromagnet, full hysteresis curves cannot be obtained. In the present work, magnetic fields up to 15 T were generated by a high-power water-cooled magnet, and the magnetization was measured by an induction method with an open magnetic circuit, in which the effect of a demagnetizing field should be taken into account. Various rare earth magnets materials such as sintered or bonded Sm-Co and Nd-Fe-B were provided by a number of manufacturers. Hysteresis curves for cylindrical samples with 10 nm in diameter and 2 mm, 3.5 mm, 5 mm, 14 mm or 28 mm in length were measured. Correction for the demagnetizing field is rather difficult because of its non-uniformity. Roughly speaking, a mean demagnetizing factor for soft magnetic materials can be used for the correction, although the application of this factor to hard magnetic material is hardly justified. Thus the dimensions of the sample should be specified when the data obtained by the open magnetic circuit method are used as industrial standards. (author)

  17. Higher order magnetic modulation structures in rare earth metal, alloys and compounds under extreme conditions

    International Nuclear Information System (INIS)

    Kawano, S.

    2003-01-01

    Magnetic materials consisting of rare earth ions form modulation structures such as a helical or sinusoidal structure caused by the oscillating magnetic interaction between rare earth ions due to RKKY magnetic interaction. These modulation structures, in some cases, develop further to higher order modulation structures by additional modulations caused by higher order crystalline electric field, magnetic interactions such as spin-lattice interaction, external magnetic field and pressure. The higher order modulation structures are observed in a spin-slip structure or a helifan structure in Ho, and a tilt helix structure in a TbEr alloy. Paramagnetic ions originated from frustration generate many magnetic phases under applied external magnetic field. KUR neutron diffraction groups have performed the development and adjustment of high-pressure instruments and external magnetic fields for neutron diffraction spectrometers. The studies of 'neutron diffraction under extreme conditions' by the seven groups are described in this report. (Y. Kazumata)

  18. Recycling of rare earth magnet scraps: Carbon and oxygen removal from Nd magnet scraps

    International Nuclear Information System (INIS)

    Saguchi, A.; Asabe, K.; Fukuda, T.; Takahashi, W.; Suzuki, R.O.

    2006-01-01

    The decarburization and deoxidation technique for permanent Nd-Fe-B magnet scrap is investigated. The carbon and oxygen contamination damage the magnetic properties. The carbon content decreased less than 0.001% by heating in air. The two stage deoxidation is applied, iron oxides are reduced by heating in hydrogen thereafter rare earth oxides are removed by Ca-reduction and leaching. The appropriate conditions for deoxidation in the Ca-reduction and suppressing the re-oxidation in the leaching are investigated. The heating pattern in Ca-reduction and the leaching condition for the mixture composed of Ca compounds and Nd-Fe-B alloy powder greatly affects the oxygen content of recycled material. The decarburized and deoxidized Nd-Fe-B magnet scrap can be recycled as alloying elements by melting

  19. Method for preparing high cure temperature rare earth iron compound magnetic material

    Science.gov (United States)

    Huang, Yuhong; Wei, Qiang; Zheng, Haixing

    2002-01-01

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  20. Anisotropy and Microstructure of High Coercivity Rare Earth Iron Permanent Magnets, List of Papers Published

    Science.gov (United States)

    1989-01-01

    hardly influences both the pared by three different production technologies, absolute value of HA and its temperature dependence. The permanent magnets...ing reverse domains [2]. pared from 99.5% pure cast material supplied by The application of these magnets has been Rare Earth Products. The...the c/ re 3b Fig.. E ncrographs showingthe celular precipitation structure of precipitation hardened SmCo 2:17 magnets (a). In low coercivity magnets

  1. Study of the polymer permanent magnets properties - rare earths

    International Nuclear Information System (INIS)

    Takiishi, H.; Benini, H.R.; Lima, L.F.C.P.; Faria, R.N.

    1996-01-01

    An alternative method for permanent magnet production without the sintering step is polymer bonded magnets. In this work magnets were prepared from magnetic Sm Co 5 or Nd 15 Fe 77 B 8 alloys bonded with 10% wt of resin. For the Nd 15 Fe 77 B 8 alloy the hydrogenation - decomposition - desorption - recombination (HDDR) process have been employed in the preparation of the magnets. Results from the magnetic properties showed that no milling is necessary for the production of polymer bonded Nd-Fe-B magnets. The magnets showed good magnetic properties. (author)

  2. Magnetic anisotropy and neutron scattering studies of some rare earth metals

    International Nuclear Information System (INIS)

    Day, R.

    1978-08-01

    The thesis is concerned with magnetic anisotropy of dysprosium and alloys of gadolinium: yttrium, and also neutron scattering studies of dysprosium. The experiments are discussed under the topic headings: magnetic anisotropy, rare earths, torque measurements, elastic neutron scattering, inelastic neutron scattering, dysprosium measurements, and results for the gadolinium: yttrium alloys. (U.K.)

  3. SUM-RULES FOR MAGNETIC DICHROISM IN RARE-EARTH 4F-PHOTOEMISSION

    NARCIS (Netherlands)

    THOLE, BT; VANDERLAAN, G

    1993-01-01

    We present new sum rules for magnetic dichroism in spin polarized photoemission from partly filled shells which give the expectation values of the orbital and spin magnetic moments and their correlations in the ground state. We apply this to the 4f photoemission of rare earths, where the

  4. Optimization of film synthesized rare earth transition metal permanent magnet systems

    International Nuclear Information System (INIS)

    Cadieu, F.J.

    1990-01-01

    This report reviews work on the optimization of film synthesized rare earth transition metal permanent magnet systems. Topics include: high coercivity in Sm-Fe-Ti-V, Sm-Fe-V, and two element systems; ThMn 12 type pseudobinary SmFe 12 - X T X ; and sputter process control for the synthesis of precisely textured RE-TM magnetic films. (JL)

  5. Crystal field and magnetism with Wannier functions: Orthorhombic rare-earth manganites

    Czech Academy of Sciences Publication Activity Database

    Novák, Pavel; Nekvasil, Vladimír; Knížek, Karel

    358-359, MAY (2014), s. 228-232 ISSN 0304-8853 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : crystal field * rare- earth magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.970, year: 2014

  6. Comparison of La3+ and mixed rare earths-loaded magnetic chitosan beads for fluoride adsorption

    DEFF Research Database (Denmark)

    Liang, Peng; An, Ruiqi; Li, Ruifen

    2018-01-01

    La3+ and mixed-rare earth magnetic chitosan beads (MCLB and MCLRB) were successfully prepared for fluoride removal, respectively. The adsorbents were characterized by scanning electron microscope and magnetic response. Batch experiments were carried out to investigate the adsorbent performance...

  7. Review- Magnetic orientation and magnetic anisotropy in paramagnetic layered oxides containing rare-earth ions

    Directory of Open Access Journals (Sweden)

    Shigeru Horii, Atsushi Ishihara, Takayuki Fukushima, Tetsuo Uchikoshi, Hiraku Ogino, Tohru S Suzuki, Yoshio Sakka, Jun-ichi Shimoyama and Kohji Kishio

    2009-01-01

    Full Text Available The magnetic anisotropies and easy axes of magnetization at room temperature were determined, and the effects of rare-earth (RE ions were clarified for RE-based cuprates, RE-doped bismuth-based cuprates and RE-doped Bi-based cobaltite regarding the grain orientation by magnetic field. The easy axis, determined from the powder orientation in a static field of 10 T, depended qualitatively on the type of RE ion for all three systems. On the other hand, the magnetization measurement of the c-axis oriented powders, aligned in static or rotating fields, revealed that the type of RE ion strongly affected not only the directions of the easy axis but also the absolute value of magnetic anisotropy, and an appropriate choice of RE ion is required to minimize the magnetic field used for grain orientation. We also studied the possibility of triaxial grain orientation in high-critical-temperature superconductors by a modulated oval magnetic field. In particular, triaxial orientation was attempted in a high-oxygen-pressure phase of orthorhombic RE-based cuprates Y2Ba4Cu7Oy. Although the experiment was performed in epoxy resin, which is not practical, in-plane alignment within 3° was achieved.

  8. Microstructure and magnetic properties of inert gas atomized rare earth permanent magnetic materials

    International Nuclear Information System (INIS)

    Sellers, C.H.; Hyde, T.A.; Branagan, D.J.; Lewis, L.H.; Panchanathan, V.

    1997-01-01

    Several permanent magnet alloys based on the ternary Nd 2 Fe 14 B (2-14-1) composition have been prepared by inert gas atomization (IGA). The microstructure and magnetic properties of these alloys have been studied as a function of particle size, both before and after heat treatment. Different particle sizes have characteristic properties due to the differences in cooling rate experienced during solidification from the melt. These properties are also strongly dependent on the alloy composition due to the cooling rate close-quote s effect on the development of the phase structure; the use of rare earth rich compositions appears necessary to compensate for a generally inadequate cooling rate. After atomization, a brief heat treatment is necessary for the development of the optimal microstructure and magnetic properties, as seen from the hysteresis loop shape and improvements in key magnetic parameters (intrinsic coercivity H ci , remanence B r , and maximum energy product BH max ). By adjusting alloy compositions specifically for this process, magnetically isotropic powders with good magnetic properties can be obtained and opportunities for the achievement of better properties appear to be possible. copyright 1997 American Institute of Physics

  9. Some economic aspects of rare-earth permanent magnets

    International Nuclear Information System (INIS)

    Zijlstra, H.

    1978-01-01

    The commercial feasibility of RE permanent magnets is analyzed in terms of price per unit of magnetostatic energy. The availability of the raw materials is also taken into consideration. The conclusion is that RE magnets are and remain relatively expensive as compared with other permanent magnets, and will find only limited application. (author)

  10. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    Science.gov (United States)

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  11. A simple magnetic model for intermetallics of rare earths: application to PrAl2

    International Nuclear Information System (INIS)

    Ranke, P.J. von; Palermo, L.; Silva, X.A. da.

    1990-01-01

    A simplified description of crystal field for rare earth ion systems, taking in account the first two energy levels is presented. The Hamiltonian is constructed using wave functions of these levels and, the equation of magnetic state is derived. The model is applied to PrAl 2 using experimental data of magnetization versus temperature. The parameters of magnetic behaviour at T = OK and T = T c are analysed. (M.C.K.)

  12. Magnetic-field induced phase transitions in intermetallic rare-earth ferrimagnets with a compensation point

    Czech Academy of Sciences Publication Activity Database

    Sabdenov, Ch.K.; Davydova, M.D.; Zvezdin, K.A.; Gorbunov, Denis; Tereshina, I. S.; Andreev, Alexander V.; Zvezdin, A. K.

    2017-01-01

    Roč. 43, č. 5 (2017), s. 551-558 ISSN 1063-777X R&D Projects: GA ČR GA16-03593S Institutional support: RVO:68378271 Keywords : rare-earth intermetallics * phase diagram * field-induced transition * magnetic anisotropy * high magnetic fields Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.804, year: 2016

  13. Rare earths and actinides

    International Nuclear Information System (INIS)

    Coqblin, B.

    1982-01-01

    This paper reviews the different properties of rare-earths and actinides, either as pure metals or as in alloys or compounds. Three different cases are considered: (i) First, in the case of 'normal' rare-earths which are characterized by a valence of 3, we discuss essentially the magnetic ordering, the coexistence between superconductivity and magnetism and the properties of amorphous rare-earth systems. (ii) Second, in the case of 'anomalous' rare-earths, we distinguish between either 'intermediate-valence' systems or 'Kondo' systems. Special emphasis is given to the problems of the 'Kondo lattice' (for compounds such as CeAl 2 ,CeAl 3 or CeB 6 ) or the 'Anderson lattice' (for compounds such as TmSe). The problem of neutron diffraction in these systems is also discussed. (iii) Third, in the case of actinides, we can separate between the d-f hybridized and almost magnetic metals at the beginning of the series and the rare-earth like the metals after americium. (orig.)

  14. Microstructural characterization of rare earth-cobalt magnets

    International Nuclear Information System (INIS)

    Mishra, R.K.; Thomas, G.

    1979-10-01

    Structural faults and phase transformations in R 2 -Co 17 magnets are studied using transmission electron microscopy. The magnetization mechanism in a step aged Sm (Co, Fe, Cu, Zr) alloy is determined to be by domain wall pinning in the 1:5 phase of the cellular microstructure. Limitations of the electron metallography technique to study these materials are pointed out

  15. Rare Earth Extraction from NdFeB Magnet Using a Closed-Loop Acid Process.

    Science.gov (United States)

    Kitagawa, Jiro; Uemura, Ryohei

    2017-08-14

    There is considerable interest in extraction of rare earth elements from NdFeB magnets to enable recycling of these elements. In practical extraction methods using wet processes, the acid waste solution discharge is a problem that must be resolved to reduce the environmental impact of the process. Here, we present an encouraging demonstration of rare earth element extraction from a NdFeB magnet using a closed-loop hydrochloric acid (HCl)-based process. The extraction method is based on corrosion of the magnet in a pretreatment stage and a subsequent ionic liquid technique for Fe extraction from the HCl solution. The rare earth elements are then precipitated using oxalic acid. Triple extraction has been conducted and the recovery ratio of the rare earth elements from the solution is approximately 50% for each extraction process, as compared to almost 100% recovery when using a one-shot extraction process without the ionic liquid but with sufficient oxalic acid. Despite its reduced extraction efficiency, the proposed method with its small number of procedures at almost room temperature is still highly advantageous in terms of both cost and environmental friendliness. This study represents an initial step towards realization of a closed-loop acid process for recycling of rare earth elements.

  16. Magnetic properties of Kramers rare earth ions in aluminium and gallium garnets

    International Nuclear Information System (INIS)

    Capel, H.

    1964-01-01

    The magnetic properties of Kramers rare earth ions in aluminium and gallium garnets (MAlG and MGaG) are discussed by means of a molecular field treatment. The symmetry properties of the space group permit to establish a parametrization for the magnetic dipolar and exchange couplings. The magnetic properties of the system can be expressed in terms of these parameters and the g factors of the rare earth ions. We have calculated the transition temperatures, the sub-lattice magnetizations, the susceptibility in the paramagnetic region and the antiferromagnetic susceptibility for a special type of magnetic ordering. The influence of the excited Kramers doublets is described by means of a generalization of the usual g tensor. (authors) [fr

  17. High-field magnetization of dilute rare earths in yttrium

    DEFF Research Database (Denmark)

    Touborg, P.; Høg, J.; Cock, G. J.

    1974-01-01

    Magnetization measurements have been performed on single crystals of Y containing small amounts of Tb, Dy, or Er at 4.2 K in fields up to 295 × 105 A/m (370 kOe). Crystal-field and molecular-field parameters obtained from measurements of the initial susceptibility versus temperature give a satisf...... a satisfactory quantitative account of the high-field magnetization. This includes characteristic features due to the crossing and mixing of crystal-field levels....

  18. Giant magnetic anisotropy of rare-earth adatoms and dimers adsorbed by graphene oxide.

    Science.gov (United States)

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Yong; Zhu, Yan; Shi, Li-Bin

    2017-05-24

    Nowadays, transition-metal adatoms and dimers with giant magnetic anisotropy have attracted much attention due to their potential applications in data storage, spintronics and quantum computations. Using density-functional calculations, we investigated the magnetic anisotropy of the rare-earth adatoms and dimers adsorbed by graphene oxide. Our calculations reveal that the adatoms of Tm, Er and Sm possess giant magnetic anisotropy, typically larger than 40 meV. When the dimers of (Tm,Er,Sm)-Ir are adsorbed onto graphene oxide, the magnetic anisotropy even exceeds 200 meV. The magnetic anisotropy can be tuned by the external electric field as well as the environment.

  19. High-Field Magnetization of Light Rare-Earth Metals

    DEFF Research Database (Denmark)

    McEwen, K.A.; Cock, G.J.; Roeland, L.W.

    1973-01-01

    The magnetization of single crystals of Eu, Sm, Nd, Pr, and Pr-Nd alloys has been measured in fields up to 37 T (370 kG). The results give new information on the magnetic properties of these metals. Of particular interest is a first-order transition from a nonmagnetic to a metamagnetic phase...... in double-hexagonal close-packed Pr, due to the crossing of crystal-field levels, when a field of about 32 T is applied in the hard direction at low temperatures....

  20. Crystal field and magnetism with Wannier functions: rare-earth dopedaluminum garnets

    Czech Academy of Sciences Publication Activity Database

    Mihóková, Eva; Novák, Pavel; Laguta, Valentyn

    2015-01-01

    Roč. 33, č. 12 (2015), 1316-1323 ISSN 1002-0721 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : crystal field * ab initio calculations * garnets * rare earths Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.188, year: 2015

  1. On the single-ion Magnetic Anisotropy of the Rare-Earth Metals

    DEFF Research Database (Denmark)

    Kolmakova, N.P.; Tishin, A.M.; Bohr, Jakob

    1996-01-01

    The temperature dependences of the single-ion magnetic anisotropy constants for Tb and Dy metals are calculated in terms of the multipole moments of the rare-earth ions utilizing the available crystal-field parameters. The results are compared with the existing experimental data....

  2. Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity

    Science.gov (United States)

    Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Rowe, A.

    2018-05-01

    The supply chain risk of rare-earth permanent magnets has yielded research efforts to improve both materials and magnetic circuits. While a number of magnet optimization techniques exist, literature has not incorporated the permanent magnet failure process stemming from finite coercivity. To address this, a mixed-integer topology optimization is formulated to maximize the flux density of a segmented Halbach cylinder while avoiding permanent demagnetization. The numerical framework is used to assess the efficacy of low-cost (rare-earth-free ferrite C9), medium-cost (rare-earth-free MnBi), and higher-cost (Dy-free NdFeB) permanent magnet materials. Novel magnet designs are generated that produce flux densities 70% greater than the segmented Halbach array, albeit with increased magnet mass. Three optimization formulations are then explored using ferrite C9 that demonstrates the trade-off between manufacturability and design sophistication, generating flux densities in the range of 0.366-0.483 T.

  3. Microstructure and properties of step aged rare earth alloy magnets

    International Nuclear Information System (INIS)

    Mishra, R.K.; Thomas, G.; Yoneyama, T.; Fukuno, A.; Ojima, T.

    1980-11-01

    Alloys with compositions Co-25.5 wt/o Sm-8 w/o Cu-15 w/o Fe-3 w/o Zr and Co-Sm-Cu-Fe-1.5 w/o Zr have been step aged to produce magnets with coercive force (iHc) in the range of 10 to 25k0e. The high coercive force magnets are typically aged at 800 to 850 0 C for 10 to 30 hours following the solution treatment at 1150 0 C. Subsequently, these are step aged to produce materials with high coercivity. The microstructure in all these alloys has a 2 phase cellular morphology with 2:17 phase surrounded by a 1:5 boundary phase. The long aging treatments at 800 to 850 0 C lead to coarsening of the two phase structure. The subsequent step-aging does not change the morphology, but only changes the chemical composition of the two phases. Best properties are obtained in materials with a coherent microstructure of optimum boundary phase thickness and optimum chemical composition. The highest values of iHc obtained so far are approx. 26k0e and approx. 16 k0e for the 3% Zr and 1.5% Zr alloys respectively. The best hard magnetic properties of (BH) max = 33 MG0e and iHc = 13k0e are for a 25% Sm-20% Fe-4 Cu-2% Zr alloy

  4. Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model

    International Nuclear Information System (INIS)

    Zhao-Sen, Liu; Vladimir, Sechovský; Martin, Diviš

    2011-01-01

    A Usov-type quantum model based on a mean-field approximation is utilized to simulate the magnetic structure of an assumed rare-earth nanoparticle consisting of an antiferromagnetic core and a paramagnetic outer shell. We study the magnetic properties in the presence and absence of an external magnetic field. Our simulation results show that the magnetic moments in the core region orientate antiferromagnetically in zero external magnetic field; an applied magnetic field rotates all of the magnetic moments in the paramagnetic shell completely to the field direction, and turns those in the core (which tries to maintain its original antiferromagnetic structure) towards the orientation in some degree; and the paramagnetic shell does not have a strong influence on the magnetic configuration of the core. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. μSR-studies of magnetic properties of metallic rare earth compounds

    International Nuclear Information System (INIS)

    Asch, L.; Kalvius, G.M.; Chappert, J.; Yaouanc, A.; Hartmann, O.; Karlsson, E.; Wappling, R.

    1984-01-01

    Positive muons can probe the magnitude and the time dependence of the magnetic field at interstitial sites in condensed matter. Thus the relatively new techniques of muons spin rotation and muon spin relaxation have become unique tools for studying magnetism. After a brief introduction into the experimental method we then discuss measurements on the elemental rare earth metals and on intermetallic compounds, in particular on the cubic Laves phases REAl 2

  6. Theory of Magnetic Properties of Heavy Rare Earth Metals:

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Danielsen, O.

    1975-01-01

    results are given for the magnetization agreeing with experiment for Gd, Tb, and Dy. For Tb and Dy the zero-point deviations were found to be 0.05μB and 0.08μB, respectively, and the ratio [b(T)-b(0)]/[ΔM(T)-ΔM(0)] is approximately 1/3 for all temperatures below 100 K. This gives rise to large corrections......The contributions to the macroscopic-anisotropy constants and resonance energy from crystal-field anisotropy, magnetoelastic effects in the frozen and flexible lattice model, and two-ion interactions have been found for all terms allowed in a crystal of hexagonal symmetry. The temperature...... dependence is expressed as expansions of thermal averages of the Stevens operators 〈Olm〉. A systematic spin-wave theory, renormalized in the Hartree-Fock approximation, is developed and used to find the temperature dependence of the Stevens operators and the resonance energy in terms of the magnetization...

  7. Design of focussing and guide structures for charged particle beams using rare earth cobalt permanent magnets

    International Nuclear Information System (INIS)

    Halbach, K.

    1981-06-01

    A number of different methods can be used to describe the magnetic properties of oriented Rare Earth Cobalt (REC) material. It will be shown how these different methods of description lead to different ways to think about, and to execute, the design of magnets that are useful for focusing and guiding charged particle beams. It will also be domonstrated that in some of these magnets, the REC material is used in a somewhat unusual way, requiring magnetics properties of the material that are usually not considered to be of great practical importance

  8. Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach

    Science.gov (United States)

    Delange, Pascal; Biermann, Silke; Miyake, Takashi; Pourovskii, Leonid

    2017-10-01

    We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4 f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4 f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo5. Applying it to R Fe12 and R Fe12X hard magnets (R =Nd , Sm and X =N , Li), we obtain in particular a large positive value of the crystal-field parameter A20〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A20〈r2〉 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe12Li . We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites.

  9. Successful treatment of rare-earth magnet ingestion via minimally invasive techniques: a case series.

    Science.gov (United States)

    Kosut, Jessica S; Johnson, Sidney M; King, Jeremy L; Garnett, Gwendolyn; Woo, Russell K

    2013-04-01

    Cases of rare-earth magnet ingestions have been increasingly reported in the literature. However, these descriptions have focused on the severity of the injuries, rather than the clinical presentation and/or therapeutic approach. We report a series of eight children, ranging in age from 2 to 10 years, who ingested powerful rare-earth magnets. The rare-earth magnets were marketed in 2009 under the trade name Buckyballs(®) (Maxfield & Oberton, New York, NY). They are about 5 mm in size, spherical, and brightly colored, making them appealing for young children to play with and place in their mouths. Three children presented within hours of ingestion, and the magnets were successfully removed via endoscopy in two, whereas the third child required laparoscopy. No fistulas were found in these children. A fourth child presented 2 days after ingestion with evidence of bowel wall erosion, but without fistula formation; the magnets were removed via laparoscopy. A fifth child ingested nine magnets in a ring formation, which were removed via colonoscopy without evidence of injury or fistula formation. The three remaining children presented late (5-8 days after ingestion) and were found to have associated fistulas. They were treated successfully with a combination of endoscopy and laparoscopy with fluoroscopy. None of the children in our series required an open surgical procedure. All children were discharged home without complications. This case series highlights the potential dangers of rare-earth magnet ingestion in children. Our experience suggests that prompt intervention using minimally invasive approaches can lead to successful outcomes.

  10. Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Kohei; Pai, Chi-Feng; Tan, Aik Jun; Mann, Maxwell; Beach, Geoffrey S. D., E-mail: gbeach@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-06-06

    We report the effect of the rare earth metal Gd on current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Pt/Co/Gd heterostructures, characterized using harmonic measurements and spin-torque ferromagnetic resonance (ST-FMR). By varying the Gd metal layer thickness from 0 nm to 8 nm, harmonic measurements reveal a significant enhancement of the effective fields generated from the Slonczewski-like and field-like torques. ST-FMR measurements confirm an enhanced effective spin Hall angle and show a corresponding increase in the magnetic damping constant with increasing Gd thickness. These results suggest that Gd plays an active role in generating SOTs in these heterostructures. Our finding may lead to spin-orbitronics device application such as non-volatile magnetic random access memory, based on rare earth metals.

  11. Plateau on temperature dependence of magnetization of nanostructured rare earth titanates

    Science.gov (United States)

    Rinkevich, A. B.; Korolev, A. V.; Samoylovich, M. I.; Demokritov, S. O.; Perov, D. V.

    2018-05-01

    Magnetic properties of nanocomposite materials containing particles of rare earth titanates of R2Ti2O7 type, where R is a rare earth ion, including "spin ice" materials are investigated. The descending branches of hysteresis loop have been studied in detail in temperature range from 2 to 50 K. It has been shown that nanocomposites with Yb2Ti2O7, Dy2Ti2O7 and Er2Ti2O7 particles have one intersection point of the descending branches in some temperature range unlike many other nanocomposites. It is shown that magnetization has only weak temperature dependence near this point. It has been obtained that nanocomposites with Pr2Ti2O7 and Nd2Ti2O7 particles have no hysteresis loop. All above findings point out to unusual magnetic structures of the studied samples.

  12. Investigation into the magnetic properties of pyrochlore-type rare-earth hafnates

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Jung Hwan; Kremer, Reinhard K.; Lin, Chengtian [MPI for Solid State Research, Stuttgart (Germany)

    2015-07-01

    Cubic rare-earths transition metal pyrochlores with composition R{sub 2}TM{sub 2}O{sub 7} have attracted broad attention because of their unusual magnetic ground state properties related to geometrical frustration of the pyrochlores lattice. So far, the investigation focused mainly on 3d and 4d transition metal systems. The magnetic properties of rare-earths 5d TM pyrochlores are comparatively less well studied. Here we report on the single-crystal growth and the magnetic properties of some rare-earth hafnates (R =Nd, Gd, Dy; TM = Hf) of composition R{sub 2}Hf{sub 2}O{sub 7}. Nd{sub 2}Hf{sub 2}O{sub 7} and Gd{sub 2}Hf{sub 2}O{sub 7} crystallize with the cubic pyrochlores structure whereas diverging reports on the structure of Dy{sub 2}Hf{sub 2}O{sub 7} are available in literature. Crystals of R{sub 2}Hf{sub 2}O{sub 7} have been grown and their structural and magnetic properties have been investigated. Our investigations confirm Nd{sub 2}Hf{sub 2}O{sub 7} and Gd{sub 2}Hf{sub 2}O{sub 7} to crystallize in the cubic pyrochlores structure. Antiferromagnetic ordering below ∝0.5 K has been observed by magnetic susceptibility and heat capacity measurements for both compounds.

  13. Rare earth superlattices

    International Nuclear Information System (INIS)

    McMorrow, D.F.

    1997-01-01

    A review is given of recent experiments on the magnetism of rare earth superlattices. Early experiments in this field were concerned mainly with systems formed by combining a magnetic and a non-magnetic element in a superlattice structure. From results gathered on a variety of systems it has been established that the propagation of magnetic order through the non-magnetic spacer can be understood mostly on the basis of an RKKY-like model, where the strength and range of the coupling depends on the details of the conduction electron susceptibility of the spacer. Recent experiments on more complex systems indicate that this model does not provide a complete description. Examples include superlattices where the constituents can either be both magnetic, adopt different crystal structures (Fermi surfaces), or where one of the constituents has a non-magnetic singlet ground state. The results from such systems are presented and discussed in the context of the currently accepted model. (au)

  14. Analysis on three-sublattice model of magnetic properties in rare-earth iron garnets under high magnetic fields

    International Nuclear Information System (INIS)

    Wang Wei; Chen Ri; Qi Xin

    2012-01-01

    Highlights: ► An improved three-sublattice model is provided. ► The magnetic properties of the rare-earth ions show great importance to the magnetic behaviors of rare-earth iron garnets. ► The coefficients α i associated with λ and χ are the functions of H e and T. ► The changes of M with H e at different temperatures are revealed. - Abstract: In this paper, based on the molecular field theory, a new and improved three-sublattice model on studying the magnetic properties of ferrimagnetic rare-earth iron garnet in high magnetic fields is introduced. Here, the effective exchange field is described as H i = λM = λχH e , where λ is the coefficient associated with the molecular field, χ is the effective magnetic susceptibility, and H e is external magnetic fields. As is known, the magnetic sublattices in rare-earth iron garnets can be classified three kinds labeled as a, c and d, in our calculations, whose magnetizations are defined as M a , M c and M d , respectively. Then, using this model, the temperature and field dependences of the total magnetization in Dy 3 Fe 5 O 12 (DyIG) are discussed. Meanwhile, the magnetizations of the three kinds of magnetic sublattices are analyzed. Furthermore, our theory suggests that the coefficients α i associated with λ and χ in DyIG show obvious anisotropic, temperature-dependence and field-dependence characteristics. And, the theoretical calculations exactly fit the experimental data.

  15. Rare-earth magnet ingestion-related injuries among children, 2000-2012.

    Science.gov (United States)

    De Roo, Ana C; Thompson, Meghan C; Chounthirath, Thiphalak; Xiang, Huiyun; Cowles, Nancy A; Shmuylovskaya, Liliya; Smith, Gary A

    2013-11-01

    This study describes the epidemiology of rare-earth magnet ingestion by children by retrospectively analyzing 72 cases of magnet ingestion collected from Saferproducts.gov and the US Consumer Product Safety Commission from 2000 through 2012. The mean child age was 6.4 years. Patients ingested between 1 and 40 magnets, most often 1 to 4 magnets. Unique circumstances of ingestion included faux piercing (19.4%) and mistaking magnets for candy (6.9%). Surgery was required in 69.7% of cases where treatment was reported. Fifty-three patients were hospitalized (73.6%), and the length of hospital stay was reported in 58.5% of those cases, ranging from 1 to 54 days. Approximately half (50.7%) of the magnets causing injury were products intended for use by adults. Study findings demonstrate that pediatric ingestion of rare-earth magnets can cause serious gastrointestinal injury. Establishing a performance standard that limits the attraction force of these magnets offers the best prevention solution to this important pediatric public health problem.

  16. Contribution to the study of magnetic properties of rare-earth iron intermetallic compounds

    International Nuclear Information System (INIS)

    Morariu, M.

    1976-01-01

    The intermetallic binary compounds Ysub(x)Fesub(y)(YFe 2 ,YFe 3 ,Y 6 Fe 23 ,Y 2 Fe 17 ), RFe 2 (R=Gd,Tb,Dy,Ho,Er and Tm) and the intermetallic pseudobinary compounds (Gdsub(x)Ysub(1-x))Fe 2 and Dy(Fesub(x)Nisub(1-x)) 3 were studied, using magnetic measurements and Moessbauer spectroscopy, in order to obtain information on their magnetic behaviour. The different models which describe magnetic interactions in rare-earths with 3d transition element compounds are reviewed. The magnetic hyperfine field Hsub(n) at the Fe 57 nucleus, measured by Moessbauer spectroscopy, depends on the atom position in the lattice, being sensitive to magnetic interactions with neighbouring atoms. The mean value of the magnetic hyperfine field, average Hsub(n) is proportional to the mean magnetic moment of the iron atom: average Hsub(n)/average μsub(Fe) approximately 150 kOe. The comparative study of the temperature dependence of average Hsub(n) and average μsub(Fe) values shows that this relation is valid for the whole range of magnetic ordering (T>Tsub(c)). The mean magnetic hyperfine fields at the Fe 57 nucleus in RFe 2 compounds depend on the rare-earth partner and vary approximative linearly with the Gennes factor. The spin reorientation diagram for the (Gdsub(x)Ysub(1-x))Fe 2 system is obtained. All results on Moessbauer spectroscopy are in good agreement with the magnetic measurements. The magnetic behaviour of iron atoms is justified using a model in which the most electrons are in a narrow band, so they could be considered localized, and the magnetic interactions between these atoms take place through a fraction (<5%) of 3d itinerant electrons. (author)

  17. Optimization of film synthesized rare earth transition metal permanent magnet systems

    International Nuclear Information System (INIS)

    Cadieu, F.J.

    1992-01-01

    Progress is reported in three areas: high coercivity Sm-Fe-Ti-V, Sm-Fe-Zr, and two element Sm-Fe Sm 5 (Fe,T) 17 type crystalline phases; ThMn 12 type pseudobinary SmFe 12-x T x (0≤x≤1.5); and sputter process control for the synthesis of precisely textured rare earth-transition metal magnetic films

  18. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  19. Processing and Protection of Rare Earth Permanent Magnet Particulate for Bonded Magnet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Peter Kelly [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Rapid solidification of novel mixed rare earth-iron-boron, MRE2Fe14B (MRE = Nd, Y, Dy; currently), magnet alloys via high pressure gas atomization (HPGA) have produced similar properties and structures as closely related alloys produced by melt spinning (MS) at low wheel speeds. Recent additions of titanium carbide and zirconium to the permanent magnet (PM) alloy design in HPGA powder (using He atomization gas) have made it possible to achieve highly refined microstructures with magnetic properties approaching melt spun particulate at cooling rates of 105-106K/s. By producing HPGA powders with the desirable qualities of melt spun ribbon, the need for crushing ribbon was eliminated in bonded magnet fabrication. The spherical geometry of HPGA powders is more ideal for processing of bonded permanent magnets since higher loading fractions can be obtained during compression and injection molding. This increased volume loading of spherical PM powder can be predicted to yield a higher maximum energy product (BH)max for bonded magnets in high performance applications. Passivation of RE-containing powder is warranted for the large-scale manufacturing of bonded magnets in applications with increased temperature and exposure to humidity. Irreversible magnetic losses due to oxidation and corrosion of particulates is a known drawback of RE-Fe-B based alloys during further processing, e.g. injection molding, as well as during use as a bonded magnet. To counteract these effects, a modified gas atomization chamber allowed for a novel approach to in situ passivation of solidified particle surfaces through injection of a reactive gas, nitrogen trifluoride (NF3). The ability to control surface chemistry during atomization processing of fine spherical RE-Fe-B powders produced advantages over current processing methodologies. In particular, the capability to coat particles while 'in flight' may eliminate the

  20. Magnetostriction of some cubic rare earth-Co2 compounds in high magnetic fields

    International Nuclear Information System (INIS)

    Moral, A. del; Melville, D.

    1975-01-01

    Magnetostriction measurements have been carried out in the cubic Laves phase compounds DyCo 2 , HoCo 2 and ErCo 2 from 10 K to well above their respective Neel temperatures Tsub(N). Pulsed magnetic fields up to 15 T (150kOe) were applied. The observed magnetostrictions are very large (approximately 10 -3 ) being similar to those found in the RFe 2 compounds. The measurements confirm the extremely high anisotropy of these materials. At the highest fields the polycrystalline samples are still undergoing rotational magnetization processes. The expected values of the saturation magnetostriction at O K are similar in sign and magnitude to those found in the corresponding rare earth metals. This fact and the scaling of magnetostriction with rare earth sublattice magnetization indicates that the rare earth ion is the main source of the magnetostriction. The metamagnetic transition above Tsub(N) has been studied, the relation between critical field and temperature being nonlinear for HoCo 2 and ErCo 2 . The compounds are highly anisotropic above Tsub(N) and all the features indicate that the field-induced phases are likely to be ferrimagnetic. (author)

  1. CPA theory of the magnetization in rare earth transition metal alloys

    International Nuclear Information System (INIS)

    Szpunar, B.; Lindgaard, P.A.

    1976-11-01

    Calculations were made of the magnetic moment per atom of the transition metal and the rare earth metal in the intermetallic compounds, Gdsub(1-x)Nisub(x), Gdsub(1-x)Fesub(x), Gdsub(1-x)Cosub(x), and Ysub(1-x)Cosub(x). A simple model of the disordered alloy consisting of spins localized on the rare earth atoms and interacting with a narrow d-band is considered. The magnetic moment of the alloy at zero temperature is calculated within the molecular field and Hartree-Fock approximations. Disorder is treated in the coherent potential approximation. Results are in good agreement with the experimental data obtained for the crystalline and amorphous intermetallic compounds. It is shown that the temperature dependence of the magnetic moments and Curie and ferrimagnetic compensation temperatures can be accounted for by a simple model assuming a RKKY interaction between the rare-earth moments and the transition metal pseudo spin. The interaction is mediated by an effective alloy medium calculated using the CPA theory and elliptic densities of states. (Auth.)

  2. Effect of crystalline electric fields and long-range magnetic order on superconductivity in rare earth alloys and compounds

    International Nuclear Information System (INIS)

    McCallum, R.W.

    1977-01-01

    The behavior of rare earth ions in a superconducting matrix has been studied in two distinct regimes. First, the effects of crystal field splitting of the 4f levels of a magnetic rare earth ion in the alloy system (LaPr)Sn 3 were investigated in the limit of low Pr 3+ concentration. In this system the rare earth impurity ions occupy random La sites in the crystal lattice. Second, the interaction of long-range magnetic order and superconductivity was explored in the ternary rare earth molybdenum chalcogenide systems. In these compounds the rare earth ions occupy periodic lattice sites in contrast to the random distribution of magnetic ions in dilute impurity alloy systems such as (LaPr)Sn 3

  3. Rare earth doped M-type hexaferrites; ferromagnetic resonance and magnetization dynamics

    Directory of Open Access Journals (Sweden)

    Vipul Sharma

    2018-05-01

    Full Text Available M-type hexagonal barium ferrites come in the category of magnetic material that plays a key role in electromagnetic wave propagation in various microwave devices. Due to their large magnetic anisotropy and large magnetization, their operating frequency exceeds above 50 GHz. Doping is a way to vary its magnetic properties to such an extent that its ferromagnetic resonance (FMR response can be tuned over a broad frequency band. We have done a complete FMR study of rare earth elements neodymium (Nd and samarium (Sm, with cobalt (Co as base, doped hexaferrite nanoparticles (NPs. X-ray diffractometry, vibrating sample magnetometer (VSM, and ferromagnetic resonance (FMR techniques were used to characterize the microstructure and magnetic properties of doped hexaferrite nanoparticles. Using proper theoretical electromagnetic models, various parameters are extracted from FMR data which play important role in designing and fabricating high-frequency microwave devices.

  4. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  5. Investigation of a less rare-earth permanent-magnet machine with the consequent pole rotor

    Science.gov (United States)

    Bai, Jingang; Liu, Jiaqi; Wang, Mingqiao; Zheng, Ping; Liu, Yong; Gao, Haibo; Xiao, Lijun

    2018-05-01

    Due to the rising price of rare-earth materials, permanent-magnet (PM) machines in different applications have a trend of reducing the use of rare-earth materials. Since iron-core poles replace half of PM poles in the consequent pole (CP) rotor, the PM machine with CP rotor can be a promising candidate for less rare-earth PM machine. Additionally, the investigation of CP rotor in special electrical machines, like hybrid excitation permanent-magnet PM machine, bearingless motor, etc., has verified the application feasibility of CP rotor. Therefore, this paper focuses on design and performance of PM machines when traditional PM machine uses the CP rotor. In the CP rotor, all the PMs are of the same polarity and they are inserted into the rotor core. Since the fundamental PM flux density depends on the ratio of PM pole to iron-core pole, the combination rule between them is investigated by analytical and finite-element methods. On this basis, to comprehensively analyze and evaluate PM machine with CP rotor, four typical schemes, i.e., integer-slot machines with CP rotor and surface-mounted PM (SPM) rotor, fractional-slot machines with CP rotor and SPM rotor, are designed to investigate the performance of PM machine with CP rotor, including electromagnetic performance, anti-demagnetization capacity and cost.

  6. Preparation of rare earth-cobalt magnet alloy by reduction-diffusion process

    International Nuclear Information System (INIS)

    Krishnan, T.S.

    1980-01-01

    Preparation of rare earth-cobalt alloys by reduction-diffusion (R-D) process is described. The process essentially involves mixing of the rare earth oxide and cobalt/cobalt oxide powders in proper proportion and high temperature reduction of the charge in hydrogen atmosphere, followed by aqueous leaching of the reduced mass to yield the alloy powder. Comparison is made of the magnetic properties of the R-D powder with those of the powder prepared by the direct melting (DM) route and it is observed from the reported values for SmCo 5 that the energy product of the R-D powder (approximately 22 MGOe) is only marginally lower than that of the directly melted alloy (approximately 25 MGOe). The paper also includes the results of studies carried out at the Bhabha Atomic Research Centre, Bombay, on the preparation of misch metal-cobalt alloy by the R-D process. (auth.)

  7. Investigation on rare earth magnets recycling by organophosphoric extractant encapsulated polymeric beads for separation of dysprosium

    International Nuclear Information System (INIS)

    Yadav, Kartikey K.; Singh, D.K.; Kain, V.

    2017-01-01

    Rare earth elements (REEs) are a basic requirement of the electronics and new industries including green technology. In the present work an organophosphoric extractant encapsulating polyethersulfone (PES) beads has been developed and employed for dysprosium (Dy) separation from aqueous stream. Polyethersulfonic beads encapsulating PC88A were prepared by phase inversion method. During the synthesis of the beads, preparatory parameters were also optimized to obtain best suited beads which were subsequently characterized for their encapsulation capacity and micro structural investigation. The results obtained in the present investigation suggested that PES/PVAJPC88A composite beads could be used for separation of rare earths from aqueous medium obtained from the solubilisation of magnetic scrap materials

  8. Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets.

    Science.gov (United States)

    Sprecher, Benjamin; Xiao, Yanping; Walton, Allan; Speight, John; Harris, Rex; Kleijn, Rene; Visser, Geert; Kramer, Gert Jan

    2014-04-01

    Neodymium is one of the more critical rare earth elements with respect to current availability and is most often used in high performance magnets. In this paper, we compare the virgin production route of these magnets with two hypothetical recycling processes in terms of environmental impact. The first recycling process looks at manual dismantling of computer hard disk drives (HDDs) combined with a novel hydrogen based recycling process. The second process assumes HDDs are shredded. Our life cycle assessment is based both on up to date literature and on our own experimental data. Because the production process of neodymium oxide is generic to all rare earths, we also report the life cycle inventory data for the production of rare earth oxides separately. We conclude that recycling of neodymium, especially via manual dismantling, is preferable to primary production, with some environmental indicators showing an order of magnitude improvement. The choice of recycling technology is also important with respect to resource recovery. While manual disassembly allows in principle for all magnetic material to be recovered, shredding leads to very low recovery rates (<10%).

  9. The role of rare-earth dopants in tailoring the magnetism and magnetic anisotropy in Fe4N

    Science.gov (United States)

    Li, Zirun; Mi, Wenbo; Bai, Haili

    2018-05-01

    The magnetism and magnetic anisotropy of the rare-earth (RE) atom-substituted Fe4N are investigated by first-principles calculations. It is found that the substitution of one RE atom results in an antiferromagnetic coupling with the Fe atoms. The 4f-3d exchange interaction has an important influence on the density of states of Fe near the Fermi level. PrFe3N and NdFe3N with a tetragonal structure exhibit giant magnetic anisotropy energy larger than 5 meV/atom. The magnetic anisotropy depends on the distribution of partial states of d or f orbital near the Fermi level. As Eu substitutes Fe in Fe4N, the magnetic moment of Eu3FeN even exceeds 23 μB. Our theoretical predictions point out the possibilities of tuning the magnetism and magnetic anisotropy of Fe4N upon RE doping.

  10. Breathing mode distortion and magnetic order in rare-earth nickelates RNiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Alexander; Ederer, Claude [Materials Theory, ETH Zuerich (Switzerland)

    2016-07-01

    Rare-earth nickelate perovskites display a rich and not yet fully understood phase diagram, where all RNiO{sub 3} compounds with R from Sm to Lu undergo a non-magnetic metal-insulator transition (MIT). This transition is connected to a lattice distortion, which can be described as breathing mode of the oxygen octahedra surrounding the Ni cations. Between 100-250 K the RNiO{sub 3} compounds undergo a magnetic transition to an antiferromagnetic (AFM) state, with a wave-vector k= [(1)/(4) (1)/(4) (1)/(4)] relative to the underlying simple cubic perovskite structure. Here, we use density functional theory and its extensions (DFT+U, DFT+DMFT) together with distortion mode analysis to explore the interplay between lattice distortions, magnetic order, and the strength of the local Coulomb interaction U in rare earth nickelates. Our results show a strong dependency of the breathing mode amplitude on the magnetic order, with a much larger breathing mode obtained for the AFM state compared to the ferromagnetic case. Furthermore, we demonstrate that DFT+U is able to capture the correct trends of the lattice distortions across the nickelate series.

  11. Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping

    Science.gov (United States)

    Zhong, X. C.; Guo, X. J.; Zou, S. Y.; Yu, H. Y.; Liu, Z. W.; Zhang, Y. F.; Wang, K. X.

    2018-04-01

    Mn-Zn ferrites doped with different Sm2O3, Gd2O3, Ce2O3 or Y2O3 were prepared by traditional ceramic technology using industrial pre-sintered powders. A small amount of Sm2O3, Gd2O3, Ce2O3 or Y2O3 can significantly improve the microstructure and magnetic properties. The single spinel phase structure can be maintained with the doping amount up to 0.07 wt.%. A refined grain structure and uniform grain size distribution can be obtained by doping. For all rare earth oxides, a small amount of doping can significantly increase the permeability and reduce the coercivity and magnetic core loss. The optimized doping amount for Sm2O3 or Gd2O3 is 0.01 wt.%, while for Ce2O3 or Y2O3 is 0.03 wt.%. A further increase of the doping content will lead to reduced soft magnetic properties. The ferrite sample with 0.01 wt.% Sm2O3 exhibits the good magnetic properties with permeability, loss, and coercivity of 2586, 316 W/kg, and 24A/m, respectively, at 200 mT and 100 kHz. The present results indicate that rare earth doping can be suggested to be one of the effective ways to improve the performance of soft ferrites.

  12. An analytical electron microscopy characterization of melt-spun iron/rare-earth/boron magnetic materials

    International Nuclear Information System (INIS)

    Dickenson, R.C.; Lawless, K.R.; Hadjipanayis, G.C.

    1986-01-01

    Iron/rare-earth/boron permanent magnet materials have recently been developed to reduce the need for the strategic element cobalt, which was previously the primary component of high-energy magnets. These materials are generally produced by annealing rapidly solidified ribbons or by conventional powder metallurgy techniques. This paper reports results from an analytical electron microscopy characterization undertaken to establish the relationship between the magnetic properties and the microstructure of two iron/rare-earth/boron (Fe/RE/B) alloys. Ribbons of Fe 75 Pr 15 B 10 and Fe 77 Tb 15 B 8 were produced by melt-spinning. To obtain optimum magnetic properties, both alloys were then annealed at 700 0 C, the FePrB ribbons for 6 minutes and the FeTbB ribbons for 90 minutes. Foils for transmission electron microscopy were prepared by ion-milling the ribbons on a cold stage and examined using a Philips 400T TEM/STEM equipped with an energy dispersive x-ray unit

  13. Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping

    Directory of Open Access Journals (Sweden)

    X. C. Zhong

    2018-04-01

    Full Text Available Mn-Zn ferrites doped with different Sm2O3, Gd2O3, Ce2O3 or Y2O3 were prepared by traditional ceramic technology using industrial pre-sintered powders. A small amount of Sm2O3, Gd2O3, Ce2O3 or Y2O3 can significantly improve the microstructure and magnetic properties. The single spinel phase structure can be maintained with the doping amount up to 0.07 wt.%. A refined grain structure and uniform grain size distribution can be obtained by doping. For all rare earth oxides, a small amount of doping can significantly increase the permeability and reduce the coercivity and magnetic core loss. The optimized doping amount for Sm2O3 or Gd2O3 is 0.01 wt.%, while for Ce2O3 or Y2O3 is 0.03 wt.%. A further increase of the doping content will lead to reduced soft magnetic properties. The ferrite sample with 0.01 wt.% Sm2O3 exhibits the good magnetic properties with permeability, loss, and coercivity of 2586, 316 W/kg, and 24A/m, respectively, at 200 mT and 100 kHz. The present results indicate that rare earth doping can be suggested to be one of the effective ways to improve the performance of soft ferrites.

  14. Dense arrays of cobalt nanorods as rare-earth free permanent magnets.

    Science.gov (United States)

    Anagnostopoulou, E; Grindi, B; Lacroix, L-M; Ott, F; Panagiotopoulos, I; Viau, G

    2016-02-21

    We demonstrate in this paper the feasibility to elaborate rare-earth free permanent magnets based on cobalt nanorods assemblies with energy product (BH)max exceeding 150 kJ m(-3). The cobalt rods were prepared by the polyol process and assembled from wet suspensions under a magnetic field. Magnetization loops of dense assemblies with remanence to a saturation of 0.99 and squareness of 0.96 were measured. The almost perfect M(H) loop squareness together with electron microscopy and small angle neutron scattering demonstrate the excellent alignment of the rods within the assemblies. The magnetic volume fraction was carefully measured by coupling magnetic and thermogravimetric analysis and found in the range from 45 to 55%, depending on the rod diameter and the alignment procedure. This allowed a quantitative assessment of the (BH)max values. The highest (BH)max of 165 kJ m(-3) was obtained for a sample combining a high magnetic volume fraction and a very large M(H) loop squareness. This study shows that this bottom-up approach is very promising to get new hard magnetic materials that can compete in the permanent magnet panorama and fill the gap between the ferrites and the NdFeB magnets.

  15. [Studies on reduction of repellent force of rare earth magnets--concerning tooth intrusion].

    Science.gov (United States)

    Kitsugi, A

    1992-12-01

    The purpose of this investigation was to evaluate the sealing effect of the repelling force of the magnets with ferromagnetic stainless steel and also to examine the reduction pattern along with the change of the relative position of the magnets. The Nd-Fe-B magnet as rare earth magnet, and SUSXM 27, YEP-3, SUS 416 as ferromagnetic stainless steel were used in this experiment. The findings were as follows: 1. There was a little decrease of the repelling force of the magnets sealed with ferromagnetic stainless steel. On the other hand, no significant differences in the repelling force sealed with any kind of ferromagnetic stainless steel were found. 2. Direct contact of the repelling force of the phi 4.0 x 1.5 mm magnets sealed with SUSXM 27 of 0.2 mm in thickness was 242 gf. According to relative horizontal 1.2 mm movement keeping direct contact, the vertical and horizontal components of the repelling force were of the same value. 3. The repelling force of the phi 10.0 x 1.8 mm magnets sealed with SUSXM 27 of 0.2 mm in thickness was 815 gf. It showed more than 300 gf of vertical component of the repelling force when the magnets shifted to 3.0 mm horizontally when in contact. 4. It is suggested that the repelling force of the Nd-Fe-B magnets will be clinically useful for the intrusion of molar teeth.

  16. Magnetic properties of exchange-coupled trilayers of amorphous rare-earth-cobalt alloys

    International Nuclear Information System (INIS)

    Wuechner, S.; Toussaint, J.C.; Voiron, J.

    1997-01-01

    From amorphous thin films from alloys of rare earths (Gd, Sm), yttrium or zirconium with cobalt we have prepared trilayers with very clean interfaces appropriate for the study of magnetic coupling. The sandwiches were typically Y-Co/Gd-Co/Y-Co and Sm-Co/X/Sm-Co ' (X=Gd-Co, Co-Zr, Co). The three individual layers are coupled magnetically by exchange interactions between cobalt moments throughout the entire sample. This coupling associated with the specific properties of the given alloy (magnetic moment, anisotropy, coercivity) leads to ferrimagnetic or ferromagnetic structures of the magnetization of adjacent layers and to novel magnetization processes. For systems consisting of magnetically hard external layers with different coercivities and a soft central layer (Sm-Co/X/Sm-Co ' , X=Gd-Co, Co-Zr), the influence of the central layer close-quote s thickness and type of the material on coupling and magnetization processes have been studied quantitatively. Numerical simulations using a one-dimensional model for describing the magnetization processes observed in sandwich systems fit the magnetization curves of these model systems particularly well. copyright 1997 The American Physical Society

  17. Magnetic interactions in rhenium-containing rare earth double perovskites Sr{sub 2}LnReO{sub 6} (Ln=rare earths)

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Atsuhide; Doi, Yoshihiro; Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp

    2017-04-15

    The perovskite-type compounds containing both rare earth and rhenium Sr{sub 2}LnReO{sub 6} (Ln=Y, Tb-Lu) have been prepared. Powder X-ray diffraction measurements and Rietveld analysis show that Ln{sup 3+} and Re{sup 5+} ions are structurally ordered at the B site of the perovskite SrBO{sub 3}. Magnetic anomalies are found in their magnetic susceptibility and specific heat measurements at 2.6–20 K for Ln=Y, Tb, Dy, Yb, Lu compounds. They are due to magnetic interactions between Re{sup 5+} ions. The results of the magnetic hysteresis and remnant magnetization measurements for Sr{sub 2}YReO{sub 6} and Sr{sub 2}LuReO{sub 6} indicate that the antiferromagnetic interactions between Re{sup 5+} ions below transition temperatures have a weak ferromagnetic component. The analysis of the magnetic specific heat data for Sr{sub 2}YbReO{sub 6} shows that both the Yb{sup 3+} and Re{sup 5+} ions magnetically order at 20 K. For the case of Sr{sub 2}DyReO{sub 6}, magnetic ordering of the Re{sup 5+} moments occurs at 93 K, and with decreasing temperature, the moments of Dy{sup 3+} ferromagnetically order at 5 K from the measurements of magnetic susceptibility and specific heat. - Graphical abstract: Crystal structure of double perovskite Sr{sub 2}LnReO{sub 6}. Red and black lines show cubic and monoclinic unit cells, respectively. - Highlights: • Double perovskites Sr{sub 2}LnReO{sub 6} (Ln=rare earths) were prepared. • They show an antiferromagnetic transition at 2.6–20 K. • In Sr{sub 2}DyReO{sub 6}, Dy and Re moments magnetically order at 5 and 93 K, respectively.

  18. From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid

    OpenAIRE

    Vander Hoogerstraete, Tom; Blanpain, Bart; Van Gerven, Tom; Binnemans, Koen

    2014-01-01

    A chemical process which consumes a minimum amount of chemicals to recover rare-earth metals from NdFeB magnets was developed. The recovery of rare-earth elements from end-of-life consumer products has gained increasing interest during the last few years. Examples of valuable rare earths are neodymium and dysprosium because they are important constituents of strong permanent magnets used in several large or growing application fields (e.g. hard disk drives, wind turbines, electric vehicles, m...

  19. The magnetic properties of amorphous and nanocrystalline cobalt-rare earth films

    Science.gov (United States)

    Thomas, Richard Allen

    Magnetic materials are of great technological importance for their use in transformers, electric motors, computer disks and hard drives, etc. Understanding the intrinsic physical properties of magnetic materials is essential in order to develop new and better materials for these applications. Presented here is a study of the magnetic properties of amorphous and nanocrystalline cobalt-rare earth (Co-R, where R = Y, Pr, Gd, and Dy) films composed of very small crystalline grains, about 2--200 nm in size. The films are produced by co-sputtering two single element targets onto a single substrate. Many are then annealed briefly to produce magnetic films composed of nanoscale crystallites. The magnetic properties of these films depend largely on the relative strengths of the exchange interaction, which tends to align the spins within a group of crystallites, and the magnetocrystalline anisotropy, which tends to align the spins within each crystallite to an easy direction defined by the crystal lattice. The ratio of these two competing interactions varies strongly with grain size as predicted by the random magnetic anisotropy model. The coercivity, remanent magnetization, initial magnetization, etc., are discussed in light of the predictions made by the models of Callen et al (1977), Chi and Alben (1977), Chudnovsky (1986), and Fukunaga and Inoue (1992).

  20. Structural and magnetic order of ThMn12-type rare earth-iron-aluminium intermetallics studied by neutron diffraction

    International Nuclear Information System (INIS)

    Schaefer, W.; Halevy, I.; Gal, J.

    2000-01-01

    neutron powder diffraction data of ThMn 12 -type compounds RFe 4 Al 8 , RFe 5 Al 7 , and RFe 6 Al 6 (R = heavy rare earth) are compared to work out the structural variations and the different magnetic properties of these ternary intermetallics as a function of increasing iron concentrations. The variations of unit cell metric, of atomic coordinations and of interatomic distances are discussed. A magnetic phase diagram is presented showing the increase of the magnetic ordering temperatures from 120 K to 340 K and the change of the magnetic order from two separate magnetic phase transitions of rare earth and iron sublattices to one common ferrimagnetic transition of both sublattices, when changing the ratio of Fe/Al atoms from 4/8 to 6/6, respectively. Long range order is hampered by frozen spins. Magnetically ordered rare earth and iron moments are given. (orig.)

  1. Cobalt rare earth permanent magnets (citations from the Engineering Index data base). Final report for 1970--May 1978

    International Nuclear Information System (INIS)

    Smith, M.F.

    1978-06-01

    Research summaries from worldwide journals on fabrication, composition, bonding, sintering, pressing, and processing of these magnets are presented. Studies on phase transformations, microstructure, intermetallic compounds, and anisotropy are covered. The efficiency of electric motors, traveling wave tubes, microwave equipment and magnetic tape drives using cobalt rare earth magnets is included

  2. Characterization of magnetization processes in nanostructured rare earth-transition metal films

    International Nuclear Information System (INIS)

    Zheng Guangping; Zhan Yangwen; Liu Peng; Li Mo

    2003-01-01

    We synthesize rare earth-transition metal (RE-TM) amorphous films using the electrodeposition method (RE=Nd, Gd and TM=Co). Nanocrystructured RE-TM films are prepared by thermal treatment of as-synthesized films below the glass-crystal transition temperature. Based on the magnetoelastic effect, the magnetization processes in nanostructured samples are characterized by acoustic internal friction measurements using the vibrating-reed technique. Since internal friction and the Young's modulus are sensitive to grain boundary and magnetic domains movement, this technique seems to characterize the effects of nanostructures on the magnetization processes in RE-TM films well. We find that the magnetoelastic effect in nanostructured RE-TM film increases with an increase in grain size

  3. Magnetic properties of 3d-transition metal and rare earth fluoride glasses

    International Nuclear Information System (INIS)

    Renard, J.P.; Dupas, C.; Velu, E.; Jacobini, C.; Fonteneau, G.; Lucas, J.

    1981-01-01

    The ac susceptibility of fluoride glasses in the ternary systems PbF 2 -MnF 2 -FeF 3 , ThF 4 -BaF 2 -MnF 2 , ZnF 2 -BaF 2 -RF 3 (R = Dy-Ho) has been studied down to 0.3 K. The susceptibility of rare earth glasses exhibits a broad maximum strongly dependent on the measuring frequency ν while a spin glass transition with a sharp susceptibility cusp nearly independent on ν is observed in 3d-transition metal glasses. Magnetic after effects are observed below the spin freezing temperature. (orig.)

  4. Rare Earth Polyoxometalates.

    Science.gov (United States)

    Boskovic, Colette

    2017-09-19

    Longstanding and important applications make use of the chemical and physical properties of both rare earth metals and polyoxometalates of early transition metals. The catalytic, optical, and magnetic features of rare earth metal ions are well-known, as are the reversible multielectron redox and photoredox capabilities of polyoxomolybdates and polyoxotungstates. The combination of rare earth ions and polyoxometalates in discrete molecules and coordination polymers is of interest for the unique combination of chemical and physical properties that can arise. This Account surveys our efforts to synthesize and investigate compounds with rare earth ions and polyoxometalates (RE-POMs), sometimes with carboxylate-based organic coligands. Our general synthetic approach is "bottom-up", which affords well-defined nanoscale molecules, typically in crystalline form and amenable to single-crystal X-ray diffraction for structure determination. Our particular focus is on elucidation of the physical properties conferred by the different structural components with a view to ultimately being able to tune these properties chemically. For this purpose, we employ a variety of spectroscopic, magnetochemical, electrochemical, and scattering techniques in concert with theoretical modeling and computation. Studies of RE-POM single-molecule magnets (SMMs) have utilized magnetic susceptibility, inelastic neutron scattering, and ab initio calculations. These investigations have allowed characterization of the crystal field splitting of the rare earth(III) ions that is responsible for the SMM properties of slow magnetic relaxation and magnetization quantum tunneling. Such SMMs are promising for applications in quantum computing and molecular spintronics. Photophysical measurements of a family of hybrid RE-POMs with organic ligands have afforded insights into sensitization of Tb(III) and Eu(III) emission through both organic and polyoxometalate chromophores in the same molecule. Detailed

  5. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment.

    Science.gov (United States)

    Lixandru, A; Venkatesan, P; Jönsson, C; Poenaru, I; Hall, B; Yang, Y; Walton, A; Güth, K; Gauß, R; Gutfleisch, O

    2017-10-01

    Nd-Fe-B permanent magnets are a strategic material for a number of emerging technologies. They are a key component in the most energy efficient electric motors and generators, thus, they are vital for energy technologies, industrial applications and automation, and future forms of mobility. Rare earth elements (REEs) such as neodymium, dysprosium and praseodymium are also found in waste electrical and electronic equipment (WEEE) in volumes that grow with the technological evolution, and are marked as critical elements by the European Commission due to their high economic importance combined with significant supply risks. Recycling could be a good approach to compensate for the lack of rare earths (REs) on the market. However, less than 1% of REs are currently being recycled, mainly because of non-existing collection logistics, lack of information about the quantity of RE materials available for recycling and recycling-unfriendly product designs. To improve these lack of information, different waste streams of electrical and electronic equipment from an industrial recycling plant were analyzed in order to localize, identify and collect RE permanent magnets of the Nd-Fe-B type. This particular type of magnets were mainly found in hard disk drives (HDDs) from laptops and desktop computers, as well as in loudspeakers from compact products such as flat screen TVs, PC screens, and laptops. Since HDDs have been investigated thoroughly by many authors, this study focusses on other potential Nd-Fe-B resources in electronic waste. The study includes a systematic survey of the chemical composition of the Nd-Fe-B magnets found in the selected waste streams, which illustrates the evolution of the Nd-Fe-B alloys over the years. The study also provides an overview over the types of magnets integrated in different waste electric and electronic equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Rare earth octacyanomolybdates(4)

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Sergeeva, A.N.; Pisak, Yu.V.

    1980-01-01

    Optimal conditions for synthesis of rare-earth octacyanomolybdates(4) of the Ln 4 [Mo(CN) 8 ] 3 xnH 2 O composition (where Ln is a rare-earth element, other than Pr, Pm, Lu, Tb) have been worked out. The synthesis has been accomplished by neutralization with octacianomolybdic acid with rare-earth carbonates. The composition and structure of the compounds synthesized have been studied by infrared-spectroscopy. It has been established that rare-earth octacyanomolybdates(4) form three isostructural groups

  7. Application of rare-earth magnets in high-performance electric machines

    International Nuclear Information System (INIS)

    Ramsden, V.S.

    1998-01-01

    Some state of the art developments of high-performance machines using rare-earth magnets are reviewed with particular examples drawn from a number of novel machine designs developed jointly by the Faculty of Engineering, University of Technology, Sydney (UTS) and CSIRO Telecommunications and Industrial Physics. These designs include an 1800 W, 1060 rev/min, 98% efficient solar car in-wheel motor using a Halbach magnet array, axial flux, and ironless winding; a 1200 W, 3000 rev/min, 91% efficient solar-powered, water-filled, submersible, bore-hole pump motor using a surface magnet rotor; a 500 W, 10000 rev/min, 87% efficient, oil-filled, oil-well tractor motor using a 2-pole cylindrical magnet rotor and slotless winding; a 75 kW, 48000 rev/min, 97% efficient, high-speed compressor drive with 2-pole cylindrical magnet rotor, slotted stator, and refrigerant cooling; and a 20 kW, 211 rev/min, 87% efficient, direct-drive generator for wind turbines with very low starting torque using an outer rotor with surface magnets and a slotted stator. (orig.)

  8. Proceedings of the sixth international workshop on rare earth-cobalt permanent magnets and their applications, August 31 - September 2, 1982, and third international symposium on magnetic anisotropy and coercivity in rare earth-transition metal alloys, September 3, 1982

    International Nuclear Information System (INIS)

    Fidler, J.

    1982-01-01

    The first part (workshop) is concerned specifically with applications of rare earth-cobalt permanent magnets. The session headings are 1) electro-mechanical applications 2) electronic and miscellaneous applications 3) magneto-mechanical applications plus workshop on measurement methods 4) new materials and processes 5) industrial applications of REPM and future aspects. The second part (symposium) is concerned with physical properties of specific rare earth-transition metal alloys. (G.Q.)

  9. Influence of strain and polycrystalline ordering on magnetic properties of high moment rare earth metals and alloys

    International Nuclear Information System (INIS)

    Scheunert, G; Ward, C; Hendren, W R; Bowman, R M; Lapicki, A A; Hardeman, R; Mooney, M; Gubbins, M

    2014-01-01

    Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor-based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetization versus temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment fcc layer at the seed interface topped with a higher moment hcp layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetization was found to drop with increasing unit cell size. In situ annealed rare earth films exceeded the saturation magnetization of a high-moment Fe 65 Co 35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetization and operating temperature. (paper)

  10. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  11. Value analysis of neodymium content in shredder feed: toward enabling the feasibility of rare earth magnet recycling.

    Science.gov (United States)

    Bandara, H M Dhammika; Darcy, Julia W; Apelian, Diran; Emmert, Marion H

    2014-06-17

    In order to facilitate the development of recycling technologies for rare earth magnets from postconsumer products, we present herein an analysis of the neodymium (Nd) content in shredder scrap. This waste stream has been chosen on the basis of current business practices for the recycling of steel, aluminum, and copper from cars and household appliances, which contain significant amounts of rare earth magnets. Using approximations based on literature data, we have calculated the average Nd content in the ferrous shredder product stream to be between 0.13 and 0.29 kg per ton of ferrous scrap. A value analysis considering rare earth metal prices between 2002 and 2013 provides values between $1.32 and $145 per ton of ferrous scrap for this material, if recoverable as pure Nd metal. Furthermore, we present an analysis of the content and value of other rare earths (Pr, Dy, Tb).

  12. Calculations of magnetic x-ray dichroism in the 3d absorption spectra of rare-earth compounds

    NARCIS (Netherlands)

    GOEDKOOP, JB; THOLE, BT; VANDERLAAN, G; SAWATZKY, GA; DEGROOT, FMF; FUGGLE, JC; de Groot, Frank|info:eu-repo/dai/nl/08747610X

    1988-01-01

    We present atomic calculations for the recently discovered magnetic x-ray dichroism (MXD) displayed by the 3d x-ray-absorption spectra of rare-earth compounds. The spectral shapes expected at T=0 K for linear polarization parallel and normal to the local magnetic field is given, together with the

  13. On the effects of magnetic bonding in rare earth transition metal intermetallics

    International Nuclear Information System (INIS)

    Kumar, R.; Bentley, J.; Yelon, W.B.

    1990-01-01

    Neutron diffraction experiments on rare-earth transition metal magnetic alloys Er 2 Fe 14 B and Er 2 Fe 17 have been carried out at temperature above and below the ordering temperature (T c ). An anomalously large magnetic moment is observed at the crystallographic j 2 site in Er 2 Fe 14 B which is the intersection point of the major ligand lines in the crystal structure. The interatomic Fe-Fe distances are in the range of strong ferromagnetic bonds (≥ 2.66 angstrom). The analogous f site in Er 2 Fe 17 does not develop as large a magnetic moment. In addition, the same sites show strong preference for Fe atoms in the respective substituted compounds. Due to poor phase stability of Er 2 (Co x Fe 1 -x ) 14 B compounds, iron substitution has been studied in detail in Er 2 (Co x Fe 1 -x ) 17 alloys for site specific order an lattice distortion effects. However, a nonlinear change in the c lattice parameter observed in the neutron diffraction results cannot be explained on the basis of site preference alone. The neutron refinement results indicate iron rich compositions in Er 2 (Co x Fe 1 -x ) 17 materials, which is related to random substitution of Fe dumbbell pairs in the rare earth sites in the lattice. However, extensive electron microscopy (selected area electron diffraction and high resolution imaging) of Er 2 Fe 17 and Er 2 (Co .40 Fe .60 ) 17 failed to reveal any microscopic inhomogeneity. 12 refs., 5 figs., 2 tabs

  14. Faraday effect in rare-earth ferrite garnets located in strong magnetic fields

    International Nuclear Information System (INIS)

    Valiev, U.V.; Zvezdin, A.K.; Krinchik, G.S.; Levitin, R.Z.; Mukimov, K.M.; Popov, A.I.

    1983-01-01

    The Faraday effect is investigated experimentally in single crystal specimens of rare earth iron garnets (REIG) R 3 Fe 5 O 12 (R=Y, Gd, Tb, Dy, Er, Tm, Yb, Eu, Sm and Ho) and also in mixed iron garnets Rsub(x)Ysub(3-x)Fesub(5)Osub(12) (R=Tb, Dy). The m.easurements are carried out in pulsed magnetic fields of intensity up to 200 kOe, in a temperature range from 4.2 to 300 K and at a wavelength of the light lambda=1.15 μm. The field dependence of the Faraday effect observed in the REIG cannot be explained if only the usually considered ''paramagnetic'' contribution to the Faraday effect is taken into account. A theory is developed which, besides the paramagnetic mechanism, takes into account a diamagnetic mechanism and also the mixing of the wave functions of the ground and excited multiplets. The contributions of each of these three mechanisms to the angle of rotation of the plane of polarization by the rare earth sublattice of the iron garnet are estimated theoretically. It is concluded that the mixing mechanism contributes significantly to the field and temperature dependences of the Faraday effect in REIG

  15. Thermal expansion and magnetic properties of benzoquinone-bridged dinuclear rare-earth complexes.

    Science.gov (United States)

    Moilanen, Jani O; Mansikkamäki, Akseli; Lahtinen, Manu; Guo, Fu-Sheng; Kalenius, Elina; Layfield, Richard A; Chibotaru, Liviu F

    2017-10-10

    The synthesis and structural characterization of two benzoquinone-bridged dinuclear rare-earth complexes [BQ(MCl 2 ·THF 3 ) 2 ] (BQ = 2,5-bisoxide-1,4-benzoquinone; M = Y (1), Dy (2)) are described. Of these reported metal complexes, the dysprosium analogue 2 is the first discrete bridged dinuclear lanthanide complex in which both metal centres reside in pentagonal bipyramidal environments. Interestingly, both complexes undergo significant thermal expansion upon heating from 120 K to 293 K as illustrated by single-crystal X-ray and powder diffraction experiments. AC magnetic susceptibility measurements reveal that 2 does not show the slow relation of magnetization in zero dc field. The absent of single-molecule behaviour in 2 arises from the rotation of the principal magnetic axis as compared to the pseudo-C 5 axis of the pentagonal bipyramidal environment as suggested by ab initio calculations. The cyclic voltammetry and chemical reduction experiments demonstrated that complexes 1 and 2 can be reduced to radical species containing [BQ 3 ˙ - ]. This study establishes efficient synthetic strategy to make bridged redox-active multinuclear lanthanide complexes with a pentagonal bipyramidal coordination environment that are potential precursors for single-molecule magnets.

  16. Synthesis and magnetic properties of rare-earth free MnBi alloy: A high-energy hard magnetic material

    Science.gov (United States)

    Sharma, Sanjeev Kumar; Prakash, H. R.; Ram, S.; Pradhan, D.

    2018-04-01

    MnBi is a rare-earth free high-energy magnetic material useful for the permanent magnet based devices. In a simple method, a MnBi alloy was prepared by arc melting method using Mn and Bi metals in 60:40 atomic ratio. In terms of the X-ray diffraction, a crystalline MnBi phase is formed with Bi as impurity phase of the as-prepared alloy. FESEM image of chemically etched sample shows small grains throughout the alloy. SEAD pattern and lattice image were studied to understand the internal microstructure of the alloy. The thermomagnetic curves measured in ZFC-FC cycles over 5-380 K temperatures at 500 Oe field, shows the induced magnetization of 5-25 % in the sample. The coercivity values, 7.455 kOe (13.07 emu/g magnetization) at 380 K, and 5.185k Oe (14.75 emu/g magnetization) at 300 K, are observed in the M-H hysteresis loops. A decreased value 0.181kOe (18.05 emu/g magnetization) appears at 100 K due to the change in the magnetocrystalline anisotropy. The results are useful to fabricate small MnBi magnets for different permanent magnets based devices.

  17. Technique for recovering rare-earth metals from spent sintered Nd-Fe-B magnets without external heating

    Directory of Open Access Journals (Sweden)

    Ryo Sasai

    2016-06-01

    Full Text Available To selectively recover rare-earth metals with higher purity from spent sintered Nd-Fe-B magnets without external heating, we investigated the mechano-chemical treatment of spent sintered Nd-Fe-B magnet powder with a reaction solution of HCl and (COOH2 at room temperature. The results of various experiments showed that the mechano-chemical treatment with HCl and (COOH2 is very effective for recovering the rare-earth metals contained in spent sintered Nd-Fe-B magnet powder; the recovery rate and purity of the rare-earth metals were 95.3 and 95.0 mass%, respectively, under optimal conditions ([HCl] = 0.2 mol/dm3 and [(COOH2] = 0.25 mol/dm3.

  18. Structural order and magnetism of rare-earth metallic amorphous alloys

    International Nuclear Information System (INIS)

    Maurer, M.

    1984-01-01

    Local symmetry (as evaluated from the electric field gradient tensor) and radial distribution functions (obtained by EXAFS measurement) are determined in a series of amorphous rare-earth base alloys. Local order is found to increase with the extent of heteroatomic interactions. Various magnetic phases (including ferromagnetic, spin-glass, reentrant spin-glass) occur for europium alloys with simple metals (Mg, Zn, Cd, Al, Au, ...). This variety reflects the sensitivity of exchange interactions to the presence of non-s conduction electrons. Asperomagnetic structures are established for the Dy alloys. The crystalline electric field interactions at the Dy 3+ ions are interpreted with the help of local symmetry data. Quadratic axial and non-axial crystal field terms are sufficient and necessary in order to account for the hyperfine and bulk experimental results [fr

  19. Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials

    Science.gov (United States)

    Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.

    2016-09-01

    The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.

  20. Pressure dependence of magnetic ordering temperatures of rare earth-Sn/sub 3/ compounds

    Energy Technology Data Exchange (ETDEWEB)

    Foner, S [Massachusetts Inst. of Tech., Cambridge (USA). Francis Bitter National Magnet Lab.

    1979-12-01

    Measurements of the hydrostatic pressure dependence of the Neel temperatures, Tsub(N), are reported for PrSn/sub 3/, NdSn/sub 3/, GdSn/sub 3/ and CeIn/sub 3/. Tsub(N) is found to increase with applied pressure for PrSn/sub 3/ and NdSn/sub 3/, whereas Tsub(N) is pressure independent within experimental error for GdSn/sub 3/ and CeIn/sub 3/. Slightly Sn-deficient RESn/sub 3/ (RE = rare earth) compounds are found consistently to be weakly ferromagnetic. The physical properties of the RESn/sub 3/ compounds exhibit analogies with the corresponding properties of dilute superconducting (LaRE)Sn/sub 3/ alloys. The high pressure data for PrSn/sub 3/ and CeIn/sub 3/ are qualitatively consistent with a 'Kondo necklace' model for magnetically ordered RE compounds with unstable 4f shells.

  1. Pressure dependence of magnetic ordering temperatures of rare earth - Sn/sub 3/ compounds

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, L E [Virginia Univ., Charlottesville (USA). Dept. of Physics; Guertin, R P; Foner, S

    1979-12-01

    Measurements of the hydrostatic pressure dependence of the Neel temperatures, Tsub(N), are reported for PrSn/sub 3/, NdSn/sub 3/, GdSn/sub 3/ and CeIn/sub 3/. Tsub(N) is found to increase with applied pressure for PrSn/sub 3/ and NdSn/sub 3/, whereas Tsub(N) is pressure independent within experimental error for GdSn/sub 3/ and CeIn/sub 3/. Slightly Sn-deficient RESn/sub 3/ (RE=rare earth) compounds are found consistently to be weakly ferromagnetic. The physical properties of the RESn/sub 3/ compounds exhibit analogies with the corresponding properties of dilute superconducting (LaRE)Sn/sub 3/ alloys. The high pressure data for PrSn/sub 3/ and CeIn/sub 3/ are qualitatively consistent with a 'Kondo necklace' model for magnetically ordered RE compounds with unstable 4f shells.

  2. High coercivity in rare-earth lean nanocomposite magnets by grain boundary infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Madugundo, Rajasekhar, E-mail: mraja@udel.edu [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Salazar-Jaramillo, Daniel [BCMaterials, Bizkaia Science and Technology Park, E-48160 Derio (Spain); Manuel Barandiaran, Jose [BCMaterials, Bizkaia Science and Technology Park, E-48160 Derio (Spain); Department of Electricity & Electronics, University of the Basque Country (UPV/EHU), E-48080 Bilbao (Spain); Hadjipanayis, George C., E-mail: hadji@udel.edu [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2016-02-15

    A significant enhancement in coercivity was achieved by grain boundary modification through low temperature infiltration of Pr{sub 75}(Cu{sub 0.25}Co{sub 0.75}){sub 25} eutectic alloy in rare-earth lean (Pr/Nd)–Fe–B/α-Fe nanocomposite magnets. The infiltration procedure was carried out on ribbons and hot-deformed magnets at 600–650 °C for different time durations. In Nd{sub 2}Fe{sub 14}B/α-Fe ribbons, the coercivity increased from 5.3 to 23.8 kOe on infiltration for 4 h. The Pr{sub 2}Fe{sub 14}B/α-Fe hot-deformed magnet shows an increase in coercivity from 5.4 to 22 kOe on infiltration for 6 h. The increase in the coercivity comes at the expense of remnant magnetization. X-ray diffraction studies confirm the presence of both the hard Nd{sub 2}Fe{sub 14}B and soft α-Fe phases. A decrease in the soft α-Fe phase content was observed after infiltration. - Highlights: • Enhancement in coercivity was achieved by grain boundary modification. • Coercivity increased from 5.3 to 23.8 kOe in Nd{sub 2}Fe{sub 14}B/α-Fe on infiltration. • Pr{sub 2}Fe{sub 14}B/α-Fe deformed magnet shows an increase in coercivity from 5.4 to 22 kOe. • The increase in the coercivity comes at the expense of remnant magnetization. • A decrease in the soft α-Fe phase content was observed after infiltration.

  3. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  4. X ray topographic study of defects and magnetic domains in rare earth iron garnets

    International Nuclear Information System (INIS)

    Mathiot, Alain.

    1975-11-01

    X ray topographs allow simultaneous observations of crystalline defects and magnetic domain walls (except 180 deg ones). The easy magnetization directions of rare earth iron garnets are and the equilibrium texture of (110) silices is limited by a rectangular array of 71 deg and 109 deg walls. Since the anisotropy and magnetostriction of the choosen compounds (TbIG and DyIG) increase sharply when the temperature is lowered, the influence of these parameters has been studied between 300K and 4.2K. Because of the increase of spontaneous magnetization and anisotropy, the domain number increases at low temperatures and the texture becomes less sensitive to the crystal imperfections. Besides the 109 deg walls disappear almost completely from the pattern; this has been shown to be due to the respective values of the wall energies, and particularly to the influence of the K 2 anisotropy constant. The contrasts observed on the topographs increase also sharply, because of the high values of the lambda 111 coefficient of spontaneous magnetostriction at low temperatures. A splitting of the Brugg reflection peak into two, below 60K for TbIG, each part corresponding to one family of domains, allowed a direct of lambda 111 . The garnets are materials chosen to study domain walls because of the large range of the anisotropy and magnetostriction values obtained in those compounds [fr

  5. A family of rare-earth-based single chain magnets: playing with anisotropy.

    Science.gov (United States)

    Bernot, Kevin; Bogani, Lapo; Caneschi, Andrea; Gatteschi, Dante; Sessoli, Roberta

    2006-06-21

    The first family of rare-earth-based single chain magnets is presented. Compounds of general formula [M(hfac)3(NITPhOPh)], where M = Eu, Gd, Tb, Dy, Ho, Er, or Yb, and PhOPh is the nitronyl-nitroxide radical (2,4'-benzoxo-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), have been structurally characterized and found to be isostructural. The characterization of both static and dynamic magnetic properties of the whole family is reported. Dy, Tb, and Ho compounds display slow relaxation of the magnetization, and ac susceptibility shows a thermally activated regime with energy barriers of 69, 45, and 34 K for Dy, Tb, and Ho compounds, respectively, while only a frequency-dependent susceptibility is observed for Er below 2.0 K. In Gd and Yb derivatives, antiferromagnetic interactions dominate. The pre-exponential factors differ by about 4 orders of magnitude. Finite size effects, due to naturally occurring defects, affect the static and dynamic properties of the compounds differently.

  6. Unusual seeding mechanism for enhanced performance in solid-phase magnetic extraction of Rare Earth Elements

    Science.gov (United States)

    Polido Legaria, Elizabeth; Rocha, Joao; Tai, Cheuk-Wai; Kessler, Vadim G.; Seisenbaeva, Gulaim A.

    2017-03-01

    Due to the increasing demand of Rare Earth Elements (REE or RE), new and more efficient techniques for their extraction are necessary, suitable for both mining and recycling processes. Current techniques such as solvent extraction or solid adsorbents entail drawbacks such as using big volumes of harmful solvents or limited capacity. Hybrid nanoadsorbents based on SiO2 and highly stable γ-Fe2O3-SiO2 nanoparticles, proved recently to be very attractive for adsorption of REE, yet not being the absolute key to solve the problem. In the present work, we introduce a highly appealing new approach in which the nanoparticles, rather than behaving as adsorbent materials, perform as inducers of crystallization for the REE in the form of hydroxides, allowing their facile and practically total removal from solution. This induced crystallization is achieved by tuning the pH, offering an uptake efficiency more than 20 times higher than previously reported (up to 900 mg RE3+/g vs. 40 mg RE3+/g). The obtained phases were characterized by SEM-EDS, TEM, STEM and EFTEM and 13C and 29Si solid state NMR. Magnetic studies showed that the materials possessed enough magnetic properties to be easily removed by a magnet, opening ways for an efficient and industrially applicable separation technique.

  7. Localized-itinerant magnetism: a simple model with applications to intermetallic of heavy rare-earths

    International Nuclear Information System (INIS)

    Ranke Perlingueiro, P.J. von.

    1986-01-01

    We have investigated various magnetic quantities of a system consisting of conduction electrons coupled to localized spins. In obtaining the magnetic state equations (which relate the ionic and electronic magnetisations to temperature and the model parameters) we have adopted the molecular field approximation. This simple model is of interest to the magnetism of the heavy rare earth intermettallics. For these systems the localized spin is that of the 4f shell; it is described by the parameters g (the Lande's factor) and J (the total angular momentum of the 4f electrons in the ground state). We derive an analytical linear relation between the critical temperature and The Gennes Factors J(J+1)(g-1) which is experimentally observed for RAl 2 . A fitting between the experimental points and the theoretical prediction gives for the exchange parameter the value J o = 48.6 meV. We have also performed a parametric study of the model, using a rectangular energy density of states. The results are shown on tables and diagrams. (author) [pt

  8. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.

    Science.gov (United States)

    Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R

    2015-08-18

    The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  9. Effects of rare earth oxide addition on NdFeB magnets

    International Nuclear Information System (INIS)

    Ohashi, K.; Yokoyama, T.; Tawara, Y.

    1988-01-01

    The effects of addition of rare-earth oxides on the magnetic properties of Nd-Fe-B sintered magnets are studied. The addition of Dy 2 O 3 and Tb 4 O 7 leads to an increase in intrinsic coercivity. For addition of Dy 2 O 3 , the optimum conditions for powder mixing and the optimum Dy 2 O 3 particle size were determined. A mixing time of more than 10 minutes, and a Dy 2 O 3 particle size of less than 3 μm, are required to obtain a high intrinsic coercivity. EPMA measurements of NdFeBAl magnets with Dy 2 O 3 added reveal an inhomogeneous distribution of Dy in the Nd 2 Fe 14 B matrix: the material is Dy-rich near grain boundaries, but Dy-poor within the matrix. The appearance of such an inhomogeneous distribution of Dy is attributed to the reduction of Dy 2 O 3 in the Nd-rich phases, followed by diffusion of the resulting Dy atoms into the matrix

  10. Unusual magnetic properties of rare-earth titanium oxides RTiO3: effect of the rare earth on the magnetic moment of titanium in Lasub(x)Ysub(1-x)Ti03 and GdTi03

    International Nuclear Information System (INIS)

    Greedan, J.E.; MacLean, D.A.

    1978-01-01

    The rare-earth orthotitanites, RTi0 3 are a relatively new series of materials with properties which are strongly dependent on the identity of the rare-earth ion. Low-temperature magnetization studies on the system Lasub(x)Ysub(1-x)Ti0 3 and the compound GdTi0 3 indicate that the magnitude of the Ti 3+ spontaneous moment depends on the average size of the rare-earth ion and on its magnetic moment. For most of the phases studied except GdTi0 3 the Ti 3+ moment is very much smaller than the 'spin only' value and is non-integral, yet semiconducting behaviour is simultaneously observed. (author)

  11. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  12. Magnetic properties of RT2Zn20; R = rare earth, T = Fe, Co, Ru, Rh, Os and Ir

    International Nuclear Information System (INIS)

    Jia, Shuang

    2008-01-01

    It is well known that rare earth intermetallic compounds have versatile, magnetic properties associated with the 4f electrons: a local moment associated with the Hund's rule ground state is formed in general, but a strongly correlated, hybridized state may also appear for specific 4f electronic configuration (eg. for rare earth elements such as Ce or Yb). On the other hand, the conduction electrons in rare earth intermetallic compounds, certainly ones associated with non hybridizing rare earths, usually manifest non-magnetic behavior and can be treated as a normal, non-interacted Fermi liquid, except for some 3d-transition metal rich binary or ternary systems which often manifest strong, itinerant, d electron dominant magnetic behavior. Of particular interest are examples in which the band filling of the conduction electrons puts the system in the vicinity of a Stoner transition: such systems, characterized as nearly or weakly ferromagnet, manifest strongly correlated electronic properties (Moriya, 1985). For rare earth intermetallic compounds, such systems provide an additional versatility and allow for the study of the behaviors of local moments and hybridized moments which are associated with 4f electron in a correlated conduction electron background.

  13. Quantum Magnetism Applied to the Iron-Pnictides and Rare Earth Pyrochlores

    Science.gov (United States)

    Applegate, Ryan

    This dissertation presents computational studies of two families of magnetic materials of significant current interest. The iron pnictides are new high temperature superconductors with interesting parent compound antiferromagnetism. The rare earth pyrochlore material Yb2Ti2O7 is a candidate quantum spin ice. The magnetic and structural phases of individual iron pnictides have both many common features and material specific differences. In an attempt to unify these behaviors as instances of a larger theoretical picture, we use Monte Carlo simulations of a two-dimensional Hamiltonian with coupled Heisenberg-spin and Ising-orbital degrees of freedom. We introduce spin-space and single-ion anisotropies and study the finite temperature transitions in our model. We develop a phase diagram and propose that the interplay of spin and orbital physics in the presence of anisotropy could explain how material details affect the transitions of the pnictide materials. Nuclear magnetic resonance (NMR) can study magnetic materials via the hyperfine interaction and the coupling between the nuclear moment and the field produced by the samples local moment environment. Recent measurements suggest that Zn doped BaFe2As2 may have quantum fluctuations about the striped phase that produce a distribution of fields at As nuclear sites. The non-magnetic ion Zn replaces Fe and can be treated as an impurity which can be studied by a zero-temperature Ising Series expansion method. We propose a Heisenberg-like J1a-J 1b-J2 model which has small ferromagnetic exchanges along the b axis and strong antiferromagnetic exchanges along the a axis. In our impurity model we find that the magnetic moments are everywhere reduced by quantum fluctuations, except on the nearest neighbor site in the AFM direction. We suggest that the presented impurity model may provide an explanation for the experimental measurements. Based on a recently proposed quantum spin ice model, we use numerical linked cluster (NLC

  14. Rare earths: occurrence, production and applications

    International Nuclear Information System (INIS)

    Murthy, T.K.S.; Mukherjee, T.K.

    2002-01-01

    The mining and processing of rare earth minerals, particularly of monazite, began in a modest way in 1880s for commercialized production of mantle for gas lighting. For all major applications up to mid-twentieth century- production of lighter flints, misch metal as a metallurgical alloying agent, colouring, decolourizing and polishing agents for glass, petroleum cracking catalysts and arc-carbons, unseparated or partially separated rare earths were adequate. These applications continue till today. With the development and industrial application of powerful techniques like ion exchange and solvent extraction for the separation of rare earths, the decades after 1960 saw increasing utilization of the specific properties of the individual rare earths. Some of these advanced technological applications include: special glass for optical systems including camera lenses, phosphors for colour television, cathode ray tubes and fluorescent lighting, X-ray intensification screens, high intensity permanent magnets, electro optical devices, lasers, hydrogen storage materials, hydride rechargeable batteries, photomagnetic data storage systems, autoexhaust catalysts, special ceramics of unusual toughness, artificial diamonds and nonpoisonous plastic colorants. The topics covered in the book include rare earths: their story identity, rare earth resources, processing of ores and recovery of mixed rare earths products, separation and purification of rare earths, nonmetallic applications of rare earths, rare earth metals: production and applications, rare earth alloys and their applications, analysis of rare earth, processing of rare earth resources in India by Indian Rare Earth Ltd. and availability and market conditions

  15. A magnetic filter with permanent magnets on the basis of rare earths

    International Nuclear Information System (INIS)

    Zezulka, V.Vaclav; Straka, Pavel; Mucha, Pavel

    2004-01-01

    The article presents the development and construction of a magnetic filter based on the HGMS principle with permanent magnets. It is aimed especially at the assembly of the magnetic circuit using magnets from the material NdFeB. The way of the construction of large magnetic blocks, their magnetization and assembly are described. Further, it contains the measured values of magnetic induction in the middle of the air gap as a function of the width of this gap and of the height of the magnetic blocks in question, as well as the corresponding graphic representation. The high values of the magnetic induction obtained together with favourable price are sufficient reasons for the employment of this type of magnetic circuit in various applications

  16. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.

    Science.gov (United States)

    Kumari, Aarti; Sinha, Manish Kumar; Pramanik, Swati; Sahu, Sushanta Kumar

    2018-05-01

    Increasing demands of rare earth (RE) metals for advanced technological applications coupled with the scarcity of primary resources have led to the development of processes to treat secondary resources like scraps or end of life products that are often rich in such metals. Spent NdFeB magnet may serve as a potential source of rare earths containing around ∼30% of neodymium and other rare earths. In the present investigation, a pyro-hydrometallurgical process has been developed to recover rare earth elements (Nd, Pr and Dy) from the spent wind turbine magnet. The spent magnet is demagnetized and roasted at 1123 K to convert rare earths and iron to their respective oxides. Roasting of the magnet not only provides selectivity, but enhances the leaching efficiency also. The leaching of the roasted sample with 0.5 M hydrochloric acid at 368 K, 100 g/L pulp density and 500 rpm for 300 min selectively recovers the rare earth elements almost quantitatively leaving iron oxide in the residue. Leaching of rare earth elements with hydrochloric acid follows the mixed controlled kinetic model with activation energy (E a ) of 30.1 kJ/mol in the temperature range 348-368 K. The leaching mechanism is further established by characterizing the leach residues obtained at different time intervals by scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). Individual rare earth elements from the leach solution containing 16.8 g/L of Nd, 3.8 g/L Pr, 0.28 g/L of Dy and other minor impurity elements could be separated by solvent extraction. However, mixed rare earth oxide of 99% purity was produced by oxalate precipitation followed by roasting. The leach residue comprising of pure hematite has a potential to be used as pigment or can find other applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Threefold symmetric magnetic two-ion coupling in hcp rare-earth metals

    International Nuclear Information System (INIS)

    Jensen, J.

    1997-01-01

    The heavy rare earths crystallize in the hcp structure. Most of magnetic couplings between two ions in these metals are independent of the two different orientations of the hexagonal layers. However, trigonal anisotropy terms may occur, reflecting that c-axis is only threefold axis. In the presence of a trigonal coupling the symmetry is reduced, and the double-zone representation in the c-direction ceases to be valid. The strong interaction between the transverse optical phonons and the acoustic spin waves propagating in the c-direction of Yb detected more than twenty years ago, was the first example of a trigonal coupling found in these systems. A few years ago a careful neutron-diffraction study of the c-axis modulated magnetic structures in Er showed the presence of higher harmonics at positions along the c-axis translated by odd multiple of 2φ/c. This indicates distortions of the structures due to trigonal couplings, and the same characteristic phenomenon has now been also observed in Ho. Additionally, mean field calculations show that a trigonal coupling in Ho is required, in order to explain the increase in the commensurable effects observed for the 8 and 10 layered periodic structures, when a field is applied along the c-axis. (author)

  18. Magnetic field strength dependence of the magnetostriction of rare-earth iron garnets

    International Nuclear Information System (INIS)

    Zvezdin, A.K.; Levitin, R.Z.; Popov, A.I.; Silant'ev, V.I.

    1981-01-01

    The magnetostriction of holmium-yttrium iron garnets Hosub(x)Ysub(3-x)Fesub(5)Osub(12) (x=3 or 1.05) is measured in pulsed magnetic fields up to 200 kOe at 78 K. It is shown that the magnetostriction constants lambda 111 and lambda 100 of these ferrimagnets depends on the magnetic field strength. The magnetostriction constant of the iron garnet Ho 3 Fe 5 O 12 increases and of the iron garnet Hosub(1.05)Ysub(1.95)Fesub(5)Osub(12) decreases with increase of the field strength. The field dependences of the anisotropic magnetostriction constants lambda 111 and lambda 100 for Hosub(1.05)Ysub(1.95)Fesub(5)Osub(12) are fundamentally different. Thus lambda 111 depends quadratically on the total effective field Hsub(eff) whereas lambda 100 depends almost linearly on Hsub(eff). A theoretical analysis of the magneto-elastic interaction in rare-earth iron garnets is carried out [ru

  19. Effect of Coulomb interaction on the X-ray magnetic circular dichroism spin sum rule in rare earths

    NARCIS (Netherlands)

    Teramura, Y; Tanaka, A; Thole, BT; Jo, T

    A deviation from the spin sum rule, which relates the integrated intensity of the X-ray magnetic circular dichroism (MCD) signal to the expectation value of the spin operator S-z ((S-z)), is numerically calculated in the case of the 3d --> 4f absorption for rare earths from the trivalent Ce to Tm.

  20. A perspective on slow-relaxing molecular magnets built from rare-earths and nitronyl-nitroxide building blocks (invited)

    Science.gov (United States)

    Bogani, Lapo

    2011-04-01

    We offer a perspective, accessible to both chemists and physicists, of recent developments in the synthesis and characterization of molecular magnetic materials based on rare-earths and nitronyl-nitroxide radicals. We show both the rationale of the synthetic strategies and the observed behaviors. We highlight the relevance of these findings for synthetic chemists, material scientists, and physicists.

  1. Structural, magnetic and electronic properties of rare earth ternary oxides Li Ln(II) 2 Ln(III)O4

    International Nuclear Information System (INIS)

    Malki, M.

    1987-06-01

    Properties of a new class of rare earth ternary oxides Li Ln(II) 2 Ln(III)O 4 where Ln(II) is a divalent metal (Sr, Eu) and Ln(III) a trivalent rare earth (Eu, Gd, Dy, Er and Y). These orthorhombic compounds (type Li Eu 3 O 4 ) allow the study of many magnetic phenomena and their evolution in function of the nature of Ln(II) and Ln(III): diamagnetic ions Sr 2+ , Y 3+ ; isotrope magnetic ions: Eu 2+ , Gd 3+ and anisotrope magnetic ions Dy 3+ , Er 3+ . Magnetic and electric properties are obtained by classical techniques and from hyperfine interaction by Moessbauer spectroscopy. The possibility to use several Moessbauer resonance (nuclei Eu 151, Gd 155, Dy 161 and Er 166) completes informations obtained by the macroscopic study [fr

  2. [Rare earth magnets in conjunction with fixed orthodontics. An "attractive" solution for the positioning of impacted teeth].

    Science.gov (United States)

    Dereudre, B

    2001-11-01

    Two rare earth permanent magnets are used to align impacted teeth: one is bonded on the crown of the ectopic tooth, the other, intraoral, guides the impacted tooth to the desired place by its attractive power. The intraoral magnet is fixed to an edgewise arch. The adjustments allowed by fixed appliance create better final tooth position than with removable appliance. Our experience depicts an improvement of stability in results and a diminution of periodontal breakdown.

  3. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  4. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    Science.gov (United States)

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  5. Spectroscopic and magnetic properties of rare-earth elements and their anomalous compounds

    International Nuclear Information System (INIS)

    Hammoud, Y.

    1991-07-01

    Using the impurity Anderson model in the large N f approximation, where N f is the orbital and spin degeneracy of the f level, we calculate the zero temperature static paramagnetic susceptibility of light rare earth metallic systems. The calculation is performed for large values of the Coulomb U f f electron-electron interactions with respect of the V hybridization of f 1 and f 2 configurations with the conduction states (i.e. f 0 configuration): We only keep the leading terms in a development in successive powers of 1/U f f and V. Our numerical results on the magnetic susceptibility start from a simple analytic expression and are discussed in terms of the f level position, the hybridization V, the shape and filling of the conduction band and also the finite U f f effects. Finally we present calculated curves for the susceptibility versus V in connection with the α γ transition of cerium and utilizing the same parameters as those used previously to obtain core level L I II absorption spectra: Also in the case of the susceptibility, the hybridization appears to be an important parameter to describe the phase change from γ to α cerium. (author). 17 refs., 6 figs

  6. A Complete Design of a Rare Earth Metal-Free Permanent Magnet Generator

    Directory of Open Access Journals (Sweden)

    Petter Eklund

    2014-05-01

    Full Text Available The price of rare-earth metals used in neodymium-iron-boron (NdFeB permanent magnets (PMs has fluctuated greatly recently. Replacing the NdFeB PMs with more abundant ferrite PMs will avoid the cost insecurity and insecurity of supply. Ferrite PMs have lower performance than NdFeB PMs and for similar performance more PM material has to be used, requiring more support structure. Flux concentration is also necessary, for example, by a spoke-type rotor. In this paper the rotor of a 12 kW NdFeB PM generator was redesigned to use ferrite PMs, reusing the existing stator and experimental setup. Finite element simulations were used to calculate both electromagnetic and mechanical properties of the design. Focus was on mechanical design and feasibility of construction. The result was a design of a ferrite PM rotor to be used with the old stator with some small changes to the generator support structure. The new generator has the same output power at a slightly lower voltage level. It was concluded that it is possible to use the same stator with either a NdFeB PM rotor or a ferrite PM rotor. A ferrite PM generator might require a larger diameter than a NdFeB generator to generate the same voltage.

  7. Theory of Temperature Dependence of the Magnetization in Rare-Earth-Transition-Metal Alloys

    DEFF Research Database (Denmark)

    Szpunar, B.; Lindgård, Per-Anker

    1977-01-01

    -spin. The interaction is mediated by an effective alloy medium calculated using the CPA theory and elliptic densities of states. Es wird gezeigt, daß die Temperaturabhängigkeit der magnetischen Momente und die Curie-Temperatur sowie die Temperatur der ferrimagnetischen Kompensation für Gd1-xTx (T = Co, Ni und Fe) und Y......1-xCox durch ein einfaches Model1 erklärt werden können, das eine RKKY-Wechsel-wirkung zwischen den Momenten der Seltenen Erden und des Pseudo-Spins des Übergangsmetalls annimmt. Die Wechselwirkung wird durch ein effektives Legierungsmedium übermittelt, das mit der CPA-Theorie und elliptischen......It is shown that the temperature dependence of the magnetic moments and Curie and ferrimagnetic compensation temperatures for Gdl-xTx (T = Co, Ni, and Fe) and Y1-xCox can be accounted for by a simple model assuming a RKKY interaction between the rare-earth moments and the transition-metal pseudo...

  8. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores

    NARCIS (Netherlands)

    Malkin, B. Z.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Dhalenne, G.; Zakirov, A. R.

    2010-01-01

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R2Ti2O7 (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the

  9. Comment on contact contributions to the magnetic hyperfine interaction of rare-earth impurities in iron

    International Nuclear Information System (INIS)

    Bernas, H.

    1977-01-01

    The influence of the strong d character of the Fe conduction band on the hyperfine interaction of dilute rare earth impurities is emphasized, and the contact contributions are estimated. Apparent inconsistencies between hyperfine field measurements for Eu and Gd in Fe are noted

  10. Observation of high magnetocrystalline anisotropy on Co doping in rare earth free Fe2P magnetic material

    Science.gov (United States)

    Thakur, Jyoti; Singh, Om Pal; Tomar, Monika; Gupta, Vinay; Kashyap, Manish K.

    2018-04-01

    ab-initio investigation of magnetocrystalline anisotropy energy (MAE) for Fe2P and CoFeP using density functional theory based full-potential linear augmented plane wave (FPLAPW) is reported. CoFeP alloy exhibits large magnetic moment 13.28 µB and enhanced anisotropy energy reaching as high as 1326 µeV/f.u. This energy is nearly doubled as compared to its parent Fe2P alloy, making this system a promising candidate for a rare earth free permanent magnet. Substituitng Co at Fe-3f site in Fe2P helps in stabilizing the new structure and further improves the magnetic properties.

  11. Rare earth elements: end use and recyclability

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  12. Magnetic properties of Kramers rare earth ions in aluminium and gallium garnets; Proprietes magnetiques des ions de kramers des terres rares dans les grenats de terres rares et d'aluminium et les grenats de terres rares et de gallium

    Energy Technology Data Exchange (ETDEWEB)

    Capel, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The magnetic properties of Kramers rare earth ions in aluminium and gallium garnets (MAlG and MGaG) are discussed by means of a molecular field treatment. The symmetry properties of the space group permit to establish a parametrization for the magnetic dipolar and exchange couplings. The magnetic properties of the system can be expressed in terms of these parameters and the g factors of the rare earth ions. We have calculated the transition temperatures, the sub-lattice magnetizations, the susceptibility in the paramagnetic region and the antiferromagnetic susceptibility for a special type of magnetic ordering. The influence of the excited Kramers doublets is described by means of a generalization of the usual g tensor. (authors) [French] Les proprietes magnetiques des ions de Kramers des terres rares dans les grenats de terre rare et d'aluminium et les grenats de terre rare et de gallium sont discutees a l'aide d'un traitement du champ moleculaire. Les proprietes de symmetrie du groupe d'espace permettent d'exprimer les couplages dipolaires et les interactions d'echange en fonction de quelques parametres. Les proprietes magnetiques peuvent etre exprimees en fonction de ces parametres et les facteurs g des ions de terre rare. Nous avons calcule les temperatures de transition, les aimantations des sous-reseaux pour 0

  13. Afganistan and rare earths

    Directory of Open Access Journals (Sweden)

    Emilian M. Dobrescu

    2013-05-01

    Full Text Available On our planet, over a quarter of new technologies for the economic production of industrial goods, are using rare earths, which are also called critical minerals and industries that rely on these precious items being worth of an estimated nearly five trillion dollars, or 5 percent of world gross domestic product. In the near future, competition will increase for the control of rare earth minerals embedded in high-tech products. Rare minerals are in the twenty-first century what oil accounted for in the twentieth century and coal in the nineteenth century: the engine of a new industrial revolution. Future energy will be produced increasingly by more sophisticated technological equipment based not just on steel and concrete, but incorporating significant quantities of metals and rare earths. Widespread application of these technologies will result in an exponential increase in demand for such minerals, and what is worrying is that minerals of this type are almost nowhere to be found in Europe and in other industrialized countries in the world, such as U.S. and Japan, but only in some Asian countries, like China and Afghanistan.

  14. CURRENT SITUATION AND PROSPECTS OF PRODUCTION AND RESERVES OF PERMANENT MAGNETS OF RARE EARTHS: BRAZIL × WORLD

    Directory of Open Access Journals (Sweden)

    Franciele Weschenfelder

    2012-12-01

    Full Text Available Generating energy from renewable sources is not an easy task since it requires different types of technologies, which can add much cost to the system. For this reason, investment in research in this area can be an alternative for economic feasibility of wind power plants, for example. One line of research in this area is the study of new materials such as permanent magnets, with even better properties. These magnets, when used in wind generators add many advantages in the operation there of, and a high torque/volume. For this application it is necessary that these magnets have high coercive field (Hc and high remanent induction (Br. Brazil still has no competition in the industry of permanent magnets, so many studies by government and private enterprise are under development in the country. There is a special focus to the Rare Earths Magnets, the primary raw material for production of permanent magnets.

  15. Magnetic and noncentrosymmetric Weyl fermion semimetals in the R AlGe family of compounds (R =rare earth )

    Science.gov (United States)

    Chang, Guoqing; Singh, Bahadur; Xu, Su-Yang; Bian, Guang; Huang, Shin-Ming; Hsu, Chuang-Han; Belopolski, Ilya; Alidoust, Nasser; Sanchez, Daniel S.; Zheng, Hao; Lu, Hong; Zhang, Xiao; Bian, Yi; Chang, Tay-Rong; Jeng, Horng-Tay; Bansil, Arun; Hsu, Han; Jia, Shuang; Neupert, Titus; Lin, Hsin; Hasan, M. Zahid

    2018-01-01

    Weyl semimetals are novel topological conductors that host Weyl fermions as emergent quasiparticles. In this Rapid Communication, we propose a new type of Weyl semimetal state that breaks both time-reversal symmetry and inversion symmetry in the R AlGe (R =rare -earth ) family. Compared to previous predictions of magnetic Weyl semimetal candidates, the prediction of Weyl nodes in R AlGe is more robust and less dependent on the details of the magnetism because the Weyl nodes are generated already by the inversion breaking and the ferromagnetism acts as a simple Zeeman coupling that shifts the Weyl nodes in k space. Moreover, R AlGe offers remarkable tunability, which covers all varieties of Weyl semimetals including type I, type II, inversion breaking, and time-reversal breaking, depending on a suitable choice of the rare-earth elements. Furthermore, the unique noncentrosymmetric and ferromagnetic Weyl semimetal state in R AlGe enables the generation of spin currents.

  16. Effect of chemical pressure, misfit strain and hydrostatic pressure on structural and magnetic behaviors of rare-earth orthochromates

    International Nuclear Information System (INIS)

    Zhao, Hong Jian; Chen, Xiang Ming; Ren, Wei; Bellaiche, L

    2013-01-01

    First-principles calculations are performed to investigate structural and magnetic behaviors of rare-earth orthochromates as a function of ‘chemical’ pressure (that is, the rare-earth ionic radius), epitaxial misfit strain and hydrostatic pressure. From a structural point of view, (i) ‘chemical’ pressure significantly modifies antipolar displacements, Cr–O–Cr bond angles and the resulting oxygen octahedral tiltings; (ii) hydrostatic pressure mostly changes Cr–O bond lengths; and (iii) misfit strain affects all these quantities. The correlations between magnetic properties (Néel temperature and weak ferromagnetic moments) and unit cell volume are similar when varying the misfit strain or hydrostatic pressure, but differ from those associated with the ‘chemical’ pressure. Origins of such effects are also discussed. (paper)

  17. Nuclear Magnetic Resonance and Unstable Rare-Earth Magnetism in CERIUM-ALUMINUM(3)

    Science.gov (United States)

    Lysak, Michael Jerry

    ('27)Al nuclear magnetic resonance (NMR) experiments have been carried out in the unstable-moment compound CeAl(,3) to probe the nature of the hyperfine field at the ('27)Al site, and to obtain effective Ce-4f spin fluctuation rates. From the reported Fermi-fluid-like properties of CeAl(,3) at low temperatures, a characteristic temperature T(,char)(TURN)0.5K is estimated, below which electron-electron correlations are strong. A change of slope in a plot of the ('27)Al isotropic frequency shift K(,i) versus the susceptibility (chi) in the temperature range 1.5-20K is therefore probably not associated with a change in the hyperfine interaction at T(,char). NMR absorption spectra of CeAl(,3) qualitatively indicate a considerable anisotropy in the ('27)Al shift below 20K, which increases with decreasing temperature or increasing applied field. Since these K((chi)) anomalies begin to occur at a temperature of the order of the lowest crystal-electric-field (CEF) splitting of the Ce-ion states as derived from neutron quasielastic scattering, they are tentatively attributed to CEF effects which can cause anisotropy in the hyperfine interaction. The observed increase in the ('27)Al spin-lattice relaxation rate 1/T(,1) from 300K to a broad mximum near 10K is ascribed to possible electron-spin pair-correlation and/or CEF effects. The behavior of the effective 4f-spin fluctuation rate indicates the onset of short-range spatial correlations between the Ce-4f spins at low temperatures, but the nature of these correlations is uncertain due to difficulties in reconciling the NMR and neutron data. If such short -range correlations are assumed to be absent at 300K comparison of NMR and neutron results indicates that an effective number n(,eff) = 7(2) of Ce neighbors are hyperfine coupled to a given ('27)Al nucleus. A paramagnon theory of the susceptibility as proposed by Beal-Monod and Lawrence suggested that CeAl(,3) might be an exchange-enhanced system. A susceptibility

  18. Rare earth - no case for government intervention

    OpenAIRE

    Georg Zachmann

    2010-01-01

    China has officially restricted exports of rare earth for several years and announced this year it will further tighten exports. Rare earth is a group of 17 different metals, usually found clustered together. These metals have hundreds of different industry applications. For example, they are used in certain high capacity magnets, batteries and lasers. As the rare earth elements are used in sectors that are assumed to have an over-proportionate growth potential (eg. green-technology), policy ...

  19. Magnetic Interaction between Surface-Engineered Rare-Earth Atomic Spins

    Directory of Open Access Journals (Sweden)

    Chiung-Yuan Lin

    2012-06-01

    Full Text Available We report the ab-initio study of rare-earth adatoms (Gd on an insulating surface. This surface is of interest because of previous studies by scanning tunneling microscopy showing spin excitations of transition-metal adatoms. The present work is the first study of rare-earth spin-coupled adatoms, as well as the geometry effect of spin coupling and the underlying mechanism of ferromagnetic coupling. The exchange coupling between Gd atoms on the surface is calculated to be antiferromagnetic in a linear geometry and ferromagnetic in a diagonal geometry. We also find that the Gd dimers in these two geometries are similar to the nearest-neighbor and the next-nearest-neighbor Gd atoms in GdN bulk. We analyze how much direct exchange, superexchange, and Ruderman-Kittel-Kasuya-Yosida interactions contribute to the exchange coupling for both geometries by additional first-principles calculations of related model systems.

  20. Effect of spacer layer on the magnetization dynamics of permalloy/rare-earth/permalloy trilayers

    International Nuclear Information System (INIS)

    Luo, Chen; Yin, Yuli; Zhang, Dong; Jiang, Sheng; Yue, Jinjin; Zhai, Ya; Du, Jun; Zhai, Hongru

    2015-01-01

    The permalloy/rare-earth/permalloy trilayers with different types (Gd and Nd) and thicknesses of spacer layer are investigated using frequency dependence of ferromagnetic resonance (FMR) measurements at room temperature, which shows different behaviors with different rare earth spacer layers. By fitting the frequency dependence of the FMR resonance field and linewidth, we find that the in-plane uniaxial anisotropy retains its value for all samples, the perpendicular anisotropy remains almost unchanged for different thickness of Gd layer but the values are tailored by different thicknesses of Nd layer. The Gilbert damping is almost unchanged with different thicknesses of Gd; however, the Gilbert damping is significantly enhanced from 8.4×10 −3 to 20.1×10 −3 with 6 nm of Nd and then flatten out when the Nd thickness rises above 6 nm

  1. Study of amorphous semiconductors doped with rare earths (Gd and Er) and conducting polymers by EPR techniques and magnetic susceptibility

    International Nuclear Information System (INIS)

    Sercheli, Mauricio da Silva

    1999-01-01

    This thesis involves the study of amorphous semiconductors and conducting polymers, which have been characterized by EPR and magnetic susceptibility measurements, and to a lesser extent by Raman spectroscopy and RBS. The semiconductors were studied using thin films of silicon doped with rare earth metals, e.g. erbium and gadolinium, which had their magnetic properties studied. Using these studies we could determine the state of valence of the rare earths as well as their concentrations in the silicon matrix. According to our results, the valence of the rare earth metal ions is 3+, and we were able to conclude that 4f electronic shells could not be used for the calculation of the conducting band in this system. Furthermore, the analysis of the data on the magnetic susceptibility of the Er 3+ ion with cubic crystalline acting field, gave us the opportunity to estimate the overall splitting of their electronic states for the first time. The conducting polymers were studied using samples of poly(3-methylthiophene) doped with ClO 4 - , which show a phase transition in the range of 230 K to 130 K. The electron paramagnetic resonance also gives important information on the crystallization, doping level and the presence of polarons or bipolarons in conducting polymers. (author)

  2. Rare-earth elements

    Science.gov (United States)

    Van Gosen, Bradley S.; Verplanck, Philip L.; Seal, Robert R.; Long, Keith R.; Gambogi, Joseph; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    The rare-earth elements (REEs) are 15 elements that range in atomic number from 57 (lanthanum) to 71 (lutetium); they are commonly referred to as the “lanthanides.” Yttrium (atomic number 39) is also commonly regarded as an REE because it shares chemical and physical similarities and has affinities with the lanthanides. Although REEs are not rare in terms of average crustal abundance, the concentrated deposits of REEs are limited in number.Because of their unusual physical and chemical properties, the REEs have diverse defense, energy, industrial, and military technology applications. The glass industry is the leading consumer of REE raw materials, which are used for glass polishing and as additives that provide color and special optical properties to the glass. Lanthanum-based catalysts are used in petroleum refining, and cerium-based catalysts are used in automotive catalytic converters. The use of REEs in magnets is a rapidly increasing application. Neodymium-iron-boron magnets, which are the strongest known type of magnets, are used when space and weight are restrictions. Nickel-metal hydride batteries use anodes made of a lanthanum-based alloys.China, which has led the world production of REEs for decades, accounted for more than 90 percent of global production and supply, on average, during the past decade. Citing a need to retain its limited REE resources to meet domestic requirements as well as concerns about the environmental effects of mining, China began placing restrictions on the supply of REEs in 2010 through the imposition of quotas, licenses, and taxes. As a result, the global rare-earth industry has increased its stockpiling of REEs; explored for deposits outside of China; and promoted new efforts to conserve, recycle, and substitute for REEs. New mine production began at Mount Weld in Western Australia, and numerous other exploration and development projects noted in this chapter are ongoing throughout the world.The REE-bearing minerals are

  3. Rare earth industry in India

    International Nuclear Information System (INIS)

    Singh, D.S.

    2016-01-01

    Rare Earths (RE) comprises of 17 elements i.e. elements from atomic No. 57-71 (lanthanide series) along with yttrium (atomic No. 39) and scandium (atomic No. 21). They exhibit special electronic, magnetic, optical and catalytic properties. The first 7 elements in the lanthanide series from atomic Nos. 57 to 63 (La to Eu) are called Light Rare Earths (LRE), while the remaining elements from atomic Nos. 64 to 71 (Gd to Lu) are grouped as Heavy Rare Earths (HRE). Scandium and Yttrium have properties similar to HRE. The concentration of the REs in the earth's crust is as high as some other elements including that of copper. The only difference is that REs do not occur as separate minerals amenable for easy exploration and mining and are widely distributed across the earth's surface, hence they are called as REs. Resources In India, monazite has been the principal source of RE. It occurs in association with other heavy minerals, such as ilmenite, rutile, zircon etc. in the beach sands and inland placer deposits. The monazite content in this assemblage varies from negligible quantity to as high as 5%. As per AMD resource estimation, the reported resource of monazite in India is about 11.93 million tons which corresponds with about 6.9 million tons of RE oxides. Although India possesses large deposits of monazite, the heavier RE are not present in sufficient quantities in this mineral. (author)

  4. Thermal stability and temperature coefficients of four rare-earth-cobalt matrix magnets heated in dry air

    Science.gov (United States)

    Strnat, R. M. W.; Liu, S.; Strnat, K. J.

    1982-03-01

    Flux-loss characteristics during long-term air aging of four rare-earth-cobalt matrix magnet types were measured. Irreversible losses and reversible temperature coefficients on heating above room temperature are reported. Purely magnetic and permanent microstructure-related changes during aging were differentiated by measuring hysteresis curves before and after long-term exposure. Three commercial polymer-bonded magnets using different rare-earth-cobalt-transition metal alloys and a solder-matrix magnet with Sm(Co, Cu, Fe, Zr)7.4 were studied. They were cycled between 25 °C and maximum temperatures to 150 °C (25 ° intervals) as applicable. Aging data at 50 and 125 °C for an exposure time of 3300 h are reported. The 2-17 samples have a stability far superior to bonded 1-5. The soft metal binder imparts significantly better aging behavior on precipitation-hardened 2-17 magnet alloys above 100 °C than an epoxy resin matrix.

  5. ThMn12-type phases for magnets with low rare-earth content: Crystal-field analysis of the full magnetization process.

    Science.gov (United States)

    Tereshina, I S; Kostyuchenko, N V; Tereshina-Chitrova, E A; Skourski, Y; Doerr, M; Pelevin, I A; Zvezdin, A K; Paukov, M; Havela, L; Drulis, H

    2018-02-26

    Rare-earth (R)-iron alloys are a backbone of permanent magnets. Recent increase in price of rare earths has pushed the industry to seek ways to reduce the R-content in the hard magnetic materials. For this reason strong magnets with the ThMn 12  type of structure came into focus. Functional properties of R(Fe,T) 12 (T-element stabilizes the structure) compounds or their interstitially modified derivatives, R(Fe,T) 12 -X (X is an atom of hydrogen or nitrogen) are determined by the crystal-electric-field (CEF) and exchange interaction (EI) parameters. We have calculated the parameters using high-field magnetization data. We choose the ferrimagnetic Tm-containing compounds, which are most sensitive to magnetic field and demonstrate that TmFe 11 Ti-H reaches the ferromagnetic state in the magnetic field of 52 T. Knowledge of exact CEF and EI parameters and their variation in the compounds modified by the interstitial atoms is a cornerstone of the quest for hard magnetic materials with low rare-earth content.

  6. The influence of the magnetic state on the thermal expansion in 1:2 rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Gratz, E.; Lindbaum, A.

    1994-01-01

    The attempt is made to demonstrate on some selected rare earth intermetallics the influence of the magnetic state on the thermal expansion. Using the X-ray powder diffraction method we investigated the thermal expansion of some selected nonmagnetic compounds (YAl 2 , YNi 2 and YCo 2 ) and some magnetic RE (rare earth) - cobalt compounds (RCo 2 ) in the temperature range from 4 up to 450 K. All these compounds crystallize in the C15-type structure (cubic Laves phase structure). By comparing the nonmagnetic Y-based compounds we could show that there is an enhanced contribution of the 3d electrons to the thermal expansion in YCo 2 . In the magnetic RCo 2 compounds the induced 3d magnetism gives rise to large volume anomalies at the magnetic ordering temperature T c . Below T c there is in addition a distortion of the cubic unit cell due to the interaction of the magnetically ordered RE ions with the anisotropic crystal field.The thermal expansion of the orthorhombic TmCu 2 , GdCu 2 and YCu 2 compounds has also been investigated for comparison. The influence of the crystal field on the thermal expansion in TmCu 2 in the paramagnetic range (TmCu 2 orders magnetically at T N =6.3 K) has been determined by comparing the thermal expansion of the nonmagnetic YCu 2 with that of TmCu 2 . The data thus obtained are compared with a theoretical model. GdCu 2 , for which the influence of the crystal field can be neglected, has been investigated in order to study the influence of the exchange interaction in the magnetically ordered state (below 42 K). ((orig.))

  7. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni

    Science.gov (United States)

    Higgs, T. D. C.; Bonetti, S.; Ohldag, H.; Banerjee, N.; Wang, X. L.; Rosenberg, A. J.; Cai, Z.; Zhao, J. H.; Moler, K. A.; Robinson, J. W. A.

    2016-07-01

    Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.

  8. Rare earth industries: Upstream business

    International Nuclear Information System (INIS)

    2011-01-01

    energy efficiency rely a lot on the use of rare earths. These include applications in energy efficient lighting, new and more reliable energy storage batteries as well as more efficient energy distribution mechanism. The growing demand for more efficient communication systems, not only in the world of business but also in defence and the military, is another significant driver of the global demand for rare earths. Mobility and miniaturisation, which feature prominently in the current specifications for telecommunications equipment's, rely a lot on the deployment of powerful and efficient magnetic technology. And rare earths have become a much sought after material in the latest magnets used in mobile phones, defence equipment's and computer hardware's. With the rise in the global investments in smart cities and intelligent communities, the demand for such communication products is destined to witness equally prolific expansion. This would inadvertently translate into a rising demand for rare earths. (author)

  9. Study of the hyperfine magnetic field acting on Ce probes substituting for the rare earth and the magnetic ordering in intermetallic compounds RAg (R=rare earth) by first principles calculations

    International Nuclear Information System (INIS)

    Pereira, Luciano Fabricio Dias

    2006-01-01

    In this work the magnetic hyperfine field acting on Ce atoms substituting the rare-earths in R Ag compounds (R = Gd e Nd) was studied by means of first-principles electronic structure calculations. The employed method was the Augmented Plane Waves plus local orbitals (APW+lo), embodied in the WIEN2k program, within the framework of the Density Functional Theory (DFT) and with the Generalized Gradient Approximation (GGA) for the exchange and correlation potential. The super-cell approach was utilized in order to simulate for the Ce atoms acting as impurities in the R Ag matrix. In order to improve for correlation effects within the 4f shells, a Hubbard term was added to the DFT Hamiltonian, within a procedure called GGA+U. It was found that the magnetic hyperfine field (MHF) generated by the Ce 4f electron is the main component of the total MHF and that the Ce 4f ground state level is probably a combination of the m l = -2 and m l = -1 sub-levels. In addition, the ground-state magnetic structure was determined for Ho Ag and Nd Ag by observing the behavior of the total energy as a function of the lattice volume for several possible magnetic ordering in these compounds, namely, ferromagnetic, and the (0,0,π), (π,π,0) and ((π,π,π) types of anti-ferromagnetic ordering of rare-earth atoms. It was found that the ground-state magnetic structure is anti-ferromagnetic of type (π,π,0) for both, the Ho Ag and Nd Ag compounds. The energy difference of the ferromagnetic and antiferromagnetic ordering is very small in the case of the Nd Ag compound. (author)

  10. Rare earth (3) pivalates

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Martynenko, L.I.; Zoan An' Tu; Ch'eu Tkhi Nguet; Troyanov, S.I.; Rykov, A.N.; Korenev, Yu.M.

    1994-01-01

    Depending on synthesis conditions rare earth pivalates can be obtained in the form of either adducts NPiv·HPiv or hydrates MPiv 3 ·mH 2 O. Adducts are the most stable form of pivalates. Heating of adducts result in formation of corresponding MPiv 3 . MPiv 3 ·nHPiv compounds are characterized by IR-spectroscopy and thermal analysis data. Behaviour of MPiv 3 was studied in the regime of vacuum sublemation. Using mass spectroscopy of NdPiv 3 it was shown that gaseous phase above MPiv 3 had complex composition and contained ligomer fragments. X-ray structure analysis of [NdPiv 3 ·3HPiv] was conducted

  11. Low-temperature phase MnBi compound: A potential candidate for rare-earth free permanent magnets

    International Nuclear Information System (INIS)

    Ly, V.; Wu, X.; Smillie, L.; Shoji, T.; Kato, A.; Manabe, A.; Suzuki, K.

    2014-01-01

    Highlights: • The spin reorientation temperature of MnBi is suppressed by nanoscale grain refinement. • Hardness parameter of MnBi reaches as large as 2.8 at 580 K. • MnBi has a great potential as a hard phase in rare-earth free nanocomposite magnets. • Improving the surface passivity is a remaining task for MnBi-based permanent magnets. - Abstract: The low-temperature phase (LTP) MnBi is one of the few rare-earth free compounds that exhibit a large magnetocrystalline anisotropy energy in the order of 10 6 J/m 3 . A large coercive field (μ 0 H cj ) above 1 T can be obtained readily by reducing the crystallite size (D) through mechanical grinding (MG). The room-temperature H cj values follow a phenomenological expression μ 0 H cj = μ 0 H a (δ/D) n where the anisotropy field (μ 0 H a ) is ∼4 T, the Bloch wall width (δ) is 7 nm and the exponent (n) is about 0.7 in our study. The grain refinement upon MG is accompanied by suppression of the spin reorientation transition temperature (T SR ) from 110 K to below 50 K. The coercive field starts to exhibit positive temperature dependence approximately 50 K above T SR and the room-temperature magnetic hardening induced by MG could partially be brought about by the lowered onset of this positive temperature dependence. The suppression of T SR by MG is likely to be induced by the surface anisotropy with which the 2nd order crystal field term is enhanced. One of the shortcomings of LTP-MnBi is its poor phase stability under the ambient atmosphere. The spontaneous magnetization decreases considerably after room-temperature aging for 1 week. This is due to oxidation of Mn which leads to decomposition of the MnBi phase. Hence, the surface passivity needs to be established before this material is considered for a permanent magnet in practical uses. Another shortcoming is the limited spontaneous magnetization. The theoretical upper limit of the maximum energy product in LTP-MnBi remains only a quarter of that in Nd 2

  12. Nuclear orientation on rare earth nickel alloys

    International Nuclear Information System (INIS)

    Nishimura, K.

    1998-01-01

    A hyperfine interaction study of the light rare earth elements, Ce, Pr, Nd and Pm, in the rare earth nickel and CeNi 2 Al 5 compounds by means of the low temperature nuclear orientation is summarised. The magnitudes and directions of the magnetic hyperfine fields obtained through measurements of γ-ray anisotropy and angular distributions reveal the magnetic structures of the ions. The experiments extracted peculiar results for the magnetic properties of the ions, and show certain novel features of the technique to the study of solid-state magnetism. Copyright (1998) Australian Journal of Physics

  13. Design, fabrication and characterization of an arrayable all-polymer microfluidic valve employing highly magnetic rare-earth composite polymer

    International Nuclear Information System (INIS)

    Rahbar, Mona; Gray, Bonnie L; Shannon, Lesley

    2016-01-01

    We present a new magnetically actuated microfluidic valve that employs a highly magnetic composite polymer (M-CP) containing rare-earth hard-magnetic powder for its actuating element and for its valve seat. The M-CP offers much higher magnetization compared to the soft-magnetic, ferrite-based composite polymers typically used in microfluidic applications. Each valve consists of a permanently magnetized M-CP flap and valve seat mounted on a microfluidic channel system fabricated in poly(dimethylsiloxane) (PDMS). Each valve is actuated under a relatively small external magnetic field of 80 mT provided by a small permanent magnet mounted on a miniature linear actuator. The performance of the valve with different flap thicknesses is characterized. In addition, the effect of the magnetic valve seat on the valve’s performance is also characterized. It is experimentally shown that a valve with a 2.3 mm flap thickness, actuated under an 80 mT magnetic field, is capable of completely blocking liquid flow at a flow rate of 1 ml min −1 for pressures up to 9.65 kPa in microfluidic channels 200 μ m wide and 200 μ m deep. The valve can also be fabricated into an array for flow switching between multiple microfluidic channels under continuous flow conditions. The performance of arrays of valves for flow routing is demonstrated for flow rates up to 5 ml min −1 with larger microfluidic channels of up to 1 mm wide and 500 μ m deep. The design of the valves is compatible with other commonly used polymeric microfluidic components, as well as other components that use the same novel permanently magnetic composite polymer, such as our previously reported cilia-based mixing devices. (paper)

  14. Extraction of rare earths from iron-rich rare earth deposits

    OpenAIRE

    Bisaka, K.; Thobadi, I.C.; Pawlik, C.

    2017-01-01

    Rare earth metals are classified as critical metals by the United Nations, as they have found wide application in the fabrication of magnets, particularly those used in green energy technologies which mitigate global warming. Processing of ores containing rare earth elements is complex, and differs according to the nature of each ore. In the conventional process, run of mine (ROM) ores are processed in a physical separation plant to produce a concentrate from which rare earth elements are ext...

  15. Magnetic, dielectric and microwave absorption properties of rare earth doped Ni–Co and Ni–Co–Zn spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Stergiou, Charalampos, E-mail: stergiou@cperi.certh.gr

    2017-03-15

    In this article we analyze the electromagnetic properties of rare earth substituted Ni–Co and Ni–Co–Zn cubic ferrites in the microwave band, along with their performance as microwave absorbing materials. Ceramic samples with compositions Ni{sub 0.5}Co{sub 0.5}Fe{sub 2−x}R{sub x}O{sub 4} and Ni{sub 0.25}Co{sub 0.5}Zn{sub 0.25}Fe{sub 2−x}R{sub x}O{sub 4} (R=Y and La, x=0, 0.02), fabricated with the solid state reaction method, were characterized with regard to the complex permeability μ*(f) and permittivity ε*(f) up to 20 GHz. The rare earth substitutions basically affect the microwave μ*(f) spectra and the dynamic magnetization mechanisms of domain wall motion and magnetization rotation. Key parameters for this effect are the reduced magnetocrystalline anisotropy and the created crystal inhomogeneities. Moreover, permittivity is increased with the Y and La content, due to the enhancement of the dielectric orientation polarization. Regarding the electromagnetic wave attenuation, the prepared ferrites exhibit narrowband return losses (RL) by virtue of the cancellation of multiple reflections, when their thickness equals an odd multiple of quarter-wavelength. Interestingly, the zero-reflection conditions are satisfied in the vicinity of the ferromagnetic resonance. As the rare earth doping shifts this mechanism to lower frequencies, loss peaks with RL>46 dB occur at 4.1 GHz and 5 GHz for Y and La-doped Ni–Co–Zn spinels, whereas peaks with RL>40 dB appear at 18 GHz and 19 GHz for Y and La-doped Ni–Co spinels, respectively. The presented experimental findings underline the potential of cubic ferrites with high Co concentration in the suppression of electromagnetic reflections well above the 1 GHz region. - Highlights: • Due to cation distribution, magnetic anisotropy drops in Y and La doped samples. • Microwave permeability spectra shift to lower frequencies with rare earth doping. • Permittivity is increased due to crystal modifications

  16. Symmetry, incommensurate magnetism and ferroelectricity: The case of the rare-earth manganites RMnO3

    International Nuclear Information System (INIS)

    Ribeiro, J L

    2010-01-01

    The complete irreducible co-representations of the paramagnetic space group provide a simple and direct path to explore the symmetry restrictions of magnetically driven ferroelectricity. The method consists of a straightforward generalization of the method commonly used in the case of displacive modulated systems and allows us to determine, in a simple manner, the full magnetic symmetry of a given phase originated from a given magnetic order parameter. The potential ferroic and magneto-electric properties of that phase can then be established and the exact Landau free energy expansions can be derived from general symmetry considerations. In this work, this method is applied to the case of the orthorhombic rare-earth manganites RMnO 3 . This example will allow us to stress some specific points, such as the differences between commensurate or incommensurate magnetic phases regarding the ferroic and magnetoelectric properties, the possible stabilization of ferroelectricity by a single irreducible order parameter or the possible onset of a polarization oriented parallel to the magnetic modulation. The specific example of TbMnO 3 will be considered in more detail, in order to characterize the role played by the magneto-electric effect in the mechanism for the polarization rotation induced by an external magnetic field.

  17. Rare earths 1998 market update

    International Nuclear Information System (INIS)

    Tourre, J.M.

    1998-01-01

    The rare earth industry has always been a world of rapid change with the emergence of new markets, new ores and new players, as well as the disappearance of old applications. Rare earth based products are used in a great diversity of applications such as hard disk drives, CD drives, batteries, capacitors, pigments, ceramics, polishing powders, fuel cells, flints, catalyst converter, fluid cracking catalysts, etc. South East Asia holds the largest share of the known reserve of rare earth ores and is one of the major markets for rare earth compounds; in the last ten years, China has become the largest producer of rare earth intermediates as well as an important exporter of separated rare earth elements. Today, China has approximately 150 factories producing rare earth compounds, most of which are experiencing financial difficulties due to the lack of knowledge of true market needs, lack of control of their distribution channels and production over-capacity. Recently the Chinese rare earth producers have recognized the situation and efforts are underway to rationalize rare earth production. Japan has dominated many of the major application markets, and is by far the largest market for metal and alloy products. This will remain the case for the next five years; however, new countries are emerging as significant users of rare earth products such as Korea, Taiwan and Malaysia. During the last ten years rare earth producers adjusted to several radical changes that affected the raw materials, the application mix and the price structure. New producers have emerged, especially from China; some have subsequently stopped their activities while others have focused their efforts in a specific market segment

  18. Epitaxial rare-earth superlattices and films

    International Nuclear Information System (INIS)

    Salamon, M.B.; Beach, R.S.; Flynn, C.P.; Matheny, A.; Tsui, F.; Rhyne, J.J.

    1992-01-01

    This paper reports on epitaxial growth of rare-earth superlattices which is demonstrated to have opened important new areas of research on magnetic materials. The propagation magnetic order through non-magnetic elements, including its range and anisotropy, has been studied. The importance of magnetostriction in determining the phase diagram is demonstrated by the changes induced by epitaxial clamping. The cyrstallinity of epitaxial superlattices provides the opportunity to study interfacial magnetism by conventional x-ray and neutron scattering methods

  19. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  20. Magnetism and transport properties of layered rare-earth cobaltates Ln.sub.0.3./sub.CoO.sub.2./sub

    Czech Academy of Sciences Publication Activity Database

    Knížek, Karel; Novák, Pavel; Jirák, Zdeněk; Hejtmánek, Jiří; Maryško, Miroslav; Buršík, Josef

    2015-01-01

    Roč. 117, č. 17 (2015), "17B706-1"-"17B706-4" ISSN 0021-8979 R&D Projects: GA ČR GA13-03708S Institutional support: RVO:68378271 ; RVO:61388980 Keywords : crystal field * rare earth cobaltates * magnetism and transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  1. Grain boundary engineering in sintered Nd-Fe-B permanent magnets for efficient utilization of heavy rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, Konrad

    2016-10-18

    The first part of the thesis investigates the diffusion of rare-earth (RE) elements in commercial sintered Nd-Fe-B based permanent magnets. A strong temperature dependence of the diffusion distance and resulting change in magnetic properties were found. A maximum increase in coercivity of ∼+350 kA/m using a Dy diffusion source occurred at the optimum annealing temperature of 900 C. After annealing for 6 h at this temperature, a Dy diffusion distance of about 4 mm has been observed with a scanning Hall probe. Consequently, the maximum thickness of grain boundary diffusion processed magnets with homogeneous properties is also only a few mm. The microstructural changes in the magnets after diffusion were investigated by electron microscopy coupled with electron probe microanalysis. It was found that the diffusion of Dy into sintered Nd-Fe-B permanent magnets occurs along the grain boundary phases, which is in accordance with previous studies. A partial melting of the Nd-Fe-B grains during the annealing process lead to the formation of so - called (Nd,Dy)-Fe-B shells at the outer part of the grains. These shells are μm thick at the immediate surface of the magnet and become thinner with increasing diffusion distance towards the center of the bulk. With scanning transmission electron microscopy coupled with electron probe analysis a Dy content of about 1 at.% was found in a shell located about 1.5 mm away from the surface of the magnet. The evaluation of diffusion speeds of Dy and other RE (Tb, Ce, Gd) in Nd-Fe-B magnets showed that Tb diffuses significantly faster than Dy, and Ce slightly slower than Dy, which is attributed to differences in the respective phase diagrams. The addition of Gd to the grain boundaries has an adverse effect on coercivity. Exemplary of the heavy rare earth element Tb, the nano - scale elemental distribution around the grain boundaries after the diffusion process was visualized with high resolution scanning transmission electron microscopy

  2. Microfluidic active mixers employing ultra-high aspect-ratio rare-earth magnetic nano-composite polymer artificial cilia

    International Nuclear Information System (INIS)

    Rahbar, Mona; Gray, Bonnie L; Shannon, Lesley

    2014-01-01

    We present a new micromixer based on highly magnetic, flexible, high aspect-ratio, artificial cilia that are fabricated as individual micromixer elements or in arrays for improved mixing performance. These new cilia enable high efficiency, fast mixing in a microchamber, and are controlled by small electromagnetic fields. The artificial cilia are fabricated using a new micromolding process for nano-composite polymers. Cilia fibers with aspect-ratios as high as 8:0.13 demonstrate the fabrication technique's capability in creating ultra-high aspect-ratio microstructures. Cilia, which are realized in polydimethylsiloxane doped with rare-earth magnetic powder, are magnetized to produce permanent magnetic structures with bidirectional deflection capabilities, making them highly suitable as mixers controlled by electromagnetic fields. Due to the high magnetization level of the polarized nano-composite polymer, we are able to use miniature electromagnets providing relatively small magnetic fields of 1.1 to 7 mT to actuate the cilia microstructures over a very wide motion range. Mixing performances of a single cilium, as well as different arrays of multiple cilia ranging from 2 to 8 per reaction chamber, are characterized and compared with passive diffusion mixing performance. The mixer cilia are actuated at different amplitudes and frequencies to optimize mixing performance. We demonstrate that more than 85% of the total volume of the reaction chamber is fully mixed after 3.5 min using a single cilium mixer at 7 mT compared with only 20% of the total volume mixed with passive diffusion. The time to achieve over 85% mixing is further reduced to 70 s using an array of eight cilia microstructures. The novel microfabrication technique and use of rare-earth permanently-magnetizable nano-composite polymers in mixer applications has not been reported elsewhere by other researchers. We further demonstrate improved mixing over other cilia micromixers as enabled by the high

  3. Magnetic and magnetoelectric properties of NdCrTiO5 revealed by systematically rare-earth doping

    Science.gov (United States)

    Li, Qing; Feng, Zhenjie; Cheng, Cheng; Wang, Bojie; Chu, Hao; Huang, Ping; Wang, Difei; Qian, Xiaolong; Yu, Chuan; Wang, Guohua; Deng, Dongmei; Jing, Chao; Cao, Shixun; Zhang, Jincang

    2018-01-01

    We have systematically synthesized polycrystalline samples of Nd0.9A0.1CrTiO5 (A = Pr, Nd, Gd, Dy, Er, Tm, and Yb), and have investigated their crystal structure, polarization and magnetic susceptibility. The polarization values of doped samples are suppressed comparing to pure NdCrTiO5 sample, which indicates that the polarization is highly dependence with the magnetic moments of doping ions. The TN of Cr-Cr in Nd0.9A0.1CrTiO5 are dominated by both the suppression effect caused by doped magnetic moment increment and the enhancement effect caused by c axis contracting. We conclude that the magnetic moments in the rare-earth Nd sites play an important role in the magnetoelectric effect in NdCrTiO5 family. The substitution effect discussion here can help us well understand the intrinsic mechanism and provide a possible guidance in exploring new magnetoelectric coupling systems.

  4. Influence of rare earth (Nd{sup +3}) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Pranav P., E-mail: drppn1987@gmail.com [Department of Physics, Goa University, Taleigao Plateau, Goa, 403206 (India); Tangsali, R.B. [Department of Physics, Goa University, Taleigao Plateau, Goa, 403206 (India); Meena, S.S.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2017-04-15

    Ultrafine nanopowders of Mn{sub 0.6}Zn{sub 0.4}Fe{sub 2-x}Nd{sub x}O{sub 4} (x = 0, 0.04, 0.06, 0.08, and 0.1) were prepared using combustion method. The influence of Nd{sup +3} doping on structural parameters, morphological characteristics and magnetic properties were investigated. Formation of pure spinel phase was confirmed using X-ray powder diffraction (XRPD). Nd{sup +3} doping in Mn-Zn ferrite samples have shown remarkable influence on all the properties that were under investigation. An increase in lattice constant commensurate with increasing Nd{sup +3} concentrations was observed in the samples. The crystallite size calculated from XRPD data and grain size observed from Transmission Electron Microscope showed a proportionate decrement with increment in rare earth doping. An increase in mass density, X-ray density, particle strain and decrease in porosity were the other effects noticed on the samples as a result of Nd{sup +3} doping. The corresponding tetrahedral, octahedral bond lengths and bond angles estimated from XRPD data have also shown substantial influence of the Nd{sup +3} doping. Magnetic parameters namely saturation magnetization (M{sub S}) and net magnetic moment η{sub B}, estimated using vibrating sample magnetometer (VSM) were found to depend on the Nd{sup +3} doping. Mössbauer spectroscopy was employed to study the magnetic environment of Mössbauer active ions and detection of superparamagnetic behavior in nanocrystalline rare earth ferrite material. The isomer shift values obtained from Mössbauer spectra indicate the presence of Fe{sup +3} ions at tetrahedral site (A-site) and octahedral site (B-site), respectively. - Highlights: • Synthesis of Nd doped Mn-Zn ferrite nanoparticles using combustion method. • Successful doping of Nd{sup +3} at octahedral site in ferrite structure. • Existence of Fe{sup +3} oxidation state at both A-Site and B-site. • Enhanced saturation magnetization due to altered cation distribution by Nd doping

  5. Progress of sintered NdFeB permanent magnets by the diffusion of non-rare earth elements and their alloy compounds

    Directory of Open Access Journals (Sweden)

    Lyu Meng

    2017-12-01

    Full Text Available It has been found that the coercivity (HC and corrosivity of sintered NdFeB magnets are closely related to the components and microstructure of their intergranular phase.The traditional smelting NdFeB magnets with adding heavy rare earth elements can modify intergranular phase to improve the HC and corrosion resistance of magnets.However,it makes the additives be homogenously distributed on the main phase,and causes magnetic decrease and cost increase.With the addition of non-rare earth materials into grain boundary,the microstructure of intergranular phase as well as its electrochemical potential and wettability can be optimized.As a result,the amount of heavy rare earth elements and cost of magnets could be reduced whilst the HC and corrosion resistance of magnets can be improved.This paper summarized the research on regulating the components and the microstructure of intergranular phase in sintered NdFeB magnets by non-rare earth metals and compounds,and its influence on coercivity and corrosion resistance.

  6. Kinetical analysis of the heat treatment procedure in SmCo5 and other rare-earth transition-metal sintered magnets

    International Nuclear Information System (INIS)

    Campos, Marcos Flavio de; Rangel Rios, Paulo

    2004-01-01

    In the processing of all types of commercial sintered rare-earth transition-metal magnets (SmCo 5 , Sm(CoCuFeZr) z , NdFeB) a post-sintering heat treatment is included, which is responsible for large increase of the coercive field. During this post-sintering heat treatment, there are phase transformations with diffusion of the alloying elements, moving the system towards the thermodynamic equilibrium. Due to the larger size of the rare-earth atoms, the diffusion of the rare-earth atoms in the lattice of rare-earth transition-metal phases like SmCo 5 , Sm 2 (Co, Fe) 17 or Nd 2 Fe 14 B should be very slow, implying that the diffusion of the rare-earth atoms should be controlling the overall kinetics of the process. From the previous assumption, a parameter named 'diffusion length of rare-earth atoms' is introduced as a tool to study the kinetics of the heat treatment in rare-earth magnets. Detailed microstructural characterization of SmCo 5 and NdFeB magnets did not indicate significant microstructural changes between sintering and heat treatment temperatures and it was suggested that the increase of coercivity can be related to decrease of the content of lattice defects. The sintering temperature is high, close to melting temperature, and in this condition there are large amount of defects in the lattice, possibly rare-earth solute atoms. Phase diagram analysis has suggested that a possible process for the coercivity increase can be the elimination of excess rare-earth atoms, i.e. solute atoms from a supersatured matrix. The 'diffusion length of rare-earth atoms' estimated from diffusion kinetics is compatible with the diffusion length determined from microstructure. For the case of SmCo 5 , it was found that the time of heat treatment necessary is around 20 times lower if an isothermal treatment at 850 deg. C is substituted by a slow cooling from sintering temperature 1150 to 850 deg. C. These results give support for the thesis that the coercivity increase is

  7. Low-temperature phase MnBi compound: A potential candidate for rare-earth free permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ly, V.; Wu, X.; Smillie, L. [Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia); Shoji, T.; Kato, A.; Manabe, A. [Toyota Motor Corporation, Mishuku, Susono, Shizuoka 410-1193 (Japan); Suzuki, K., E-mail: kiyonori.suzuki@monash.edu [Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-12-05

    Highlights: • The spin reorientation temperature of MnBi is suppressed by nanoscale grain refinement. • Hardness parameter of MnBi reaches as large as 2.8 at 580 K. • MnBi has a great potential as a hard phase in rare-earth free nanocomposite magnets. • Improving the surface passivity is a remaining task for MnBi-based permanent magnets. - Abstract: The low-temperature phase (LTP) MnBi is one of the few rare-earth free compounds that exhibit a large magnetocrystalline anisotropy energy in the order of 10{sup 6} J/m{sup 3}. A large coercive field (μ{sub 0}H{sub cj}) above 1 T can be obtained readily by reducing the crystallite size (D) through mechanical grinding (MG). The room-temperature H{sub cj} values follow a phenomenological expression μ{sub 0}H{sub cj} = μ{sub 0}H{sub a}(δ/D){sup n} where the anisotropy field (μ{sub 0}H{sub a}) is ∼4 T, the Bloch wall width (δ) is 7 nm and the exponent (n) is about 0.7 in our study. The grain refinement upon MG is accompanied by suppression of the spin reorientation transition temperature (T{sub SR}) from 110 K to below 50 K. The coercive field starts to exhibit positive temperature dependence approximately 50 K above T{sub SR} and the room-temperature magnetic hardening induced by MG could partially be brought about by the lowered onset of this positive temperature dependence. The suppression of T{sub SR} by MG is likely to be induced by the surface anisotropy with which the 2nd order crystal field term is enhanced. One of the shortcomings of LTP-MnBi is its poor phase stability under the ambient atmosphere. The spontaneous magnetization decreases considerably after room-temperature aging for 1 week. This is due to oxidation of Mn which leads to decomposition of the MnBi phase. Hence, the surface passivity needs to be established before this material is considered for a permanent magnet in practical uses. Another shortcoming is the limited spontaneous magnetization. The theoretical upper limit of the maximum

  8. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  9. The role of sub-micron grain size in the development of rare earth hard magnetic alloys

    International Nuclear Information System (INIS)

    Davies, H.A.; Wang, Z.C.

    2004-01-01

    The magnetic properties of nanocrystalline melt spun rare earth-iron-boron alloys based on Nd or Pr and on Nd-Pr mixtures are compared for a wide range of RE:Fe ratio. Their magnetic properties are compared with those of corresponding alloy ribbons based on Nd. The Pr containing alloys have generally higher coercivity than their Nd counterparts because of the higher anisotropy constant of the Pr 2 Fe 14 B phase. Co substitution for Fe increases the Curie temperature and thermal stability for the nanophase alloys. Excellent magnetic property combinations were achieved for single phase Pr 12 (Fe 100-x Co x ) 82 B 6 (x=0-20) alloys, processed by overquenching and devitrification annealing. In contrast, in the case of nanocomposite Pr 10 (Fe 100-x Co x ) 84 B 6 alloys, based on Pr 2 Fe 14 B/α-Fe mixtures, only for 30% substitution of Fe by Co could useful enhancement of (BH) max be achieved, due to generally rather coarse α-Fe crystallites

  10. Magnetization, Magnetocrystalline Anisotropy and the Crystalline Electric Field in Rare-Earth Al2 Compounds

    DEFF Research Database (Denmark)

    Purwins, H. -G.; Walker, E.; Barbara, B.

    1974-01-01

    a quantitative quantum mechanical description of the magnetization and the related magnetocrystalline anisotropy in terms of a cubic crystalline electric field and an isotropic exchange interaction. The parameters used in this description can be unified to good approximation to all REAl2 intermetallic compounds......Magnetization measurements are reported for single crystals of PrAl2 in the range from 4.2K to 30K for magnetic fields up to 150 kOe applied in the (100), (110) and (111) directions. For these measurements, together with the magnetization results obtained earlier for TbAl2 the authors give...

  11. Magnetic properties analysis of intermetallic alloys Rni5 (R = Rare Earths)

    International Nuclear Information System (INIS)

    Barthem, V.M.T.S.

    1988-01-01

    SmNi 5 and TmNi 5 alloys were analysed by magnetization measures, susceptibility, resistivity and only for TmNi 5 by magnetostriction and thermal expansion. The results are distinguished by powerful magnetic anisotropy of these materials. (C.G.C.) [pt

  12. Magnetic properties of RT2Zn20; R = rare earth, T = Fe, Co, Ru, Os and Ir

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shuang [Ames Lab. and Iowa State Univ., Ames, IA (United States)

    2008-01-01

    It is well known that rare earth intermetallic compounds have versatile, magnetic properties associated with the 4f electrons: a local moment associated with the Hund's rule ground state is formed in general, but a strongly correlated, hybridized state may also appear for specific 4f electronic configuration (eg. for rare earth elements such as Ce or Yb). On the other hand, the conduction electrons in rare earth intermetallic compounds, certainly ones associated with non hybridizing rare earths, usually manifest non-magnetic behavior and can be treated as a normal, non-interacted Fermi liquid, except for some 3d-transition metal rich binary or ternary systems which often manifest strong, itinerant, d electron dominant magnetic behavior. Of particular interest are examples in which the band filling of the conduction electrons puts the system in the vicinity of a Stoner transition: such systems, characterized as nearly or weakly ferromagnet, manifest strongly correlated electronic properties [Moriya, 1985]. For rare earth intermetallic compounds, such systems provide an additional versatility and allow for the study of the behaviors of local moments and hybridized moments which are associated with 4f electron in a correlated conduction electron background.

  13. Rare earth industries: Downstream business

    International Nuclear Information System (INIS)

    2011-01-01

    The value chain of the rare earths business involves mining, extraction, processing, refining and the manufacture of an extensive range of downstream products which find wide applications in such industries including aerospace, consumer electronics, medical, military, automotive, renewable wind and solar energy and telecommunications. In fact the entire gamut of the high-tech industries depends on a sustainable supply of rare earths elements. The explosive demand in mobile phones is an excellent illustration of the massive potential that the rare earths business offers. In a matter of less than 20 years, the number of cell phones worldwide has reached a staggering 5 billion. Soon, going by the report of their growth in sales, the world demand for cell phones may even exceed the global population. Admittedly, the rare earths business does pose certain risks. Top among the risks are the health and safety risks. The mining, extraction and refining of rare earths produce residues and wastes which carry health and safety risks. The residues from the extraction and refining are radioactive, while their effluent waste streams do pose pollution risks to the receiving rivers and waterways. But, as clearly elaborated in a recent report by IAEA experts, there are technologies and systems available to efficiently mitigate such risks. The risks are Rare Earth manageable. However, it is crucial that the risk and waste management procedures are strictly followed and adhered to. This is where effective monitoring and surveillance throughout the life of all such rare earths facilities is crucial. Fortunately, Malaysia's regulatory standards on rare earths follow international standards. In some areas, Malaysia's regulatory regime is even more stringent than the international guidelines. (author)

  14. Fe-Cluster Compounds of Chalcogenides: Candidates for Rare-Earth-Free Permanent Magnet and Magnetic Nodal-Line Topological Material.

    Science.gov (United States)

    Zhao, Xin; Wang, Cai-Zhuang; Kim, Minsung; Ho, Kai-Ming

    2017-12-04

    Fe-cluster-based crystal structures are predicted for chalcogenides Fe 3 X 4 (X = S, Se, Te) using an adaptive genetic algorithm. Topologically different from the well-studied layered structures of iron chalcogenides, the newly predicted structures consist of Fe clusters that are either separated by the chalcogen atoms or connected via sharing of the vertex Fe atoms. Using first-principles calculations, we demonstrate that these structures have competitive or even lower formation energies than the experimentally synthesized Fe 3 X 4 compounds and exhibit interesting magnetic and electronic properties. In particular, we show that Fe 3 Te 4 can be a good candidate as a rare-earth-free permanent magnet and Fe 3 S 4 can be a magnetic nodal-line topological material.

  15. Electronic and magnetic properties of rare earth-Sn3 compounds for 119Sn Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sanchez, J.P.; Friedt, J.M.; Shenoy, G.K.; Percheron, A.; Achard, J.C.

    1975-01-01

    The electronic and magnetic properties of RESn 3 compounds (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Yb) have been investigated using the 23.8keV Moessbauer resonance of 119 Sn. The isomer shifts and quadrupole interactions are nearly the same in all compounds. The transferred magnetic fields and their orientation with respect to the principal electric field gradient axis at various Sn sites in the magnetically ordered state of RESn 3 (RE=Pr, Nd, Sm, Eu, Gd) have been utilized to get information about the magnetic structure. An evaluation of the transferred fields in PrSn 3 and NdSn 3 shows that the spin density at the Sn nucleus is nearly the same in both compounds [fr

  16. Exchange interactions and magnetic properties of hexagonal rare-earth-cobalt compounds

    Science.gov (United States)

    Burzo, E.

    2018-03-01

    The magnetic properties of some GdxY1-xCo4A compounds with A = Co, Si or B are analysed including the pressure effects. Isomorphous structure transitions, parallelly with changes of cobalt moments from high spin states to low spin states, were shown as pressure increases. The magnetic data, obtained from band structures, were compared with those predicted by the mean field model.

  17. High energy proton induced radiation damage of rare earth permanent magnet quadrupoles

    Science.gov (United States)

    Schanz, M.; Endres, M.; Löwe, K.; Lienig, T.; Deppert, O.; Lang, P. M.; Varentsov, D.; Hoffmann, D. H. H.; Gutfleisch, O.

    2017-12-01

    Permanent magnet quadrupoles (PMQs) are an alternative to common electromagnetic quadrupoles especially for fixed rigidity beam transport scenarios at particle accelerators. Using those magnets for experimental setups can result in certain scenarios, in which a PMQ itself may be exposed to a large amount of primary and secondary particles with a broad energy spectrum, interacting with the magnetic material and affecting its magnetic properties. One specific scenario is proton microscopy, where a proton beam traverses an object and a collimator in which a part of the beam is scattered and deflected into PMQs used as part of a diagnostic system. During the commissioning of the PRIOR (Proton Microscope for Facility for Antiproton and Ion Research) high energy proton microscope facility prototype at Gesellschaft für Schwerionenforschung in 2014, a significant reduction of the image quality was observed which was partially attributed to the demagnetization of the used PMQ lenses and the corresponding decrease of the field quality. In order to study this phenomenon, Monte Carlo simulations were carried out and spare units manufactured from the same magnetic material—single wedges and a fully assembled PMQ module—were deliberately irradiated by a 3.6 GeV intense proton beam. The performed investigations have shown that in proton radiography applications the above described scattering may result in a high irradiation dose in the PMQ magnets. This did not only decrease the overall magnetic strength of the PMQs but also caused a significant degradation of the field quality of an assembled PMQ module by increasing the parasitic multipole field harmonics which effectively makes PMQs impractical for proton radiography applications or similar scenarios.

  18. The industry of metallic rare earths (R.E.)

    International Nuclear Information System (INIS)

    Poirier, P.

    1979-01-01

    The following subjects are discussed: rare earths resources (rare earths abondance and world reserves, main ores). Rare earths separation and purification (ionic exchange, solvent extraction). Metallic rare earths and their mixtures, metallothermic reduction of oxides or fluorides (Ca, Mg, Al, Si or rare earth metals), Co-reduction process for intermetallic compounds (SmCo 5 ). Industrial applications of metallic rare earths (traditional applications such as flints, nodular cast iron, steel refining, magnesium industrie, applications under development such as rare earths/cobalt magnets, LaNi 5 for hydrogen storage, special alloys (automotive post combustion), magnetostrictive alloys). Economical problems: rare earth are elements relatively abundant and often at easily accessible prices. However, this group of 15 elements are liable to certain economical restraints. It is difficult to crack ore for only one rare earth. Availability of one given rare earth must be associated with the other corresponding rare earths to absorb all the other rare earths in other applications. Rare-earth industry has a strong expanding rate. 20% per year average for 6 years with Rhone-Poulenc. Thanks to their exceptional, specific characteristics rare earths have a bright future particularly for their metals

  19. The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides

    International Nuclear Information System (INIS)

    Islam, Z.

    1999-01-01

    This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi 2 Ge 2 (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi 2 Ge 2 compounds. Generalized susceptibility, χ 0 (q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi 2 Ge 2 , and the commensurate structure in EuNi 2 Ge 2 . A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T N in EuNi 2 Ge 2 than that in GdNi 2 Ge 2 is also explained. Next, all the metamagnetic phases in TbNi 2 Ge 2 with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation

  20. The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Z.

    1999-05-10

    This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi{sub 2}Ge{sub 2} (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi{sub 2}Ge{sub 2} compounds. Generalized susceptibility, {chi}{sub 0}(q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi{sub 2}Ge{sub 2}, and the commensurate structure in EuNi{sub 2}Ge{sub 2}. A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T{sub N} in EuNi{sub 2}Ge{sub 2} than that in GdNi{sub 2}Ge{sub 2} is also explained. Next, all the metamagnetic phases in TbNi{sub 2}Ge{sub 2} with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation.

  1. Recovery of cobalt-rare earth alloy particles by hydration-disintegration in a magnetic field

    International Nuclear Information System (INIS)

    McFarland, C.M.; Lerman, T.B.; Rockwood, A.C.

    1975-01-01

    A process for recovering magnetic alloy particles from a reaction product cake. The cake is placed in a reactor where it is contacted with a flowing water vapor-carrying gas which reacts with its calcium content to disintegrate the cake and produce a hydrated powder comprised substantially of calcium hydroxide and the alloy particles. A magnetic zone is generated into a cross-section of the reactor substantially encircling the inside wall thereof. The zone is generated by at least two poles of opposite polarity running the length of the zone. The hydrated powder is fluidized to dissociate and pass the calcium hydroxide out of the reactor. Finer-sized alloy particles carried by the fluidizing gas into the magnetic zone are subjected to the magnetic field where the poles are rotated or reversed at a rate which reverses the positions of the particles sufficiently to release adherent calcium hydroxide leaving the finer-sized alloy particles substantially within the magnetic zone. (auth)

  2. Safety aspects in rare earths recovery

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2014-01-01

    Recovery of rare earths involves mining of beach sands, mineral separation to obtain monazite and its chemical processing to obtain rare earth composites. The composites are then subjected to further chemical treatment to obtain individual rare earths. Although the separated out rare earths are not radioactive, the process for recovery of rare earths involve both radiological as well as conventional hazards. This paper highlights the safety aspects in the mining, mineral separation and chemical processing of monazite to obtain rare earths

  3. New structures of Fe3S for rare-earth-free permanent magnets

    Science.gov (United States)

    Yu, Shu; Zhao, Xin; Wu, Shunqing; Nguyen, Manh Cuong; Zhu, Zi-zhong; Wang, Cai-Zhuang; Ho, Kai-Ming

    2018-02-01

    We applied an adaptive genetic algorithm (AGA) to search for low-energy crystal structures of Fe3S. A number of structures with energies lower than that of the experimentally reported Pnma and I-4 structures have been obtained from our AGA searches. These low-energy structures can be classified as layer-motif and column-motif structures. In the column-motif structures, Fe atoms self-assemble into rods with a bcc type of underlying lattice, which are separated by the holes terminated by S atoms. In the layer-motif structures, the bulk Fe is broken into slabs of several layers passivated by S atoms. Magnetic property calculations showed that the column-motif structures exhibit reasonably high uniaxial magnetic anisotropy. In addition, we examined the effect of Co doping to Fe3S and found that magnetic anisotropy can be enhanced through Co doping.

  4. Medium-range order of magnetic amorphous alloys containing rare earth metals

    International Nuclear Information System (INIS)

    Boucher, B.

    1989-01-01

    The influence of nuclear order and surface layers on the magnetic order and the existence of two characteristic lengths (ξ=2π/k∼10 3 A or 10 A) have been established. The principal conclusions of theorists: concerning the abscence of infinite ferromagnetic clusters and the correlated spin glass or ferromagnet with wandering axis models are verified. The published results seem to indicate the existence of a critical temperature. The role of 3d ions in the magnetic ordering has not been extensively studied; it seems that the presence of 3d ions leads smaller correlation lengths. The Lorentzian scattering term correspond not only to spin waves but also to a static order. The origin of the L 3/2 scattering term observed in severals cases is discussed. It would be very useful to carry out measurements at lower q values so as to obtain more detailed informations concerning the nuclear or magnetic medium range order

  5. Preferred Orientation of Rare Earth (RE)-Doped Alumina Crystallites by an Applied Magnetic Field

    Science.gov (United States)

    2016-06-01

    within a magnetic field. The micro -texture of the aligned ceramic was analyzed by X-ray diffraction and the Lotgering factor calculated. Gd:Al2O3...was found to have approximately the same response as Yb:Al2O3 despite inducing different magnetic moments. 15. SUBJECT TERMS grain alignment, micro ...cutoff energy of 800 eV was used for the electronic wave function in conjunction with sampling the Brillouin zone with a 2 × 2 × 2 Monkhorst-Pack grid

  6. High-field magnetization of rare-earth ions in scandium

    DEFF Research Database (Denmark)

    Roeland, L. W.; Touborg, P.

    1978-01-01

    The magnetic moments of Tb, Dy, or Er ions in dilute Sc single-crystal alloys have been measured in fields up to 280 × 105 A/m (350 kOe). The Zeeman energies in this high field are comparable to the total crystal-field splittings. This gives rise to characteristic features in the magnetization cu...... curves. The crystal-field parameters obtained previously from experiments in low fields and the Zeeman interaction give a satisfactory quantitative acount of the experimental results....

  7. Magnetic behavior of light rare earth ions in (Nd,Eu,Gd)-123 superconductors

    Czech Academy of Sciences Publication Activity Database

    Jirsa, Miloš; Rameš, Michal; Marcenat, C.; Wolf, T.

    2013-01-01

    Roč. 26, č. 4 (2013), s. 901-905 ISSN 1557-1939 R&D Projects: GA MŠk(CZ) ME10069 Institutional support: RVO:68378271 Keywords : high- T c superconductors * cuprates * thermodynamic properties * LRE-123 * paramagnetic ions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.930, year: 2013

  8. On the Origin of the Large Magnetic Anisotropy of Rare Earth-Cobalt Compounds

    DEFF Research Database (Denmark)

    Szpunar, B.; Lindgård, Per-Anker

    1979-01-01

    Experimental data on the magnetocrystalline anisotropy in Co, YCo5, GdCo5, SmCo5 and Y2Co17 is analysed using a single-ion crystal field and isotropic exchange interaction. The large magnetic anisotropy at high temperatures in the alloys is due to significant deviations in the alloy lattices...

  9. Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Nikumbh, A.K., E-mail: aknik@chem.unipune.ac.in; Pawar, R.A.; Nighot, D.V.; Gugale, G.S.; Sangale, M.D.; Khanvilkar, M.B.; Nagawade, A.V.

    2014-04-15

    Pure nanoparticles of the rare-earth substituted cobalt ferrites CoRE{sub x}Fe{sub 2−x}O{sub 4} (where RE=Nd, Sm and Gd and x=0.1 and 0.2) were prepared by the chemical co-precipitation method. X-ray diffraction, Transmission electron microscopy (TEM), d.c. electrical conductivity, Magnetic hysteresis and Thermal analysis are utilized in order to study the effect of variation in the rare-earth substitution and its impact on particle size, magnetic properties like M{sub S}, H{sub C} and Curie temperature. The phase identification of the materials by X-ray diffraction reveals the single-phase nature of the materials. The lattice parameter increased with rare-earth content for x≤0.2. The Transmission electron micrographs of Nd-, Sm- and Gd-substituted CoFe{sub 2}O{sub 4} exhibit the particle size 36.1 to 67.8 nm ranges. The data of temperature variation of the direct current electrical conductivity showed definite breaks, which corresponds to ferrimagnetic to paramagnetic transitions. The thermoelectric power for all compound are positive over the whole range of temperature. The dielectric constant decreases with frequency and rare-earth content for the prepared samples. The magnetic properties of rare-earth substituted cobalt ferrites showed a definite hysteresis loop at room temperature. The reduction of coercive force, saturation magnetization, ratio M{sub R}/M{sub S} and magnetic moments may be due to dilution of the magnetic interaction.

  10. Electric and magnetic properties of oxidic titanium bronzes of rare earths Lnsub(2/3+x)TiOsub(3+-y) with perovskite structure

    International Nuclear Information System (INIS)

    Bazuev, G.V.; Makarova, O.V.; Shvejkin, G.P.

    1983-01-01

    A study was made on electric and magnetic properties of oxidic titanium bronzes of rare earths and their dependence on rare earth nature and the degree of rare earth sublattice filling was followed. Data on Lnsub(2/3)TiOsub(3-y) (Ln-Ce, Nd) anion-deficient perovskites are given as well. Investigated Cesub(2/3)TiOsub(2.985) and Ndsub(2/3)TiOsub(2.875) phases as well as defectless with respect to oxygen Lnsub(2/3)TiOsub(3) phases have rhombic structure of perovskite type with ordered position of Ln 3 + cations and vacancies. Specific electric resistance and thermoelectromotive force factor were determined in vacuum at 290-1173 K for samples in the form of parallelepiped of 3x5x25 mm 3 size. Magnetic susceptibility chi was determined at 77-300 K by Faraday method using a device based on magnetic balancewith electromagnetic compensation. Relative error during chi measuring didn't exceed +-2%. Collectivized behaviour of d-electrons of Ti 3 + cations in oxidic titanium bronzes of rare earths: Lnsub(2/3+x)TiOsub(3+-y) (Ln-La, Ce, Nd; 0 < x < 1/3), conditioned by formation of narrow, partly filled π*-zone, was established on the basis of measuring specific electric resistance and magnetic susceptibility

  11. Magnetic susceptibility of the rare earth tungsten oxide bronzes of the defected perovskite-type structure (Rsub(x)WO/sub 3/)

    Energy Technology Data Exchange (ETDEWEB)

    Gesicki, A; Polaczek, A [Warsaw Univ. (Poland)

    1975-01-01

    Magnetic susceptibility of rare earth tungsten bronzes Rsub(x)WO/sub 3/ of cubic symmetry was measured in the 80-293 K range with the Gouy method. In disagreement with the data reported by other authors it was stated that the Curie-Weiss law with negative Weiss parameter was fulfilled in each case. Possible coupling mechanisms are briefly discussed.

  12. Electric and magnetic properties of oxidic titanium bronzes of rare earths Lnsub(2/3+x)TiOsub(3+-y) with perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Bazuev, G V; Makarova, O V; Shvejkin, G P [AN SSSR, Sverdlovsk. Inst. Khimii

    1983-01-01

    A study was made on electric and magnetic properties of oxidic titanium bronzes of rare earths and their dependence on rare earth nature and the degree of rare earth sublattice filling was followed. Data on Lnsub(2/3)TiOsub(3-y) (Ln-Ce, Nd) anion-deficient perovskites are given as well. Investigated Cesub(2/3)TiOsub(2.985) and Ndsub(2/3)TiOsub(2.875) phases as well as defectless with respect to oxygen Lnsub(2/3)TiOsub(3) phases have rhombic structure of perovskite type with ordered position of Ln/sup 3 +/ cations and vacancies. Specific electric resistance and thermoelectromotive force factor were determined in vacuum at 290-1173 K for samples in the form of parallelepiped of 3x5x25 mm/sup 3/ size. Magnetic susceptibility chi was determined at 77-300 K by Faraday method using a device based on magnetic balance with electromagnetic compensation. Relative error during chi measuring didn't exceed +-2%. Collectivized behaviour of d-electrons of Ti/sup 3 +/ cations in oxidic titanium bronzes of rare earths: Lnsub(2/3+x)TiOsub(3+-y) (Ln-La, Ce, Nd; 0 < x < 1/3), conditioned by formation of narrow, partly filled ..pi..*-zone, was established on the basis of measuring specific electric resistance and magnetic susceptibility.

  13. Compositional characterisation of rare earth magnet materials by glow discharge quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Reddy, M.A.; Shekhar, R.; Kumar, Sunil Jai

    2014-01-01

    In this paper, glow discharge quadrupole mass spectrometric (GD-QMS) studies on Sm-Pr-Co compound magnetic materials are reported. The composition of these magnetic materials produced from different manufacturing routes (imported, indigenous) was determined. The results are compared with the results obtained by an alternative analytic technique, inductively coupled plasma atomic emission spectrometry (ICP-AES), after complete dissolution of the material in the appropriate acids. For perfectly homogeneous material both the wet chemical method and direct solid analysis method should give the same result. A close examination of both the results indicates that for imported materials the values obtained by wet chemical method and direct solid method are in close agreement. This indicates that the imported (solid) material is highly homogeneous. For indigenous materials, it shows a large difference in the values of Co and Sm. This reveals that the solid material prepared is not as homogenous as the imported materials

  14. Optimization of film synthesized rare earth transition metal permanent magnet systems

    International Nuclear Information System (INIS)

    Cadieu, F.J.

    1991-01-01

    This progress report discusses the following topics: high coercivity Sm-Fe-Ti-V and Sm-Fe-Zr crystalline phases; ThMn 12 type pseudobinary SmFe 12-x T x (x = 0.5 to 1.5) and even binary SmFe 12 compound samples; and improved crystal texture control for Re-Tm magnetic films sputtered in Ar-Xe gas mixtures

  15. Microscopic Theory of Magnetic Detwinning in Iron-Based Superconductors with Large-Spin Rare Earths

    Directory of Open Access Journals (Sweden)

    Jannis Maiwald

    2018-01-01

    Full Text Available Detwinning of magnetic (nematic domains in Fe-based superconductors has so far only been obtained through mechanical straining, which considerably perturbs the ground state of these materials. The recently discovered nonmechanical detwinning in EuFe_{2}As_{2} by ultralow magnetic fields offers an entirely different, nonperturbing way to achieve the same goal. However, this way seemed risky due to the lack of a microscopic understanding of the magnetically driven detwinning. Specifically, the following issues remained unexplained: (i ultralow value of the first detwinning field of approximately 0.1 T, two orders of magnitude below that of BaFe_{2}As_{2}, and (ii reversal of the preferential domain orientation at approximately 1 T and restoration of the low-field orientation above 10–15 T. In this paper, we present, using published as well as newly measured data, a full theory that quantitatively explains all the observations. The key ingredient of this theory is a biquadratic coupling between Fe and Eu spins, analogous to the Fe-Fe biquadratic coupling that drives the nematic transition in this family of materials.

  16. Rare earths as a future resource

    International Nuclear Information System (INIS)

    Cornell, D.H.

    1988-01-01

    The fourteen rare earth or lanthanide elements have recently emerged as an important natural resource because of the rapidly growing demand in the electronic, chemical and metallurgical industries. The Symposium on rare earth elements as a future resource presented a multidisciplinary review of rare earth chemistry, geology, beneficiation, industrial applications and marketing. Papers by experts in many fields were presented on the following topics: chemical properties of the rare earth elements; the analysis of rare earth elements and minerals; beneficiation and extraction of rare earth elements; economic geochemistry and mineralogy of rare earths; present industrial uses of rare earth elements; the role of rare earth elements in high-temperature superconductors; the technical application of high-temperature superconductors; supply and demand for rare earth products - now and in the future, and the geology of rare earth deposits

  17. Interaction domains in permanent-magnetic rare-earth transition-metal compounds

    International Nuclear Information System (INIS)

    Thielsch, Juliane

    2015-01-01

    In the framework of this dissertation the phenomenon of the interaction domains was studied both experimentally and by means of micromagnetic simulation. Object of the study were one-phase NdFeB magnets, which were fabricated from commercial MQU-F powders of the Magnequench Inc. company by hot pressing and subsequent warm deformation in the IWF Dresden. Additionally via the same fabrication way also composite samples of NdFeB and Fe with different original particle sizes ere obtained and studied. Supported wer the experimental works by simulations with the FEMME software package, which is based on a hybrid finite-element method/boundary-element method.

  18. High pressure studies of magnetic, electronic, and local structure properties in the rare-earth orthoferrites RFeO3 (R = Nd, Lu)

    International Nuclear Information System (INIS)

    Gavriliuk, A.G.; Stepanov, G.N.; Lyubutin, I.S.; Stepin, A.S.; Trojan, I.A.; Sidorov, V.A.

    2000-01-01

    The high pressure modification of the electronic structure, magnetic properties, and local crystal structure have been studied in the rare-earth RFeO 3 (R=Nd, Lu) orthoferrites in both pure single crystals and polycrystalline samples doped with Sn. The pressure dependences of the unit cell parameters, Neel temperatures, supertransferred hyperfine magnetic fields at tin nuclei H Sn , and the optical absorption edge have been obtained. The relations of the obtained values with the geometry of exchange interactions were analyzed

  19. Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides

    Science.gov (United States)

    Grzyb, Tomasz; Mrówczyńska, Lucyna; Szczeszak, Agata; Śniadecki, Zbigniew; Runowski, Marcin; Idzikowski, Bogdan; Lis, Stefan

    2015-10-01

    Multifunctional nanoparticles exhibiting red or green luminescence properties and magnetism were synthesized and thoroughly analyzed. The hydrothermal method was used for the synthesis of Eu3+- or Tb3+-doped GdF3-, NaGdF4-, and BaGdF5-based nanocrystalline materials. The X-ray diffraction patterns of the samples confirmed the desired compositions of the materials. Transmission electron microscope images revealed the different morphologies of the products, including the nanocrystal sizes, which varied from 12 nm in the case of BaGdF5-based nanoparticles to larger structures with dimensions exceeding 300 nm. All of the samples presented luminescence under ultraviolet irradiation, as well as when the samples were in the form of water colloids. The highest luminescence was observed for BaGdF5-based materials. The obtained nanoparticles exhibited paramagnetism along with probable evidence of superparamagnetic behavior at low temperatures. The particles' magnetic characteristics were also preserved for samples in the form of a suspension in distilled water. The cytotoxicity studies against the human erythrocytes indicated that the synthesized nanoparticles are non-toxic because they did not cause the red blood cells shape changes nor did they alter their membrane structure and permeabilization.

  20. Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides

    International Nuclear Information System (INIS)

    Grzyb, Tomasz; Mrówczyńska, Lucyna; Szczeszak, Agata; Śniadecki, Zbigniew; Runowski, Marcin; Idzikowski, Bogdan; Lis, Stefan

    2015-01-01

    Multifunctional nanoparticles exhibiting red or green luminescence properties and magnetism were synthesized and thoroughly analyzed. The hydrothermal method was used for the synthesis of Eu 3+ - or Tb 3+ -doped GdF 3 -, NaGdF 4 -, and BaGdF 5 -based nanocrystalline materials. The X-ray diffraction patterns of the samples confirmed the desired compositions of the materials. Transmission electron microscope images revealed the different morphologies of the products, including the nanocrystal sizes, which varied from 12 nm in the case of BaGdF 5 -based nanoparticles to larger structures with dimensions exceeding 300 nm. All of the samples presented luminescence under ultraviolet irradiation, as well as when the samples were in the form of water colloids. The highest luminescence was observed for BaGdF 5 -based materials. The obtained nanoparticles exhibited paramagnetism along with probable evidence of superparamagnetic behavior at low temperatures. The particles’ magnetic characteristics were also preserved for samples in the form of a suspension in distilled water. The cytotoxicity studies against the human erythrocytes indicated that the synthesized nanoparticles are non-toxic because they did not cause the red blood cells shape changes nor did they alter their membrane structure and permeabilization

  1. Microscopic and macroscopic inhomogeneity of magnetization and anistropy in amorphous rare earth/transition metal films

    International Nuclear Information System (INIS)

    Hafner, D.; Hoffmann, H.

    1979-01-01

    Amorphous Gd/Co and Gd/Co/Mo-films are investigated by measuring the field dependence of the susceptibility. This allows a determination of the value and sign of the perpendicular uniaxial anisotropy as well as the value of the effective ripple stray field. The measurements are made at spots of 50 to 100 μm diameter, allowing one to scan the film surface. Measurements from a spot on the film surface and at the opposing spot on the film-glass substrate interface are performed simultaneously. In this way the anisotropy at two related points on both surfaces of the film can be compared. In general the results show the existence of a ripple stray field which can be accounted for by inhomogeneities in the amorphous films. The perpendicular anisotropy at the free film surface is always lower than the perpendicular anisotropy at the film-substrate interface. In some cases the magnetization at the film surface is in-plane, while at the substrate the magnetization is out-of-plane. The reduction of the perpendicular anisotropy is an ageing effect due to oxidation. (author)

  2. Separation and Recovery of Iron and Rare Earth from Bayan Obo Tailings by Magnetizing Roasting and (NH4)2SO4 Activation Roasting

    OpenAIRE

    Yan Zhou; He Yang; Xiang-xin Xue; Shuai Yuan

    2017-01-01

    A novel approach for recovery of iron and rare earth elements (REEs) from Bayan Obo tailings of Baotou, China, was developed by combining magnetizing roasting, magnetic separation, (NH4)2SO4 activation roasting, and water leaching. Thermodynamic analysis of carbothermal reduction was conducted to determine the temperature of magnetizing roasting, and it agreed well with the experimental results. The maximum recovery of Fe reached 77.8% at 600 °C, and the grade of total Fe in the magnetic conc...

  3. A metallurgical approach toward alloying in rare earth permanen magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Branagan, Daniel J. [Iowa State Univ., Ames, IA (United States)

    1995-02-23

    The approach was developed to allow microstructural enhancement and control during solidification and processing. Compound additions of Group IVA, VA, or VIA transition metals (TM) and carbon were added to Nd2Fe14B (2-14-1). Transition metal carbides formed in IVA (TiC, ZrC, HfC) and Group VA (VC, NbC, TaC) systems, but not in the VIA system. The alloying ability of each TM carbide was graded using phase stability, liquid and equilibrium solid solubility, and high temperature carbide stability. Ti with C additions was chosen as the best system. The practically zero equilibrium solid solubility means that the Ti and C additions will ultimately form TiC after heat treatment which allows the development of a composite microstructure consisting of the 2-14-1 phase and TiC. Thus, the excellent intrinsic magnetic properties of the 2-14-1 phase remain unaltered and the extrinsic properties relating to the microstructure are enhanced due to the TiC stabilized microstructure which is much more resistant to grain growth. When Ti + C are dissolved in the liquid melt or solid phases, such as the glass or 2-14-1 phase, the intrinsic properties are changed; favorable changes include increased glass forming ability, reduced optimum cooling rate, increased optimum energy product, and enhanced nucleation kinetics of crystallization.

  4. Recycling of Rare Earth Elements

    Science.gov (United States)

    Lorenz, Tom; Bertau, Martin

    2017-01-01

    Any development of an effective process for rare earth (RE) recycling has become more and more challenging, especially in recent years. Since 2011, when commodity prices of REs had met their all-time maximum, prices have dropped rapidly by more than 90 %. An economic process able to offset these fluctuations has to take unconventional methods into account beside well-known strategies like acid/basic leaching or solvent extraction. The solid-state chlorination provides such an unconventional method for mobilizing RE elements from waste streams. Instead of hydrochloric acid this kind of chlorination decomposes NH4Cl thermally to release up to 400 °C hot HCl gas. After cooling the resulting solid metal chlorides may be easily dissolved in pH-adjusted water. Without producing strongly acidic wastes and with NH4Cl as cheap source for hydrogen chloride, solid-state chlorination provides various advantages in terms of costs and disposal. In the course of the SepSELSA project this method was examined, adjusted and optimized for RE recycling from fluorescent lamp scraps as well as Fe14Nd2B magnets. Thereby many surprising influences and trends required various analytic methods to examine the reasons and special mechanisms behind them.

  5. Electronic response of rare-earth magnetic-refrigeration compounds GdX2 (X = Fe and Co)

    Science.gov (United States)

    Bhatt, Samir; Ahuja, Ushma; Kumar, Kishor; Heda, N. L.

    2018-05-01

    We present the Compton profiles (CPs) of rare-earth-transition metal compounds GdX2 (X = Fe and Co) using 740 GBq 137Cs Compton spectrometer. To compare the experimental momentum densities, we have also computed the CPs, electronic band structure, density of states (DOS) and Mulliken population (MP) using linear combination of atomic orbitals (LCAO) method. Local density and generalized gradient approximations within density functional theory (DFT) along with the hybridization of Hartree-Fock and DFT (B3LYP and PBE0) have been considered under the framework of LCAO scheme. It is seen that the LCAO-B3LYP based momentum densities give a better agreement with the experimental data for both the compounds. The energy bands and DOS for both the spin-up and spin-down states show metallic like character of the reported intermetallic compounds. The localization of 3d electrons of Co and Fe has also been discussed in terms of equally normalized CPs and MP data. Discussion on magnetization using LCAO method is also included.

  6. Rare earths production and marketing opportunities

    International Nuclear Information System (INIS)

    Falconnet, P.G.

    1988-01-01

    The rare earths (RE) market is relatively small. The total production during 1968 was only 10000 tons (REO) which rose to 27000 tons (REO) during 1985. The three major areas of application, which are volume market for ceric rare earths are catalysts, glass ceramics and metallurgy. Among the other uses of rare earths, the permanent magnets, lamp phosphors and fine ceramics have registered significant growth in RE consumption. Monazite and bastnasite are the main natural source for rare earths and processing of these for one of the rare earths in high demand leads to over production of some others not in demand, thus creating a balance problem. The growth in RE market has always been influenced by the technology shifts and product substitution. For example, the RE consumption during 1974/76 for desulfurization of steel had substantially decreased due to the usage of calcium. Similarly, 1985 had witnessed a drastic cut in the use of REs in fluid cracking due to the introduction of stabilized zeolites which contain less REO. Thus, the overall compound growth rate of demand was only 3.9 % per year during the period 1970-1985. At present, 37 % of the rare earths production goes to the glass/ceramics industry, 33 % for catalyst and 25 % to metallurgy. The price of REs constantly shows a downward trend. This trend coupled with the rapid changes taking place in the various technological fields, demands greater flexibility and high marketing skills from the RE producers. The key factor for future expansion of RE market will be the development of 'high volume' application of ceric rare earths. (author) 2 figs., 8 tabs

  7. Design of spoke type motor and magnetizer for improving efficiency based rare-earth-free permanent-magnet motor

    Science.gov (United States)

    Kim, Young Hyun; Cheon, Byung Chul; Lee, Jung Ho

    2018-05-01

    This study proposes criteria for both optimal-shape and magnetizer-system designs to be used for a high-output spoke-type motor. The study also examines methods of reducing high-cogging torque and torque ripple, to prevent noise and vibration. The optimal design of the stator and rotor can be enhanced using both a response surface method and finite element method. In addition, a magnetizer system is optimally designed for the magnetization of permanent magnets for use in the motor. Finally, this study verifies that the proposed motor can efficiently replace interior permanent magnet synchronous motor in many industries.

  8. Design of spoke type motor and magnetizer for improving efficiency based rare-earth-free permanent-magnet motor

    Directory of Open Access Journals (Sweden)

    Young Hyun Kim

    2018-05-01

    Full Text Available This study proposes criteria for both optimal-shape and magnetizer-system designs to be used for a high-output spoke-type motor. The study also examines methods of reducing high-cogging torque and torque ripple, to prevent noise and vibration. The optimal design of the stator and rotor can be enhanced using both a response surface method and finite element method. In addition, a magnetizer system is optimally designed for the magnetization of permanent magnets for use in the motor. Finally, this study verifies that the proposed motor can efficiently replace interior permanent magnet synchronous motor in many industries.

  9. Electronic structure and properties of rare earth and actinide intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.R.

    1984-01-01

    There are 188 contributions, experimental and theoretical, a few on rare earth and actinide elements but mostly on rare earth and actinide intermetallic compounds and alloys. The properties dealt with include 1) crystal structure, 2) magnetic properties and magnetic structure, 3) magnetic phase transformations and valence fluctuations, 4) electrical properties and superconductivity and their temperature, pressure and magnetic field dependence. A few papers deal with crystal growth and novel measuring methods. (G.Q.)

  10. Controlling laser-induced magnetization reversal dynamics in a rare-earth iron garnet across the magnetization compensation point

    Science.gov (United States)

    Deb, Marwan; Molho, Pierre; Barbara, Bernard; Bigot, Jean-Yves

    2018-04-01

    In this work we explore the ultrafast magnetization dynamics induced by femtosecond laser pulses in a doped film of gadolinium iron garnet over a broad temperature range including the magnetization compensation point TM. By exciting the phonon-assisted 6S→4G and 6S→4P electronic d -d transitions simultaneously by one- and two-photon absorption processes, we find out that the transfer of heat energy from the lattice to the spin has, at a temperature slightly below TM, a large influence on the magnetization dynamics. In particular, we show that the speed and the amplitude of the magnetization dynamics can be strongly increased when increasing either the external magnetic field or the laser energy density. The obtained results are explained by a magnetization reversal process across TM. Furthermore, we find that the dynamics has unusual characteristics which can be understood by considering the weak spin-phonon coupling in magnetic garnets. These results open new perspectives for controlling the magnetic state of magnetic dielectrics using an ultrashort optically induced heat pulse.

  11. Spectroscopic study of magnetic phase transitions and magnetic structures in rare earth ferroborates RFe3(BO3)4 (R = Y, Er, Tb, Gd)

    International Nuclear Information System (INIS)

    Popova, M.N.; Chukalina, E.P.; Stanislavchuk, T.N.; Bezmaternykh, L.N.

    2006-01-01

    One investigated into the absorption spectra of RFe 3 (BO 3 ) 4 , R=Y, Er, Tb, Gd rare earth borate single crystals containing erbium (1%) introduced to serve as a probe. On the basis of the temperature dependences of Er 3+ ion spectral line splittings one determined the values of the magnetic ordering temperatures of Er, Tb and Gd ferroborates and the temperatures of the spin reoriented first order phase transition in GdFe 3 (BO 3 ) 4 :Er 3+ (1%). On the basis of comparison of the splitting values of Er 3+ ion ground state in RFe 3 (BO 3 ) 4 (R=Y, Er, Tb) and in GdFe 3 (BO 3 )4 compounds the magnetic structure of which is known one makes a concussion about the orientation of iron magnetic moments in the magneto-ordered state: a lightly planar structure is observed for YFe 3 (BO 3 ) 4 and ErFe 3 (BO 3 ) 4 and a lightly axial one - for TbFe 3 (BO 3 ) 4 . One discusses the role of R 3+ ion single ion anisotropy when determining the magnetic structure type in RFe 3 (BO 3 ) 4 [ru

  12. Effects of microstructures on the performance of rare-earth-free MnBi magnetic materials and magnets

    Science.gov (United States)

    Nguyen, Vuong Van; Nguyen, Truong Xuan

    2018-03-01

    Since the solidification of MnBi alloys is peritectic, their microstructures always consist of the starting phases of Mn and Bi and the productive phase MnBi. The high performance of MnBi bulk magnets requires appropriate routes of preparing MnBi powders of high spontaneous magnetization Ms and large coercivity iHc as well a route of producing bulk magnets thereof. In these routes, the microstructures of arc-melted alloys, annealed alloys and magnets strongly related to the quality of powders and the performance of magnets. The paper proves that: i) The microstructure of fine Mn-inclusions embedded in the matrix of Bi is preferred for arc-melted alloys to realize the rapid evolution of the ferromagnetic phase inside them during their sequent annealing process; ii) The time-controlled annealing process plays a key role in controlling the microstructure with the main ferromagnetic phase matrix, in which the rest of Mn and the Bi accumulations are embedded; iii) The cold (in-liquid-nitrogen) ball milling annealed alloys is required for preparing a high quality powders with the preferred sub-micrometer microstructure without a Bi-decomposition; iv) The short-time warm compaction is crucial to fabricate dense, highly textured bulk magnets with the micrometer microstructure. The realization and control of these preferred microstructures figured in these routes enhance the chance of preparing MnBi bulk magnets with the energy product (BH)max larger than 8 MGOe.

  13. Rare earth permanent-magnet alloys’ high temperature phase transformation in situ and dynamic observation and its application in material design

    CERN Document Server

    Pan, Shuming

    2013-01-01

    The process of high temperature phase transition of rare earth permanent-magnet alloys is revealed by photographs taken by high voltage TEM. The relationship between the formation of nanocrystal and magnetic properties is discussed in detail, which effects alloys composition and preparation process. The experiment results verified some presumptions, and were valuable for subsequent scientific research and creating new permanent-magnet alloys. The publication is intended for researchers, engineers and managers in the field of material science, metallurgy, and physics. Prof. Shuming Pan is senior engineer of Beijing General Research Institute of Non-ferrous Metal.

  14. Rare Earth Garnet Selective Emitter

    Science.gov (United States)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  15. Magnetic properties and structural transitions of fluorite-related rare earth osmates Ln3OsO7 (Ln=Pr, Tb)

    International Nuclear Information System (INIS)

    Hinatsu, Yukio; Doi, Yoshihiro

    2013-01-01

    Ternary rare-earth osmates Ln 3 OsO 7 (Ln=Pr, Tb) have been prepared. They crystallize in an ortho-rhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr 3 OsO 7 exhibits magnetic transitions at 8 and 73 K, and Tb 3 OsO 7 magnetically orders at 8 and 60 K. The Os moments become one-dimensionally ordered, and when the temperature is furthermore decreased, it provokes the ordering in the Ln 3+ sublattice that simultaneously becomes three-dimensionally ordered with the Os sublattice. - Graphical abstract: Ternary rare-earth osmates Ln 3 OsO 7 (Ln=Pr, Tb) have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr 3 OsO 7 exhibits magnetic transitions at 8 and 73 K, and Tb 3 OsO 7 magnetically orders at 8 and 60 K. Highlights: ► Ternary rare-earth osmates Ln 3 OsO 7 (Ln=Pr, Tb) with an ordered defect-fluorite structure have been prepared. ► Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). ► These compounds show complex magnetic behavior at low temperatures due to magnetic ordering of Ln and Os.

  16. Magnetic properties and structural transitions of fluorite-related rare earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb)

    Energy Technology Data Exchange (ETDEWEB)

    Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Doi, Yoshihiro [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2013-02-15

    Ternary rare-earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb) have been prepared. They crystallize in an ortho-rhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr{sub 3}OsO{sub 7} exhibits magnetic transitions at 8 and 73 K, and Tb{sub 3}OsO{sub 7} magnetically orders at 8 and 60 K. The Os moments become one-dimensionally ordered, and when the temperature is furthermore decreased, it provokes the ordering in the Ln{sup 3+} sublattice that simultaneously becomes three-dimensionally ordered with the Os sublattice. - Graphical abstract: Ternary rare-earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb) have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr{sub 3}OsO{sub 7} exhibits magnetic transitions at 8 and 73 K, and Tb{sub 3}OsO{sub 7} magnetically orders at 8 and 60 K. Highlights: Black-Right-Pointing-Pointer Ternary rare-earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb) with an ordered defect-fluorite structure have been prepared. Black-Right-Pointing-Pointer Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). Black-Right-Pointing-Pointer These compounds show complex magnetic behavior at low temperatures due to magnetic ordering of Ln and Os.

  17. Nanocrystallinity and magnetic property enhancement in melt-spun iron-rare earth-base hard magnetic alloys

    International Nuclear Information System (INIS)

    Davies, H.A.; Manaf, A.; Zhang, P.Z.

    1993-01-01

    Refinement of the grain size below ∼35 nm mean diameter in melt-spun FeNdB-base alloys leads to enhancement of remanent polarization, J r , above the level predicted by the Stoner-Wohlfarth theory for an aggregate of independent, randomly oriented, and uniaxial magnetic particles. This article summarizes the results of the recent systematic research on this phenomenon, including the influence of alloy composition and processing conditions on the crystallite size, degree of enhancement of J r , and maximum energy product (BH) max . It has been shown that the effect can also occur in ternary FeNdB alloys, without the addition of silicon or aluminum, which was originally thought necessary, providing the nanocrystallites are not magnetically decoupled by a paramagnetic second phase. Values of (BH) max above 160 kJ. m -3 have been achieved. The relationship between grain size, J r , intrinsic coercivity, J H c , and (BH) max are discussed in terms of magnetic exchange coupling, anisotropy, and other parameters. Recent extension of this work to the enhancement of properties in Fe-Mischmental-Boron-base alloys and to bonded magnets with a nanocrystalline structure is also described

  18. POTENTIAL FOR RARE EARTH ELEMENT RESOURCE EFFICIENCY IMPROVEMENTS IN PERMANENT MAGNET MOTORS THROUGH AN EXTENSION OF THE ELECTRIC MOTOR PRODUCT GROUP REGULATION UNDER THE EU ECODESIGN DIRECTIVE

    OpenAIRE

    Machacek, Erika; Dalhammar, Carl

    2013-01-01

    It has been proposed that the EU Ecodesign Directive can promote resource efficiency through relevant ecodesign requirements. This paper examines the potential for rare earth element (REE) resource efficiency improvements in the event the current regulation for electric motors under the Ecodesign Directive is to be extended to comprise REE-based permanent magnet motors. The research is based on literature studies, questionnaires and semi-structured interviews with representatives from industr...

  19. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  20. Rare earth niobate coordination polymers

    Science.gov (United States)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May

    2018-03-01

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.

  1. Electronically- and crystal-structure-driven magnetic structures and physical properties of RScSb (R = rare earth) compounds. A neutron diffraction, magnetization and heat capacity study

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, C [Institut Lauer-Langevin, Grenoble (France); Dhar, S K [TIFR, Mumbai (India); Kulkarni, R [TIFR, Mumbai (India); Provino, A [Inst. SPIN-CNR, Genova (Italy); Univ. of Genova (Italy); Ames Lab., Ames, IA (United States); Paudyal, Durga [Ames Lab., Ames, IA (United States); Manfrinetti, Pietro [Inst. SPIN-CNR, Genova (Italy); Univ. of Genova (Italy); Ames Lab., Ames, IA (United States); Gschneidner, Karl A [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)

    2014-08-14

    The synthesis of the new equiatomic RScSb ( R = La-Nd, Sm, Gd-Tm, Lu, Y) compounds has been recently reported. These rare earth compounds crystallize in two different crystal structures, adopting the CeScSi-type ( I 4/ mmm) for the lighter R (La-Nd, Sm) and the CeFeSi-type (P4 /nmm) structure for the heavier R ( R = Gd-Tm, Lu, Y). Here we report the results of neutron diffraction, magnetization and heat capacity measurements on some of these compounds ( R = Ce, Pr, Nd, Gd and Tb). Band structure calculations have also been performed on CeScSb and GdScGe (CeScSi-type), and on GdScSb and TbScSb (CeFeSi-type) to compare and understand the exchange interactions in CeScSi and CeFeSi structure types. The neutron diffraction investigation shows that all five compounds order magnetically, with the highest transition temperature of 66 K in TbScSb and the lowest of about 9 K in CeScSb. The magnetic ground state is simple ferromagnetic (τ = [0 0 0]) in CeScSb, as well in NdScSb for 32 >T > 22 K. Below 22 K a second magnetic transition, with propagation vector τ = [¼ ¼ 0], appears in NdScSb. PrScSb has a magnetic structure within, determined by mostly ferromagnetic interactions and antiferromagnetic alignment of the Pr-sites connected through the I-centering ( τ = [1 0 0]). A cycloidal spiral structure with a temperature dependent propagation vector τ = [δ δ ½] is found in TbScSb. The results of magnetization and heat capacity lend support to the main conclusions derived from neutron diffraction. As inferred from a sharp peak in magnetization, GdScSb orders antiferromagnetically at 56 K. First principles calculations show lateral shift of spin split bands towards lower energy from the Fermi level as the CeScSi-type structure changes to the CeFeSi-type structure. This rigid shift may force the system to transform from exchange split ferromagnetic state to the antiferromagnetic state in RScSb compounds (as seen for example in GdScSb and TbScSb) and is proposed to

  2. Direct Reuse of Rare Earth Permanent Magnets—Coating Integrity

    DEFF Research Database (Denmark)

    Høgberg, Stig; Holbøll, Joachim; Mijatovic, Nenad

    2017-01-01

    Rare earth permanent magnets can be reused directly as an alternative to traditional recycling methods, in which scrapped magnets are reprocessed into new magnets by undergoing many of the original energy-intensive and expensive production processes. Direct reuse entails using segmented magnet...... assemblies built by several small standard-sized magnets that can be reused directly in a number of different applications. A central part of the direct reuse strategy is to separate and demagnetize magnets by heating them to the Curie temperature. We investigated the validity of direct reuse as a rare earth...

  3. Metallothermic reduction of rare earth oxides

    International Nuclear Information System (INIS)

    Sharma, R.A.

    1986-01-01

    Rare earth oxides can be reduced to rare earth metals by a novel, high yield, metallothermic process. The oxides are dispersed in a suitable, molten, calcium chloride bath along with sodium metal. The sodium reacts with the calcium chloride to produce calcium metal which reduces the rare earth oxides to rare earth metals. The metals are collected in a discrete layer in the reaction vessel

  4. Magnetic nanosized rare earth iron garnets R_3Fe_5O_1_2: Sol–gel fabrication, characterization and reinspection

    International Nuclear Information System (INIS)

    Opuchovic, Olga; Kareiva, Aivaras; Mazeika, Kestutis; Baltrunas, Dalis

    2017-01-01

    The magnetic nanosized rare earth iron garnets (R_3Fe_5O_1_2, where R=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were prepared by an aqueous sol–gel method. Herein we present, that all these garnets can be obtained by this effective synthesis method simply by changing the temperature of the final annealing. It was also demonstrated, that a different annealing temperature leads to a different particle size distribution of the final product. The SEM analysis results revealed that the smallest particles were formed in the range of 75–130 nm. The phase purity and structure of the rare earth iron garnets were estimated using XRD analysis and Mössbauer spectroscopy. Magnetic properties were determined by magnetization measurements. The relation between the particle size, composition and magnetic properties of the sol-gel derived garnets were also discussed in this study. - Highlights: • First time series of R_3Fe_5O_1_2 (R=from Sm to Lu) are prepared by sol–gel process. • Different sintering temperature leads to the different particle size distribution. • Correlation between microstructure, composition and magnetic properties is shown.

  5. Tuning the Origin of Magnetic Relaxation by Substituting the 3d or Rare-Earth Ions into Three Isostructural Cyano-Bridged 3d-4f Heterodinuclear Compounds.

    Science.gov (United States)

    Zhang, Yan; Guo, Zhen; Xie, Shuang; Li, Hui-Li; Zhu, Wen-Hua; Liu, Li; Dong, Xun-Qing; He, Wei-Xun; Ren, Jin-Chao; Liu, Ling-Zhi; Powell, Annie K

    2015-11-02

    Three isostructural cyano-bridged 3d-4f compounds, [YFe(CN)6(hep)2(H2O)4] (1), [DyFe(CN)6(hep)2(H2O)4] (2), and [DyCo(CN)6(hep)2(H2O)4] (3), were successfully assembled by site-targeted substitution of the 3d or rare-earth ions. All compounds have been structurally characterized to display slightly distorted pentagonal-bipyramidal local coordination geometry around the rare-earth ions. Magnetic analyses revealed negligible magnetic coupling in compound 1, antiferromagnetic intradimer interaction in 2, and weak ferromagnetic coupling through dipolar-dipolar interaction in 3. Under an applied direct-current (dc) field, 1 (Hdc = 2.5 kOe, τ0 = 1.3 × 10(-7) s, and Ueff/kB = 23 K) and 3 (Hdc = 2.0 kOe, τ0 = 7.1 × 10(-11) s, and Ueff/kB = 63 K) respectively indicated magnetic relaxation behavior based on a single [Fe(III)]LS ion and a Dy(III) ion; nevertheless, 2 (Hdc = 2.0 kOe, τ0 = 9.7 × 10(-8) s, and Ueff/kB = 23 K) appeared to be a single-molecule magnet based on a cyano-bridged DyFe dimer. Compound 1, which can be regarded as a single-ion magnet of the [Fe(III)]LS ion linked to a diamagnetic Y(III) ion in a cyano-bridged heterodimer, represents one of the rarely investigated examples based on a single Fe(III) ion explored in magnetic relaxation behavior. It demonstrated that the introduction of intradimer magnetic interaction of 2 through a cyano bridge between Dy(III) and [Fe(III)]LS ions negatively affects the energy barrier and χ″(T) peak temperature compared to 3.

  6. [Gastro-entero anastomosis with flexible endoscope with the help of rare-earth magnets on biosynthetic model made of the gastrointestinal tract of slaughtered pigs].

    Science.gov (United States)

    Lukovich, Péter; Jónás, Attila; Bata, Pál; Tari, Krisztina; Váradi, Gábor; Kádár, Balázs; Mehdi, Sadat Akhavi; Kupcsulik, Péter

    2007-04-01

    Gastro-entero anastomosis with flexible endoscope with the help of rare-earth magnets on biosynthetic model made of the gastrointestinal tract of slaughtered pigs Numerous malignant diseases may cause gastric outlet obstruction. The surgical gastrointestinal bypass, besides the fact that it requires narcosis, is also associated with high risks for patients with poor general condition. Endoscopic insertion of self-expandable metal stent is less invasive, but often causes complications. In the last years some studies examined a new minimal invasive technique, in which magnets are used to create gastroenteric anastomosis. A biosynthetic model was developed from combined synthetic materials with biogenic specimens taken from slaughtered domestic pigs. The procedure was performed with endoscopic and fluoroscopic guidance. To increase X-ray contrast differences the model was put into physiological saline solution. Two rare-earth magnets (Br: 2500 Gauss, D: 10 mm) with central hole were inserted with the help of a guiding wire and duodenal probe. The first magnet was placed in the first jejunal loop; the second one was placed in the stomach. The gastric magnet was maneuvered using the endoscope. When the magnets reached the right position, the guiding wires were removed to let the magnets stick together. The pressure between the magnets will result in a sterile inflammation on the living tissue which develops adhesion between the bowels, and 7-10 days later anastomosis will develop as a result of the necrosis. The biosynthetic model could be used for training endoscopy without sacrificing animals. In the end of the procedure the magnets stuck together across gastric and jejunal walls in all ten cases successfully. By practice the period necessary for the procedure could be decreased from 40 to 20 minutes. The technique could be made with standard upper endoscope and instruments, and after practice on living animals it could potentially be a useful solution for complaints

  7. Structural elucidation and magnetic behavior evaluation of rare earth (La, Nd, Gd, Tb, Dy) doped BaCoNi-X hexagonal nano-sized ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Abdul, E-mail: abdulmajeed2276@gmail.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Raheem, Faseeh ur; Hussain, Altaf; Iqbal, F. [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, Government College University, Lahore 54000 (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Shakir, Imran [Deanship of Scientific Research, College of Engineering, King Saud University, PO Box 800, Riyadh 11421 (Saudi Arabia); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2016-06-15

    Rare-earth (RE=La{sup 3+}, Nd{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) doped Ba{sub 2}NiCoRE{sub x}Fe{sub 28−x}O{sub 46} (x=0.25) hexagonal ferrites were synthesized for the first time via micro-emulsion route, which is a fast chemistry route for obtaining nano-sized ferrite powders. These nanomaterials were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), as well as vibrating sample magnetometer (VSM). The XRD analysis exhibited that all the samples crystallized into single X-type hexagonal phase. The crystalline size calculated by Scherrer's formula was found in the range 7–19 nm. The variations in lattice parameters elucidated the incorporation of rare-earth cations in these nanomaterials. FTIR absorption spectra of these X-type ferrites were investigated in the wave number range 500–2400 cm{sup −1.} Each spectrum exhibited absorption bands in the low wave number range, thereby confirming the X-type hexagonal structure. The enhancement in the coercivity was observed with the doping of rare-earth cations. The saturation magnetization was lowered owing to the redistribution of rare-earth cations on the octahedral site (3b{sub VI}). The higher values of coercivity (664–926 Oe) of these nanomaterials suggest their use in longitudinal recording media. - Graphical abstract: Nano-sized rare-earth (RE=La{sup 3+}, Nd{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) doped Ba{sub 2}NiCoRE{sub x}Fe{sub 28−x}O{sub 46} (x=0.25) hexagonal ferrites were synthesized for the first time via micro-emulsion route and the crystallite size was found in the range 7–19 nm. The enhancement in the coercivity was observed with the doping of rare-earth cations. The higher values of coercivity (664–926 Oe) of these nanomaterials suggest their use in longitudinal recording media. - Highlights: • Micro-emulsion route was used to synthesize Ba{sub 2}NiCoRE{sub x}Fe{sub 28−x}O{sub 46} ferrites. • The crystallite size was found

  8. Structural elucidation and magnetic behavior evaluation of rare earth (La, Nd, Gd, Tb, Dy) doped BaCoNi-X hexagonal nano-sized ferrites

    International Nuclear Information System (INIS)

    Majeed, Abdul; Khan, Muhammad Azhar; Raheem, Faseeh ur; Hussain, Altaf; Iqbal, F.; Murtaza, Ghulam; Akhtar, Majid Niaz; Shakir, Imran; Warsi, Muhammad Farooq

    2016-01-01

    Rare-earth (RE=La 3+ , Nd 3+ , Gd 3+ , Tb 3+ , Dy 3+ ) doped Ba 2 NiCoRE x Fe 28−x O 46 (x=0.25) hexagonal ferrites were synthesized for the first time via micro-emulsion route, which is a fast chemistry route for obtaining nano-sized ferrite powders. These nanomaterials were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), as well as vibrating sample magnetometer (VSM). The XRD analysis exhibited that all the samples crystallized into single X-type hexagonal phase. The crystalline size calculated by Scherrer's formula was found in the range 7–19 nm. The variations in lattice parameters elucidated the incorporation of rare-earth cations in these nanomaterials. FTIR absorption spectra of these X-type ferrites were investigated in the wave number range 500–2400 cm −1. Each spectrum exhibited absorption bands in the low wave number range, thereby confirming the X-type hexagonal structure. The enhancement in the coercivity was observed with the doping of rare-earth cations. The saturation magnetization was lowered owing to the redistribution of rare-earth cations on the octahedral site (3b VI ). The higher values of coercivity (664–926 Oe) of these nanomaterials suggest their use in longitudinal recording media. - Graphical abstract: Nano-sized rare-earth (RE=La 3+ , Nd 3+ , Gd 3+ , Tb 3+ , Dy 3+ ) doped Ba 2 NiCoRE x Fe 28−x O 46 (x=0.25) hexagonal ferrites were synthesized for the first time via micro-emulsion route and the crystallite size was found in the range 7–19 nm. The enhancement in the coercivity was observed with the doping of rare-earth cations. The higher values of coercivity (664–926 Oe) of these nanomaterials suggest their use in longitudinal recording media. - Highlights: • Micro-emulsion route was used to synthesize Ba 2 NiCoRE x Fe 28−x O 46 ferrites. • The crystallite size was found in the range 7–19 nm. • The rare-earth incorporation enhanced the coercivity (664–926 Oe).

  9. Calculation of the magnetic properties of pseudo-ternary R2M14B intermetallic compounds (R = rare earth, M = Fe, Co

    Directory of Open Access Journals (Sweden)

    Gabriel Gómez Eslava

    2016-06-01

    Full Text Available The extrinsic properties of NdFeB-based magnets can be tuned through partial substitution of Nd by another rare-earth element and Fe by Co, as such substitution leads to a modification in the intrinsic properties of the main phase. Optimisation of a magnet's composition through trial and error is time consuming and not straightforward, since the interplay existing between magnetocrystalline anisotropy and coercivity is not completely understood. In this paper we present a model to calculate the intrinsic magnetic properties of pseudo-ternary Nd2Fe14B-based compounds. As concrete examples, which are relevant for the optimisation of NdFeB-based high-performance magnets used in (hybrid electric vehicles and wind turbines, we consider partial substitution of Nd by Dy or Tb, and Fe by Co.

  10. Room temperature ferromagnetism with large magnetic moment at low field in rare-earth-doped BiFeO₃ thin films.

    Science.gov (United States)

    Kim, Tae-Young; Hong, Nguyen Hoa; Sugawara, T; Raghavender, A T; Kurisu, M

    2013-05-22

    Thin films of rare earth (RE)-doped BiFeO3 (where RE=Sm, Ho, Pr and Nd) were grown on LaAlO3 substrates by using the pulsed laser deposition technique. All the films show a single phase of rhombohedral structure with space group R3c. The saturated magnetization in the Ho- and Sm-doped films is much larger than the values reported in the literature, and is observed at quite a low field of 0.2 T. For Ho and Sm doping, the magnetization increases as the film becomes thinner, suggesting that the observed magnetism is mostly due to a surface effect. In the case of Nd doping, even though the thin film has a large magnetic moment, the mechanism seems to be different.

  11. Structure and magnetism of new rare-earth-free intermetallic compounds: Fe3+xCo3−xTi2 (0 ≤ x ≤ 3

    Directory of Open Access Journals (Sweden)

    Balamurugan Balasubramanian

    2016-11-01

    Full Text Available We report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe3Co3Ti2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe3Co3Ti2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe3Co3Ti2 lattice leads to the formation of Fe4Co2Ti2, Fe5CoTi, and Fe6Ti2 with significantly improved permanent-magnet properties. A high magnetic anisotropy (13.0 Mergs/cm3 and saturation magnetic polarization (11.4 kG are achieved at 10 K by altering the atomic arrangements and decreasing Fe/Co occupancy disorder.

  12. The Chinese Society of Rare Earth is Studying The Feasibility of Marketing Rare Earth Futures

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Lin Donglu,secretary-general of the Chinese Society of Rare Earth recently said,the Chinese Society of Rare Earth undertook the research on subject of the National Social Science Fund Foundation on the reform of Chinese rare earth trading pricing mechanism on promoting RMB globalization,and is focusing on studying the feasibility of marketing rare earth futures variety.

  13. Calculations of the magnetic properties of R{sub 2}M{sub 14}B intermetallic compounds (R=rare earth, M=Fe, Co)

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Masaaki, E-mail: masaaki.ito@neel.cnrs.fr [CNRS, Institut Néel, 25 rue des Martyrs, BP166, 38042 Grenoble (France); University Grenoble Alpes, Institut Néel, 38042 Grenoble (France); Advanced Material Engineering Division, Toyota Motor Corporation, Susono 410-1193 (Japan); Yano, Masao [Advanced Material Engineering Division, Toyota Motor Corporation, Susono 410-1193 (Japan); Dempsey, Nora M. [CNRS, Institut Néel, 25 rue des Martyrs, BP166, 38042 Grenoble (France); University Grenoble Alpes, Institut Néel, 38042 Grenoble (France); Givord, Dominique [CNRS, Institut Néel, 25 rue des Martyrs, BP166, 38042 Grenoble (France); University Grenoble Alpes, Institut Néel, 38042 Grenoble (France); Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2016-02-15

    The hard magnetic properties of “R–M–B” (R=rare earth, M=mainly Fe) magnets derive from the specific intrinsic magnetic properties encountered in Fe-rich R{sub 2}M{sub 14}B compounds. Exchange interactions are dominated by the 3d elements, Fe and Co, and may be modeled at the macroscopic scale with good accuracy. Based on classical formulae that relate the anisotropy coefficients to the crystalline electric field parameters and exchange interactions, a simple numerical approach is used to derive the temperature dependence of anisotropy in various R{sub 2}Fe{sub 14}B compounds (R=Pr, Nd, Dy). Remarkably, a unique set of crystal field parameters give fair agreement with the experimentally measured properties of all compounds. This implies reciprocally that the properties of compounds that incorporate a mixture of different rare-earth elements may be predicted accurately. This is of special interest for material optimization that often involves the partial replacement of Nd with another R element and also the substitution of Co for Fe. - Highlights: • Anisotropy constants derived from CEF parameters of R{sub 2}M{sub 14}B compounds (M=Fe, Co). • Anisotropy constants of all R{sub 2}Fe{sub 14}B compounds using unique set of CEF parameters. • Moment non-collinearity in magnetization processes under B{sub app} along hard axis.

  14. Calculations of the magnetic properties of R2M14B intermetallic compounds (R=rare earth, M=Fe, Co)

    International Nuclear Information System (INIS)

    Ito, Masaaki; Yano, Masao; Dempsey, Nora M.; Givord, Dominique

    2016-01-01

    The hard magnetic properties of “R–M–B” (R=rare earth, M=mainly Fe) magnets derive from the specific intrinsic magnetic properties encountered in Fe-rich R 2 M 14 B compounds. Exchange interactions are dominated by the 3d elements, Fe and Co, and may be modeled at the macroscopic scale with good accuracy. Based on classical formulae that relate the anisotropy coefficients to the crystalline electric field parameters and exchange interactions, a simple numerical approach is used to derive the temperature dependence of anisotropy in various R 2 Fe 14 B compounds (R=Pr, Nd, Dy). Remarkably, a unique set of crystal field parameters give fair agreement with the experimentally measured properties of all compounds. This implies reciprocally that the properties of compounds that incorporate a mixture of different rare-earth elements may be predicted accurately. This is of special interest for material optimization that often involves the partial replacement of Nd with another R element and also the substitution of Co for Fe. - Highlights: • Anisotropy constants derived from CEF parameters of R 2 M 14 B compounds (M=Fe, Co). • Anisotropy constants of all R 2 Fe 14 B compounds using unique set of CEF parameters. • Moment non-collinearity in magnetization processes under B app along hard axis.

  15. Clinical evaluation of neodymium-iron-boron (Ne2Fe14B) rare earth magnets in the treatment of mid line diastemas

    Science.gov (United States)

    Manoj-Kumar, Mitta; Gowri-Sankar, Singaraju; Chaitanya, Nellore; Vivek-Reddy, Ganugapanta; Venkatesh, Nettam

    2016-01-01

    Background To evaluate the closure of midline diastema using the Neodymium-Iron-Boron magnets and to compare the treatment duration of midline diastemas with the use of magnets compared to regular orthodontic treatment. Material and Methods Thirty patients with age group 12 to 30 years with the midline diastema ranging from 0.5 to 3mm were selected. These patients were divided into two groups. Diastema closure in one group was accomplished by conventional method, in other group was done with Ne2Fe14B magnets. These magnets were fitted to the labial surfaces of the maxillary central incisors such a way that the opposite poles of the magnets face each other. At each appointment, study models and radiographs were taken for study subjects and the midline diastema was measured using digital vernier calipers on the study models obtained. Descriptive statistics carried out using Paired t-test. Results Subjects treated with Ne2Fe14B magnets showed a significant difference compared to fixed orthodontic appliance subjects with respect to time of closure, rate of space closure and incisal inclination. Significant difference between 2 groups with reduction of 64.6 days in time to diastema closure in subjects treated with Ne2Fe14B magnets (Pclosure of mid line diastema in less duration of time. Key words:Midline diastema, Ne2Fe14B magnets, rare earth magnets, space closure. PMID:27034757

  16. Rare earths and rare earth alloys electrolytic preparation process and device for this process

    International Nuclear Information System (INIS)

    Seon, F.; Barthole, G.

    1986-01-01

    Electrolysis of a molten salt of rare earth or rare earth alloy for preparation of the metal or alloy is described. The molten salt bath comprises at least a rare earth chloride, at least an alkaline or alkaline earth chloride and at least an alkaline or alkaline earth fluoride [fr

  17. Optimization of L1{sub 0} FePt/Fe{sub 45}Co{sub 55} thin films for rare earth free permanent magnet applications

    Energy Technology Data Exchange (ETDEWEB)

    Giannopoulos, G., E-mail: g.giannopoulos@inn.demokritos.gr; Psycharis, V.; Niarchos, D. [INN, NCSR Demokritos, Athens 15310 (Greece); Reichel, L. [IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany); TU Dresden, Institute for Materials Science, 01062 Dresden (Germany); Markou, A.; Panagiotopoulos, I. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Damm, C.; Fähler, S. [IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany); Khan, Imran; Hong, Jisang [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-06-14

    The magnetic properties of magnetron sputtered bilayers consisting of Fe{sub 45}Co{sub 55} ultrathin layers on top of L1{sub 0} FePt films epitaxially grown on MgO substrates are studied in view of their possible application as rare earth free permanent magnets. It is found that FePt layers induce a tetragonal distortion to the Fe-Co layers which leads to increased anisotropy. This allows to take advantage of the Fe-Co high magnetic moment with less significant loss of the coercivity compared to a typical hard/soft exchange spring system. A maximum energy product approaching 50 MGOe is obtained for a FePt(7 ML)/FeCo/(5 ML) sample. The results are in accordance with first-principles computational methods, which predict that even higher energy products are possible for micromagnetically optimized microstructures.

  18. A primary exploration to quasi-two-dimensional rare-earth ferromagnetic particles: holmium-doped MoS2 sheet as room-temperature magnetic semiconductor

    Science.gov (United States)

    Chen, Xi; Lin, Zheng-Zhe

    2018-05-01

    Recently, two-dimensional materials and nanoparticles with robust ferromagnetism are even of great interest to explore basic physics in nanoscale spintronics. More importantly, room-temperature magnetic semiconducting materials with high Curie temperature is essential for developing next-generation spintronic and quantum computing devices. Here, we develop a theoretical model on the basis of density functional theory calculations and the Ruderman-Kittel-Kasuya-Yoshida theory to predict the thermal stability of two-dimensional magnetic materials. Compared with other rare-earth (dysprosium (Dy) and erbium (Er)) and 3 d (copper (Cu)) impurities, holmium-doped (Ho-doped) single-layer 1H-MoS2 is proposed as promising semiconductor with robust magnetism. The calculations at the level of hybrid HSE06 functional predict a Curie temperature much higher than room temperature. Ho-doped MoS2 sheet possesses fully spin-polarized valence and conduction bands, which is a prerequisite for flexible spintronic applications.

  19. Magnetic properties and structural transitions of fluorite-related rare earth osmates Ln3OsO7 (Ln=Pr, Tb)

    Science.gov (United States)

    Hinatsu, Yukio; Doi, Yoshihiro

    2013-02-01

    Ternary rare-earth osmates Ln3OsO7 (Ln=Pr, Tb) have been prepared. They crystallize in an ortho-rhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr3OsO7 exhibits magnetic transitions at 8 and 73 K, and Tb3OsO7 magnetically orders at 8 and 60 K. The Os moments become one-dimensionally ordered, and when the temperature is furthermore decreased, it provokes the ordering in the Ln3+ sublattice that simultaneously becomes three-dimensionally ordered with the Os sublattice.

  20. Magnetic properties of compounds Ba/sub 3/Fesub(2-x)Msub(x)UO/sub 9/ with M=Y, Sc, In and rare earth

    Energy Technology Data Exchange (ETDEWEB)

    Grenet, J C; Berthon, J [Paris-11 Univ., 91 - Orsay (France); Poix, P [Ecole Nationale Superieure de Chimie, 67 - Strasbourg (France)

    1979-01-01

    The compounds Ba/sub 3/Fesub(2-x)Msub(x)UO/sub 9/ crystallize in the perovskite type system. The magnetic behavior of these compounds is different when M/sup 3 +/ is dia- or paramagnetic. When M/sup 3 +/ is diamagnetic, the magnetic exchange interaction between A and B sublattices is strongly antiferromagnetic, the (UO/sub 6/)/sup 6 -/ clusters having a special effect. When M/sup 3 +/ is paramagnetic, the perovskite compounds have three magnetic sublattices. In the third one are placed rare earth ions M/sup 3 +/; in this case the A-B exchange interactions are antiferromagnetic but the interactions with the third sublattice are probably slightly ferromagnetic. This special feature and the fact that a temperature of compensation is missing differentiate these perovskites from the garnets.

  1. Process for lead removal from rare earth

    International Nuclear Information System (INIS)

    Bollat, A.; Sabot, J.L.

    1987-01-01

    An aqueous solution of rare earth chlorides and lead chlorides, with a chloride concentration of at least 2 moles/liter and a pH between 2 and 4, is extracted by an alkylphosphonic acid ester and rare earth(s) is (are) recovered from the organic phase [fr

  2. Rare earth intermetallic compounds produced by a reduction-diffusion process

    International Nuclear Information System (INIS)

    Cech, R.E.

    1975-01-01

    A reduction-diffusion process is given for producing novel rare earth intermetallic compounds, such as cobalt--rare earth intermetallic compounds, especially compounds useful in preparing permanent magnets. A particulate mixture of rare earth metal halide, cobalt and calcium hydride is heated to effect reduction of the rare earth metal halide and to diffuse the resulting rare earth metal into the cobalt to form the intermetallic compound

  3. Raman scattering of rare earth hexaborides

    International Nuclear Information System (INIS)

    Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru

    2009-01-01

    Raman scattering spectra were measured for the rare-earth hexaborides RB 6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B 6 vibrations were observed in the range 600 - 1400 cm -1 . Anomalous peaks were detected below 200 cm -1 , which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.

  4. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  5. Rare earth industries: Strategies for Malaysia

    International Nuclear Information System (INIS)

    2011-01-01

    Evidently, many reports cite Malaysia as having reasonably substantial amounts of rare earths elements. In fact, based on the rare earths found in the residual tin deposits alone, Malaysia has about 30,000 tonnes. This does not take into account unmapped deposits which experts believe may offer more tonnages of rare earths. Brazil which is reported to have about 48,000 tonnes has announced plans to invest aggressively in the rare earths business. China has on record the largest reserves with about 36 million tonnes. This explains why China has invested heavily in the entire value chain of the rare earths business. Chinas committed investment in rare earths started many years ago when the country's foremost leaders proclaimed the strategic position of rare earths in the world economy. That forecast is now a reality where the rise in the green high-tech economy is seen driving global demand for rare earths in a big way. Malaysia needs to discover and venture into new economic growth areas. This will help fuel the country's drive to achieve a high income status by 2020 as articulated in the New Economic Model (NEM) and the many supporting Economic Transformation Plans that the Government has recently launched. Rare earths may be the new growth area for Malaysia. However, the business opportunities should not just be confined to the mining, extraction and production of rare earths elements alone if Malaysia is to maximise benefits from this industry. The industry's gold mine is in the downstream products. This is also the sector that China wants to expand. Japan which now controls about 50 % of the global market for downstream rare earths-based high-tech components is desperately looking for partners to grow their stake in the business. Malaysia needs to embark on the right strategies in order to build the rare earths industry in the country. What are the strategies? (author)

  6. Alaska's rare earth deposits and resource potential

    Science.gov (United States)

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  7. Separation and Recovery of Iron and Rare Earth from Bayan Obo Tailings by Magnetizing Roasting and (NH42SO4 Activation Roasting

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2017-05-01

    Full Text Available A novel approach for recovery of iron and rare earth elements (REEs from Bayan Obo tailings of Baotou, China, was developed by combining magnetizing roasting, magnetic separation, (NH42SO4 activation roasting, and water leaching. Thermodynamic analysis of carbothermal reduction was conducted to determine the temperature of magnetizing roasting, and it agreed well with the experimental results. The maximum recovery of Fe reached 77.8% at 600 °C, and the grade of total Fe in the magnetic concentrate was 56.3 wt. %. An innovative approach, using water to leach REEs after (NH42SO4 activation roasting, was used to extract REEs from magnetic separation tailings. The main influence factors of the leaching recovery during (NH42SO4 activation roasting, were investigated with the mass ratio of (NH42SO4 to magnetic separation tailings, roasting temperature and roasting time. The leaching recoveries of La, Ce and Nd reached 83.12%, 76.64% and 77.35%, respectively, under the optimized conditions: a mass ratio of 6:1, a roasting temperature of 400 °C and a roasting time of 80 min. Furthermore, the phase composition and reaction process during the (NH42SO4 activation roasting were analyzed with X-ray diffraction (XRD, energy dispersive X-ray spectroscopy & scanning electron microscopy (EDS-SEM and thermogravimetry & differential scanning calorimetry (TG-DSC, and the leaching solution and leaching residue were also characterized.

  8. Thermoelectric transport in rare-earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Ulrike

    2007-07-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce{sub 3}Rh{sub 4}Sn{sub 13} are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu{sub 1-x}Yb{sub x}Rh{sub 2}Si{sub 2} and Ce{sub x}La{sub 1-x}Ni{sub 2}Ge{sub 2} by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  9. Thermoelectric transport in rare-earth compounds

    International Nuclear Information System (INIS)

    Koehler, Ulrike

    2007-01-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce 3 Rh 4 Sn 13 are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu 1-x Yb x Rh 2 Si 2 and Ce x La 1-x Ni 2 Ge 2 by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  10. Resistivity and magnetoresistivity of amorphous rare-earth alloys

    Science.gov (United States)

    Borchi, E.; Poli, M.; De Gennaro, S.

    1982-05-01

    The resistivity and magnetoresistivity of amorphous rare-earth alloys are studied starting from the general approach of Van Peski-Tinbergen and Dekker. The random axial crystal-field and the magnetic correlations between the rare-earth ions are consistently taken into account. The characteristic features of the available experimental data are explained both of the case of random ferromagnetic and antiferromagnetic order.

  11. Chemical analysis of rare earth elements

    International Nuclear Information System (INIS)

    Tsukahara, Ryoichi; Sakoh, Takefumi; Nagai, Iwao

    1994-01-01

    Recently attention has been paid to ICP-AES or ICP-MS, and the reports on the analysis of rare earth elements by utilizing these methods continue to increase. These reports have become to take about 30% of the reports on rare earth analysis, and this is because these methods are highly sensitive to rare earth elements, and also these methods have spread widely. In ICP-AES and ICP-MS, mostly solution samples are measured, therefore, solids must be made into solution. At the time of quantitatively determining the rare earth elements of low concentration, separation and concentration are necessary. Referring to the literatures reported partially in 1990 and from 1991 to 1993, the progress of ICP-AES and ICP-MS is reported. Rare earth oxides and the alloys containing rare earth elements are easily decomposed with acids, but the decomposition of rocks is difficult, and its method is discussed. The separation of the rare earth elements from others in geochemical samples, cation exchange process is frequently utilized. Also solvent extraction process has been studied. For the separation of rare earth elements mutually, chromatography is used. The spectral interference in spectral analysis was studied. The comparison of these methods with other methods is reported. (K.I)

  12. Rare earth oxyhydrides and preparation process

    International Nuclear Information System (INIS)

    Diaz, H.

    1986-01-01

    Rare earth oxyhydrides of formula RE 1-q Th q Ni 5-p M p O x H y are claimed. RE is a rare earth, Th can be replaced by Yt, M is Cu, Mn, Al, Fe, Cr or Co, o O C and the hydrides are oxidized. They are catalysts for various chemical reactions [fr

  13. Theory of Rare-Earth Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A mean-field random alloy theory combined with a simple calculation of the exchange interaction J(c,Q) is shown to quantitatively account for the phase diagrams for alloys of rare-earth metals with Y, Lu, Sc, and other rare-earth metals. A concentration-dependent J(c,Q) explains the empirical 2...

  14. Rare Earth Elements Distribution in Beryl

    International Nuclear Information System (INIS)

    El Gawish, H.K.; Nada, N.; Ghaly, W.A.; Helal, A.I.

    2012-01-01

    Laser ablation method is applied to a double focusing inductively coupled plasma mass spectrometer to determine the rare earth element distribution in some selected beryl samples. White, green and blue beryl samples are selected from the Egyptian eastern desert. Distributions of chondrite- normalized plot for the rare earth element in the selected beryl samples are investigated

  15. Rare Earth Metals: Resourcefulness and Recovery

    Science.gov (United States)

    Wang, Shijie

    2013-10-01

    When we appreciate the digital revolution carried over from the twentieth century with mobile communication and the Internet, and when we enjoy our high-tech lifestyle filled with iDevices, hybrid cars, wind turbines, and solar cells in this new century, we should also appreciate that all of these advanced products depend on rare earth metals to function. Although there are only 136,000 tons of annual worldwide demand, (Cho, Rare Earth Metals, Will We Have Enough?)1 rare earth metals are becoming such hot commodities on international markets, due to not only to their increasing uses, including in most critical military hardware, but also to Chinese growth, which accounts for 95% of global rare earth metal production. Hence, the 2013 technical calendar topic, planned by the TMS/Hydrometallurgy and Electrometallurgy Committee, is particularly relevant, with four articles (including this commentary) contributed to the JOM October Issue discussing rare earth metals' resourcefulness and recovery.

  16. Magnetoelastic interaction in rare earth systems

    International Nuclear Information System (INIS)

    Dohm, V.

    1975-01-01

    A theory of rotationally invariant spin-lattice interactions in rare earth systems is presented. It is shown that rotational invariance to leading order is ensured only if rotational interactions of first and second order in the displacements are included simultaneously in the spin-lattice Hamiltonian. The rotational second-order interactions yield effects which are as large as those of the linear rotational interaction. It is pointed out that a corresponding statement should hold also for pure strain interactions. The phonon Green's function is calculated for the paramagnetic phase of rare earth systems. It is found that in an applied magnetic field the rotational interactions cause measureable changes of the phonon dispersion and the sound velocity even for cubic symmetry. These effects turn out to be of the same order of magnitude as the conventional field-dependent strain effects and are qualitatively different from the latter. The results of our theory are illustrated by the example of SmSb, and quantitative predictions for the transverse sound velocities are given. (orig.) [de

  17. Theoretical and experimental study of high-magnetic-field XMCD spectra at the L2,3 absorption edges of mixed-valence rare-earth compounds

    International Nuclear Information System (INIS)

    Kotani, Akio; Matsuda, Yasuhiro H; Nojiri, Hiroyuki

    2009-01-01

    X-ray magnetic circular dichroism(XMCD) spectra at the L 2,3 edges of mixed-valence rare-earth compounds in high magnetic fields are studied both theoretically and experimentally. The theoretical study is based on a new framework proposed recently by Kotani. The Zeeman splitting of 4f states, the mixed-valence character of 4f states, and the 4f-5d exchange interaction are incorporated into a single impurity Anderson model. New XMCD experiments in high magnetic fields up to 40 T are carried out for the mixed-valence compounds EuNi 2 (Si 0.18 Ge 0.82 ) 2 and YbInCu 4 by using a miniature pulsed magnet, which was developed recently by Matsuda et al. The XMCD data are taken at 5 K by transmission measurements for incident X-rays with ± helicities at BL39XU in SPring-8. After giving a survey on recent developments in the theory of XMCD spectra for mixed-valence Ce and Yb compounds, we calculate the XMCD spectra of YbInCu 4 at the field-induced valence transition around 32 T by applying the recent theoretical framework and by newly introducing at 32 T a discontinuous change in the Yb 4f level and that in the hybridization strength between the Yb 4f and conduction electrons. The calculated results are compared with the experimental ones.

  18. Characterization of the electronic and magnetic structure of multifunctional NaREF{sub 4} (RE = rare earth) core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Lilli; Kuepper, Karsten [Physics Department, University of Osnabrueck (Germany); Rinkel, Thorben; Haase, Markus [Institute of Chemistry, University of Osnabrueck (Germany); Chrobak, Artur [Institute of Physics, University of Silesia (Poland)

    2014-07-01

    Rare earth (RE) based nanoparticles of type NaREF{sub 4} have attracted lot of attention in the last few years due to their upconverting luminescence. Here, we want to concentrate on electronic and magnetic properties of NaREF{sub 4}/NaGdF{sub 4} nanocrystals, since the magnetic behaviour of these fluorescent nanoparticles are of utmost importance from fundamental and applicative point of view as well. Hexagonal β-phase nanocrystals (3-22 nm) were prepared and characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). A detailed study of the electronic structure and magnetic coupling phenomena of the different core-shell nanoparticles is performed using X-ray photoelectron spectroscopy (XPS), magnetometry (SQUID) and X-ray magnetic circular dichroism (XMCD). First SQUID measurements of NaEuF{sub 4}/NaGdF{sub 4} core-shell nanoparticles show butterfly shaped hysteresis loops at low temperature (2 K) in contrast to superparamagnetic behaviour observed for the corresponding ''pure'' NaEuF{sub 4} and NaGdF{sub 4} nanoparticles.

  19. A comparison between rare earth and transition metals working as magnetic materials in an AMR refrigerator in the room temperature range

    International Nuclear Information System (INIS)

    Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.

    2015-01-01

    This paper describes a two-dimensional (2D) multiphysics model of a packed bed regenerator made of magnetocaloric material. The regenerator operates as a refrigerant for a magnetic refrigerator operating at room temperature on the strength of an active magnetic regenerator (AMR) cycle. The model is able to simulate the thermofluidodynamic behavior of the magnetocaloric material and the magnetocaloric effect of the refrigerant. The model has been validated by means of experimental results. Different magnetic materials have been tested with the model as refrigerants: pure gadolinium, second order phase magnetic transition Pr_0_._4_5Sr_0_._3_5MnO_3 and first order phase magnetic transition alloys Gd_5(Si_xGe_1_−_x)_4, LaFe_1_1_._3_8_4Mn_0_._3_5_6Si_1_._2_6H_1_._5_2, LaFe_1_1_._0_5Co_0_._9_4Si_1_._1_0 and MnFeP_0_._4_5As_0_._5_5. The tests were performed with fixed fluid flow rate (5 l/min), AMR cycle frequency (1.25 Hz) and cold heat exchanger temperature (288 K) while the hot heat exchanger temperature was varied in the range 295–302 K. The results, generated for a magnetic induction which varies from 0 to 1.5 T, are presented in terms of temperature span, refrigeration power and coefficient of performance. From a global point of view (performances and cost), the most promising materials are LaFeSi compounds which are really cheaper than rare earth compounds and they give a performance sufficiently higher than gadolinium. - Graphical abstract: • Active Magnetic Refrigeration (AMR) cycle; • First Order Transition magnetic materials (FOMT); • Second Order Transition magnetic materials (SOMT). - Highlights: • Comparison between different magnetic materials. • 2D model of an Active Magnetic Regenerative refrigeration cycle. • Validation of the model with experimental data. • Gd_5(Si_xGe_1_−_x)_4 is the most performant magnetic material. • The most promising are LaFeSi compounds which are cheaper and they give high performances.

  20. The RMgSn{sub 2} series of compounds (R = rare earth metal). Synthesis, crystal structure, and magnetic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Solokha, Pavlo; Minetti, Riccardo; De Negri, Serena; Saccone, Adriana [Dipartimento di Chimica e Chimica Industriale, Universita di Genova (Italy); Pereira, Laura Cristina J.; Goncalves, Antonio P. [Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, EN 10, Universidade de Lisboa, Bobadela (Portugal)

    2017-06-30

    The novel isostructural series of phases RMgSn{sub 2} (R = Y, La-Nd, Sm, Gd-Tm, Lu) is presented. They were prepared by direct synthesis in an induction furnace and subsequently annealed at 500 C. Their crystal structures were determined through single-crystal X-ray diffraction analysis of the Ce representative [I anti 42m, tI32-LaMgSn{sub 2}, Z = 8, a = 0.82863(3) nm, c = 1.23129(5) nm] and confirmed by powder X-ray diffraction analysis of the other members of the series. Rietveld refinements were also performed on the homologues with R = Pr, Tm, and Y. The title phases show a unique space distribution of atoms, characterized by the presence of a Sn-Sn dumbbell distanced at around 0.29 nm. Their structures are related to those of a few binary AeTt{sub 3} (Ae = alkaline earth; Tt = Si, Ge; I4/mmm, tI32-YbSi{sub 3}) compounds that are stable at high pressure, characterized by a more complex 3D covalently bonded Tt network. Compounds CeMgSn{sub 2} and TbMgSn{sub 2} were magnetically characterized; they show paramagnetic behavior with the presence of ferromagnetic interactions, more pronounced in the case of TbMgSn{sub 2}, as suggested by the Curie-Weiss temperatures, determined in the high-temperature range, of 0.96 and 27.6 K for CeMgSn{sub 2} and TbMgSn{sub 2}, respectively. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Crystalline and amorphous rare-earth metallic compounds

    International Nuclear Information System (INIS)

    Burzo, E.

    1975-01-01

    During the last years the study of magnetic behaviour of rare-earth (or yttrium) compounds with cobalt and iron has growth of interest. This interest of justified by a large area of experimental and theoretical problems coming into being in the study of some rare-earth materials as well as in their technical applications. In the last three years a great number of new rare earth materials were studied and also new models explaining the magnetic behaviour of these systems have been used. In this paper we refer especially to some typical systems in order to analyse the magnetic behaviour of iron and cobalt and also the part played by the magnetic interactions in the values of the cobalt or iron moments. The model used will be generally the molecular field model. In the second chapter we present comparatively the structure of crystalline and amorphous compounds for further correlation with the magnetic properties. In chapter III we analyse the magnetic interactions in some crystalline and amorphous rare-earth alloys. Finally, we exemplify the ways in which we ensure better requried characteristics by the technical utilizations of these materials. These have in view the modifications of the magnetic interactions and are closely related with the analysis made in chapter III

  2. High magnetic field study of HoBaCo2O5.5 and GdBaCo2O5.5 layered cobaltites: the effect of rare-earth size

    International Nuclear Information System (INIS)

    Frontera, C.; Respaud, M.; Garcia-Munoz, J.L.; Llobet, A.; Carrillo, A.E.; Caneiro, A.; Broto, J.M.

    2004-01-01

    By means of high-pulsed magnetic field up to μ 0 H=32 T we have studied HoBaCo 2 O 5+δ (δ=0.52(1)). The high-field M(H) integrated curves evidence a magnetic field-induced phase transition visible from about T=75 to 275 K. The obtained results are compared with the field-induced transition found for GdBaCo 2 O 5+δ (with δ=0.54(2)). The jump of the magnetization at the field-induced transition is independent of the rare earth at this level of oxygen content. In contrast, we have observed larger values of the critical field, and that the transition persists up to higher temperature, when reducing the rare-earth size. This indicates that the low-temperature antiferromagnetic phase becomes more stable when the size of the rare earth is reduced

  3. Metal nitride cluster as a template to tune the electronic and magnetic properties of rare-earth metal containing endohedral fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang

    2013-10-16

    Rare-earth metal containing endohedral fullerenes have attracted much attention due to the feasibility of encaging metal atom, atoms or cluster inside of carbon cages. By switching the metal atom or cluster entrapped inside of the carbon cage the physical and chemical properties of the fullerene compounds can be tuned. The understanding of magnetic and electrochemical properties of endohedral fullerenes plays an essential role in fundamental scientific researches and potential applications in materials science. In this thesis, synthesizing novel rare-earth metal containing endohedral fullerene structures, studying the properties of these isolated endohedral fullerenes and the strategies of tuning the electronic and magnetic properties of endohedral fullerenes were introduced. The DC-arc discharging synthesis of different lanthanide metal-based (Ho, Ce and Pr) mixed metal nitride clusterfullerenes was achieved. Those rare-earth metal containing endohedral fullerenes were isolated by multi-step HPLC. The isolated samples were characterized by spectroscopic techniques included UV-vis-NIR, FTIR, Raman, LDI-TOF mass spectrometry, NMR and electrochemistry. The Ho-based mixed metal nitride clusterfullerenes Ho{sub x}M{sub 3-x}N rate at C{sub 80} (M= Sc, Lu, Y; x=1, 2) were synthesized by ''reactive gas atmosphere'' method or ''selective organic solid'' route. The isolated samples were characterized by LDI-TOF mass spectrometry, UV-vis-NIR, FTIR, Raman and NMR spectroscopy. The {sup 13}C NMR spectroscopic studies demonstrated exceptional NMR behaviors that resulted from switching the second metal inside of the mixed metal nitride cluster Ho{sub x}M{sub 3-x}N from Sc to Lu and further to Y. The LnSc{sub 2}N rate at C{sub 80} (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) MMNCFs were characterized by {sup 13}C and {sup 45}Sc NMR study respectively. According to Bleaney's theory and Reilley method, the separation of δ{sup PC} and δ{sup con

  4. Metal nitride cluster as a template to tune the electronic and magnetic properties of rare-earth metal containing endohedral fullerenes

    International Nuclear Information System (INIS)

    Zhang, Yang

    2013-01-01

    Rare-earth metal containing endohedral fullerenes have attracted much attention due to the feasibility of encaging metal atom, atoms or cluster inside of carbon cages. By switching the metal atom or cluster entrapped inside of the carbon cage the physical and chemical properties of the fullerene compounds can be tuned. The understanding of magnetic and electrochemical properties of endohedral fullerenes plays an essential role in fundamental scientific researches and potential applications in materials science. In this thesis, synthesizing novel rare-earth metal containing endohedral fullerene structures, studying the properties of these isolated endohedral fullerenes and the strategies of tuning the electronic and magnetic properties of endohedral fullerenes were introduced. The DC-arc discharging synthesis of different lanthanide metal-based (Ho, Ce and Pr) mixed metal nitride clusterfullerenes was achieved. Those rare-earth metal containing endohedral fullerenes were isolated by multi-step HPLC. The isolated samples were characterized by spectroscopic techniques included UV-vis-NIR, FTIR, Raman, LDI-TOF mass spectrometry, NMR and electrochemistry. The Ho-based mixed metal nitride clusterfullerenes Ho x M 3-x N rate at C 80 (M= Sc, Lu, Y; x=1, 2) were synthesized by ''reactive gas atmosphere'' method or ''selective organic solid'' route. The isolated samples were characterized by LDI-TOF mass spectrometry, UV-vis-NIR, FTIR, Raman and NMR spectroscopy. The 13 C NMR spectroscopic studies demonstrated exceptional NMR behaviors that resulted from switching the second metal inside of the mixed metal nitride cluster Ho x M 3-x N from Sc to Lu and further to Y. The LnSc 2 N rate at C 80 (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) MMNCFs were characterized by 13 C and 45 Sc NMR study respectively. According to Bleaney's theory and Reilley method, the separation of δ PC and δ con from δ para was achieved by the primary 13 C and 45 Sc NMR analysis of LnSc 2 N rate at C 80 (I). The

  5. Thermochemistry of rare-earth trifluorides

    International Nuclear Information System (INIS)

    Kim, K.Y.; Johnson, C.E.

    1981-01-01

    Using the most recent crystallographic data, the Born-Lande equation was employed to calculate lattice energies of the rare-earth trifluorides. The excellent agreement ( 0 sub(f)(MX 3 ,c,298.15K) can be estimated. The magnitude of the monotonic change of ΔH 0 sub(f)(MX 3 ) for the rare-earth trihalides series (14 4f electrons) is comparable to the energy change between Sc and Ti in which only one 3d electron is added. This energy change is consistent with the chemical evidence that the electrons in the f-orbitals of rare earths contribute negligibly to the bonding. (author)

  6. Recovery of rare earths from red mud

    International Nuclear Information System (INIS)

    Bautista, R.G.

    1992-01-01

    The prospect for the recovery of rare earths from red mud, the bauxite tailings from the production of alumina is examined. The Jamaican red mud by far has the higher trace concentrations of lanthanum, cerium, neodymium, and yttrium. Scandium is also present. The dissolution of the rare earth is a major extraction problem because of the large volume of other materials. The recovery processes that have been proposed include the production of co-products such as iron, alumina, and titanium concentrates, with the rare earths going with the titanium. In this paper a critical examination of the possible processes are presented with the recommended research projects to be carried out

  7. X-Ray diffraction on rare earth-3d Laves phase compound ErCo2 in magnetic field

    International Nuclear Information System (INIS)

    Yagasaki, Katsuma; Notsu, Shiko; Takaesu, Yoshinao; Nakama, Takao; Sakai, Eijiro; Koyama, Keiichi; Watanabe, Kazuo; Burkov, Alexander T.

    2006-01-01

    X-Ray powder diffraction method is used to investigate the effect of magnetic ordering and external magnetic field on crystal structure of Laves phase intermetallic compound ErCo 2 . The diffraction patterns were recorded at temperatures from 300K down to 8.5K in magnetic field up to 5T. Distortion of the room-temperature cubic structure was found in magnetically ordered state below 32K. The symmetry at low temperature is rhombohedral in agreement with literature results, or lower symmetry than it. However the symmetry of the unit cell increases to cubic in external magnetic field of 5T

  8. Magnetic features in REMeO3 perovskites and their solid solutions (RE=rare-earth, Me=Mn, Cr)

    International Nuclear Information System (INIS)

    Moure, Carlos; Peña, Octavio

    2013-01-01

    Magnetic hysteresis displacement, thermal inversion of the magnetization, hysteresis loops jumps and crossing branches of hysteresis loops at low magnetic fields are reviewed. Most of these phenomena have been observed in magnetic oxide systems, particularly in perovskite-type manganites and chromites. The paper takes into account structural considerations and different geometrical parameters, such as volume or thin layers. - Highlights: ►Review of both spin reversal phenomena thermal and displacive. ► Study of the crossing branches of the magnetic hysteresis loops. ► Review of the behavior of some stepped hysteresis loops

  9. Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling.

    Science.gov (United States)

    Rademaker, Jelle H; Kleijn, René; Yang, Yongxiang

    2013-09-17

    End-of-life recycling is promoted by OECD countries as a promising strategy in the current global supply crisis surrounding rare earth elements (REEs) so that dependence on China, the dominant supplier, can be decreased. So far the feasibility and potential yield of REE recycling has not been systematically evaluated. This paper estimates the annual waste flows of neodymium and dysprosium from permanent magnets, the main deployment of these critical REEs, during the 2011-2030 period. The estimates focus on three key permanent magnet waste flows: wind turbines, hybrid and electric vehicles, and hard disk drives (HDDs) in personal computers (PCs). This is a good indication of the end-of-life recycling of neodymium and dysprosium maximum potential yield. Results show that for some time to come, waste flows from permanent magnets will remain small relative to the rapidly growing global REE demand. Policymakers therefore need to be aware that during the next decade recycling is unlikely to substantially contribute to global REE supply security. In the long term, waste flows will increase sharply and will meet a substantial part of the total demand for these metals. Future REE recycling efforts should, therefore, focus on the development of recycling technology and infrastructure.

  10. State of rare earth impurities in gallium and indium antimonides

    International Nuclear Information System (INIS)

    Evgen'ev, S.B.; Kuz'micheva, G.M.

    1990-01-01

    State of rare earth impurities in indium and gallium antimonides was studied. Results of measuring density and lattice parameter of samples in GaSb-rare earth and InSb-rare earth systems are presented. It is shown that during rare earth dissolution in indium and gallium antimonides rare earth atoms occupy interstitial positions or, at least, are displaced from lattice points

  11. Rare earths: critical elements for various applications and challenges in their separation

    International Nuclear Information System (INIS)

    Singh, D.K.; Chakravartty, J.K.

    2015-01-01

    High purity rare earths oxides, metal and alloys find wide applications in high tech area such as nuclear energy, permanent magnets, materials for storing hydrogen, phosphors, laser, etc. Rare earths consists a group of 15 elements from La to Lu in the periodic table and it also includes Sc and Y. Due to similar chemical nature owing to common oxidation state of +3, rare earths are very difficult to separate from each other. They have very low separation factors with acidic extractants like D2EHPA and EHEHPA and hence require large number of stages in various cascade of extraction process. Monazite (a source of rare earths, thorium and uranium) is processed at IREL to separate rare earths from thorium and uranium. The rare earths are fractionated into three groups namely light rare earths (LRE), middle rare earths (MRE) and heavy rare earths (HRE) by solvent extraction method employing EHEHPA as extractant

  12. Thermodynamics of rare earths in steelmaking

    International Nuclear Information System (INIS)

    Vahed, A.; Kay, D.A.R.

    1976-01-01

    The standard free energies of formation of the oxides, sulfides and oxysulfides of cerium and lanthanum under steelmaking conditions have been calculated and used to predict the behavior of rare earths in steelmaking. Deoxidation and desulfurization constants, expressed in terms of Henrian activities, have been used to construct a precipitation diagram which indicates the sequence of rare earth inclusion formation. An enrichment of lanthanum in (RE)-oxysulfide and cerium in (RE)-sulfide is predicted. It is also predicted that rare earths should be able to reduce the soluble oxygen and sulfur contents of liquid steel well below the contents presently found in most industrial and laboratory practices. A simple method of calculating steelmaking additions for complete rare earth control of inclusion composition is presented

  13. Obtained of magnetic alloys at base of rare earths-transition metals (4f/3d) by calciothermal reduction

    International Nuclear Information System (INIS)

    Paschoal, J.O.A.; Lima, L.F.C.P. de; Faria Junior, R.N.; Monzani, D.; Takiishi, H.; Caldas, S.H.R.; Gulherme, E.G.; Carvalho, P.A.; Acevedo, M.T.

    1989-01-01

    The phases of preparation of powder of the alloys Sm-Co and Nd-Fe-B are studied. These phases were developed and optimized like part of the permanent magnet program of the Energetic and Nuclear Research Institute (IPEN), in Brazil, that has the objective of obtain magnets of high product of energy (BxH). (V.R.B.)

  14. Development of nanostructured magnetic materials based on high-purity rare-earth metals and study of their fundamental characteristics

    Czech Academy of Sciences Publication Activity Database

    Pelevin, I.A.; Tereshina, I. S.; Burkhanov, G.S.; Dobatkin, S.V.; Kaminskaya, T.; Karpenkov, D.; Zaleski, A.; Tereshina, Evgeniya

    2014-01-01

    Roč. 56, č. 9 (2014), s. 1778-1784 ISSN 1063-7834 Institutional support: RVO:68378271 Keywords : permanent-magnets * compound * Fe * ND Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.821, year: 2014

  15. 12 Ministries Control Rare Earth Exports

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>"It is very natural to reserve rare earth as a strategic resource.Many countries do this,including China."On April 8,Sun Lihui,Vice Director of Metal Section of Chemicals Import & Export Commerce Chamber of China Minmetals Corporation told a reporter that as early as 2006,China has launched a strategic plan for rare earth,"but it was interrupted by the subsequent financial crisis."

  16. 2004 Top 10 Chinese Rare Earth Events

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1. Management to the Investment in Rare Earth IndustryConfirmedIn July 2004, "Decision on the Reform in Investment System" was formally publicized by the State Council of the People's Republic of China. The fifth item in the Decision stipulates that ore exploitation, smelting & separation and rare earth deep-processed projects with total investment over RMB¥100 million should be approved by the investment governing department of the State Council, and that other

  17. Mammography with rare earth intensifying screens

    International Nuclear Information System (INIS)

    Maurer, H.J.; Goos, F.

    1987-01-01

    Screens basing on rare earth phosphors with suitable films green or blue sensitive may be used in mammography with grids without diagnostic losses. Highest definition will be obtained with medium densities on film. High-speed screens may reduce dose, but definition is poor. Best compromise between speed and high definition may be reached with relative low thickness of phosphor layers. A system of high definition films (Medichrome) and special rare earth screens give best results. (orig.) [de

  18. Rare earths refining by vacuum sublimation method

    International Nuclear Information System (INIS)

    Rytus, N.N.

    1983-01-01

    The process of rare earths refining by the sUblimation; method in high and superhigh oil-free vacuum, is investigated. The method is effective for rare earths obtaining and permits to prepare metal samples with a high value of electric resistance ratio γ=RsUb(298 K)/Rsub(4.2 K). The estimation of general purity is performed for Sm, Eu, Yb, Tm, Dy, Ho, Er and Se

  19. Influence of processing on structure property correlations in τ-MnAl rare-earth free permanent magnet material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nidhi; Mudgil, Varun; Anand, Kanika; Srivastava, A.K.; Kotnala, R.K.; Dhar, Ajay, E-mail: adhar@nplindia.org

    2015-06-05

    Highlights: • The reported magnetic properties of τ-MnAl show a significant scatter in their data. • We report the synthesis of τ-MnAl employing different processing routes. • The observed magnetic properties were correlated with the synthesis route. • The resulting microstructure has been correlated with the magnetic properties. - Abstract: In order to understand the genesis of the magnetic τ-phase of MnAl alloy, which due to its multiphase nature is generally difficult to synthesize as a single-phase, we have synthesized it employing three different materials processing routes, namely, arc melting, mechanical alloying, and a combination of these two. Structural and microstructural characterizations employing X-ray diffraction and high resolution transmission electron microscopy demonstrate that irrespective of the material processing route employed, the formation of τ-MnAl phase was always accompanied by other non-magnetic phases, e.g., β-MnAl and γ-MnAl. However, the relative fraction of these phases was found to be dependent on the materials processing route and hence on the grain size of the parent phase. The arc melted alloy had the largest grain size and the highest fraction of the τ-MnAl phase, while the alloy prepared by mechanical alloying showed the smallest grain size and the lowest fraction of the magnetic phase. The largest value of Curie temperature, magnetic moment, coercivity and remanence were observed in the sample prepared by a combination of arc melting and mechanical alloying. Our results suggest that in addition to the τ-MnAl phase fraction the magnetic properties could be related to the density of structural defects.

  20. Influence of processing on structure property correlations in τ-MnAl rare-earth free permanent magnet material

    International Nuclear Information System (INIS)

    Singh, Nidhi; Mudgil, Varun; Anand, Kanika; Srivastava, A.K.; Kotnala, R.K.; Dhar, Ajay

    2015-01-01

    Highlights: • The reported magnetic properties of τ-MnAl show a significant scatter in their data. • We report the synthesis of τ-MnAl employing different processing routes. • The observed magnetic properties were correlated with the synthesis route. • The resulting microstructure has been correlated with the magnetic properties. - Abstract: In order to understand the genesis of the magnetic τ-phase of MnAl alloy, which due to its multiphase nature is generally difficult to synthesize as a single-phase, we have synthesized it employing three different materials processing routes, namely, arc melting, mechanical alloying, and a combination of these two. Structural and microstructural characterizations employing X-ray diffraction and high resolution transmission electron microscopy demonstrate that irrespective of the material processing route employed, the formation of τ-MnAl phase was always accompanied by other non-magnetic phases, e.g., β-MnAl and γ-MnAl. However, the relative fraction of these phases was found to be dependent on the materials processing route and hence on the grain size of the parent phase. The arc melted alloy had the largest grain size and the highest fraction of the τ-MnAl phase, while the alloy prepared by mechanical alloying showed the smallest grain size and the lowest fraction of the magnetic phase. The largest value of Curie temperature, magnetic moment, coercivity and remanence were observed in the sample prepared by a combination of arc melting and mechanical alloying. Our results suggest that in addition to the τ-MnAl phase fraction the magnetic properties could be related to the density of structural defects

  1. Study of the hyperfine magnetic field acting on Ce probes substituting for the rare earth and the magnetic ordering in intermetallic compounds RAg (R=rare earth) by first principles calculations; Estudo do campo hiperfino magnetico na sonda de Ce colocada nos compostos intermetalicos do tipo RAg (R=terra rara) e do ordenamento magnetico desses compostos usando calculos de primeiros principios

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luciano Fabricio Dias

    2006-07-01

    In this work the magnetic hyperfine field acting on Ce atoms substituting the rare-earths in R Ag compounds (R = Gd e Nd) was studied by means of first-principles electronic structure calculations. The employed method was the Augmented Plane Waves plus local orbitals (APW+lo), embodied in the WIEN2k program, within the framework of the Density Functional Theory (DFT) and with the Generalized Gradient Approximation (GGA) for the exchange and correlation potential. The super-cell approach was utilized in order to simulate for the Ce atoms acting as impurities in the R Ag matrix. In order to improve for correlation effects within the 4f shells, a Hubbard term was added to the DFT Hamiltonian, within a procedure called GGA+U. It was found that the magnetic hyperfine field (MHF) generated by the Ce 4f electron is the main component of the total MHF and that the Ce 4f ground state level is probably a combination of the m{sub l} = -2 and m{sub l} = -1 sub-levels. In addition, the ground-state magnetic structure was determined for Ho Ag and Nd Ag by observing the behavior of the total energy as a function of the lattice volume for several possible magnetic ordering in these compounds, namely, ferromagnetic, and the (0,0,{pi}), ({pi},{pi},0) and (({pi},{pi},{pi}) types of anti-ferromagnetic ordering of rare-earth atoms. It was found that the ground-state magnetic structure is anti-ferromagnetic of type ({pi},{pi},0) for both, the Ho Ag and Nd Ag compounds. The energy difference of the ferromagnetic and antiferromagnetic ordering is very small in the case of the Nd Ag compound. (author)

  2. Effect of rapid quenching on the magnetism and magnetocaloric effect of equiatomic rare earth intermetallic compounds RNi (R = Gd, Tb and Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Rajivgandhi, R. [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Arout Chelvane, J. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Quezado, S.; Malik, S.K. [Departamento de F’ısica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59072-970 (Brazil); Nirmala, R., E-mail: nirmala@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2017-07-01

    Highlights: • Melt-spinning yields microcrystalline RNi (R = Gd, Tb and Ho) samples with texture. • The texture-induced anisotropy affects magnetic and magnetocaloric properties. • Melt-spinning helps one engineer magnetocaloric effect in rare-earth compounds. - Abstract: Magnetocaloric effect (MCE) in RNi (where R = Gd, Tb and Ho) compounds has been studied in their arc-melted and melt-spun forms. The compound GdNi has the orthorhombic CrB-type structure (Space group Cmcm, No. 63) and the compound HoNi has the orthorhombic FeB-type structure (Space group Pnma, No. 62) at room temperature regardless of their synthesis condition. However, arc-melted TbNi orders in a monoclinic structure (Space group P2{sub 1}/m, No. 11) and when it is rapidly quenched to a melt-spun form, it crystallizes in an orthorhombic structure (Space group Pnma, No. 62). The arc-melted GdNi, TbNi and HoNi compounds order ferromagnetically at ∼69 K, ∼67 K and ∼36 K (T{sub C}) respectively. While the melt-spun GdNi shows about 6 K increase in T{sub C}, the ordering temperature of TbNi remains nearly the same in both arc-melted and melt-spun forms. In contrast, a reduction in T{sub C} by about 8 K is observed in melt-spun HoNi, when compared to its arc-melted counterpart. Isothermal magnetic entropy change, ∆S{sub m}, calculated from the field dependent magnetization data indicates an enhanced relative cooling power (RCP) for melt-spun GdNi for field changes of 20 kOe and 50 kOe. A lowered RCP value is observed in melt-spun TbNi and HoNi. These changes could have resulted from the competing shape anisotropy and the granular microstructure induced by the melt-spinning process. Tailoring the MCE of rare earth intermetallic compounds by suitably controlled synthesis techniques is certainly one of the directions to go forward in the search of giant magnetocaloric materials.

  3. Sandwich-type mixed tetrapyrrole rare-earth triple-decker compounds. Effect of the coordination geometry on the single-molecule-magnet nature.

    Science.gov (United States)

    Kan, Jinglan; Wang, Hailong; Sun, Wei; Cao, Wei; Tao, Jun; Jiang, Jianzhuang

    2013-08-05

    Employment of the raise-by-one step method starting from M(TClPP)(acac) (acac = monoanion of acetylacetone) and [Pc(OPh)8]M'[Pc(OPh)8] led to the isolation and free modulation of the two rare-earth ions in the series of four mixed tetrapyrrole dysprosium sandwich complexes {(TClPP)M[Pc(OPh)8]M'[Pc(OPh)8]} [1-4; TClPP = dianion of meso-tetrakis(4-chlorophenyl)porphyrin; Pc(OPh)8 = dianion of 2,3,9,10,16,17,23,24-octa(phenoxyl)phthalocyanine; M-M' = Dy-Dy, Y-Dy, Dy-Y, and Y-Y]. Single-crystal X-ray diffraction analysis reveals different octacoordination geometries for the two metal ions in terms of the twist angle (defined as the rotation angle of one coordination square away from the eclipsed conformation with the other) between the two neighboring tetrapyrrole rings for the three dysprosium-containing isostructural triple-decker compounds, with the metal ion locating between an inner phthalocyanine ligand and an outer porphyrin ligand with a twist angle of 9.64-9.90° and the one between two phthalocyanine ligands of 25.12-25.30°. Systematic and comparative studies over the magnetic properties reveal magnetic-field-induced single-molecule magnet (SMM), SMM, and non-SMM nature for 1-3, respectively, indicating the dominant effect of the coordination geometry of the spin carrier, instead of the f-f interaction, on the magnetic properties. The present result will be helpful for the future design and synthesis of tetrapyrrole lanthanide SMMs with sandwich molecular structures.

  4. Handbook on the physics and chemistry of rare earths

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Eyring, L.

    1982-01-01

    This handbook is a six-volume work which covers the entire rare earth field in an integrated manner. Each chapter is a comprehensive, up-to-date, critical review of a particular segment of the field. The first volume is devoted to the rare earth metals, the second to rare earth alloys and intermetallics, and the third and fourth volumes to the non-metallic rare earth materials, including solutions, complexes and bioinorganic substances, in addition to solid inorganic compounds. The electronic structure of these unique elements is the primary basis of understanding their physical, metallurgical and chemical natures. The interrelationship of the 4f and valence electrons and the observed optical, electrical, magnetic, crystallographic, elastic, thermal, mechanical, chemical, geochemical and biological behaviors is brought forth time and again throughout the chapters. Also discussed are the preparative, separation and solution chemistry of the elements and their compounds and the various chemical and physical analytical methods for determining the rare earths in various materials and impurities in a rare earth matrix. Vol. 5 is a update complement of the previous volumes. Volume 6 is concerned with ternary and higher order materials. (Auth.)

  5. An Overview of Rare Earth Science and Technology

    Science.gov (United States)

    Gschneidner, Karl, Jr.

    2012-02-01

    Currently rare earth science and technology is robust: this includes all the major branches of science -- biochemistry, chemistry, materials and physics. There are, however, currently some anomalies and distortions especially in the technology and applications sector of the rare earth field, which is caused by the dominance of China on the sales of rare earths and rare earth containing products. For the past 5 to 10 years ˜95% of rare earths utilized in commerce came from China. Although Chinese actions have lead to sudden and large price spikes and export embargoes, the rare earths are still available but at a higher cost. The start up of production in 2011 at mines in the USA and Australia will alleviate this situation in about two years. Basic and applied research on the condensed matter physics/materials science has hardly been impacted by these events, but new research opportunities are opening up especially with regard to the USA's military and energy security. Magnets seems to be the hottest topic, but research on battery materials, phosphors and catalysts are also (or should be) strongly considered.

  6. Extraction studies on rare earths using dinonyl phenyl phosphoric acid

    International Nuclear Information System (INIS)

    Anitha, M.; Singh, D.K.; Kotekar, M.K.; Vijayalakshmi, R.; Singh, H.

    2011-01-01

    Rare earths are widely used in phosphor materials, magnetic substances, alloys, catalyst, lasers, superconductors, solid oxide fuel cells and in nuclear applications. The high value of these elements depends on their effective separation into high purity compounds. The separation into individual rare earths is very difficult to achieve, due to the very low separation factors between two adjacent rare earths arising due to similar chemical properties. Taking the advantage of variation in basicity, the separation is generally accomplished by solvent extraction or ion exchange. There are several references on the separation of rare earth in different media employing various types of extractants such as 2-ethylhexyl 2-ethyhexylphosphonic acid (EHEHPA) and di-2-ethyl hexyl phosphoric acid (D2EHPA) which have been widely used for the separation and purification of rare earths. Dinonyl phenyl phosphoric acid (DNPPA) is an organo phosphorus extractant (pKa = 2.54) and is an aromatic analogue of D2EHPA, which extracts metal ion by cation exchange mechanism. DNPPA was explored to recover rare earths from phosphate media such as wet process phosphoric acid and merchant grade acid. However, there is no information available in literature on DNPPA for RE extraction from chloride medium. Therefore, an attempt has been made in the present study to investigate the feasibility of using DNPPA for extraction of La(III), Dy(III) and Y(III) from chloride medium

  7. Rare earth mobility in hydrothermal ore-forming systems

    International Nuclear Information System (INIS)

    Cornell, D.H.; Schade, J.; Scheepers, R.; Watkeys, M.K.

    1988-01-01

    Rocks and ores which form by magmatic processes display a range of chondrite-normalised rare earth profiles. One REE (rare earth elements) profile feature which seems unrelated to magmatic processes is the birdwing profile, in which both heavy and light rare earths are enriched relative to the middle rare earths. Birdwing rare earth profiles are an easily identified geochemical anomaly. It is proposed that rare earth geochemistry could be applied in geochemical prospecting for ore formed by hydrothermal processes. 5 figs

  8. Rare earth elements. A new approach to the nexus of supply, demand and use. Exemplified along the use of neodymium in permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zepf, Volker

    2013-02-01

    This thesis deals with Rare Earth Elements (REE), especially with neodymium used in permanent magnets, from a very scientific basis by providing basic research data. Despite the fact that REE are newsworthy and very important elements for a considerable bandwidth of todays' technologies, accompanied by the monopolistic supply-situation and Chinese politics, there are inexplicable data discrepancies about REE which have been recognized frequently but usually have not been addressed accordingly. So this analysis started with the hypothesis that the four application areas, namely computer hard disk drives (HDD), mobile phones, wind turbines and e-mobility (automotive traction), account for about 80% of the global annual neodymium-demand. The research methodology was a laboratory analysis of the composition of used magnets for HDDs and mobile phones and a literature and official report analysis of wind turbine and automotive neodymium use. The result was amazing and the hypothesis had to be withdrawn as these four areas only account for about 20% of neodymium use. This result raises some questions concerning actual use and thus potential recycling options.

  9. Rare earth elements. A new approach to the nexus of supply, demand and use. Exemplified along the use of neodymium in permanent magnets

    International Nuclear Information System (INIS)

    Zepf, Volker

    2013-01-01

    This thesis deals with Rare Earth Elements (REE), especially with neodymium used in permanent magnets, from a very scientific basis by providing basic research data. Despite the fact that REE are newsworthy and very important elements for a considerable bandwidth of todays' technologies, accompanied by the monopolistic supply-situation and Chinese politics, there are inexplicable data discrepancies about REE which have been recognized frequently but usually have not been addressed accordingly. So this analysis started with the hypothesis that the four application areas, namely computer hard disk drives (HDD), mobile phones, wind turbines and e-mobility (automotive traction), account for about 80% of the global annual neodymium-demand. The research methodology was a laboratory analysis of the composition of used magnets for HDDs and mobile phones and a literature and official report analysis of wind turbine and automotive neodymium use. The result was amazing and the hypothesis had to be withdrawn as these four areas only account for about 20% of neodymium use. This result raises some questions concerning actual use and thus potential recycling options.

  10. The cobalt magnetic state in RCo{sub 3} intermetallics with light rare earth studied by thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Gaidukova, I.Yu. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Granovsky, S.A. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Markosyan, A.S. [State Center for Condensed Matter Physics, M. Zakharova Street, 6/3, 155569 Moscow (Russian Federation)]. E-mail: marko@plms.phys.msu.ru; Petropavlovsky, A.B. [Voronezh Military Institute of Aircraft Engineering, 394064 Voronezh (Russian Federation); Rodimin, V.E. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Uryvaev, V.V. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation)

    2006-05-15

    The temperature variation of the lattice parameters of RCo{sub 3} intermetallics with light R=Pr, Nd and Sm was studied by X-ray diffraction in the temperature range 10-550 K. From the magnitude of the magnetovolume effect arising below T {sub C} it has been concluded that in NdCo{sub 3} a temperature-induced change of the Co magnetic state from a weak to a strong ferromagnetic one occurs, whereas in PrCo{sub 3} and SmCo{sub 3} the Co sublattice remains in a weak magnetic state down to at least 10 K. In SmCo{sub 3} an orthorhombic distortion of the rhombohedral crystal lattice was observed below 125 K. This is accounted for a spin reorientation of the spontaneous magnetization vector from the c-axis (high temperatures) toward the basal plane (low temperatures)

  11. Structural disorder in two-dimensional random magnets: Very thin films of rare earths and transition metals

    Science.gov (United States)

    Ruiz, J. M.; Zhang, X. X.; Iglesias, O.; García, A.; Tejada, J.

    1993-05-01

    The low-temperature isothermal magnetization curves, M(H), of SmCo4 and Fe3Tb thin films are studied according to the two-dimensional correlated spin-glass model of Chudnovsky. We have calculated the magnetization law in approach to saturation and shown that the M(H) data fit well the theory at high and low fields. In our fit procedure we have used three different correlation functions. The Gaussian decay correlation function fits well the experimental data for both samples.

  12. Magnetic properties of Fe-rich rare-earth intermetallic compounds with a ThMn12 structure

    International Nuclear Information System (INIS)

    Ohashi, K.; Tawara, Y.; Osugi, R.; Shimao, M.

    1988-01-01

    Sm(Fe/sub 1-//sub x/M/sub x/) 12 ternary compounds based on the tetragonal ThMn 12 structure where M is Ti, Si, V, Cr, and Mo were investigated. M atoms have a preference for site occupation. Ti atoms occupy the 8i or 8j site and Cr atoms occupy the 8i site. Curie temperatures on Sm(M,Fe) 12 compounds are around 590 K except for the SmMo 2 Fe 10 compound (T/sub c/ = 483 K). The SmTiFe 11 and SmSi 2 Fe 10 compounds have a high saturation magnetization and magnetic anisotropy

  13. Rare metal and rare earth pegmatites of Western India

    International Nuclear Information System (INIS)

    Maithani, P.B.; Nagar, R.K.

    1999-01-01

    Rajasthan Mica Belt in western India is one of the three major mica-producing Proterozoic pegmatite belts of India, the others being in Bihar and Andhra Pradesh. The pegmatites of these mica belts, in general, are associated with the rare metal (RM) and rare earth element (REE)-bearing minerals like columbite-tantalite, beryl, lepidolite and other multiple oxides. RM-REE pegmatites of Gujarat are devoid of commercially workable mica. These pegmatites are geologically characterised in this paper, based on their association with granite plutons geochemistry, and RM and REE potential. In addition to RM and RE-bearing pegmatites, granites of the Umedpur area, Gujarat also show anomalous concentration (0.97 wt%) of rare metals (6431 ppm Nb, 1266 ppm Ta, 454 ppm Sn, 173 ppm W), (1098 ppm Ce 1.36% Y 2 O 3 ) rare earths, and uranium (0.40% eU 3 O 8 ). Eluvial concentrations in the soil and panned concentrate (0.04-0.28 wt%) analysed up to 7.4%Nb 2 O 5 , 836 ppm Ta, and 1.31% Y. Discrete columbite-tantalite and betafite have been identified in these concentrates in addition to other minerals like zircon, rutile, sphene and xenotime. This area with discrete RM R EE mineral phases could be significant as a non-pegmatite source for rare metal and rare earths. (author)

  14. [mu]SR magnetic response in frustrated antiferromagnets of type RMn[sub 2] (R = rare earth)

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M. (Physics Dept., TU Munich, Garching (Germany)); Asch, L. (Physics Dept., TU Munich, Garching (Germany)); Kratzer, A. (Physics Dept., TU Munich, Garching (Germany)); Kalvius, G.M. (Physics Dept., TU Munich, Garching (Germany)); Muench, K.H. (Physics Dept., TU Munich, Garching (Germany)); Ballou, R. (Lab. Louis Neel, CNRS, 38 Grenoble (France)); Deportes, J. (Lab. Louis Neel, CNRS, 38 Grenoble (France)); Waeppling, R. (Dept. of Physics, Univ. of Uppsala (Sweden)); Litterst, F.J. (Inst. for Metal Physics, TU Braunschweig (Germany)); Klauss, H.H. (Inst. for Metal Physics, TU Braunschweig (Germany)); Niedermayer, C. (Faculty for Physics, Univ. Konstanz (Germany)); Chappert, J. (CEA/DRFMC, CEN Grenoble, 38 (France))

    1994-07-01

    Zero, longitudinal and transverse field [mu]SR was carried out in the antiferromagnets YMn[sub 2], Y[sub 0.95] Tb[sub 0.15] Mn[sub 2], Y[sub 0.9]Tb[sub 0.1]Mn[sub 2], Y[sub 0.99] Sc[sub 0.01] Mn[sub 2], Y[sub 0.98]Sc[sub 0.02]Mn[sub 2] and TbMn[sub 2]. The dynamics of Mn magnetic moments above T[sub N] is typical for an itinerant antiferromagnet. Within a certain temperature range above T[sub N] part of the material enters a randomly ordered (spin glass like) magnetic state as an out-come of frustration. At temperatures above [approx] 150 K the muon spin relaxation rate indicates that the muon has become mobile. (orig.)

  15. Theoretical and Computational Studies of Rare Earth Substitutes: A Test-bed for Accelerated Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Lorin X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Hard permanent magnets in wide use typically involve expensive Rare Earth elements. In this effort, we investigated candidate permanent magnet materials which contain no Rare Earths, while simultaneously exploring improvements in theoretical methodology which enable the better prediction of magnetic properties relevant for the future design and optimization of permanent magnets. This included a detailed study of magnetocrystalline anisotropy energies, and the use of advanced simulation tools to better describe magnetic properties at elevated temperatures.

  16. Field-induced valence transition in rare-earth system

    International Nuclear Information System (INIS)

    Chattopadhaya, A.; Ghatak, S.K.

    2000-01-01

    The magnetic field-induced valence transition in rare-earth compound has been examined based on a pseudospin S=1 Ising model proposed earlier for valence transition. The model includes finite mixing between two pertinent ionic configurations (magnetic and non-magnetic) separated by an energy gap and with intersite interaction between rare-earth ions. Using the mean field approximation the magnetic behaviour and the critical field (H c ) for transition are obtained as a function of energy gap and temperature. The phase boundary defined in terms of reduced field H c /H co and reduced temperature T/T v (T v being valence transition temperature in absence of field) is nearly independent of energy gap. These results are in qualitative agreement with experimental observation in Yb- and Eu-compounds

  17. Interaction domains in permanent-magnetic rare-earth transition-metal compounds; Wechselwirkungsdomaenen in permanentmagnetischen Seltenerd-Uebergangsmetall-Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Thielsch, Juliane

    2015-02-05

    In the framework of this dissertation the phenomenon of the interaction domains was studied both experimentally and by means of micromagnetic simulation. Object of the study were one-phase NdFeB magnets, which were fabricated from commercial MQU-F powders of the Magnequench Inc. company by hot pressing and subsequent warm deformation in the IWF Dresden. Additionally via the same fabrication way also composite samples of NdFeB and Fe with different original particle sizes ere obtained and studied. Supported wer the experimental works by simulations with the FEMME software package, which is based on a hybrid finite-element method/boundary-element method.

  18. Squeezing clathrate cages to host trivalent rare-earth guests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Iowa State Univ., Ames, IA (United States). Department of Chemistry; Ames Lab., Ames, IA (United States); He, Yuping [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Mordvinova, Natalia E. [Laboratoire CRISMAT, ENSICAEN, CNRS UMR (France); Lebedev, Oleg [Laboratoire CRISMAT, ENSICAEN, CNRS UMR (France); Kovnir, Kirill [Iowa State Univ., Ames, IA (United States). Department of Chemistry; Ames Lab., Ames, IA (United States)

    2017-11-01

    Strike difference of the trivalent rare-earth cations from their alkali and alkaline-earth peers is in the presence of localized 4f-electrons and strong spin-orbit coupling. Placing trivalent rare-earth cations inside the fullerene molecules or in between the blocks of itinerant magnetic intermetallics gave rise to plethora of fascinating properties and materials. A long-time missing but hardly desired piece is the semiconducting or metallic compound where rare-earth cations are situated inside the oversized polyhedral cages of three-dimensional framework. In this work we present a synthesis of such compounds, rare-earth containing clathrates Ba8-xRxCu16P30. The unambiguous proofs of their composition and crystal structure were achieved by a combination of synchrotron powder diffraction, time-of-flight neutron powder diffraction, scanning-transmission electron microscopy, and electron energy-loss spectroscopy. Our quantum-mechanical calculations and experimental characterizations show that the incorporation of the rare-earth cations significantly enhances the hole mobility and concentration which results in the drastic increase in the thermoelectric performance.

  19. Rare Earth Elements - A New Challenge for the World Economy

    Directory of Open Access Journals (Sweden)

    Cristina Bumbac

    2013-01-01

    Full Text Available Rare Earth Elements or Rare Earth Metals (REM are a collection of seventeen chemical elements in the periodic table, namely scandium, yttrium and fifteen lanthanides. The term "rare earth" arises from the rare earth minerals from which they were first isolated. They are uncommon oxide-type minerals (earths found in Gandolinite extracted from one mine in Sweden. The first discovery was made in 1794, but it was only in 1940 that the scientist Frank Spedding developed an ion exchange procedure for separating and purifying the REM. For the next decades, they were hardly used in some "minor" industrial fields. Only after 2000 their importance grew, once the multitude of possibilities to use them was discovered due to technological progress. Now REM are incorporated into almost all modern technological devices: superconductors, magnets, electronic polishers, refining catalysts hybrid car components and military techniques. They are used in small quantities, but due to their extraordinary properties the prices are very high. The main problem is that China dominates this market, with 97% of total global supply. The highest concentration of rare earth metals are in Inner Mongolia in China, Mountain Pass in California U.S.A. and in Mount Weld in Australia. The developed countries are far behind China regarding production and are indeed depending on Chinese exports. Hence, there is a difficult situation on this particular market, with an uncertain future.

  20. Existence and structure of rare-earth mono-carbides: study of their low-temperature magnetic properties; Existence et structure des monocarbures de terres rares. Etude de leurs proprietes magnetiques a basses temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lallement, R [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France)

    1966-07-01

    There are two types of rare earth carbides, the first one is face-centered cubic, stable at high temperature, and very hypo-stoichiometric (formula MC{sub x} with 0.35 < x < 0.65); the other is rhombohedric, stable at lower temperature, with a formula M{sub 2}C. These two carbides are magnetically ordered at low temperatures (ferro or ferri-magnetism). They are highly anisotropic. A great part of the electric and magnetic properties can be explained from the following ideas: the M{sup 3+} ions are coupled via the conduction electrons, there are more conduction electrons in the carbides than in the metals, and there is some local order around the transition temperatures. (author) [French] Nous avons mis en evidence l'existence de deux carbures de terres rares, l'un de formule MC{sub x} (0,35 < x < 0,65) de structure cubique a faces centrees, stable a haute temperature, l'autre de formule M{sub 2}C, de structure rhomhoedrique, stable a temperature moyenne. Ces deux types de carbures presentent des phenomenes d'ordre magnetique a basses temperatures (ferro ou ferrimagnetisme). Ils sont caracterises par une forte anisotropie magnetique. Une grande partie des proprietes electriques et magnetiques s'explique a partir des hypotheses suivantes: a) Les ions M{sup 3+} sont couples entre eux par l'intermediaire des electrons de conduction; b) Le nombre d'electrons de conduction dans les carbures est plus grand que dans les metaux; c) Autour des temperatures de transition se manifestent des phenomenes d'ordre local. (auteur)

  1. Magnesium substitutions in rare-earth metal germanides with the Gd5Si4 type. Synthesis, structure determination and magnetic properties of RE5-xMgxGe4 (RE=Gd-Tm, Lu and Y)

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J L [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory; Tobash, P H [UNIV. OF DE; Bobev, S [UNIV. OF DE

    2009-01-01

    A series of magnesium-substituted rare-earth metal germanides with a general formula RE{sub 5-x}Mg{sub x}Ge{sub 4} (x {approx} 1.0-2.3; RE =Gd-Tm, Lu, Y) have been synthesized by high-temperature reactions and structurally characterized by single-crystal X-ray diffraction. These compounds crystallize with the common Gd{sub 5}Si{sub 4} type in the orthorhombic space group Pnma (No. 62; Z =4; Pearson's code oP36) and do not appear to undergo temperature-induced crystallographic phase transitions down to 120 K. Replacing rare-earth metal atoms with Mg, up to nearly 45 % at., reduces the valence electron count and is clearly expressed in the subtle changes of the Ge-Ge and metal-metal bonding. Magnetization measurements as a function of the temperature and the applied field reveal complex magnetic structures at cryogenic temperatures, and Curie-Weiss paramagnetic behavior at higher temperatures. The observed local moment magnetism is consistent with RE+ ground states in all cases. In the magnetically ordered phases, the magnetization cannot reach saturation in fields up to 50 kOe. The structural trends across the series and the variations of hte magnetic properties as a function of the Mg content are also discussed. KEYWORDS: Rare-earth intermetallics, germanides, crystal structure,Gd{sub 5}Si{sub 4} type.

  2. Coprecipitation of rare earth elements with hydroxyapatite

    International Nuclear Information System (INIS)

    Fujino, Osamu

    1979-01-01

    The distribution behavior of trace rare earth elements between an aqueous phase and hydroxyapatite crystals was investigated. The apatite prepared by adding phosphate ion extremely slowly to an aqueous solution containing calcium, rare earth elements, ethylenediamine and nitrilotriacetate ion at 80 0 C. Apparently the coprecipitation reaction seems to be anomalous, because the apparent distribution coefficient did not have a constant value through the reaction. But when the true distribution coefficient was calculated by using the thermodynamic data at 80 0 C, it was revealed that rare earth ions were coprecipitated obeying logarithmic distribution law. The true distribution coefficient values of trivalent yttrium, scandium, europium and cerium ions were about 10sup(7.3), 10sup(9.8), 10sup(7.4) and 10sup(6.5) respectively. (author)

  3. Rare earths: harvesting basic research for technology

    International Nuclear Information System (INIS)

    Jagatap, B.N.

    2014-01-01

    In recent years, rare earths are increasingly becoming a versatile platform for basic research that presents enormous technological potentials. A variety of nano-sized inorganic matrices varying from oxides, phosphates, gallates and aluminates, tungstates, stannates, vanadates to fluorides doped with different lanthanide ions have been synthesized and their optical properties have been investigated in the Chemistry Group, BARC. Another interesting application is laser cooling of solids using rare earth doped glasses with potential applications in remote cooling of electronic devices. Combining the luminescence properties of rare earths with photonic crystals is yet another potent area with wide ranging applications. In this presentation we provide an overview of these developments with examples from the R and D programs of the Chemistry Group, BARC

  4. On fluorozirconates and fluorohafnates of rare earths

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Antipov, P.I.; Novoselova, A.V.

    1980-01-01

    It has been shown by the method of X-ray phase analysis that on interaction between rare-earth fluorides and zirconium and hafnium tetrafluorides, compounds with 1:1, 1:2, 1:3 molar ratios of components are formed. Compounds of the LnHfF 4 type are prepared for all rare-earths. Fluoro-metals of the LnHf 2 F 11 composition are typical only of light lanthanides from lanthanum to neodymium, while pentafluorated salts Ln(EF 5 ) 3 are formed in the reaction between EF 4 with fluorides of heavy rare-earth elements from samarium to lutecium, as well as with yttrium trifluoride. Parameters of unit cells of heptafluohafnates and pentafluometallates are determined

  5. Thermogravimetric study of rare earth concentrates

    International Nuclear Information System (INIS)

    Delyagejd, V.V.; Anisimova, V.N.; Eremenko, Z.V.; Kutsev, V.S.

    1974-01-01

    Methods of thermogravimetric, chemical and phase analysis were used in measuring the concentration of rare-earth elements of different origins. At temperatures 400-800 deg C a gradual decomposition of fluorocarbonates takes place leading to the formation of derivatives of corresponding oxides and oxyfluorides. For concentrates containing siderite the process takes place at 550-600 deg C followed by oxidation of bivalent iron into trivalent state. Reaction of rare-earth elements with sodium carbonate and the increase in the concentration of the latter results in a narrowing down of the interval of temperatures at which decomposition takes place. Under these conditions an intense reaction and a fusion take place leading to the formation of eutectic at 500-600 deg C and further synthesis of sodium fluoride and oxyfluoride derivatives of calcium and rare-earth elements

  6. Features of rare earth element (3) complexing

    International Nuclear Information System (INIS)

    Martynenko, L.I.

    1991-01-01

    Reasons for nonobeyance to the regularity of tetrad ''W'' effect of rare earth chelate complex compounds are discussed in the review. The concept of metal-ligand ionic bond in rare earth complexes is put in the basis of the consideration. From this viewpoint mutual influence of ligands in lower, higher, polynuclear and different-ligand complexes, formed by the ligands of low, medium and high denticity, is discussed. Problems of intermolecular interaction of complexes with different structure are considered in relation to problems of variation of chelate volatility and selectivity in the processes of sublimation and precipitation

  7. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H

    2001-01-01

    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  8. Fascinating world of rare earth research

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.

    1977-01-01

    The first part of this paper concerns some of the notable events which occurred early in the author's career as a rare earther and some of the major events which took place in the two decades 1950 to 1970. The notable changes and advances in the rare earth research world since the 1971 Durham Conference are described in the second and largest part of the paper. The final portion is concerned with actinide developments since 1971

  9. Proceedings of the international conference on science, technology and applications of rare earths

    International Nuclear Information System (INIS)

    2015-01-01

    Rare Earth Elements (REEs) are extensively used in clean energy applications like wind turbines, hybrid car batteries/electric motors, solar energy collectors, permanent magnets, phosphors, multifunctional pigments, thin film technologies, defence - related systems, etc. The use of rare earth elements in modern technology has increased several folds over the past few years in both domestic and international sectors due to the growing economy. The current global demand for rare earths is expected to provide a myriad of business opportunities for rare earth industries across the world including India for the utilization of rare earths in green energy, technology and industry. Papers relevant to INIS are indexed separately

  10. Thermodynamics and kinetics of the formation of rare earth intermetallics

    International Nuclear Information System (INIS)

    Deodhar, S.S.

    1975-01-01

    Heats of reaction of rare earth intermetallics with iron, cobalt and nickel were determined using Differential Thermal Analysis technique. The intermetallic compounds studied were of MgCu 2 type Laves phases and the rare earth elements studied were praseodymium, gadolinium, dyprosium and erbium. The reactions were exothermic and the heats of reaction were generally high. They varied from the low of -2.5 kcal/g mole for Fe 2 Gd to the high of -35.3 kcal/g mole for Ni 2 Er. The magnitudes of heats of reaction were always greater for the intermetallics of heavy rare earth elements. The rare earth intermetallics studied were either ferromagnetic or antiferromagnetic. The variations in the magnetic moments and the heats of reaction with respect to the atomic number of the rare earth elements followed certain trends. The similarities were observed in the trends of two properties. Electronic configuration for the MgCu 2 type rare earth intermetallics is proposed using Engel--Brewer correlation for metallic structures and the structural features of the Laves phase compounds. Kinetics of the reactions between the rare earth elements and iron, cobalt, and nickel was studied. The rate of reaction was diffusion controlled in each case. The Valensi--Carter equation for the diffusion mechanism satisfactorily described the kinetic behavior. The magnitudes of activation energies and frequency factors were determined. The reactions can be characterized by their reaction temperatures since they always begin at definite temperatures. It was observed that the reaction began at a higher temperature if the activation energy for the reaction was high

  11. Rare earth element and rare metal inventory of central Asia

    Science.gov (United States)

    Mihalasky, Mark J.; Tucker, Robert D.; Renaud, Karine; Verstraeten, Ingrid M.

    2018-03-06

    Rare earth elements (REE), with their unique physical and chemical properties, are an essential part of modern living. REE have enabled development and manufacture of high-performance materials, processes, and electronic technologies commonly used today in computing and communications, clean energy and transportation, medical treatment and health care, glass and ceramics, aerospace and defense, and metallurgy and chemical refining. Central Asia is an emerging REE and rare metals (RM) producing region. A newly compiled inventory of REE-RM-bearing mineral occurrences and delineation of areas-of-interest indicate this region may have considerable undiscovered resources.

  12. Rare earth-ruthenium-magnesium intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Sebastian; Kersting, Marcel; Heletta, Lukas; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-07-01

    Eight new intermetallic rare earth-ruthenium-magnesium compounds have been synthesized from the elements in sealed niobium ampoules using different annealing sequences in muffle furnaces. The compounds have been characterized by powder and single crystal X-ray diffraction. Sm{sub 9.2}Ru{sub 6}Mg{sub 17.8} (a=939.6(2), c=1779(1) pm), Gd{sub 11}Ru{sub 6}Mg{sub 16} (a=951.9(2), c=1756.8(8) pm), and Tb{sub 10.5}Ru{sub 6}Mg{sub 16.5} (a=942.5(1), c=1758.3(4) pm) crystallize with the tetragonal Nd{sub 9.34}Ru{sub 6}Mg{sub 17.66} type structure, space group I4/mmm. This structure exhibits a complex condensation pattern of square-prisms and square-antiprisms around the magnesium and ruthenium atoms, respectively. Y{sub 2}RuMg{sub 2} (a=344.0(1), c=2019(1) pm) and Tb{sub 2}RuMg{sub 2} (a=341.43(6), c=2054.2(7) pm) adopt the Er{sub 2}RuMg{sub 2} structure and Tm{sub 3}Ru{sub 2}Mg (a=337.72(9), c=1129.8(4) pm) is isotypic with Sc{sub 3}Ru{sub 2}Mg. Tm{sub 3}Ru{sub 2}Mg{sub 2} (a=337.35(9), c=2671(1) pm) and Lu{sub 3}Ru{sub 2}Mg{sub 2} (a=335.83(5), c=2652.2(5) pm) are the first ternary ordered variants of the Ti{sub 3}Cu{sub 4} type, space group I4/mmm. These five compounds belong to a large family of intermetallics which are completely ordered superstructures of the bcc subcell. The group-subgroup scheme for Lu{sub 3}Ru{sub 2}Mg{sub 2} is presented. The common structural motif of all three structure types are ruthenium-centered rare earth cubes reminicent of the CsCl type. Magnetic susceptibility measurements of Y{sub 2}RuMg{sub 2} and Lu{sub 3}Ru{sub 2}Mg{sub 2} samples revealed Pauli paramagnetism of the conduction electrons.

  13. Thermoluminescence dosimetry of rare earth doped calcium ...

    Indian Academy of Sciences (India)

    Unknown

    CaAl2O4) doped with different rare earth ions have been studied and their suitability for radiation dosimetry applications is discussed. It is observed that monocalcium aluminate doped with cerium is a good dosimeter having linear response up to ...

  14. Ultrasonic attenuation in rare-earth monoarsenides

    Indian Academy of Sciences (India)

    2015-11-27

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Ultrasonic attenuation in rare-earth monoarsenides .... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: Anurag ...

  15. Rare earth oxyhalogenide base thermoluminescent material

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1976-01-01

    A process is described that consists to expose a thermoluminescent material to ionizing radiations, the material being a rare earth oxyhalogenide with terbium additions, to heat this material up to the emission of visible radiations and to measure the emitted radiations which are proportional to the ionizing radiation dose [fr

  16. Cerium and rare earth separation process

    International Nuclear Information System (INIS)

    Martin, M.; Rollat, M.

    1986-01-01

    An aqueous solution containing cerium III and rare earths is oxidized in the anodic compartment of an electrolytic cell, cerium IV is extracted by an organic solvent, the organic phase containing Ce IV is reduced in the catodic compartment of the same electrolytic cell and cerium III is extracted in a nitric aqueous phase [fr

  17. Lifetime measurements of the rare earths

    International Nuclear Information System (INIS)

    Stahnke, H.J.

    1981-01-01

    The lifetime of excited energy levels of Praseodymium, Neodymium, Gadolinium, Holmium and Erbium are measured. The measurements were done on atomic beams excited by laser radiation. The experimental results allow an interpretation of the electronic structure of the rare earths. (BEF)

  18. Anomalies in photofission of rare earth nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gann, A.V.; Nazarova, T.S.; Noga, V.I.; Ranyuk, Y.N.; Sorokin, P.V.; Telegin, Y.N.

    1979-09-01

    Measurements of photofission produced by 1-GeV bremsstrahlung in the heavy rare earth elements show an anomalously large cross section compared to that predicted by the liquid drop model. These measurements check the results obtained previously with 1-GeV protons by Andronenko et al. (JETP Lett. 24, 573 (1976)).

  19. Rare earth phosphors and phosphor screens

    International Nuclear Information System (INIS)

    Buchanan, R.A.; Maple, T.G.; Sklensky, A.F.

    1981-01-01

    Advances in the use of stabilized rare earth phosphors and of conversion screens using these materials are examined. In particular the new phosphors discussed in this invention consist of oxybromides of yttrium, lanthanum and gadolinium with a luminescent activator ion stabilized by an oxychloride or oxyfluoride surface layer and the conversion screens include trivalent cerium as the activator ion. (U.K.)

  20. 3D Printing of Polymer-Bonded Rare-Earth Magnets With a Variable Magnetic Compound Fraction for a Predefined Stray Field.

    Science.gov (United States)

    Huber, Christian; Abert, Claas; Bruckner, Florian; Groenefeld, Martin; Schuschnigg, Stephan; Teliban, Iulian; Vogler, Christoph; Wautischer, Gregor; Windl, Roman; Suess, Dieter

    2017-08-25

    Additive manufacturing of polymer-bonded magnets is a recently developed technique, for single-unit production, and for structures that have been impossible to manufacture previously. Also, new possibilities to create a specific stray field around the magnet are triggered. The current work presents a method to 3D print polymer-bonded magnets with a variable magnetic compound fraction distribution. This means the saturation magnetization can be adjusted during the printing process to obtain a required external field of the manufactured magnets. A low-cost, end-user 3D printer with a mixing extruder is used to mix permanent magnetic filaments with pure polyamide (PA12) filaments. The magnetic filaments are compounded, extruded, and characterized for the printing process. To deduce the quality of the manufactured magnets with a variable magnetic compound fraction, an inverse stray field framework is developed. The effectiveness of the printing process and the simulation method is shown. It can also be used to manufacture magnets that produce a predefined stray field in a given region. This opens new possibilities for magnetic sensor applications. This setup and simulation framework allows the design and manufacturing of polymer-bonded permanent magnets, which are impossible to create with conventional methods.

  1. Temperature-induced spin reorientation and magnetization jump of rare-earth orthoferrite Ho{sub 0.5}Pr{sub 0.5}FeO{sub 3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohua; Zhao, Weiyao; Cao, Yiming; Kang, Baojuan [Department of Physics, and International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444 (China); Zhang, Jincang [Department of Physics, and International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444 (China); Ren, Wei, E-mail: renwei@shu.edu.cn [Department of Physics, and International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444 (China); Cao, Shixun, E-mail: sxcao@shu.edu.cn [Department of Physics, and International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444 (China)

    2016-07-25

    We report temperature-induced spin reorientation and magnetization jump effects in the rare earth (RE) orthoferrite Ho{sub 0.5}Pr{sub 0.5}FeO{sub 3} single crystal. The single crystal of about 6 mm in diameter and 50 mm in length was successfully grown by optical floating zone method. Both X-ray diffraction and Laue photograph confirmed the homogeneity and high quality of the crystal. Magnetic properties of Ho{sub 0.5}Pr{sub 0.5}FeO{sub 3} single crystal are studied over a wide temperature range from 2 to 300 K. Spin reorientation transition from Γ{sub 2} to Γ{sub 4} phase is observed in the temperature range of 75–90 K. At lower temperature, the Ho{sub 0.5}Pr{sub 0.5}FeO{sub 3} shows an abrupt jump of magnetization along the a-axis, which occurs only in the field-cooling process, and is sensitive to external applied magnetic field. By analyzing the jump temperature and magnitude of the magnetization, we conclude that it is caused by the spin reversal of the rare earth ions. The isothermal magnetization versus field hysteresis loop measurements along a axis explain the spin configuration variation from 3 K to 60 K. - Highlights: • Ho{sub 0.5}Pr{sub 0.5}FeO{sub 3} single crystal was grown by optical floating zone method. • It shows an abrupt jump of magnetization along a axis at low temperature. • The jump height and temperature is sensitive to external applied magnetic field. • It is attributed to the spin reversal of the rare earth ions.

  2. Rare Earths and Clean Energy: analyzing China's upper hand

    International Nuclear Information System (INIS)

    Seaman, J.

    2010-01-01

    An ominous but avoidable resource crunch in the so-called 'rare earth elements' is now threatening the development of a number of key industries from energy to defense to consumer electronics. As key components in the latest generation of technologies, including specialized magnets for windmills and hybrid cars, lasers for range finders and 'smart' munitions, and phosphors for LCD screens, demand for these rare metals is expected to grow rapidly in the years to come. But decades of under-investment in the mining and separation of these elements across the globe has left the industry ill-prepared to meet thi s growing demand. Over the years, only China has recognized the strategic significance of these resources and has succeeded in gaining a near monopoly on production, currently churning out 97% of the world' s rare earth oxides. Faced with problems of its own, and eager to use its resource advantage to master higher levels of value-added production of rare earth-dependent products, China has increasingly limited the rest of the world's access to these raw materials. This only complicates what was already projected to be a problematic resource shortage. This issue demands a higher quality of public debate. Rare earth consuming countries outside of China have only recently become aware of their dependence and started to take stock of the risks. Time is of the essence. Bringing new supplies online to meet growing demand is a long, complicated and risky process but is nevertheless necessary to ensure the development of high tech industries, notably clean energy. Accessible reserves of rare earths do exist outside of China and mitigating the effects of the looming shortage requires opening up these reserves to production. Yet, as the Chinese experience attests, there are substantial risks to the environment associated with mining and separating rare earths. Care must be taken to ensure responsible mining practices across the globe. Longer-term solutions, such as

  3. Charge ordering in the rare earth manganates: the experimental situation

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Cheetham, A.K.; Raveau, Bernard

    2000-01-01

    Charge-ordered phases of rare earth manganates are novel manifestations arising from interactions between the charge carriers and phonons, giving rise to the localization of carriers at specific sites in the lattice below a certain temperature. Accompanying this phenomenon, the Mn 3+ (e g ) orbitals and the associated lattice distortions also exhibit long range ordering (orbital ordering). What makes the manganates even more interesting is the occurrence of complex spin ordering related to anisotropic magnetic interactions. In this article, we discuss the emerging scenario of charge-ordered rare earth manganates in the light of specific case studies and highlight some of the new experimental findings related to spin, orbital and charge ordering. We also examine features such as the charge stripes and phase separation found experimentally in these materials, and discuss the factors that affect charge-ordering such as the size of A-site cations and magnetic and electric fields, as well as isotopic and chemical substitutions. (author)

  4. Nuclear orientation studies of rare-earth metals

    International Nuclear Information System (INIS)

    Krane, K.S.; Morgan, G.L.; Moses, J.D.

    1981-01-01

    The angular distributions of gamma rays from 166 sup(m)Ho and 160 Tb aligned at low temperatures in, respectively, Ho metal and Tb metal have been measured. Large hyperfine splittings, expected for the rare earths, have been deduced from the temperature dependence of the gamma ray anisotropies. Both samples show a macroscopic magnetic anisotropy which is not consistent with an interpretation in terms of a randomly oriented polycrystalline structure. (orig.)

  5. Rare earth elements and oxides in liquid phase epitaxy

    Czech Academy of Sciences Publication Activity Database

    Procházková, Olga; Grym, Jan; Zavadil, Jiří; Kopecká, M.

    2006-01-01

    Roč. 100, č. 8 (2006), s. 640-- ISSN 0009-2770. [Sjezd chemických společností /58./. Ústí nad Labem, 04.09.2006-08.09.2006] R&D Projects: GA ČR(CZ) GA102/06/0153 Institutional research plan: CEZ:AV0Z20670512 Keywords : semiconductor technology * rare earth metals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.431, year: 2006

  6. Rare earth oxide doping in oxide cathodes

    International Nuclear Information System (INIS)

    Engelsen, Daniel den; Gaertner, Georg

    2006-01-01

    The effect on life performance and poisoning with O 2 by doping oxide cathodes with rare earth oxides and pseudo rare earth oxides, notably yttria, is qualitatively explained in terms of electrolysis of BaO during emission of electrons. Doped cathodes show less electrolysis and consume therefore less Ba during life: consequently, doped cathodes have a better life performance. However, the lower Ba-production makes doped cathodes more sensitive to oxygen poisoning. The experimentally found relation between conductivity and yttria concentration was the motive to propose a new model for the crystal imperfections in BaO. In this new imperfection model most Y 3+ -ions will combine with barium vacancies, therefore, the increase of the conductivity is modest and also the effect on the position of the Fermi level is modest. By assuming a combination of bulk and surface conductivity, the agreement between experiment and theory can be improved further

  7. Diagnostic study about lanthanides (rare earths)

    International Nuclear Information System (INIS)

    Ribeiro, G.F.

    1985-01-01

    The world situation of rare earths (lanthanides) is evaluated, and a comparison of the Brazilian situation in respect to other countries is established, concerning the following aspects: geology of mineral deposits; main sources, uses, reserves and production; their consumption, prices and state-of-art of geological researches and industrial processes for physical and chemical separation / concentration of these elements. (C.L.B.) [pt

  8. Mineralogy of the rare earth elements

    International Nuclear Information System (INIS)

    Clark, A.M.

    1984-01-01

    This paper contains mineralogic properties of the rare earth elements (REE). Notes are given on total REE abundances, distribution patterns, and modes of occurrence. References are confined as far as possible to papers containing usable REE data. The minerals are grouped alphabetically within each major cationic group. The paper includes an alphabetic table of mineral names, chemical formulas, crystal system and section number. It functions as a handy entrance to the mineralogic and bibliographic paper. (G.J.P.)

  9. Structure of small rare earth clusters

    International Nuclear Information System (INIS)

    Rayane, D.; Benamar, A.; Tribollet, B.; Broyer, M.; Melinon, P.

    1991-01-01

    Rare earth clusters are produced by the inert gas condensation technique. The observed size distribution shows large peaks at n=13, 19, 23, 26, 29, 32, 34, 37, 39, 45, .... The beginning of this sequence (up to 34) has been already observed in argon clusters and recently by our group in barium clusters; this sequence may be interpreted in terms of icosahedral structures corresponding to the addition of caps on a core icosahedron of 13 atoms. (orig.)

  10. Atomic masses of rare-earth isotopes

    International Nuclear Information System (INIS)

    Schmidt-Ott, W.D.; Kantus, R.; Runte, E.

    1981-01-01

    A survey is given of decay energies of rare-earth isotopes measured in electron-capture decay by relative Psub(K) ratios, ECsub(K)/β + , and EC/β + ratios. Atomic masses of A = 147 isotopes and of 146 Gd and 148 Dy were derived. The masses of these isotopes and of α-decaying precessors are compared with predictions of current mass formulae. The subshell closure at Z = 64 is shown for N = 82, and 84 isotones. (orig.)

  11. Earth's Magnetic Field

    DEFF Research Database (Denmark)

    This volume provides a comprehensive view on the different sources of the geomagnetic field both in the Earth’s interior and from the field’s interaction with the terrestrial atmosphere and the solar wind. It combines expertise from various relevant areas of geomagnetic and near Earth space...... research with the aim to better characterise the state and dynamics of Earth’s magnetic field. Advances in the exploitation of geomagnetic observations hold a huge potential not only for an improved quantitative description of the field source but also for a better understanding of the underlying processes...... and space observations, and on state-of-the-art empirical models and physics-based simulations. Thus, it provides an in-depth overview over recent achievements, current limitations and challenges, and future opportunities in the field of geomagnetism and space sciences....

  12. Antiferromagnetic correlations in icosahedral R-Mg-Zn quasicrystals (R rare earth)

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, B; Schmitt, D [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France); Ouladdiaf, B [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Powder neutron-diffraction experiments performed on R-Mg-Zn quasicrystals have shown for the first time the existence of magnetic ordering of the rare earth in these systems at low temperature (T{sub c} {<=} 6.5 K depending on the rare earth). Both narrow and broad magnetic diffraction peaks have been observed showing the presence of two different scales of magnetic correlations. (author). 3 refs.

  13. 3D print of polymer bonded rare-earth magnets, and 3D magnetic field scanning with an end-user 3D printer

    Science.gov (United States)

    Huber, C.; Abert, C.; Bruckner, F.; Groenefeld, M.; Muthsam, O.; Schuschnigg, S.; Sirak, K.; Thanhoffer, R.; Teliban, I.; Vogler, C.; Windl, R.; Suess, D.

    2016-10-01

    3D print is a recently developed technique, for single-unit production, and for structures that have been impossible to build previously. The current work presents a method to 3D print polymer bonded isotropic hard magnets with a low-cost, end-user 3D printer. Commercially available isotropic NdFeB powder inside a PA11 matrix is characterized, and prepared for the printing process. An example of a printed magnet with a complex shape that was designed to generate a specific stray field is presented, and compared with finite element simulation solving the macroscopic Maxwell equations. For magnetic characterization, and comparing 3D printed structures with injection molded parts, hysteresis measurements are performed. To measure the stray field outside the magnet, the printer is upgraded to a 3D magnetic flux density measurement system. To skip an elaborate adjusting of the sensor, a simulation is used to calibrate the angles, sensitivity, and the offset of the sensor. With this setup, a measurement resolution of 0.05 mm along the z-axes is achievable. The effectiveness of our calibration method is shown. With our setup, we are able to print polymer bonded magnetic systems with the freedom of having a specific complex shape with locally tailored magnetic properties. The 3D scanning setup is easy to mount, and with our calibration method we are able to get accurate measuring results of the stray field.

  14. International strategic minerals inventory summary report; rare-earth oxides

    Science.gov (United States)

    Jackson, W.D.; Christiansen, Grey

    1993-01-01

    Bastnaesite, monazite, and xenotime are currently the most important rare-earth minerals. Bastnaesite occurs as a primary mineral in carbonatites. Monazite and xenotime also can be found in primary deposits but are recovered principally from heavy-mineral placers that are mined for titanium or tin. Each of these minerals has a different composition of the 15 rare-earth elements. World resources of economically exploitable rare-earth oxides (REO) are estimated at 93.4 million metric tons in place, composed of 93 percent in primary deposits and 7 percent in placers. The average mineral composition is 83 percent bastnaesite, 13 percent monazite, and 4 percent of 10 other minerals. Annual global production is about 67,000 metric tons of which 41 percent is from placers and 59 percent is from primary deposits; mining methods consist of open pits (94 percent) and dredging (6 percent). This output could be doubled if the operations that do not currently recover rare earths would do so. Resources are more than sufficient to meet the demand for the predictable future. About 52 percent of the world's REO resources are located in China. Ranking of other countries is as follows: Namibia (22 percent), the United States (15 percent), Australia (6 percent), and India (3 percent); the remainder is in several other countries. Conversely, 38 percent of the production is in China, 33 percent in the United States, 12 percent in Australia, and 5 percent each in Malaysia and India. Several other countries, including Brazil, Canada, South Africa, Sri Lanka, and Thailand, make up the remainder. Markets for rare earths are mainly in the metallurgical, magnet, ceramic, electronic, chemical, and optical industries. Rare earths improve the physical and rolling properties of iron and steel and add corrosion resistance and strength to structural members at high temperatures. Samarium and neodymium are used in lightweight, powerful magnets for electric motors. Cerium and yttrium increase the

  15. Rare earth point defects in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, S.

    2007-12-14

    In this work we investigate rare earth doped GaN, by means of theoretical simulations. The huge unit cells necessary to model the experimental system, where dilute amount of rare earth ions are used, are handled with the charge self consistent density-functional based-tight binding (SCC-DFTB) calculational scheme. The method has been extended to include LDA+U and simplified self interaction corrected (SIC)-like potentials for the simulation of systems with localised and strongly correlated electrons. A set of tight-binding parameters has been created to model the interaction of GaN with some dopants, including a selection of lanthanide ions interesting due to their optical or magnetic properties (Pr, Eu, Gd, Er and Tm). The f-electrons were treated as valence electrons. A qualitatively correct description of the band gap is crucial for the simulation of rare earth doped GaN, because the luminescence intensity of the implanted samples depends on the size of the host band gap and because the rare earths could introduce charge transition levels near the conduction band. In this work these levels are calculated with the Slater-Janak (SJ) transition state model, which allows an approximate calculation of the charge transition levels by analysing the Kohn-Sham eigenvalues of the DFT. (orig.)

  16. Development of High Energy Thin Layers of Exchange Spring Magnets Originating from Rare Earth Magnets of NdFeB/FeCo

    Directory of Open Access Journals (Sweden)

    A. R. Khanjani

    2016-09-01

    Full Text Available In this study, nine Nd-Fe-B and FeCe thin films with 10-50 nanometers width were prepared by RF magnetron sputtering on the Si/SiO2 substrate. Then, the films were annealed at 800 oC for 5 sec in rapid thermal annealing furnace. X-ray diffractometry (XRD was used to analyze the phase composition of layers and existance of Nd2F14 and Fe65Co35 phase was confirmed, without formation of any other secondary phase. The layers surfaces were investigated using Field Emission Scanning Electron Microscope (FESEM. The morphology of layers surfaces was investigated using Atomic Force Microscope (AFM. The magnetic properties of layers were evaluated by vibrating sample magnetometer with maximum applied field of 24kOe, in order to measure coercivity, saturation of magnetization, hysteresis area, rectangular ratio and (BHmax. It was found that all layers have vertical magnetic anisotropy. Increasing thickness of FeCo resulted in increasing saturation of magnetization,  coercivity and saturation magnetization. The results indicate that by an increase in thickness of FeCo up to 20nm, exchange interaction strength between hard and soft magnetic layers is enhanced and, consequently, maximum energy induced from this hetero-structure is increased.

  17. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  18. Transferred hyperfine interaction between the rare-earth ions and the fluorine nuclei in rare-earth trifluorides

    DEFF Research Database (Denmark)

    Hansen, P. E.; Nevald, Rolf; Guggenheim, H. G.

    1978-01-01

    The isotropic and anisotropic transferred hyperfine interactions between F ions in the two chemically inequivalent sites and the rare-earth ions (R) have been derived from 19F NMR measurements in the temperature region 100-300 K on single crystals of TbF3 and DyF3. The isotropic interactions are ...... to vary only slightly with temperature. They are further assigned to definite R's in the unit cell, which cannot be done from macroscopic magnetic measurements....

  19. Anthropogenic Cycles of Rare Earth Elements

    Science.gov (United States)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  20. Rare-earth metal transition metal borocarbide and nitridoborate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Niewa, Rainer; Shlyk, Larysa; Blaschkowski, Bjoern [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2011-07-01

    Few years after the discovery of superconductivity in high-T{sub c} cuprates, borocarbides and shortly after nitridoborates with reasonably high T{sub c}s up to about 23 K attracted considerable attention. Particularly for the rare-earth metal series with composition RNi{sub 2}[B{sub 2}C] it turned out, that several members exhibit superconductivity next to magnetic order with both T{sub c} above or below the magnetic ordering temperature. Therefore, these compounds have been regarded as ideal materials to study the interplay and coexistence of superconductivity and long range magnetic order, due to their comparably high ordering temperatures and similar magnetic and superconducting condensation energies. This review gathers information on the series RNi{sub 2}[B{sub 2}C] and isostructural compounds with different transition metals substituting Ni as well as related series like RM[BC], RM[BN], AM[BN] and R{sub 3}M{sub 2}[BN]{sub 2}N (all with R = rare-earth metal, A = alkaline-earth metal, M = transition metal) with special focus on synthesis, crystal structures and structural trends in correspondence to physical properties. (orig.)

  1. On the advantages of spring magnets compared to pure FePt: Strategy for rare-earth free permanent magnets following a bottom-up approach

    Energy Technology Data Exchange (ETDEWEB)

    Pousthomis, M.; Garnero, C. [Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4 (France); Marcelot, C.G. [Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4 (France); Centre d’Elaboration de Matériaux et d’Etudes Structurales, CEMES-CNRS, 29 rue Jeanne Marvig, B.P. 94347, 31055 Toulouse (France); Blon, T.; Cayez, S. [Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4 (France); Cassignol, C.; Du, V.A.; Krispin, M. [Siemens AG, Corporate Technology, Munich (Germany); Arenal, R. [Transpyrenean Advanced Laboratory for Electron Microscopy (TALEM), INSA - INA, CNRS - Universidad de Zaragoza, 30155 Toulouse (France); Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), U. Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza (Spain); Fundacion ARAID, 50018 Zaragoza (Spain); Soulantica, K.; Viau, G. [Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4 (France); Lacroix, L.-M., E-mail: lmlacroi@insa-toulouse.fr [Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4 (France); Transpyrenean Advanced Laboratory for Electron Microscopy (TALEM), INSA - INA, CNRS - Universidad de Zaragoza, 30155 Toulouse (France)

    2017-02-15

    Nanostructured magnets benefiting from efficient exchange-coupling between hard and soft grains represent an appealing approach for integrated miniaturized magnetic power sources. Using a bottom-up approach, nanostructured materials were prepared from binary assemblies of bcc FeCo and fcc FePt nanoparticles and compared with pure L1{sub 0}-FePt materials. The use of a bifunctional mercapto benzoic acid yields homogeneous assemblies of the two types of particles while reducing the organic matter amount. The 650 °C thermal annealing, mandatory to allow the L1{sub 0}-FePt phase transition, led to an important interdiffusion and thus decreased drastically the amount of soft phase present in the final composites. The analysis of recoil curves however evidenced the presence of an efficient interphase exchange coupling, which allows obtaining better magnetic performances than pure L1{sub 0} FePt materials, energy product above 100 kJ m{sup −3} being estimated for a Pt content of only 33%. These results clearly evidenced the interest of chemically grown nanoparticles for the preparation of performant spring-magnets, opening promising perspective for integrated subcentimetric magnets with optimized properties.

  2. Coated air-stable cobalt--rare earth alloy particles and method

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloys. An organometallic compound which decomposes at a temperature below 500 0 C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating on the particles. (U.S.)

  3. Preparation of rare earth fluorides from apatite concentrate

    International Nuclear Information System (INIS)

    Mulyarchuk, I.F.; Voloshchenko, M.V.; Zen'kovich, E.G.; Sumenkova, V.V.; AN Ukrainskoj SSR, Kiev. Inst. Problem Lit'ya)

    1980-01-01

    The processes of preparation of the rare earths element sum from apatite concentrate of the Khibins, connected with preliminary extraction of rare earth phosphates from nitric acid extract using solvent extraction or direct precipitation from the extract by solution of potassium and ammonium fluorides. The sequence of the processes of the first variant is the following: solvent extraction of rare earths by tributylphosphate from clarified nitric acid extract of apatite with subsequent reextraction of rare earths with water and precipitation of rare earth phosphates from aqueous solution during neutralization by ammonia. In case of fluoride preparation from rare earth phosphate the main attention is paid to precipitation and filtration of fluorides. Technological scheme and cost price of industry for the production of 1800 t of rare earth trifluorides a year are calculated. When taking account of TBP losses according to its solubility the industry cost price is 1O times lower the modern cost of rare earth fluorides

  4. Distribution of rare earths in liver of mice administered with chloride compounds of 12 rare earths

    International Nuclear Information System (INIS)

    Shinohara, A.; Chiba, M.; Inaba, Y.

    1998-01-01

    Full text: Rare earths are used in high technology field, however, the information on their biological effects are not sufficient. The behaviour of rare earths in biology is of interest in connection with their toxicity. In the present study, the distribution of rare earths in liver of mice administered with these elements was investigated. The effects on Ca and other biological essential elements were also determined. Male mice (5 weeks old) were injected with one of 12 kinds of rare earths (chlorides of Y, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er and Yb) at the dose of 25 mg/KXg body weight. After 20 hours of administration, mice were sacrificed, then liver and other organs were taken out. Liver was homogenized and separated by centrifugation. The concentrations of rare earths administered were measured by microwave-induced plasma-mass spectrometry (MIP-MS) after acid digestion. The concentrations of administered elements in whole liver were about 100μg/g (wet weight), where the difference between elements was few. Distribution amounts of elements administered in four fractions were following order; 700μg precipitate > mitocondrial fraction > microsomal fraction > cytosol. The relative contents in these fractions, however, was different depending on the element administered. Calcium concentrations in liver of administered mice were higher than those of control mice. Increase of Ca concentrations were observed in all four fractions and the increase ratio was also dependent on the elements administered

  5. Rare earth elements behavior in Peruibe black mud

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da, E-mail: jeffkoy@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  6. Rare earth elements behavior in Peruibe black mud

    International Nuclear Information System (INIS)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da

    2015-01-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  7. Rare earth elements materials production from apatite ores

    International Nuclear Information System (INIS)

    Anufrieva, A V; Buynovskiy, A S; Makaseev, Y N; Mazov, I N; Nefedov, R A; Sachkov, V I; Valkov, A V; Andrienko, O S; Stepanova, O B

    2016-01-01

    The paper deals with the study of processing apatite ores with nitric acid and extraction of the rare earth elements. The rare earth elements can be successfully separated and recovered by extraction from the nitrate- phosphate solution, being an tributyl phosphate as extraction agent. The developed scheme of the processing apatite concentrate provides obtaining rare earth concentrates with high qualitative characteristics. (paper)

  8. Port Pirie rare earths plant stage 3

    International Nuclear Information System (INIS)

    1990-08-01

    SX Holdings Limited intends to establish a rare earths plant at Port Pirie, South Australia. The proposal involves three stages of development, Stage 3 being to develop a monazite cracking plant and associated rare earths separation facility with the capacity to process up to 8,000 t/a of monazite-type ores. The proposed initial capacity is 4,000 t/a. This Draft Environmental Impact Statement relates to Stage 3 and is based on a monazite processing capacity of 8,000 t/a. The justification of the project is given in terms of use and the market for rare earths, the economic and environmental benefits of the proposal, the site selection process, site rehabilitation, and the consequences of not proceeding. A detailed description of the project is given, including the treatment process, site development and facilities, the supply of raw materials, product and waste handling, transport and storage, plant commissioning, operation and decommissioning, construction and staffing. The environmental issues entailed in the proposed development are discussed and include social effects, land use and infrasturcture considerations, risk management and transport. Occupational and environmental radiation issues, including assessments of exposure pathways and doses, management and monitoring, disposal of monosite residue are also discussed. It is estimated that the effects of disposal of 2,330 t/year of radioactive slurry in the sub-aerial tailing disposal system at Olympic Dam will be negligible. Moreover, the gamma dose increases would not result in any significant increase in occupational exposures. 38 refs., tabs., ills

  9. Enhanced separation of rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenhalgh, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herbst, R. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Soderstrom, M. D. [Cytec Solvay Group, Tempe, AZ (United States); Jakovljevic, B. [Cytec Solvay Group, Niagara Falls, ON (Canada)

    2016-09-01

    Industrial rare earth separation processes utilize PC88A, a phosphonic acid ligand, for solvent extraction separations. The separation factors of the individual rare earths, the equipment requirements, and chemical usage for these flowsheets are well characterized. Alternative ligands such as Cyanex® 572 and the associated flowsheets are being investigated at the pilot scale level to determine if significant improvements to the current separation processes can be realized. These improvements are identified as higher separation factors, reduced stage requirements, or reduced chemical consumption. Any of these improvements can significantly affect the costs associated with these challenging separation proccesses. A mid/heavy rare earth element (REE) separations flowsheet was developed and tested for each ligand in a 30 stage mixer-settler circuit to compare the separation performance of PC88A and Cyanex® 572. The ligand-metal complex strength of Cyanex® 572 provides efficient extraction of REE while significantly reducing the strip acid requirements. Reductions in chemical consumption have a significant impact on process economics for REE separations. Partitioning results summarized Table 1 indicate that Cyanex® 572 offers the same separation performance as PC88A while reducing acid consumption by 30% in the strip section for the mid/heavy REE separation. Flowsheet Effluent Compositions PC88A Cyanex® 572 Raffinate Mid REE Heavy REE 99.40% 0.60% 99.40% 0.60% Rich Mid REE Heavy REE 2.20% 97.80% 0.80% 99.20% Liquor Strip Acid Required 3.4 M 2.3 M Table 1 – Flowsheet results comparing separation performance of PC88A and Cyanex® 572 for a mid/heavy REE separation.

  10. Process for making rare earth metal chlorides

    International Nuclear Information System (INIS)

    Kruesi, P.R.

    1981-01-01

    An uncombined metal or a metal compound such as a sulfide, oxide, carbonate or sulfate is converted in a liquid salt bath to the corresponding metal chloride by reacting it with chlorine gas or a chlorine donor. The process applies to metals of groups 1b, 2a, 2b, 3a, 3b, 4a, 5a and 8 of the periodic table and to the rare earth metals. The chlorine donor may be ferric or sulfur chloride. The liquid fused salt bath is made up of chlorides of alkali metals, alkaline earth metals, ammonia, zinc and ferric iron. Because the formed metal chlorides are soluble in the liquid fused salt bath, they can be recovered by various conventional means

  11. Luminescence studies of rare earth doped dosimeters

    International Nuclear Information System (INIS)

    Karali, T.

    1999-10-01

    The main objective of this thesis has been to address the applications and fundamentals of thermoluminescence (TL) and to contribute to existing knowledge about TL mechanisms in materials which are applied as radiation dosimeters. This issue has been explored for a long time but the mechanisms lack completeness and certainty. TL, Radioluminescence (RL) and Radio-thermoluminescence (RLTL) measurements have been conducted on a high sensitivity TL spectrometer both at low (30-290 K) and high (25-400 deg. C) temperatures, and different heat treatments (furnace and laser) were conducted in order to study the possible impurity clustering which changes the TL spectra and efficiency of the dosimeters. Studies have been based on three different host structure, namely sulphate, borates and zircon. The spectra of calcium sulphate samples doped with Tm 3+ and Dy 3+ at different concentration were examined using TL, RL and RLTL. Similar procedures were applied to the borate samples. Modifications of the material by thermal treatments convert the state of dispersion of the rare earth ions between isolated, pair or defect clusters, which alter the dosimeter efficiency. In some cases, modified geometries are detectable by movement of the line emissions such as for quenched samples which are attributable to new microcrystal line phases. The study of co-doped samples showed unequivocal evidence of a glow peak displacement of the two dopants within a single sample. This result supports the new view that RE 3+ ions could form part of a complex defect acting as both charge trap and recombination centres. Pulsed laser heating with a UV laser changed the glow curve shape and lead to strong signals. The detailed mechanisms for this process are discussed. The RL and TL spectra of synthetic zircon crystals doped with different RE 3+ ions (Pr, Sm, Eu, Gd, Ho, Dy, Er, and Yb) and phosphorus are reported. Even though there is some intrinsic emission from the host lattice the major signals are

  12. Alternative value chains for rare earths

    DEFF Research Database (Denmark)

    Machacek, Erika; Fold, Niels

    2014-01-01

    The 2011 peak in rare earth element (REE) prices revealed a vast knowledge gap on the REE-based industry considered to be almost monopolized by Chinese players. A global value chain (GVC) framework is used to provide an understanding of value-adding segments of REE in their transformation from mine...... to market but inquiries on the currently most-advanced company strategies for alternative REE supplies form the cornerstone of this paper. The Anglo-REE deposit developer strategies are aligned with the value-adding segments and different approaches to integration and co-optation of REE processing...

  13. A comparative study of the magnetic properties and phase separation behavior of the rare earth cobaltates, Ln 0.5Sr0.5CoO3 (Ln=rare earth)

    International Nuclear Information System (INIS)

    Kundu, Asish; Sarkar, R.; Pahari, B.; Ghoshray, A.; Rao, C.N.R.

    2007-01-01

    A comparative study of the magnetic properties of a few members of the Ln 0.5 Sr 0.5 CoO 3 family with different radii of the A-site cations, A >, in the range 1.19-1.40 A has been carried out. The apparent T c (where the magnetization undergoes an abrupt increase) decreases markedly with A > as well as the size-disorder arising from the mismatch in the size of the A-site cations. The value of the magnetization at low temperatures decreases markedly with decrease in A > or increase in size-disorder, suggesting that the relative proportion of the ferromagnetic (FM) species decreases relative to that of the paramagnetic (PM) species. Such a variation of the FM/PM ratio with composition and temperature is evidenced from the Moessbauer spectra of La 0.5 Sr 0.5 CoO 3 as well. The variation of the FM/PM ratio with A > and size-disorder, as well as a local-probe study using 59 Co Nuclear magnetic resonance spectroscopy suggest that electronic phase separation is an inherent feature of the Ln 0.5 Sr 0.5 CoO 3 type cobaltates, with the nature of the different magnetic species in the phase-separated system varying with A > and size disorder. - Graphical abstract: Variation of (a) T c and (b) FC magnetization at 1000 Oe with A > at 120 K in Ln 0.5 Sr 0.5 CoO 3 and Dy 0.34 Nd 0.16 Sr 0.40 Ca 0.10 CoO 3

  14. Preparation of high crystalline nanoparticles of rare-earth based complex pervoskites and comparison of their structural and magnetic properties with bulk counterparts

    DEFF Research Database (Denmark)

    Basith, M. A.; Islam, M. A.; Ahmmad, Bashir

    2017-01-01

    of crystalline and amorphous phases. FESEM images demonstrate the formation of nanoparticles with average particle size in the range of 50–100 nm for both ultrasonication and 4 h (h) of ball milling. The bulk materials and nanoparticles synthesized by both ultrasonication and 4 h ball milling exhibit...... of the nanoparticles due to ball milling particularly for milling time exceeding 8 h. This investigation demonstrates the potential of ultrasonication as a simple route to prepare high crystalline rare-earth based manganite nanoparticles with improved control compared to the traditional ball milling technique....

  15. Compact Rare Earth Emitter Hollow Cathode

    Science.gov (United States)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  16. Structures and magnetic properties of rare earth double perovskites containing antimony or bismuth Ba{sub 2}LnMO{sub 6} (Ln=rare earths; M=Sb, Bi)

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Shumpei, E-mail: m-nis-s-o@ec.hokudai.ac.jp; Hinatsu, Yukio

    2015-07-15

    A series of double perovskite-type oxides Ba{sub 2}LnMO{sub 6} (Ln=lanthanides; M=Sb, Bi) were synthesized and their structures were studied. The Ln and M are structurally ordered in the rock-salt type at the B-site of the perovskite ABO{sub 3}. For Ba{sub 2}PrBiO{sub 6} and Ba{sub 2}TbBiO{sub 6}, it has been found that the disordering between Ln ion and Bi ion occurs at the B-site of the double perovskite and both the Pr (Tb) and Bi exist in two oxidation state in the same compound from the analysis of the X-ray diffraction and magnetic susceptibility data. Magnetic susceptibility measurements show that all these compounds are paramagnetic and have no magnetic ordering down to 1.8 K. - Graphical abstract: Tolerance factor for Ba{sub 2}LnMO{sub 6} (M=Sb, Bi) plotted against the ionic radius of Ln{sup 3+}. We have found that there is a clear relation between crystal structures and tolerance factors. - Highlights: • The Ln and M ions are structurally ordered in the rock-salt type at the B-site. • The disordering between Pr (Tb) ion and Bi ion occurs at the B-site. • Ba{sub 2}LnMO{sub 6} (M=Sb, Bi) have no magnetic ordering down to 1.8 K.

  17. Monazite upgradation and production of high pure rare earths

    International Nuclear Information System (INIS)

    Asnani, C.K.; Mohanty, D.; Kumar, S.S.

    2014-01-01

    Rare earth extraction from monazite and further processing of mixed rare earth chlorides for producing individual high pure rare earths involves a complex flowsheet based on solvent extraction process. Apart from involving multiple extractions, scrubbing and stripping operations, the flowsheet requires optimization of critical parameters such as solvent molarity, solvent saponification level and recycling of product solutions as reflux to ensure preferential upload of required rare earths to generate high purity product. This paper tracks monazite flow from the raw sand feed through to the monazite product and its processing to generate rare earths of internationally acceptable quality

  18. Costs and benefits of rare earth screens

    International Nuclear Information System (INIS)

    Taylor, F.E.

    1977-01-01

    The British Institute of Radiology has submitted evidence (Royal Commission on Environmental Pollution, 1976, Sixth Report, Nuclear Power and the Environment. Cmnd 6618, HMSO, London) leading to the conclusion that the introduction of rare earth screens in medical radiography is not financially practical at present in the U.K. This conclusion is questioned. The cost of reducing the genetic dose from medical radiography should be compared with the costs of reducing that from other sources such as nuclear power wastes, since the risks are to future generations in both cases. The cost of reducing public exposure by the use of rare earth screens in U.K. hospitals is calculated to be about Pound1 per man-rad; a total annual genetic collective dose of nearly 300,000 man-rad could be saved. An anomalous situation is presented by the great discrepancies between this cost, and published estimates both of the cost of the detriment associated with the genetic collective dose and of the value incorporated into the design objective for nuclear reactors. (U.K.)

  19. Magnetic properties of lithium rare-earth fluorides: Ferromagnetism in LiErF4 and LiHoF4 and crystal-field parameters at the rare-earth and Li sites

    DEFF Research Database (Denmark)

    Hansen, P. E.; Johansson, Torben; Nevald, Rolf

    1975-01-01

    Single crystals of LiErF4 and LiHoF4 have been grown and their magnetic properties measured from 1.3 K to 300 K. LiHoF4 turned out to be a nearly ideal Ising ferromagnet with TC=1.30±0.05 K and a saturation magnetization along the crystalline c axis of (6.98±0.02)μB. In LiErF4 no ordering...... was observed, but extrapolation indicates that below 0.5 K it will be ferromagnetic with the magnetic moments in the crytalline ab plane. From the susceptibilities the crystal-field parameters Bnm with (n, m)=(2, 0), (4, 0), (4, 4), (6, 0), (6, 4) have been extracted giving for Er3+ in LiErF4: 430., -985......., 1185., -5., 740.+i135. (cm-1) and for Ho3+ in LiHoF4: 470., -825., 1050., -10., 760.+i150 (cm-1). The exchange constants were found to be small compared to the dipole interactions. Furthermore the 7Li NMR spectra have been obtained in these materials as well as in LiTbF4 thereby determining the second...

  20. Emerging industrial processes for low grade rare earth mineral concentrates

    International Nuclear Information System (INIS)

    Soldenhoff, Karin; Ho, Elizabeth

    2015-01-01

    Historically rare earth recovery has mainly been derived from the processing of monazite, bastnasite and xenotime containing ores amenable to beneficiation, yielding high grade mineral concentrates. A notable exception is the recovery of heavy rare earths from ionic clays in Southern China. Recently, projects are being proposed to treat a range of mineral concentrates which tend to be lower grade with wide ranging modal mineralogy for rare earths and associated gangue minerals. This has a significant impact on processing routes. This paper discusses processes proposed for emerging rare earth producers and how different projects have responded to particular challenges including: Control of phosphorous due to the presence of xenotime or monazite type minerals; Control of phosphorous due to the presence of rare earth containing apatite; Rare earth recovery from polymetallic ores; Control of radionuclides in rare earth processing, etc.

  1. Measuring Earth's Magnetic Field Simply.

    Science.gov (United States)

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  2. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  3. Transformation from an easy-plane to an easy-axis antiferromagnetic structure in the mixed rare-earth ferroborates Pr x Y1-x Fe3(BO3)4: magnetic properties and crystal field calculations.

    Science.gov (United States)

    Pankrats, A I; Demidov, A A; Ritter, C; Velikanov, D A; Semenov, S V; Tugarinov, V I; Temerov, V L; Gudim, I A

    2016-10-05

    The magnetic structure of the mixed rare-earth system Pr x Y1-x Fe3(BO3)4 (x  =  0.75, 0.67, 0.55, 0.45, 0.25) was studied via magnetic and resonance measurements. These data evidence the successive spin reorientation from the easy-axis antiferromagnetic structure formed in PrFe3(BO3)4 to the easy-plane one of YFe3(BO3)4 associated with the weakening of the magnetic anisotropy of the Pr subsystem due to its diamagnetic dilution by nonmagnetic Y. This reorientation occurs through the formation of an inclined magnetic structure, as was confirmed by our previous neutron research in the range of x  =  0.67 ÷ 0.45. In the compounds with x  =  0.75 and 0.67 whose magnetic structure is close to the easy-axis one, a two-step spin reorientation takes place in the magnetic field H||c. Such a peculiarity is explained by the formation of an interjacent inclined magnetic structure with magnetic moments of Fe ions located closer to the basal plane than in the initial state, with these intermediate states remaining stable in some ranges of the magnetic field. An approach based on a crystal field model for the Pr(3+) ion and the molecular-field approximation is used to describe the magnetic characteristics of the system Pr x Y1-x Fe3(BO3)4. With the parameters of the d-d and f-d exchange interactions, of the magnetic anisotropy of the iron subsystem and of the crystal field parameters of praseodymium thus determined, it is possible to achieve a good agreement between the experimental and calculated temperature and field dependences of the magnetization curves (up to 90 kOe) and magnetic susceptibilities (2-300 K).

  4. Recovery of rare earth minerals, with emphasis on flotation process

    International Nuclear Information System (INIS)

    Houot, R.; Cuif, J.P.; Mottot, Y.; Samama, J.C.

    1991-01-01

    Bastnasite and monazite are the two major minerals used commercially to supply most of the rare earths. Monazite is often a by-product of the concentration of heavy minerals of zirconium and titanium in beach sands. Thus, the methods of concentration are gravity (spirals, Reichert cones and shaking tables), ending with magnetism, electrostatic and in certain cases, flotation. The two main deposits of bastnasite are Mountain Pass (U.S.A.) and Bayan Obo (China). The rock bastnasite content is within 15% and the recovery of rare earth minerals is made through flotation. The flowsheets are complex enough because the existence of accompanying minerals such as quartz, iron components, barite, fluorite, calcite, etc. The conditioning is done by heating and the frequently employed collector is a fatty acid associated with selective agents, as sodium silicate or fluosilicate, lignin sulphonate, sodium carbonate, aluminium salts, etc. Recent studies tempt to introduce the use of phosphoric esters, dicarboxilic, sulphonic and/or sulphosuccinic acids. Concentrates with 60% REO are then treated with acidic solution to eliminate residual calcite. The possibility of obtaining products enriched with rare earths are also noted: these are ores of uranium (Elliot Lake), pyrochlore, apatite, and other complex ores with euxenite, fergusonite or loparite. (author) 10 figs., 6 tabs., 57 refs

  5. Development of rare earth regenerator materials in fine wire form

    International Nuclear Information System (INIS)

    Wong, T.; Seuntjens, J.M.

    1997-01-01

    The use of rare earth metals, both in the pure and alloyed state, have been examined for use as regenerators in cryocooler applications and as the working material in active magnetic refrigerators. In both applications there is a requirement for the rare earth material to have a constant and uniform cross section, an average size on the order of 50-200 microns in diameter, and low levels of impurities. Existing powder production methods have drawbacks such as oxygen contamination, non-uniform size, inconsistent cross sections, and low production yields. A novel approach for the production of rare earth metals and alloys in fine wire form has been developed. This is accomplished by assembling a copperjacket and niobium barrier around a RE ingot, extruding the assembly, and reducing it with standard wire drawing practices. Strand anneals are utilized between drawing passes when necessary in order to recrystallize the RE core and restore ductility. The copperjacket is removed by chemical means at final size, leaving the Nb barrier in place as a protective coating. This process has been applied to gadolinium, dysprosium and a GdDy alloy

  6. Charge-order driven multiferroic and magneto-dielectric properties of rare earth manganates

    International Nuclear Information System (INIS)

    Serrao, Claudy Rayan; Sahu, Jyoti Ranjan; Ghosh, Anirban

    2010-01-01

    Charge-order driven magnetic ferroelectricity is shown to occur in several rare earth manganates of the general formula, Ln 1-x A x MnO 3 (Ln rare earth, A = alkaline earth). Charge-ordered manganates exhibit dielectric constant anomalies around the charge-ordering or the antiferromagnetic transition temperature. Magnetic fields have a marked effect on the dielectric properties of these compounds, indicating the presence of coupling between the magnetic and electrical order parameters. Magneto-dielectric properties are retained in small particles of the manganates. The observation of magneto-ferroelectricity in these manganates is in accordance with theoretical predictions. (author)

  7. Self-propagating high temperature synthesis, structural morphology and magnetic interactions in rare earth Ho{sup 3+} doped CoFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lohar, K.S. [Materials Research Laboratory, Srikrishna Mahavidyalaya Gunjoti, Omerga, Osmanabad 413 613, MS (India); Pachpinde, A.M.; Langade, M.M. [Department of Chemistry, Jawahar Art Science and Commerce College Andur, Osmanabad, MS (India); Kadam, R.H. [Materials Research Laboratory, Srikrishna Mahavidyalaya Gunjoti, Omerga, Osmanabad 413 613, MS (India); Shirsath, Sagar E., E-mail: shirsathsagar@hotmail.com [Spin Device Technology Center, Department of Information Engineering, Shinshu University, Nagano 380-8553 (Japan)

    2014-08-01

    Highlights: • Rare earth Ho{sup 3+} substituted CoFe{sub 2}O{sub 4.} • XRD and IR spectra reveal the spinel structure. • Magnetization and coercivity increased with Ho{sup 3+} substitution. - Abstract: Substitution effect of rare earth trivalent Ho{sup 3+} ions on the composition, Ho{sub x}CoFe{sub 2−x}O{sub 4}, with x varying from 0.0 to 0.1 in steps of 0.025 using sol–gel auto combustion route has been investigated. Examination of X-ray diffraction (XRD) patterns shows that all the samples consisted of ferrite phases of typical spinel cubic structure, and when Ho{sup 3+} ion content was x ⩾ 0.075, orthoferrite–HoFeO{sub 3} phase was detected. The micro and nanostructure of the synthesized Ho doped CoFe{sub 2}O{sub 4} ferrites were investigated by scanning and transmission electron microscopy respectively. With increasing doping content of Ho{sup 3+} ions, the lattice constant, particle size and bulk density increased, and after an increase to its maximum value, the sample particle size and density dropped down. Cation distribution estimated from XRD patter revealed that the Co{sup 2+} and Ho{sup 3+} ions prefer to occupy octahedral B-site whereas Fe{sup 3+} ions are distributed over tetra- and octa-hedral site. Oxygen positional parameter shows larger values than its ideal value. The analysis of magnetic properties revealed that the saturation magnetization and coercivity of CoFe{sub 2}O{sub 4} increased with the rare earth Ho{sup 3+} substitution.

  8. The magnetoresistivity of some rare-earth metals

    International Nuclear Information System (INIS)

    Webber, G.D.

    1978-10-01

    The thesis describes measurements of the low temperature transverse magnetoresistivities of single crystals of rare-earth metals in magnetic fields up to 8 Tesla. A general introduction to the rare-earths, their magnetic properties and a review of the basic theory and mechanism of magnetoresistivity is given. Details of the crystal structure, growth of single crystals and sample mounting method follow. The experimental equipment and measuring techniques are then described. The low temperature transverse magnetoresistivity of polycrystalline lanthanum and single crystal praseodymium for the temperature range 4.2 - 30K is measured. The separation of the spin-disorder and Fermi-surface orbital effect contributions are described and the theoretical and experimental spin-disorder values compared. Magnetoresistivity measurements for neodymium single crystals (4.2 - 30K) are compared with the magnetic properties determined from neutron diffraction studies. Results for gadolinium single crystals (4.2 - 200K) are compared for two different impurity levels and with previous work. (UK)

  9. Effect of rare earth substitution in cobalt ferrite bulk materials

    International Nuclear Information System (INIS)

    Bulai, G.; Diamandescu, L.; Dumitru, I.; Gurlui, S.; Feder, M.; Caltun, O.F.

    2015-01-01

    The study was focused on the influence of small amounts of rare earth (RE=La, Ce, Sm, Gd, Dy, Ho, Er, Yb) addition on the microstructure, phase content and magnetic properties of cobalt ferrite bulk materials. The X-Ray diffraction measurements confirmed the formation of the spinel structure but also the presence of secondary phases of RE oxides or orthoferrite in small percentages (up to 3%). Density measurements obtained by Archimedes method revealed a ~1 g cm −3 decrease for the RE doped cobalt ferrite samples compared with stoichiometric one. Both the Mössbauer and Fourier Transform Infrared Spectrocopy analysis results confirmed the formation of the spinel phase. The saturation magnetization and coercive field values of the doped samples obtained by Vibrating Sample Magnetometry were close to those of the pure cobalt ferrite. For magnetostrictive property studies the samples were analyzed using the strain gauge method. Higher maximum magnetostriction coefficients were found for the Ho, Ce, Sm and Yb doped cobalt ferrite bulk materials as related to the stoichiometric CoFe 2 O 4 sample. Moreover, improved strain derivative was observed for these samples but at higher magnetic fields due to the low increase of the coercive field values for doped samples. - Highlights: • Substitution by a large number of rare earth elements was investigated. • First reported results on magnetostriction measurements of RE doped cobalt ferrite. • The doped samples presented an increased porosity and a decreased grain size. • Increased magnetostrctive response was observed for several doped samples

  10. Global use structures of the magnetic materials neodymium and dysprosium. A scenario-based analysis of the effect of the diffusion of electromobility on the demand for rare earths

    International Nuclear Information System (INIS)

    Gloeser-Chahoud, Simon; Kuehn, Andre; Tercero Espinoza, Luis

    2016-01-01

    Neodymium-iron-boron magnets (NdFeB) have experienced a significant demand as the most powerful permanent magnet in recent years, especially for the manufacture of compact electric servomotors with high efficiency and high power density, especially for mobile applications in hybrid traction motors and electric vehicles or for electric bikes. However, NdFeB magnets are also increasingly being used in general mechanical engineering (conveying and pumping systems, tools, air conditioning systems, lift motors, etc.), in the small electric motors of conventional passenger cars or in the generators of large wind power plants with permanent magnetic direct drive. Nevertheless, there is still high uncertainty in the use structures of NdFeB magnets and the contained rare earth elements neodymium and dysprosium. An effective instrument for increasing the market transparency and the understanding of complex anthropogenic material cycles is the dynamic material flow modeling. In the present work paper, this instrument is used for an in-depth analysis of the use structures of NdFeB magnets and the contained rare earths on a global scale. The dynamic modeling of product usage cycles reveals today's usage structures and quantifies future magnetic quantities in obsolete product flows. It could be shown that the magnets in today's scrap volume are mainly contained in obsolete electronics applications such as hard disks (HDD), CD and DVD drives, which makes the recycling hardly seem to be economical due to the small magnets and the high material spread, but in the foreseeable future with larger magnetic quantities from synchronous servomotors and generators can be expected, which significantly increases the recycling potential. In a further step, the effect of the diffusion of alternative drives in the automotive market on the dysprosium requirement is analyzed using a system dynamics model and possible adaptation mechanisms in the form of different substitution effects in the

  11. Rare earth element patterns in nigerian coals

    International Nuclear Information System (INIS)

    Ewa, I.O.B.; Elegba, S.B.

    1996-01-01

    Rare Earth Elements (REE's) retain group coherence in their environment and are therefore useful geochemical markers. We report the pattern of ten REE's (La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Lu) determined by Instrumental Neutron Activation Analysis (INAA) for coals obtained from eight mines in Nigeria, namely, Okaba, Enugu, Ogbete, Onyeama, Gombe, Lafia, Asaba and Afikpo. Our results show the existence of fractionations with the highest index of 13.19 for Lafia coal, depletion in HREE, negative Eu anomaly for most of the coals, REE patterns that are consistent with chondritic trends; prominent (Eu/Eu * ) cn for Okaba and Gombe coals. Variations in geochemical data observed could suggest strong departures from band metamorphism during the coalification events of the Benue Trough geosynclines, where the coal deposits are all located. (author) 14 refs., 2 figs., 3 tabs

  12. Double selenates of rare earths and ammonium

    International Nuclear Information System (INIS)

    Iskhakova, L.D.; Kozlova, N.P.; Makarevich, L.G.

    1991-01-01

    Double selenates of rare earths with ammonium were prepared in result of crystallization. It is shown that NH 4 Ln(SeO 4 ) · nH 2 O crystalline hydrates are presented by penta-and trihydrates. Existance of two modifications was revealed for NH 4 Ln(SeO 4 ) · 5H 2 O: monoclinic form of NH 4 La(SeO 4 ) 2 · 5H 2 O, isostructural RbCe(SeO 4 ) 2 · 5H 2 O, and earlier unknown rhombic form of salts with Ln = Pr, Nd. Trihydrates with Ln = Sm-Yb belong to structural type of RbNd(SeO 4 ) 2 · 3H 2 O. Anhydrous salts NH 4 Ln(SeO 4 ) 2 are isostructural with monoclinic KNd(SO 4 ) 2 modification. Lattice parameters of binary selenates are presented

  13. Ecological effect of rare earth elements

    International Nuclear Information System (INIS)

    Hu Aitang; Zhou Quansuo; Zheng Shaojian; Zhai Hai; Zhao Xiulan; Pang Yonglin; Wang Yuqi; Sun Jingxin; Zhang Shen; Wang Lijun

    1997-01-01

    Water and soil culture were carried out to study the ecological effect of rare earth elements (REEs) in the aspect of plant-soil system. Contents of REEs were determined by instrumental neutron activation analysis (INAA). There was a limit to REEs-tolerance of crops, which differed with the development periods of plant and soil types. The REEs concentration in plant, especially in root, was marked related to the concentration in culture material. Beyond the concentration-limit appeared phototoxicity. The chemical behavior of REEs in plants and soils varied with soil types and elements. The bio-availability of REEs in soil mainly depended on the exchangeable fraction of REEs affected strongly by the physi-chemical properties of soils

  14. Electronic Structure of Rare-Earth Metals. II. Positron Annihilation

    DEFF Research Database (Denmark)

    Williams, R. W.; Mackintosh, Allan

    1968-01-01

    of Loucks shows that the independent-particle model gives a good first approximation to the angular distribution, although correlation effects probably smear out some of the structure. The angular distributions from the heavy rare-earth metals are very similar to that from Y and can be understood....... In the spiral phase of Ho, the structure in the c-axis distribution is much reduced, indicating that the Fermi surface is substantially modified by the magnetic ordering, as expected. The photon distribution from the equiatomic Ho-Er alloy is very similar to those from the constituent metals, although...

  15. Processing of monazite at the rare earth division,Udyogamandal

    International Nuclear Information System (INIS)

    Narayanan, N.S.; Thulasidoss, S.; Ramachandran, T.V.; Swaminathan, T.V.; Prasad, K.R.

    1988-01-01

    The processing techniques adopted at the Rare Earth Division of the Indian Rare Earths Limited at Udyogamandal, for the production of rare earth compounds of various compositions and purity grades are reviewed. Over 100 different compounds are produced and marketed, and these include mixed rare earths chloride, crude thorium concentrate, cerium oxide, cerium hydrate, rare earths carbonate, didymium salts and individual rare earth oxides and salts. Also, the trisodium phosphate obtained as byproduct in the processing of monazite, is recovered and marketed. The process scheme for monazite essentially involves alkaline digestion of ground monazite, removal of the by-product trisodium phosphate, separation of thorium through preferential dissolution of rare earths hydroxide in hydrochloric acid under controlled pH and temperature conditions followed by purification, and evaporation of the chloride solution to yield pure rare earths chloride. Part of the chloride is utilised for the production of individual rare earth compounds after separation by solvent extraction and ion exchange processes. Individual rare earth compounds of 99.99 %+ purity are regularly produced to cater to the demand within the country. (author) 8 figs., 1 tab

  16. X-ray dichroism of rare earth materials

    International Nuclear Information System (INIS)

    Goedkoop, J.B.

    1989-01-01

    The theme of this thesis is the investigation of the strong polarization dependende, or dichroism, that occur in the X-ray absorption spectra of rare earth materials. The rare earth elements distinguish themselves from the other elements through the behaviour of the 4f electrons which form the valence shell. This shell lies deep inside the atom, with the result that influences from the surrounding solid are well screened off by the outer electrons, so that even in the solid the 4f shell behaves very much like a in free atom or ion, and is almost completely spherically symmetric. Perturbations from the solid environment however always disturb this symmetry to some extend, with the result that the absorption spectrum becomes dependent on the mutual orientation of the polarization vector of the radiation and the ion. Earlier the existence of a strong magnetic X-ray dichroism (MXD) in the 3d→4f transitions of rare earths. In this thesis this work is extended, to a small degree theoretically but mainly experimentally. MXD is used in experiments on bulk sample, terbium iron garnet, and on rare earth overlayers on a ferromagnetic surface, Ni(110). The results of the latter study show unequivocally the potential of the MXD technique. The second theme of the thesis concerns experimental developments in soft X-ray spectroscopy. A description is given of a double crystal monochromator beamline that was constructed by our group at LURE, France. Results of the use of an organic crystal - multilayer comination in such a monochromator is described. Also a method is described for the characterization of the resolution of soft X-ray monochromators. Finally a contribution to the characterization of the electron yield technique in the soft X-ray range is given. (author). 296 refs.; 64 figs.; 59 schemes; 9 tabs

  17. Behaviour of Rare Earth Elements during the Earth's core formation

    Science.gov (United States)

    Faure, Pierre; Bouhifd, Mohamed Ali; Boyet, Maud; Hammouda, Tahar; Manthilake, Geeth

    2017-04-01

    Rare Earth Elements (REE) are classified in the refractory group, which means that they have a high temperature condensation and their volatility-controlled fractionation is limited to high-temperature processes. Anomalies have been measured for Eu, Yb and Sm, which are the REE with the lowest condensation temperatures in CAIs and chondrules (e.g. [1]). REE are particularly abundant in the sulfides of enstatite chondrites, 100 to 1000 times the CI value [e.g. 2,3], proving that these elements are not strictly lithophile under extremely reducing conditions. However by investigating experimentally the impact of Earth's core formation on the behavior of Sm and Nd, we have shown the absence of fractionation between Sm and Nd during the segregation of the metallic phase [4]. Recently, Wohlers and Wood [5] proposed that Nd and Sm could be fractionated in presence of a S-rich alloy phase. However, their results were obtained at pressure and temperature conditions below the plausible conditions of the Earth's core formation. Clearly, large pressure range needs to be covered before well-constrained model can be expected. Furthermore, our preliminary metal-silicate partitioning results show that Ce and Eu have higher metal/silicate partition coefficients than their neighboring elements, and that the presence of sulphur enhances the relative difference between partition coefficients. In this presentation, we will present and discuss new metal-silicate partition coefficients of all REE at a deep magma ocean at pressures ranging from those of the uppermost upper mantle ( 5 GPa) to a maximum pressure expected in the range of 20 GPa, temperatures ranging from 2500 to about 3000 K, and oxygen fugacities within IW-1 to IW-5 (1 to 5 orders of magnitude lower than the iron-wüstite buffer). We will discuss the effect of S, as well as the effect of H2O on the behaviour of REE during the Earth's core formation: recent models suggest that contrary to currently accepted beliefs, the

  18. The Gd-Co-Al system at 870/1070 K as a representative of the rare earth-Co-Al family and new rare-earth cobalt aluminides: Crystal structure and magnetic properties

    Science.gov (United States)

    Morozkin, A. V.; Garshev, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Mozharivskyj, Y.; Yuan, Fang; Yao, Jinlei; Nirmala, R.; Quezado, S.; Malik, S. K.

    2018-05-01

    The Gd-Co-Al system has been investigated at 870/1070 K by X-ray and elemental EDS analyses. The existence of the known compounds Gd2Co3Al9 (Y2Co3Ga9-type), Gd3Co4.5Al11.5 (Gd3Co4.6Al11) (Gd3Ru4Al12-type), Gd3Co6-7.4Al3-1.6 (CeNi3-type), GdCo1.15-0.65Al0.85-1.35 (MgZn2-type), Gd2Co2Al (Mo2NiB2-type) and Gd3Co3.5-3.25Al0.5-0.75 (W3CoB3-type) has been confirmed at 870/1070 K. Structure types have been determined for Gd2Co6Al19 (U2Co6Al19-type), Gd7Co6Al7 (Pr7Co6Al7-type), Gd6Co2-2.21Al1-0.79 (Ho6Co2Ga-type) and Gd14Co3.2Al2.8 (Gd14Co2.58Al3.42 at 970 K) (Lu14Co3In3-type). The structures of Gd6Co2Al, Gd6Co2.21Al0.79 and Gd14Co2.58Al3.42 flux-grown at 970 K have been refined from the single crystal X-ray diffraction data. Additionally, new ternary compounds Gd2Co5.7-5.3Al1.3-1.7 (Er2Co7-type) and Gd58Co20Al22 (unknown type structure) have been identified. Quasi-binary solid solutions were detected for Gd2Co17, GdCo5, Gd2Co7, GdCo3, GdCo2 and GdAl2 at 870/1070 K, while no appreciable solubility was observed for the other binary compounds in the Gd-Co-Al system. Magnetic properties of the Gd2Co3Al9, Gd3Co4.6Al11, Gd7Co6Al7, Gd6Co2.2Al0.8 and Gd14Co2.58Al3.42 compounds have been studied and are presented in this work. Gd6Co2.2Al0.8, Gd3Co4.6Al11, Gd7Co6Al7 and Gd14Co2.58Al3.42 order ferromagnetically, while Gd2Co3Al9 displays antiferromagnetic transition. Additionally, {Y, Sm, Tb - Tm}2Co6Al19 (U2Co6Al19-type), Yb2Co3Al9 (Y2Co3Ga9-type), {Y, Sm, Tm, Yb}3Co4.6Al11 (Gd3Ru4Al12-type) and Tb7Co6Al7 (Pr7Co6Al7-type) compounds have been synthesized and investigated.

  19. Enhanced pinning in mixed rare earth-123 films

    Science.gov (United States)

    Driscoll, Judith L [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2009-06-16

    An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.

  20. Production of rare earth-silicon-iron alloys

    International Nuclear Information System (INIS)

    Mehra, O.K.; Bose, D.K.; Gupta, C.K.

    1987-01-01

    At Metallurgy Division, BARC, improved procedures for producing rare earth-silicon alloys have been investigated. In these methods, reduction of mixed rare earth oxide by a ferro-silicon and aluminium mixture in combination with CaO-MgO flux/CaO-CaF 2 flux have been tried to prepare an alloy product with a higher rare earth recovery at a higher rare earth content than the present commercial production method. The rare earth recovery using CaO-CaF 2 was 85 per cent while in the case of CaO-MgO flux it was 76 per cent. The corresponding rare earth contents in the alloy correspond to 40 per cent and 55 per cent by weight respectively. (author)

  1. A study on dehydration of rare earth chloride hydrate

    International Nuclear Information System (INIS)

    Cho, Yong Zun; Eun, Hee Chul; Son, Sung Mo; Lee, Tae Kyo; Hwang, Taek Sung

    2012-01-01

    The dehydration schemes of rare earth (La, Ce, Nd, Pr, Sm. Eu, Gd, Y) chloride hydrates was investigated by using a dehydration apparatus. To prevent the formation of the rare earth oxychlorides, the operation temperature was changed step by step (80→150→230 degree C) based on the TGA (thermo-gravimetric analysis) results of the rare earth chloride hydrates. A vacuum pump and preheated Ar gas were used to effectively remove the evaporated moisture and maintain an inert condition in the dehydration apparatus. The dehydration temperature of the rare earth chloride hydrate was increased when the atomic number of the rare earth nuclide was increased. The content of the moisture in the rare earth chloride hydrate was decreased below 10% in the dehydration apparatus.

  2. Environmental Defects And Economic Impact On Global Market Of Rare Earth Metals

    Science.gov (United States)

    Charalampides, G.; Vatalis, K.; Karayannis, V.; Baklavaridis, A.

    2016-11-01

    Rare earth elements include the 14 lanthanides as well as lanthanium and often yttrium. Actually, most of them are not very rare and occur widely dispersed in a variety of rocks. Rare earth metals are vital to some of the world's faster growing industries: catalysts, Nd-magnets, ceramics, glass, metallurgy, battery alloys, electronics and phosphors. Worldwide, the main countries for distribution of rare earths deposits include China, USA, Russia, Brasil, India, Australia, Greenland and Malaysia. The mining and processing of rare earth metals usually result in significant environmental defects. Many deposits are associated with high concentrations of radioactive elements such as uranium and thorium, which requires separate treatment and disposal. The accumulation of rare earth elements in soils has occurred due to pollution caused by the exploitation of rare earth resources and the wide use of rare earths as fertilizers in agriculture. This accumulation has a toxic effect on the soil microfauna community. However, there are large differences in market prices due to the degree of purity determined by the specifications in the applications. The main focus of this article is to overview Rare Earth Metals’ overall impact on global economy and their environmental defects on soils during processing techniques and as they are used as fertilizers.

  3. Leaching of rare earth elements from bentonite clay

    OpenAIRE

    van der Watt, J.G; Waanders, F.B

    2012-01-01

    Due to increasing concerns of global rare earth element shortfalls in the near future, possible alternative sources of rare earth elements have recently become of economic interest. One such alternative is decanting acid mine water originating primarily from abandoned old mines in the Witwatersrand region of the Republic of South Africa. In this study, a novel way of rare earth element removal from the acid mine drainage was employed, making use of bentonite clay, which has very good adsorben...

  4. Enzymatic determination of rare earth elements using pyrophosphatases

    International Nuclear Information System (INIS)

    Shekhovtsova, T.N.; Pirogova, S.V.; Fedorova, O.M.; Dolmanova, I.F.; Bajkov, A.A.

    1993-01-01

    A highly sensitive(determination limit 8x10 -6 -4x10 -4 μ g/m) and selective enzymatic method for determination of rare earth elements has been developed. The method is based on inhibition action of rare earths on the catalytic activity of pyrophosphates isolated from bakery geast and E.Coli. The mechanism of the rare earth element action, corresponding to competitive inhibition, has been established

  5. Enzymatic determination of rare earth elements by use of pyrophosphotases

    International Nuclear Information System (INIS)

    Shekhovtseva, T.N.; Pirogova, S.V.; Fedorova, O.M.; Dolmanova, I.F.; Bajkov, A.A.

    1993-01-01

    A highly sensitive (determination limit 8 x 10 -6 - 4 x 10 -4 μg/ml) and selective enzymatic method for determination of rare earth elements has been developed. The method is based on inhibition action of rare earths on the catalytic activity of pyrophosphates isolated from bakery geast and E. Coli. The mechanism of the rare earth element action, corresponding to competitive inhibition, has been established

  6. Contributions to the rare earths to science and technology

    International Nuclear Information System (INIS)

    Spedding, F.H.

    1975-01-01

    This is a brief summary of some areas of science where the rare earths have already played an important role and of other areas where they are almost certain to be helpful. The discovery, abundance, separation, and properties of rare earths are discussed. It is pointed out that the rare earths comprise almost one-fourth of the known metals, and their alloys a third of the possible alloys

  7. Distribution characteristics of rare earth elements in plants from a rare earth ore area

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; Wang, Y.Q.; Li, F.L.; Xiao, H.Q.; Chai, Z.F.

    2002-01-01

    The contents of eight rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in various plant species taken from a rare earth ore area were determined by instrumental neutron activation analysis. For a given plant, the REE patterns in root, leaf and host soil are different from each other. The REE distribution characteristics in roots of various species are very similar and resemble those in the surface water. The results of this study suggest that there is no significant fractionation between the REEs during their uptake by the plant roots from soil solution. However, the variation of the relative abundance of individual REE occurs in the process of transportation and deposition of REEs in plants. (author)

  8. Cermets based on rhenium and rare earth element oxides

    International Nuclear Information System (INIS)

    Varfolomeev, M.B.; Velichko, A.V.; Zajtseva, L.L.; Shishkov, N.V.

    1977-01-01

    The reduction of perrhenates of rare earth elements and of yttrium by hydrogen and the subsequent sintering have yielded cermets based on rhenium and rare earth element oxides inherent in which are more disperse and homogeneous structures than those of the ''molecular'' rare earth element-Tc cermets. The dispersity of cermets increases in the rare earth elements series from La to Lu. The microhardness of the Re phase in cermets is 490 kgf/mm 2 ; the total microhardness of a cermet is substantially higher

  9. Rare earths in iron and steelmaking and gaseous desulphurisation

    International Nuclear Information System (INIS)

    Kay, D.A.R.; Subramanian, S.V.; Meng, V.; Kumar, R.V.

    1985-01-01

    Rare earth (RE) additions, either as mischmetal or rare earth silicide, are used in many ladle treatment processes in modern ferrous metallurgy. In ironmaking they provide the basis for the control of graphite morphology in cast irons and in steelmaking additions are made to aluminum-killed steels for desulphurisation and the control of inclusion composition and morphology. Rare earth oxides may also be used in the desulphurisation of medium calorific value gaseous fuels and stack gases. In this paper, Ce-S-O and La-S-O phase stability diagrams are used to determine the role of the rare earths in the external processing of iron and steel, and gaseous desulphurisation

  10. Rare earth impact on glass structure and alteration kinetics

    International Nuclear Information System (INIS)

    Molieres, E.

    2012-01-01

    This work is related to the question of the geological deep repository of high-level waste glass. These wastes include fission products and minor actinides, elements which can be simulated by rare earths. As new glass compositions could enable increased rare earth concentrations, it is crucial to know and understand rare earth impact on glass structure on the one hand, and on glass alteration kinetics or their incorporation into an altered layer. This work studied simplified borosilicate glasses in order to limit synergetic effects between rare earths and other elements. Various complementary techniques were used to characterize pristine and altered glasses (solid-high resolution NMR, Raman spectroscopy, fluorescence, SIMS, SAXS). Firstly, the structural role of a rare earth is discussed and is compared to a calcium cation. The local environment of rare earths is also probed. Secondly, rare earth (nature and concentration) impact on several alteration regimes was studied (initial rate, rate drop). Then, after alteration, rare earth elements being retained within the altered layer, the structural impact of rare earth elements (and their local environment) in this alteration layer was also investigated. (author) [fr

  11. Iron corrosion inhibition by phosphonate complexes of rare earth metals

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.I.; Raskol'nikov, A.F.; Starobinskaya, I.V.; Alekseev, V.N.

    1993-01-01

    Capability is shown of trivalent rare earth nitrilotrimethylphosphonates (R= Ce, Pr, Nd, Eu, Lu, Y) to retard steel corrosion in soft water due to the formation of slightly soluble hydroxides on steel surface. The protective film is produced as a result of electrophilic substitution of nascent iron cations for rare earth ions in near the surface layer. The introduction of rare earth cations into the protective film is ascertained by Auger spectroscopy in combination with the argon spraying. A quantitative interrelation between the protective effectiveness and solubility product of rare earth hydroxides is revealed

  12. Rare earth element abundances and distribution patterns in plant materials

    International Nuclear Information System (INIS)

    Aidid, S.B.

    1994-01-01

    Eight out of the fourteen rare earth elements were estimated from the leaves of Pelthophorum pterocarpum, the leaves and roots of Impatiens balsamina, and the soils from four sampling sites by instrumental neutron activation analysis. The chondrite normalized rare earth element abundances and distribution patterns in the plant materials were found to be significantly correlated to the abundances of the rare earth elements occurring in the soils. The extent of accumulation of the rare earth elements in some plant materials was also governed by the age of the plants and the plant organs. (author) 16 refs.; 4 figs.; 3 tabs

  13. Rare earth silicide nanowires on silicon surfaces

    International Nuclear Information System (INIS)

    Wanke, Martina

    2008-01-01

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti Γ point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi 2 -monolayer and the Dy 3 Si 5 -multilayer on the Si(111) surface are investigated in comparison to the known ErSi 2 /Si(111) and Er 3 Si 5 /Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the vector k parallel space is elliptical at the anti M points, while the hole pocket at the anti Γ point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas of the sample surface, which are oriented

  14. Improved Rare-Earth Emitter Hollow Cathode

    Science.gov (United States)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  15. Magnetic interactions in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr, Nd and Gd) studied by time differential perturbed angular correlation spectroscopy and ab initio calculations.

    Science.gov (United States)

    Mishra, S N

    2009-03-18

    Applying the time differential perturbed angular correlation (TDPAC) technique we have measured electric and magnetic hyperfine fields of the (111)Cd impurity in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr and Gd) showing antiferro- and ferromagnetism with unusually high ordering temperatures. The Cd nuclei occupying the Sc site show high magnetic hyperfine fields with saturation values B(hf)(0) = 21 kG, 45 kG and 189 kG in CeScGe, PrScGe and GdScGe, respectively. By comparing the results with the hyperfine field data of Cd in rare-earth metals and estimations from the RKKY model, we find evidence for the presence of additional spin density at the probe nucleus, possibly due to spin polarization of Sc d band electrons. The principal electric field gradient component V(zz) in CeScGe, PrScGe and GdScGe has been determined to be 5.3 × 10(21) V m(-2), 5.5 × 10(21) V m(-2) and 5.6 × 10(21) V m(-2), respectively. Supplementing the experimental measurements, we have carried out ab initio calculations for pure and Cd-doped RScGe compounds with R = Ce, Pr, Nd and Gd using the full potential linearized augmented plane wave (FLAPW) method based on density functional theory (DFT). From the total energies calculated with and without spin polarization we find ferrimagnetic ground states for CeScGe and PrScGe while NdScGe and GdScGe are ferromagnetic. In addition, we find a sizable magnetic moment at the Sc site, increasing from ≈0.10 μ(B) in CeScGe to ≈0.3 μ(B) in GdScGe, confirming the spin polarization of Sc d band electrons. The calculated electric field gradient and magnetic hyperfine fields of the Cd impurity closely agree with the experimental values. We believe spin polarization of Sc 3d band electrons, strongly hybridized with spin polarized 5d band electrons of the rare-earth, enables a long range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between RE 4f moments which in turn leads to high magnetic ordering temperatures in

  16. Multiferroic nature of charge-ordered rare earth manganites

    International Nuclear Information System (INIS)

    Serrao, Claudy Rayan; Sundaresan, A; Rao, C N R

    2007-01-01

    Charge-ordered rare earth manganites Nd 0.5 Ca 0.5 MnO 3 ,La 0.25 Nd 0.25 Ca 0.5 MnO 3 , Pr 0.7 Ca 0.3 MnO 3 and Pr 0.6 Ca 0.4 MnO 3 are found to exhibit dielectric constant anomalies around the charge-ordering or the antiferromagnetic transition temperatures. Magnetic fields have a marked effect on the dielectric properties, indicating the presence of coupling between the magnetic and electrical order parameters. The observation of magnetoferroelectricity in these manganites is in accord with the recent theoretical predictions of Khomskii and co-workers

  17. Multiferroic nature of charge-ordered rare earth manganites

    Energy Technology Data Exchange (ETDEWEB)

    Serrao, Claudy Rayan [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore-560064 (India); Sundaresan, A [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore-560064 (India); Rao, C N R [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore-560064 (India)

    2007-12-12

    Charge-ordered rare earth manganites Nd{sub 0.5}Ca{sub 0.5}MnO{sub 3},La{sub 0.25}Nd{sub 0.25}Ca{sub 0.5}MnO{sub 3}, Pr{sub 0.7}Ca{sub 0.3}MnO{sub 3} and Pr{sub 0.6}Ca{sub 0.4}MnO{sub 3} are found to exhibit dielectric constant anomalies around the charge-ordering or the antiferromagnetic transition temperatures. Magnetic fields have a marked effect on the dielectric properties, indicating the presence of coupling between the magnetic and electrical order parameters. The observation of magnetoferroelectricity in these manganites is in accord with the recent theoretical predictions of Khomskii and co-workers.

  18. Ion exchange separation of rare earths. I

    International Nuclear Information System (INIS)

    Nghi, Nguyen danh; Matous, K.

    1977-01-01

    The optimal conditions of separating selected rare earths by two ion exchange chromatography using Ostion KS cation exchange resin were studied. The effect of acetic acid concentration in the sorption solution was investigated. The elution process was studied in dependence on the concentration of Na 2 H 2 EDTA, on the total concentration of EDTA 4- ion, on elution agent flow, and on temperature. The optimal conditions were determined by evaluating integral elution curves and changes in acid concentration for systems Y-Pr, La-Pr, Er-Pr, Eu-Pr as follows: The sorption solution requires the presence of Na 2 H 2 EDTA of 0.03M in concentration. The basic elution solution was prepared in the following way: 0.183M Na 2 Mg 2 EDTA, 9.6x10 -3 M Na 2 H 2 EDTA, 3.84x10 -3 M CH 3 COOH, 2.30x10 -2 M CH 3 COONH 4 , 2.30x10 -2 M (NH 4 ) 2 SO 4 . Approximate pH 5.7 to 6.0. The optimal elution solution was prepared by diluting the basic solution so that the total concentration of EDTA 4- equalled 0.075M. The optimal flow was determined to be 0.86 ml.cm -2 .min -1 at a temperature of 55 degC. (author)

  19. Rare-earth-doped fluorozirconate fiber lasers

    International Nuclear Information System (INIS)

    Brierly, M.C.; France, P.W.; Moore, M.W.; Davey, S.T.

    1988-01-01

    Rare-earth-doped fiber lasers fabricated using silica-based fibers are rapidly becoming an established technology. Simultaneously, in the search for lower losses to achieve longer repeaterless communications links, another fiber technology based on fluorozirconate glasses is emerging. Fluorozirconate glass systems are known to be suitable laser hosts, and the authors have already reported Nd-doped fiber lasers using this technology. Recently the authors have used a 0.5-m length of 44-μm core fluorozirconate fiber doped with 1000 ppm of Nd 3+ ions in a longitudinally pumped Fabry-Perot cavity with a 90% output coupler. They observed lasing at 1.05 μm with a threshold of 33-mW launched power at 514 nm and a slope efficiency of 16.8%. The authors attribute this improvement to the higher dopant concentration, better fiber to mirror coupling, and more optimum output coupler reflectivity. In addition the same fiber used with two high-reflector mirrors at 1.35μm produced lasing at 1.35μm with a threshold of 60-mW launched power

  20. Rare Earth Element Phases in Bauxite Residue

    Directory of Open Access Journals (Sweden)

    Johannes Vind

    2018-02-01

    Full Text Available The purpose of present work was to provide mineralogical insight into the rare earth element (REE phases in bauxite residue to improve REE recovering technologies. Experimental work was performed by electron probe microanalysis with energy dispersive as well as wavelength dispersive spectroscopy and transmission electron microscopy. REEs are found as discrete mineral particles in bauxite residue. Their sizes range from <1 μm to about 40 μm. In bauxite residue, the most abundant REE bearing phases are light REE (LREE ferrotitanates that form a solid solution between the phases with major compositions (REE,Ca,Na(Ti,FeO3 and (Ca,Na(Ti,FeO3. These are secondary phases formed during the Bayer process by an in-situ transformation of the precursor bauxite LREE phases. Compared to natural systems, the indicated solid solution resembles loparite-perovskite series. LREE particles often have a calcium ferrotitanate shell surrounding them that probably hinders their solubility. Minor amount of LREE carbonate and phosphate minerals as well as manganese-associated LREE phases are also present in bauxite residue. Heavy REEs occur in the same form as in bauxites, namely as yttrium phosphates. These results show that the Bayer process has an impact on the initial REE mineralogy contained in bauxite. Bauxite residue as well as selected bauxites are potentially good sources of REEs.

  1. Wine Traceability with Rare Earth Elements

    Directory of Open Access Journals (Sweden)

    Maurizio Aceto

    2018-03-01

    Full Text Available The traceability of foodstuffs is now a relevant aspect of the food market. Scientific research has been devoted to addressing this issue by developing analytical protocols in order to find the link between soil and food items. In this view, chemical parameters that can act as soil markers are being sought. In this work, the role of rare earth elements (REEs as geochemical markers in the traceability of red wine is discussed. The REE distribution in samples from each step of the wine making process of Primitivo wine (produced in Southern Italy was determined using the highly sensitive inductively coupled plasma-mass spectrometry (ICP-MS technique. Samples analyzed include grapes, must, and wine samples after every step in the vinification process. The resulting data were compared to the REE distribution in the soil, revealing that the soil fingerprint is maintained in the intermediate products up to and including grape must. Fractionation occurs thereafter as a consequence of further external interventions, which tends to modify the REE profile.

  2. Double Solvent for Extracting Rare Earth Concentrate

    International Nuclear Information System (INIS)

    Bintarti, AN; Bambang EHB

    2007-01-01

    An extraction process to rare earth concentrate which contain elements were yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd), samarium (Sm), gadolinium (Gd) and dysprosium (Dy) which were dissolved in to nitric acid has been done. The experiment of the extraction by double solvent in batch to mix 10 ml of the feed with 10 ml solvent contained the pair of solvent was TBP and TOA, D2EHPA and TOA, TBP and D2EHPA in cyclohexane as tinner. It was selected a right pairs of solvent for doing variation such as the acidity of the feed from 2 - 6 M and the time of stirring from 5 - 25 minutes gave the good relatively extraction condition to Dy element such as using 10 % volume of TOA in D2EHPA and cyclohexane, the acidity of the feed 3 M and the time stirring 15 minutes produced coefficient distribution to dysprosium = 0.586 and separation factor Dy-Ce = ∼ (unlimited); Dy-Nd = 4.651. (author)

  3. Chromatographic Techniques for Rare Earth Elements Analysis

    Science.gov (United States)

    Chen, Beibei; He, Man; Zhang, Huashan; Jiang, Zucheng; Hu, Bin

    2017-04-01

    The present capability of rare earth element (REE) analysis has been achieved by the development of two instrumental techniques. The efficiency of spectroscopic methods was extraordinarily improved for the detection and determination of REE traces in various materials. On the other hand, the determination of REEs very often depends on the preconcentration and separation of REEs, and chromatographic techniques are very powerful tools for the separation of REEs. By coupling with sensitive detectors, many ambitious analytical tasks can be fulfilled. Liquid chromatography is the most widely used technique. Different combinations of stationary phases and mobile phases could be used in ion exchange chromatography, ion chromatography, ion-pair reverse-phase chromatography and some other techniques. The application of gas chromatography is limited because only volatile compounds of REEs can be separated. Thin-layer and paper chromatography are techniques that cannot be directly coupled with suitable detectors, which limit their applications. For special demands, separations can be performed by capillary electrophoresis, which has very high separation efficiency.

  4. Rare-earth doping of high T/sub c/ superconducting perovskites

    International Nuclear Information System (INIS)

    Mc Kinnon, W.R.; Tarascon, J.M.; Greene, L.H.; Hull, G.W.

    1987-01-01

    In most superconductors, the magnetic moments of rare-earth (Re) ions interact with the conduction electrons and break the Cooper pairs, supressing or destroying superconductivity. But in the perovskite-based superconductors discovered recently, the rare-earth ions are separated from the copper and oxygen where the superconducting electrons are believed to be located. The authors study the effects of rare-earth doping in both the 40K La/sub 2-x/Sr/sub x/CuO/sub 4-y/ system and 90K YBa/sub 2/Cu/sub 3/O/sub 7-x/ system. In these materials, the RE ions only weakly affect superconductivity, and the effects we do see are more strongly correlated with changes in the volume of the crystal than with the magnetism of the rare earths

  5. HfO2 - rare earth oxide systems in the region with high content of rare earth oxide

    International Nuclear Information System (INIS)

    Shevchenko, A.V.; Lopato, L.M.

    1982-01-01

    Using the methods of annealing and hardenings (10 2 -10 4 deg/s cooling rate) and differential thermal analysis elements of state diagrams of HfO 2 - rare earth oxide (rare earths-La, Pr, Nd, Sm, Gd, Tb, Dy, Y, Er, Yb, Lu, Sc) systems from 1800 deg C up to melting in the range of 60-100 mol% rare earth oxide concentration were constructed. Regularities of HfQ 2 addition effect on high-temperature polymorphic transformations of rare earth oxides were studied. Results of investigation were discussed from viewpoint of crystal chemistry

  6. Rare earth materials research in European Community R and D programmes

    International Nuclear Information System (INIS)

    Gavigan, J.P.

    1992-01-01

    The level of involvement of EC research programmes in rare earth materials research is quite high. A total of 65 projects have been identified representing an involvement of 283 partners from all over Europe. This corresponds to a budget a 63.3 MECU (76MDollars) of which the EC contributes 40.7 MECU (49MDollars). In this paper, the various research activities will be discussed under the main themes of rare earth permanent magnets, high Tc superconductors, optical and other materials, with specific reference to the three main programmes involved, BRITE/EURAM, SCIENCE and ESPRIT. Two other programmes currently involved in rare earth research are RAW MATERIALS and JOULE. (orig.)

  7. Concentration of rare earths ore from Pocos de Caldas - MG, Brazil

    International Nuclear Information System (INIS)

    Sampaio, J.A.; Lins, F.F.; Porphirio, N.H.

    1990-01-01

    The objective of this research was to concentrate, mainly by flotation, a rare-earth ore body. The valuable mineral is bastnaesite which occurs intimately associated with iron oxides and other gangue minerals, making difficult to get a concentrate of commercial grade. The use of oleic acid at a pulp temperature of -80 sup(0)C gave a concentrate of 23% rare-earth oxides at 72% overall recovery. The magnetic separation could enhance the grade of the flotation feed. (author)

  8. Magnetostriction of rare earth-Fe2 Laves phase compounds

    International Nuclear Information System (INIS)

    Clark, A.E.; Abbundi, R.; Savage, H.T.

    1977-01-01

    Single crystal magnetostriction measurements were made as a function of temperature on TbFe 2 and DyFe 2 . From these, the intrinsic magnetoelastic coupling coefficients were determined for the rare earth-Fe 2 compounds. Employing X-ray techniques, certain multicomponent rare earth-Fe 2 compounds were identified to maximize the magnetostriction to anisotropy ratio. (Auth.)

  9. Preparation, thermogravimetric study and infrared spectra of rare earth acetates

    International Nuclear Information System (INIS)

    Graehlert, X.; Starke, M.

    1992-01-01

    The anhydrous and the hydrated acetates of Ho, Er, Tm, Yb and Lu have been prepared. The compounds obtained have been investigated by thermogravimetric analysis and infrared spectroscopy. The thermal decomposition of the rare earth acetates may proceed via various steps. It depends on both the number of crystal water molecules in the acetates and the rare earth element's behaviour. (orig.)

  10. Advances in chromatography of the rare earth elements (review)

    International Nuclear Information System (INIS)

    Oguma, Koichi; Kuroda, Rokuro; Shimizu, Tsuneo.

    1995-01-01

    A review is presented which covers liquid chromatography, gas chromatography, and related techniques. This article intends to describe the chromatographic methods playing an important role in the separation of the rare earth elements. Special attention is paid to the usefulness of various types of liquid chromatography which enable the complete mutual separation of the rare earth elements. Applications are also discussed. (author) 161 refs

  11. Separation of rare earths from solutions of phosphoric acid

    International Nuclear Information System (INIS)

    Jones, E.A.

    1977-01-01

    Rare earths are separated from 6M phosphoric acid by adsorption onto cation resin BIORAD AG50W-X8. The phosphoric acid is then washed from the column, and the rare earths are eluted with 4M hydrochloric acid

  12. The earth's magnetic field

    International Nuclear Information System (INIS)

    Merrill, R.T.

    1983-01-01

    After a historical introduction in Chapter 1, the more traditional aspects of geomagnetism relating to the present field and historical observations are presented in Chapter 2. The various methods and techniques and theoretical background of palaeomagnetism are given in Chapter 3. Chapters 4, 5 and 6 present the results of palaeomagnetic and archaeomagnetic studies in three topics. Chapter 4 relates to studies of the geomagnetic field roughly back to about 50,000 years ago. Chapter 5 is about reversals of the geomagnetic field and Chapter 6 presents studies of the field for times older than 50,000 years and on the geological time scale of millions or hundreds of millions of years. Chapters 7, 8 and 9 provide insight into dynamo theory. Chapter 7 is essentially a non-mathematical attempt to explain the physical basis of dynamo theories to palaeomagnetists. This is followed in Chapter 8 by a more advanced theoretical treatment. Chapter 9 explains theoretical aspects of secular variation and the origin of reversals of the geomagnetic field. Chapter 10 is our attempt to relate theory to experiment and vice versa. The final two chapters consider the magnetic fields of the moon, sun, planets and meteorites, in an attempt to determine the necessary and sufficient conditions for magnetic field generation in large solar system bodies. (author)

  13. Rare earth silicide nanowires on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Martina

    2008-11-10

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti {gamma} point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi{sub 2}-monolayer and the Dy{sub 3}Si{sub 5}-multilayer on the Si(111) surface are investigated in comparison to the known ErSi{sub 2}/Si(111) and Er{sub 3}Si{sub 5}/Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the (vector)k {sub parallel} space is elliptical at the anti M points, while the hole pocket at the anti {gamma} point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas

  14. Kinetics studies of solvent extraction of rare earths into DEHPA

    International Nuclear Information System (INIS)

    Lim, T.M.; Tran, T.

    1996-01-01

    The kinetics of rare earth solvent extraction into di(2-ethylhexyl) phosphoric acid have been studied using radiotracers ( 141 Ce, 152 Eu, 153 Gd, 160 Tb and 88 Y) in a modified Lewis cell. The experimental procedure involved continuous monitoring of both aqueous and organic phases using an automated γ- counting system. Using this method, highly reproducible results were obtained without chemical analysis or disturbance of the system. The initial rate extraction was first order with respect to individual rare earth concentration. At low acidities ([H+] < 0.01 M), the extraction rates of rare earths were equal and independent of pH. However, at high acidities, the extraction rate was strongly dependent on pH and varied between the rare earths. Similarly, differences in the extraction rate of individual rare earths were apparent at low DEHPA concentration. (authors)

  15. PROCESS FOR SEPARATING AMERICIUM AND CURIUM FROM RARE EARTH ELEMENTS

    Science.gov (United States)

    Baybarz, R.D.; Lloyd, M.H.

    1963-02-26

    This invention relates to methods of separating americium and curium values from rare earth values. In accordance with the invention americium, curium, and rare earth values are sorbed on an anion exchange resin. A major portion of the rare earth values are selectively stripped from the resin with a concentrated aqueous solution of lithium chloride, and americium, curium, and a minor portion of rare earth values are then stripped from the resin with a dilute aqueous solution of lithium chloride. The americium and curium values are further purified by increasing the concentration of lithium chloride in the solution to at least 8 molar and selectively extracting rare earth values from the resulting solution with a monoalkylphosphoric acid. (AEC)

  16. Determination of active oxygen content in rare earth peroxides

    International Nuclear Information System (INIS)

    Queiroz, Carlos A.S.; Abrao, Alcidio

    1993-01-01

    The content of active oxygen in rare earth peroxides have been determined after the dissolution of the samples with hydrocloridic acid in the presence of potassium iodide. The free generated iodine is titrated with sodium thiosulfate using starch as indicator. The oxidation of iodide to the free iodine indicates the presence of a higher valence state rare earth oxide, until now specifically recognized for the oxides of cerium (Ce O 2 ), praseodymium (Pr 6 O 1 1) and terbium (TB 4 O 7 ). recently the authors synthesized a new series of rare earth compounds, the peroxides. These new compounds were prepared by precipitating the rare earth elements complexed with carbonate ion by addition of hydrogen peroxide. the authors demonstrated that all rare earth elements, once solubilized by complexing with carbonate ion, are quantitatively precipitated as peroxide by addition of hydrogen peroxide. (author)

  17. Intra-group separation of rare earths using new organic phosphorus ligands

    International Nuclear Information System (INIS)

    Hadic, Sanela

    2017-01-01

    Rare earth elements (REE) have unique magnetic, photophysical, and chemical properties and they are therefore used in numerous high-technology applications. However, to this day, the isolation of pure rare earths from primary and secondary raw materials is very challenging. In this work, the hydrometallurgical separation of neighboring rare earths (e.g., praseodymium/ neodymium) was optimized with novel selective extraction agents. The separation of rare earths (yttrium and all lanthanides except promethium) was investigated with fourteen new organophosphorus compounds. Oxygen-bearing phosphinic acids yielded good separation results for heavy rare earths (dysprosium to lutetium). For light rare earths (lanthanum to neodymium), particularly high separation factors were realized with synergistic systems containing an aromatic dithiophosphinic acid and a co-extractant, such as tris (2-ethylhexyl) phosphate (TEHP). Optimization studies of the latter extraction system revealed an extremely high separation factor (SF) of 4.21 between praseodymium and neodymium. Another focus of this work was to understand the extraction mechanism. With the aid of nuclear magnetic resonance spectroscopy ("1H-NMR) and time-resolved laser fluorescence spectroscopy (TRLFS), the complex stoichiometry of promising extraction systems was examined. Studies revealed a dependency between the selectivity for rare earths and the coordination number of the formed complexes. In addition, temperature-dependent extraction experiments were performed and thermodynamic data (ΔG, ΔH, and ΔS) determined. These data provided additional information about the origin of selectivity for neighboring rare earths. With regard to the industrial capability of the investigated extraction systems, the chemical durability of ligands was studied under process-relevant conditions. Qualitative and quantitative analytical methods (e.g., GC-MS) were used in long-term experiments to determine the ligand degradation. After

  18. Radiological aspects in a monazite based rare earth production facility

    International Nuclear Information System (INIS)

    Harikumar, M.; Sujata, R.; Chinnaesakki, S.; Tripathi, R.M.; Puranik, V.D.; Nair, N.N.G.

    2011-01-01

    One of the largest reserves of monazite in the world is present in the Indian subcontinent. Monazite ore has around 8-9% thorium oxide and nearly 60% Rare earth oxides. Selective acid extraction is used to separate the composite rare earths. The main radiological hazard arises from the presence of thorium and its daughter products. Monitoring of the radiation field and air activity in the rare earths plant is done routinely to reduce the radiation exposure to plant personnel. The separation of uranium and rare earths from Thorium concentrate separated from Monazite is being done as a part of the THRUST (Thorium Retrieval, Recovery of Uranium and Re-storage of Thorium) project from 2004 at Indian Rare Earths Limited, Udyogamandal. The radiological aspect for this extraction of uranium and rare earths was studied. The general radiation field in the rare earth production plant was 0.3-5.0 μGyh -1 and the average short lived air activity was 46 ± 7 mWL. The long lived air activity arising from 232 Th is very insignificant radiologically. The occupational radiation exposure for the rare earths separation plant is only 6 % of the total dose and the estimated average individual dose is 1.6 mSv per year. Studies were also done to estimate the residual radioactivity in the separated rare earth compounds using gamma spectrometry and the results showed significant presence of 227 Ac arising due to the protactinium fraction in the thorium concentrate. This activity is not detectable in a freshly separated rare earth compound but can buildup with time. (author)

  19. Sc, Y, La-Lu - Rare Earth Elements

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    At present extensive efforts are being made in completing work on system number Rare Earth Elements. Part A is devoted to the occurrence of these elements on the earth and in the universe. Part B deals with the pure metals; the 7 volumes published cover the description of the separation from the raw materials, the preparation of pure metals,their uses and toxicology, the physical properties of nuclei, atoms, molecules, and isotopes; in addition the behavior of ions in solution and the electrochemical behavior of rare earth elements are described. The compounds are described in Part C. Part D with 6 volumes has been devoted to the description of coordination compounds and is completed. The volume ''Rare Earth Elements C 10'' deals with the rare earth tellurides, oxide tellurides, tellurates, telluride halides, tellurate halides, sulfide tellurides, selenide tellurides, and alkali rare earth tellurates. Another topic of this volume are the compounds of the rare earth elements with polonium. So far as meaningful and in accordance with all earlier volumes of ''Rare Earth Elements'' Series C, comparative data are presented in sections preceding treatment of the individual compounds and systems

  20. Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures

    OpenAIRE

    Bogart, Justin A.; Cole, Bren E.; Boreen, Michael A.; Lippincott, Connor A.; Manor, Brian C.; Carroll, Patrick J.; Schelter, Eric J.

    2016-01-01

    Rare earth metals, La���Lu, Sc, and Y, are essential components of electronic materials and permanent magnets in diverse technologies. But, their mining and separations chemistry are unsustainable and plagued with supply problems. Recycling of consumer materials containing rare earths is a promising new source of these critical materials but similarly requires efficient separations. We report the use of a tripodal hydroxylaminato ligand, TriNOx3���, with rare earth cations that enable fast, e...

  1. Bacterial Cell Surface Adsorption of Rare Earth Elements

    Science.gov (United States)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  2. Rare-earth-metal nitridophosphates through high-pressure metathesis

    International Nuclear Information System (INIS)

    Kloss, Simon David; Schnick, Wolfgang

    2015-01-01

    Developing a synthetic method to target an broad spectrum of unknown phases can lead to fascinating discoveries. The preparation of the first rare-earth-metal nitridophosphate LiNdP_4N_8 is reported. High-pressure solid-state metathesis between LiPN_2 and NdF_3 was employed to yield a highly crystalline product. The in situ formed LiF is believed to act both as the thermodynamic driving force and as a flux to aiding single-crystal formation in dimensions suitable for crystal structure analysis. Magnetic properties stemming from Nd"3"+ ions were measured by SQUID magnetometry. LiNdP_4N_8 serves as a model system for the exploration of rare-earth-metal nitridophosphates that may even be expanded to transition metals. High-pressure metathesis enables the systematic study of these uncharted regions of nitride-based materials with unprecedented properties. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. MBE growth and characterisation of light rare-earth superlattices

    DEFF Research Database (Denmark)

    Ward, R.C.C.; Wells, M.R.; Bryn-Jacobsen, C.

    1996-01-01

    The molecular beam epitaxy growth techniques which have already successfully produced a range of heavy rare-earth superlattices have now been extended to produce superlattices of two light rare-earth elements, Nd/Pr, as well as superlattices and alloy films of a heavy/light system, Ho/Pr. High......-resolution X-ray diffraction analysis shows the Nd/Pr superlattices to be of high structural quality, while the Ho/Pr superlattices are significantly less so. In the Ho/Pr superlattices, Pr is found to retain its bulk dhcp crystal structure even in thin layers (down to 6 atomic planes thick) sandwiched between...... thick layers of hcp Ho. In addition, neutron diffraction studies of the He/Pr superlattices have shown that the helical Ho magnetic order is not coherent through the dhcp Pr layers, in contrast to previous hcp/hcp superlattices Ho/Y, Ho/Lu and Ho/Er. The series of Ho:Pr alloy films has shown structural...

  4. Study On Beneficiation Technology Of Dong Pao Rare-Earth-Barite-Fluorite With Two Product Plans About Content And Recovery Of Rare-Earth Fine Ores

    International Nuclear Information System (INIS)

    Duong Van Su; Truong Thi Ai; Bui Ba Duy; Bui Thi Bay; Nguyen Hong Ha; Le Thi Hong Ha; Doan Thi Mo; Doan Dac Ban; Nguyen Hoang Son

    2014-01-01

    The ore sample used in the research was taken from the F3 ore bodies and the sample of the F7, F9 and F16 ore bodies which contain the average of 5.98% TR 2 O 3 ; they are multi-metals ore which is difficult to enrich, highly weather with very complex ingredients. The process of the experiment is the ore is crushed, ground, screened and classified reasonably to -0.1 mm and divided into 3 particle size with the following technique: (1) -0.020 mm is primary sludge and the rare-earth fine ore; (2) 0.075-1 mm is gotten through the sludge concentrating table with the output is the 2 parts: the heavy part which is dried magnetic separator with high magnetism to get the rare-earth fine ore and the light one; (3) Light minerals, non-magnetic and ferromagnetic minerals group are ground together to 85% of them get size within -0.075 mm then mix it with 0.020-0.075 mm group. Using flotation separator, get barite-rare earth mixture and fluorite. After that, we separate this mixture by secondary flotation and get refined rare earth, barite and fluorite mineral. The result of the theme: (1) product plan A-rare-earth fine ore has TR 2 O 3 content archive 42.07% with recovery is 69.70%; (2) product plan B-rare-earth fine ore has TR 2 O 3 content archive 29.64% with recovery is 80.01%. (author)

  5. Bioleaching of rare earth elements from monazite sand.

    Science.gov (United States)

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance. © 2015 Wiley Periodicals, Inc.

  6. Magnetocaloric effect in rare-earth intermetallics

    Indian Academy of Sciences (India)

    2015-05-27

    and adiabatic temperature (ad) that accompany magnetic transitions in materials during the application or the removal of magnetic field under adiabatic conditions. The physics of MCE gets enriched by correlated ...

  7. Raw materials for advanced ceramics: rare earths separation processes

    International Nuclear Information System (INIS)

    Ricci, D.R.; Nobre, J.S.M.; Paschoal, J.O.A.

    1990-01-01

    The importance of obtaining purified rare earths oxidesis related, mainly to the increasing use of these compounds as raw materials for advanced ceramics. Processes of rare earths separation and purification are almost always based on the solvent extraction, fractional precipitation and ion exchange chromatography techniques, whose association depends on the initial concentrate and on the desired purity. This paper describes some steps of fractionation of didymium carbonate by using the solvent extraction and fractional precipitation techniques. The experimental conditions presented here have enable the production of lantanium, neodimium - praseodimium, samarium - gadolinium and ytrium concentrates, which constitute the intermediate fractions of the overall process to obtain high purity rare earths. (author) [pt

  8. Forced-flow chromatography of rare earths using sensitive spectrophometry

    International Nuclear Information System (INIS)

    Matsui, Masakazu; Aoki, Toru; Kumagai, Tetsu.

    1981-01-01

    The sensitive spectrophotometric method for the rare earth elements with xylenol orange in the presence of cetylpyridinium bromide was applied to the continuous detection system of liquid chromatography. Fourteen rare earth elements were completely separated within 130 min cation-exchange chromatography using 2-hydroxy-iso-butylic acid. The eluted ions were determined with absorption maxima of their complexes at around 610 nm. A linear relationship between the peak height and the amounts of rare earth elements was also obtained over the range 0.04 to 0.5 MU g. (author)

  9. Thermal Oxidation Resistance of Rare Earth-Containing Composite Elastomer

    Institute of Scientific and Technical Information of China (English)

    邱关明; 张明; 周兰香; 中北里志; 井上真一; 冈本弘

    2001-01-01

    The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found that its retention rate of mechanical properties is far higher than that of the control sample. The results of thermogravimetric analysis show that its thermal-decomposing temperature rises largely. The analysis of oxidation mechanisms indicates that the main reasons for thermal oxidation resistance are that rare earth elements are of the utility to discontinue autoxidation chain reaction and that the formed complex structure has steric hindrance effect on oxidation.

  10. Thermochemistry of certain rare earth and ammonium double chlorides

    International Nuclear Information System (INIS)

    Usubaliev, D.U.; Abramtsev, V.A.; Kydynov, M.K.; Vilyaev, A.N.

    1987-01-01

    In a calorimeter with isothermal casing at 25 deg C dissolution enthalpies of double chlorides of rare earths and ammonium LnCl 3 x2NH 4 Cl (Ln=La, Sm) and LnCl 3 x3NH 4 Cl (Ln=Gd, Tb, Ho) in water, as well as dissolution enthalpy of rare earth chlorides in solution of ammonium chloride and NH 4 Cl in solution of rare earth chloride, have been measured. Formation enthalpies, standard formation enthalpies, dissociation enthalpies of the above-mentioned double chlorides are calculated

  11. Membrane assisted solvent extraction for rare earth element recovery

    Science.gov (United States)

    Bhave, Ramesh R.; Kim, Daejin; Peterson, Eric S.

    2018-05-15

    Systems and methods for the recovery of rare earth elements are provided. The systems and methods generally include membrane assisted solvent extraction using permeable hollow fibers having an immobilized organic phase within the pores of the hollow fibers. The permeable hollow fibers are generally in contact with an acidic aqueous feed on one side thereof and a strip solution on another side thereof. The systems and methods generally include the simultaneous extraction and stripping of rare earth elements as a continuous recovery process that is well suited for post-consumer products, end-of-life products, and other recovery sources of rare earth elements.

  12. Magnetic features in REMeO{sub 3} perovskites and their solid solutions (RE=rare-earth, Me=Mn, Cr)

    Energy Technology Data Exchange (ETDEWEB)

    Moure, Carlos, E-mail: cmoure@icv.csic.es [Instituto de Cerámica y Vidrio, CSIC, Electroceramics Department, Kelsen No. 5, 28049 Cantoblanco, Madrid (Spain); Peña, Octavio [Institut des Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1, 35042 Rennes (France)

    2013-07-15

    Magnetic hysteresis displacement, thermal inversion of the magnetization, hysteresis loops jumps and crossing branches of hysteresis loops at low magnetic fields are reviewed. Most of these phenomena have been observed in magnetic oxide systems, particularly in perovskite-type manganites and chromites. The paper takes into account structural considerations and different geometrical parameters, such as volume or thin layers. - Highlights: ►Review of both spin reversal phenomena thermal and displacive. ► Study of the crossing branches of the magnetic hysteresis loops. ► Review of the behavior of some stepped hysteresis loops.

  13. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium.

    Science.gov (United States)

    Bogart, Justin A; Lippincott, Connor A; Carroll, Patrick J; Schelter, Eric J

    2015-07-06

    Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare-earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2-(t) BuNO)C6 H4 CH2 }3 N](3-) (TriNOx(3-) ), feature a size-sensitive aperture formed of its three η(2) -(N,O) ligand arms. Exposure of metal cations in the aperture induces a self-associative equilibrium comprising [M(TriNOx)thf]/ [M(TriNOx)]2 (M=rare-earth metal). Differences in the equilibrium constants (Keq ) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio SNd/Dy =359. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and structure of alkaline earth and rare earth metal doped C70

    International Nuclear Information System (INIS)

    Takenobu, Taishi; Iwasa, Yoshihiro; Ito, Takayoshi; Mitani, Tadaoki

    2001-01-01

    We have investigated the structure sequence of alkaline earth (A=Ba, Sr) and rare earth metal (R=Eu) doped C 70 binary system. X-ray diffraction measurements revealed that there exist at least four stable phases at x=3, 4, 6, and 9 in A x C 70 and two stable phases at x=3, and 9 in R x C 70 . Among them, structural models are presented for Ba 4 C 70 , Sr 3 C 70 , and Eu 3 C 70 . Ba 4 C 70 takes an analogous structure to orthorhombic Ba 4 C 60 . Sr 3 C 70 and Eu 3 C 70 have monoclinic cell and their diffraction patterns are quite similar to that of Sm 3 C 70 , which involves a unique C 70 -metal-C 70 dimer structure. Preliminary results of Raman spectroscopy and magnetization measurement suggest the highly reduction state for A 9 C 70 and ferromagnetic interaction for Eu x C 70

  15. Proceedings of the national conference on rare earth processing and utilization - 2014: abstracts

    International Nuclear Information System (INIS)

    Anitha, M.; Dasgupta, Kinshuk; Singh, D.K.

    2014-01-01

    The rare earth elements (REEs) are becoming increasingly important in the transition to a low-carbon, circular economy, considering their essential role in permanent magnets, lamp phosphors, rechargeable nickel metal hydride batteries and catalysts and other green applications. The increasing popularity of hybrid and electric cars, wind turbines and compact fluorescent lamps is causing an increase in the demand and price of REEs. The European Commission considers the REEs as the most critical raw materials group, with the highest supply risk. According to the medium-term criticality matrix of the U.S. Department of Energy (DOE), the five most critical REEs are neodymium (Nd), europium (Eu), terbium (Tb), dysprosium (Dy) and yttrium (Y). China is presently producing more than 90% of all rare earths, although they possess less than 40% of the proven reserves. Due to large and increasing domestic demands, China tightened its REE export quota from 2012 onwards. These export quotas caused serious problems for REE users outside of China. To tackle the REE supply challenge, several approaches have been proposed. Fortunately India is blessed with large resources of rare earths in the form of monazite found in the beach sands of Kerala, Tamil Nadu and Odisha. Indian Rare Earths Limited at Aluva near Kochi used to produce mainly mixed rare earths chloride and export to USA, UK, France, Japan, etc. During the 1990s and early 2000s this plant exported pure oxides of samarium, neodymium, etc. to developed countries. This national conference has expanded its canvas by including newer emerging areas in rare earths recycling, environmental issues, recent advances in rare earth material science, rare earth research and development initiatives around the world which provide a platform for the growth of rare earth Industry. Papers relevant to INIS are indexed separately

  16. Research On Technology Of Making Rare Earth Alloy Having Rare Earth Content ≽30% From Ore (≽40% REO) Using Aluminum Thermal Technology In Arc Furnace

    International Nuclear Information System (INIS)

    Ngo Xuan Hung; Ngo Trong Hiep; Tran Duy Hai; Nguyen Huu Phuc

    2014-01-01

    Arc furnace was used to smelt materials consisting of rare earth ore having rare earth content of ≽40% REO, aluminum as the reducing agent and additives. Rare earth alloy was obtained with rare earth metal content of more than 30%. (author)

  17. Satellite to study earth's magnetic field

    Science.gov (United States)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  18. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling.

    Science.gov (United States)

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; de la Fuente, César; Arnaudas, José Ignacio

    2015-09-03

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths.

  19. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  20. Isomerization of butene-1 on rare earth oxides. [Rare earths: La, Nd, Dy

    Energy Technology Data Exchange (ETDEWEB)

    Khodakov, Yu S; Nesterov, V K; Minachev, Kh M [AN SSSR, Moscow. Inst. Organicheskoj Khimii

    1975-09-01

    A study has been made into the isomerization of butene-1 on oxides of rare-earth elements. The dependence of the reaction rate at 20/sup 0/C on the baking temperature of La and Nd oxides have the maximum at 700/sup 0/C. A decrease in the activity of these oxides after bakinq at 800/sup 0/C is observed, as well as during experiments at -30 deq C. In the case of Dy/sub 2/O/sub 3/, the activity at 20/sup 0/C increases gradually with Tsub(bak)=500 to 800/sup 0/C Zeolite 0.57LaNaY exhibits maximum activity at Tsub(bak)=500/sup 0/C Similar data as to the effect of the baking temperature on the catalyst activity were obtained earlier for hydrogenation of ethylene. According to their maximum activity, oxides of rare-earth elements, in the isomerization as well as hydrogenation reactions, can be arranged as follows: La/sub 2/O/sub 3/>Nd/sub 2/O/sub 3/

  1. Study on lowering the specific radioactivity of rare earth chlorides

    International Nuclear Information System (INIS)

    Shinhuor, Y.; Jyuung, J.; Shyuerjung, T.; Xiangping, L.

    1985-01-01

    In this paper, the source of radioactivity in rare earth chlorides and the chemical behaviour of its main radionuclides in metallurgy processing are investigated. It is pointed out that the radioactivity in rare earths comes from the long-life radionuclides in three natural radioactive series. Nine of them (/sup 238/U, /sup 234/U, /sup 230/Th, /sup 226/Ra, /sup 210/Po, /sup 232/Th, /sup 228/Th, /sup 235/U, /sup 231/Pa) are alpha-emitters, three of them (/sup 228/Ra, /sup 227/Ac, /sup 210/Pb) are beta-emitters. Among them alpha-emitters contribute the total specific activity of rare earths directly. The rare earths are easily purified in preferential dissolution, radium elimination, and other processes

  2. Separation of heavier rare earths from neutron irradiated uranium targets

    International Nuclear Information System (INIS)

    Bhargava, V.K.; Rao, V.K.; Marathe, S.G.; Sahakundu, S.M.; Iyer, R.H.

    1978-01-01

    A radiochemical method is described for the separation of heavier rare earths from the fission of uranium. The method is particularly suitable for the separation of low yield (10sup(-5)%-10sup(-7)%), highly asymmetric rare earth fission products viz. sup(179,177)Lu, sup(175)Yb, sup(173)Tm, sup(172,171)Er, sup(167)Ho and sup(161,160)Tb in the neutron induced fission of natural and depleted uranium targets. Additional separation steps have been incorporated for decontamination from sup(239)Np (an activation product) and sup(93-90)Y (a high fission-yield product) which show similar chemical behaviour to rare earths. Separation of individual rare earths is achieved by a cation exchange method performed at 80 deg C by elution with α-hydroxyisobutyric acid (α-HIBA). (author)

  3. Separation of rare earths by liquid-liquid extraction

    International Nuclear Information System (INIS)

    Helgorsky, M.; Leveque, M.

    1978-01-01

    The elements of the rare earth family are characterised by very similar chemical properties connected with their special electronic structure. The purification of the rare earths sold by RHONE-POULENC is now done by the liquid-liquid extraction technique. The development of different extracting agents and also counter-current techniques have led to solvent extraction replacing the other fractionation techniques because of its efficiency and low cost. There are usually several possible solutions to the main problem of choosing the extracting agent and its mode of use. The difficulty is to find the most economical one taking account of the thermodynamic and hydrodynamic constraints of the solvent. It is shown how ideas about the separation have changed over the course of the development of the uses of the rare earths, ending finally in an integrated scheme that makes RHONE-POULENC a world leader of manufacturers of separated rare earths [fr

  4. Exploitation of rare earth catalysts in polymer syntheses

    Institute of Scientific and Technical Information of China (English)

    Shen Zhiquan

    2006-01-01

    The studies over forty years on rare earth catalysts in polymer syntheses of diene,alkyne,alkylene oxide,thiirane, carbon dioxide copolymerization, lactide,caprolactone,cyclic carbonate and so forth in China have been reviewed.

  5. Prospects for trivalent rare earth molecular vapor lasers for fusion

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1976-01-01

    The dynamical properties of three types of RE 3+ molecular vapors were considered: (1) rare earth trihalogens, (2) rare earth trihalogens complexed with transition metal trihalogens, and (3) rare earth chelates. Radiative and nonradiative (unimolecular and bimolecular) transition probabilities have been calculated using phenomenological models predicted on the unique electronic structure of the triply ionized RE ion (well shielded ground electronic configuration of equivalent of electrons). Although all the lanthanide ions have been treated in some detail, specific results are presented for the Nd 3+ and Tb 3+ ions to illustrate the systematics of these vapors as a class of new laser media. Once verified, these phenomenological models will provide a powerful tool for the directed experimental exploration of these systems. Because of the structural similarity to the triply ionized actinides, comments offered here for the lanthanide rare earth series generally apply to gaseous actinide lasers which are also under consideration

  6. Rare earths: Market disruption, innovation, and global supply chains

    Science.gov (United States)

    Eggert, Roderick; Wadia, Cyrus; Anderson, Corby; Bauer, Diana; Fields, Fletcher; Meinert, Lawrence D.; Taylor, Patrick

    2016-01-01

    Rare earths, sometimes called the vitamins of modern materials, captured public attention when their prices increased more than ten-fold in 2010 and 2011. As prices fell between 2011 and 2016, rare earths receded from public view—but less visibly they became a major focus of innovative activity in companies, government laboratories and universities. Geoscientists worked to better understand the resource base and improve our knowledge about mineral deposits that will be mines in the future. Process engineers carried out research that is making primary production and recycling more efficient. Materials scientists and engineers searched for substitutes that will require fewer or no rare earths while providing properties comparable or superior to those of existing materials. As a result, even though global supply chains are not significantly different now than they were before the market disruption, the innovative activity motivated by the disruption likely will have far-reaching, if unpredictable, consequences for supply chains of rare earths in the future.

  7. Corrosion resistance of chromium-nickel steel containing rare earths

    International Nuclear Information System (INIS)

    Asatiani, G.N.; Mandzhgaladze, S.N.; Tavadze, L.F.; Chuvatina, S.N.; Saginadze, D.I.

    1983-01-01

    Effect of additional out-of-furnace treatment with complex alloy (foundry alloy) calcite-silicon-magnesium-rare earth metal on corrosion resistance of the 03Kh18N20M3D3C3B steel has been studied. It is shown that introduction of low additions of rare earths improves its corrosion resistance improves its corrosion resistance in agressive media (in 70% - sulfuric acid) in the range of transition from active to passive state. Effect of additional introduction of rare earth metals is not considerable, if potential of steel corrosion is in the range of stable passive state (32% - sulfuric acid). Additional out-of-furnace treatment with complex foundry alloy, containing rare earth metals, provides a possibility to use a steel with a lower content of Cr, Ni, Mo, than in conventional acid-resistant steels in highly agressive media

  8. Flotation process of lead-, copper-, uranium-, and rare earth minerals

    International Nuclear Information System (INIS)

    Broman, P.G.; Kihlstedt, P.G.; Du Rietz, C.

    1977-01-01

    This invention relates to a flotation process of oxide or sulfide ores containing lead-, copper-, uranium-, and rare earth minerals applicating a new collector. Flotation is in the presence of a tertiary amine

  9. Science and technology of the rare earth elements

    International Nuclear Information System (INIS)

    Azzouz, Abdelkrim; Chegrouche, Salah; Telmoune, Sid-Ali; Layachi, Lazhar

    1992-07-01

    The present work studies the chemical physics properties, the different methods of analysis (neutron activation, emission spectrometry, chromatography), and the techniques of separation of rare earth (electrodeposition, thermic decomposition, salts distillation and ions exchange)

  10. Influence of disorder on superconductivity in non-magnetic rare ...

    Indian Academy of Sciences (India)

    Influence of disorder on superconductivity in non-magnetic rare-earth nickel borocarbides. G FUCHS1,∗. , K-H M ¨ULLER1, J FREUDENBERGER1, K NENKOV1,. S-L DRECHSLER1, S V SHULGA1, D LIPP2, A GLADUN2,. T CICHOREK3 and P GEGENWART3. 1Institut für Festkörper- und Werkstofforschung, D-01171 ...

  11. Mother Lode: The Untapped Rare Earth Mineral Resources of Vietnam

    Science.gov (United States)

    2013-11-01

    to exert their monopolistic control of the market by artificially restricting supply in the interest of higher commodity prices, but were rather...linked. World markets for rare earth elements are at present a near-monopoly controlled by China, and it is becoming ever clearer that alternative... markets for rare earth elements are at present a near- monopoly controlled by China, and it is becoming ever clearer that alternative sources for these

  12. Rare-earth elements in granites: concentration and distribution pattern

    International Nuclear Information System (INIS)

    Galindo, A.C.

    1983-01-01

    The geochemistry of rare earth elements in granites is studied. The rare earth element (REE) distribution pattern in granites is characterized by a smooth curve with decreasing concentrations from La to Lu, and frequently a marked Eu negative anomaly. It seems to exist relationship between granite genesis and its REE pattern, in that bodies of primary (magmatic differentiation) origin always show this negative Eu anomaly, while those bodies generated by crustal anatexis do not show this anomaly. (E.G.) [pt

  13. Synthesis and physicochemical investigation of adducts of rare earth thenoyltrifluoroacetonates

    International Nuclear Information System (INIS)

    Anufrieva, S.I.; Snezhko, N.I.; Martynenko, L.I.; Pechurova, N.I.

    1982-01-01

    Adducts of rare earth thenoyltrifluoroacetonates (3) have been synthesized with tributylphosphate (TBP), trioctylphosphenoxide (TOPO), triphenylphosphenoxide (TPO) of 1:1 and 1:2 composition as well as with α, α'-dipyridine (Dipy), o-phenanthroline (Phen) of 1:1 composition. The separated adducts have been studied by methods of element analysis, X-ray phase and derivatographic analyses and IR spectroscopy. It is shown that the adducts are more thermostable compared to the corresponding rare earth thenoyltrifluoroacetonate hydrates

  14. Chromates (3) and chromates (5) of rare earths

    International Nuclear Information System (INIS)

    Suponitskij, Yu.L.

    1986-01-01

    Data on preparation methods, structure and properties of chromates (3, 5) and mixed chromates (3) of rare earths, scandium and yttrium are generalized. Phase diagrams of systems Ln 2 O 3 -Cr 2 O 3 (Ln - rare earths, Sc, Y), chemical and thermodynamic properties of chromates (3, 5), their crystal structure and character of thermal decomposition are considered. Application fields of the compounds mentioned are suggested

  15. Yttrium and rare earths separation by ion exchange resin

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Ayres, M.J.G.; Ribeiro, S.; Silva, G.L.J.P.; Silva, M.L.C.P.; Martins, A.H.

    1988-01-01

    The experimental results of yttrium and rare earths separation from Brazilian xenotime are presented. The research consist in five stage: 1) Preparation of yttrium, erbium and lutetium standard solutions, from solubilization of pure oxides 2) yttrium and rare earths separation by ion exchange chromatrography 3) Separation and recovery of EDTA 4) Precipitation and calcination and 4) Analytical control of process. (C.G.C.) [pt

  16. Rare Earth-Activated Silica-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    C. Armellini

    2007-01-01

    Full Text Available Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented.

  17. Preparing rare earth-silicon-iron-aluminum alloys

    International Nuclear Information System (INIS)

    Marchant, J.D.; Morrice, E.; Herve, B.P.; Wong, M.M.

    1980-01-01

    As part of its mission to assure the maximum recovery and use of the Nation's mineral resources, the Bureau of Mines, investigated an improved procedure for producing rare earth-silicon alloys. For example, a charge consisting of 681 grams of mixed rare-earth oxides, 309 grams of ferrosilicon (75 wt-pct Si), and 182 grams of aluminum metal along with a flux consisting of 681 grams of CaO and 45 grams of MgO was reacted at 1500 0 C in an induction furnace. Good slag-metal separation was achieved. The alloy product contained, in weight-percent, 53 RE, 28 Si, 11 Fe, and 4 Al with a rare earth recovery of 80 pct. In current industrial practice rare earth recoveries are usually about 60 pct in alloy products that contain approximately 30 wt-pct each of rare earths and silicon. Metallurgical evaluations showed the alloys prepared in this investigation to be as effective in controlling the detrimental effect of sulfur in steel and cast iron as the commercial rare earth-silicon-iron alloys presently used in the steel industry

  18. Determination of rare earths in their extraction processing

    International Nuclear Information System (INIS)

    You Jiannan; Zhang Yuqin

    1989-01-01

    A method for determination of rare earths in ores, ion-exchange resins and solution samples has been developed. The ore is molten with sodium peroxide and the molten sample is leached with triethenol amine and sodium citrate. In weak acid medium, the rare earths can be extracted by PMBP-phenol solution, and stripped with formic acid. In the acetic acidsodium acetate buffer medium of pH3, the spectrophotometric determination of rare earths with arsenazo M has been made. The rare earths in ion-exchange resins can be directly determined by spectrophotometry after being leached with hydrochloric acid and at heated condition. The rare earths with arsenazo M or a red complex. The maximum absorption of the complex is at 640 nm, and the molar absorption is 8.0 x 10 4 L centre dot mol -1 centre dot cm -1 . While the range of determination is 0.005%-0.5% and 0.001-1.0 g/L, the relative standard deviation is less than 5%, and recovery of rare earths is 98.5-105%. The method is rather simple and rapid

  19. Rare earth industries; Moving Malaysia's Green Economy Forward

    International Nuclear Information System (INIS)

    2011-08-01

    There is a famous saying, Where there is risk, there is opportunity. Rare earths present both health and environmental risks as well as potential economic opportunities. However, the risks are manageable thanks to improved technologies and a better understanding of the implications on health and the environment. This explains why there is a rush by many countries to reopen old mines and increase investment in the production of rare earths concentrate and their high value downstream products. Why is there such a scramble to risk money on rare earths? What have ignited global demand? Where are the opportunities? How are the risks associated with rare earths managed? Can Malaysia benefit from this new growth industry? What should be our strategies? This report, produced by the joint Working Group of the Academy of Sciences Malaysia (ASM) and the Majlis Professor Negara (MPN), discusses the science of rare earths and their business prospects; and proposes some strategic directions for Malaysia. The analysis is based on information culled from various secondary sources as well as the groups engagement with experts from the Rare Earths Society of China. (author)

  20. An introduction to the economics of rare earths

    NARCIS (Netherlands)

    Bartekova, E.

    2014-01-01

    The aim of this paper is to examine the supply risk of rare earths and its impact on low carbon technologies deployment. Bringing together seemingly disconnected strands of scientific literature, this multidisciplinary approach allows to provide an overarching overview of the economics of rare