WorldWideScience

Sample records for rapidly solidified al-fe

  1. Microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Park, W.J.; Baek, E.R.; Lee, Sunghak; Kim, N.J.

    1991-01-01

    TEM is used to investigate microstructural development in a rapidly solidified Al-Fe-V-Si alloy. The as-cast microstructure of a rapidly solidified Al-Fe-V-Si alloy was found to vary depending on casting conditions and also through the thickness of ribbon. For completely Zone A ribbon, intercellular phase consists of a microquasi-crystalline phase, while for the Zone A and Zone B mixed ribbon, it consists of a silicide phase. In either case, formation of globular particles of a cluster microquasi-crystalline phase is observed near the air side of the ribbon. Annealing study shows significant differences in the final microstructure depending on the initial status of the ribbon. Completely Zone A ribbon, whose microstructure is composed of a microquasi-crystalline phase, results in a very coarse microstructure after annealing as compared to the Zone A and Zone B mixed ribbon. This result has important implications for the development of high-performance elevated-temperature Al alloys. 12 refs

  2. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Nayak, S.S.; Chang, H.J.; Kim, D.H.; Pabi, S.K.; Murty, B.S.

    2011-01-01

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al 5 Fe 2 , Al 13 F 4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  3. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Wang, J.Q.; Qian, C.F.; Zhang, B.J.; Tseng, M.K.; Xiong, S.W.

    1996-01-01

    The application of rapid solidification for the development of elevated temperature aluminum alloys has resulted in the emergence of several alloys based on the Al-Fe alloy system. Of particular interest are Al-Fe-V-Si alloys which have excellent room temperature and high temperature mechanical properties. In a pioneering study, Skinner et al. showed the stabilization of the cubic phase in ternary Al-Fe-Si alloy by the addition of a quaternary element, vanadium. The evolution of the microstructure in these alloys both during rapid solidification and subsequent processing is of crucial importance. Kim has demonstrated that the composition of the silicide phase in rapidly solidified Al-Fe-V-Si alloy is very close to Al 12 (Fe,V) 3 Si with the body centered cubic (bcc) structure. The structure is closely related to that of quasicrystals.In view of the structural features and the relationship between the α 12 and α 13 phases, the researching emphasis should firstly be put on the α 12 phase. In this paper the authors analyzed the α -(AlFeSi)(α 12 -type) phase from the angle of atomic valence electron structure other than the traditional methods of obtaining the diffraction spots of the phase. Several pieces of information were obtained about the hybrid levels and bond natures of every kind of atom in the α -(AlFeSi) phase. Finally the authors explained the phenomenon which V atom can substitute for Fe atom in the α 12 phase and improve the thermal stability of the phase in Al-Fe-V-Si alloy

  4. A study on the microstructural characteristics of rapidly solidified Al-Fe alloys(I)

    International Nuclear Information System (INIS)

    Kim, D.H.; Lee, H.I.

    1991-01-01

    Solidification microstructures and phases in rapidly solidified Al-5, 10wt% Fe alloys have been investigated by TEM bright field and dark field imaging techniques and electron and x-ray diffraction techniques. Rapid solidification of Al-5, 10wt%Fe alloys produces various metastable and stable phases, such as Al m Fe, Al 6 Fe and Al 13 Fe 4 . In addition to these phases, clusters of randomly oriented few nm scale particles exist in the form of fine cellular network with α-Al or primary spherical particles. Solidification microstructures of the rapidly solidified Al-5, 10wt%Fe alloys consist of various combination of primary phases such as Al 13 Fe 4 , Al m Fe and cluster of nm scale particles, and cellular/dendritic structures such as fine cellular network structure of nm scale particle clusters and α-Al and cellular structure of Al m Fe and α-Al, depending upon alloy compositions and local cooling rates. (Author)

  5. The influence of Si and V on the kinetics of phase transformation and microstructure of rapidly solidified Al-Fe-Zr alloys

    OpenAIRE

    Karpe B.; Kosec B.; Nagode A.; Bizjak M.

    2013-01-01

    The influence of Si and V on the precipitation kinetics of the rapidly solidified (RS) Al-Fe-Zr alloys is presented. Precipitation kinetics and microstructural development of RS Al-Fe-Zr alloys with Si or V addition have been investigated by the combination of four point electrical resistance measurement, optical microscopy, transmition electron microscopy (TEM) and scanning electron microscopy (SEM). For verification of the electrical resistivity measurement results differential scanni...

  6. Effect of processing on the microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1993-01-01

    An Al 80 Fe 10 Si 6 alloy has been rapidly solidified using melt spinning, gas atomization and spray forming processes. The effect of processing techniques on the microstructural characteristics of the alloy has ben evaluated. The melt spun alloy has shown an icosahedral quasicrystalline phase surrounded by a rational approximant structure of the icosahedral phase. The rational approximant structure has been identified as a crystalline cubic silicide phase. The atomized powders have exhibited cellular and dendritic morphology depending on the size of particles. In addition, the second phase particles of the silicide phase are observed to decorate the cell boundaries and interdendritic regions. In contrast, the alloy processed by spray deposition has revealed an equiaxed solidification morphology with a uniform dispersion of find silicon phase inside the grain. The origin of the microstructure in the alloy processed by these techniques is discussed. The results are compared wherever possible with the commercially available Al-Fe-V-Si alloys

  7. High damping Al-Fe-Mo-Si/Zn-Al composites produced by rapidly solidified powder metallurgy process

    International Nuclear Information System (INIS)

    Li, P.Y.; Dai, S.L.; Chai, S.C.; Li, Y.R.

    2000-01-01

    The metallic materials commonly used in aircraft and aerospace fields, such as aluminum and titanium alloys, steels, etc., show extremely low damping capacity (usually of the order of or less than 10 -3 ). Thus, some problems related to vibration may emerge and influence the reliability, safety and life of airplanes, satellites, etc. It has been reported that almost two thirds of errors for rockets and satellites are related to vibration and noise. One effective way to solve these vibration-related problems is to adopt high damping metallic materials. Conventional high damping alloys exhibit damping capacity above 10 -2 , however, their densities are usually great than 5 x 10 3 kg m -3 , or their strengths are less than 200 MPa (for alloys based on dislocation damping), making them impossible to be applied to aircraft and aerospace areas. Recently, some low-density high-damping metal/metal composites based on aluminum and high damping alloys have been developed in Beijing Institute of Aeronautical Materials (BIAM) by the rapidly solidified power metallurgy process. This paper aims to report the properties of the composites based on a high temperature Al-Fe-Mo-Si alloy and a high damping Zn-Al alloy, and compare them with that of 2618-T61 alloy produced by the ingot metallurgy process

  8. Microstructure characterization of rapidly solidified Al-Fe-Cr-Ce alloy by positron annihilation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Čízek, J.; Procházka, I.; Drahokoupil, Jan; Novák, P.

    2011-01-01

    Roč. 509, č. 7 (2011), s. 3211-3218 ISSN 0925-8388 Institutional research plan: CEZ:AV0Z10100520 Keywords : metals and alloy s * nanostructured materials * rapid solidification * positron spectroscopies * transmission electron microscopy * x-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.289, year: 2011

  9. Microstructure of rapidly solidified materials

    Science.gov (United States)

    Jones, H.

    1984-07-01

    The basic features of rapidly solidified microstructures are described and differences arising from alternative processing strategies are discussed. The possibility of achieving substantial undercooling prior to solidification in processes such as quench atomization and chill block melt spinning can give rise to striking microstructural transitions even when external heat extraction is nominally Newtonian. The increased opportunity in laser and electron beam surface melting for epitaxial growth on the parent solid at an accelerating rate, however, does not exclude the formation of nonequilibrium phases since the required undercooling can be locally attained at the solidification front which is itself advancing at a sufficiently high velocity. The effects of fluid flow indicated particularly in melt spinning and surface melting are additional to the transformational and heat flow considerations that form the present basis for interpretation of such microstructural effects.

  10. Rapidly solidified aluminium for optical applications

    NARCIS (Netherlands)

    Gubbels, G.P.H.; Venrooy, B.W.H. van; Bosch, A.J.; Senden, R.

    2008-01-01

    This paper present the results of a diamond turning study of a rapidly solidified aluminium 6061 alloy grade, known as RSA6061. It is shown that this small grain material can be diamond turned to smaller roughness values than standard AA6061 aluminium grades. Also, the results are nearly as good as

  11. Characterization of aluminium alloys rapidly solidified

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1988-01-01

    This paper discussed the investigation of the microstructural and mechanical properties of the aluminium alloys (3003; 7050; Al-9% Mg) rapidly solidified by melt spinning process (cooling rate 10 4 - 10 6 K/s). The rapidly solidification process of the studied aluminium alloys brought a microcrystallinity, a minimum presence of coarse precipitation and, also, better mechanical properties of them comparing to the same alloys using ingot process. (author) [pt

  12. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  13. Phase composition and microhardness of rapidly quenched Al-Fe alloys after high pressure torsion deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tcherdyntsev, V.V.; Kaloshkin, S.D.; Gunderov, D.V.; Afonina, E.A.; Brodova, I.G.; Stolyarov, V.V.; Baldokhin, Yu.V.; Shelekhov, E.V.; Tomilin, I.A

    2004-07-15

    Aluminium-based Al-Fe alloys with Fe content of 2, 8, and 10 wt.% were prepared by rapid quenching (RQ) from the melt at a rate of 10{sup 6} K/s. Structure of the alloys was examined by X-ray diffraction (XRD) and Moessbauer spectroscopy. Phase transformations of RQ alloys by high pressure torsion (HPT) were studied. Dependences of phase composition on the intensity of HPT were investigated. Microhardness measurements of HPT alloys show a considerable structural heterogeneity of specimens, the dependence of microhardness on the radius of the pills was found out. Phase composition and microhardness during the heating were investigated. At the initial step of heating (120-150 deg. C), an increase in microhardness was observed, whereas further heating leads to a decrease in the microhardness.

  14. Rapidly solidified long-range-ordered alloys

    International Nuclear Information System (INIS)

    Lee, E.H.; Koch, C.C.; Liu, C.T.

    1981-01-01

    The influence of rapid solidification processing on the microstructure of long-range-ordered alloys in the (Fe, Co, Ni) 3 V system has been studied by transmission electron microscopy. The main microstructural feature of the as-quenched alloys was a fine cell structure (approx. 300 nm diameter) decorated with carbide particles. This structure was maintained aftr annealing treatments which develop the ordered crystal structure. Other features of the microstructures both before and after annealing are presented and discussed. 6 figures

  15. Characterization of rapidly solidified powder of high-speed steel

    Czech Academy of Sciences Publication Activity Database

    Miglierini, M.; Lančok, Adriana; Kusý, M.

    2009-01-01

    Roč. 190, 1-3 (2009), s. 51-57 ISSN 0304-3843 R&D Projects: GA ČR GP203/07/P011 Grant - others:GA(SK) VEGA1/3190/06 Institutional research plan: CEZ:AV0Z40320502 Keywords : Rapidly solidified powder * Tool steel * Mössbauer spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 0.209, year: 2007

  16. Rapidly solidified prealloyed powders by laser spin atomization

    Science.gov (United States)

    Konitzer, D. G.; Walters, K. W.; Heiser, E. L.; Fraser, H. L.

    1984-01-01

    A new technique, termed laser spin atomization, for the production of rapidly solidified prealloyed powders is described. The results of experiments involving the production of powders of two alloys, one based on Ni, the other on Ti, are presented. The powders have been characterized using light optical metallography, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Auger elec-tron spectroscopy, and these various observations are described.

  17. Undercooling and demixing in rapidly solidified Cu-Co alloys

    DEFF Research Database (Denmark)

    Battezzati, L.; Curiotto, S.; Johnson, Erik

    2007-01-01

    The Cu–Co system displays a metastable miscibility gap in the liquid state. A considerable amount of work has been performed to study phase separation and related microstructures showing that demixing of the liquid is followed by coagulation before dendritic solidification. Due to kinetic...... competition of transformation phenomena, the mechanisms have not been fully disclosed. This contribution reviews such findings with the help of a computer calculation of the phase diagram and extends the present knowledge by presenting new results obtained by rapidly solidifying various Cu–Co compositions...... using a wide range of cooling rates achieved by forcing the liquid into cylindric and conic moulds and by melt spinning....

  18. Chemical leaching of rapidly solidified Al-Si binary alloys

    International Nuclear Information System (INIS)

    Yamauchi, I.; Takahara, K.; Tanaka, T.; Matsubara, K.

    2005-01-01

    Various particulate precursors of Al 100-x Si x (x = 5-12) alloys were prepared by a rapid solidification process. The rapidly solidified structures of the precursors were examined by XRD, DSC and SEM. Most of Si atoms were dissolved into the α-Al(fcc) phase by rapid solidification though the solubility of Si in the α-Al phase is negligibly small in conventional solidification. In the case of 5 at.% Si alloy, a single α-Al phase was only formed. The amount of the primary Si phase increased with increase of Si content for the alloys beyond 8 at.% Si. Rapid solidification was effective to form super-saturated α-Al precursors. These precursors were chemically leached by using a basic solution (NaOH) or a hydrochloric acid (HCl) solution. All Al atoms were removed by a HCl solution as well as a NaOH solution. Granules of the Si phase were newly formed during leaching. The specific surface area was about 50-70 m 2 /g independent of Si content. The leaching behavior in both solutions was slightly different. In the case of a NaOH solution, the shape of the precursor often degenerated after leaching. On the other hand, it was retained after leaching by a HCl solution. Fine Si particles precipitated in the α-Al phase by annealing of as-rapidly solidified precursors at 773 K for 7.2 x 10 3 s. In this case, it was difficult to obtain any products by NaOH leaching, but a few of Si particles were obtained by HCl leaching. Precipitated Si particles were dissolved by the NaOH solution. The X-ray diffraction patterns of leached specimens showed broad lines of the Si phase and its lattice constant was slightly larger than that of the pure Si phase. The microstructures of the leached specimens were examined by transmission electron microscopy. It showed that the leached specimens had a skeletal structure composed of slightly elongated particles of the Si phase and quite fine pores. The particle size was about 30-50 nm. It was of comparable order with that evaluated by Scherer

  19. Microstructure and mechanical properties of a novel rapidly solidified, high-temperature Al-alloy

    Energy Technology Data Exchange (ETDEWEB)

    Overman, N.R., E-mail: Nicole.Overman@pnnl.gov [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Mathaudhu, S.N. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); University of California, Riverside, 3401 Watkins Dr., Riverside, CA 92521 (United States); Choi, J.P.; Roosendaal, T.J.; Pitman, S. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

    2016-02-15

    Rapid solidification (RS) processing, as a production method, offers a variety of unique properties based on far-from-equilibrium microstructures obtained through rapid cooling rates. In this study, we seek to investigate the microstructures and properties of a novel Al-alloy specifically designed for high temperature mechanical stability. Synthesis of, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} (wt.%), was performed by two approaches: rotating cup atomization (“shot”) and melt spinning (“flake”). These methods were chosen because of their ability to produce alloys with tailored microstructures due to their inherent differences in cooling rate. The as-solidified precursor materials were microstructurally characterized with electron microscopy. The results show that the higher cooling rate flake material exhibited the formation of nanocrystalline regions as well additional phase morphologies not seen in the shot material. Secondary dendritic branching in the flake material was on the order of 0.1–0.25 μm whereas branching in the shot material was 0.5–1.0 μm. Consolidated and extruded material from both precursor materials was mechanically evaluated at both ambient and high (300 °C) temperature. The consolidated RS flake material is shown to exhibit higher strengths than the shot material. The ultimate tensile strength of the melt spun flake was reported as 544.2 MPa at room temperature and 298.0 MPa at 300 °C. These results forecast the ability to design alloys and processing approaches with unique non-equilibrium microstructures with robust mechanical properties at elevated temperatures. - Highlights: • A novel alloy, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} was fabricated by rapid solidification. • Room temperature yield strength exceeded 500 MPa. • Elevated temperature (300 °C) yield strength exceeded 275 MPa. • Forging, after extrusion of the alloy resulted in microstructural coarsening. • Decreased strength and ductility was

  20. Microstructural Quantification of Rapidly Solidified Undercooled D2 Tool Steel

    Science.gov (United States)

    Valloton, J.; Herlach, D. M.; Henein, H.; Sediako, D.

    2017-10-01

    Rapid solidification of D2 tool steel is investigated experimentally using electromagnetic levitation (EML) under terrestrial and reduced gravity conditions and impulse atomization (IA), a drop tube type of apparatus. IA produces powders 300 to 1400 μm in size. This allows the investigation of a large range of cooling rates ( 100 to 10,000 K/s) with a single experiment. On the other hand, EML allows direct measurements of the thermal history, including primary and eutectic nucleation undercoolings, for samples 6 to 7 mm in diameter. The final microstructures at room temperature consist of retained supersaturated austenite surrounded by eutectic of austenite and M7C3 carbides. Rapid solidification effectively suppresses the formation of ferrite in IA, while a small amount of ferrite is detected in EML samples. High primary phase undercoolings and high cooling rates tend to refine the microstructure, which results in a better dispersion of the eutectic carbides. Evaluation of the cell spacing in EML and IA samples shows that the scale of the final microstructure is mainly governed by coarsening. Electron backscattered diffraction (EBSD) analysis of IA samples reveals that IA powders are polycrystalline, regardless of the solidification conditions. EBSD on EML samples reveals strong differences between the microstructure of droplets solidified on the ground and in microgravity conditions. While the former ones are polycrystalline with many different grains, the EML sample solidified in microgravity shows a strong texture with few much larger grains having twinning relationships. This indicates that fluid flow has a strong influence on grain refinement in this system.

  1. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  2. Fabrication and tensile properties of rapidly solidified Cu-10wt. %Ni alloy. [Cu-10Ni

    Energy Technology Data Exchange (ETDEWEB)

    Baril, D; Angers, R; Baril, J [Dept. of Mining and Metallurgy, Laval Univ., Ste-Foy, Quebec (Canada)

    1992-10-15

    Cu-10wt.%Ni ribbons were produced by melt spinning and cut into small particles with a blade cutter mill. The powders were then hot consolidated to full density by hot pressing followed by hot extrusion. Tensile properties of the resulting pieces were measured. Cu-10wt.%Ni cast ingots were also hot extruded and mechanically tested to compare with the rapidly solidified alloy and to evaluate the possible benefits brought by the rapid solidification process.

  3. Influence of quench rates on the properties of rapidly solidified ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. FeNbCuSiB based materials were produced in the form of ribbons by rapid solidification techniques. The crystallization, magnetic, mechanical and corrosion behaviour were studied for the prepared materials as a function of quenching rate from liquid to the solid state. Higher quench rates produced a more ...

  4. Rapidly solidified Ti-25Al-Nb alloys

    International Nuclear Information System (INIS)

    Ward, C.H.; Broderick, T.F.; Jackson, A.G.; Rowe, R.G.; Froes, F.H.

    1987-01-01

    Alloys based on the Ti-25Al-Nb intermetallic system were studied to determine the effects of rapid solidification on structure. Compositions ranging from 12 to 30 at% niobium which are beyond the α/sub 2/ single phase field were evaluated. Alloys were prepared using a melt spinning process. The resulting ribbons were characterized using transmission electron microscopy and x-ray diffraction. The alloys were all found to have a retained ordered B2 structure in the melt spun condition with an antiphase domain size that significantly decreased with increasing niobium content. ''Tweed-like'' striations, indicating planar shear strain, were observed in all compositions. The characteristic diffraction pattern of an ordered ''omega-type'' phase was found to occur in the patterns taken from the 12 at% niobium alloy

  5. Ordering in rapidly solidified Ni/sub 2/Mo

    International Nuclear Information System (INIS)

    Kulkarni, U.D.; Dey, G.K.; Banerjee, S.

    1988-01-01

    Ordering processes in the Ni-Mo system have been a subject of several investigations. Although the ordering behaviour of the Ni/sub 4/Mo and the Ni/sub 3/Mo has been examined in detail, no such study has been reported in the case of the Ni/sub 2/Mo alloy. The lack of experimental work on ordering transformations in Ni/sub 2/Mo is presumably due to the difficulty in obtaining a single phase fcc alloy of this composition. Enhanced solid solubility of Mo in Ni, which accompanies rapid solidification processing (RSP) makes the formation of such a phase possible. The ordering processes in Ni-Mo based alloys show several remarkable features. Firstly, the alloy (15 - 28 at % Mo) quenched from the α -phase filed exhibit a short range order (SRO) characterized by the presence of intensity maxima at /1 1/2 0/ fcc positions of the reciprocal space. This state of SRO has been attributed to the occurrence of 1 1/2 O spinodal ordering in the system. Secondly, the transformation from the state of SRO to the equilibrium/metastable coherent long range ordered (LRO) structures appears to take place in a continuous manner at relatively low temperatures of aging. Three different coherent LRO structures, namely: the equilibrium Ni/sub 4/Mo (prototype structure D1/sub a/) and the metastable Ni/sub 3/Mo (DO/sub 22/) and Ni/sub 2/Mo (Pt/sub 2/Mo) structures have reported to evolve from the SRO alloy, depending upon the aging treatment and the composition of the alloy

  6. The use of Nb in rapid solidified Al alloys and composites

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, F., E-mail: metal@fi.uba.ar [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Wheatley Campus, OX33 1HX Oxford (United Kingdom); Galano, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Saporiti, F. [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina)

    2014-12-05

    Highlights: • The use of Nb in RS Al alloys and composites has been reviewed. • Nb was found to improve the GFA of rapid solidified Al–Fe and Al–Ni alloys. • Nb has higher effect in increasing the corrosion resistance than RE in Al–Fe alloys. • Nb improves the stability of the Al–Fe–Cr icosahedral phase. • Nb improves strength, ductility and toughness of nanoquasicrystalline Al matrix composites. - Abstract: The worldwide requirements for reducing the energy consumption and pollution have increased the demand of new and high performance lightweight materials. The development of nanostructured Al-based alloys and composites is a key direction towards solving this demand. High energy prices and decreased availability of some alloying elements open up the opportunity to use non-conventional elements in Al alloys and composites. In this work the application of Nb in rapid solidified Al-based alloys and Al alloys matrix composites is reviewed. New results that clarify the effect of Nb on rapid solidified Al alloys and composites are also presented. It is observed that Nb stabilises the icosahedral Al–Fe/Cr clusters, enhances the glass forming ability and shifts the icosahedral phase decomposition towards higher temperatures. Nb provides higher corrosion resistance with respect to the pure Al and Al–Fe–RE (RE: rare earth) alloys in the amorphous and crystalline states. The use of Nb as a reinforcement to produce new Al alloy matrix composites is explored. It is observed that Nb provides higher strength, ductility and toughness to the nanoquasicrystalline matrix composite. Nb appears as a new key element that can improve several properties in rapid solidified Al alloys and composites.

  7. Structure and transformation behaviour of a rapidly solidified Al-Y-Ni-Co-Pd alloy

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, D.V.; Inoue, A.

    2005-01-01

    An as-solidified structure and transformation behaviour on heating of the rapidly solidified Al-Y-Ni-Co-Pd alloy was studied by X-ray diffractometry (XRD), transmission electron microscopy (TEM), differential scanning and isothermal calorimetries. The Al-Y-Ni-Co-Pd ribbon samples have been produced by the melt spinning technique and heat treated using a differential scanning calorimeter (DSC). The addition of Pd to Al-Y-Ni-Co alloys caused disappearance of the supercooled liquid region as well as the formation of the highly dispersed primary α-Al nanoparticles about 3-7 nm in size homogeneously embedded in the glassy matrix upon solidification. An extremely high density of precipitates of the order of 10 24 m -3 is obtained. These particles start growing at the temperature below a glass-transition temperature. The results presented in this paper indicate that some of so-called 'marginal' glass-formers in as-solidified state are actually not glassy alloys with pre-existed nuclei but crystal-glassy nanocomposites

  8. Hardness and microstructural characteristics of rapidly solidified Al-8-16 wt.%Si alloys

    International Nuclear Information System (INIS)

    Uzun, O.; Karaaslan, T.; Gogebakan, M.; Keskin, M.

    2004-01-01

    Al-Si alloys with nominal composition of Al-8 wt.%Si, Al-12 wt.%Si, and Al-16 wt.%Si were rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The microstructures of the rapidly solidified ribbons and ingot samples were investigated by the optical microscopy, electron microscopy and X-ray diffraction (XRD) techniques. The results showed that the structures of all melt-spun ribbons were completely composed of finely dispersed α-Al and eutectic Si phase, and primary silicon was not observed. The XRD analysis indicated that the solubility of Si in the α-Al matrix was greatly increased with rapid solidification. Additionally, mechanical properties of both conventionally cast (ingot) and melt-spun ribbons were examined by using Vickers indenter for one applied load (0.098 N). The hardness values of the melt-spun ribbons were about three times higher than those of ingot counterparts. The high hardness of the rapidly solidified state can be attributed to the supersaturated solid solutions. Besides, hardness values with different applied loads were measured for melt-spun ribbons. The results indicated that Vickers hardness values (H v ) of the ribbons depended on the applied load. Applying the concept of Hays-Kendall, the load independent hardness values were calculated as 694.0, 982.8 and 1186.8 MN/m 2 for Al-8 wt.%Si, Al-12 wt.%Si and Al-16 wt.%Si, respectively

  9. Solidification structure and dispersoids in rapidly solidified Ti-Al-Sn-Zr-Er-B alloys

    International Nuclear Information System (INIS)

    Rowe, R.G.; Broderick, T.F.; Koch, E.F.; Froes, F.H.

    1986-01-01

    The microstructure of melt extracted and melt spun titanium alloys containing erbium and boron revealed a duplex solidification structure of columnar grains leading to equiaxed and dendritic structures near the free surface of melt extracted and melt spun alloys. The solidification structure was revealed by apparent boride segregation to cellular, interdendritic and grain boundaries. Precipitation of needle or lath-like TiB particles occurred adjacent to Er/sub 2/O/sub 3/ dispesoid particles in as-rapidly solidified ribbon

  10. Rapid fabrication of superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film with excellent energy-release characteristics and long-term storage stability

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Xiang; Zhou, Xiang, E-mail: zhouxiang@njust.edu.cn; Hao, Gaozi; Xiao, Lei; Liu, Jie; Jiang, Wei, E-mail: superfine_jw@126.com

    2017-06-15

    Highlights: • Superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film is prepared by combining electrophoretic deposition and surface modification technologies. • The deposition system and kinetics of electrophoretic deposition process are investigated to optimize parameters to obtain smooth films. • Energy-release characteristics of superhydrophobic films are significantly improved for both fresh and aged samples. • Superhydrophobic films exhibit excellent long-time storage stability both in natural and accelerated aging test. • A preignition reaction is found to enhance the energy-release characteristics of superhydrophobic nanothermite film. - Abstract: One of the challenges for the application of energetic materials is their energy-retaining capabilities after long-term storage. In this study, we report a facile method to fabricate superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film by combining electrophoretic deposition and surface modification technologies. Different concentrations of dispersion solvents and additives are investigated to optimize the deposition parameters. Meanwhile, the dependence of deposition rates on nanoparticle concentrations is also studied. The surface morphology and chemical composition are characterized by field-emission scanning electron microscopy, X-ray diffraction, X-ray energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. A static contact angles as high as 156° shows the superhydrophobicity of the nanothermite film. Natural and accelerated aging tests are performed and the thermal behavior is analyzed. Thermal analysis shows that the surface modification contributes to significantly improved energy-release characteristics for both fresh and aged samples, which is supposed to be attributed to the preignition reaction between Al{sub 2}O{sub 3} shell and FAS-17. Superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film exhibits excellent long-time storage stability with 83.4% of energy left in

  11. Elevated temperature mechanical properties of a rapidly solidified A1-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Mitra, S.

    1992-01-01

    Dispersion strengthened Al alloys based on the Al-Fe-V-Si quartenary system have recently been developed using rapid solidification techniques. Rapid solidification techniques which resulted in the above mentioned alloys have also been used to manufacture another commercial alloy, FVS 1212, with 37 volume % of dispersoid. The alloy has shown excellent resistance to coarsening at high temperatures and to creep deformation. Elevated temperature exposure of FVS 1212, for times up to 100 hours, resulted in a significant loss in room temperature mechanical properties only beyond 500 degrees C while 1000 hours at 425 degrees C did not result in any degradation of mechanical but no detailed study of the tensile behavior of FVS 1212 at slow strain rates and elevated temperatures has been reported to date. This paper reports that the present study was undertaken to investigate the tensile behavior of FVS 1212 from room temperature to 400 degrees C at strain rates of 6.56 x 10 - 5/sec and 6.56 x 10 -6 /sec. The study focussed on dynamic strain aging effects and strain hardening behavior, while the effect of strain rate on the flow behavior at elevated temperatures was also evaluated

  12. Structure and mechanical properties of Al-3Fe rapidly solidified alloy

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    The Al based Al-3 wt%Fe alloy was prepared by conventionally casting (ingot) and further processed the melt-spinning technique and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased.

  13. Phase composition of rapidly solidified Ag-Sn-Cu dental alloys

    International Nuclear Information System (INIS)

    Lecong Dzuong; Do Minh Nghiep; Nguyen van Dzan; Cao the Ha

    1996-01-01

    The phase composition of some rapidly solidified Ag-Sn-Cu dental alloys with different copper contents (6.22 wtpct) has been studied by XRD, EMPA and optical microscopy. The samples were prepared from melt-spun ribbons. The microstructure of the as-quenched ribbons was microcrystalline and consisted of the Ag sub 3 Sn, Ag sub 4 Sn, Cu sub 3 Sn and Cu sub 3 Sn sub 8 phases. Mixing with mercury (amalgamation) led to formation of the Ag sub 2 Hg sub 3, Sn sub 7 Hg and Cu sub 6 Sn sub 5 phases. The amount of copper atoms in the alloys played an important role in phase formation in the amalgams

  14. Microstructure of rapidly solidified Al2O3-dispersion-strengthened Type 316 stainless steel

    International Nuclear Information System (INIS)

    Megusar, J.; Arnberg, L.; Vander Sande, J.B.; Grant, N.J.

    1981-01-01

    An aluminum oxide dispersion strengthened 316 stainless steel was developed by surface oxidation. Surface oxidation was chosen as a preferred method in order to minimize formation of less stable chromium oxides. Ultra low C+N 316 stainless steel was alloyed with 1 wt % Al, rapidly solidified to produce fine powders and attrited to approximately 0.5 μm thick flakes to provide for surface oxidation. Oxide particles in the extruded material were identified mostly as Al oxides. In the preirradiated condition, oxide dispersion retarded crystallization and grain growth and had an effect on room temperature tensile properties. These structural modifications are expected to have an effect on the swelling resistance, structure stability and high temperature strength of austenitic stainless steels

  15. Formation of AlFeSi phase in AlSi12 alloy with Ce addition

    Directory of Open Access Journals (Sweden)

    S. Kores

    2012-04-01

    Full Text Available The influence of cerium addition on the solidification sequence and microstructure constituents of the Al-Si alloys with 12,6 mass % Si was examined. The solidification was analyzed by a simple thermal analysis. The microstructures were examined with conventional light and scanning electron microscopy. Ternary AlSiCe phase was formed in the Al-Si alloys with added cerium during the solidification process. AlSiCe and β-AlFeSi phases solidified together in the region that solidified the last. Cerium addition influenced on the morphology of the α-AlFeSi phase solidification.

  16. Structural investigations of mechanical properties of Al based rapidly solidified alloys

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    Highlights: → Rapid solidification processing (RSP) involves exceptionally high cooling rates. → We correlate the microstructure of the intermetallic Al 3 Fe, Al 2 Cu and Al 3 Ni phases with the cooling rate. → The solidification rate is high enough to retain most of alloying elements in the Al matrix. → The rapid solidification has effect on the phase constitution. -- Abstract: In this study, Al based Al-3 wt.%Fe, Al-3 wt.%Cu and Al-3 wt.%Ni alloys were prepared by conventional casting. They were further processed using the melt-spinning technique and characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. RS samples were measured using a microhardness test device. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased. The enthalpies of fusion for the same alloys were determined by DSC.

  17. Properties of rapidly solidified Fe-Cr-Al ribbons for the use as automotive exhaust gas catalyst substrates

    International Nuclear Information System (INIS)

    Emmerich, K.

    1993-01-01

    Metallic honeycomb structures are used as catalyst substrates in automotive exhaust gas systems. This application requires an outstanding corrosion resistance at elevated temperatures of the substrate material. Technical improvements can be achieved by the use of rapid solidification technology for the production of the Fe-Cr-Al ribbons since the Al content can be substantially increased from about 5% Al in the conventionally rolled material to about 12% Al in the rapid solidified ribbon. As a result the lifetime of the ribbon in a higher-temperature corrosion environment is drastically increased. In addition the scale/metal adherance is improved. The impediment of recrystallization in the rapidly solidified ribbons prevents an embrittlement even in carbonizing atmospheres. (orig.)

  18. Synthesis of laser beam rapidly solidified novel surfaces on D2 tool steel

    International Nuclear Information System (INIS)

    Ahmed, B.A.; Rizwan, K.F.; Minhas, J.A.; Waheed-ul-Haq, S.; Shahid, M.

    2011-01-01

    Surface layer of D2 tool steel was subjected to laser surface melting using continuous wave 2.5 kW CO/sub 2/ laser in point source melting mode. The processing parameters were varied to achieve a uniform depth of around 2 mm. Microstructural study revealed epitaxial growth of fine dendritic structure with secondary dendrite arm spacing in the range of 20-25 mu m. The phases in the parent annealed sample were BCC ferrite and chromium rich M7C3 carbide. The major phase after laser treatment was austenite and M7C3. The average hardness of annealed sample was 195 HV which increased to 410 HV after laser melting. Corrosion studies in 2% HCl solution exhibited a drastic improvement in corrosion resistance in laser treated samples. Improvement in properties is attributed to the refinement and uniformity of microstructure in the rapidly solidified surface. The case of a moving heat source was subjected to computer aided simulation to predict the melt depth at different processing conditions in point source melting mode. The calculated depths using the model, in ABAQUS software was found in good agreement with the experimental data. (author)

  19. Electron microscopy investigations of rapidly solidified Fe-Zr-B-Cu alloys

    International Nuclear Information System (INIS)

    Majumdar, B.; Arvindha Babu, D.; Akhtar, D.

    2010-01-01

    Rapidly solidified Fe-based nanocrystalline soft magnetic materials possess a unique combination of properties i,e high permeability, saturation and Curie temperature and very low coercivity which are otherwise not attainable in conventional soft magnetic materials. The alloys are processed by producing amorphous phase through melt spinning route followed by a partial devitrification for incorporation of nanocrystalline phase in the amorphous matrix. In this paper, detailed electron microscopic investigations of melt spun Fe-Zr-B-Cu alloys are presented. Melt spun ribbons of Fe 99-x-y Zr x BCu 1 alloys with x+y = 11 and x+y = 13 were prepared under different wheel speed conditions and then vacuum annealed for 1 h at different temperatures. The microstructure changes from completely amorphous to a cellular/dendritic bcc solid solution coexisting with the amorphous phase at intercellular/dendritic regions when Zr/B ratio or the process parameters are varied. Annealing leads to the precipitation of nanocrystalline bcc-Fe phase from both amorphous phase and already existing bcc solid solution. (author)

  20. Short-term thermal response of rapidly solidified Type 304 stainless steel containing helium

    International Nuclear Information System (INIS)

    Clark, D.E.

    1988-06-01

    Type 304 stainless steel was heat treated for short times near its melting point in order to determine its microstructural response to thermal cycles typical of the near heat-affected zones of welding processes. The material was rapidly solidified as a powder by centrifugal atomization in a helium environment and consolidated by hot extrusion. Along with the ingot metallurgy material used for canning the powder prior to hot extrusion, it was heat treated using a Gleeble at temperatures of 1200 and 1300 degree C for times ranging from <1 to 1000 s, and the samples were examined for microstructure and the existence of porosity due to entrapped helium. At higher test temperatures and longer treatment times, the material developed extensive porosity, which was stabilized by the presence of helium and which may also have a role in anchoring grain boundaries and inhibiting grain growth. The powder material. At lower test temperatures and shorter treatment times, grain growth in the γ phase appeared to be restricted in the powder material, possible by the presence of helium. An intermediate temperatures and times, a γ-δ duplex microstructure also restricted grain growth again occurred in the δ microstructure. 9 refs., 14 figs., 3 tabs

  1. Investigation on microstructure characterization and property of rapidly solidified Mg-Zn-Ca-Ce-La alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao, E-mail: tzhou1118@163.com [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Chen Zhenhua, E-mail: chenzhenhua45@hotmail.com [College of Material Science and Engineering, Hunan University, Changsha 410082 (China); Yang Mingbo, E-mail: yangmingbo@cqit.edu.cn [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Hu Jianjun, E-mail: hujj@qq.com [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Xia Hua, E-mail: xiahua@cqut.edu.cn [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China)

    2012-01-15

    Rapidly solidified (RS) Mg-Zn-Ca-Ce-La (wt.%) alloys have been produced via atomizing the alloy melt and subsequent splat-quenching on the water-cooled copper twin-rollers in the form of flakes. Microstructure characterization, phase compositions and thermal stability of the alloys have been systematically investigated. The results showed that with addition of RE (Ce and La) to the Mg-6Zn-5Ca alloy, the stable intermetallic compounds i.e. the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (about 3 at.%), shortened as the T Prime phase, were formed at the expense of the binary Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases, which was possibly beneficial to the enhanced thermal stability of the alloy. In the Mg-6Zn-5Ca-3Ce-0.5La alloy, the composition of the T Prime phase in the grain interior was different from that at the grain boundaries, in which the segregation of the La elements was found, and the atomic percentage ratio of Zn to Ce in the T Prime phase within the grains was close to 2. Moreover, the stable Mg{sub 2}Ca phases were detected around the T Prime phases at the grain boundaries in the alloy. - Research Highlights: Black-Right-Pointing-Pointer The phase constitution of RS Mg-6Zn-5Ca alloy can be improved by RE additions. Black-Right-Pointing-Pointer In the Mg-Zn-Ca-Ce-La alloys, the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (T Prime phase) is formed. Black-Right-Pointing-Pointer The formation of the T Prime phase leads to the loss of the Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases. Black-Right-Pointing-Pointer The composition of the T Prime phase differs from the grain interior to the grain boundary.

  2. Morphological variants of carbides of solidification origin in the rapidly solidified powder particles of hypereutectic iron alloy

    International Nuclear Information System (INIS)

    Kusy, M.; Grgac, P.; Behulova, M.; Vyrostkova, A.; Miglierini, M.

    2004-01-01

    The paper deals with the analysis of the morphological variants of solidification microstructures and vanadium rich M 4 C 3 carbide phases in the rapidly solidified (RS) powder particles from hypereutectic Fe-C-Cr-V alloy prepared by the nitrogen gas atomisation. Five main types of solidification microstructures were identified in RS particles: microstructure with globular carbides, microstructure with globular and star-like carbides, microstructure with primary carbides in the centres of eutectic colonies, microstructure with eutectic colonies without primary carbides and microstructure with eutectic spherulites. Based on the morphological features of carbide phases and the thermal history of RS particles, the microstructures were divided into two groups - microstructures morphologically affected and non-affected during the post-recalescence period of solidification. Thermophysical reasons for the morphologically different M 4 C 3 carbide phases development in the RS powder particles are discussed

  3. Tensile behavior change depending on the microstructure of a Fe-Cu alloy produced from rapidly solidified powder

    International Nuclear Information System (INIS)

    Kakisawa, Hideki; Minagawa, Kazumi; Halada, Kohmei

    2003-01-01

    The relationship between consolidating temperature and the tensile behavior of iron alloy produced from Fe-Cu rapidly solidified powder is investigated. Fe-Cu powder fabricated by high-pressure water atomization was consolidated by heavy rolling at 873-1273 K. Microstructural changes were observed and tensile behavior was examined. Tensile behavior varies as the consolidating temperature changes, and these temperature-dependent differences depend on the morphology of the microstructure on the order of micrometers. The sample consolidated at 873 K shows a good strength/elongation balance because the powder microstructure and primary powder boundaries are maintained. The samples consolidated at the higher temperatures have a microstructure of recrystallized grains, and these recrystallized samples show the conventional relationship between tensile behavior and grain size in ordinal bulk materials

  4. Effect of iron and cerium additions on rapidly solidified Al-TM-Ce alloys

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Schumacher, G.; Novák, P.; Pližingrová, Eva

    2013-01-01

    Roč. 47, č. 6 (2013), s. 757-761 ISSN 1580-2949 Institutional support: RVO:61388980 Keywords : rapid solidification * aluminium * quasicrystals Subject RIV: CA - Inorganic Chemistry Impact factor: 0.555, year: 2013

  5. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, W., E-mail: witorw@gmail.com [Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Bolfarini, C., E-mail: cbolfa@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Kiminami, C.S., E-mail: kiminami@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Botta, W.J., E-mail: wjbotta@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil)

    2016-12-15

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}, Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}. The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al{sub 5}Co{sub 2} and Al{sub 13}Co{sub 4} and are quasicrystalline approximants. Although the Al{sub 5}Co{sub 2} phase has already been reported in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the presence of the monoclinic Al{sub 13}Co{sub 4} is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al{sub 13}Co{sub 4} phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the compositions Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were chosen to be within the region of formation of the quaternary extension of the Al{sub 13}Co{sub 4} phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system

  6. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wolf, W.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J.

    2016-01-01

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al 71 Co 13 Fe 8 Cr 8 , Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al 71 Co 13 Fe 8 Cr 8 alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al 71 Co 13 Fe 8 Cr 8 . The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al 5 Co 2 and Al 13 Co 4 and are quasicrystalline approximants. Although the Al 5 Co 2 phase has already been reported in the Al 71 Co 13 Fe 8 Cr 8 alloy, the presence of the monoclinic Al 13 Co 4 is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al 13 Co 4 phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al 71 Co 13 Fe 8 Cr 8 alloy, the compositions Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were chosen to be within the region of formation of the quaternary extension of the Al 13 Co 4 phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system, around the compositions studied, is composed of quaternary extensions of Al-Co intermetallic phases, which present solubility of Fe and Cr at Co atomic sites. - Highlights: •The Al rich region of the Al

  7. Irradiation response of rapidly solidified Path A type prime candidate alloys

    International Nuclear Information System (INIS)

    Imeson, E.; Tong, C.; Lee, M.; Vander Sande, J.B.; Harling, O.K.

    1981-01-01

    The objective of this study is to present a first assessment of the microstructural response to neutron irradiation shown by Path A alloys prepared by rapid solidification processing. To more fully demonstrate the potential of the method, alloys with increased titanium and carbon content have been used in addition to the Path A prime candidate alloy

  8. Influence of cooling rate and cerium addition on rapidly solidified Al-TM alloys

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Schumacher, G.; Novák, P.; Klementová, Mariana; Šerák, J.; Mudrová, M.; Valdaufová, J.

    2010-01-01

    Roč. 48, č. 1 (2010), s. 1-7 ISSN 0023-432X Institutional research plan: CEZ:AV0Z40320502 Keywords : rapid solidification * Al-TM * microstructure * aluminium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.471, year: 2010

  9. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy

    International Nuclear Information System (INIS)

    Matsuda, M.; Ii, S.; Kawamura, Y.; Ikuhara, Y.; Nishida, M.

    2005-01-01

    The long-period stacking order (LPSO) structures in rapidly solidified Mg 97 Zn 1 Y 2 alloy have been studied by conventional and high-resolution transmission electron microscopes (HRTEMs). There are four kinds of stacking sequences in the LPSO structures, i.e., 18R of ABABABCACACABCBCBC, 14H of ACBCBABABABCBC, 10H of ABACBCBCAB and 24R of ABABABABCACACACABCBCBCBC. The 18R structure is dominantly observed in the present study. The rest three are occasionally observed in places. The 10H and 24R structures are recently discovered. The lattice constants of 18R(1-bar 1-bar -bar 1-bar 1-bar -bar 2) 3 , 14H(2-bar -bar 1-bar 2-bar -bar 1-bar 1-bar -bar 1-bar 1-bar -bar 2-bar 1-bar -bar 2), 10H(1-bar 3-bar -bar 1-bar 1-bar -bar 3-bar 1-bar ) and 24R(1-bar 1-bar -bar 1-bar 1-bar -bar 1-bar 1-bar -bar 2) 3 structures are estimated to be a=0.320nm and c=4.678nm, a=0.325nm and c=3.694nm, a=0.325nm and c=2.603nm, a=0.322nm and c=6.181nm for the hexagonal structure, respectively

  10. Effect of Trace Ce on Microstructure and Properties of Near-rapidly Solidified Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2018-03-01

    Full Text Available Through using DSC, XRD, SEM, EDS, static tensile test and other analysis methods of materials, the effect of trace Ce on microstructure and properties of near-rapidly solidified Al-Zn-Mg-Cu alloy was studied in order to find out rational homogenizing heat treatment process. The results show that Ce plays a role of refining grain and purifying molten alloy. The addition of Ce reduces dendritic spacing, refines the grain structures, eliminates dispersed shrinkage. The addition of Ce reduces the initial melting point of low melting eutectic phases by 3℃, under the same homogenization conditions. Trace Ce promotes the dissolution of low melting eutectic phases into the matrix, which improves the effect of homogenization. Homogenization temperatures of alloy A should be lower than 480℃and alloy B should be lower than 470℃; the addition of Ce decreases the homogenization temperature and improves the homogenization effect. The addition of Ce also greatly increases the tensile strength of the alloys.

  11. Evolution of rapidly solidified NiAlCu(B) alloy microstructure.

    Science.gov (United States)

    Czeppe, Tomasz; Ochin, Patrick

    2006-10-01

    This study concerned phase transformations observed after rapid solidification and annealing at 500, 700 and 800 degrees C in 56.3 Ni-39.9 Al-3.8 Cu-0.06 B (E1) and 59.8 Ni-36.0 Al-4.3 Cu-0.06 B (E2) alloys (composition in at.%). Injection casting led to a homogeneous structure of very small, one-phase grains (2-4 microm in size). In both alloys, the phase observed at room temperature was martensite of L1(0) structure. The process of the formation of the Ni(5)Al(3) phase by atomic reordering proceeded at 285-394 degrees C in the case of E1 alloy and 450-550 degrees C in the case of E2 alloy. Further decomposition into NiAl (beta) and Ni(3)Al (gamma') phases, the microstructure and crystallography of the phases depended on the path of transformations, proceeding in the investigated case through the transformation of martensite crystallographic variants. This preserved precise crystallographic orientation between the subsequent phases, very stable plate-like morphology and very small beta + gamma' grains after annealing at 800 degrees C.

  12. Surface segregation of chromium in rapidly solidified Al studied by RBS and SPEM

    International Nuclear Information System (INIS)

    Tashlykova-Bushkevich, I.I.; Amati, M.; Aleman, B.; Gregoratti, L.; Kiskinova, M.; Ryabuhin, O.V.; Shepelevich, V.G.

    2013-01-01

    The present study demonstrates the advances of using scanning photoelectron microscopy and imaging accomplished by RBS and AFM to investigate the surface segregation of alloying elements in RS aluminum. Depth profiling of elemental composition indicates that RS microstructure evolution is influenced by solute-nanostructured defect interactions in Al-Cr alloys. It was found that Cr 2p and 3p core level photoemission spectra exhibits foil surface impoverishment of chromium. In agreement with dope depth profiling as carried out by RBS, the revealed phenomenon can be attributed to the fact that Cr drastically reduces the concentration of vacancies compared with RS pure Al, and affects H behaviour in RS Al-Cr alloys. Obtained results indicate that the surface microstructure of the Al alloy foils at the sub-micrometer scale, as far as the high density of quenched-in vacancies is concerned, is essential to elucidate how the microstructural morphology resulting from rapid solidification affects hydrogen trapping at lattice defects. (authors)

  13. APFIM and TEM investigations of precipitation in rapidly solidified 316 stainless steel

    International Nuclear Information System (INIS)

    Wisutmethangoon, S.; Kelly, T.F.; Flinn, J.E.; Camus, P.P.

    1998-01-01

    316 stainless steel has been rapid solidification-processed (RSP) by gas atomization and hot extrusion of the powder with the intent of improving the mechanical properties through fine-scale precipitation. Vanadium, nitrogen and oxygen have been introduced intentionally as alloying elements for this purpose. The yield strength after solution heat treatment of the RSP alloy is 450 MPa. By ageing at 600 C for 1000 h, the yield strength increases to 615 MPa with little loss of ductility (53% reduction of area). The ultimate tensile strength after cold work and ageing is 922 MPa. The morphology and composition of the precipitates in this steel have been investigated using APFIM and TEM techniques in order understand the origin of the high strength. A high numbered density (∼2 x 10 21 m -3 ) of 25 nm plate-like precipitates was observed with TEM in an aged specimen. The composition of these precipitates was analyzed using APFIM techniques, and was found to be a complex nitride of Cr, V, Fe, Ni and Mo. This nitride precipitate was not found in an unaged specimen of this alloy. These precipitates are responsible for improving mechanical properties by dispersion strengthening. (orig.)

  14. Influence of micro-additions of bismuth on structures, mechanical and electrical transport properties of rapidly solidified Sn-3.5% Ag Alloy from melt

    International Nuclear Information System (INIS)

    El Bahay, M.M.; Mady, H.A.

    2005-01-01

    The present study was undertaken to investigate the influence of the Bi addition in the Sn-3.5 Ag rapidly solidified binary system for use as a Pb-free solder. The resulting properties of the binary system were extended to the Sn based ternary systems Sn 9 6.5-X Ag 3 .5 Bi x (0≤ X ≤ 2.5) solder. The structure and electrical resistivity of rapidly solidified (melt spun) alloys have been investigated. With the addition of up to 2.5 mass % Bi, the melting temperature decreases from 221.1 to 214.8 degree C. Wetting contact angle of the six alloys on Cu Zn 3 0 substrate are carried out at 573 K. Microhardness evaluations were also performed on the Sn-Ag-Bi alloys. The measured values and other researcher's results were compared with the calculated data

  15. Electrochemical properties of rapidly solidified Si-Ti-Ni(-Cu) base anode for Li-ion rechargeable batteries

    Science.gov (United States)

    Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook

    2013-11-01

    In this study, rapidly solidified Si-Ti-Ni-Cu alloys have been investigated as high capacity anodes for Li-ion secondary batteries. To obtain nano-sized Si particles dispersed in the inactive matrix, the alloy ribbons were fabricated using the melt spinning process. The thin ribbons were pulverized using ball-milling to make a fine powder of ˜ 4 µm average size. Coin-cell assembly was carried out under an argon gas in a glove box, in which pure lithium was used as a counter-electrode. The cells were cycled using the galvanostatic method in the potential range of 0.01 V and 1.5 V vs. Li/Li+. The microstructure and morphology were examined using an x-ray diffractometer, Field-Emission Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy. Among the anode alloys, the Si70Ti15Ni15 electrodes had the highest discharge capacity (974.1 mAh/g) after the 50th cycle, and the Si60Ti16Ni16Cu8 electrode showed the best coulombic efficiency of ˜95.9% in cyclic behavior. It was revealed that the Si7Ni4Ti4 crystal phase coexisting with an amorphous phase, could more efficiently act as a buffer layer than the fully crystallized Si7Ni4Ti4 phase. Consequently, the electrochemical properties of the anode materials pronouncedly improved when the nano-sized primary Si particle was dispersed in the inactive Si7Ni4Ti4-based matrix mixed with an amorphous structure.

  16. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    International Nuclear Information System (INIS)

    Ma, Jie; Wang, Bo; Zhao, Shunli; Wu, Guangxin; Zhang, Jieyu; Yang, Zhiliang

    2016-01-01

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  17. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material.

    Science.gov (United States)

    Gu, X N; Li, X L; Zhou, W R; Cheng, Y; Zheng, Y F

    2010-06-01

    Rapidly solidified (RS) Mg–3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s(-1), 30 m s(-1) and 45 m s(-1) with the as-cast Mg–3Ca alloy ingot as a raw material. The RS45 Mg–3Ca alloy ribbon showed a much more fine grain size feature (approximately 200–500 nm) in comparison to the coarse grain size (50–100 μm)of the original as-cast Mg–3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg–3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds(1.43 mm yr(-1) for RS15, 0.94 mm yr(-1) for RS30 and 0.36 mm yr(-1) for RS45). The RS Mg–3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg–3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg–3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells,whereas the as-cast Mg–3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg–3Ca alloy ribbons than that of the as-cast Mg–3Ca alloy ingot.

  18. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X N; Zhou, W R; Zheng, Y F [State Key Laboratory for Turbulence and Complex System and Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Li, X L [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Cheng, Y, E-mail: yfzheng@pku.edu.c [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2010-06-01

    Rapidly solidified (RS) Mg-3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s{sup -1}, 30 m s{sup -1} and 45 m s{sup -1}) with the as-cast Mg-3Ca alloy ingot as a raw material. The RS45 Mg-3Ca alloy ribbon showed a much more fine grain size feature (approximately 200-500 nm) in comparison to the coarse grain size (50-100 {mu}m) of the original as-cast Mg-3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg-3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds (1.43 mm yr{sup -1} for RS15, 0.94 mm yr{sup -1} for RS30 and 0.36 mm yr{sup -1} for RS45). The RS Mg-3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg-3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg-3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells, whereas the as-cast Mg-3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg-3Ca alloy ribbons than that of the as-cast Mg-3Ca alloy ingot.

  19. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material

    International Nuclear Information System (INIS)

    Gu, X N; Zhou, W R; Zheng, Y F; Li, X L; Cheng, Y

    2010-01-01

    Rapidly solidified (RS) Mg-3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s -1 , 30 m s -1 and 45 m s -1 ) with the as-cast Mg-3Ca alloy ingot as a raw material. The RS45 Mg-3Ca alloy ribbon showed a much more fine grain size feature (approximately 200-500 nm) in comparison to the coarse grain size (50-100 μm) of the original as-cast Mg-3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg-3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds (1.43 mm yr -1 for RS15, 0.94 mm yr -1 for RS30 and 0.36 mm yr -1 for RS45). The RS Mg-3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg-3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg-3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells, whereas the as-cast Mg-3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg-3Ca alloy ribbons than that of the as-cast Mg-3Ca alloy ingot.

  20. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jie; Wang, Bo [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhao, Shunli [Research Institute, Baoshan Iron & Steel Co., Ltd, Shanghai 201900 (China); Wu, Guangxin [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhang, Jieyu, E-mail: zjy6162@staff.shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Yang, Zhiliang [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China)

    2016-05-25

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  1. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.

  2. Microstructural features and heat flow analysis of atomized and spray-formed Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1998-01-01

    Microstructural features of rapidly solidified powders and preforms of Al 80 Fe 10 V 4 Si 6 alloy produced by spray forming process have been studied. The atomization and spray deposition were carried out using a confined gas atomization process and the microstructural features were characterized using scanning electron microscopy and transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The microstructure of a wide size range of atomized powders invariably revealed cellular and dendritic morphology. The extent of dendritic region and the dendritic arm spacing were observed to increase with power particle size. The TEM investigations indicated the presence of ultrafine second-phase particles in the intercellular or interdendritic regions. In contrast, the spray deposits of the alloy showed considerable variation in microstructure and size and dispersion of the second-phase particles at specific distances from the deposit-substrate interface and the exterior regions of the deposit. Nevertheless, considerable homogeneity was observed in the microstructure toward the center of the spray deposit. The formation and distribution of a cubic phase α-Al(Fe, V)Si has been characterized in both atomized powders and spray deposits. A one-dimensional heat flow model has been used to analyze the evolution of microstructure during atomization and also during spray deposition processing of this alloy. The results indicate that thermal history of droplets in the spray on deposition surface and their solidification behavior considerably influence the microstructural features of the spray deposits

  3. Phase formation kinetics, hardness and magnetocaloric effect of sub-rapidly solidified LaFe11.6Si1.4 plates during isothermal annealing

    Science.gov (United States)

    Dai, Yuting; Xu, Zhishuai; Luo, Zhiping; Han, Ke; Zhai, Qijie; Zheng, Hongxing

    2018-05-01

    High-temperature phase transition behavior and intrinsic brittleness of NaZn13-type τ1 phase in La-Fe-Si magnetocaloric materials are two key problems from the viewpoint of materials production and practical applications. In the present work, the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation was introduced to quantitatively characterize the formation kinetics of τ1 phase in sub-rapidly solidified LaFe11.6Si1.4 plates during the isothermal annealing process. Avrami index was estimated to be 0.43 (∼0.5), which suggests that the formation of τ1 phase is in a diffusion-controlled one-dimensional growth mode. Meanwhile, it is found that the Vickers hardness as a function of annealing time for sub-rapidly solidified plates also agrees well with the JMAK equation. The Vickers hardness of τ1 phase was estimated to be about 754. Under a magnetic field change of 30 kOe, the maximum magnetic entropy change was about 22.31 J/(kg·K) for plates annealed at 1323 K for 48 h, and the effective magnetic refrigeration capacity reached 191 J/kg.

  4. Formation of an 18R long-period stacking ordered structure in rapidly solidified Mg88Y8Zn4 alloy

    International Nuclear Information System (INIS)

    Garcés, Gerardo; Requena, Guillermo; Tolnai, Domonkos; Pérez, Pablo; Medina, Judit; Stark, Andreas; Schell, Norbert; Adeva, Paloma

    2016-01-01

    The formation of the long-period stacking ordered structure (LPSO) in a Mg 88 Y 8 Zn 4 (at%) ribbon produced by melt spinning was studied using high energy X-ray synchrotron radiation diffraction during in-situ isochronal heating and transmission electron microscopy. The microstructure of the rapidly solidified ribbons is characterised by fine magnesium grains with yttrium and zinc in solid solution and primary 18R LPSO-phase segregated at grain boundaries. Using differential scanning calorimetry, a strong exothermal peak was observed around 300 °C which was associated with the development of the 18R-type LPSO-phase in the magnesium grains. The apparent activation energy calculated using the Kissinger model was 125 KJmol −1 and it is related to simultaneous diffusion of Y and Zn through magnesium basal plane. - Highlights: •The formation of the LPSO phase in rapidly solidified ribbons was studied. •The formation of the 18R LPSO starts at around 300 °C. •LPSO formation have to steps: Stacking faults along basal plane and then growth of 18R structure along the c direction.

  5. Effect of Bi-content on hardness and micro-creep behavior of Sn-3.5Ag rapidly solidified alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, M. [Metal Physics Laboratory, Faculty of Science, Mansoura University (Egypt); Gouda, El Said [Metal Physics Laboratory, Department of Solid State Physics, Physics Division, National Research Center, Dokki, Giza (Egypt); Marei, L.K. [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2009-12-15

    In the present paper, the influence of 1, 3, 5 and 10 % Bi (weight %) as ternary additions on structure, melting and mechanical properties of rapidly solidified Sn-3.5Ag alloy has been investigated. The effect of Bi was discussed based on the experimental results. The experimental results showed that the alloys of Sn-3.5Ag, Sn-3.5Ag-1Bi and Sn-3.5Ag-3Bi are composed of two phases; Ag{sub 3}Sn IMC embedded in Sn matrix phase, which indicated that the solubility of Bi phase in Sn-matrix was extended to 3 % as a result of rapid solidification. Bi precipitation in Sn matrix was only observed in Sn-3.5Ag-5Bi and Sn-3.5Ag-10Bi alloys. Also, addition of Bi decreased continuously the melting point of the eutectic Sn-3.5Ag alloy to 202.6 C at 10 % Bi. Vickers hardness of Sn-3.5Ag rapidly solidified alloy increased with increasing Bi content up to 3 % due to supersaturated solid solution strengthening hardening mechanism of Bi phase in Sn matrix, while the alloys contain 5 and 10 % Bi exhibited lower values of Vickers hardness. The lower values can be attributed to the precipitation of Bi as a secondary phase which may form strained regions due to the embrittlement of Bi atom. In addition, the effect of Bi addition on the micro-creep behavior of Sn-3.5Ag alloy as well as the creep rate have been described and has been calculated at room temperature. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Evolution of the microstructure and hardness of a rapidly solidified/melt-spun AZ91 alloy upon aging at different temperatures

    International Nuclear Information System (INIS)

    Wang Baishu; Liu Yongbing; An Jian; Li Rongguang; Su Zhenguo; Su Guihua; Lu You; Cao Zhanyi

    2009-01-01

    The effect of aging at different temperatures on a rapidly solidified/melt-spun AZ91 alloy has been investigated in depth. The microstructures of as-spun and aged ribbons with a thickness of approximately 60 μm were characterized using X-ray diffraction, transmission electron microscopy and laser optical microscopy; microhardness measurements were also conducted. It was found that the commercial AZ91 alloy undergoes a cellular/dendritic transition during melt-spinning at a speed of 34 m/s. A strengthening effect due to aging was observed: a maximum hardness of 110 HV/0.05 and an age-hardenability of 50% were obtained when the ribbon was aged at 200 deg. C for 20 min. The β-Mg 17 Al 12 phase exhibits net and dispersion types of distribution during precipitation. The dispersion of precipitates in dendritic grains or cells is the main source of strengthening

  7. Effect of cooling rate and Mg addition on the structural evaluation of rapidly solidified Al-20wt%Cu-12wt%Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karaköse, Ercan, E-mail: ekarakose@karatekin.edu.tr [Çankırı Karatekin University, Faculty of Sciences, Department of Physics, 18100 Çankırı (Turkey); Çolak, Hakan [Çankırı Karatekin University, Faculty of Sciences, Department of Chemistry, 18100 Çankırı (Turkey)

    2016-11-15

    The present work examines the effect of Mg contents and cooling rate on the morphology and mechanical properties of Al{sub 20}Cu{sub 12}Fe quasicrystalline alloy. The microstructure of the alloys was analyzed by scanning electron microscopy and the phase composition was identified by X-ray diffractometry. The melting characteristics were studied by differential thermal analysis under an Ar atmosphere. The mechanical features of the melt-spun and conventionally solidified alloys were tested by tensile-strength test and Vickers micro-hardness test. It was found that the final microstructure of the Al{sub 20}Cu{sub 12}Fe samples mainly depends on the cooling rate and Mg contents, which suggests that different cooling rates and Mg contents produce different microstructures and properties. The average grain sizes of the melt spun samples were about 100–300 nm at 35 m/s. The nanosize, dispersed, different shaped quasicrystal particles possessed a remarkable effect to the mechanical characteristics of the rapidly solidified ribbons. The microhardness values of the melt spun samples were approximately 18% higher than those of the conventionally counterparts. - Highlights: •Quasicrystal-creating materials have high potential for applications. •Different shaped nanosize quasicrystal particles were observed. •The addition of Mg has an important impact on the mechanical properties. •H{sub V} values of the MS0, MS3 and MS5 samples at 35 m/s were 8.56, 8.66 and 8.80 GPa. •The volume fraction of IQC increases with increasing cooling rates.

  8. High-temperature deformation behavior and mechanical properties of rapidly solidified Al-Li-Co and Al-Li-Zr alloys

    International Nuclear Information System (INIS)

    Sastry, S.M.L.; Oneal, J.E.

    1984-01-01

    The deformation behavior at 25-300 C of rapidly solidified Al-3Li-0.6Co and Al-3Li-0.3Zr alloys was studied by tensile property measurements and transmission electron microscopic examination of dislocation substructures. In binary Al-3Li and Al-3Li-Co alloys, the modulus normalized yield stress increases with an increase in temperature up to 150 C and then decreases. The yield stress at 25 C of Al-3Li-0.3Zr alloys is 180-200 MPa higher than that of Al-3Li alloys. However, the yield stress of the Zr-containing alloy decreases drastically with increasing temperatures above 75 C. The short-term yield stresses at 100-200 C of the Al-3Li-based alloys are higher than that of the conventional high-temperature Al alloys. The temperature dependences of the flow stresses of the alloys were analyzed in terms of the magnitudes and temperature dependences of the various strengthening contributions in the two alloys. The dislocation substructures at 25-300 C were correlated with mechanical properties. 19 references

  9. RAPIDLY-SOLIDIFIED PERMANENT MAGNET MATERIALS: FACTORS AFFECTING QUENCHABILITY AND MAGNETIC PROPERTIES IN Nd2Fe14B

    International Nuclear Information System (INIS)

    LEWIS, L.H.; KRAMER, M.J.; MCCALLUM, R.W.; BRANAGAN, D.J.

    1999-01-01

    Insight into the solidification behavior of Nd 2 Fe 14 B-based materials processed by rapid solidification techniques has been obtained by a systematic experimental study of the Curie temperatures of selected phases found in these materials. Nd 2 Fe 14 B-based materials fabricated by two disparate rapid solidification techniques, inert gas atomization (IGA) and melt-spinning, has been studied. The compositions of the starting materials have been altered with additions of the refractory elements Ti and C which are known to alter the solidification behavior of these materials. Special emphasis has been placed on trying to understand the effect of alloying additions upon the nature of the quenched glass, the distribution of the elemental additions within the Nd 2 Fe 14 B lattice and the evolution of the elemental partitioning with quench rate and annealing condition. The experimental Curie temperature data obtained using thermal analysis methods from the particles produced by gas-atomization is consistent with both an ejection of quenched-in refractory species from the crystalline Nd 2 Fe 14 B lattice and with increased crystallographic order as particle size, and hence grain size, increases. Magnetic ac susceptibility measurements performed on nominally-amorphous Nd 2 Fe 14 B ribbons produced by melt-spinning indicate a decrease of the Curie temperature with increasing quench rate, a result that may be attributed either to the degree of Ti/C retention in the glass or to the degree of disorder in the glass, independent of Ti/C retention

  10. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu6Sn5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 K (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu6Sn5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu6Sn5 observed, while in the melt spun alloy, Cu6Sn5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu6Sn5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. The reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu6Sn5 was maintained for both alloys.

  11. Microstructural characterization of a rapidly solidified ultrahigh strength Al94.5Cr3Co1.5Ce1 alloy

    International Nuclear Information System (INIS)

    Ping, D.H.; Hono, K.; Inoue, A.

    2000-01-01

    The microstructure of a rapidly solidified Al 94.5 Cr 3 Co 1.5 Ce 1 alloy has been examined in detail by means of high resolution transmission electron microscopy (HRTEM) and atom probe field ion microscopy (APFIM). In the as-quenched microstructure, nanoscale particles of a solute-enriched amorphous phase and an Al-Cr compound are dispersed in randomly oriented fine grains of α-Al ( 200nm ). The interface between the Al grains and the amorphous particles is not smooth but irregular with atomic protrusions and concavities, suggesting that interfacial instability occurs during the solidification process. Nanoscale amorphous particles are formed as a result of solute trapping within the rapidly grown Al grains. After annealing at 400 C for 15 minutes grain growth occurs, and the interface of the Al grains is smoothed. The amorphous region trapped within the grains if crystallized to an Al-Cr compound, but no icosahedral phase has been confirmed. The APFIM results have revealed that Cr and Ce atoms have a similar partitioning behavior, i.e., they are rejected from the α-Al phase and partitioned into the trapped amorphous regions. On the other hand, Co atoms are not partitioned between the two phases in the as-quenched state but are partitioned into the α-Al grains in the annealed alloys being rejected from the Al compounds and finally form Al-Co compounds. Based on these microstructural characterization results, the origins of high strength of this alloy are discussed

  12. Air-assisted liquid–liquid microextraction by solidifying the floating organic droplets for the rapid determination of seven fungicide residues in juice samples

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiangwei [Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101 (China); College of Science, China Agricultural University, Beijing 100193 (China); Xing, Zhuokan [College of Science, China Agricultural University, Beijing 100193 (China); Liu, Fengmao, E-mail: liufengmao@cau.edu.cn [College of Science, China Agricultural University, Beijing 100193 (China); Zhang, Xu [College of Science, China Agricultural University, Beijing 100193 (China)

    2015-05-22

    Highlights: • A novel AALLME-SFO method was firstly reported for pesticide residue analysis. • Solvent with low density and proper melting point was used as extraction solvent. • The formation of “cloudy solvent” with a syringe only. • The new method avoided the use of organic dispersive solvent. - Abstract: A novel air assisted liquid–liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid–liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μg L{sup −1}. The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3–13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly.

  13. Air-assisted liquid–liquid microextraction by solidifying the floating organic droplets for the rapid determination of seven fungicide residues in juice samples

    International Nuclear Information System (INIS)

    You, Xiangwei; Xing, Zhuokan; Liu, Fengmao; Zhang, Xu

    2015-01-01

    Highlights: • A novel AALLME-SFO method was firstly reported for pesticide residue analysis. • Solvent with low density and proper melting point was used as extraction solvent. • The formation of “cloudy solvent” with a syringe only. • The new method avoided the use of organic dispersive solvent. - Abstract: A novel air assisted liquid–liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid–liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μg L −1 . The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3–13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly

  14. CALCUL DE LA VITESSE DE REFROIDISSEMENT ET MICROSTRUCTURE DE L’ALLIAGE Al-5%Cu SOLIDIFIE RAPIDEMENT

    Directory of Open Access Journals (Sweden)

    C SERRAR

    2010-12-01

    Full Text Available La technique de trempe sur roue tournante a permis d'élaborer des rubans d'épaisseur moyenne de 30 μm pour une vitesse de rotation périphérique de la roue de 42m/s. La résolution de l'équation de Fourier pour un transfert de la chaleur dans les conditions de chute brutale de l'alliage fondue sur le substrat en rotation, nous a permis de déterminer le profil de la distribution de la température du ruban suivant son épaisseur. Le temps de solidification et la vitesse de refroidissement ont été aussi recherchés et sont estimés respectivement à 2.3x10-6 s et 4x107 °C/s. La microstructure des constituants de l'alliage AL-5%Cu s'est transformée, sous l'influence de la trempe rapide, en de fins précipités de l'eutectique α-Al/Ө dispersés dans la matrice α-Al. La présence d'une nouvelle phase σ, précipitant sous forme de fines particules globulaires, a été aussi observée et confirmée par analyse structurale.

  15. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    Science.gov (United States)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  16. Influence of Mn incorporation for Ni on the magnetocaloric properties of rapidly solidified off-stoichiometric NiMnGa ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sushmita; Singh, Satnam; Roy, R.K.; Ghosh, M.; Mitra, A.; Panda, A.K., E-mail: akpanda@nmlindia.org

    2016-01-01

    The present investigation addresses the magnetocaloric behaviour in a series of Ni{sub 77−x}Mn{sub x}Ga{sub 23} (x=23, 24, 25, 27 and 29) rapidly solidified alloys prepared in the form of ribbons by melt spinning technique. The approach of the study is to identify the off-stoichiometric composition wherein room temperature magneto-structural transformation is achieved. The alloy chemistry was tailored through Mn incorporation for Ni such that the magnetic and structural transitions were at close proximity to achieve highest entropy value of ΔS equal to 8.51 J Kg{sup −1} K{sup −1} for #Mn{sub 24} ribbon measured at an applied field of 3 T. When such transitions are more staggered as in #Mn{sub 29} the entropy value of ribbon reduced to as low as 1.61 J Kg{sup −1} K{sup −1}. Near room temperature transformations in #Mn{sub 24} ribbon have been observed through calorimetric and thermomagnetic evaluation. Reverse martensitic transformation (martensite→autstenite) temperature indicates not only distinct change in the saturation flux density but also an inter-martensitic phase. Microstructural analysis of #Mn{sub 24} alloy ribbon revealed structural ordering with the existence of plate morphology evidenced for martensitic phase. - Highlights: • Magnetocaloric effect in a series of melt spun NiMnGa ribbon is addressed. • The alloy series revealed austenitic state as well as its presence with martensite. • The morphology of the ribbons has been shown and discussed through phase analysis. • Influence of magnetising field on entropy and relative cooling power is discussed. • Influence of intermartensitic state on magnetization plots have also been shown.

  17. Effect of rare-earth elements and quenching wheel speed on the structure, mechanical and thermal properties of rapidly solidified AZ91 Mg melt-spun ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Ekrami, A. [Iran University of Industries & Mines, Faculty of Engineering & High-Technology (Iran, Islamic Republic of); Shahri, F., E-mail: fshahri@irost.ir [Iranian Research Organization for Science & Technology, Department of Advanced Materials & Renewable Energy (Iran, Islamic Republic of); Mirak, A. [Iran University of Industries & Mines, Faculty of Engineering & High-Technology (Iran, Islamic Republic of)

    2017-01-27

    In this work, an attempt is made to study the effects of rare-earth elements as an additive (2 wt% of Ce base misch-metal) and various quenching wheel speeds (10–40 m/s) on the microstructure, thermal and mechanical properties of rapidly solidified AZ91 alloy prepared by single roller melt-spinning process. In this respect, all of the samples were studied using various techniques such as x-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), differential scanning calorimetry (DSC) and mechanical properties such as microhardness and tensile tests. The finding bore witness to proposed hypothesis in this study illustrating due to high affinity between Al and RE by adding 2 wt% rare-earth elements in the AZ91alloy, thermally stable Al{sub x}RE{sub y} intermetallic compounds are precipitated and the formation of β-Mg{sub 17}Al{sub 12} phases is reduced. DSC results revealed that by adding RE to AZ91 alloy, AlRE phases got stable up to 500 °C, while for the AZ91 sample, β-Mg{sub 17}Al{sub 12} phase was formed at temperature about 180 °C and then with increasing of temperature dissolved at 410 °C in the α-Mg matrix. Further it has been observed that the higher was the quenching wheel speed, the smaller was the grain size which in turn gives rise to a higher tensile properties (from 406 MPa for quenching wheel speed of 10 m/s to 510 MPa for 40 m/s) for the MM-added alloys. Tensile strength of 386 MPa was obtained for the AZ91 pure alloy which is prepared at wheel speed of 40 m/sec.

  18. Radioactive waste solidifying material

    International Nuclear Information System (INIS)

    Ono, Keiichi; Sakai, Etsuro.

    1989-01-01

    The solidifying material according to this invention comprises cement material, superfine powder, highly water reducing agent, Al-containing rapid curing material and coagulation controller. As the cement material, various kinds of quickly hardening, super quickly hardening and white portland cement, etc. are usually used. As the superfine powder, those having average grain size smaller by one order than that of the cement material are desirable and silica dusts, etc. by-produced upon preparing silicon, etc. are used. As the highly water reducing agent, surface active agents of high decomposing performance and comprising naphthalene sulfonate, etc. as the main ingredient are used. As the Al-containing rapidly curing material, calcium aluminate, etc. is used in an amount of less than 10 parts by weight based on 100 parts by weight of the powdery body. As the coagulation controller, boric acid etc. usually employed as a retarder is used. This can prevent dissolution or collaption of pellets and reduce the leaching of radioactive material. (T.M.)

  19. The research of Ti-rich zone on the interface between TiCx and aluminum melt and the formation of Ti3Al in rapid solidified Al-Ti-C master alloys

    International Nuclear Information System (INIS)

    Jiang Kun; Ma Xiaoguang; Liu Xiangfa

    2009-01-01

    In the present work, the thermodynamic tendency of formation of Ti-rich zone on the interface between TiC x and aluminum melt is calculated and a high titanium concentration can exist in the zone according to the thermodynamic calculation. Rapid solidified Al-5Ti-0.5C master alloy is analyzed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM). The appearance of Ti 3 Al in the master alloy results from the existence of high-concentration Ti-rich zone.

  20. Formation mechanism for the nanoscale amorphous interface in pulse-welded Al/Fe bimetallic systems

    International Nuclear Information System (INIS)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao; Xu, Wei; Sun, Xin

    2016-01-01

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed in the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the subsequent recrystallization occurred on the aluminum side of the interface.

  1. Formation mechanism for the nanoscale amorphous interface in pulse-welded Al/Fe bimetallic systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingjing [Department of Mechanical Engineering, The University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Yu, Qian; Zhang, Zijiao [Department of Materials Science and Engineering, Center for Electron Microscope, Zhejiang University, Hangzhou 310027 (China); Xu, Wei; Sun, Xin, E-mail: xin.sun@pnnl.gov [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)

    2016-05-16

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed in the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the subsequent recrystallization occurred on the aluminum side of the interface.

  2. Removal of radioactive cesium from surface soils solidified using polyion complex. Rapid communication for decontamination test at Iitate-mura in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Naganawa, Hirochika; Yanase, Nobuyuki; Mitamura, Hisayoshi; Nagano, Tetsushi; Yoshida, Zenko; Kumazawa, Noriyuki; Saitoh, Hiroshi; Kashima, Kaoru; Fukuda, Tatsuya; Tanaka, Shun-ichi

    2011-01-01

    We tried the decontamination of surface soils for three types of agricultural land at Nagadoro district of Iitate-mura (village) in Fukushima Prefecture, which is highly contaminated by deposits of radionuclides from the plume released from the Fukushima Daiichi nuclear power plant. The decontamination method consisted of the peeling of surface soils solidified using a polyion complex, which was formed from a salt solution of polycations and polyanions. Two types of polyion complex solution were applied to an upland field in a plastic greenhouse, a pasture, and a paddy field. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. (author)

  3. Relaxation-phenomena in LiAl/FeS-cells

    Science.gov (United States)

    Borger, W.; Kappus, W.; Panesar, H. S.

    A theoretical model of the capacity of strongly relaxing electrochemical systems is applied to the LiAl/FeS system. Relaxation phenomena in LiAl and FeS electrodes can be described by this model. Experimental relaxation data indicate that lithium transport through the alpha-LiAl layer to the particle surface is the capacity limiting process at high discharge current density in the LiAl electrode in LiCl-KCl and LiF-LiCl-LiBr mixtures. Strong relaxation is observed in the FeS electrode with LiCl-KCl electrolyte caused by lithium concentration gradients and precipitation of KCl in the pores.

  4. Elemental analysis of the Al-Fe intermetallic prepared by fast solidification; Analisis elemental del intermetalico Al-Fe preparado por solidificacion rapida

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval J, R.A.; Lopez M, J.; Ramirez T, J.J.; Aspiazu F, J.; Villasenor S, P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    Applying the PIXE technique samples of the Al-Fe intermetallic prepared by fast solidification, obtained starting from Al recycled were analyzed. The concentrations of the found elements are given. (Author)

  5. Method of solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Mihara, Shigeru; Yamashita, Koji; Sauda, Kenzo.

    1988-01-01

    Purpose: To obtain satisfactory plastic solidification products rapidly and more conveniently from radioactive wastes. Method: liquid wastes contain, in addition to sodium sulfate as the main ingredient, nitrates hindering the polymerizing curing reactions and various other unknown ingredients, while spent resins contain residual cationic exchange groups hindering the polymerizing reaction. Generally, as the acid value of unsaturated liquid polyester resins is lower, the number of terminal alkyd resins is small, formation of nitrates is reduced and the polymerizing curing reaction is taken place more smoothly. In view of the above, radioactive wastes obtained by dry powderization or dehydration of radioactive liquid wastes or spent resins are polymerized with unsaturated liquid polyester resins with the acid value of less than 13 to obtain plastic solidification. Thus, if the radioactive wastes contain a great amount of polymerization hindering material such as NaNO 2 , they can be solidified rapidly and conveniently with no requirement for pre-treatment. (Kamimura, Y.)

  6. Radioactive substance solidifying device

    International Nuclear Information System (INIS)

    Sakoda, Kotaro.

    1979-01-01

    Purpose: To easily solidify radioactive substances adhering to the surfaces of solid wastes without scattering in the circumference by paints, and further to reduce surface contamination concentrations. Constitution: Solid wastes are placed on a hanging plate, and dipped in paints within a paint dipping treatment tank installed at the lower part of a treatment tank by means of a monorail hoist, and the surfaces of said solid wastes are coated with paints, thereby to solidify the radioactivity on the surfaces of the solid wastes. After dipping, the solid wastes are suspended up to a paint spraying tank to dry the paints. After drying, non-contaminated paints are atomized to apply through an atomizing tube onto the solid wastes. After drying the atomized paints, the solid wastes are carried outside the treatment tank by means of the monorail hoist. (Yoshino, Y.)

  7. Sequestration of uranium on fabricated aluminum co-precipitated with goethite (Al-FeOOH)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yubing; Yang, Shubin; Wang, Qi; Wang, Xiangke [Chinese Academy of Science, Hefei (China). Key Laboratory of Novel Thin Film Solar Cells; Alsaedi, Ahmad [King Abdulaziz Univ., Jeddah (Saudi Arabia). Nonlinear Analysis and Applied Mathematics (NAAM) Research Group

    2014-11-01

    Aluminum co-precipitated with goethites (Al-FeOOHs) are ubiquitous within (sub)-surface environments, which are considered one of the most important sinks for radionuclide pollution management. Accordingly, various mole ratios Al-FeOOH were synthesized and characterized by XRD, FT-IR, TEM, specific surface area and potentiometric acid-base titration. According to XRD and TEM images, the morphology of Al-FeOOH was transformed from acicular-like goethite to cotton-like gibbsite with increasing Al content. The adsorption and sequential desorption of U(VI) on Al-FeOOHs were conducted by batch techniques under N{sub 2} conditions. The batch adsorption results showed that the adsorption of U(VI) on Al-FeOOHs slightly increased at pH < 4.0, then the significant increase of U(VI) adsorption was observed at pH from 4.0 to 7.0, whereas the suppressed adsorption at pH > 8.0 was due to the electrostatic repulsion between negative charge surface and negative carbonato-complexes. The adsorption of U(VI) on Al-FeOOHs was independent of ionic strength at pH > 5.0, indicating that the inner-sphere surface complexation predominated their adsorption behaviors, whereas U(VI) adsorption on Al-FeOOH could be the outer-sphere surface/cation exchange reaction. The sequential extraction texts showed that the desorption of U(VI) from Al-FeOOHs decreased with increasing Al content. These findings highlighted the effect of Al content on the sequestration and immobilization of U(VI) onto Al-FeOOHs from (sub)-surface environments in pollution management.

  8. Elemental analysis of the Al-Fe intermetallic prepared by fast solidification

    International Nuclear Information System (INIS)

    Sandoval J, R.A.; Lopez M, J.; Ramirez T, J.J.; Aspiazu F, J.; Villasenor S, P.

    2003-01-01

    Applying the PIXE technique samples of the Al-Fe intermetallic prepared by fast solidification, obtained starting from Al recycled were analyzed. The concentrations of the found elements are given. (Author)

  9. Density and atomic volume in liquid Al-Fe and Al-Ni binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Plevachuk, Yu. [Ivan Franko National Univ., Lviv (Ukraine). Dept. of Metal Physics; Egry, I.; Brillo, J.; Holland-Moritz, D. [Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany). Inst. fuer Raumsimulation; Kaban, I. [Chemnitz Univ. of Technolgy (Germany). Inst. of Physics

    2007-02-15

    The density of liquid Al-Fe and Al-Ni binary alloys have been determined over a wide temperature range by a noncontact technique combining electromagnetic levitation and optical dilatometry. The temperature and composition dependences of the density are analysed. A negative excess volume correlates with the negative enthalpy of mixing, compound forming ability and chemical short-range ordering in liquid Al-Fe and Al-Ni alloys. (orig.)

  10. Liquid Phase Separation and the Aging Effect on Mechanical and Electrical Properties of Laser Rapidly Solidified Cu100−xCrx Alloys

    Directory of Open Access Journals (Sweden)

    Song-Hua Si

    2015-11-01

    Full Text Available Duplex structure Cu-Cr alloys are widely used as contact materials. They are generally designed by increasing the Cr content for the hardness improvement, which, however, leads to the unfavorable rapid increase of the electrical resistivity. The solidification behavior of Cu100−xCrx (x = 4.2, 25 and 50 in wt.% alloys prepared by laser rapid solidification is studied here, and their hardness and electrical conductivity after aging are measured. The results show that the Cu-4.2%Cr alloy has the most desirable combination of hardness and conductive properties after aging in comparison with Cu-25%Cr and Cu-50%Cr alloys. Very importantly, a 50% improvement in hardness is achieved with a simultaneous 70% reduction in electrical resistivity. The reason is mainly attributed to the liquid phase separation occurring in the Cu-4.2%Cr alloy, which introduces a large a

  11. Formation and stability of aluminum-based metallic glasses in Al-Fe-Gd alloys

    International Nuclear Information System (INIS)

    He, Y.; Poon, S.J.; Shiflet, G.J.

    1988-01-01

    Metallic glasses, a class of amorphous alloys made by rapid solidification, have been studied quite extensively for almost thirty years. It has been recognized for a long time that metallic glasses are usually very strong and ductile, and exhibit high corrosion resistance relative to crystalline alloys with the same compositions. Recently, metallic glasses containing as much as 90 atomic percent aluminum have been discovered independently by two groups. This discovery has both scientific and technological implications. The formability of these new glasses have been found to be unusual. Studies of mechanical properties in these new metallic glasses show that many of them have tensile strengths over 800MPa, greatly exceeding the strongest commercial aluminum alloys. The high strengths of aluminum-rich metallic glasses can be of significant importance in obtaining high strength low density materials. Therefore, from both scientific and technological standpoints, it is important to understand the formation and thermal stability of these metallic glasses. Al-Fe-Gd alloys were chosen for a more detailed study since they exhibit high tensile strengths

  12. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-01

    Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (Al–5Mg–Mn alloy with low Fe content (Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888

  13. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (Al-5Mg-Mn alloy with low Fe content (Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  14. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2016-01-01

    Full Text Available Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt % to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %, intermetallic Al6(Fe,Mn was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe, intermetallic Al6(Fe,Mn became the dominant phase, even in the alloy with low Mn content (0.39 wt %. Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn to become the primary phase at a lower Mn content.

  15. Addition of iron for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Belmares-Perales, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Zaldivar-Cadena, A.A., E-mail: azaldiva70@hotmail.com [Facultad de Ingenieria Civil, Departamento de Ecomateriales y Energia, Instituto de Ingenieria Civil, Av. Fidel Velasquez and Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, N.L. 66450 (Mexico)

    2010-10-25

    Addition of iron into the molten metal for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the {alpha}-AlFeSi and {beta}-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc{sup TM} software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of {alpha}-AlFeSi and removal of {beta}-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of {beta}-AlFeSi and {alpha}-AlFeSi phases, respectively. This study shows a new method of removal of {beta}-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 {mu}m.

  16. Addition of iron for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    International Nuclear Information System (INIS)

    Belmares-Perales, S.; Zaldivar-Cadena, A.A.

    2010-01-01

    Addition of iron into the molten metal for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the α-AlFeSi and β-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc TM software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of α-AlFeSi and removal of β-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of β-AlFeSi and α-AlFeSi phases, respectively. This study shows a new method of removal of β-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 μm.

  17. Diffusivities of an Al-Fe-Ni melt and their effects on the microstructure during solidification

    International Nuclear Information System (INIS)

    Zhang Lijun; Du Yong; Steinbach, Ingo; Chen Qing; Huang Baiyun

    2010-01-01

    A systematical investigation of the diffusivities in an Al-Fe-Ni melt was presented. Based on the experimental and theoretical data about diffusivities, the temperature- and composition-dependent atomic mobilities were evaluated for the elements in Al-Ni, Al-Fe, Fe-Ni and Al-Fe-Ni melts via an effective approach. Most of the reported diffusivities can be reproduced well by the obtained atomic mobilities. In particular, for the first time the ternary diffusivity of the liquid in a ternary system is described in conjunction with the established atomic mobilities. The effect of the atomic mobilities in a liquid on microstructure and microsegregation during solidification was demonstrated with one Al-Ni binary alloy. The simulation results indicate that accurate databases of mobilities in the liquid phase are much needed for the quantitative simulation of microstructural evolution during solidification by using various approaches, including DICTRA and the phase-field method.

  18. Radioactive liquid waste solidifying device

    International Nuclear Information System (INIS)

    Uchiyama, Yoshio.

    1987-01-01

    Purpose: To eliminate the requirement for discharge gas processing and avoid powder clogging in a facility suitable to the volume-reducing solidification of regenerated liquid wastes containing sodium sulfate. Constitution: Liquid wastes supplied to a liquid waste preheater are heated under a pressure higher than the atmospheric pressure at a level below the saturation temperature for that pressure. The heated liquid wastes are sprayed from a spray nozzle from the inside of an evaporator into the super-heated state and subjected to flash distillation. They are further heated to deposit and solidify the solidification components in the solidifying evaporation steams. The solidified powder is fallen downwardly and heated for removing water content. The recovered powder is vibrated so as not to be solidified and then reclaimed in a solidification storage vessel. Steams after flash distillation are separated into gas, liquid and solids by buffles. (Horiuchi, T.)

  19. EXTRUIDOS DE AlFe-PILC EN LA OXIDACIÓN CATALÍTICA DE FENOL

    Directory of Open Access Journals (Sweden)

    Nancy R. Sanabria

    2010-09-01

    Full Text Available Extruidos de AlFe-PILC con forma de cilindro compacto se emplearon como catalizadores en la reacción de oxidación de fenol en medio acuoso. Debido a que el proceso de elaboración de los extruidos con fase activa AlFe-PILC afecta la actividad intrínseca del catalizador, en este trabajo se determinaron la resistencia mecánica y la estabilidad química del catalizador conformado, así como las limitaciones difusionales por efecto de la aglomeración. Los extruidos se elaboraron con la proporción másica 42/28/30 de arcilla intercalada con AlFe, aglomerante (mezcla 50/50 de bentonita sódica y cálcica y agua, exhibiendo elevada resistencia mecánica y estabilidad química a la inmersión en agua. Los extruidos de AlFe-PILC presentaron un factor de efectividad menor a 1; por tanto, la reacción se encuentra limitada por la difusión intrapartícula.

  20. Preparation of Al/Fe-Pillared Clays: Effect of the Starting Mineral.

    Science.gov (United States)

    Muñoz, Helir-Joseph; Blanco, Carolina; Gil, Antonio; Vicente, Miguel-Ángel; Galeano, Luis-Alejandro

    2017-11-28

    Four natural clays were modified with mixed polyoxocations of Al/Fe for evaluating the effect of the physicochemical properties of the starting materials (chemical composition, abundance of expandable clay phases, cationic exchange capacity and textural properties) on final physicochemical and catalytic properties of Al/Fe-PILCs. The aluminosilicate denoted C2 exhibited the highest potential as starting material in the preparation of Al/Fe-PILC catalysts, mainly due to its starting cationic exchange capacity (192 meq/100 g) and the dioctahedral nature of the smectite phase. These characteristics favored the intercalation of the mixed (Al 13- x /Fe x ) 7+ Keggin-type polyoxocations, stabilizing a basal spacing of 17.4 Å and high increase of the BET surface (194 m²/g), mainly represented in microporous content. According to H₂-TPR analyses, catalytic performance of the incorporated Fe in the Catalytic Wet Peroxide Oxidation (CWPO) reaction strongly depends on the level of location in mixed Al/Fe pillars. Altogether, such physicochemical characteristics promoted high performance in CWPO catalytic degradation of methyl orange in aqueous medium at very mild reaction temperatures (25.0 ± 1.0 °C) and pressure (76 kPa), achieving TOC removal of 52% and 70% of azo-dye decolourization in only 75 min of reaction under very low concentration of clay catalyst (0.05 g/L).

  1. Synthesis and characterization of pillared bentonite with Al, AL/Fe and impregnated with Pd; Sintese e caracterizacao de bentonitas pilarizadas com Al, AL/Fe e impregnadas com Pd

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcus Vinicius Costa; Pizarro, Alejandro Herrero; Molina, Carmen Belen, E-mail: marcus.ufpa@yahoo.com.br [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Instituto de Tecnologia. Faculdade de Engenharia Quimica; Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madri (Spain)

    2017-10-01

    In this work, a north american bentonite was pillared with Al and Al/Fe, creating the Al-PILC and Al-Fe-PILC, respectively. Then the Pd was impregnated in the materials, generating Pd-Al-PILC and Pd-Al-Fe-PILC, respectively. The samples were characterized by X-ray diffraction, differential thermal analysis and thermogravimetric and N{sub 2} adsorption at 77 K to determine the specific surface area by BET method (Brunauer - Emmett - Teller). There was an increase in the basal spacing of bentonite from 12.4Å in the original sample to 17.81Å in the Al-Fe-PILC, 17.20Å in Pd-Al-PILC and 17.05Å in the Pd-Al-Fe-PILC. The specific surface area increased from 19.05m{sup 2}/g in the original sample to 173.49m{sup 2}/g in Al-Fe-PILC, 101.31m{sup 2}/g to Pd-Al-PILC and 92m{sup 2}/g in Pd-Al-Fe-PILC. The pillaring process was successful and the synthesized materials have great potential for use as catalysts. (author)

  2. Magnetic structure of the magnetocaloric compound AlFe{sub 2}B{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cedervall, Johan, E-mail: johan.cedervall@kemi.uu.se [Department of Chemistry – Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala (Sweden); Andersson, Mikael Svante; Sarkar, Tapati [Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden); Delczeg-Czirjak, Erna K. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Bergqvist, Lars [Department of Materials and Nano Physics and Swedish e-Science Research Centre (SeRC), Royal Institute of Technology (KTH), Electrum 229, SE-164 40 Kista (Sweden); Hansen, Thomas C. [Institut Laue-Langevin, B.P. 156, Grenoble Cedex 9, 38042 France (France); Beran, Premysl [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, 25068 Czech Republic (Czech Republic); Nordblad, Per [Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden); Sahlberg, Martin [Department of Chemistry – Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala (Sweden)

    2016-04-15

    The crystal and magnetic structures of AlFe{sub 2}B{sub 2} have been studied with a combination of X-ray and neutron diffraction and electronic structure calculations. The magnetic and magnetocaloric properties have been investigated by magnetisation measurements. The samples have been produced using high temperature synthesis and subsequent heat treatments. The compound crystallises in the orthorhombic crystal system Cmmm and it orders ferromagnetically at 285 K through a second order phase transition. At temperatures below the magnetic transition the magnetic moments align along the crystallographic a-axis. The magnetic entropy change from 0 to 800 kA/m was found to be −1.3 J/K kg at the magnetic transition temperature. - Graphical abstract: The magnetic structure of AlFe{sub 2}B{sub 2} has been investigated using neutron diffraction and the magnetic spins have been found to align ferromagnetically along the crystallographic a-axis. - Highlights: • The crystal and magnetic structures of AlFe{sub 2}B{sub 2} have been studied. • Orders ferromagnetically at 285 K via a second order phase transition. • The magnetic moments are found to be aligned along the crystallographic a-axis. • The magnetic entropy change from 0 to 800 kA/m was found to be −1.3 J/K kg.

  3. Method of solidifying radioactive laundry wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro

    1984-01-01

    Purpose: To enable to solidify radioactive laundry wastes containing non-ionic liquid detergents less solidifiable by plastic solidification process in liquid laundry wastes for cloths or the likes discharged from a nuclear power plant. Method: Radioactive laundry wastes are solidified by using plastic solidifying agent comprising, as a main ingredient, unsaturated polyester resins and methylmethacrylate monomers. The plastic solidifying agents usable herein include, for example, unsaturated polyester resins prepared by condensating maleic anhydride and phthalic anhydride with propylene glycol and incorporated with methylmethacrylate monomers. The mixing ratio of the methylmethacrylate monomers is preferably 30 % by weight based on the unsaturated polyester resins. (Aizawa, K.)

  4. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Ootsuka, Masaharu; Uetake, Naoto; Ozawa, Yoshihiro.

    1984-01-01

    Purpose: To prepare radioactive solidified wastes excellent in strength, heat resistance, weather-proof, water resistance, dampproof and low-leaching property. Method: A hardening material reactive with alkali silicates to form less soluble salts is used as a hardener for alkali silicates which are solidification filler for the radioactive wastes, and mixed with cement as a water absorbent and water to solidify the radioactive wastes. The hardening agent includes, for example, CaCO 3 , Ca(ClO 4 ) 2 , CaSiF 6 and CaSiO 3 . Further, in order to reduce the water content in the wastes and reduce the gap ratio in the solidification products, the hardener adding rate, cement adding rate and water content are selected adequately. As the result, solidification products can be prepared with no deposition of easily soluble salts to the surface thereof, with extremely low leaching of radioactive nucleides. (Kamimura, M.)

  5. Method of solidifying powderous wastes

    International Nuclear Information System (INIS)

    Kakimoto, Akira; Miyake, Takashi; Sato, Shuichi; Inagaki, Yuzo.

    1985-01-01

    Purpose: To improve the properties of solidification products, in the case of solidifying powderous wastes with thermosetting resins. Method. A solvent for the solution of the thermosetting resin is admixed with the powderous wastes into a paste-like form prior to adding the resin to the wastes, which are then mixed with the resin solution. As the result, those solidification products having the specific gravity and the compression strength more excellent than those of the conventional ones, and much higher than the reference values can be obtained. (Kamimura, M.)

  6. The Mechanical and Reaction Behavior of PTFE/Al/Fe2O3 under Impact and Quasi-Static Compression

    Directory of Open Access Journals (Sweden)

    Jun-yi Huang

    2017-01-01

    Full Text Available Quasi-static compression and drop-weight test were used to characterize the mechanical and reaction behavior of PTFE/Al/Fe2O3 composites. Two kinds of PTFE/Al/Fe2O3 composites were prepared with different mass of PTFE, and the reaction phenomenon and stress-strain curves were recorded; the residuals after reaction were analyzed by X-ray diffraction (XRD. The results showed that, under quasi-static compression condition, the strength of the materials is increased (from 37.1 Mpa to 77.2 Mpa with the increase of PTFE, and the reaction phenomenon occurred only in materials with high PTFE content. XRD analysis showed that the reaction between Al and Fe2O3 was not triggered with identical experimental conditions. In drop-weight tests, PTFE/Al/Fe2O3 specimens with low PTFE content were found to be more insensitive by high-speed photography, and a High Temperature Metal Slag Spray (HTMSS phenomenon was observed in both kinds of PTFE/Al/Fe2O3 composites, indicating the existence of thermite reaction, which was confirmed by XRD. In PTFE/Al/Fe2O3 system, the reaction between PTFE and Al precedes the reaction between Al and Fe2O3.

  7. Solidifying processing device for radioactive waste

    International Nuclear Information System (INIS)

    Sueto, Kumiko; Toyohara, Naomi; Tomita, Toshihide; Sato, Tatsuaki

    1990-01-01

    The present invention concerns a solidifying device for radioactive wastes. Solidifying materials and mixing water are mixed by a mixer and then charged as solidifying and filling materials to a wastes processing container containing wastes. Then, cleaning water is sent from a cleaning water hopper to a mixer to remove the solidifying and filling materials deposited in the mixer. The cleaning liquid wastes are sent to a separator to separate aggregate components from cleaning water components. Then, the cleaning water components are sent to the cleaning water hopper and then mixed with dispersing materials and water, to be used again as the mixing water upon next solidifying operation. On the other hand, the aggregate components are sent to a processing mechanism as radioactive wastes. With such procedures, since the discharged wastes are only composed of the aggregates components, and the amount of the wastes are reduced, facilities and labors for the processing of cleaning liquid wastes can be decreased. (I.N.)

  8. Synthesis and Characterization of High-Entropy Alloy AlFeCoNiCuCr by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xiaoyang Ye

    2011-01-01

    Full Text Available High-entropy alloys have been recently found to have novel microstructures and unique properties. In this study, a novel AlFeCoNiCuCr high-entropy alloy was prepared by laser cladding. The microstructure, chemical composition, and constituent phases of the synthesized alloy were characterized by SEM, EDS, XRD, and TEM, respectively. High-temperature hardness was also evaluated. Experimental results demonstrate that the AlFeCoNiCuCr clad layer is composed of only BCC and FCC phases. The clad layers exhibit higher hardness at higher Al atomic content. The AlFeCoNiCuCr clad layer exhibits increased hardness at temperature between 400–700°C.

  9. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Maeda, Masahiko; Kira, Satoshi; Watanabe, Naotoshi; Nagaoka, Takeshi; Akane, Junta.

    1982-01-01

    Purpose: To obtain solidification products of radioactive wastes having sufficient monoaxial compression strength and excellent in water durability upon ocean disposal of the wastes. Method: Solidification products having sufficient strength and filled with a great amount of radioactive wastes are obtained by filling and solidifying 100 parts by weight of chlorinated polyethylene resin and 100 - 500 parts by weight of particular or powderous spent ion exchange resin as radioactive wastes. The chlorinated polyethylene resin preferably used herein is prepared by chlorinating powderous or particulate polyethylene resin in an aqueous suspending medium or by chlorinating polyethylene resin dissolved in an organic solvent capable of dissolving the polyethylene resin, and it is crystalline or non-crystalline chlorinated polyethylene resin comprising 20 - 50% by weight of chlorine, non-crystalline resin with 25 - 40% by weight of chlorine being particularly preferred. (Horiuchi, T.)

  10. Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria

    Science.gov (United States)

    Stein, Frank; Philips, Noah

    2018-03-01

    High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).

  11. Fractal dimension and energetic heterogeneity of gold-modified Al-Fe-Ce pilc's

    International Nuclear Information System (INIS)

    Carriazo, J.G.; Molina, R.; Moreno, S.

    2008-01-01

    This paper studies the energetic and topographical changes that occur on the surface of a series of clays pillared with the mixed Al-Fe-Ce system and on the surface of solids synthesized by the deposition of gold nanoparticles over these pillared clays. The energetic heterogeneity of the solids was analyzed by means of the distribution of the adsorption potential, while the variations in the fractal dimension were determined from the nitrogen adsorption isotherms at 77 K, using the equation proposed by Avnir-Jaroniec. Results show the generation of microporous structures with important topographical modifications indicating an increase in the roughness (fractal geometry) of the surface of the solids as a consequence of the pillaring, revealing a positive effect of cerium addition in the synthesis process and the possible formation of nanoparticles of iron species and gold on the surface of pillared clays. The solids were also analyzed by transmission electron microscopy (TEM), confirming the formation of nanoparticles on the surface.

  12. Calculation of solidification microstructure maps for the system Al-Fe-Si

    International Nuclear Information System (INIS)

    Gilgien, P.

    1996-01-01

    Computer programs have been developed in order to calculate solidification microstructure maps for binary and ternary alloys. These programs are based on recent analytical models for the constrained growth of dendrites and eutectics. Due to the importance of phase diagrams data, programs for the calculation of growth kinetics are coupled with ThermoCalc, a commercial software for phase diagram calculations. These programs have been used to calculate a solidification microstructure map for the Al-Fe system from 0 to 4 at%Fe. Comparison of the calculated results with an experimental solidification microstructure map from the literature shows that all microstructure transitions were predicted. Nevertheless there remain significant discrepancies between some calculated and experimental transition velocities. The programs were also used to calculate solidification microstructure maps in the Al-rich corner of the Al-Fe-Si system (0 to 8 at% Fe and 0 to 8 at% Si). In this case also, calculated results were in satisfactory agreement with experimental solidification microstructure maps, although the comparison was only partial since experimental ternary microstructure maps are less complete than for the binary system, and because the available thermodynamic database does not, as yet, include metastable phases. Laser surface remelting experiments were carried out on an Al-4 at% Fe alloy in order to link results from the literature, obtained at high solidification rates by laser surface remelting and at low solidification rates by Bridman experiments. Finally, Bridman experiments were carried out with an Al-2.63 wt% Fe alloy in order to determine the critical velocity at which a planar Al-Al 13 Fe 4 eutectic front is destabilised in a cellular eutectic by a small amount of Si. The critical solidification velocity thus obtained was in agreement with a criterion of constitutional undercooling. (author) figs., tabs., refs

  13. Method of solidifying radioactive solid wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Kawamura, Fumio; Kikuchi, Makoto.

    1984-01-01

    Purpose: To obtain solidification products of radioactive wastes satisfactorily and safely with no destruction even under a high pressure atmosphere by preventing the stress concentration by considering the relationships of the elastic module between the solidifying material and radioactive solid wastes. Method: Solidification products of radioactive wastes with safety and securing an aimed safety ratio are produced by conditioning the modules of elasticity of the solidifying material equal to or less than that of the radioactive wastes in a case where the elastic module of radioactive solid wastes to be solidified is smaller than that of the solidifying material (the elastic module of wastes having the minimum elastic module among various wastes). The method of decreasing the elastic module of the solidifying material usable herein includes the use of such a resin having a long distance between cross-linking points of a polymer in the case of plastic solidifying materials, and addition of rubber-like binders in the case of cement or like other inorganic solidifying materials. (Yoshihara, H.)

  14. Microstructure and Properties of Fe3Al-Fe3AlC x Composite Prepared by Reactive Liquid Processing

    Science.gov (United States)

    Verona, Maria Nalu; Setti, Dalmarino; Paredes, Ramón Sigifredo Cortés

    2018-04-01

    A Fe3Al-Fe3AlC x composite was prepared using reactive liquid processing (RLP) through controlled mixture of carbon steel and aluminum in the liquid state. The microstructure and phases of the composite were assessed using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, optical microscopy, and differential scanning calorimetry. In addition, the density, hardness, microhardness, and elastic modulus were evaluated. The Fe3Al-Fe3AlC x composite consisted of 65 vol pct Fe3Al and 35 vol pct Fe3AlC x ( κ). The κ phase contained 10.62 at. pct C, resulting in the stoichiometry Fe3AlC0.475. The elastic modulus of the Fe3Al-Fe3AlC0.475 composite followed the rule of mixtures. The RLP technique was shown to be capable of producing Fe3Al-Fe3AlC0.475 with a microstructure and properties similar to those achieved using other processing techniques reported in the literature.

  15. Liquid wastes concentrating and solidifying device

    International Nuclear Information System (INIS)

    Kamiyoshi, Hideki; Ninokata, Yoshihide.

    1985-01-01

    Purpose: To provide a device for concentrating to solidify radioactive liquid wastes at large solidifying speed and with high decontaminating coefficient, without requirement for automatic control. Constitution: An asphalt solidifying device is disposed below a centrifugal thin film drier, and powder resulted from the drier is directly solidified with asphalt by utilizing the rotation of the drier for the mixing operation in the asphalt vessel. If abnormality should occur in the operation of the drier, resulting liquid wastes can be received and solidified in the asphalt vessel. The liquid wastes are heated to dry in a vessel main body having the heating surface at the circumferential surface. The vessel main body provided with a nozzle for supplying liquid to be treated disposed slantwise at the upper portion of the heating face, scrapers which rotate and slidingly contact the heating face and nozzles which jet out chemicals to the heating face behind the scrapers. Below the vessel main body, are disposed a funnel-like hopper for receiving falling scales, rotary vanes, and the likes by which the scales are introduced into the asphalt solidifying vessel. (Moriyama, K.)

  16. Study of Microstructure of the Al-Fe Alloys After Hot Rolling Deformation

    Science.gov (United States)

    Jabłońska, Magdalena Barbara; Rodak, Kinga; Bednarczyk, Iwona

    The aim of the paper is a microstructure analysis of alloys from the Al-Fe system after hot rolling tests, conducted by using a scanning transmission electron microscopy STEM and scanning electron microscope equipped with EBSD detector. Hot rolling was carried out at Technical University of Ostrava, Faculty of Metallurgy and Material Engineering, Institute of Modelling and Control of Forming Processes. The samples were heated to a temperature of 1200°C. The EBSD and STEM techniques have been applied in order to determine the influence of chemical composition and deformation parameters on structural changes. The microstructure analysis has included parameters such us: grain/sub-grain size, area fraction of grains/subgrains, misorientation angles, grains/subgrains shape aspect ratio and dislocations structure. The research structure techniques in scanning-transmission electron microscopy revealed numerous FeAl28 alloy phase separations of secondary nucleating sites favoured energetically, which are the boundary of grains/subgrains and dislocations. These changes in the structure of the test results have been confirmed by EBSD, which revealed the presence of grains/subgrains misorientation angle boundaries above 15°.

  17. Synthesis of Cd/(Al+Fe) layered double hydroxides and characterization of the calcination products

    International Nuclear Information System (INIS)

    Perez, M.R.; Barriga, C.; Fernandez, J.M.; Rives, V.; Ulibarri, M.A.

    2007-01-01

    Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method at a constant pH value of 8. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange at pH 9. The samples have been characterized by elemental chemical analysis, powder X-ray diffraction (PXRD), and FT-IR spectroscopy. Their thermal stability has been assessed by thermogravimetric and differential thermal analyses (TG-DTA) and mass spectrometric analysis of the evolved gases. The PXRD patterns of the solids calcined at 800 deg. C show diffraction lines corresponding to Cd(Al)O and spinel-type materials, which precise nature (CdAl 2 O 4 , Cd 1-x Fe 2+x O 4 , or Cd x Fe 2.66 O 4 ) depends on location and concentration of iron in the parent material or precursor. - Graphical abstract: Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange. Calcination at 800 deg. C shows diffraction lines corresponding to CdO and to spinel-type materials. SEM micrograph of sample CdAlFe-N-0

  18. FP-LAPW study of structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ekta, E-mail: jainekta05@gmail.com [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal-462002 (India); Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in [Department of Physics, Sarojini Naidu Government Girls P. G. Autonomous College, Bhopal-462016 (India); Sanyal, S. P., E-mail: sps.physicsbu@gmail.com [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2016-05-06

    The structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic compound in B{sub 2}-type (CsCl) structure have been investigated using first-principles calculations. The exchange-correlation term was treated within generalized gradient approximation. Ground state properties i.e. lattice constants (a{sub 0}), bulk modulus (B) and first-order pressure derivative of bulk modulus (B’) are presented. The density of states are derived which show the metallic character of present compound. Our results for C{sub 11}, C{sub 12} and C{sub 44} agree well with previous theoretical data. Using Pugh’s criteria (B/G{sub H} < 1.75), brittle character of AlFe is satisfied. In addition shear modulus (G{sub H}), Young’s modulus (E), sound wave velocities and Debye temperature (θ{sub D}) have also been estimated.

  19. Method of solidifying radioactive wastes with plastics

    International Nuclear Information System (INIS)

    Matsuura, Hiroyuki; Yasumura, Keijiro; Minami, Yuji; Tomita, Toshihide

    1980-01-01

    Purpose: To prevent solidification of solidifying agents in the mixer by conducting the mixing process for the solidifying agents and the radioactive wastes at a temperature below the initiation point for the solidification of the agents thereby separating the mixing process from the solidification-integration process. Method: Catalyst such as cobalt naphthenate is charged into an unsaturated polyester resin in a mixer previously cooled, for example, to -10 0 C. They are well mixed with radioactive wastes and the mixture in the mixer is charged in a radioactive waste storage container. The temperature of the mixture, although kept at a low temperature initially, gradually increases to an ambient temperature whereby curing reaction is promoted and the reaction is completed about one day after to provide firm plastic solidification products. This can prevent the solidification of the solidifying agents in the mixer to thereby improve the circumstance's safety. (Kawakami, Y.)

  20. Developing magnetofunctionality: Coupled structural and magnetic phase transition in AlFe{sub 2}B{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, L.H., E-mail: lhlewis@neu.edu [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States); Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); George J. Kostas Research Institute for Homeland Security, Northeastern University, Burlington, MA (United States); Barua, R., E-mail: radhika.barua@gmail.com [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States); Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); George J. Kostas Research Institute for Homeland Security, Northeastern University, Burlington, MA (United States); Lejeune, B. [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States); George J. Kostas Research Institute for Homeland Security, Northeastern University, Burlington, MA (United States)

    2015-11-25

    Understanding correlations between crystal structure and magnetism is key to tuning the response of magnetic materials systems that exhibit large functional effects in response to small excursions in magnetic field or strain. To this end, temperature-dependent structure-magnetic property correlations are reported in samples of AlFe{sub 2}B{sub 2} with the orthorhombic AlMn{sub 2}B{sub 2}-type layered structure as it traverses a thermally-hysteretic first-order magnetic phase change at a transition temperature of T{sub t} = 280 K. Temperature-dependent x-ray diffraction carried out in the temperature range 200 K ≤ T ≤ 298 K reveals that the a and b lattice parameters increase by 0.2% and 0.1% respectively upon heating, while the c lattice parameter decreases by 0.3%, providing a conserved unit cell volume through T{sub t}. A very small volumetric thermal expansion coefficient 4.4 × 10{sup −6}/K is determined in this temperature range that is one order of magnitude smaller than that of aluminum and only slightly larger than that of Invar. The latent heat of transformation associated with this magnetostructural phase transformation is determined as 4.4 J/g, similar to that of other magnetostructural materials. Overall, these features confirm a first-order thermodynamic phase change in the AlFe{sub 2}B{sub 2} system that emphasizes strong coupling between the magnetic spins and the lattice to support potential magnetofunctional applications for energy transformation and harvesting. - Highlights: • AlFe{sub 2}B{sub 2} undergoes a first-order magnetostructural transformation near room temperature. • The AlFe{sub 2}B{sub 2} Curie transition is thermally hysteretic and magnetic field dependent. • XRD reveals a volume-conserved change in the lattice constants of the AlFe{sub 2}B{sub 2} unit cell. • The latent heat of the magnetostructural transformation is determined as 4.4 J/g. • Results emphasize strong coupling between the magnetic spins and the lattice

  1. Structure, microstructure and microhardness of rapidly solidified Smy(FexNi1-x)4Sb12 (x = 0.45, 0.50, 0.70, 1) thermoelectric compounds

    Science.gov (United States)

    Artini, C.; Castellero, A.; Baricco, M.; Buscaglia, M. T.; Carlini, R.

    2018-05-01

    Skutterudites are interesting compounds for thermoelectric applications. The main drawback in the synthesis of skutterudites by solidification of the melt is the occurrence of two peritectic reactions requiring long annealing times to form a single phase. Aim of this work is to investigate an alternative route for synthesis, based on rapid solidification by planar flow casting. The effect of cooling rate on phases formation and composition, as well as on structure, microstructure and mechanical properties of the filled Smy(FexNi1-x)4Sb12 (x = 0.45, 0.50, 0.70, 1) skutterudites was studied. Conversely to slowly cooled ingots, rapidly quenched ribbons show skutterudite as the main phase, suggesting that deep undercooling of the liquid prevents the nucleation of high temperature phases, such as (Fe,Ni)Sb and (Fe,Ni)Sb2. In as-quenched samples, a slightly out of equilibrium Sm content is revealed, which does not alter the position of the p/n boundary; nevertheless, it exerts an influence on crystallographic properties, such as the cell parameter and the shape of the Sb4 rings in the structure. As-quenched ribbons show a fine microstructure of the skutterudite phase (grain size of 2-20 μm), which only moderately coarsens after annealing at 873 K for 4 days. Vickers microhardness values (350-400 HV) of the skutterudite phase in as-quenched ribbons are affected by the presence of softer phases (i.e. Sb), which are homogeneously and finely dispersed within the sample. The skutterudite hardens after annealing as a consequence of a moderate grain growth, which limits the matrix effect due to the presence of additional phases.

  2. Analysis of cement solidified product and ash samples and preparation of a reference material

    International Nuclear Information System (INIS)

    Ishimori, Ken-ichiro; Haraga, Tomoko; Shimada, Asako; Kameo, Yutaka; Takahashi, Kuniaki

    2010-08-01

    Simple and rapid analytical methods for radionuclides in low-level radioactive waste have been developed by the present authors. The methods were applied to simulated solidified products and actual metal wastes to confirm their usefulness. The results were summarized as analytical guide lines. In the present work, cement solidified product and ash waste were analyzed followed by the analytical guide lines and subjects were picked up and solved for the application of the analytical guide lines to these wastes. Pulverization and homogenization method for ash waste was improved to prevent a contamination since the radioactivity concentrations of the ash samples were relatively high. Pre-treatment method was altered for the cement solidified product and ash samples taking account for their high concentration of Ca. Newly, an analytical method was also developed to measure 129 I with a dynamic reaction cell inductively coupled plasma mass spectrometer. In the analytical test based on the improved guide lines, gamma-ray emitting nuclides, 60 Co and 137 Cs, were measured to estimate the radioactivity of the other alpha and beta-ray emitting nuclides. The radionuclides assumed detectable, 3 H, 14 C, 36 Cl, 63 Ni, 90 Sr, and alpha-ray emitting nuclides, were analyzed with the improved analytical guide lines and their applicability for cement solidified product and ash samples were confirmed. Additionally a cement solidified product sample was evaluated in terms of the homogeneity and the radioactivity concentrations in order to prepare a reference material for radiochemical analysis. (author)

  3. Generation and evolution of nanoscale AlP and Al{sub 13}Fe{sub 4} particles in Al-Fe-P system

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Huan; Gao, Tong; Zhu, Xiangzhen; Wu, Yuying; Qian, Zhao; Liu, Xiangfa, E-mail: xfliu@sdu.edu.cn

    2015-02-15

    Highlights: • Diffusion and gradual solid reactions between Al and Fe{sub x}P phases in Al-Fe-P alloy were investigated. • Nanoscale AlP clusters are in-situ generated and evolve during the whole process. • This novel Al-Fe-P alloy has an excellent low-temperature refining performance on hypereutectic Al-Si alloy. - Abstract: In this paper, the gradual solid reactions between Al and Fe{sub x}P phases in Al-Fe-P alloy were investigated. The results show that the whole reaction process undergoes four main stages: the diffusion of Al atom, the generation of (Al, Fe, P) intermediate compound, the precipitation of nano AlP and Al{sub 13}Fe{sub 4} clusters and their growth to submicron particles. The microstructure of Fe-P particles evolves from the “egg-type”, the “sponge-type” to the “sesame-cake” structure. AlP and Al{sub 13}Fe{sub 4} nano phases have in-situ generated and evolved during the whole process. The gradual reaction mechanism has been discussed. Furthermore, a novel Al-Fe-P alloy which contains (Al, Fe, P) intermediate compounds and nano AlP particles has been synthesized and its low-temperature refining performance on A390 alloy has also been investigated.

  4. Point defects in B.C.C. Fe-Al, Fe-Co, and Fe-Co-V ordered alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.

    1982-01-01

    Radiation damage produced at 20 K by 2.5 MeV electrons is studied in three B 2 type Fe-40 at % Al, Fe-Co, Fe-Co-V ordered alloys. The resistivity damage in Fe-40 at % Al ordered single crystals is found less effective in the directions. The results suggest that replacement collision chains are difficult to propagate along the direction. Frenkel pair creation superimposed with disordering can account for the resistivity damage in the initially ordered Fe-Co alloy. Informations concerning replacement collision sequences in direction are derived. During the recovery of all the alloys, three main stages are observed and an ordering enhancement occurs. (author)

  5. Method for solidifying powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide.

    1978-01-01

    Purpose: To solidify powdery radioactive wastes through polymerization in a vessel at a high impregnation speed with no cloggings in pipes. Method: A drum can is lined with an inner liner layer of a predetermined thickness made of inflammable material such as glass fiber. A plurality of pipes for supplying liquid plastic monomer are provided in adjacent to the upper end face of the inflammable material or inserted between the vessel and the inflammable material. Then powdery radioactive wastes are filled in the vessel and the liquid plastic monomer dissolving therein a polymerization initiator is supplied through the pipes. The liquid plastic monomer impregnates through the inflammable material layer into the radioactive wastes and the plastic monomer is polymerized by the aid of the polymerization initiator after a predetermined of time to produce solidified plastic products of radioactive wastes. (Seki, T.)

  6. Leaching behavior of solidified plastics radioactive wastes

    International Nuclear Information System (INIS)

    Yook, Chong Chul; Lee, Byung Hun; Jae, Won Mok; Kim, Kyung Eung

    1986-01-01

    It is highly needed to develope the solidification process to dispose safely the radioactive wastes increasing with the growth of the nuclear industry. The leaching mechanisms of the solidified plastic wastes were investigated and the leaching rates of the plastic wastes were also measured among the many solidification processes. In addition, the transport equation based on the diffusion or the diffusion-dissolution was compared with the empirical equation derived from the experimental data by graphical method. Consequently, leaching process of the solidified plastic wastes is quite well agreed with the mass transport theory, but it may be difficult to simulate leaching process by diffusion dissolution mechanism. But the theoretical equation could be applicable to the cumulative amount of radionuclides leached form the plastic wastes disposed into the environment. (Author)

  7. Characterization of consolidated rapidly solidified Cu-Nb ribbons

    International Nuclear Information System (INIS)

    Ebrahimi, F.; Henne, M.L.C.

    1997-01-01

    Copper-niobium ribbons produced by melt-spinning were compacted by swaging and consolidated using HIPping. Final processing to obtain in-situ composites was done by swaging. The strength of the composite is discussed in terms of the composition and morphology of the niobium phase as evaluated using electron microscopy techniques

  8. Experiment of solidifying photo sensitive polymer by using UV LED

    Science.gov (United States)

    Kang, Byoung Hun; Shin, Sung Yeol

    2008-11-01

    The development of Nano/Micro manufacturing technologies is growing rapidly and in the same manner, the investments in these areas are increasing. The applications of Nano/Micro technologies are spreading out to semiconductor production technology, biotechnology, environmental engineering, chemical engineering and aerospace. Especially, SLA is one of the most popular applications which is to manufacture 3D shaped microstructure by using UV laser and photo sensitive polymer. To make a high accuracy and precision shape of microstructures that are required from the diverse industrial fields, the information of interaction relationship between the photo resin and the light source is necessary for further research. Experiment of solidifying photo sensitive polymer by using UV LED is the topic of this paper and the purpose of this study is to find out what relationships do the reaction of the resin have in various wavelength, power of the light and time.

  9. Formation of coarse Al13Fe4 particles and their effects in an RS/PM Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Lee, Sunghak; Lee, D.Y.; Ahn, Sangho.

    1991-01-01

    The present paper analyzed the fracture behavior of an RS/PM Al-Fe-V-Si alloy after high temperature exposure, in particular the effects of coarse Al13Fe4 particles formed during the exposure at 480 C. In situ SEM observations of crack opening processes found that brittle cleavage fracture occurred at these coarse Al13Fe4 particles, leading to the reduction in strength, fracture toughness, and ductility of the Al-Fe-V-Si alloy exposed to high temperatures. The results of fracture toughness were also interpreted using a simplified ductile fracture initiation model based on a basic assumption that crack extension starts to occur at a certain critical strain over a microstructurally significant critical distance. This model correlates microstructure to fracture toughness, confirming that the presence of coarse Al13Fe4 particles is the main metallurgical factor for the embrittlement phenomenon in the Al-Fe-V-Si alloy after high temperature exposure. 12 refs

  10. AFM study of the effects of laser surface remelting on the morphology of Al-Fe aerospace alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pariona, Moises Meza, E-mail: mmpariona@uepg.br [Graduate Program in Engineering and Materials Science, State University of Ponta Grossa (UEPG), Ponta Grossa 84010-919, PR (Brazil); Teleginski, Viviane; Santos, Kelly dos; Leandro Ribeiro dos Santos, Everton; Aparecida de Oliveira Camargo de Lima, Angela [Graduate Program in Engineering and Materials Science, State University of Ponta Grossa (UEPG), Ponta Grossa 84010-919, PR (Brazil); Riva, Rudimar [Department of Aerospace Science and Technology, Institute for Advanced Studies (IEAv), Sao Jose dos Campos 12227-000, SP (Brazil)

    2012-12-15

    Laser beam welding has recently been incorporated into the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as well as production costs. This parameter influences the mechanical properties such as fatigue behavior, corrosion resistance, creep life, etc., and other functional characteristics such as friction, wear, light reflection, heat transmission, lubrification, electrical conductivity, etc. The effects of laser surface remelting (LSR) on the morphology of Al-Fe aerospace alloys were examined before and after surface treatments, using optical microscopy (OM), scanning electron microscopy (SEM), low-angle X-ray diffraction (LA-XRD), atomic force microscopy (AFM), microhardness measurements (Vickers hardness), and cyclic voltammetry. This analysis was performed on both laser-treated and untreated sanded surfaces, revealing significant differences. The LA-XRD analysis revealed the presence of alumina, simple metals and metastable intermetallic phases, which considerably improved the microhardness of laser-remelted surfaces. The morphology produced by laser surface remelting enhanced the microstructure of the Al-Fe alloys by reducing their roughness and increasing their hardness. The treated surfaces showed passivity and stability characteristics in the electrolytic medium employed in this study. - Highlights: Black-Right-Pointing-Pointer The samples laser-treated and untreated showed significant differences. Black-Right-Pointing-Pointer The La-XRD revealed the presence of alumina in Al-1.5 wt.% Fe. Black-Right-Pointing-Pointer The laser-treated reducing the roughness and increasing the hardness. Black-Right-Pointing-Pointer The laser-treated surfaces showed characteristic passive in the electrolytic medium. Black-Right-Pointing-Pointer The laser-treated is a promising technique for applications technological.

  11. Site Simulation of Solidified Peat: Lab Monitoring

    Science.gov (United States)

    Durahim, N. H. Ab; Rahman, J. Abd; Tajuddin, S. F. Mohd; Mohamed, R. M. S. R.; Al-Gheethi, A. A.; Kassim, A. H. Mohd

    2018-04-01

    In the present research, the solidified peat on site simulation is conducted to obtain soil leaching from soil column study. Few raw materials used in testing such as Ordinary Portland Cement (OPC), Fly ash (FA) and bottom ash (BA) which containing in solidified peat (SP), fertilizer (F), and rainwater (RW) are also admixed in soil column in order to assess their effects. This research was conducted in two conditions which dry and wet condition. Distilled water used to represent rainfall during flushing process while rainwater used to gain leaching during dry and wet condition. The first testing made after leaching process done was Moisture Content (MC). Secondly, Unconfined Compressive Strength (UCS) will be conducted on SP to know the ability of SP strength. These MC and UCS were made before and after SP were applied in soil column. Hence, the both results were compared to see the reliability occur on SP. All leachate samples were tested using Absorption Atomic Spectroscopy (AAS), Ion Chromatography (IC) and Inductively-Coupled Plasma Spectrophotometry (ICP-MS) testing to know the anion and cation present in it.

  12. Method and apparatus for solidifying radioactive waste

    International Nuclear Information System (INIS)

    Kadota, Hiroko; Kikuchi, Makoto; Tsuchiya, Hiroyuki; Tamada, Shin.

    1989-01-01

    The present invention concerns a method of solidifying radioactive wastes that generate heat with water curing solidifying material and the object there of is suppress the effect of heat generation of the wastes given on the solidification material. That is, it is a feature of the invention to inject water content contained in the water curable solidification material in the form of ice into the wastes. Thus, since the water content in the water curable solidification material is ice, the solidification products can be obtained by way of the following three steps: (1) ice is dissolved into water, (2) solid content of the solidification material is dissolved into water, and(3) curing reaction of the solidification material is started. Acccordingly, since the heat generated from the wastes contributes as heat of reaction when ice is dissolved into water till the solidification material has been completely filled, promotion for the curing reaction causing problems so far can be suppressed to enable easy filling. Then, after the completion of the filling of the solidification material, the heat of the wastes has an effect of promoting the second and the third steps described above to accelerate the curing reaction. (K.M.)

  13. Method and device for solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hayashi, Tadamasa.

    1981-01-01

    Purpose: To solidify radioactive waste without producing radioactive dusts by always heating and evaporating the water from liquid radioactive waste in a mixture of liquid plastic and exhausting the molten mixture of the waste residue and the plastic material. Constitution: Liquid plastic material in a tank cooled to prevent polymerization or changes of its properties is continuously supplied to the top of a heating and mixing evaporator by a constant supply pump. After the heat transfer surface of the evaporator is covered with the plastic material, radioactive waste in the tank is supplied to the evaporator via the constant supply pump. The waste is abruptly mixed with the plastic material by an agitating rotor, heated by a heater, and the evaporated water is fed to a condenser. An anhydrous molten mixture is continuously exhausted from the bottom of the evaporator into a mixture cooler, a polymerizing agent and catalyst are introduced thereinto from a polymerizing agent tank and a catalyst tank, inhibitor is introduced thereinto from a polymerization inhibitor tank as required, and is filled with the mixture a solidifying container while it is cooled for its polymerization and solidification. (Yoshino, Y.)

  14. Formation and transformation of binary intermetallic phases in high purity Al-Fe alloys

    International Nuclear Information System (INIS)

    Griger, A.; Stefaniay, V.; Kovacs-Csetenyi, E.; Turmezey, T.

    1990-01-01

    The solid solubility of iron in aluminium is very low (<0.04%), (all compositions are given in w%) therefore most of the iron content appears as intermetallic phases in combination with aluminium and other elements. The amount of iron does not exceed the level of the eutectic concentration in the commercial aluminium alloys, however the non-desired effect of these primary phases of large size must be taken into consideration. In the case of rapid solidification (RS) the eutectic point shifts to higher values of iron content. The eutectic has a very fine structure and the primary phases formed at high cooling rates have also very low particle size. Because of it, for the sake of improvement of the thermo-mechanical properties of the RS aluminium alloys the quantity of iron can be increased up to 8-10%. Above this concentration the favourable properties do not develop while the elongation decreases

  15. Method of solidifying radioactive waste by plastics

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Tomita, Toshihide.

    1976-01-01

    Purpose: To prevent leakage of radioactivity by providing corrosion-resistant layer on the inner surface of a waste container for radioactive waste. Constitution: The inner periphery and bottom of a drum can is lined with an non-flammable cloth of such material as asbestos. This drum is filled with a radioactive waste in the form of powder or pellets. Then, a mixture of a liquid plastic monomer and a polymerization starting agent is poured at a normal temperature, and the surface is covered with a non-flammable cloth. The plastic monomer and radioactive waste are permitted to impregnate the non-flammable cloth and are solidified there. Thus, even if the drum can is corroded at the sea bottom after disposal it in the ocean, it is possible to prevent the waste from permeating into the outer sea water because of the presence of the plastic layer on the inside. Styrene is used as the monomer. (Aizawa, K.)

  16. A process for solidifying radioactive liquid waste

    International Nuclear Information System (INIS)

    Mergan, L.M.; Cordier, J.-P.

    1981-01-01

    In a process for solidifying radioactive liquid waste, its pH is adjusted, solids precipitated and then it is concentrated to about 50% solids content using a thin film evaporator, the concentrate then being dried to powder in a heated mixer. The mixer has a heated wall and working means, e.g. a rotor and helical screw, to shear the dried concentrate from the internal walls, subdivide it into a dry particulate powder, and advance the powder to the mixer outlet. The dried particles are then encapsulated in a suitable matrix. Vapour from the mixer and evaporator is condensed and recycled after any particles have been removed from it. The mixer may both dry the concentrate and mix the dry particles with the encapsulating matrix, and possibly, part of the mixer may be used for pH adjustment and precipitation. (author)

  17. Method of solidifying radioactive liquid wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Kawamura, Fumio; Kikuchi, Makoto; Fukazawa, Tetsuo.

    1983-01-01

    Purpose: To enable to confine the volatiling ingredients such as cesium in liquid wastes safely in glass solidification products while suppressing the volatilization thereof. Method: Acid salt of tetravalent metal such as titanium phosphate has an intense selective adsorption property to cesium. So liquid wastes stored in a high level liquid wastes tank is mixed with titanium phosphate gels stored in an adsorbent tank, then supplied to a mixer and mixed with a sodium silicate solution stored in a sodium silicate storage tank and boric acid stored in an additive tank, into gel-like state. The gel-like material thus formed is supplied to a drier. After being dried at a temperature of 200sup(o)C - 300sup(o)C, the material is melted under heating at a temperature of 1000sup(o)C - 1100sup(o)C, and then cooled to solidify. (Horiuchi, T.)

  18. Corrosion behavior of Al-Fe-sputtering-coated steel, high chromium steels, refractory metals and ceramics in high temperature Pb-Bi

    International Nuclear Information System (INIS)

    Abu Khalid, Rivai; Minoru, Takahashi

    2007-01-01

    Corrosion tests of Al-Fe-coated steel, high chromium steels, refractory metals and ceramics were carried out in high temperature Pb-Bi at 700 C degrees. Oxygen concentrations in this experiment were 6.8*10 -7 wt.% for Al-Fe-coated steels and 5*10 -6 wt.% for high chromium steels, refractory metals and ceramics. All specimens were immersed in molten Pb-Bi in a corrosion test pot for 1.000 hours. Coating was done with using the unbalanced magnetron sputtering (UBMS) technique to protect the steel from corrosion. Sputtering targets were Al and SUS-304. Al-Fe alloy was coated on STBA26 samples. The Al-Fe alloy-coated layer could be a good protection layer on the surface of steel. The whole of the Al-Fe-coated layer still remained on the base surface of specimen. No penetration of Pb-Bi into this layer and the matrix of the specimen. For high chromium steels i.e. SUS430 and Recloy10, the oxide layer formed in the early time could not prevent the penetration of Pb-Bi into the base of the steels. Refractory metals of tungsten (W) and molybdenum (Mo) had high corrosion resistance with no penetration of Pb-Bi into their matrix. Penetration of Pb-Bi into the matrix of niobium (Nb) was observed. Ceramic materials were SiC and Ti 3 SiC 2 . The ceramic materials of SiC and Ti 3 SiC 2 had high corrosion resistance with no penetration of Pb-Bi into their matrix. (authors)

  19. Phenol hydroxylation on Al-Fe modified-bentonite: Effect of Fe loading, temperature and reaction time

    Science.gov (United States)

    Widi, R. K.; Budhyantoro, A.; Christianto, A.

    2017-11-01

    The present work reflects the study of the phenol hydroxylation reactions to synthesize hydroquinone and catechol on Al-Fe modified-bentonite. This study started with synthesizes the catalyst material based on the modified bentonite. Natural bentonite from Pacitan, Indonesia was intercalated with Cetyl-TetramethylammoniumBromida (CTMA-Br) followed by pillarization using Alumina. The pillared bentonite was then impregnated with Fe solution (0.01 M, 0.05 M, and 0.1 M). The solid material obtained was calcined at 723 K for 4 hours. All the materials were characterized using BET N2 adsorption. Their catalytic activity and selectivity were studied for phenol hydroxylation using H2O2 (30%). The reaction conditions of this reaction were as follows: ratio of phenol/H2O2 = 1:1 (molar ratio), concentration of phenol = 1 M and ratio of catalyst/phenol was 1:10. Reaction temperatures were varied at 333, 343 and 353 K. The reaction time was also varied at 3, 4 and 5 hours. The result shows that the materials have potential catalyst activity.

  20. Method for accelerated leaching of solidified waste

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Heiser, J.H.; Pietrzak, R.F.; Franz, E.M.; Colombo, P.

    1990-11-01

    An accelerated leach test method has been developed to determine the maximum leachability of solidified waste. The approach we have taken is to use a semi-dynamic leach test; that is, the leachant is sampled and replaced periodically. Parameters such as temperature, leachant volume, and specimen size are used to obtain releases that are accelerated relative to other standard leach tests and to the leaching of full-scale waste forms. The data obtained with this test can be used to model releases from waste forms, or to extrapolate from laboratory-scale to full-scale waste forms if diffusion is the dominant leaching mechanism. Diffusion can be confirmed as the leaching mechanism by using a computerized mathematical model for diffusion from a finite cylinder. We have written a computer program containing several models including diffusion to accompany this test. The program and a Users' Guide that gives screen-by-screen instructions on the use of the program are available from the authors. 14 refs., 4 figs., 1 tab

  1. Leaching behavior of cement solidified materials

    International Nuclear Information System (INIS)

    2002-03-01

    An immersion test of mortar was carried out in order to solidify waste with uranium. The sample consists of 2000g cement, 950g ion exchange water, 1600g sound and 1g water reducing agent. The solid sample and ion exchange water (100 of immersion liquid/original sample) was put into polystyrene closed vessel in globe box and kept four weeks, and then it was separated to the immersion liquid and the solid phase. New ion exchange water was added to the solid and kept four weeks and then separated. Its ratio showed 200. The analysis was done at 100, 200 and 300 ratio of immersion liquid/sample. The solid phase was studied by the powder X-ray diffraction analysis, thermo gravimetric analysis and chemical analysis. The liquid phase was determined by pH values and composition analysis. The results showed Ca(OH) 2 , cement hydrate, was flowed out and it was not found in the solid phase at 200 ratio. (S.Y.)

  2. Leaching studies of radionuclides from solidified wastes with thermosetting resin

    International Nuclear Information System (INIS)

    Suzuki, K.; Kuribayashi, H.; Morimitsu, W.; Ono, I.

    1982-01-01

    This paper reports on studies of the leachability of Co-60 and Cs-137 from simulated LWR radwastes solidified with thermosetting resin and evaluates the effects of chemical fixation on leachability. It is concluded that insolubilization by a nickel-ferrocyanide compound offers an effective chemical fixation of these radionuclides and is a recommended pretreating method for radwastes that are to be solidified. 2 figures

  3. Effect of Si and Zr on the Microstructure and Properties of Al-Fe-Si-Zr Alloys

    Directory of Open Access Journals (Sweden)

    Anna Morozova

    2017-11-01

    Full Text Available The effects of Si and Zr on the microstructure, microhardness and electrical conductivity of Al-Fe-Si-Zr alloys were studied. An increase in the Zr content over 0.3 wt. % leads to the formation of primary Al3Zr inclusions and also decreases mechanical properties. Therefore, the Zr content should not be more than 0.3 wt. %, although the smaller content is insufficient for the strengthening by the secondary Al3Zr precipitates. The present results indicate that high content of Si significantly affects the hardness and electrical conductivity of the investigated alloys. However, the absence of Si led to the formation of harmful needle-shaped Al3Fe particles in the microstructure of the investigated alloys after annealing. Therefore, the optimum amount of Si was 0.25–0.50 wt. % due to the formation of the Al8Fe2Si phase with the preferable platelet morphology. The maximum microhardness and strengthening effects in Al-1% Fe-0.25% Si-0.3% Zr were observed after annealing at 400–450 °C due to the formation of nanosized coherent Al3Zr (L12 dispersoids. The effect of the increasing of the electrical conductivity can be explained by the decomposition of the solid solution. Thus, Al-1% Fe-0.25% Si-0.3% Zr alloy annealed at 450 °C has been studied in detail as the most attractive with respect to the special focus on transmission line applications.

  4. PHASE CONSTITUENTS AND MICROSTRUCTURE OF Ti3Al/Fe3Al + TiN/TiB2 COMPOSITE COATING ON TITANIUM ALLOY

    OpenAIRE

    JIANING LI; CHUANZHONG CHEN; CUIFANG ZHANG

    2011-01-01

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be...

  5. Dynamics of Al/Fe{sub 2}O{sub 3} MIC combustion from short single-pulse photothermal initiation and time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stiegman, Albert E.; Park, Chi-Dong; Mileham, Melissa; Van de Burgt, Lambertus J. [Department of Chemistry and Biochemistry, Florida State University Tallahassee, FL (United States); Kramer, Michael P. [AFRL/MNME Eglin AFB, FL (United States)

    2009-08-15

    Time-resolved spectroscopy was used to study the dynamics of the photothermal ignition of Al/Fe{sub 2}O{sub 3} metastable intermolecular composites after single short-pulse laser initiation. The dynamics were recorded in several time domains from nanosecond to microsecond to quantify the dynamics from initial laser excitation to combustion. Time-averaged spectral data were also collected for the overall emission occurring during combustion. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Biodegradation testing of solidified low-level waste streams

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1985-05-01

    The NRC Technical Position on Waste Form (TP) specifies that waste should be resistant to biodegradation. The methods recommended in the TP for testing resistance to fungi, ASTM G21, and for testing resistance to bacteria, ASTM G22, were carried out on several types of solidified simulated wastes, and the effect of microbial activity on the mechanical strength of the materials tested was examined. The tests are believed to be sufficient for distinguishing between materials that are susceptible to biodegradation and those that are not. It is concluded that failure of these tests should not be regarded of itself as an indication that the waste form will biodegrade to an extent that the form does not meet the stability requirements of 10 CFR Part 61. In the case of failure of ASTM G21 or ASTM G22 or both, it is recommended that additional data be supplied by the waste generator to demonstrate the resistance of the waste form to microbial degradation. To produce a data base on the applicability of the biodegradation tests, the following simulated laboratory-scale waste forms were prepared and tested: boric acid and sodium sulfate evaporator bottoms, mixed-bed bead resins and powdered resins each solidified in asphalt, cement, and vinyl ester-styrene. Cement solidified wastes supported neither fungal nor bacterial growth. Of the asphalt solidified wastes, only the forms of boric acid evaporator bottoms did not support fungal growth. Bacteria grew on all of the asphalt solidified wastes. Cleaning the surface of these waste forms did not affect bacterial growth and had a limited effect on the fungal growth. Only vinyl esterstyrene solidified sodium sulfate evaporator bottoms showed viable fungi cultures, but surface cleaning with solvents eliminated fungal growth in subsequent testing. Some forms of all the waste streams solidified in vinyl ester-styrene showed viable bacteria cultures. 13 refs., 12 tabs

  7. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Directory of Open Access Journals (Sweden)

    Golik Vladimir

    2017-01-01

    Full Text Available The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator’ driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  8. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Science.gov (United States)

    Golik, Vladimir; Dmitrak, Yury

    2017-11-01

    The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator' driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  9. Energy asymmetry in melting and solidifying processes of PCM

    International Nuclear Information System (INIS)

    Jin, Xing; Hu, Huoyan; Shi, Xing; Zhang, Xiaosong

    2015-01-01

    Highlights: • The melting process and the solidifying process of PCM were asymmetrical. • The enthalpy and state of PCM were affected by its previous state. • The main reason for energy asymmetry of PCM was supercooling. - Abstract: The solidifying process of phase change material (PCM) was usually recognized as the exact inverse process of its melting process, especially when building the heat transfer model of PCM. To figure out that whether the melting process and the solidifying process of PCM were symmetrical, several kinds of PCMs were tested by a differential scanning calorimeter (DSC) in this paper. The experimental results showed that no matter using the DSC dynamic measurement method or the DSC step measurement method, the melting process and the solidifying process of PCM were asymmetrical. Because of the energy asymmetry in the melting and solidifying processes of PCM, it was also found that the enthalpy and the state of PCM were not only dependent on its temperature, but also affected by its “previous state”.

  10. Method of solidifying and disposing radioactive waste plastic

    International Nuclear Information System (INIS)

    Matsuura, Hiroyuki; Yasumura, Keijiro

    1981-01-01

    Purpose: To solidify radioactive waste as it is with plastic by forming a W/O (Water-in-Oil) emulsion with the radioactive waste and a plastic solidifier, and treating it with a polymerization starting agent, an accelerator, and the like. Method: A predetermined amount of alkaline substance such as sodium hydroxide, triethanol, or the like is added quantitatively to radioactive waste and it is mixed by an agitator. A predetermined amount of solidifier such as unsaturated polyester or the like is added to the mixture and it is further mixed by the agitator to form a stable W/O emulsion. Subsequently, predetermined amounts of polymerization starting agent such as methyl ethyl ketone peroxide and polymerization accelerator such as cobalt naphthenate or the like are added thereto, the mixture is mixed, and is then allowed to stand for at room temperature for the plastic solidification thereof. No reaction occurs after the solidification. (Sekiya, K.)

  11. Detection of free liquid in containers of solidified radioactive waste

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  12. Evaluation of solidified high-level waste forms

    International Nuclear Information System (INIS)

    1981-01-01

    One of the objectives of the IAEA waste management programme is to coordinate and promote development of improved technology for the safe management of radioactive wastes. The Agency accomplished this objective specifically through sponsoring Coordinated Research Programmes on the ''Evaluation of Solidified High Level Waste Products'' in 1977. The primary objectives of this programme are to review and disseminate information on the properties of solidified high-level waste forms, to provide a mechanism for analysis and comparison of results from different institutes, and to help coordinate future plans and actions. This report is a summary compilation of the key information disseminated at the second meeting of this programme

  13. Study of the aqueous corrosion mechanisms and kinetics of the AlFeNi aluminium based alloy used for the fuel cladding in the Jules Horowitz research reactor

    International Nuclear Information System (INIS)

    Wintergerst, M.

    2009-05-01

    For the Jules Horowitz new material-testing reactor (JHR), an aluminium base alloy, called AlFeNi, will be used for the cladding of the fuel plates. This alloy (Al - 1% Fe - 1% Ni - 1 % Mg), which is already used as fuel cladding, was developed for its good corrosion resistance in water at high temperatures. However, few studies dealing with the alteration process in water and the relationships with irradiation effects have been performed on this alloy. The conception of the JHR fuel requires a better knowledge of the corrosion mechanisms. Corrosion tests were performed in autoclaves at 70 C, 165 C and 250 C on AlFeNi plates representative of the fuel cladding. Several techniques were used to characterize the corrosion scale: SEM, TEM, EPMA, XRD, Raman spectroscopy. Our observations show that the corrosion scale is made of two main layers: a dense amorphous scale close to the metal and a porous crystalline scale in contact with the water. More than the morphology, the chemical compositions of both layers are different. This duplex structure results from a mixed growth mechanism: an anionic growth to develop the inner oxide and a cationic diffusion followed by a dissolution-precipitation process to form the outer one. Dynamic experiments at 70 C and corrosion kinetics measurements have demonstrated that the oxide growth process is controlled by a diffusion step associated to a dissolution/precipitation process. A corrosion mechanism of the AlFeNi alloy in aqueous media has been proposed. Then post-irradiation exams performed on irradiated fuel plates were used to investigate the effects of the irradiation on the corrosion behaviour in the reactor core. (author)

  14. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe2O3/multi-walled carbon nanotube (MWCNT)

    International Nuclear Information System (INIS)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun

    2016-01-01

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe 2 O 3 /MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe 2 O 3 (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe 2 O 3 (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe 2 O 3 /MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe 2 O 3 nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe 2 O 3 (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This strategy can be applied into other nanostructured

  15. Arcillas pilarizadas con Al-Fe y Al-Ce-Fe como sistema de postratamiento de las aguas residuales del beneficio húmedo del café

    OpenAIRE

    Peralta Ladino, Yury Marlén

    2013-01-01

    El efluente del sistema de tratamiento biológico de las aguas residuales del beneficio húmedo del café contiene compuestos no biodegradables, principalmente (ácidos hidroxicinámicos y clorogénicos) los cuales fueron identificados mediante análisis preliminares por LC-MS, por su toxicidad deben ser tratados antes de su descarga en las fuentes hídricas. El sistema Fenton heterogéneo empleando como soportes Al-Fe-PILC y Al-Ce-Fe-PILC (en polvo) mostró importantes conversión de compuestos fenólic...

  16. DETERMINATION OF LIMIT DETECTION OF THE ELEMENTS N, P, K, Si, Al, Fe, Cu, Cd, WITH FAST NEUTRON ACTIVATION USING NEUTRON GENERATOR

    OpenAIRE

    Sunardi, Sunardi; Muryono, Muryono

    2010-01-01

    Determination of limit detection of the elements N, P, K, Si, Al, Fe, Cu, Cd, with fast neutron activation using neutron generator has been done.  Samples prepared from SRM 2704, N, P, K elements from MERCK, Cu, Cd, Al from activation foil made in San Carlos, weighted and packed for certain weight then iradiated during 30 minutes with 14 MeV fast neutron using the neutron generator and then counted with gamma spectrometry (accuspec).  At this research condition of neutron generator was set at...

  17. Study of the effect of PH, surface finish and thermal treatment on the corrosion of AlFeNi aluminum alloy

    International Nuclear Information System (INIS)

    Nabhan, Diana

    2013-01-01

    The Jules Horowitz Reactor (JHR) is a research reactor under construction at the CEA Cadarache research center, France. It is scheduled to start operating by 2020. The fuel elements of this reactor core consist of eight concentric rows of cylindrical plates, each row being composed of three thin aluminum coated plates. Cooling water circulates between these plates through very thin gaps smaller than 2 mm. The aluminum alloy used to coat the fuel plates is an alloy called AlFeNi, which contains 1% wt. Fe, 1% wt. Ni and 1% wt. Mg. In the reactor environment, this alloy may undergo corrosion. The oxide layer formed on the AlFeNi alloy is composed of two different types of oxides: an inner oxide layer formed by a diffusion mechanism and an outer oxide layer formed by re-precipitation. As a consequence, formation of an oxide scale on the aluminum coating could reduce the gap between the cladding plates, thus allowing less water to circulate. This could in turn lead to local heating of the fuel cladding. In addition, the metal consumption and the softening of the metal at high temperatures can lead to a decrease of the mechanical strength of the cladding. In order to qualify the fuel elements of the JHR, several specimens of AlFeNi, representative of the future cladding, were corroded at 250 .deg. C for different durations (9 to 34 days) in distilled water of different pH: 4.9; 5.2 and 5.6. These pH values have been chosen to simulate the ones currently predicted for the JHR. The effect of surface finish (polished and not polished) and thermal treatment (annealed and not annealed) on the oxide growth rate was also investigated. For long tests over 30 days, the pH 5,6 appears to be more favorable than the pH 5,2 and 4,9 to limit the oxide thickness, but this pH effect is reduced on unpolished samples. In one hand, the effect of surface finish on the corrosion behavior as measured by optical microscopy appears to be strong. On the other hand, the effect of thermal

  18. Study of the effect of PH, surface finish and thermal treatment on the corrosion of AlFeNi aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nabhan, Diana [Comissariat a l' Energie Atomique, Paris (France)

    2013-07-01

    The Jules Horowitz Reactor (JHR) is a research reactor under construction at the CEA Cadarache research center, France. It is scheduled to start operating by 2020. The fuel elements of this reactor core consist of eight concentric rows of cylindrical plates, each row being composed of three thin aluminum coated plates. Cooling water circulates between these plates through very thin gaps smaller than 2 mm. The aluminum alloy used to coat the fuel plates is an alloy called AlFeNi, which contains 1% wt. Fe, 1% wt. Ni and 1% wt. Mg. In the reactor environment, this alloy may undergo corrosion. The oxide layer formed on the AlFeNi alloy is composed of two different types of oxides: an inner oxide layer formed by a diffusion mechanism and an outer oxide layer formed by re-precipitation. As a consequence, formation of an oxide scale on the aluminum coating could reduce the gap between the cladding plates, thus allowing less water to circulate. This could in turn lead to local heating of the fuel cladding. In addition, the metal consumption and the softening of the metal at high temperatures can lead to a decrease of the mechanical strength of the cladding. In order to qualify the fuel elements of the JHR, several specimens of AlFeNi, representative of the future cladding, were corroded at 250 .deg. C for different durations (9 to 34 days) in distilled water of different pH: 4.9; 5.2 and 5.6. These pH values have been chosen to simulate the ones currently predicted for the JHR. The effect of surface finish (polished and not polished) and thermal treatment (annealed and not annealed) on the oxide growth rate was also investigated. For long tests over 30 days, the pH 5,6 appears to be more favorable than the pH 5,2 and 4,9 to limit the oxide thickness, but this pH effect is reduced on unpolished samples. In one hand, the effect of surface finish on the corrosion behavior as measured by optical microscopy appears to be strong. On the other hand, the effect of thermal

  19. Thermodynamic properties of Al-Mn, Al-Cu, and Al-Fe-Cu melts and their relations to liquid and quasicrystal structure

    International Nuclear Information System (INIS)

    Zaitsev, A I; Zaitseva, N E; Shimko, R Yu; Arutyunyan, N A; Dunaev, S F; Kraposhin, V S; Lam, Ha Thanh

    2008-01-01

    Thermodynamic properties of molten Al-Mn, Al-Cu and Al-Fe-Cu alloys in a wide temperature range of 1123-1878 K and the whole range of concentrations have been studied using the integral effusion method and Knudsen mass spectrometry. Thermodynamic functions of melts were described by the associated solution model. The possibility of icosahedral quasicrystal (i-QC) precipitation from liquid Al-Mn and Al-Cu-Fe alloys was found to be a consequence of the existence in liquid associates (clusters). A geometric model is suggested for the structure of associates in liquid

  20. Site suitability criteria for solidified high level waste repositories

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.; Towse, D.F.

    1979-01-01

    Activities devoted to development of regulations, criteria, and standards for storage of solidified high-level radioactive wastes are reported. The work is summarized in sections on site suitability regulations, risk calculations, geological models, aquifer models, human usage model, climatology model, and repository characteristics. Proposed additional analytical work is also summarized

  1. Characteristics of solidified high-level waste products

    International Nuclear Information System (INIS)

    1979-01-01

    The object of the report is to contribute to the establishment of a data bank for future preparation of codes of practice and standards for the management of high-level wastes. The work currently in progress on measuring the properties of solidified high-level wastes is being studied

  2. Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy

    Science.gov (United States)

    Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.

  3. Solubility and release of fenbufen intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides (LDH): The effect of Eudragit S 100 covering

    International Nuclear Information System (INIS)

    Arco, M. del; Fernandez, A.; Martin, C.; Rives, V.

    2010-01-01

    Following different preparation routes, fenbufen has been intercalated in the interlayer space of layered double hydroxides with Mg 2+ and Al 3+ or Mg 2+ , Al 3+ and Fe 3+ in the layers. Well crystallized samples were obtained in most of the cases (intercalation was not observed by reconstruction of the MgAlFe matrix), with layer heights ranging between 16.1 and 18.8 A. The presence of the LDH increases the solubility of fenbufen, especially when used as a matrix. The dissolution rate of the drug decreases when the drug is intercalated, and is even lower in those systems containing iron; release takes place through ionic exchange with phosphate anions from the solution. Preparation of microspheres with Eudragit S 100 leads to solids with an homogeneous, smooth surface with efficient covering of the LDH surface, as drug release was not observed at pH lower than 7. - Graphical abstract: LDHs containing Mg, Al, Fe increase fenbufen solubility, release takes place through ionic exchange with phosphate anions from the medium. Spherical solids with homogeneous, smooth surface are formed when using Eudragit S 100, efficiently covering the LDH surface. Display Omitted

  4. DETERMINATION OF LIMIT DETECTION OF THE ELEMENTS N, P, K, Si, Al, Fe, Cu, Cd, WITH FAST NEUTRON ACTIVATION USING NEUTRON GENERATOR

    Directory of Open Access Journals (Sweden)

    Sunardi Sunardi

    2010-06-01

    Full Text Available Determination of limit detection of the elements N, P, K, Si, Al, Fe, Cu, Cd, with fast neutron activation using neutron generator has been done.  Samples prepared from SRM 2704, N, P, K elements from MERCK, Cu, Cd, Al from activation foil made in San Carlos, weighted and packed for certain weight then iradiated during 30 minutes with 14 MeV fast neutron using the neutron generator and then counted with gamma spectrometry (accuspec.  At this research condition of neutron generator was set at current 1 mA that produced neutron flux about 5,47.107 n/cm2.s and  experimental result shown that the limit detection for the elements N, P, K, Si, Al, Fe, Cu, Cd are  2,44 ppm, 1,88 ppm, 2,15 ppm, 1,44 ppm, 1,26 ppm, 1,35 ppm, 1,05 ppm, 2,99 ppm, respectively.  The data  indicate that the limit detection or sensitivity of appliance of neutron generator to analyze the element is very good, which is feasible to get accreditation AANC laboratory using neutron generator.   Keywords: limit detection, AANC, neutron generator

  5. Uptake of soil P, Al, Fe, Mn, Mg and Ca by Italian rye grass (Lolium multiflorum Lam. induced by synthetic chelating agent

    Directory of Open Access Journals (Sweden)

    Helinä Hartikainen

    1981-05-01

    Full Text Available The effect of a synthetic chelating compound on the dry matter yield and the uptake of soil P, Al, Fe, Mn, Mg and Ca by Italian rye grass was studied in a pot experiment with three mineral soil samples irrigated with water or 0.001 M Na2-EDTA(dinatrium salt of ethylenediaminetetraacetic acid solution. The Na2-EDTA treatment seemed not to affect the quantity of the dry matter yields, but it affected markedly their chemical composition. Increased contents of P, Al and Fe were found in all the harvests. In two soil samples the P supply was improved by 35—45 %. The accumulation of Al, Fe and Mn induced by Na2-EDTA tended to be the more effective the greater the stability constant for the corresponding metal-EDTA chelate was. Thus, the iron uptake increased most intensively, i.e. by 217—458 %, and that of aluminium by 33—120 %. On the basis of the first two harvests the manganese absorption by the rye grass seemed to decrease probably due to the enormous accumulation of iron. The results also suggested that the addition of Na2-EDTA to the soil was not able essentially to affect the magnesium and calcium supply to the plants.

  6. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe{sub 2}O{sub 3}/multi-walled carbon nanotube (MWCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun, E-mail: yjluo@bit.edu.cn

    2016-05-15

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe{sub 2}O{sub 3} nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This

  7. Propertis of solidified radioactive wastes from commercial LWRs

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1978-01-01

    A study has been performed to characterize the properties of solidified radioactive wastes generated in the liquid radwaste treatment systems at LWRs. The properties which have been studied are those which are pertinent in defining the relative potential for the release of radionuclides to the environment as well as others relating to the evaluation of various solidification agents on an economic and feasibility basis. The use of standard testing procedures in measuring these properties allows an intercomparison of respective properties between various types of solidified waste forms. The leachability, mechanical properties, thermal stability, radiation stability, and thermal properties of hydraulic cement, ureaformaldehyde, bitumen, and addition type polymer waste forms have been measured. In addition, the chemical sensitivity, volumetric efficiency and radiation shielding characteristics of these waste forms have been studied. Emphasis in this paper is placed on the results of studies concerning chemical compatibility of solidification agents with specific waste streams, volumetric efficiency, free standing water, and leachability

  8. Production and properties of solidified high-level waste

    International Nuclear Information System (INIS)

    Brodersen, K.

    1980-08-01

    Available information on production and properties of solidified high-level waste are presented. The review includes literature up to the end of 1979. The feasibility of production of various types of solidified high-level wast is investigated. The main emphasis is on borosilicate glass but other options are also mentioned. The expected long-term behaviour of the materials are discussed on the basis of available results from laboratory experiments. Examples of the use of the information in safety analysis of disposal in salt formations are given. The work has been made on behalf of the Danish utilities investigation of the possibilities of disposal of high-level waste in salt domes in Jutland. (author)

  9. Ultrasensitive determination of mercury in human saliva by atomic fluorescence spectrometry based on solidified floating organic drop microextraction

    International Nuclear Information System (INIS)

    Yuan, C.-G.; Wang, J.; Jin, Y.

    2012-01-01

    We report on a new, rapid and simple method for the determination of ultra-trace quantities of mercury ion in human saliva. It is based on solidified floating organic drop microextraction and detection by cold vapor atomic fluorescence spectrometry (CV-AFS). Mercury ion was complexed with diethyldithiocarbamate, and the hydrophobic complex was then extracted into fine droplets of 1-undecanol. By cooling in an ice bath after extraction, the droplets in solution solidify to form a single ball floating on the surface of solution. The solidified micro drop containing the mercury complex was then transferred for determination by CV-AFS. The effects of pH value, concentration of chelating reagent, quantity of 1-undecanol, sample volume, equilibration temperature and time were investigated. Under the optimum conditions, the preconcentration of a 25-mL sample is accomplished with an enrichment factor of 182. The limit of detection is 2.5 ng L -1 . The relative standard deviation for seven replicate determinations at 0.1 ng mL -1 level is 4.1%. The method was applied to the determination of mercury in saliva samples collected from four volunteers. Two volunteers having dental amalgam fillings had 0.4 ng mL -1 mercury in their saliva, whereas mercury was not detectable in the saliva of two volunteers who had no dental fillings. (author)

  10. Geochemical dispersion of Si, Al, Fe, Mn, Na, K, Cu and Zn elements in soils and their use for characterization areas geochemically homogeneous

    International Nuclear Information System (INIS)

    Silva, W.R.L. da.

    1982-01-01

    Variations in the chemical composition of soils are used to characterize sub-areas geochemically - homogenous. The application of this methodology in a tropical humid region of accentuated topography constitute the principal objective of the present research. Samples of red latosols (Horizon B) developed over granite, sandstone and basalt occurring in the Central Granite Region of the Serra dos Carajas, Para State, Brazil were analized for the elements Si, Al, Fe, Mn, Na, K, Cu e Zn, by atomic absorption spectrophotometry. Based on the criterion of similarity in the chemical composition (Cluster Analysis, Factor Analysis) the soils were separeted in to different groups. The geographical distribution of the different groups permit the establishment of a close relationship between the different parent lithologies and their corresponding soils. (author)

  11. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.

    Science.gov (United States)

    Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan

    2017-07-01

    The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Study of the aqueous corrosion mechanisms and kinetics of the AlFeNi aluminium based alloy used for the fuel cladding in the Jules Horowitz research reactor; Etude des mecanismes et des cinetiques de corrosion aqueuse de l'alliage d'aluminium AlFeNi utilise comme gainage du combustible nucleaire de reacteurs experimentaux

    Energy Technology Data Exchange (ETDEWEB)

    Wintergerst, M.

    2009-05-15

    For the Jules Horowitz new material-testing reactor (JHR), an aluminium base alloy, called AlFeNi, will be used for the cladding of the fuel plates. This alloy (Al - 1% Fe - 1% Ni - 1 % Mg), which is already used as fuel cladding, was developed for its good corrosion resistance in water at high temperatures. However, few studies dealing with the alteration process in water and the relationships with irradiation effects have been performed on this alloy. The conception of the JHR fuel requires a better knowledge of the corrosion mechanisms. Corrosion tests were performed in autoclaves at 70 C, 165 C and 250 C on AlFeNi plates representative of the fuel cladding. Several techniques were used to characterize the corrosion scale: SEM, TEM, EPMA, XRD, Raman spectroscopy. Our observations show that the corrosion scale is made of two main layers: a dense amorphous scale close to the metal and a porous crystalline scale in contact with the water. More than the morphology, the chemical compositions of both layers are different. This duplex structure results from a mixed growth mechanism: an anionic growth to develop the inner oxide and a cationic diffusion followed by a dissolution-precipitation process to form the outer one. Dynamic experiments at 70 C and corrosion kinetics measurements have demonstrated that the oxide growth process is controlled by a diffusion step associated to a dissolution/precipitation process. A corrosion mechanism of the AlFeNi alloy in aqueous media has been proposed. Then post-irradiation exams performed on irradiated fuel plates were used to investigate the effects of the irradiation on the corrosion behaviour in the reactor core. (author)

  13. Solidifier effectiveness : variation due to oil composition, oil thickness and temperature

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Fingas, M.

    2009-01-01

    This paper provided an overview of solidifier types and composition. Solidifiers are a class of spill treating agents that offer an effective means to convert a liquid oil into a solid material. They are used as a treatment option for oil spills on water. This paper also reported on recent laboratory studies that consist of 4 components: (1) a qualitative examination of the characteristics of the interaction of a broad range of solidifier products with a standard oil to evaluate reaction rate, states of solidification, and the impact of dosage, (2) a comparison of a smaller subset of solidifiers on the standard oil at lower temperatures, (3) solidifier treatment on a range of oils of varying physical properties and composition to assess the potential scope of application, and (4) the treatment of a series of small-scale oil layers of varying thickness to determine the significance of oil thickness on solidifier effectiveness and recovery. This paper also reviewed solidifier chemistry with particular reference to polymer sorbents; cross-linking agents; and cross-linking agents and polymeric sorbents combined. Toxicity is also an important issue regarding solidifiers. The aquatic toxicity of solidifiers is low and not measurable as the products are not water-soluble. There have not been any studies on the effects of the solidifier or the treated oil on surface feeders and shoreline wildlife that may come into contact with the products. It was concluded that oil composition may play a major role in solidifier effectiveness. The effectiveness of solidifiers is also inhibited at reduced temperatures, increased viscosity and density of the oil. 25 refs., 5 tabs., 2 figs., 1 appendix

  14. Micro and Macro Segregation in Alloys Solidifying with Equiaxed Morphology

    Science.gov (United States)

    Stefanescu, Doru M.; Curreri, Peter A.; Leon-Torres, Jose; Sen, Subhayu

    1996-01-01

    To understand macro segregation formation in Al-Cu alloys, experiments were run under terrestrial gravity (1g) and under low gravity during parabolic flights (10(exp -2) g). Alloys of two different compositions (2% and 5% Cu) were solidified at two different cooling rates. Systematic microscopic and SEM observations produced microstructural and segregation maps for all samples. These maps may be used as benchmark experiments for validation of microstructure evolution and segregation models. As expected, the macro segregation maps are very complex. When segregation was measured along the central axis of the sample, the highest macro segregation for samples solidified at 1g was obtained for the lowest cooling rate. This behavior is attributed to the longer time available for natural convection and shrinkage flow to affect solute redistribution. In samples solidified under low-g, the highest macro-segregation was obtained at the highest cooling rate. In general, low-gravity solidification resulted in less segregation. To explain the experimental findings, an analytical (Flemings-Nereo) and a numerical model were used. For the numerical model, the continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the microscopic transport phenomena, for a two-phase system. The model proposed considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The Flemings-Nereo model explains well macro segregation in the initial stages of low-gravity segregation. The numerical model can describe the complex macro segregation pattern and the differences between low- and high-gravity solidification.

  15. Nickel speciation in cement-stabilized/solidified metal treatment filtercakes

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava, E-mail: reroy@lsu.edu [J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806, USA (United States); Stegemann, Julia A., E-mail: j.stegemann@ucl.ac.uk [Centre for Resource Efficiency & the Environment, Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK (United Kingdom)

    2017-01-05

    Highlights: • XAS shows the same Ni speciation in untreated and stabilized/solidified filtercake. • Ni solubility is the same for untreated and stabilized/solidified filtercake. • Leaching is controlled by pH and physical encapsulation for all binders. - Abstract: Cement-based stabilization/solidification (S/S) is used to decrease environmental leaching of contaminants from industrial wastes. In this study, two industrial metal treatment filtercakes were characterized by X-ray diffractometry (XRD), thermogravimetric and differential thermogravimetric analysis (TG/DTG) and Fourier transform infrared (FTIR); speciation of nickel was examined by X-ray absorption (XAS) spectroscopy. Although the degree of carbonation and crystallinity of the two untreated filtercakes differed, α-nickel hydroxide was identified as the primary nickel-containing phase by XRD and nickel K edge XAS. XAS showed that the speciation of nickel in the filtercake was unaltered by treatment with any of five different S/S binder systems. Nickel leaching from the untreated filtercakes and all their stabilized/solidified products, as a function of pH in the acid neutralization capacity test, was essentially complete below pH ∼5, but was 3–4 orders of magnitude lower at pH 8–12. S/S does not respeciate nickel from metal treatment filtercakes and any reduction of nickel leaching by S/S is attributable to pH control and physical mechanisms only. pH-dependent leaching of Cr, Cu and Ni is similar for the wastes and s/s products, except that availability of Cr, Cu and Zn at decreased pH is reduced in matrices containing ground granulated blast furnace slag.

  16. Detection of free liquid in containers of solidified radioactive waste

    Science.gov (United States)

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  17. Filling of recovered mining areas using solidifying backfill

    Directory of Open Access Journals (Sweden)

    Zeman Róbert

    2001-12-01

    Full Text Available The aim of this article is to explore the possibilities for filling recovered mining areas using solidifying backfill .The article describes the preparation of the backfill (backfill formulation with an eventual application using low quality sands, wastes from treatment plants and ash from power plants etc now to transport it as well as its application in practice. Advantageous and disadvantageous of this method are also mentioned.Several factors must be taken info consideration during the preparation process of the backfill mixture. Firstly, the quantities of each individual component must be constantly regulated. Secondly, the properties of each component must be respected. In addition, the needs of the pipeline transport system and the specific conditions of the recovered area to be filled must also be considered.Hydraulic transport and pneumo-hydraulic pipeline transport are used for handling the backfill. Pumps for transporting the solidifying backfill have to carry out demanding tasks.Due to the physical-mechanical properties of the backfill, only highly powerful pumps can be considered. Piston type pumps such as Abel Simplex and Duplex pumps with capacities of up to 100 m3.h-1 and operating pressures of up to 16 MPa would be suitable.This method has been applied abroad for different purposes. For example, solid backfill was used in the Hamr mine during exploitation of uranium using the room-and-pillar system mining method.In the Ostrava–Karvina Coal field, backfill was used in decontamination work, filling areas in a zone of dangerous deformations and for creating a dividing stratum during thick seam mining.Research info the use of solidifying backfill was also done in the Walsum mine in Germany. The aim of this research was:- to investigate the possibilities of filling a collapsing area in a working face using a solidifying mixture of power plant ash and water,- to verify whether towing pipelines proposed by the DMT corporation would be

  18. Study on dissolution behavior of molten solidified waste

    International Nuclear Information System (INIS)

    Mizuno, Tsuyoshi; Maeda, Toshikatsu

    2005-01-01

    Radioactive molten solidified waste (slag) has been generated by melting non-metallic low-level radioactive wastes (LLW). Slag is expected to immobilize radionuclides in the waste repository. The chemical durability of slag is an important factor for the safety assessment of the disposal in that the durability provides the source term in the assessment. Since a chemical characteristic of slag is similar to that of glass, the general information on the chemical durability of slag might be provided from previous studies on nuclear waste glass. We have investigated effects of chemical compositions of slag and alkaline environments of repository on the chemical durability of slag. (author)

  19. Sintering of (Ni,Mg)(Al,Fe)2O4 Materials and their Corrosion Process in Na3AlF6-AlF3-K3AlF6 Electrolyte

    Science.gov (United States)

    Xu, Yibiao; Li, Yawei; Yang, Jianhong; Sang, Shaobai; Wang, Qinghu

    2017-06-01

    The application of ledge-free sidewalls in the Hall-Héroult cells can potentially reduce the energy requirement of aluminum production by about 30 pct (Nightingale et al. in J Eur Ceram, 33:2761-2765, 2013). However, this approach poses great material challenges since such sidewalls are in direct contact with corrosive electrolyte. In the present paper, (Ni,Mg)(Al,Fe)2O4 materials were prepared using fused magnesia, reactive alumina, nickel oxide, and iron oxide powders as the starting materials. The sintering behaviors of specimens as well as their corrosion resistance to molten electrolyte have been investigated by means of X-ray diffraction and scanning electron microscope. The results show that after firing at temperature ranging from 1673 K (1400 °C) up to 1873 K (1600 °C), all the specimens prepared are composed of single-phase (Ni,Mg)(Al,Fe)2O4 composite spinel, the lattice parameter of which increases with increasing Fe3+ ion concentration. Increasing the iron oxide content enhances densification of the specimens, which is accompanied by the formation of homogeneously distributed smaller pores in the matrix. The corrosion tests show that corrosion layers consist of fluoride and Ni(Al,Fe)2O4 composite spinel grains are produced in specimens with Fe/Al mole ratio no more than 1, whereas dense Ni(Al,Fe)2O4 composite spinel layers are formed on the surface of the specimens with Fe/Al mole ratio more than 1. The dense Ni(Al,Fe)2O4 composite spinel layers formed improve the corrosion resistance of the specimens by inhibiting the infiltration of electrolyte and hindering the chemical reaction between the specimen and electrolyte.

  20. Solidified ceramics of radioactive wastes and method of producing it

    International Nuclear Information System (INIS)

    Oota, Takao; Matake, Shigeru; Ooka, Kazuo.

    1980-01-01

    Purpose: To provide solidified ceramics which have low leaching properties to water of radioactive substance, excellent heat dissipating and resistive properties and high mechanical strength by mixing and sintering limited amounts of titanium and aluminum compounds with calcined radioactive wastes containing special compound. Method: More than 20% by weight of titanium compound (as TiO 2 ) and more than 5% by weight of aluminum compound (as Al 2 O 3 ) are mixed with the calcined radioactive wasted containing, as converted by oxide, 5 to 40% by weight of Na 2 O, 5 to 20% by weight of Fe 2 O 3 , 5 to 15% by weight of MoO 3 , 5 to 15% by weight of ZrO 2 , 2 to 10% by weight of CeO 2 , 2 to 10% by weight of Cs 2 O, 1 to 5% by weight of BaO, 1 to 5% by weight of SrO, 0.2 to 2% by weight of Rb 2 O, 0.2% by weight of Y 2 O 3 , 0.2 to 2% by weight of NiO, 5 to 20% by weight of rare earth metal oxide, and 0.2 to 2% by weight of Cr 2 O 3 . The mixture is molded, sintered, and solidified to ceramics which contains no Mo phase, Na 2 O, MoO 3 , K 2 O, MoO 3 and Cs 2 O, MoO 3 phases and the like. (Yoshino, Y.)

  1. Leaching experiment of cement solidified waste form under unsaturated condition

    International Nuclear Information System (INIS)

    Wang Zhiming; Yao Laigen; Li Shushen; Zhao Yingjie; Cai Yun; Li Dan; Han Xinsheng; An Yongfeng

    2003-01-01

    A device for unsaturated leaching experiments was designed and built up. 8 different sizes, ranging from 40.2 cm 3 to 16945.5 cm 3 , of solidified waste form were tested in the experiment. 5 different water contents, from 0.15 to 0.40, were used for the experiment. The results show that the cumulative leaching fraction increases with water content when the sizes of the forms are equal to and less than 4586.7 cm 3 , for example, the ratios of the cumulative leaching fractions are between 1.24-1.41 under water content of 0.35 and 0.15 on 360 day of Teaching. It can also be seen that the cumulative leaching fraction under higher water content is close to that under saturated condition. The cumulative leaching fraction decreases with size of the form. Maximum leached depth of the solidified waste forms is about 2.25 cm after one year Teaching. Moreover, it has no clear effect on cumulative leaching fraction that sampling or non-sampling during the experiment

  2. Vessel for solidifying water-impermeable radioactive waste

    International Nuclear Information System (INIS)

    Kiuchi, Yoshimasa; Tamada, Shin; Suzuki, Yasushi.

    1993-01-01

    A blend prepared by admixing silica sand, alumina powder or glass fiber, as aggregates, to epoxy resin elastic adhesives is coated on an inner surface of a steel drum can or an inner surface of a concrete vessel at a thickness of greater than 1mm followed by hardening. The addition amount of the silica sand, alumina powder or glass fiber is determined as 20 to 40% by weight, 30 to 60% by weight or 5 to 15% by weight respectively. A lid having a hole for injecting fillers is previously bonded to a container for use in solidifying radioactive materials. The strength of the coating layer is increased and a coating performance and an adhesion force are improved by admixing the aggregates, to provide a satisfactory water-impermeability. The container for use in solidifying radioactive wastes having a coating layer with an advantage of the elastic resin adhesives, strong strength and adhesion and being excellent in the water-impermeability can be obtained relatively economically. (N.H.)

  3. Kinetic Analysis of Recovery, Recrystallization, and Phase Precipitation in an Al-Fe-Si Alloy Using JMAEK and Sesták-Berggren Models

    Science.gov (United States)

    Luiggi Agreda, Ney José

    2015-02-01

    When studying the phase changes process in a rolled AA8011 alloy using DSC, we find that the peaks associated with phase precipitation under this microstructural condition are different from those obtained in homogenized microstructures. The differences observed are attributable, first, to the recovery process occurring at temperatures below 423 K (150 °C), which interacts with the precipitation of Si-rich precipitates or with Guinier-Preston zones both coexistent in that temperature range; and second, to the recrystallization above 473 K (200 °C), which coexists with precipitation of the α-AlFeSi phase. In this work, the precipitation and recovery-recrystallization kinetics are experimentally obtained and deconvoluted in peaks characteristic for each of the mechanisms involved; i.e., precipitation of GP zones, recovery, precipitation of α phase, and recrystallization. The deconvolution is achieved using functions of Gauss, Weibull, and Fraser-Suzuki; and the characterization of each reaction deconvoluted is realized through both Jhonson-Melh-Avrami-Erofeev-Kolmorokov kinetic models and Sesták-Berggren combined kinetic model. The kinetic study evinces that in addition to the expected reactions, other reactions, necessary for good experimental adjustment, appear. An isoconversional study is undertaken to numerically evaluate the kinetic triplet of every process.

  4. Modification of Colombian clays with pillars mixed Al-Fe and their evaluation in the catalytic oxidation of phenol in diluted watery solution

    International Nuclear Information System (INIS)

    Galeano, Luis A; Moreno G, Sonia

    2002-01-01

    The environmental legislation has become in the last time particularly restrictive with the bio-recalcitrant pollutants manage in the wastewaters. The pillared clays show great versatility to adjust at demands of the environmental reactions. Present study show that is achieve the modification of starting Colombian clays with precursor solutions of Al-Fe mixed pillars, and is found an excellent performance of them in the catalytic oxidation of aqueous solutions with middle contents of Total Organic Carbon TOC (36 mg C/L). The materials prepared in this way reached quantitative conversion of phenol, as model pollutant, in 2 hours of reaction at 20 Celsius degrade and atmospheric pressure; in 4 hours of reaction, the removal reached 62% of TOC in the solution yielding light carboxylic acids as main byproducts, although that CO 2 . The materials are stable under strongly oxidation media of reaction, and the iron leached in the effluent is close to 0,2 mg/L for the material of better catalytic performance

  5. Removal of indigo carmine and green bezanyl-F2B from water using calcined and uncalcined Zn/Al + Fe layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Hassiba Bessaha

    2017-06-01

    Full Text Available Layered double hydroxide Zn/(Al + Fe with a molar ratio of 3:(0.85 + 0.15, designated as ZAF-HT, was synthetized by co-precipitation. Its calcined product CZAF was obtained by heat treatment of ZAF-HT at 500°C. The calcined and uncalcined materials were used to remove the acid dyes indigo carmine (IC and green bezanyl-F2B (F2B from water in batch mode. The synthetized materials were characterized by X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller analysis, Fourier transform infra-red spectroscopy and thermogravimetric/differential thermal analysis. The sorption kinetic data fitted a pseudo-second-order model. The adsorbed amounts of the calcined material were much larger than ZAF-HT. The maximum adsorption capacity of CZAF was found to be 617.3 mg g−1 for IC and 1,501.4 mg g−1 for F2B. The isotherms showed that the removal of IC and F2B by ZAF-HT and CZAF could be described by a Langmuir model. The thermodynamic parameters were also calculated. The negative values of standard free energy ΔG° indicate the spontaneity of sorption process. The reuse of CZAF was studied for both dyes and the calcined material showed a good stability for four thermal cycles.

  6. Effects of leachate concentration on the integrity of solidified clay liners.

    Science.gov (United States)

    Xue, Qiang; Zhang, Qian

    2014-03-01

    This study aimed to evaluate the impact of landfill leachate concentration on the degradation behaviour of solidified clay liners and to propose a viable mechanism for the observed degradation. The results indicated that the unconfined compressive strength of the solidified clay decreased significantly, while the hydraulic conductivity increased with the leachate concentration. The large pore proportion in the solidified clay increased and the sum of medium and micro pore proportions decreased, demonstrating that the effect on the solidified clay was evident after the degradation caused by exposure to landfill leachate. The unconfined compressive strength of the solidified clay decreased with increasing leachate concentration as the leachate changed the compact structure of the solidified clay, which are prone to deformation and fracture. The hydraulic conductivity and the large pore proportion of the solidified clay increased with the increase in leachate concentration. In contrast, the sum of medium and micro pore proportions showed an opposite trend in relation to leachate concentration, because the leachate gradually caused the medium and micro pores to form larger pores. Notably, higher leachate concentrations resulted in a much more distinctive variation in pore proportions. The hydraulic conductivity of the solidified clay was closely related to the size, distribution, and connection of pores. The proportion of the large pores showed a positive correlation with the increase of hydraulic conductivity, while the sum of the proportions of medium and micro pores showed a negative correlation.

  7. Effective hydrogen diffusion coefficient for solidifying aluminium alloys

    International Nuclear Information System (INIS)

    Felberbaum, M.; Landry-Desy, E.; Weber, L.; Rappaz, M.

    2011-01-01

    An effective hydrogen diffusion coefficient has been calculated for two solidifying Al - 4.5 wt.% Cu and Al - 10 wt.% Cu alloys as a function of the volume fraction of solid. For this purpose, in situ X-ray tomography was performed on these alloys. For each volume fraction of solid between 0.6 and 0.9, a representative volume element of the microstructure was extracted. Solid and liquid voxels were assimilated to solid and liquid nodes in order to solve the hydrogen diffusion equation based on the chemical potential and using a finite volume formulation. An effective hydrogen diffusion coefficient based on the volume fraction of solid only could be deduced from the results of the numerical model at steady state. The results are compared with various effective medium theories.

  8. Particle Trapping and Banding in Rapid Colloidal Solidification

    KAUST Repository

    Elliott, J. A. W.

    2011-10-11

    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related colloidal systems. We use it to explain the formation of bandlike defects in rapidly solidified alumina suspensions. © 2011 American Physical Society.

  9. Structure fields in the solidifying cast iron roll

    Directory of Open Access Journals (Sweden)

    W.S. Wołczyński

    2010-01-01

    Full Text Available Some properties of the rolls depend on the ratio of columnar structure area to equiaxed structure area created during roll solidification. The transition is fundamental phenomenon that can be apply to characterize massive cast iron rolls produced by the casting house. As the first step of simulation, a temperature field for solidifying cast iron roll was created. The convection in the liquid is not comprised since in the first approximation, the convection does not influence the studied occurrence of the (columnar to equiaxed grains transition in the roll. The obtained temperature field allows to study the dynamics of its behavior observed in the middle of the mould thickness. This midpoint of the mould thickness was treated as an operating point for the transition. A full accumulation of the heat in the mould was postulated for the transition. Thus, a plateau at the curve was observed at the midpoint. The range of the plateau existence corresponded to the incubation period , that appeared before fully equiaxed grains formation. At the second step of simulation, behavior of the thermal gradients field was studied. Three ranges within the filed were visible: EC→EC→EC→EC→(tTECtt↔RERCtt↔a/ for the formation of columnar structure (the C – zone: ( and 0>>T&0>>=−>−=REREttGttG.The columnar structure formation was significantly slowed down during incubation period. It resulted from a competition between columnar growth and equiaxed growth expected at that period of time. The 0≈=−=RERCttGttG relationship was postulated to correspond well with the critical thermal gradient, known in the Hunt’s theory. A simulation was performed for the cast iron rolls solidifying as if in industrial condition. Since the incubation divides the roll into two zones: C and E; (the first with columnar structure and the second with fully equiaxed structure some experiments dealing with solidification were made on semi-industrial scale.

  10. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.

    Science.gov (United States)

    Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh

    2013-11-15

    A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen.

    Science.gov (United States)

    Wang, Lei; Liu, Jing

    2014-12-08

    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi 35 In 48.6 Sn 16 Zn 0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid-solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi 35 In 48.6 Sn 16 Zn 0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance-temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future.

  12. Characterization of the Ni-45wt% Ti shape memory alloy rapidly solidified

    International Nuclear Information System (INIS)

    Anselmo, G.C.S.; Castro, W.B. de; Araujo, C.J. de

    2010-01-01

    One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. shape memory characteristics of Ni-45wt%Ti alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray. In these experiments particular attention has been paid to change the velocity of cooling wheel from 30 to 50 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on martensitic transformation behaviors and structure are discussed. (author)

  13. Microstructures and phase formation in rapidly solidified Sm-Fe alloys

    International Nuclear Information System (INIS)

    Shield, J.E.; Kappes, B.B.; Meacham, B.E.; Dennis, K.W.; Kramer, M.J.

    2003-01-01

    Sm-Fe-based alloys were produced by melt spinning with various melt spinning parameters and alloying additions. The structural and microstructural evolution varied and strongly depended on processing and alloy composition. The microstructural scale was found to vary from micron to nanometer scale depending on the solidification rate and alloying additions. Additions of Si, Ti, V, Zr and Nb with C were all found to refine the scale, and the degree of refinement was dependent on the atomic size of the alloying agent. The alloying was also found to affect the dynamical aspects of the melt spinning process, although in general the material is characterized by a poor melt stream and pool, which in part contributes to the microstructural variabilities. The alloying additions also suppressed the long-range ordering, leading to formation of the TbCu 7 -type structure. The ordering was recoverable upon heat treatment, although the presence of alloying agents suppressed the recovery process relative to the binary alloy. This was attributed to the presence of Ti (V, Nb, Zr) in solid solution, which limited the diffusion kinetics necessary for ordering. In the binary alloy, the ordering led to the development of antiphase domain structures, with the antiphase boundaries effectively pinning Bloch walls

  14. Analysis of a Rapidly Solidified High-Phosphorus Austenitic Steel Containing an Amorphous Phase.

    Science.gov (United States)

    1981-12-01

    electrodeposited nickel by a combination of Jet electro- polishing and ion-beam milling. Specimens were observed in a Vacuum Generators HB-5 scanning...the cell walls in these powders is one of suppressed crystal growth rather than nucleation , since the glass is formed in direct contact with the...Cohen, this Symposium. 5. T. F. Kelly, Ph.D. Thesis , MIT, February 1982. 6. C. V. Thompson, A. L. Greer, and A. J. Drehman, Proc. 4th Intl. Conf

  15. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Hung [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Haung, Chiung-Fang [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Shyu, Shih-Shiun [Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (China); Chou, Yen-Ru [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Lin, Ming-Hong [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); Peng, Pei-Wen, E-mail: apon@tmu.edu.tw [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); and others

    2015-08-15

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples. The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.

  16. The relation between experiments and modeling of rapidly solidified 12Cr-Mo-V stainless steel

    DEFF Research Database (Denmark)

    Pryds, Nini; Hattel, Jesper Henri

    1998-01-01

    Solidification during melt spinning of a 12Cr-Mo-V stainless steel has been experimentally studied and numerically simulated. The resulting microstructures have been related to the unknown parameter h, i.e. the heat transfer coefficient between the substrate and the melt, by fitting the heat flow...... of metastable austenite as the primary phase near the chill side of the ribbon. Upon quenching to room temperature, this austenite transformed into martensite. At a distance of about 15 mu m from the chill surface, the growth velocity of the solid/liquid interface decreased (

  17. Age hardening in rapidly solidified and hot isostatically pressed beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Carter, D.H.; McGeorge, A.C.; Jacobson, L.A.; Stanek, P.W.

    1995-01-01

    Three different alloys of beryllium, aluminum and silver were processed to powder by centrifugal atomization in a helium atmosphere. Alloy compositions were, by weight, 50% Be, 47.5% Al, 2.5% Ag, 50% Be, 47% Al, 3% Ag, and 50% Be, 46% Al, 4% Ag. Due to the low solubility of both aluminum and silver in beryllium, the silver was concentrated in the aluminum phase, which appeared to separate from the beryllium in the liquid phase. A fine, continuous composite beryllium-aluminum microstructure was formed, which did not significantly change after hot isostatically pressing at 550 C for one hour at 30,000 psi argon pressure. Samples of HIP material were solution treated at 550 C for one hour, followed by a water quench. Aging temperatures were 150, 175, 200 and 225 C for times ranging from one half hour to 65 hours. Hardness measurements were made using a diamond pyramid indenter with a load of 1 kg. Results indicate that peak hardness was reached in 36--40 hours at 175 C and 12--16 hours at 200 C aging temperature, relatively independent of alloy composition

  18. Magnetocaloric properties of rapidly solidified Dy{sub 3}Co alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Llamazares, J. L., E-mail: jose.sanchez@ipicyt.edu.mx; Flores-Zúñiga, H.; Sánchez-Valdés, C. F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055 Col. Lomas 4" a, San Luis Potosí, S.L.P. 78216 (Mexico); Álvarez-Alonso, Pablo [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); Lara Rodríguez, G. A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México, D. F. 04510 (Mexico); Fernández-Gubieda, M. L. [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); BC Materials, Camino de Ibaizabal, Edificio 500, Planta 1, Parque Científico y Tecnológico de Zamudio, 48160 Derio (Spain)

    2015-05-07

    The magnetic and magnetocaloric (MC) properties of melt-spun ribbons of the Dy{sub 3}Co intermetallic compound were investigated. Samples were fabricated in an Ar environment using a homemade melt spinner system at a linear speed of the rotating copper wheel of 40 ms{sup −1}. X-ray diffraction analysis shows that ribbons crystallize into a single-phase with the Fe{sub 3}C-type orthorhombic crystal structure. The M(T) curve measured at 5 mT reveals the occurrence of a transition at 32 K from a first to a second antiferromagnetic (AFM) state and an AFM-to-paramagnetic transition at T{sub N} = 43 K. Furthermore, a metamagnetic transition is observed below T{sub N}, but the magnetization change ΔM is well below the one reported for bulk alloys. Below 12 K, large inverse MC effect and hysteresis losses are observed. This behavior is related to the metamagnetic transition. For a magnetic field change of 5 T (2 T) applied along the ribbon length, the produced ribbons show a peak value of the magnetic entropy change ΔS{sub M}{sup peak} of −6.5 (− 2.1) Jkg{sup −1}K{sup −1} occurring close to T{sub N} with a full-width at half-maximum δT{sub FWHM} of 53 (37) K, and refrigerant capacity RC = 364 (83) Jkg{sup −1} (estimated from the product |ΔS{sub M}{sup peak}| × δT{sub FWHM})

  19. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  20. Microstructure and magnetic properties of rapidly solidified nanocrystalline Fe81Zr7B12 alloy

    International Nuclear Information System (INIS)

    Xiong, X.Y.; Muddle, B.C.; Finlayson, T.R.

    2000-01-01

    Full text: Nanocrystalline Fe-Zr-B alloys have aroused extensive research interest due to their high saturation magnetization. There have been several studies [Suzuki et al., 1994; Kim et al., 1994] of the effect of boron on the formation of nanocrystalline structure and magnetic properties, showing that the addition of boron to Fe-Zr alloys improves the glass-forming ability and refines the primary bcc α-Fe grains during crystallization. However, when the boron content is increased to 8 at.%, the magnetic permeability is observed to decrease. There has been no detailed work to date concerning the microstructural evolution and magnetic properties in those alloys with higher boron content

  1. Al/Fe isomorphic substitution versus Fe{sub 2}O{sub 3} clusters formation in Fe-doped aluminosilicate nanotubes (imogolite)

    Energy Technology Data Exchange (ETDEWEB)

    Shafia, Ehsan [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy); Esposito, Serena [Università degli Studi di Cassino e del Lazio Meridionale, Department of Civil and Mechanical Engineering (Italy); Manzoli, Maela; Chiesa, Mario [Università di Torino, Dipartimento di Chimica and Centro Interdipartimentale NIS (Italy); Tiberto, Paola [Electromagnetism, I.N.Ri.M. (Italy); Barrera, Gabriele [Università di Torino, Dipartimento di Chimica and Centro Interdipartimentale NIS (Italy); Menard, Gabriel [Harvard University, Department of Chemistry and Chemical Biology (United States); Allia, Paolo, E-mail: paolo.allia@polito.it [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy); Freyria, Francesca S. [Massachusetts Institute of Technology, Department of Chemistry (United States); Garrone, Edoardo; Bonelli, Barbara, E-mail: barbara.bonelli@polito.it [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy)

    2015-08-15

    Textural, magnetic and spectroscopic properties are reported of Fe-doped aluminosilicate nanotubes (NTs) of the imogolite type, IMO, with nominal composition (OH){sub 3}Al{sub 2−x}Fe{sub x}O{sub 3}SiOH (x = 0, 0.025, 0.050). Samples were obtained by either direct synthesis (Fe-0.025-IMO, Fe-0.050-IMO) or post-synthesis loading (Fe-L-IMO). The Fe content was either 1.4 wt% (both Fe-0.050-IMO and Fe-L-IMO) or 0.7 wt% (Fe-0.025-IMO). Textural properties were characterized by High-Resolution Transmission Electron Microscopy, X-ray diffraction and N{sub 2} adsorption/desorption isotherms at 77 K. The presence of different iron species was studied by magnetic moment measurements and three spectroscopies: Mössbauer, UV–Vis and electron paramagnetic resonance, respectively. Fe{sup 3+}/Al{sup 3+} isomorphic substitution (IS) at octahedral sites at the external surface of NTs is the main process occurring by direct synthesis at low Fe loadings, giving rise to the formation of isolated high-spin Fe{sup 3+} sites. Higher loadings give rise, besides IS, to the formation of Fe{sub 2}O{sub 3} clusters. IS occurs up to a limit of Al/Fe atomic ratio of ca. 60 (corresponding to x = 0.032). A fraction of the magnetism related to NCs is pinned by the surface anisotropy; also, clusters are magnetically interacting with each other. Post-synthesis loading leads to a system rather close to that obtained by direct synthesis, involving both IS and cluster formations. Slightly larger clusters than with direct synthesis samples, however, are formed. The occurrence of IS indicates a facile cleavage/sealing of Al–O–Al bonds: this opens the possibility to exchange Al{sup 3+} ions in pre-formed IMO NTs, a much simpler procedure compared with direct synthesis.

  2. Solidified structure of Al-Pb-Cu alloys

    International Nuclear Information System (INIS)

    Ikeda, Tetsuyuki; Nishi, Seiki; Kumeuchi, Hiroyuki; Tatsuta, Yoshinori.

    1986-01-01

    Al-Pb-Cu alloys were cast into bars or plates in different two metal mold casting processes in order to suppress gravity segregation of Pb and to achieve homogeneous dispersion of Pb phase in the alloys. Solidified structures were analyzed by a video-pattern-analyzer. Plate castings 15 to 20 mm in thickness of Al-Pb-1 % Cu alloy containing Pb up to 5 % in which Pb phase particles up to 10 μm disperse are achieved through water cooled metal mold casting. The plates up to 5 mm in thickness containing Pb as much as 8 to 10 % cast in this process have dispersed Pb particles up to 5 μm in diameter in the surface layer. Al-8 % Pb-1 % Cu alloy bars 40 mm in diameter and 180 mm in height in which gravity segregation of Pb is prevented can be cast by movable and water sprayed metal mold casting at casting temperature 920 deg C and mold moving speed 1.0 mm/s. Pb phase particles 10 μm in mean size are dispersed in the bars. (author)

  3. Characteristics of solidified products containing radioactive molten salt waste.

    Science.gov (United States)

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  4. Site suitability criteria for solidified high level waste repositories

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.; Isherwood, D.; Towse, D.F.; Dayem, N.L.

    1979-01-01

    The NRC is developing a framework of regulations, criteria, and standards. Lawrence Livermore Laboratory provides broad technical support to the NRC for developing this regulatory framework, part of which involves site suitability criteria for solidified high-level wastes (SHLW). Both the regulatory framework and the technical base on which it rests have evolved in time. This document is the second report of the technical support project. It was issued as a draft working paper for a programmatic review held at LLL from August 16 to 18, 1977. It was printed and distributed solely as a briefing document on preliminary methodology and initial findings for the purpose of critical review by those in attendance. These briefing documents are being reprinted now in their original formats as UCID-series reports for the sake of the historical record. Analysis results have evolved as both the models and data base have changed. As a result, the methodology, models, and data base in this document are severely outmoded

  5. A new technology for concentrating and solidifying liquid LLRW

    Energy Technology Data Exchange (ETDEWEB)

    Newell, N. [TMC, Inc., Portland, OR (United States); Osborn, M.W.; Carey, C.C. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1995-12-31

    One of the unsolved problem areas of low level radioactive waste management is the radiolabeled material generated by life sciences research and clinical diagnostics. In hundreds of academic, biotechnology, and pharmaceutical institutions, there exists large amounts of both aqueous and organic solutions containing radioactively labeled nucleic acids, proteins, peptides, and their monomeric components. We have invented a generic slurry capable of binding all these compounds, thus making it possible to concentrate and solidify the radioactive molecules into a very small and lightweight material. The slurry can be contained in both large and small disposal plastic devices designed for the size of any particular operation. The savings in disposal costs and convenience of this procedure is a very attractive alternative to the present methods of long and short term storage. Additionally, the slurry can remove radiolabeled biological compounds from organic solvents, thus solving the major problem of {open_quotes}mixed{close_quotes} waste. We are now proceeding with the field application stage for the testing of these devices and anticipate widespread use of the process. We also are exploring the use of the slurry on other types of liquid low level radioactive waste.

  6. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen

    DEFF Research Database (Denmark)

    Jain, Amit K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    PURPOSE: The present work reports rationalized development and characterization of solidified self-nanoemulsifying drug delivery system for oral delivery of combinatorial (tamoxifen and quercetin) therapeutic regimen. METHODS: Suitable oil for the preparation of liquid SNEDDS was selected based...

  7. Welding and Weldability of Directionally Solidified Single Crystal Nickel-Base Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J M; David, S A; Reed, R W; Burke, M A; Fitzgerald, T J

    1997-09-01

    Nickel-base superalloys are used extensively in high-temperature service applications, and in particular, in components of turbine engines. To improve high-temperature creep properties, these alloys are often used in the directionally-solidified or single-crystal form. The objective of this CRADA project was to investigate the weldability of both experimental and commercial nickel-base superalloys in polycrystalline, directionally-solidified, and single-crystal forms.

  8. Modification of Colombian clays with pillars mixed Al-Fe and their evaluation in the catalytic oxidation of phenol in diluted watery solution; Modificacion de arcillas colombianas con pilares mixtos Al-Fe y su evaluacion en la oxidacion catalitica de Fenol en solucion acuosa diluida

    Energy Technology Data Exchange (ETDEWEB)

    Galeano, Luis A; Moreno G, Sonia

    2002-07-01

    The environmental legislation has become in the last time particularly restrictive with the bio-recalcitrant pollutants manage in the wastewaters. The pillared clays show great versatility to adjust at demands of the environmental reactions. Present study show that is achieve the modification of starting Colombian clays with precursor solutions of Al-Fe mixed pillars, and is found an excellent performance of them in the catalytic oxidation of aqueous solutions with middle contents of Total Organic Carbon TOC (36 mg C/L). The materials prepared in this way reached quantitative conversion of phenol, as model pollutant, in 2 hours of reaction at 20 Celsius degrade and atmospheric pressure; in 4 hours of reaction, the removal reached 62% of TOC in the solution yielding light carboxylic acids as main byproducts, although that CO{sub 2}. The materials are stable under strongly oxidation media of reaction, and the iron leached in the effluent is close to 0,2 mg/L for the material of better catalytic performance.

  9. Containment of solidified liquid hazardous waste in domal salt

    International Nuclear Information System (INIS)

    Domenico, P.A.; Lerman, A.

    1992-01-01

    In recent years, the solidification of hazardous liquid waste has become a viable option in waste management. The solidification process results in an increased volume but more stable waste form that must be disposed of or stored in a dry environment. An environment of choice in south central Texas is domal salt. The salt dome currently under investigation has a water content of 0.002 percent by weight and a permeability less than one nanodarcy. A question that must be addressed is whether a salt dome has a particular set of attributes that will prevent the release of contaminants to the environment. From a regulatory perspective, a ''no migration'' petition must be approved by the U.S.E.P.A. for the containment facility. By ''no migration'' it is implied that the waste must be contained for 10,000 years. A demonstration that this condition will be met will require model calculations and such models must be based on the physical and chemical characteristics of the waste form and the geologic environment. In particular, the models must address the rate of brine infiltration into the caverns, providing information on how fast an immobile solid waste form could convert to a more mobile liquid state. Additionally, the potential for migration by both diffusion and advection is of concern. Lastly, given a partially saturated cavern, the question of how far gaseous waste will be transported over the 10,000 year containment period must also be addressed. Results indicate that the containment capabilities of domal salt are exceptional. A nominal volume of brine will seep into the cavern and most voids between the injected solidified waste pellets will remain unsaturated. Very small quantities of hazardous constituents will be leached from the waste pellets

  10. Measurements of Mercury Released from Solidified/Stabilized Waste Forms

    International Nuclear Information System (INIS)

    Mattus, C.H.

    2001-01-01

    This report covers work performed during FY 1999-2000 in support of treatment demonstrations conducted for the Mercury Working Group of the U.S. Department of Energy (DOE) Mixed Waste Focus Area. In order to comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of these procedures for wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or an incineration treatment (if the wastes also contain organics). The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOE Mixed Waste Focus Area and Mercury Working Group are working with the EPA to determine if some alternative processes could treat these types of waste directly, thereby avoiding for DOE the costly recovery step. They sponsored a demonstration in which commercial vendors applied their technologies for the treatment of two contaminated waste soils from Brookhaven National Laboratory. Each soil was contaminated with ∼4500 ppm mercury; however, one soil had as a major radioelement americium-241, while the other contained mostly europium-152. The project described in this report addressed the need for data on the mercury vapor released by the solidified/stabilized mixed low-level mercury wastes generated during these demonstrations as well as the comparison between the untreated and treated soils. A related work began in FY 1998, with the measurement of the mercury released by amalgamated mercury, and the results were reported in ORNL/TM-13728. Four treatments were performed on these soils. The baseline was obtained by thermal treatment performed by SepraDyne Corp., and three forms of solidification/stabilization were employed: one using sulfur polymer cement (Brookhaven National Laboratory), one using portland cement [Allied Technology Group (ATG)], and a third using proprietary additives (Nuclear Fuel Services)

  11. Constraints on silicates formation in the Si-Al-Fe system: Application to hard deposits in steam generators of PWR nuclear reactors

    Science.gov (United States)

    Berger, Gilles; Million-Picallion, Lisa; Lefevre, Grégory; Delaunay, Sophie

    2015-04-01

    Introduction: The hydrothermal crystallization of silicates phases in the Si-Al-Fe system may lead to industrial constraints that can be encountered in the nuclear industry in at least two contexts: the geological repository for nuclear wastes and the formation of hard sludges in the steam generator of the PWR nuclear plants. In the first situation, the chemical reactions between the Fe-canister and the surrounding clays have been extensively studied in laboratory [1-7] and pilot experiments [8]. These studies demonstrated that the high reactivity of metallic iron leads to the formation of Fe-silicates, berthierine like, in a wide range of temperature. By contrast, the formation of deposits in the steam generators of PWR plants, called hard sludges, is a newer and less studied issue which can affect the reactor performance. Experiments: We present here a preliminary set of experiments reproducing the formation of hard sludges under conditions representative of the steam generator of PWR power plant: 275°C, diluted solutions maintained at low potential by hydrazine addition and at alkaline pH by low concentrations of amines and ammoniac. Magnetite, a corrosion by-product of the secondary circuit, is the source of iron while aqueous Si and Al, the major impurities in this system, are supplied either as trace elements in the circulating solution or by addition of amorphous silica and alumina when considering confined zones. The fluid chemistry is monitored by sampling aliquots of the solution. Eh and pH are continuously measured by hydrothermal Cormet© electrodes implanted in a titanium hydrothermal reactor. The transformation, or not, of the solid fraction was examined post-mortem. These experiments evidenced the role of Al colloids as precursor of cements composed of kaolinite and boehmite, and the passivation of amorphous silica (becoming unreactive) likely by sorption of aqueous iron. But no Fe-bearing was formed by contrast to many published studies on the Fe

  12. Modificación de arcillas colombianas con pilares mixtos de Al-Fe y su evaluación en la oxidación catalítica de fenol en solución acuosa diluida

    OpenAIRE

    Luis Galeano; Sonia Moreno

    2010-01-01

    La legislación ambiental es particularmente restrictiva respecto a la disposición de contaminantes biorrefractarios presentes en aguas residuales. Las arcillas pilarizadas tienen gran versatilidad para ajustarse a reacciones de interés ambiental, entre otras. En el presente estudio se logran modificar arcillas de origen colombiano con soluciones de pilares mixtos Al-Fe, las cuales muestran un excelente desempeño en la oxidación catalítica de soluciones acuosas con contenidos medios de carb...

  13. Experimental and thermodynamic assessments of substitutions in the AlFeSi, FeMnSi, FeSiZr and AlCaFeSi systems (65 wt % Si) - solidification simulation

    International Nuclear Information System (INIS)

    Gueneau, C.; Ansara, I.

    1994-01-01

    The substitutions of Al Si, Fe Mn and Fe Zr in some intermetallic compounds of the Al-Fe-Si, Fe-Mn-Si and Fe-Si-Zr systems are modelled in the Si-rich corner using a two sublattice model. The solidification paths of the studied alloys are determined at equilibrium. The ascalculated phase volume fractions of the alloys are compared to the experimental ones. Finally, a solidification simulation using the Gulliver-Scheil's model is performed in order to explain the formation of some precipitates experimentally observed. (authors). 14 figs., 19 refs

  14. On confirmation of abandonment of imported waste (glass solidified bodies) outside business places

    International Nuclear Information System (INIS)

    1996-01-01

    Electric power companies entrust the reprocessing of spent fuel generated from nuclear power stations to COGEMA in France, and in April, 1995, 28 high level radioactive wastes (glass solidified bodies) generated by the reprocessing were returned. When these glass solidified wastes are abandoned in the waste management facility of Japan Nuclear Fuel Service Co., it was decided to receive the confirmation of the prime minister on the measures based on the relevant law. Four electric power companies submitted the application and the explanation paper. As to the contents of the glass solidified wastes, the technical inspection was carried out by Bureau Veritas. Considering that this import of glass solidified wastes is the first in Japan, Science and Technology Agency carried out the measurement of all 28 wastes. The results are reported. It was confirmed that the measures for the abandonment taken by four electric power companies conform to the stipulation. The contents of the confirmation are reported in the order of the stipulation. These wastes were solidified with borosilicate glass in 5 mm thick stainless steel vessels, and the welding was done properly. (K.I.)

  15. Silicium influence on the resistance of Al-Fe alloys to corrosion by water at high temperature; Influence du silicium sur la resistance d'alliages aluminium-fer a la corrosion par l'eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H; Grall, L; Hauptman, A; Hure, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    A range of alloys which addition contents are 0,3 to 0,6 per cent of iron and 0,06 to 0,4 per cent of silicium were tested to corrosion between 250 and 300 deg. C, in demineralized water. Micrographic results were connected with thermal treatments and compositions. Silicium act a luckless part, particularly in solid solution, and iron offset this action precipitating it in ternary compounds Al-Fe-Si. This produce as a consequence a consummation of iron. This one is essential in quantity which permit to precipitate Al{sub 3}Fe which presence is necessary to have good resistance to corrosion. (author) [French] Une gamme d'alliages dont les teneurs en fer sont de 0,3 a 0,6 pour cent et en silicium de 0,06 pour cent a 0,4 pour cent a ete soumise a la corrosion entre 250 et 300 deg. C dans l'eau demineralisee. On a lie les resultats micrographiques aux traitements thermiques et aux compositions. Le silicium joue un role nefaste surtout en solution solide et le fer contrebalance cette action en le precipitant dans des composes ternaires Al-Fe-Si. Ceci se traduit par une consommation de fer. Celui-ci est indispensable en quantite permettant de precipiter Al{sub 3}Fe dont la presence est necessaire pour avoir une bonne resistance a la corrosion. (auteur)

  16. Primary Dendrite Arm Spacings in Al-7Si Alloy Directionally Solidified on the International Space Station

    Science.gov (United States)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard

    2015-01-01

    Samples from directionally solidified Al- 7 wt. % Si have been analyzed for primary dendrite arm spacing (lambda) and radial macrosegregation. The alloy was directionally solidified (DS) aboard the ISS to determine the effect of mitigating convection on lambda and macrosegregation. Samples from terrestrial DS-experiments thermal histories are discussed for comparison. In some experiments, lambda was measured in microstructures that developed during the transition from one speed to another. To represent DS in the presence of no convection, the Hunt-Lu model was used to represent diffusion controlled growth under steady-state conditions. By sectioning cross-sections throughout the entire length of a solidified sample, lambda was measured and calculated using the model. During steady-state, there was reasonable agreement between the measured and calculated lambda's in the space-grown samples. In terrestrial samples, the differences between measured and calculated lambda's indicated that the dendritic growth was influenced by convection.

  17. A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis

    Science.gov (United States)

    Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.

    2018-04-01

    Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.

  18. Microstructure and mechanical properties of an Al–Mg alloy solidified under high pressures

    International Nuclear Information System (INIS)

    Jie, J.C.; Zou, C.M.; Brosh, E.; Wang, H.W.; Wei, Z.J.; Li, T.J.

    2013-01-01

    Highlights: •Al–42.2Mg alloy was solidified under pressures of 1, 2, and 3 GPa and the microstructure analyzed. •A thermodynamic calculation of the Al–Mg phase diagram at high pressures was performed. •The phase content changes from predominantly γ-Al 12 Mg 17 at 1 GPa to FCC solid solution at 3 GPa. •The β-Al 3 Mg 2 is predicted to remain stable at low temperatures but is not observed. •The alloy solidified at high pressure has remarkably enhanced ultimate tensile strength. -- Abstract: Phase formation, the microstructure and its evolution, and the mechanical properties of an Al–42.2 at.% Mg alloy solidified under high pressures were investigated. After solidification at pressures of 1 GPa and 2 GPa, the main phase is the γ phase, richer in Al than in equilibrium condition. When the pressure is further increased to 3 GPa, the main phase is the supersaturated Al(Mg) solid solution with Mg solubility up to 41.6 at.%. Unlike in similar alloys solidified at ambient pressure, the β phase does not appear. Calculated high-pressure phase diagrams of the Al–Mg system show that although the stability range of the β phase is diminished with pressure, it is still thermodynamically stable at room temperature. Hence, the disappearance of the β phase is interpreted as kinetic suppression, due to the slow diffusion rate at high pressures, which inhibits solid–solid reactions. The Al–42.2 at.% Mg alloy solidified under 3 GPa has remarkably enhanced ultimate tensile strength compared to the alloy solidified under normal atmospheric pressure

  19. Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys

    Science.gov (United States)

    Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2014-01-01

    The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.

  20. Simple and rapid determination methods for low-level radioactive wastes generated from nuclear research facilities. Guidelines for determination of radioactive waste samples

    International Nuclear Information System (INIS)

    Kameo, Yutaka; Shimada, Asako; Ishimori, Ken-ichiro; Haraga, Tomoko; Katayama, Atsushi; Nakashima, Mikio; Hoshi, Akiko

    2009-10-01

    Analytical methods were developed for simple and rapid determination of U, Th, and several nuclides, which are selected as important nuclides for safety assessment of disposal of wastes generated from research facilities at Nuclear Science Research Institute and Oarai Research and Development Center. The present analytical methods were assumed to apply to solidified products made from miscellaneous wastes by plasma melting in the Advanced Volume Reduction Facilities. In order to establish a system to analyze the important nuclides in the solidified products at low cost and routinely, we have advanced the development of a high-efficiency non-destructive measurement technique for γ-ray emitting nuclides, simple and rapid methods for pretreatment of solidified product samples and subsequent radiochemical separations, and rapid determination methods for long-lived nuclides. In the present paper, we summarized the methods developed as guidelines for determination of radionuclides in the low-level solidified products. (author)

  1. Radiochemical analysis of homogeneously solidified low level radioactive waste from nuclear power plants

    International Nuclear Information System (INIS)

    Sato, Kaneaki; Ikeuchi, Yoshihiro; Higuchi, Hideo

    1995-01-01

    As mentioned above, we have reliable radioanalytical methods for all kinds of homogeneously solidified wastes. We are now under studying an analytical method for pellets which are made from evaporator concentrates or resin. And we are going to study to establish new analytical method for the rad-waste including metal, cloths and so on in near future. (J.P.N.)

  2. Evaluation of Carbonation Effects on Cement-Solidified Contaminated Soil Used in Road Subgrade

    Directory of Open Access Journals (Sweden)

    Yundong Zhou

    2018-01-01

    Full Text Available Cement solidification/stabilization is widely used towards contaminated soil since it has a low price and significant improvement for the structural capacity of soil. To increase the usage of the solidified matrix, cement-solidified contaminated soil was used as road subgrade material. In this study, carbonation effect that reflected the durability on strength characteristics of cement-solidified contaminated soil and the settlement of pavement were evaluated through experimental and numerical analysis, respectively. According to results, compressive strengths of specimens with 1% Pb(II under carbonation and standard curing range from 0.44 MPa to 1.17 MPa and 0.14 MPa to 2.67 MPa, respectively. The relatively low strengths were attributed to immobilization of heavy metal, which consumed part of SiO2, Al2O3, and CaO components in the cement or kaolin and reduced the hydration and pozzolanic reaction materials. This phenomenon further decreased the strength of solidified soils. The carbonation depth of 1% Cu(II or Zn(II contaminated soils was 18 mm, which significantly increased with the increase of curing time and contamination concentration. Furthermore, the finite element calculation results showed that surface settlements decreased with the increase of modulus of subgrade and the distance away from the center. At the center, the pavement settlement was proportional to the level of traffic load.

  3. Elution behavior of heavy metals from cement solidified products of incinerated ash waste - 59102

    International Nuclear Information System (INIS)

    Meguro, Yoshihiro; Kawato, Yoshimi; Nakayama, Takuya; Tomioka, Osamu; Mitsuda, Motoyuki

    2012-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose radioactive incinerated ash waste. In order to bury the solidified product, it is required that elution of hazardous heavy metals included in the ash from the solidified products is inhibited. In this study, the elution behavior of the heavy metals from the synthetic solidified products, which included Pb(II), Cd(II), and Cr(VI) and were prepared using ordinary portland cement (OPC), blast furnace slag cement (BFS), or a cement material that showed low alkalinity (LA-Cement), was investigated. Several chemicals and materials were added as additive agents to prevent the elution of the heavy metals. When OPC was used, Cd elution was inhibited, but Pb and Cr were not enough even using the additive agent examined. FeSO 4 and Na 2 S additive agents worked effective to inhibit elution of Cr. When BFS was used, the elution of Pb, Cd and Cr was inhibited for the all products prepared. In the case of LA-Cement, the elution of Pb and Cd was inhibited for the all products, but only the product that was added FeSO 4 showed good result of the elution of Cr. (authors)

  4. IAEA coordinated research program on the evaluation of solidified high-level radioactive waste products

    International Nuclear Information System (INIS)

    Grover, J.R.; Schneider, K.J.

    1979-01-01

    A coordinated research program on the evaluation of solidified high-level radioactive waste products has been active with the IAEA since 1976. The program's objectives are to integrate research and to provide a data bank on an international basis in this subject area. Results and considerations to date are presented

  5. Effect of drying-wetting cycles on leaching behavior of cement solidified lead-contaminated soil.

    Science.gov (United States)

    Li, Jiang-Shan; Xue, Qiang; Wang, Ping; Li, Zhen-Ze; Liu, Lei

    2014-12-01

    Lead contaminated soil was treated by different concentration of ordinary Portland cement (OPC). Solidified cylindrical samples were dried at 40°C in oven for 48 h subsequent to 24h of immersing in different solution for one drying-wetting. 10 cycles were conducted on specimens. The changes in mass loss of specimens, as well as leaching concentration and pH of filtered leachates were studied after each cycle. Results indicated that drying-wetting cycles could accelerate the leaching and deterioration of solidified specimens. The cumulative leached lead with acetic acid (pH=2.88) in this study was 109, 83 and 71 mg respectively for solidified specimens of cement-to-dry soil (C/Sd) ratios 0.2, 0.3 and 0.4, compared to 37, 30, and 25mg for a semi-dynamic leaching test. With the increase of cycle times, the cumulative mass loss of specimens increased linearly, but pH of filtered leachates decreased. The leachability and deterioration of solidified specimens increased with acidity of solution. Increases of C/Sd clearly reduced the leachability and deterioration behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Influence of Short-time Oxidation on Corrosion Properties of Directionally Solidified Superalloys with Different Orientations

    Directory of Open Access Journals (Sweden)

    MA Luo-ning

    2016-07-01

    Full Text Available In order to investigate the corrosion performance on intersecting and longitudinal surfaces of unoxidized and oxidized directionally solidified superalloys, Ni-base directionally solidified superalloy DZ125 and Co-base directionally solidified superalloy DZ40M were selected. Oxidation behavior on both alloys with different orientations was investigated at 1050℃ at different times, simulating the oxidation process of vanes or blades in service; subsequent electrochemical performance in 3.5%NaCl aqueous solution was studied on two orientations of unoxidized and oxidized alloys, simulating the corrosion process of superalloy during downtime. The results show that grain boundaries and sub-boundaries of directionally solidified superalloys are susceptible to corrosion and thus longitudinal surface with lower area fraction of grain boundaries has higher corrosion resistance. Compared to intersecting surface of alloys, the structure of grain boundaries of longitudinal surface is less conducive to diffusion and thus the oxidation rate on longitudinal surface is lower. Formation of oxide layers on alloys after short-time oxidation provides protective effect and enhances the corrosion resistance.

  7. Performance criteria for solidified high-level radioactive wastes. Environmental impact statement. Revision 1

    International Nuclear Information System (INIS)

    1977-09-01

    This draft Environmental Impact Statement on performance criteria for solidified high-level radioactive wastes (PCSHLW) covers: considerations for PCSHLW development, the proposed rulemaking, characteristics of the PCSHLW, environmental impacts of the proposed PCSHLW, alternatives to the PCSHLW criteria, and cost/benefit/risk evaluation. Five appendices are included to support the technical data required in the Environmental Impact Statement

  8. Impact of a long term fire retardant (Fire Trol 931) on the leaching of Na, Al, Fe, Mn, Cu and Si from a Mediterranean forest soil: a short-term, lab-scale study.

    Science.gov (United States)

    Koufopoulou, Sofia; Michalopoulos, Charalampos; Tzamtzis, Nikolaos; Pappa, Athina

    2014-06-01

    Long term fire retardant (LTR) application for forest fire prevention purposes as well as wildland fires can result in chemical leaching from forest soils. Large quantities of sodium (Na), aluminium (Al), iron (Fe), manganese (Mn), copper (Cu) and silicon (Si) in leachates, mainly due to ammonium (one of the major LTR components) soil deposition, could affect the groundwater quality. The leaching of Na, Al, Fe, Mn, Cu and Si due to nitrogen based LTR application (Fire Trol 931) was studied at laboratory scale. The concentrations of Na(+), Al(3+), Fe(3+)/Fe(2+), Mn(2+), Cu(2+) and Si(4+) were measured in the resulting leachates from pots with forest soil and pine trees alone and in combination with fire. The leaching of Na, Fe and Si from treated pots was significantly greater than that from control pots. The leaching of Al, Mn and Cu was extremely low.

  9. The evaluation of solidifying performance of heavy metal waste using cementitious materials (2)

    International Nuclear Information System (INIS)

    Fujita, Hideki; Harasawa, Shuichi

    2005-02-01

    Some of radioactive waste generated from JNC's facilities contain the poisonous substances such as lead, cadmium and mercury. In order to establish an appropriate method of the treatment of these heavy metals, solidification performance was evaluated using cementitious materials. In this report, the solidification performance of lead and mercury, which accounts for relatively high ratio in total wastes, was evaluated. The results are summarized below: 1. The test of stabilization process of mercury. The conversion process from mercury to the powdery mercury sulfide (red) was examined on the beaker scale. As a result, it was confirmed that the conversion was possible using the liquid phase reaction at 80deg C by the addition of sulfur powder with the NaOH solution. After the process, the mercury concentration in the filtrate was relatively high (0.6 mass%), so it was judged that the reuse of the recovered mercury waste fluid was indispensable. 2. The fabrication and evaluation of solidified wastes. The solidified waste were fabricated with cementitious material, and were evaluated by the measurement of one-axis compressive strength, the elution ratio of lead, mercury and so on. Powdery lead sulfide and the mercury sulfide of reagent were used as model waste. (1) solidification test of the lead waste. It was confirmed one-axis compressive strength for all solidified waste to pass the technical standards 15 kg/cm 2 (1.5 Mpa) for homogeneously solidified waste as the Low-level Radioactive Waste Disposal Center in Aomori Prefecture, and as for the elution ratio of lead, it had obtained the better result (0.06 mg/L) at the case of solidification of sulfide lead 30 mass% packed in the total solidified waste by using Highly Fly-ash contained Silica fume Cement (HFSC) than standard value (0.3 mg/L) at Regulations of Waste Management and Public Cleansing Law. Additionally, it was confirmed the using admixture of the inorganic reducing agent such as the Iron (II) chloride

  10. Improvement in mechanical properties of hypereutectic Al-Si-Cu alloys through sono-solidified

    Directory of Open Access Journals (Sweden)

    Yoshiki Tsunekawa

    2014-07-01

    Full Text Available For the wider applications, it is necessary to improve the ductility as well as the strength and wear-resistance of hypereutectic Al-Si-Cu alloys, which are typical light-weight wear-resistant materials. An increase in the amounts of primary silicon particles causes the modified wear-resistance of hypereutectic Al-Si-Cu alloys, but leads to the poor strength and ductility. It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently. In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance, ultrasonic irradiation of the molten metal during the solidification, which is called sono-solidification, was carried out from its molten state to just above the eutectic temperature. The sono-solidified Al-17Si-4Cu alloy is composed of hetero-structure, which are, hard primary silicon particles, soft non-equilibrium a -Al phase and the eutectic region. Rheo-casting was performed at just above the eutectic temperature with sono-solidified slurry to shape a disk specimen. After the rheo-casting with modified sonosolidified slurry held for 45 s at 570 篊, the quantitative optical microscope observation exhibits that the microstructure is composed of 18area% of hard primary silicon particles and 57area% of soft a -Al phase. In contrast, there exist only 5 area% of primary silicon particles and no a -Al phase in rheo-cast specimen with normally solidified slurry. Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5% of elongation, regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normally solidified slurry.

  11. Microstructure of amorphous and crystalline zirconium alloys rapiddly solidified

    International Nuclear Information System (INIS)

    Monteiro, W.A.; Bezerra, G.H

    1986-01-01

    In this work we report microstructural studies of rapidly solification of Zr-30% at Cu alloy. This composition was chosen because it is the Zr rich limit of glass formation range. The ribbons were prepared by melt spinning system (cooling rate is estimated in 10 6 K/s) and the average thickness of the microscopy were prepared by double jet electropolishing to investigate the microstructure of the ribbon. It was observed amorphos and crystalline regions. In the crystalline regions occured a radial growth morphology with stress contrats. The beginning of solidification is a polimorphous reaction and the shape of the micrograins is similar to spherulitic form. The average diameter of the grains are 0,5 μm or less. (Author) [pt

  12. The evaluation of solidifying performance of heavy metal waste using cementitious materials

    International Nuclear Information System (INIS)

    Takei, Akihiko; Fujita, Hideki; Harasawa, Shuichi

    2004-02-01

    Some of radioactive waste generated form JNC's facilities contain the poisonous substances such as lead, cadmium and mercury. In order to establish an appropriate method of the treatment of these heavy metals, solidification performance was evaluated using cementitious materials. In this report, the solidification performance of lead, which accounts for relatively high ratio in total wastes, was evaluated. The results are summarized below: 1. The test of stabilization process of lead: The conversion process from block lead to the powdery lead sulfide was examined on the beaker scale. As a result, it was confirmed that the conversion was possible using the liquid phase reaction by the addition of thiourea after block lead had been dissolved by the acetic acid with bubbling air. After the process, the lead concentration in the filtrate was extremely low (0.02 mg/L), so it was judged that almost all of the lead was converted and recovered as lead sulfide. 2. The fabrication and evaluation of solidified wastes: Five types of solidified waste were fabricated with different binder, and were evaluated by the measurement of one-axis compressive strength, porosity, the elution ratio of lead, and so on. Powdery lead and sulfide lead reagent were used as model waste. As a result of the test, it was confirmed one-axis compressive strength for all solidified waste to pass the technical standards 15 kg/cm 2 (1.5 MPa) for homogeneously solidified waste as the Low-level Radioactive Waste Disposal Center in Aomori Prefecture, and as for the elution ratio of lead, it had obtained the better result (0.27 mg/L) at the case of solidification of sulfide lead 20 mass% packed in the total solidified waste by using low alkaline cement (including Hauyne mineral) than standard value (0.3 mg/L) at Regulations of Waste Management and Public Cleansing Law. Moreover, it was understood that the elution of lead had high relationship with not only the character of the binder but also the physical

  13. Validation of the solidifying soil process using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Lin, Zhao-Xiang; Liu, Lin-Mei; Liu, Lu-Wen

    2016-09-01

    Although an Ionic Soil Stabilizer (ISS) has been widely used in landslide control, it is desirable to effectively monitor the stabilization process. With the application of laser-induced breakdown spectroscopy (LIBS), the ion contents of K, Ca, Na, Mg, Al, and Si in the permeable fluid are detected after the solidified soil samples have been permeated. The processes of the Ca ion exchange are analyzed at pressures of 2 and 3 atm, and it was determined that the cation exchanged faster as the pressure increased. The Ca ion exchanges were monitored for different stabilizer mixtures, and it was found that a ratio of 1:200 of ISS to soil is most effective. The investigated plasticity and liquidity indexes also showed that the 1:200 ratio delivers the best performance. The research work indicates that it is possible to evaluate the engineering performances of soil solidified by ISS in real time and online by LIBS.

  14. Accelerated leach testing of radionuclides from solidified low-level waste

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Fuhrmann, M.; Franz, E.M.; Heiser, J. III; Colombo, P.

    1989-01-01

    This paper describes some of the work performed to develop an accelerated leach test designed to provide data that show long-term leaching behavior of solidified waste in a relatively short period of testing (1,2). The need for an accelerated leach test stems from the fact that the response of an effectively solidified waste form to the leaching process is so slow that a very long time is required to complete a test which shows the long-term leaching behavior of a waste form. Because of time limitations, as well as economic considerations, most studies have been limited to the early stages of the leaching process which is predominantly controlled by diffusion, although acknowledged to be due to also dissolution, corrosion or ion-exchange

  15. Modeling Macrosegregation in Directionally Solidified Aluminum Alloys under Gravitational and Microgravitational Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Mark A.; Poirier, David R.; Erdmann, Robert G.; Tewari, Surendra N.; Madison, Jonathan D

    2014-09-01

    This report covers the modeling of seven directionally solidified samples, five under normal gravitational conditions and two in microgravity. A model is presented to predict macrosegregation during the melting phases of samples solidified under microgravitational conditions. The results of this model are compared against two samples processed in microgravity and good agreement is found. A second model is presented that captures thermosolutal convection during directional solidification. Results for this model are compared across several experiments and quantitative comparisons are made between the model and the experimentally obtained radial macrosegregation profiles with good agreement being found. Changes in cross section were present in some samples and micrographs of these are qualitatively compared with the results of the simulations. It is found that macrosegregation patterns can be affected by changing the mold material.

  16. Functions and requirements document for interim store solidified high-level and transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Fewell, M.A., Westinghouse Hanford

    1996-05-17

    The functions, requirements, interfaces, and architectures contained within the Functions and Requirements (F{ampersand}R) Document are based on the information currently contained within the TWRS Functions and Requirements database. The database also documents the set of technically defensible functions and requirements associated with the solidified waste interim storage mission.The F{ampersand}R Document provides a snapshot in time of the technical baseline for the project. The F{ampersand}R document is the product of functional analysis, requirements allocation and architectural structure definition. The technical baseline described in this document is traceable to the TWRS function 4.2.4.1, Interim Store Solidified Waste, and its related requirements, architecture, and interfaces.

  17. Microstructure of directionally solidified Ti-Fe eutectic alloy with low interstitial and high mechanical strength

    Science.gov (United States)

    Contieri, R. J.; Lopes, E. S. N.; Taquire de La Cruz, M.; Costa, A. M.; Afonso, C. R. M.; Caram, R.

    2011-10-01

    The performance of Ti alloys can be considerably enhanced by combining Ti and other elements, causing an eutectic transformation and thereby producing composites in situ from the liquid phase. This paper reports on the processing and characterization of a directionally solidified Ti-Fe eutectic alloy. Directional solidification at different growth rates was carried out in a setup that employs a water-cooled copper crucible combined with a voltaic electric arc moving through the sample. The results obtained show that a regular fiber-like eutectic structure was produced and the interphase spacing was found to be a function of the growth rate. Mechanical properties were measured using compression, microindentation and nanoindentation tests to determine the Vickers hardness, compressive strength and elastic modulus. Directionally solidified eutectic samples presented high values of compressive strength in the range of 1844-3000 MPa and ductility between 21.6 and 25.2%.

  18. Research on the compressive strength of basic magnesium salts and cyanide slag solidified body

    Science.gov (United States)

    Tu, Yubo; Han, Peiwei; Ye, Shufeng; Wei, Lianqi; Zhang, Xiaomeng; Fu, Guoyan; Yu, Bo

    2018-02-01

    The solidification of cyanide slag by using basic magnesium salts could reduce pollution and protect the environment. Experiments were carried out to investigate the effects of age, mixing amount of cyanide slag, water cement ratio and molar ratio of MgO to MgSO4 on the compressive strength of basic magnesium salts and cyanide slag solidified body in the present paper. It was found that compressive strength of solidified body increased with the increase of age, and decreased with the increase of mixing amount of cyanide slag and water cement ratio. The molar ratio of MgO to MgSO4 should be controlled in the range from 9 to 11 when the mixing amount of cyanide slag was larger than 80 mass%.

  19. Comparative analysis of mechanical characteristics of solidified concentrates from BWR system using Yugoslav and Italian cements

    International Nuclear Information System (INIS)

    Plecas, I.; Peric, A.; Drljaca, J.; Kostadinovic, A.

    1987-01-01

    In this paper, properties of Italian and Yugoslav cement mixture with BWR evaporation concentrates were compared, research was held upon fifteen samples, according to the adequate formulations. Samples were made in standard cube form, side 10 cm. Functional relationship between decreasing the compressive strength and amount of incorporated BWR concentrate cement mixture was developed. The results of research showed nearly the same mechanical properties of solidified BWR concentrate with Italian and Yugoslav cements. (author)

  20. Leach testing of simulated ion-exchange resin waste solidified in cement

    International Nuclear Information System (INIS)

    Muurinen, A.K.; Uotila, P.I.; Ovaskainen, R.M.

    Leach tests were carried out on ion-exchange resins solidified in cement. Three product mixtures, two isotopes and four leachants at two temperatures, were tested. The increase of resin content increased the leaching of Cs-137; the effect of silix admixture was negligible. The type of the leachant has a stronger influence on Co-60 than on Cs-137. The increase of temperature usually also increased leaching. (author)

  1. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    Science.gov (United States)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  2. Microstructure and orientation evolution in unidirectional solidified Al–Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhongwei, E-mail: chzw@nwpu.edu.cn; Wang, Enyuan; Hao, Xiaolei

    2016-06-14

    Morphological instability and growth orientation evolution during unidirectional solidification of Al–Zn alloys with different pulling speeds were investigated by X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) in scanning electron microscope (SEM). The experimental results show that, as the pulling speed increases, the primary dendrite spacing becomes smaller gradually and dendrite trunks incline to the heat flow direction perfectly in unidirectional solidified Al–9.8 wt%Zn and Al–89 wt%Zn alloys. However, regardless of the pulling speed in unidirectional solidified Al–Zn alloys under fixed thermal gradient, the regular dendrites with <100> directions of primary trunks and secondary arms in 9.8 wt% Zn composition are replaced by <110> dendrites of primary trunks and secondary arms in 89 wt% Zn composition. In unidirectional solidified Al–32 wt% Zn alloy, cellular, fractal seaweed, and stabilized seaweed structures were observed at high pulling speeds. At a high pulling speed of 1000 µm/s, seaweed structures transform to the columnar dendrites with <110> trunks and <100> arms. The above orientation evolution can be attributed to low anisotropy of solid-liquid interface energy and the seaweed structure is responsible for isotropy of {111} planes.

  3. Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2-xMx]O2 (x = 0, 0.05; M = Al, Fe, Sn) cathode materials

    Science.gov (United States)

    Eilers-Rethwisch, Matthias; Winter, Martin; Schappacher, Falko Mark

    2018-05-01

    Layered Ni-rich Li[Ni0.6Mn0.2Co0.2-xMx]O2 cathode materials (x = 0, 0.05; M = Al, Fe, Sn) are synthesized via a co-precipitation synthesis route and the effect of dopants on the structure and electrochemical performance is investigated. All synthesized materials show a well-defined layered structure of the hexagonal α-NaFeO2 phase investigated by X-ray diffraction (XRD). Undoped LiNi0.6Mn0.2Co0.2O2 exhibits a discharge capacity of 170 mAh g-1 in Li-metal 2032 coin-type cells. Doped materials reach lower capacities between 145 mAh g-1 for Al and 160 mAh g-1 for Sn. However, all doped materials prolong the cycle life by up to 20%. Changes of the lattice parameter before and after delithiation yield information about structural stability. A smaller repulsion of the transition metal layer during delithiation in the Sn-doped material leads to a smaller expansion of the unit cell, which results in enhanced structural stability of the material. The improved structural stability of Sn-doped NMC cathode active material is proven by thermal investigations with the help of Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA).

  4. Modificación de arcillas colombianas con pilares mixtos de Al-Fe y su evaluación en la oxidación catalítica de fenol en solución acuosa diluida

    Directory of Open Access Journals (Sweden)

    Luis Galeano

    2010-11-01

    Full Text Available La legislación ambiental es particularmente restrictiva respecto a la disposición de contaminantes biorrefractarios presentes en aguas residuales. Las arcillas pilarizadas tienen gran versatilidad para ajustarse a reacciones de interés ambiental, entre otras. En el presente estudio se logran modificar arcillas de origen colombiano con soluciones de pilares mixtos Al-Fe, las cuales muestran un excelente desempeño en la oxidación catalítica de soluciones acuosas con contenidos medios de carbono orgánico total COT (36 mg C/L. Con los materiales sintetizados se alcanza una conversión total de fenol, molécula contaminante modelo, en 2 horas de reacción a 20°C y presión atmosférica; en 4 horas de reacción, se alcanza la remoción de hasta el 62% de COT de la solución obteniéndose, principalmente, ácidos carboxílicos ligeros como subproductos, además de CO. Los materiales son estables al medio fuertemente oxidante de la reacción, y el Fe lixiviado en la solución se encuentra en un valor cercano a 0,2 mg/L para el material de mejor desempeño catalítico.

  5. AE Monitoring of Diamond Turned Rapidly Soldified Aluminium 443

    International Nuclear Information System (INIS)

    Onwuka, G; Abou-El-Hossein, K; Mkoko, Z

    2017-01-01

    The fast replacement of conventional aluminium with rapidly solidified aluminium alloys has become a noticeable trend in the current manufacturing industries involved in the production of optics and optical molding inserts. This is as a result of the improved performance and durability of rapidly solidified aluminium alloys when compared to conventional aluminium. Melt spinning process is vital for manufacturing rapidly solidified aluminium alloys like RSA 905, RSA 6061 and RSA 443 which are common in the industries today. RSA 443 is a newly developed alloy with few research findings and huge research potential. There is no available literature focused on monitoring the machining of RSA 443 alloys. In this research, Acoustic Emission sensing technique was applied to monitor the single point diamond turning of RSA 443 on an ultrahigh precision lathe machine. The machining process was carried out after careful selection of feed, speed and depths of cut. The monitoring process was achieved with a high sampling data acquisition system using different tools while concurrent measurement of the surface roughness and tool wear were initiated after covering a total feed distance of 13km. An increasing trend of raw AE spikes and peak to peak signal were observed with an increase in the surface roughness and tool wear values. Hence, acoustic emission sensing technique proves to be an effective monitoring method for the machining of RSA 443 alloy. (paper)

  6. Development and characterization of solidified forms for high-level wastes: 1978. Annual report

    International Nuclear Information System (INIS)

    Ross, W.A.; Mendel, J.E.

    1979-12-01

    Development and characterization of solidified high-level waste forms are directed at determining both process properties and long-term behaviors of various solidified high-level waste forms in aqueous, thermal, and radiation environments. Waste glass properties measured as a function of composition were melt viscosity, melt electrical conductivity, devitrification, and chemical durability. The alkali metals were found to have the greatest effect upon glass properties. Titanium caused a slight decrease in viscosity and a significant increase in chemical durability in acidic solutions (pH-4). Aluminum, nickel and iron were all found to increase the formation of nickel-ferrite spinel crystals in the glass. Four multibarrier advanced waste forms were produced on a one-liter scale with simulated waste and characterized. Glass marbles encapsulated in a vacuum-cast lead alloy provided improved inertness with a minimal increase in technological complexity. Supercalcine spheres exhibited excellent inertness when coated with pyrolytic carbon and alumina and put in a metal matrix, but the processing requirements are quite complex. Tests on simulated and actual high-level waste glasses continue to suggest that thermal devitrification has a relatively small effect upon mechanical and chemical durabilities. Tests on the effects radiation has upon waste forms also continue to show changes to be relatively insignificant. Effects caused by decay of actinides can be estimated to saturate at near 10 19 alpha-events/cm 3 in homogeneous solids. Actually, in solidified waste forms the effects are usually observed around certain crystals as radiation causes amorphization and swelling of th crystals

  7. Chemical characterization, leach, and adsorption studies of solidified low-level wastes

    International Nuclear Information System (INIS)

    Walter, M.B.; Serne, R.J.; Jones, T.L.; McLaurine, S.B.

    1986-12-01

    Laboratory and field leaching experiments are beig conducted by Pacific Northwest Laboratory (PNL) to investigate the performance of solidified low-level nuclear waste in a typical, arid, near-surface disposal site. Under PNL's Special Waste Form Lysimeters-Arid Program, a field test facility was constructed to monitor the leaching of commercial solidified waste. Laboratory experiments were conducted to investigate the leaching and adsorption characteristics of the waste forms in contact with soil. Liquid radioactive wastes solidified in cement, vinyl ester-styrene, and bitumen were obtained from commercial boiling water and pressurized water reactors, and buried in a field leaching facility on the Hanford site in southeastern Washington State. Batch leaching, soil column adsorption, and soil/waste form column experiments were conducted in the laboratory, using small-scale cement waste forms and Hanford site ground water. The purpose of these experiments is to evaluate the ability of laboratory leaching tests to predict leaching under actual field conditions and to determine which mechanisms (i.e., diffusion, solubility, adsorption) actually control the concentration of radionuclides in the soil surrounding the waste form. Chemical and radionuclide analyses performed on samples collected from the field and laboratory experiments indicate strong adsorption of /sup 134,137/Cs and 85 Sr onto the Hanford site sediment. Small amounts of 60 Co are leached from the waste forms as very mobile species. Some 60 Co migrated through the soil at the same rate as water. Chemical constituents present in the reactor waste streams also found at elevated levels in the field and laboratory leachates include sodium, sulfate, magnesium, and nitrate. Plausible solid phases that could be controlling some of the chemical and radionuclide concentrations in the leachate were identified using the MINTEQ geochemical computer code

  8. Determination of performance criteria for high-level solidified nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Holdsworth, T.

    1979-05-07

    To minimize radiological risk from the operation of a waste management system, performance limits on volatilization, particulate dispersion, and dissolution characteristics of solidified high level waste must be specified. The results show clearly that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. Absolute values of expected risk are very sensitive to modeling assumptions. The transportation and interim storage operations appear to be most limiting in determining the performance characteristics required. The expected values of risk do not rely upon the repositories remaining intact over the potentially hazardous lifetime of the waste.

  9. The influence of interfacial energies and gravitational levels on the directionally solidified structures in hypermonotectic alloys

    Science.gov (United States)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Various Cu-Pb-Al alloys were directionally solidified under 1-g conditions and alternating high-g/low-g conditions (achieved using NSAS's KC-135 aircraft) as a means of studying the influence of interfacial energies and gravitational levels on the resulting microstructures. Directional solidification of low Al content alloys was found to result in samples with coarser more irregular microstructures than in alloys with high Al contents under all the gravity conditions considered. Structures are correlated with interfacial energies, growth rates, and gravitational levels.

  10. Determination of performance criteria for high-level solidified nuclear waste

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.

    1979-01-01

    To minimize radiological risk from the operation of a waste management system, performance limits on volatilization, particulate dispersion, and dissolution characteristics of solidified high level waste must be specified. The results show clearly that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. Absolute values of expected risk are very sensitive to modeling assumptions. The transportation and interim storage operations appear to be most limiting in determining the performance characteristics required. The expected values of risk do not rely upon the repositories remaining intact over the potentially hazardous lifetime of the waste

  11. Directionally Solidified Aluminum - 7 wt% Silicon Alloys: Comparison of Earth and International Space Station Processed Samples

    Science.gov (United States)

    Grugel, Richard N,; Tewari, Surendra; Rajamure, R. S.; Erdman, Robert; Poirier, David

    2012-01-01

    Primary dendrite arm spacings of Al-7 wt% Si alloy directionally solidified in low gravity environment of space (MICAST-6 and MICAST-7: Thermal gradient approx. 19 to 26 K/cm, Growth speeds varying from 5 to 50 microns/s show good agreement with the Hunt-Lu model. Primary dendrite trunk diameters of the ISS processed samples show a good fit with a simple analytical model based on Kirkwood s approach, proposed here. Natural convection, a) decreases primary dendrite arm spacing. b) appears to increase primary dendrite trunk diameter.

  12. Effect of Ce on Casting Structure of Near-rapidly Solidified Al-Zn-Mg-Cu Alloy

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2017-11-01

    Full Text Available Through using XRD,DSC,SEM,EDS and other modern analysis methods, the effects of rare earth element Ce on microstructure and solidification temperature of Al-Zn-Mg-Cu under different cooling rates were studied, the principle of Ce on grain refining and melt cleaning of alloys was analyzed and discussed. The results show that MgZn2 phase and α-Al matrix are the main precipitations, Al,Cu,Mg and other elements dissolve in MgZn2 phase, a new phase Mg(Zn, Cu, Al2 is formed, solute elements in the grain boundary have higher concentration, eutectic reaction takes place between MgZn2 and α-Al, lamellar eutectic structure is generated. The addition of Ce decreases the dendritic arm spacing,reduces the layer spacing between eutectic phases and refines the eutectic structure and the grain significantly, and inhibits the appearance of the impurity phase Al7Cu2Fe in aluminum alloys. The addition of Ce also reduces the precipitation temperature of α-Al matrix and eutectic phase by 6.4℃ and 5.6℃ respectively.

  13. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.; Overman, N. R.; Doyle, J.; Shield, J. E.; Mathaudhu, S. N.

    2018-04-01

    In this work, we investigated the ambient temperature structural properties (~300 K) and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties of melt-spun Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The thickness, width, lattice parameter, saturation magnetization (MS), and intrinsic coercivity (HCI) of the melt spun ribbons are presented and compared with data in the literature. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbons ranged between ~15-60 μm and 500-800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel-surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). Wheel surface speed was not shown to have a significant effect on the magnetization, but primarily impacted the ribbon structure. A decreasing trend in the saturation magnetization was observed as a function of increased silicon content. The intrinsic coercivity of the melt-spun alloys ranged between ~50 to 200 A/m. Elevated temperature evaluation of the magnetization in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The MS for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 – 900 K). The percentage decrease in MS from 300 K to 900 K for the Fe-3 wt.% Si and Fe-5 wt.% Si alloys was ~19-22 %, while the percentage decrease in the same temperature range for Fe-8 wt.% Si alloy was ~26-30 %. It appears that Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) with any minor constituents being beyond the detection limits of the studies performed, while the Fe-8 wt.% Si alloy ribbons are comprised of disordered and regions of short-range ordering.

  14. THE EFFECT OF PREPARATION CONDITIONS OF RAPIDLY SOLIDIFIED IRON BASED GRANULES ON PROPERTIES OF COMPOSITE MATERIAL FORMED BY CASTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2017-01-01

    Full Text Available The variety of requirements for friction pairs requires the development of different technologies for the production of tribological materials with reference to the operation modes. Composite materials obtained by the casting technology have been successfully applied for the normalization of the thermomechanical state of the steam turbines. These composites consist of the matrix based on copper alloys reinforced with cast iron granules. Because the structure and properties of cast iron are determined by the conditions of their production studies have been conducted on determination of preparation conditions on grain structure and properties of the synthesized composite material. Using an upgraded unit for production of granules technological regimes were determined providing narrow fractional composition. It has been found that granules formed are characterized with typical microstructure of white cast iron containing perlite and ledeburite. Microhardness of pilot cast iron granules is characterized by high values (from 7450 up to 9450 MPa and depends on the size of the fraction. Composite materials obtained using experimental granules had a microhardness of the reinforcing cast iron granules about 3500 MPa, and a bronze matrix – 1220 MPa, which is higher than the hardness of the composite material obtained by using the annealed DCL-1granules (2250 MPa. Metal base of experimental granules in the composite material has the structure of perlitic ductile iron with inclusions of ferrite not exceeding 10–15% and set around a flocculent graphite. As a result, the increase of physical-mechanical properties of finished products made of composite material is observed. 

  15. Effect of titanium on structure and martensitic transformation in rapidly solidified Cu-Al-Ni-Mn-Ti alloys

    International Nuclear Information System (INIS)

    Dutkiewicz, J.; Czeppe, T.; Morgiel, J.

    1999-01-01

    Alloys of composition Cu-(11.8-13.5)%Al-(3.2-4)%Ni-(2-3)%Mn and 0-1%Ti (wt.%) were cast using the melt spinning method in He atmosphere. Ribbons obtained in this process showed grains from 0.5 to 30 μm depending on the type of alloy and wheel speed. Bulk alloys and most of the ribbons contained mixed 18R and 2H type martensite at room temperature (RT). Some ribbons, crystallizing at the highest cooling rate, retained also β phase due to a drop of M s below RT. The M s temperatures in ribbons were strongly lowered with increasing wheel speed controlling the solidification rate. This drop of M s shows a linear relationship with d -1/2 , where d is grain size. The strongest decrease of M s and smallest grains were found in the ribbons containing titanium due to its grain refinement effect. The cubic Ti rich precipitates, present in both Cu-Al-Ni-Ti and Cu-Al-Ni-Mn-Ti bulk, were dispersed in ribbons cast with intermediate cooling rates of up to 26 m s -1 , but suppressed for higher cooling rates. The transformation hysteresis loop was much broader in ribbons due to presence of coherent Ti rich precipitates and differences in grain size which is particularly important in the ultra small grain size range. (orig.)

  16. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sahin, Cigdem Arpa; Tokgoez, Ilknur

    2010-01-01

    A rapid, simple and cost effective solidified floating organic drop microextraction (SFODME) and flow injection flame atomic absorption spectrometric determination (FI-FAAS) method for copper was developed. In this method, a free microdrop of 1-undecanol containing 1,5-diphenyl carbazide (DPC) as the complexing agent was transferred to the surface of an aqueous sample including Cu(II) ions, while being agitated by a stirring bar in the bulk of the solution. Under the proper stirring conditions, the suspended microdrop can remain at the top-center position of the aqueous sample. After the completion of the extraction, the sample vial was cooled by placing it in a refrigerator for 10 min. The solidified microdrop was then transferred into a conical vial, where it melted immediately and diluted to 300 μL with ethanol. Finally, copper ions in 200 μL of diluted solution were determined by FI-FAAS. Several factors affecting the microextraction efficiency, such as type of extraction solvent, pH, complexing agent concentration, extraction time, stirring rate, sample volume and temperature were investigated and optimized. Under optimized conditions for 100 mL of solution, the preconcentration factor was 333 and the enrichment factor was 324. The limit of detection (3 s) was 0.4 ng mL -1 , the limit of quantification (10 s) was 1.1 ng mL -1 and the relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL -1 copper was 0.9%. The proposed method was successfully applied to the determination of copper in different water samples.

  17. Performance demonstration program plan for RCRA constituent analysis of solidified wastes

    International Nuclear Information System (INIS)

    1995-06-01

    Performance Demonstration Programs (PDPS) are designed to help ensure compliance with the Quality Assurance Objectives (QAOs) for the Waste Isolation Pilot Plant (WIPP). The PDPs are intended for use by the Department of Energy (DOE) Carlsbad Area Office (CAO) to assess and approve the laboratories and other measurement facilities supplying services for the characterization of WIPP TRU waste. The PDPs may also be used by CAO in qualifying laboratories proposing to supply additional analytical services that are required for other than waste characterization, such as WIPP site operations. The purpose of this PDP is to test laboratory performance for the analysis of solidified waste samples for TRU waste characterization. This performance will be demonstrated by the successful analysis of blind audit samples of simulated, solidified TRU waste according to the criteria established in this plan. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess laboratory performance regarding compliance with the QAOs. The concentration of analytes in the PDP samples will address levels of regulatory concern and will encompass the range of concentrations anticipated in actual waste characterization samples. Analyses that are required by the WIPP to demonstrate compliance with various regulatory requirements and which are included in the PDP must be performed by laboratories that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses and the samples on which they are performed are referred to as WIPP samples for the balance of this document

  18. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    International Nuclear Information System (INIS)

    Donius, Amalie E.; Obbard, Rachel W.; Burger, Joan N.; Hunger, Philipp M.; Baker, Ian; Doherty, Roger D.; Wegst, Ulrike G.K.

    2014-01-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment

  19. EPICOR-II: a field leaching test of solidified radioactively loaded ion exchange resin

    International Nuclear Information System (INIS)

    Davis, E.C.; Marshall, D.S.; Todd, R.A.; Craig, P.M.

    1986-08-01

    As part of an ongoing research program investigating the disposal of radioactive solid wastes in the environment' the Oak Ridge National Laboratory (ORNL) is participating with Argonne National Laboratory, the Idaho National Engineering Laboratory, and the Nuclear Regulatory Commission in a study of the leachability of solidified EPICOR-II ion-exchange resin under simulated disposal conditions. To simulate disposal, a group of five 2-m 3 soil lysimeters has been installed in Solid Waste Storage Area Six at ORNL, with each lysimeter containing a small sample of solidified resin at its center. Two solidification techniques are being investigated: a Portland cement and a vinyl ester-styrene treatment. During construction, soil moisture temperature cells were placed in each lysimeter, along with five porous ceramic tubes for sampling water near the waste source. A meteorological station was set up at the study site to monitor climatic conditions (primarily precipitation and air temperature), and a data acquisition system was installed to keep daily records of these meteorological parameters as well as lysimeter soil moisture and temperature conditions. This report documents the first year of the long-term field study and includes discussions of lysimeter installation, calibration of soil moisture probes, installation of the site meteorological station, and the results of the first-quarter sampling for radionuclides in lysimeter leachate. In addition, the data collection and processing system developed for this study is documented, and the results of the first three months of data collection are summarized in Appendix D

  20. Study on metal material corrosion behavior of packaging of cement solidified form

    International Nuclear Information System (INIS)

    He Zhouguo; Lin Meiqiong; Fan Xianhua

    1997-01-01

    The corrosion behavior of A3 carbon steel is studied by the specimens that are exposed to atmosphere, embedded in cement solidified form or immersed in corrosion liquid. The corrosion rate is determined by mass change of the specimens. In order to compare the corrosion resistant performance of various coatings, the specimens painted with various material such as epoxide resin, propionic acid resin, propane ether resin and Ti-white paint are tested. The results of the tests show that corrosion rate of A3 carbon steel is less than 10 -3 mm·a -1 in the atmosphere and the cement solidified from, less than 0.1 mm·a -1 in the corrosion liquids, and pH value in the corrosion liquids also affect the corrosion rate of A3 carbon steel. The corrosion resistant performance of Ti-white paint is better than that of other paints. So, A3 carbon steel as packaging material can meet the requirements during storage

  1. Experimental Investigation of Closed Porosity of Inorganic Solidified Foam Designed to Prevent Coal Fires

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2015-01-01

    Full Text Available In order to overcome the deficiency of the existing fire control technology and control coal spontaneous combustion by sealing air leakages in coal mines, inorganic solidified foam (ISF with high closed porosity was developed. The effect of sodium dodecyl sulfate (SDS concentration on the porosity of the foams was investigated. The results showed that the optimized closed porosity of the solidified foam was 38.65 wt.% for an SDS concentration of approximately 7.4×10-3 mol/L. Based on observations of the microstructure of the pore walls after solidification, it was inferred that an equilibrium between the hydration process and the drainage process existed. Therefore, the ISF was improved using three different systems. Gelatin can increase the viscosity of the continuous phase to form a viscoelastic film around the air cells, and the SDS + gelatin system can create a mixed surfactant layer at gas/liquid interfaces. The accelerator (AC accelerates the hydration process and coagulation of the pore walls before the end of drainage. The mixed SDS + gelatin + AC systems produced an ISF with a total porosity of 79.89% and a closed porosity of 66.89%, which verified the proposed stabilization mechanism.

  2. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    Science.gov (United States)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  3. Study on the barrier performance of molten solidified waste (I). Review of the performance assessment research

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Toshikatsu; Sakamoto, Yoshiaki; Nakayama, Shinichi; Yamaguchi, Tetsuji; Ogawa, Hiromichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-02-01

    Application of melting technique is thought as one of the effective methods to treatment of the waste from the view point of its homogeneity and waste volume reduction. Solidified products by melting are expected as potential candidates of engineered barrier in a repository due to the good properties for their stabilization of radionuclides and hazardous elements. However, the methodology of performance evaluation has not been estimated so far. In this report, a literature survey on the properties of molten solidified waste was performed. It is clarified that the leachability of waste elements such as Co or Sr in molten waste form would be controlled by the corrosion behaviors of iron or silica which are the matrix elements of the waste form. While, no investigations into the durability of waste form have performed so far. Also noticed that the research items on performance evaluation such as the leachability for long-lived radionuclides and durability of waste form would be necessary for the long-term barrier assessment on the disposal. (author)

  4. Testing of variables which affect stablity of cement solidified low-level waste

    International Nuclear Information System (INIS)

    Boris, G.F.

    1989-01-01

    This paper describes the test program undertaken to investigate variables which could affect the stability of cement solidified low-level waste and to evaluate the effect of these variables on certain tests prescribed in the Technical Position on Waste Form. The majority of the testing was performed on solidified undepleted bead resin, however, six additional waste types, suggested by the NRC, were tested. The tested variables included waste loading, immersion duration, depletion level, ambient cure duration, curing environment, immersion medium and waste type. Of these, lower waste loadings, longer ambient cures prior to testing and immersion in demineralized water versus simulated sea water and potable water resulted in higher compressive strengths for bead resin samples. Immersion times longer than 90 days did not affect the resin samples. Compressive strengths for other waste types varied depending upon the waste. The strengths of all waste types exceeded the minimum criterion by at least a factor of four, up to a factor of forty. The higher waste loadings exhibit strengths less than the lower waste loadings

  5. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Donius, Amalie E., E-mail: amalie.donius@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Obbard, Rachel W., E-mail: Rachel.W.Obbard@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Burger, Joan N., E-mail: ridge.of.the.ancients@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hunger, Philipp M., E-mail: philipp.m.hunger@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Baker, Ian, E-mail: Ian.Baker@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Doherty, Roger D., E-mail: dohertrd@drexel.edu [Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Wegst, Ulrike G.K., E-mail: ulrike.wegst@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States)

    2014-07-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment.

  6. Detection of free liquid in cement-solidified radioactive waste drums using computed tomography

    International Nuclear Information System (INIS)

    Steude, J.S.; Tonner, P.D.

    1991-01-01

    Acceptance criteria for disposal of radioactive waste drums require that the cement-solidified material in the drum contain minimal free liquid after the cement has hardened. Free liquid is to be avoided because it may corrode the drum, escape and cause environmental contamination. The DOE has requested that a nondestructive evaluation method be developed to detect free liquid in quantities in excess of 0.5% by volume. This corresponds to about 1 liter in a standard 208 liter (55 gallon) drum. In this study, the detection of volumes of free liquid in a 57 cm (2 ft.) diameter cement-solidified drum is demonstrated using high-energy X-ray computed tomography (CT0. In this paper it is shown that liquid concentrations of simulated radioactive waste inside glass tubes imbedded in cement can easily be detected, even for tubes with inner diameters less than 2 mm (0.08 in.). Furthermore, it is demonstrated that tubes containing water and liquid concentrations of simulated radioactive waste can be distinguished from tubes of the same size containing air. The CT images were obtained at a rate of about 6 minutes per slice on a commercially available CT system using a 9 MeV linear accelerator source

  7. Experimental Study and Application of Inorganic Solidified Foam Filling Material for Coal Mines

    Directory of Open Access Journals (Sweden)

    Hu Wen

    2017-01-01

    Full Text Available Spontaneous combustion of residual coal in a gob due to air leakage poses a major risk to mining safety. Building an airtight wall is an effective measure for controlling air leakage. A new type of inorganic solidified foam-filled material was developed and its physical and chemical properties were analyzed experimentally. The compressive strength of this material increased with the amount of sulphoaluminate cement. With an increasing water–cement ratio, the initial setting time was gradually extended while the final setting time firstly shortened and then extended. The change in compressive strength had the opposite tendency. Additionally, as the foam expansion ratio increased, the solidification time tended to decrease but the compressive strength remained approximately constant. With an increase in foam production, the solidification time increased and the compressive strength decreased exponentially. The results can be used to determine the optimal material ratios of inorganic solidified foam-filled material for coal mines, and filling technology for an airtight wall was designed. A field application of the new material demonstrated that it seals crossheadings tightly, leaves no fissures, suppresses air leakage to the gob, and narrows the width of the spontaneous combustion and heat accumulation zone.

  8. The effect of grain size and cement content on index properties of weakly solidified artificial sandstones

    Science.gov (United States)

    Atapour, Hadi; Mortazavi, Ali

    2018-04-01

    The effects of textural characteristics, especially grain size, on index properties of weakly solidified artificial sandstones are studied. For this purpose, a relatively large number of laboratory tests were carried out on artificial sandstones that were produced in the laboratory. The prepared samples represent fifteen sandstone types consisting of five different median grain sizes and three different cement contents. Indices rock properties including effective porosity, bulk density, point load strength index, and Schmidt hammer values (SHVs) were determined. Experimental results showed that the grain size has significant effects on index properties of weakly solidified sandstones. The porosity of samples is inversely related to the grain size and decreases linearly as grain size increases. While a direct relationship was observed between grain size and dry bulk density, as bulk density increased with increasing median grain size. Furthermore, it was observed that the point load strength index and SHV of samples increased as a result of grain size increase. These observations are indirectly related to the porosity decrease as a function of median grain size.

  9. Microbially influenced degradation of cement-solidified low-level radioactive waste forms

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

    1996-01-01

    Because of its apparent structural integrity, cement has been widely used in the United States as a binder to solidify Class B and C low-level radioactive waste (LLW). However, the resulting cement preparations are susceptible to failure due to the actions of stress and environment. This paper contains information on three groups of microoganisms that are associated with the degradation of cement materials: sulfur-oxidizing bacteria (Thiobacillus), nitrifying bacteria (Nitrosomonas and Nitrobacter), and heterotrophic bacteria, which produce organic acids. Preliminary work using laboratory- and vendor-manufactured, simulated waste forms exposed to thiobacilli has shown that microbiologically influenced degradation has the potential to severely compromise the structural integrity of ion-exchange resin and evaporator-bottoms waste that is solidified with cement. In addition, it was found that a significant percentage of calcium was leached from the treated waste forms. Also, the surface pH of the treated specimens was decreased to below 2. These conditions apparently contributed to the physical deterioration of simulated waste forms after 30 to 60 days of exposure

  10. Leaching test of bituminized waste and waste solidified by epoxy resin

    International Nuclear Information System (INIS)

    Yoshinaka, Kazuyuki; Sugaya, Atsushi; Onizawa, Toshikazu; Takano, Yugo; Kimura, Yukihiko

    2008-10-01

    About 30,000 bituminized waste drums and about 1800 drums of waste solidified by epoxy resin, generated from Tokai Reprocessing Plant, were stored in storage facilities. And study for disposal of these waste is performed. It was considered that radioactive nuclides and chemical components were released from these waste by contact of underground water, when disposed there waste. This paper is reported that result of leaching tests for these waste, done from 2003 to 2006. We've get precious knowledge and data, as follows. (1) In leaching tests for bituminized waste, it has detected iodine-129 peak, considered difficult too low energy gamma to detect. We've get data and knowledge of iodine-129 behavior first. Leached radioactivity for 50 days calculated by peak area was equal for about 40% and 100% of including radioactivity in bituminized waste sample. And we've get data of behavior of nitric acid ion and so on, important to study for disposal, in various condition of sample shape or leaching liquid temperature. (2) In leaching test for waste solidified by epoxy resin, we've get data of behavior of TBP, radionuclides and so on, important to study for disposal. Leached TBP was equal about 1% of including of sample. And we've get data of iodine-129 behavior, too. It was confirmed that leached iodine-129 was equal for about 60% and 100% of including sample, for 90 days. (author)

  11. Freckle Defect Formation near the Casting Interfaces of Directionally Solidified Superalloys.

    Science.gov (United States)

    Hong, Jianping; Ma, Dexin; Wang, Jun; Wang, Fu; Sun, Baode; Dong, Anping; Li, Fei; Bührig-Polaczek, Andreas

    2016-11-16

    Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS) and single crystal (SX) hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades.

  12. Freckle Defect Formation near the Casting Interfaces of Directionally Solidified Superalloys

    Directory of Open Access Journals (Sweden)

    Jianping Hong

    2016-11-01

    Full Text Available Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS and single crystal (SX hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades.

  13. Leachability of radionuclides from cement solidified waste forms produced at operating nuclear power plants

    International Nuclear Information System (INIS)

    Croney, S.T.

    1985-03-01

    This study determined the leachability indexes of radionuclides contained in solidified liquid wastes from operating nuclear power plants. Different sizes of samples of cement-solidified liquid wastes were collected from two nuclear power plants - a pressurized water reactor and a boiling water reactor - to correlate radionuclide leaching from small- and full-sized (55-gallon) waste forms. Diffusion-based model analysis (ANS 16.1) of measured radionuclide leach data from both small- and full-sized samples was performed and indicate that leach data from small samples can be used to determine leachability indexes for full-sizes waste forms. The leachability indexes for cesium, strontium, and cobalt isotopes were determined for waste samples from both plants according to the models used for ANS 16.1. The leachability indexes for the pressurized water reactor samples were 6.4 for cesium, 7.1 for strontium, and 10.4 for cobalt. Leachability indexes for the boiling water reactor samples were 6.5 for cesium, 8.6 for strontium, and 11.1 for cobalt

  14. Thermal and microstructural analysis of an aluminium A356 alloy solidified by magnetic agitation

    International Nuclear Information System (INIS)

    Bustos, O; Ordonez, S; Jarami, Dario; Colas, R

    2008-01-01

    A magnetic agitation device was designed using a permanently rotating magnetic field, in order to study the effect of applying a variable magnetic field to agitate cast metals during the solidification process. The procedure used to verify the machine's functioning involved smelting and casting a predefined amount of A356 alloy in the device with and without the application of the magnetic field and then characterizing the material obtained with standard procedures of metallographic analysis. The results obtained show that the application of a permanently rotating magnetic field produces a destruction of the cast dendritic structure. This is explained by the fact that a magnetic field that varies over time induces a f.e.m. in a fluid conductor that becomes an increased convective transport through the Lorentz force. This work also studied the kinetics of solidification. The alloy was heated to 680 o C and was cast in molds preheated to 200 o C. Tests were carried out with and without the application of magnetic agitation. The cooling curves were recorded to evaluate the effect of the magnetic agitation on the alloy's form of solidification. The thermal analysis of the cooling curves shows a decrease in the temperatures under which the formation of dendrites from the primary phase as well as from the eutectic Al-Si phase begins when a magnetic field is imposed. A series of intermetallic AlFeSi type compounds appear in these alloys, which display noticeable refining and redistribution from the magnetic agitation (au)

  15. Evaluating the freeze-thaw durability of portland cement-stabilized-solidified heavy metal waste using acoustic measurements

    International Nuclear Information System (INIS)

    El-Korchi, T.; Gress, D.; Baldwin, K.; Bishop, P.

    1989-01-01

    The use of stress wave propagation to assess freeze-thaw resistance of portland cement solidified/stabilized waste is presented. The stress wave technique is sensitive to the internal structure of the specimens and would detect structural deterioration independent of weight loss or visual observations. The freeze-thaw resistance of a cement-solidified cadmium waste and a control was evaluated. The control and cadmium wastes both showed poor freeze-thaw resistance. However, the addition of cadmium and seawater curing increased the resistance to more cycles of freezing and thawing. This is attributed to microstructural changes

  16. Long-term leach testing of solidified radioactive waste forms (International Standard Publication ISO 6961:1982)

    International Nuclear Information System (INIS)

    Stefanik, J.

    2001-01-01

    Processes are developed for the immobilization of radionuclides by solidification of radioactive wastes. The resulting solidification products are characterized by strong resistance to leaching aimed at low release rates of the radionuclides to the environment. To measure this resistance to leaching of the solidified materials: glass, glass-ceramics, bitumen, cement, concrete, plastics, a long-term leach test is presented. The long-term leach test is aimed at: a) the comparison of different kinds or compositions of solidified waste forms; b) the intercomparison between leach test results from different laboratories on one product; c) the intercomparison between leach test results on products from different processes

  17. Evaluation of leaching behavior and immobilization of zinc in cement-based solidified products

    Directory of Open Access Journals (Sweden)

    Krolo Petar

    2012-01-01

    Full Text Available This study has examined leaching behavior of monolithic stabilized/solidified products contaminated with zinc by performing modified dynamic leaching test. The effectiveness of cement-based stabilization/solidification treatment was evaluated by determining the cumulative release of Zn and diffusion coefficients, De. The experimental results indicated that the cumulative release of Zn decreases as the addition of binder increases. The values of the Zn diffusion coefficients for all samples ranged from 1.210-8 to 1.1610-12 cm2 s-1. The samples with higher amounts of binder had lower De values. The test results showed that cement-based stabilization/solidification treatment was effective in immobilization of electroplating sludge and waste zeolite. A model developed by de Groot and van der Sloot was used to clarify the controlling mechanisms. The controlling leaching mechanism was found to be diffusion for samples with small amounts of waste material, and dissolution for higher waste contents.

  18. Processing method of radiation concrete waste and manufacturing method for radioactive waste solidifying filling mortar

    International Nuclear Information System (INIS)

    Sukekiyo, Mitsuaki; Okamoto, Masamichi

    1998-01-01

    Radioactive concrete wastes are crushed and pulverized. Fine solid granular materials caused by the pulverization are classified and the grain size is controlled so that the maximum grain size is 2.5mm, with the grains having a grain size of up to 0.15mm being up to 30% by weight to form fine aggregates. Separated and recovered fine concrete powders are classified and the size of the powder is controlled within a range of from 3,000 to 15,000cm 2 /g which is smaller than cement particles to form fine powders having a stable quality suitable as a mixing agent. The fine aggregates and the mixing agent are mixed to form a filling mortar (filler) for solidifying radioactive wastes. The filling mortar is filled together with other radioactive wastes in a drum to form a waste body in a drum. With such a constitution, crushed radioactive concrete wastes can be reutilized completely. (I.N.)

  19. Retrievable surface storage: interim storage of solidified high-level waste

    International Nuclear Information System (INIS)

    LaRiviere, J.R.; Nelson, D.C.

    1976-01-01

    Studies have been conducted on retrievable-surface-storage concepts for the interim storage of solidified high-level wastes. These studies have been reviewed by the Panel on Engineered Storage, convened by the Committee on Radioactive Waste Management of the National Research Council-National Academy of Sciences. The Panel has concluded that ''retrievable surface storage is an acceptable interim stage in a comprehensive system for managing high-level radioactive wastes.'' The scaled storage cask concept, which was recommended by the Panel on Engineered Storage, consists of placing a canister of waste inside a carbon-steel cask, which in turn is placed inside a thick concrete cylinder. The waste is cooled by natural convection air flow through an annulus between the cask and the inner wall of the concrete cylinder. The complete assembly is placed above ground in an outdoor storage area

  20. Solidified structure of thin-walled titanium parts by vertical centrifugal casting

    Directory of Open Access Journals (Sweden)

    Wu Shiping

    2011-05-01

    Full Text Available The solidified structure of the thin-walled and complicated Ti-6Al-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.

  1. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-12

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  2. Annual report on the development and characterization of solidified forms for nuclear wastes, 1979

    International Nuclear Information System (INIS)

    Chick, L.A.; McVay, G.L.; Mellinger, G.B.; Roberts, F.P.

    1980-12-01

    Development and characterization of solidified nuclear waste forms is a major continuing effort at Pacific Northwest Laboratory. Contributions from seven programs directed at understanding chemical composition, process conditions, and long-term behaviors of various nuclear waste forms are included in this report. The major findings of the report are included in extended figure captions that can be read as brief technical summaries of the research, with additional information included in a traditional narrative format. Waste form development proceeded on crystalline and glass materials for high-level and transuranic (TRU) wastes. Leaching studies emphasized new areas of research aimed at more basic understanding of waste form/aqueous solution interactions. Phase behavior and thermal effects research included studies on crystal phases in defense and TRU waste glasses and on liquid-liquid phase separation in borosilicate waste glasses. Radiation damage effects in crystals and glasses from alpha decay and from transmutation are reported

  3. Experimental study of directionally solidified ferromagnetic shape memory alloy under multi-field coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuping, E-mail: zhuyuping@126.com [Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China); Chen, Tao; Teng, Yao [Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013 (China); Liu, Bingfei [Airport College, Civil Aviation University of China, Tianjin 300300 (China); Xue, Lijun [Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2016-11-01

    Directionally solidified, polycrystalline Ni–Mn–Ga is studied in this paper. The polycrystalline Ni–Mn–Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading–unloading cycle were measured. The experimental results show that the mechanical behavior during the loading–unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications. - Highlights: • The magnetic-induced strains in different directions are tested. • The temperature-induced strains in different directions are tested. • The effects of coupling factors on directional solidification samples are studied.

  4. The Characterization of Filtration Waste Solidified Product from Baghouse Filter of the Incineration Process

    International Nuclear Information System (INIS)

    Sutoto

    2000-01-01

    To increase of the safety, quality and to easy maintenance of the incinerator media of bag house filter, coating of the surface filter media by CaCO 3 powder were done. In the incinerator process, the CaCO 3 powder will scrub of fly ash as secondary waste. And finally, both of the secondary waste and CaCO 3 will immobilized by cement matrix. The research has an objective to study and characterizing of the CaCO 3 as secondary waste on their cemented product. The research were done on block samples with content of CaCO 3 and the properties characterized by compressive strength and density. From this research known that on their solidified, each quantity of CaCO 3 will be impact to decreasing of the quality cementation product. The optimum formula for solidification of bag house filter scrubbed is CaCO 3 : cement: water is 3 : 10 : 7. (author)

  5. Relationship between critical current properties and microstructure in cylindrical RE123 melt-solidified bulks

    International Nuclear Information System (INIS)

    Nakashima, T.; Shimoyama, J.; Honzumi, M.; Tazaki, Y.; Horii, S.; Kishio, K.

    2005-01-01

    We report the synthesis of cylindrical melt-solidified bulks in REBa 2 Cu 3 O y (RE = Sm, Gd, Dy, Ho, Y and Er), and their critical current properties and microstructures of the a- and the c-growth regions. It was found from the microstructure analysis that the volume fractions of RE211 particles in the c-growth region were always lower than those in the a-growth region. Moreover, those in the c-growth region were increased with distance from the seed crystal. Interestingly, the second peak effects in J c -B curves were prominently enhanced for the c-growth region. J c values at zero field for the c-growth region through the appropriate oxygen post-annealing reached approximately 95 kA cm -2 for RE = Ho, Dy and Y

  6. Solute redistribution and Rayleigh number in the mushy zone during directional solidifi cation of Inconel 718

    Directory of Open Access Journals (Sweden)

    Wang Ling

    2009-08-01

    Full Text Available The interdendritic segregation along the mushy zone of directionally solidifi ed superalloy Inconel 718 has been measured by scanning electron microscope (SEM and energy dispersion analysis spectrometry (EDAXtechniques and the corresponding liquid composition profile was presented. The liquid density and Rayleigh number (Ra profi les along the mushy zone were calculated as well. It was found that the liquid density difference increased from top to bottom in the mushy zone and there was no density inversion due to the segregation of Nb and Mo. However carbide formation in the freezing range and the preferred angle of the orientated dendrite array could prompt the fl uid fl ow in the mushy zone although there was no liquid density inversion. The largest relative Rayleigh number appeared at 1,326 篊 for Inconel 718 where the fl uid fl ow most easily occurred.

  7. Microstructure and property of directionally solidified Ni-Si hypereutectic alloy

    Science.gov (United States)

    Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi

    2016-03-01

    This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.

  8. Importance of microscopy in durability studies of solidified and stabilized contaminated soils

    Science.gov (United States)

    Klich, I.; Wilding, L.P.; Drees, L.R.; Landa, E.R.

    1999-01-01

    Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or achieved in a laboratory warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical

  9. 3D observation of the solidified structures by x-ray micro computerized tomography

    International Nuclear Information System (INIS)

    Yasuda, Hideyuki; Ohnaka, Itsuo; Tsuchiyama, Akira; Nakano, Tsukasa; Uesugi, Kentaro

    2003-01-01

    The high flux density of the monochromatized and well-collimated X-ray and the high-resolution detector provide a new 3D observation tool for microstructures of metallic alloys and ceramics. The X-ray micro computerized tomography in BL47XU of SPring-8 (SP-μCT) was applied to observe microstructures produced through the eutectic reaction for Sn-based alloys and an Al 2 O 3 -Y 2 O 3 oxide system. The constituent phases in the eutectic structures were three-dimensionally identified, in which the lamellar spacing ranged from several to 10 μm. Since the 3D structure of the unidirectionally solidified specimens contains history of the eutectic structure formation, the 3D structure obtained by SP-μCT gives useful information to consider the microstructure evolution. (author)

  10. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    Science.gov (United States)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  11. Experimental study on the leaching of radioactive materials from radioactive wastes solidified in cement into sea water. Part 2

    International Nuclear Information System (INIS)

    Hatta, H.; Ono, H.; Nagakura, T.; Machida, T.; Seki, T.; Maki, Y.

    Results are presented from the study on leachability of 60 Co and 137 Cs from BWR concentrated wastes that had been solidified in cement. The leachability of 60 Co is very small compared to that of 137 Cs and varies greatly with the type of leaching medium. The effect of duration of immersion on leachability is comparatively large

  12. A Laboratory Screening Study On The Use Of Solidifiers As A Response Tool To Remove Crude Oil Slicks On Seawater

    Science.gov (United States)

    The effectiveness of five solidifiers to remove Prudhoe Bay crude oil from artificial seawater in the laboratory was determined by ultraviolet-visible spectroscopy (UV-VIS) and gas chromatography/mass spectrometry (GC/MS). The performance of the solidifers was determined by US-V...

  13. Surface free energy of polypropylene and polycarbonate solidifying at different solid surfaces

    International Nuclear Information System (INIS)

    Chibowski, Emil; Terpilowski, Konrad

    2009-01-01

    Advancing and receding contact angles of water, formamide, glycerol and diiodomethane were measured on polypropylene (PP) and polycarbonate (PC) sample surfaces which solidified at Teflon, glass or stainless steel as matrix surfaces. Then from the contact angle hystereses (CAH) the apparent free energies γ s tot of the surfaces were evaluated. The original PP surface is practically nonpolar, possessing small electron donor interaction (γ s - =1.91mJ/m 2 ), as determined from the advancing contact angles of these liquids. It may result from impurities of the polymerization process. However, it increases up to 8-10 mJ/m 2 for PP surfaces contacted with the solids. The PC surfaces both original and modified show practically the same γ s - =6.56.7mJ/m 2 . No electron acceptor interaction is found on the surfaces. The γ s tot of modified PP and PC surfaces depend on the kind of probe liquid and contacted solid surface. The modified PP γ s tot values determined from CAH of polar liquids are greater than that of original surface and they increase in the sequence: Teflon, glass, stainless steel surface, at which they solidified. No clear dependence is observed between γ s tot and dielectric constant or dipole moment of the polar probe liquids. The changes in γ s tot of the polymer surfaces are due to the polymer nature and changes in its surface structure caused by the structure and force field of the contacting solid. It has been confirmed by AFM images.

  14. Leachability and heavy metal speciation of 17-year old stabilised/solidified contaminated site soils

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei, E-mail: fwtiffany@gmail.com [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Wang, Hailing, E-mail: wanghailing@njtech.edu.cn [College of Environment, Nanjing Tech University, Nanjing 210009 (China); Al-Tabbaa, Abir, E-mail: aa22@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2014-08-15

    Highlights: • The effectiveness of the cement-based S/S at 17 years in West Drayton site is still satisfactory. • Major leaching of Cu, Zn, Ni, Cd and Pb in all mixes took place in the Fe/Mn oxides phase. • The hydration process has been fully completed and further carbonation took place at 17 years. • Microstructure analyses show that unreacted PFA exists. - Abstract: The long-term leachability, heavy metal speciation transformation and binding mechanisms in a field stabilised/solidified contaminated soil (made ground) from West Drayton site were recently investigated following in situ auger mixing treatment with a number of cement-based binders back in 1996. Two batch leaching tests (TCLP and BS EN 12457) and a modified five step sequential extraction procedure along with X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were employed for the testing of the 17-year-old field soil. The results of batch leaching tests show that the treatment employed remained effective at 17 years of service time, with all BS EN 12457 test samples and most of TCLP test samples satisfied drinking water standards. Sequential extraction results illustrate that the leaching of Cu, Ni, Zn, Pb and Cd in all mixes mainly occurred at the Fe/Mn phase, ranging from 43% to 83%. Amongst the five metals tested, Ni was the most stable with around 40% remained in the residual phase for all the different cement-based binder stabilised/solidified samples. XRD and SEM analyses show that the hydration process has been fully completed and further carbonation took place. In summary, this study confirms that such cement-based stabilisation/solidification (S/S) treatment can achieve satisfactory durability and thus is a reliable technique for long-term remediation of heavy metal contaminated soil.

  15. Study on Magnesium in Rainwater and Fertilizer Infiltration to Solidified Peat

    Science.gov (United States)

    Tajuddin, S. A. M.; Rahman, J. A.; Mohamed, R. M. S. R.

    2018-04-01

    Magnesium is a component of several primary and secondary minerals in the soil which are essentially insoluble for agricultural purpose. The presence of water infiltrate in the soil allows magnesium to dissolve together into the groundwater. In fertilizers, magnesium is categorized as secondary macronutrient which supplies food and encouraging for plants growth. The main objective of this study was to determine the concentration of magnesium in fibric peat when applied the solidification under different conditions. Physical model was used as a mechanism for the analysis of the experimental data using a soil column as an equipment to produce water leaching. In this investigation, there were four outlets in the soil column which were prepared from the top of the column to the bottom with the purpose of identifying the concentration of magnesium for each soil level. The water leaching of each outlet was tested using atomic absorption spectroscopy (AAS). The results obtained showed that the highest concentrations of magnesium for flush and control condition at outlet 4 was 12.50 ppm and 1.29 ppm respectively. Similarly, fibric with solidified peat under rainwater recorded the highest value of 3.16 at outlet 1 for wet condition while for dry condition at outlet 4 of 1.33 ppm. However, the difference in fibric with solidified peat under rainwater and fertilizer condition showed that the highest value for the wet condition was achieved at outlet 1 with 5.43 ppm while highest value of 1.26 ppm was obtained for the dry condition at the outlet 4. It was concluded that the outlets in the soil column gave a detailed analysis of the concentration of magnesium in the soil which was influenced by the environmental conditions.

  16. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    Science.gov (United States)

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons. © 2014 Wiley Periodicals, Inc.

  17. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  18. Interplay between temperature gradients field and C - E transformation in solidifying rolls

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2009-07-01

    Full Text Available At first step of simulation a temperature field for solidifying cast steel and cast iron roll has been performed. The calculation does not take into account the convection in the liquid since convection has no influence on the proposed model for the localization of the C-E (columnar to equiaxed grains transformation. However, it allows to study the dynamics of temperature field temporal behavior in the middle of a mould. It is postulated that for the C-E transition a full accumulation of the heat in the mould has been observed (plateau at the T(t curve. The temporal range of plateau existence corresponds to the incubation time for the full equiaxed grains formation. At the second step of simulation temporal behavior of the temperature gradient field has been studied. Three ranges within temperature gradients field have been distinguished for the operating point situated at the middle of mould: a/ for the formation of columnar grains zone, ( and high temperature gradient 0>>T&0//>>∂∂−∂∂∂∂−∂∂>EttEtrTrT. T - temperature, r - roll radius. It is evident that the heat transfer across the mould decides on the temporal appearance of incubation during which the solidification is significantly arrested and competition between columnar and equiaxed growth occurs. Moreover solidification with positive temperature gradient transforms into solidification with negative temperature gradient (locally after the incubation. A simulation has been performed for the cast steel and cast iron rolls solidifying as in industry condition. Since the incubation divides the roll into to parts (first with columnar structure, second with equiaxed structure some experiments dealing with solidification have been made in laboratory scale. Finally, observations of the macrosegregation or microsegregation and phase or structure appearance in the cast iron ingot / roll (made in laboratory has also been done in order to confront them with theoretical predictions

  19. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Science.gov (United States)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  20. Copper-base alloys processed by rapid solidification and ion implantation

    International Nuclear Information System (INIS)

    Wood, J.V.; Elvidge, C.J.; Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.; Henriksen, O.

    1985-01-01

    Alloys of Cu-Sn and Cu-B have been processed by both melt spinning and ion implantation. In some instances (e.g. Cu-Sn alloys) rapidly solidified ribbons have been subjected to further implantation. This paper describes the similarities and differences in structure of materials subjected to a dynamic and contained process. For example in Cu-B alloys (up to 2wt% Boron) extended solubility is found in implanted alloys which is not present to the same degree in rapidly solidified alloys of the same composition. Likewise the range and nature of the reversible martensitic transformation is different in both cases as examined by electron microscopy and differential scanning calorimetry. (orig.)

  1. Optimization of dispersive liquid-phase microextraction based on solidified floating organic drop combined with high-performance liquid chromatography for the analysis of glucocorticoid residues in food.

    Science.gov (United States)

    Huang, Yuan; Zheng, Zhiqun; Huang, Liying; Yao, Hong; Wu, Xiao Shan; Li, Shaoguang; Lin, Dandan

    2017-05-10

    A rapid, simple, cost-effective dispersive liquid-phase microextraction based on solidified floating organic drop (SFOD-LPME) was developed in this study. Along with high-performance liquid chromatography, we used the developed approach to determine and enrich trace amounts of four glucocorticoids, namely, prednisone, betamethasone, dexamethasone, and cortisone acetate, in animal-derived food. We also investigated and optimized several important parameters that influenced the extraction efficiency of SFOD-LPME. These parameters include the extractant species, volumes of extraction and dispersant solvents, sodium chloride addition, sample pH, extraction time and temperature, and stirring rate. Under optimum experimental conditions, the calibration graph exhibited linearity over the range of 1.2-200.0ng/ml for the four analytes, with a reasonable linearity(r 2 : 0.9990-0.9999). The enrichment factor was 142-276, and the detection limits was 0.39-0.46ng/ml (0.078-0.23μg/kg). This method was successfully applied to analyze actual food samples, and good spiked recoveries of over 81.5%-114.3% were obtained. Copyright © 2017. Published by Elsevier B.V.

  2. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry in water samples

    Directory of Open Access Journals (Sweden)

    Arpa Şahin Ç.

    2013-04-01

    Full Text Available A simple, rapid and inexpensive solidified floating organic drop microextraction (SFODME and flow injection flame atomic absorption spectrometric determination (FI-FAAS method for copper was developed. 3-amino-7-dimethylamino-2-methylphenazine (Neutral red, NR was used as the complexing agent. Several factors affecting the microextraction efficiency, such as, pH, NR and sodium dodecylbenzenesulfonate (SDBS concentration, extraction time, stirring rate, and temperature were investigated and optimized. Under optimized experimental conditions an enrichment factor of 541 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 0.5 – 20.0 ng mL–1 and the limit of detection (3s was 0.18 ng mL–1, the limit of quantification (10s was 0.58 ng mL–1. The relative standard deviation (RSD for 10 replicate measurements of 10 ng mL–1 copper was 2.7%. The developed method was successfully applied to the extraction and determination of copper in different certified reference materials (Estuarine water, Slew 3 and fortified water, TM 23.2 and real water samples and satisfactory results were obtained.

  3. Rapid solidification and dynamic compaction of Ni-base superalloy powders

    Science.gov (United States)

    Field, R. D.; Hales, S. J.; Powers, W. O.; Fraser, H. L.

    1984-01-01

    A Ni-base superalloy containing 13Al-9Mo-2Ta (in at. percent) has been characterized in both the rapidly solidified condition and after dynamic compaction. Dynamically compacted specimens were examined in the as-compacted condition and observations related to current theories of interparticle bonding. In addition, the recrystallization behavior of the compacted material at relatively low temperature (about 0.5-0.75 Tm) was investigated.

  4. Evaluation of the performance of solidified commercial low-level wastes in an arid climate

    International Nuclear Information System (INIS)

    Graham, M.J.; Walter, M.B.

    1984-01-01

    Shallow land burial is being used as a disposal method for commercial low-level waste at waste disposal sites in arid (Hanford, Washington) and humid (Barnwell, South Carolina) climatic regions. A field lysimeter facility has been established at Hanford in which to conduct waste-form leaching tests. The primary objective of this research is to determine typical source terms generated by commercial solidified low-level wastes. The field lysimeter facility consists of 10, 3 M deep by 1.8 M diameter, closed-bottomed lysimeters around a central 4 M deep by 4 M diameter instrument caisson. Commercial cement and dow polymer waste samples were removed from 210 L drums and placed in the 1.8 M diameter lysimeters. Two bitumen samples are planned to be emplaced in the facility this year. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste forms. Suction candles (ceramic cups) placed around the waste will be used to periodically collect soil water samples for chemical analysis. Meteorological data, moisture content, and soil temperature are being automatically monitored at the facility. Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle size distribution, concentrations and distributions of radionuclides in the waste streams, and concentrations of hydrophilic organic species in one of the waste streams

  5. Organic semiconductor rubrene thin films deposited by pulsed laser evaporation of solidified solutions

    Science.gov (United States)

    Majewska, N.; Gazda, M.; Jendrzejewski, R.; Majumdar, S.; Sawczak, M.; Śliwiński, G.

    2017-08-01

    Organic semiconductor rubrene (C42H28) belongs to most preferred spintronic materials because of the high charge carrier mobility up to 40 cm2(V·s)-1. However, the fabrication of a defect-free, polycrystalline rubrene for spintronic applications represents a difficult task. We report preparation and properties of rubrene thin films deposited by pulsed laser evaporation of solidified solutions. Samples of rubrene dissolved in aromatic solvents toluene, xylene, dichloromethane and 1,1-dichloroethane (0.23-1% wt) were cooled to temperatures in the range of 16.5-163 K and served as targets. The target ablation was provided by a pulsed 1064 nm or 266 nm laser. For films of thickness up to 100 nm deposited on Si, glass and ITO glass substrates, the Raman and AFM data show presence of the mixed crystalline and amorphous rubrene phases. Agglomerates of rubrene crystals are revealed by SEM observation too, and presence of oxide/peroxide (C42H28O2) in the films is concluded from matrix-assisted laser desorption/ionization time-of-flight spectroscopic analysis.

  6. Disposal and long-term storage in geological formations of solidified radioactive wastes

    International Nuclear Information System (INIS)

    Shischits, I.

    1996-01-01

    The special depository near Krasnoyarsk contains temporarily about 1,100 tons of spent nuclear fuel (SNF) from WWR- should be solidified and for the most part buried in geological formations. Solid wastes and SNF from RBMK reactors are assumed to be buried as well. For this purpose special technologies and underground constructions are required. They are to be created in the geological plots within the territory of Russian Federation and adjacent areas of CIS, meeting the developed list of requirements. The burial structures will vary greatly depending on the geological formation, the amount of wastes and their isotope composition. The well-known constructions such as deep wells, shafts, mines and cavities can be mentioned. There is a need to design constructions, which have no analog in the world practice. In the course of the Project fulfillment the following work will be conducted: -theoretical work followed by code creation for mathematical simulation of processes; - modelling on the base of prototypes made from equivalent materials with the help of simulators; - bench study; - experiments in real conditions; - examination of massif properties in particular plots using achievements of geophysics, including gamma-gamma density detectors and geo locators. Finally, ecological-economical model will be given for designing burial sites

  7. Evaluation of the performance of solidified commercial low-level wastes in an arid climate

    International Nuclear Information System (INIS)

    Graham, M.J.; Walter, M.B.

    1984-09-01

    Shallow land burial is being used as a disposal method for commercial low-level waste at waste disposal sites in arid (Hanford site near Richland, Washington) and humid (Barnwell, South Carolina) climatic regions. A field lysimeter facility has been established at the Hanford site in which to conduct waste-form leaching tests. The primary objective of this research is to determine typical source terms generated by commercial solidified low-level wastes. The field lysimeter facility consists of ten 3-m-deep by 1.8-m-diameter, closed-bottom lysimeters around a central instrument caisson, 4 m in diameter. Commercial cement and vinyl ester-styrene waste samples were removed from 210-L drums and placed in the 1.8-m-diameter lysimeters. Two bitumen samples are planned to be emplaced in the facility in 1984. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste forms. Suction candles (ceramic cups) placed around the waste will be used to periodically collect soil water samples for chemical analysis. Meteorological data, moisture content, and soil temperature are automatically monitored at the facility. Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle size distribution, concentrations and distributions of radionuclides in the waste forms, concentrations of radionuclides in the waste streams, and concentrations of hydrophilic organic species in one of the waste steams. 8 references, 3 figures, 5 tables

  8. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  9. Preparation and Stability of Inorganic Solidified Foam for Preventing Coal Fires

    Directory of Open Access Journals (Sweden)

    Botao Qin

    2014-01-01

    Full Text Available Inorganic solidified foam (ISF is a novel material for preventing coal fires. This paper presents the preparation process and working principle of main installations. Besides, aqueous foam with expansion ratio of 28 and 30 min drainage rate of 13% was prepared. Stability of foam fluid was studied in terms of stability coefficient, by varying water-slurry ratio, fly ash replacement ratio of cement, and aqueous foam volume alternatively. Light microscope was utilized to analyze the dynamic change of bubble wall of foam fluid and stability principle was proposed. In order to further enhance the stability of ISF, different dosage of calcium fluoroaluminate was added to ISF specimens whose stability coefficient was tested and change of hydration products was detected by scanning electron microscope (SEM. The outcomes indicated that calcium fluoroaluminate could enhance the stability coefficient of ISF and compact hydration products formed in cell wall of ISF; naturally, the stability principle of ISF was proved right. Based on above-mentioned experimental contents, ISF with stability coefficient of 95% and foam expansion ratio of 5 was prepared, which could sufficiently satisfy field process requirements on plugging air leakage and thermal insulation.

  10. High temperature low cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951

    International Nuclear Information System (INIS)

    Chu Zhaokuang; Yu Jinjiang; Sun Xiaofeng; Guan Hengrong; Hu Zhuangqi

    2008-01-01

    Total strain-controlled low cycle fatigue (LCF) tests were performed at a temperature range from 700 to 900 deg. C in ambient air condition on a directionally solidified Ni-base superalloy DZ951. The fatigue life of DZ951 alloy does not monotonously decrease with increasing temperature, but exhibits a strong dependence on the total strain range. The dislocation characteristics and failed surface observation were evaluated through transmission electron microscopy and scanning electron microscopy. The alloy exhibits cyclic hardening, softening or cyclic stability as a whole, which is dependent on the testing temperature and total strain range. At 700 deg. C, the cyclic plastic deformation process is the main cause of fatigue failure. At 900 deg. C, the failure mostly results from combined fatigue and creep damage under total strain range from 0.6 to 1.2% and the reduction in fatigue life can be taken as the cause of oxidation, creep and cyclic plastic deformation under total strain range of 0.5%

  11. Comparison of ice particle morphology crushed from ice chunk and directly solidified from droplet

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.H.; Yoon, Y.S.; Bang, S.Y. [Dongguk Univ., Pil-dong, Chung-gu, Seoul (Korea, Republic of). Dept. of Mechanical Engineering

    2008-07-01

    In order to investigate the transition kinetics of ice to hydrate and to produce standard specimens of hydrate pellet from prepared hydrate powders, fine ice beads with uniform diameters must be fabricated. This paper discussed the construction of several experimental setups for the fabrication of fine ice particle generation. The ultrasonic nozzle was used to produce fine mist which solidified near the free surface of liquid nitrogen bath. The shape and population distribution of ice bead diameters was analyzed. The study also compared ice particles produced by crushing. The surface morphology of ice particles produced with a ball mill was also examined. Experimental results were obtained for an ice shaver, ball mill, bowl for grinding medicine, and ultrasonic nozzle. It was concluded that the information generated from the study was useful in estimating the macroscopic flow characteristics such as permeability of bulk powder and in determining mean effective diameter of irregular shaped particles. Future work was also noted as being underway with different experiments for other cases with different operating conditions. 5 refs., 5 figs.

  12. Particle Engulfment and Pushing by Solidifying Interfaces. Pt. 2; Micro-Gravity Experiments and Theoretical Analysis

    Science.gov (United States)

    Stefanescu, Doru M.; Juretzko, Frank R.; Dhindaw, Brij K.; Catalina, Adrian; Sen, Subhayu; Curreri, Peter A.

    1998-01-01

    Results of the directional solidification experiments on Particle Engulfment and Pushing by Solidifying Interfaces (PEP) conducted on the space shuttle Columbia during the Life and Microgravity Science Mission are reported. Two pure aluminum (99.999%) 9 mm cylindrical rods, loaded with about 2 vol.% 500 micrometers diameter zirconia particles were melted and resolidified in the microgravity (microg) environment of the shuttle. One sample was processed at step-wise increased solidification velocity, while the other at step-wise decreased velocity. It was found that a pushing-to-engulfment transition (PET) occurred in the velocity range of 0.5 to 1 micrometers. This is smaller than the ground PET velocity of 1.9 to 2.4 micrometers. This demonstrates that natural convection increases the critical velocity. A previously proposed analytical model for PEP was further developed. A major effort to identify and produce data for the surface energy of various interfaces required for calculation was undertaken. The predicted critical velocity for PET was of 0.775 micrometers/s.

  13. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    Science.gov (United States)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  14. The development of basic glass formulations for solidifying HLW from nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Jiang Yaozhong; Tang Baolong; Zhang Baoshan; Zhou Hui

    1995-01-01

    Basic glass formulations 90U/19, 90U/20, 90Nd/7 and 90Nd/10 applied in electric melting process are developed by using the mathematical model of the viscosity and electric resistance of waste glass. The yellow phase does not occur for basic glass formulations 90U/19 and 90U/20 solidifying HLW from nuclear fuel reprocessing plant when the waste loading is 20%. Under the waste loading is 16%, the process and product properties of glass 90U/19 and 90U/20 come up to or surpass the properties of the same kind of foreign waste glasses, and other properties are about the same to them of foreign waste glasses. The process and product properties of basic glass formulations 90Nd/7 and 90Nd/10 used for the solidification of 'U replaced by Nd' liquid waste are almost similar to them of 90U/19 and 90U/20. These properties fairly meet the requirements of 'joint test' (performed at KfK-INE, Germany). Among these formulations, 90Nd/7 is applied in cold engineering scale electric melting test performed at KfK-INE in Germany. The main process properties of cold test is similar to laboratory results

  15. Review of metal-matrix encapsulation of solidified radioactive high-level waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-05-01

    Literature describing previous and current work on the encapsulation of solidified high-level waste forms in a metal matrix was reviewed. Encapsulation of either stabilized calcine pellets or glass beads in alloys by casting techniques was concluded to be the most developed and direct approach to fabricating solid metal-matrix waste forms. Further characterizations of the physical and chemical properties of metal-matrix waste forms are still needed to assess the net attributes of metal-encapsulation alternatives. Steady-state heat transfer properties of waste canisters in air and water environments were calculated for four reference waste forms: (1) calcine, (2) glass monoliths, (3) metal-encapsulated calcine, and (4) metal-encapsulated glass beads. A set of criteria for the maximum allowable canister centerline and surface temperatures and heat generation rates per canister at the time of shipment to a Federal repository was assumed, and comparisons were made between canisters of these reference waste forms of the shortest time after reactor discharge that canisters could be filled and the subsequent ''interim'' storage times prior to shipment to a Federal repository for various canister diameters and waste ages. A reference conceptual flowsheet based on existing or developing technology for encapsulation of stabilized calcine pellets is discussed. Conclusions and recommendations are presented

  16. Leaching behaviour and mechanical properties of copper flotation waste in stabilized/solidified products.

    Science.gov (United States)

    Mesci, Başak; Coruh, Semra; Ergun, Osman Nuri

    2009-02-01

    This research describes the investigation of a cement-based solidification/stabilization process for the safe disposal of copper flotation waste and the effect on cement properties of the addition of copper flotation waste (CW) and clinoptilolite (C). In addition to the reference mixture, 17 different mixtures were prepared using different proportions of CW and C. Physical properties such as setting time, specific surface area and compressive strength were determined and compared to a reference mixture and Turkish standards (TS). Different mixtures with the copper flotation waste portion ranging from 2.5 to 12.5% by weight of the mixture were tested for copper leachability. The results show that as cement replacement materials especially clinoptilolite had clear effects on the mechanical properties. Substitution of 5% copper flotation waste for Portland cement gave a similar strength performance to the reference mixture. Higher copper flotation waste addition such as 12.5% replacement yielded lower strength values. As a result, copper flotation waste and clinoptilolite can be used as cementitious materials, and copper flotation waste also can be safely stabilized/solidified in a cement-based solidification/stabilization system.

  17. Measurements of Mercury Released From Solidified/Stabilized Waste Forms-FY2002

    International Nuclear Information System (INIS)

    Mattus, C.H.

    2003-01-01

    This report covers work performed during FY 2002 in support of treatment demonstrations conducted for the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) Mercury Working Group. To comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of the following procedures for mixed low-level radioactive wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or (if the wastes also contain organics) an incineration treatment. The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOE MWFA Mercury Working Group is working with EPA to determine whether some alternative processes could be used to treat these types of waste directly, thereby avoiding a costly recovery step for DOE. In previous years, demonstrations were performed in which commercial vendors applied their technologies for the treatment of radiologically contaminated elemental mercury as well as radiologically contaminated and mercury-contaminated waste soils from Brookhaven National Laboratory. The test results for mercury release in the headspace were reported in two reports, ''Measurements of Mercury Released from Amalgams and Sulfide Compounds'' (ORNL/TM-13728) and ''Measurements of Mercury Released from Solidified/Stabilized Waste Forms'' (ORNL/TM-2001/17). The current work did not use a real waste; a surrogate sludge had been prepared and used in the testing in an effort to understand the consequences of mercury speciation on mercury release

  18. Strength, leachability and microstructure characteristics of cement-based solidified plating sludge

    International Nuclear Information System (INIS)

    Asavapisit, Suwimol; Naksrichum, Siripat; Harnwajanawong, Naraporn

    2005-01-01

    The solidification of the stabilized zinc-cyanide plating sludge was carried out using ordinary Portland cement (OPC) and pulverized fuel ash (PFA) as solidification binders. The plating sludge were used at the level of 0%, 10%, 20% and 30% dry weight, and PFA was used to replace OPC at 0%, 10%, 20% and 30% dry weight, respectively. Experimental results showed that a significant reduction in strength was observed when the plating sludge was added to both the OPC and OPC/PFA binders, but the negative effect was minimized when PFA was used as part substitute for OPC. SEM observation reveals that the deposition of the plating sludge on the surface of the clinkers and PFA could be the cause for hydration retardation. In addition, calcium zinc hydroxide hydrate complex and the unreacted di- and tricalcium silicates were the major phases in X-ray diffraction (XRD) patterns of the solidified plating waste hydrated for 28 days, although the retardation effect on hydration reactions but Cr concentration in toxicity characteristic leaching procedure (TCLP) leachates was lower than the U.S. EPA regulatory limit

  19. Testing and evaluation of solidified high-level waste forms. Joint annual progress report 1983

    International Nuclear Information System (INIS)

    Malow, G.

    1985-01-01

    A second joint programme of the European Atomic Community was started in 1981 under the indirect action programme (1980-84), Action No 5 'Testing and evaluation of the properties of various potential materials for immobilizing high activity waste'. The overall objective of the research is to test various European potential solidified high-level radioactive waste forms so as to predict their behaviour after disposal. The most important aspect is to produce data to calculate the activity release from the waste products under the attack of various aqueous solutions. The experiments were partly performed under waste repository relevant conditions and partly under simplified conditions for investigating basic activity release mechanisms. The topics of the programme were: (i) studies of basic leaching mechanisms; (ii) studies of hydrothermal leaching and surface attack of waste glasses; (iii) leach test carried out in contact with granite at low water flow rates; (iv) static leach tests with specimen surrounded by canister and backfill materials; (v) specific isotope leach tests in slowly flowing water; (vi) leach test of actinide spiked samples; (vii) leach tests of highly radioactive samples; (viii) leach tests of alpha radiation stability; (ix) studies of mechanical stability; (x) studies of mineral phases as model compounds and phase relations

  20. Decomposition for the analysis of radionuclides in solidified cement radioactive waste

    International Nuclear Information System (INIS)

    Lee, Jeong Jin; Pyo, Hyung Yeal; Jee, Kwang Yung; Jeon, Jong Seon

    2004-01-01

    Spent ion exchange resins make solid radioactive wastes when mixed with cement as solidifying material that was widely used in securing human environment from radionuclides for at least hundreds years. The cumulative increase of low and medium level radioactive wastes results in capacity problem of temporary storage in some NPPs (Nuclear Power Plants) of Korea around 2008. Radioactive wastes are scheduled to be disposed in a permanent disposal facility in accordance with the Korean Radioactive Wastes Management Program. It is mandatory to identify kinds and concentration of radionuclides immobilized for transporting them from temporary storage in NPPs to disposal facility. Accordingly, the effective sample decomposition prior to radiochemical separation is prerequisite to obtain the analytical data about radionuclides in cement waste forms. The closed-vessel microwave digestion technology among several sample preparation methods is taken into account to decompose cement waste forms. In this study, SRM 1880a (Portland cement) which is known for its certified values was used to optimize decomposition condition of cement waste forms containing nonradioactive ion exchange resins from NPP. With such variables as reagents, time, and power, the variation of the transparency and the color of the solution after closed-vessel microwave digestion can be examine. SRM 1880a is decomposed by suggested digestion procedure and the recoveries of constituents were investigated by ICP-AES and AAS

  1. Giant Enhancement of Magnetostrictive Response in Directionally-Solidified Fe83Ga17Erx Compounds

    Directory of Open Access Journals (Sweden)

    Radhika Barua

    2018-06-01

    Full Text Available We report, for the first time, correlations between crystal structure, microstructure and magnetofunctional response in directionally solidified [110]-textured Fe83Ga17Erx (0 < x < 1.2 alloys. The morphology of the doped samples consists of columnar grains, mainly composed of a matrix phase and precipitates of a secondary phase deposited along the grain boundary region. An enhancement of more than ~275% from ~45 to 170 ppm is observed in the saturation magnetostriction value (λs of Fe83Ga17Erx alloys with the introduction of small amounts of Er. Moreover, it was noted that the low field derivative of magnetostriction with respect to an applied magnetic field (i.e., dλs/dHapp for Happ up to 1000 Oe increases by ~230% with Er doping (dλs/dHapp,FeGa= 0.045 ppm/Oe; dλs/dHapp,FeGaEr= 0.15 ppm/Oe. The enhanced magnetostrictive response of the Fe83Ga17Erx alloys is ascribed to an amalgamation of microstructural and electronic factors, namely: (i improved grain orientation and local strain effects due to deposition of Er in the intergranular region; and (ii strong local magnetocrystalline anisotropy, due to the highly anisotropic localized nature of the 4f electronic charge distribution of the Er atom. Overall, this work provides guidelines for further improving galfenol-based materials systems for diverse applications in the power and energy sector.

  2. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    International Nuclear Information System (INIS)

    Fan Kai; Liu Feng; Yang Gencang; Zhou Yaohe

    2011-01-01

    Highlights: → The solid solubility of Si atom in α-Ni matrix increased with undercooling in the as-solidified sample. → The effect of non-equilibrium solidification on precipitation has been theoretically described. → The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. → The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to ∼350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni 3 Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in α-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  3. Development of methodology to evaluate microbially influenced degradation of cement-solidified low-level radioactive waste forms

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W.

    1994-01-01

    Because of its apparent structural integrity, cement has been widely used in the United States as a binder to solidify Class B and C low-level radioactive waste (LLW). However, the resulting cement preparations are susceptible to failure due to the actions of stress and environment. An environmentally mediated process that could affect cement stability is the action of naturally occurring microorganisms. The US Nuclear Regulatory Commission (NRC), recognizing this eventuality, stated that the effects of microbial action on waste form integrity must be addressed. This paper provides present results from an ongoing program that addresses the effects of microbially influenced degradation (MID) on cement-solidified LLW. Data are provided on the development of an evaluation method using acid-producing bacteria. Results are from work with one type of these bacteria, the sulfur-oxidizing Thiobacillus. This work involved the use of a system in which laboratory- and vendor-manufactured, simulated waste forms were exposed on an intermittent basis to media containing thiobacilli. Testing demonstrated that MID has the potential to severely compromise the structural integrity of ion-exchange resin and evaporator-bottoms waste that is solidified with cement. In addition, it was found that a significant percentage of calcium and other elements were leached from the treated waste forms. Also, the surface pH of the treated specimens decreased to below 2. These conditions apparently contributed to the physical deterioration of simulated waste forms after 60 days of exposure to the thiobacilli

  4. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    Energy Technology Data Exchange (ETDEWEB)

    Fan Kai [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Liu Feng, E-mail: liufeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Yang Gencang; Zhou Yaohe [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2011-08-25

    Highlights: {yields} The solid solubility of Si atom in {alpha}-Ni matrix increased with undercooling in the as-solidified sample. {yields} The effect of non-equilibrium solidification on precipitation has been theoretically described. {yields} The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. {yields} The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to {approx}350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni{sub 3}Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in {alpha}-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  5. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants

    International Nuclear Information System (INIS)

    Patel, Hema; Pandey, Suneel

    2012-01-01

    Highlights: ► Stabilization/solidification of chemical sludge from textile wastewater treatment plants using Portland Pozzolona Cement (PPC) containing fly ash. ► Physical engineering (compressive strength and block density) indicates that sludge has potential to be reused for construction purpose after stabilization/solidification. ► Leaching of heavy metals from stabilized/solidified materials were within stipulated limits. ► There is a modification of microstructural properties of PPC with sludge addition as indicated by XRD and SEM patterns. - Abstract: The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland Pozzolona Cement (PPC) was selected as the binder system which is commercially available cement with 10–25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62–33.62 MPa) and block density (1222.17–1688.72 kg/m 3 ) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  6. Synthesis and properties of A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Anderson, E-mail: anderson_dias@iceb.ufop.br [Departamento de Quimica, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Sala 67, Ouro Preto-MG, 35400-000 (Brazil); Cunha, Lumena; Vieira, Andiara C. [Departamento de Quimica, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Sala 67, Ouro Preto-MG, 35400-000 (Brazil)

    2011-09-15

    Highlights: {yields} A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials were synthesized. {yields} Chemical synthesis produced different levels of crystallinity and ordering degree. {yields} Structural investigation by Raman scattering revealed a complex band structure. {yields} A strong correlation between band structure and ionic radius was determined. -- Abstract: Double layered hydroxide materials of composition A{sub 6}B{sub 2}(OH){sub 16}Cl{sub 2}.4H{sub 2}O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) were synthesized by chemical precipitation at 60 {sup o}C. Different levels of crystallinity and ordering degree were observed depending upon the chemical environment or the combination between divalent and trivalent cations. The results from high-resolution transmission electron microscopy revealed that nanostructured layered samples were obtained with interplanar spacing compatible with previous literature. Raman scattering was employed to investigate the complex band structure observed, particularly the lattice vibrations at lower frequencies, which is intimately correlated to the cationic radius of both divalent and trivalent ions. The results showed that strongly coordinated water and chloride ions besides highly structured hydroxide layers have a direct influence on the stability of the hydrotalcites. It was observed that transition and decomposition temperatures varied largely for different chemical compositions.

  7. Modeling of zinc solubility in stabilized/solidified electric arc furnace dust

    International Nuclear Information System (INIS)

    Fernandez-Olmo, Ignacio; Lasa, Cristina; Irabien, Angel

    2007-01-01

    Equilibrium models which attempt for the influence of pH on the solubility of metals can improve the dynamic leaching models developed to describe the long-term behavior of waste-derived forms. In addition, such models can be used to predict the concentration of metals in equilibrium leaching tests at a given pH. The aim of this work is to model the equilibrium concentration of Zn from untreated and stabilized/solidified (S/S) electric arc furnace dust (EAFD) using experimental data obtained from a pH-dependence leaching test (acid neutralization capacity, ANC). EAFD is a hazardous waste generated in electric arc furnace steel factories; it contains significant amounts of heavy metals such as Zn, Pb, Cr or Cd. EAFD from a local factory was characterized by X-ray fluorescence (XRF), acid digestion and X-ray diffraction (XRD). Zn and Fe were the main components while the XRD analysis revealed that zincite, zinc ferrite and hematite were the main crystalline phases. Different cement/EAFD formulations ranging from 7 to 20% dry weight of cement were prepared and subjected to the ANC leaching test. An amphoteric behavior of Zn was found from the pH dependence test. To model this behavior, the geochemical model Visual MINTEQ (VMINTEQ) was used. In addition to the geochemical model, an empirical model based on the dissolution of Zn in the acidic zone and the re-dissolution of zinc compounds in the alkaline zone was considered showing a similar prediction than that obtained with VMINTEQ. This empirical model seems to be more appropriate when the metal speciation is unknown, or when if known, the theoretical solid phases included in the database of VMINTEQ do not allow to describe the experimental data

  8. Solidified structure and leaching properties of metallurgical wastewater treatment sludge after solidification/stabilization process.

    Science.gov (United States)

    Radovanović, Dragana Đ; Kamberović, Željko J; Korać, Marija S; Rogan, Jelena R

    2016-01-01

    The presented study investigates solidification/stabilization process of hazardous heavy metals/arsenic sludge, generated after the treatment of the wastewater from a primary copper smelter. Fly ash and fly ash with addition of hydrated lime and Portland composite cement were studied as potential binders. The effectiveness of the process was evaluated by unconfined compressive strength (UCS) testing, leaching tests (EN 12457-4 and TCLP) and acid neutralization capacity (ANC) test. It was found that introduction of cement into the systems increased the UCS, led to reduced leaching of Cu, Ni and Zn, but had a negative effect on the ANC. Gradual addition of lime resulted in decreased UCS, significant reduction of metals leaching and high ANC, due to the excess of lime that remained unreacted in pozzolanic reaction. Stabilization of more than 99% of heavy metals and 90% of arsenic has been achieved. All the samples had UCS above required value for safe disposal. In addition to standard leaching tests, solidificates were exposed to atmospheric conditions during one year in order to determine the actual leaching level of metals in real environment. It can be concluded that the EN 12457-4 test is more similar to the real environmental conditions, while the TCLP test highly exaggerates the leaching of metals. The paper also presents results of differential acid neutralization (d-AN) analysis compared with mineralogical study done by scanning electron microscopy and X-ray diffraction analysis. The d-AN coupled with Eh-pH (Pourbaix) diagrams were proven to be a new effective method for analysis of amorphous solidified structure.

  9. Recycling stabilised/solidified drill cuttings for forage production in acidic soils.

    Science.gov (United States)

    Kogbara, Reginald B; Dumkhana, Bernard B; Ayotamuno, Josiah M; Okparanma, Reuben N

    2017-10-01

    Stabilisation/solidification (S/S), which involves fixation and immobilisation of contaminants using cementitious materials, is one method of treating drill cuttings before final fate. This work considers reuse of stabilised/solidified drill cuttings for forage production in acidic soils. It sought to improve the sustainability of S/S technique through supplementation with the phytoremediation potential of plants, eliminate the need for landfill disposal and reduce soil acidity for better plant growth. Drill cuttings with an initial total petroleum hydrocarbon (TPH) concentration of 17,125 mg kg -1 and low concentrations of metals were treated with 5%, 10%, and 20% cement dosages. The treated drill cuttings were reused in granular form for growing a forage, elephant grass (Pennisetum purpureum), after mixing with uncontaminated soil. The grasses were also grown in uncontaminated soil. The phytoremediation and growth potential of the plants was assessed over a 12-week period. A mix ratio of one part drill cuttings to three parts uncontaminated soil was required for active plant growth. The phytoremediation ability of elephant grass (alongside abiotic losses) reduced the TPH level (up to 8795 mg kg -1 ) in the soil-treated-drill cuttings mixtures below regulatory (1000 mg kg -1 ) levels. There were also decreased concentrations of metals. The grass showed better heights and leaf lengths in soil containing drill cuttings treated with 5% cement dosage than in uncontaminated soil. The results suggest that recycling S/S treated drill cuttings for forage production may be a potential end use of the treated waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    Science.gov (United States)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  11. Time-dependent performance of soil mix technology stabilized/solidified contaminated site soils.

    Science.gov (United States)

    Wang, Fei; Wang, Hailing; Al-Tabbaa, Abir

    2015-04-09

    This paper presents the strength and leaching performance of stabilized/solidified organic and inorganic contaminated site soil as a function of time and the effectiveness of modified clays applied in this project. Field trials of deep soil mixing application of stabilization/solidification (S/S) were performed at a site in Castleford in 2011. A number of binders and addictives were applied in this project including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and modified clays. Field trial samples were subjected to unconfined compressive strength (UCS), BS CN 12457 batch leaching test and the extraction of total organics at 28 days and 1.5 years after treatment. The results of UCS test show that the average strength values of mixes increased from 0-3250 kPa at 28 days to 250-4250 kPa at 1.5 years curing time. The BS EN 12457 leachate concentrations of all metals were well below their drinking water standard, except Ni in some mixes exceed its drinking water standard at 0.02 mg/l, suggesting that due to varied nature of binders, not all of them have the same efficiency in treating contaminated soil. The average leachate concentrations of total organics were in the range of 20-160 mg/l at 28 days after treatment and reduced to 18-140 mg/l at 1.5 years. In addition, organo clay (OC)/inorgano-organo clay (IOC) slurries used in this field trial were found to have a negative effect on the strength development, but were very effective in immobilizing heavy metals. The study also illustrates that the surfactants used to modify bentonite in this field trail were not suitable for the major organic pollutants exist in the site soil in this project. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Crack initiation modeling of a directionally-solidified nickel-base superalloy

    Science.gov (United States)

    Gordon, Ali Page

    Combustion gas turbine components designed for application in electric power generation equipment are subject to periodic replacement as a result of cracking, damage, and mechanical property degeneration that render them unsafe for continued operation. In view of the significant costs associated with inspecting, servicing, and replacing damaged components, there has been much interest in developing models that not only predict service life, but also estimate the evolved microstructural state of the material. This thesis explains manifestations of microstructural damage mechanisms that facilitate fatigue crack nucleation in a newly-developed directionally-solidified (DS) Ni-base superalloy components exposed to elevated temperatures and high stresses. In this study, models were developed and validated for damage and life prediction using DS GTD-111 as the subject material. This material, proprietary to General Electric Energy, has a chemical composition and grain structure designed to withstand creep damage occurring in the first and second stage blades of gas-powered turbines. The service conditions in these components, which generally exceed 600°C, facilitate the onset of one or more damage mechanisms related to fatigue, creep, or environment. The study was divided into an empirical phase, which consisted of experimentally simulating service conditions in fatigue specimens, and a modeling phase, which entailed numerically simulating the stress-strain response of the material. Experiments have been carried out to simulate a variety of thermal, mechanical, and environmental operating conditions endured by longitudinally (L) and transversely (T) oriented DS GTD-111. Both in-phase and out-of-phase thermo-mechanical fatigue tests were conducted. In some cases, tests in extreme environments/temperatures were needed to isolate one or at most two of the mechanisms causing damage. Microstructural examinations were carried out via SEM and optical microscopy. A continuum

  13. Dendritic coarsening of γ' phase in a directionally solidified superalloy during 24,000 h of exposure at 1173 K

    International Nuclear Information System (INIS)

    Li, H.; Wang, L.; Lou, L.H.

    2010-01-01

    Dendritic coarsening of γ' was investigated in a directionally solidified Ni-base superalloy during exposure at 1173 K for 24,000 h. Chemical homogeneity along different directions and residual internal strain in the experimental superalloy were measured by electronic probe microanalysis (EPMA) and electron back-scattered diffraction (EBSD) technique. It was indicated that the gradient of element distribution was anisotropic and the inner strain between dendrite core and interdendritic regions was different even after 24,000 h of exposure at 1173 K, which influenced the kinetics for the dendrite coarsening of γ' phase.

  14. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2018-02-01

    Full Text Available In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes and cooling conditions (natural cooling and forced cooling on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  15. Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al-Cu alloys

    Science.gov (United States)

    Çadırlı, Emin

    2013-05-01

    Al(100-x)-Cux alloys (x=3 wt%, 6 wt%, 15 wt%, 24 wt% and 33 wt%) were prepared using metals of 99.99% high purity in vacuum atmosphere. These alloys were directionally solidified under steady-state conditions by using a Bridgman-type directional solidification furnace. Solidification parameters (G, V and ), microstructure parameters (λ1, λ2 and λE) and mechanical properties (HV, σ) of the Al-Cu alloys were measured. Microstructure parameters were expressed as functions of solidification parameters by using a linear regression analysis. The dependency of HV, σ on the cooling rate, microstructure parameters and composition were determined. According to experimental results, the microhardness and ultimate tensile strength of the solidified samples was increased by increasing the cooling rate and Cu content, but decreased with increasing microstructure parameters. The microscopic fracture surfaces of the different samples were observed using scanning electron microscopy. Fractographic analysis of the tensile fracture surfaces showed that the type of fracture significantly changed from ductile to brittle depending on the composition.

  16. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  17. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity

  18. Nial and Nial-Based Composites Directionally Solidified by a Containerless Zone Process. Ph.D. Thesis

    Science.gov (United States)

    Joslin, Steven M.

    1995-01-01

    A containerless electromagnetically levitated zone (CELZ) process has been used to directionally solidify NiAl and NiAl-based composites. The CELZ processing results in single crystal NiAl (HP-NiAl) having higher purity than commercially pure NiAl grown by a modified Bridgman process (CP-NiAl). The mechanical properties, specifically fracture toughness and creep strength, of the HP-NiAl are superior to binary CP-NiAl and are used as a base-line for comparison with the composite materials subsequently studied. Two-phase composite materials (NiAl-based eutectic alloys) show improvement in room temperature fracture toughness and 1200 to 1400 K creep strength over that of binary HP-NiAl. Metallic phase reinforcements produce the greatest improvement in fracture toughness, while intermetallic reinforcement produces the largest improvement in high temperature strength. Three-phase eutectic alloys and composite materials were identified and directionally solidified with the intent to combine the improvements observed in the two-phase alloys into one alloy. The room temperature fracture toughness and high temperature strength (in air) serve as the basis for comparison between all of the alloys. Finally, the composite materials are discussed in terms of dominant fracture mechanism observed by fractography.

  19. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge.

    Science.gov (United States)

    Chen, Quanyuan; Zhang, Lina; Ke, Yujuan; Hills, Colin; Kang, Yanming

    2009-02-01

    Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30-50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20-30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.

  20. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  1. Rapidly cast crystalline thin sheet materials

    International Nuclear Information System (INIS)

    Warlimont, H.; Emmerich, K.

    1986-01-01

    The current state and progress of casting thin sheet and ribbons directly from the melt are reviewed. First, the solidification phenomena pertinent to the process are outlined. Subsequently, Fe-Si,l Fe-Si-Al, Fe-Nd-B, Ag-Cu-Ti, alloy steels, Ni superalloys and Si are treated as examples. Finally, the information available on process development is critically assessed

  2. Setting of cesium residual ratio of molten solidified waste produced in Japan Atomic Power Company Tokai and Tokai No.2 Power Stations

    International Nuclear Information System (INIS)

    2013-02-01

    JNES investigated the appropriateness of a view of the Japan Nuclear Fuel Co. on cesium residual content and the radioactivity measurement precision regarding the molten solidified (with lowered inorganic salt used) radioactive wastes which were produced from Japan Atomic Power Company Tokai and Tokai No. 2 Power Stations. Based on the written performance report from the request and past disposal confirmation experience, a view of the JNFC is confirmed as appropriate that setting of 15% cesium residual ratio for molten solidified with volume ratio larger than 4% and less than 10% cases. (S. Ohno)

  3. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat` l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1998-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  4. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat`l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1997-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  5. Prediction of as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal conditions

    International Nuclear Information System (INIS)

    Du, Qiang; Li, Yanjun

    2015-01-01

    In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework. (paper)

  6. Effect of thermal cycling on the microstructure of a directionally solidified Fe, Cr, Al-TaC eutectic alloy

    Science.gov (United States)

    Harf, F. H.; Tewari, S. N.

    1977-01-01

    Cylindrical bars (1.2 cm diameter) of Fe-13.6Cr-3.7Al-9TaC (wt %) eutectic alloy were directionally solidified in a modified Bridgman type furnace at 1 cm/h. The alloy microstructure consisted of aligned TaC fibers imbedded in a bcc Fe-Cr-Al matrix. Specimens of the alloy were thermally cycled from 1100 to 425 C in a burner rig. The effects of 1800 thermal cycles on the microstructure was examined by scanning electron microscopy, revealing a zig-zag shape of TaC fibers aligned parallel to the growth direction. The mechanism of carbide solution and reprecipitation on the (111) easy growth planes, suggested previously to account for the development of irregular serrations in Co-Cr-Ni matrix alloys, is believed to be responsible for these zig-zag surfaces.

  7. Hydration products and mechanical properties of hydroceramics solidified waste for simulated Non-alpha low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Wang Jin; Hong Ming; Wang Junxia; Li Yuxiang; Teng Yuancheng; Wu Xiuling

    2011-01-01

    In this paper, simulated non-alpha low and intermediate level radioactive wastes was handled as curing object and that of 'alkali-slag-coal fly ash-metakaolin' hydroceramics waste forms were prepared by hydrothermal synthesis method. The hydration products were analyzed by X ray diffraction. The composition of hydrates and the compressive strength of waste forms were determined and measured. The results indicate that the main crystalline phase of hydration products were analcite when the temperature was 150 to 180 degree C and the salt content ratio was 0.10 to 0.30. Analcite diffraction peaks in hydration products is increasing when the temperature was raised and the reaction time prolonged. Strength test results show that the solidified waste forms have superior compressive strength. The compressive strength gradually decreased with the increase in salt content ratio in waste forms. (authors)

  8. Characterization of solidified radioactive wastes produced at Montalto di Castro BWR plant with reference to the site storage

    International Nuclear Information System (INIS)

    Donato, A.; Ricci, G.; Pace, A.

    1985-01-01

    The cement solidification of the Montalto di Castro BWR plant radwastes has been studied both from the point of view of the mixtures of formulation and of the product characterization. Five radwaste types and mixtures of them have been taken into consideration, determining the best chemical formulations starting from the compressive strenght as leading parameter. The solidified products have been characterized from the point of view of the freeze and thawing resistance, the water immersion resistance, the leachability, the dimensional changes and the free standing water. All the tests have been performed taking into account the real site conditions, so the leaching tests and the water immersion tests have been carried out using sea water and table water as leachant

  9. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-01-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  10. Segregation and microstructure evolution in chill cast and directionally solidified Ni-Mn-Sn metamagnetic shape memory alloys

    Science.gov (United States)

    Czaja, P.; Wierzbicka-Miernik, A.; Rogal, Ł.

    2018-06-01

    A multiphase solidification behaviour is confirmed for a range of Ni-rich and Ni-deficient Ni-Mn-Sn induction cast and directionally solidified (Bridgman) alloys. The composition variation is primarily linked to the changing Mn/Sn ratio, whereas the content of Ni remains largely stable. The partitioning coefficients for the Ni50Mn37Sn13 and Ni46Mn41.5Sn12.5 Bridgman alloys were obtained according to the Scheil equation based on the composition distribution along the longitudinal cross section of the ingots. Homogenization heat treatment performed for 72 h at 1220 K turned out sufficient for ensuring chemical uniformity on the macro- and microscale. It is owed to a limited segregation length scale due to slow cooling rates adopted for the directional solidification process.

  11. A study on crystalline phases present in the as-solidified and crystallized microstructures in Zr53Cu21Al10Ni8Ti8 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.

    2011-01-01

    In the present study the as-solidified and crystallized microstructures of Zr 53 Cu 21 Al 10 Ni 8 Ti 8 alloy have been examined in detail. Solidification was carried out by melt spinning, suction casting and copper mould casting techniques. The last technique yielded a partially crystalline microstructure, whereas, the other two techniques resulted in amorphous microstructures. (author)

  12. Analysis of Light Gathering Abilities of Dynamically Solidified Micro-lenses, and Their Implementation to Improve Sensitivity of Fluorescent PCR Micro-detectors.

    Science.gov (United States)

    Wu, Jian; Guo, Wei; Wang, Chunyan; Yu, Kuanxin; Chen, Tao; Li, Yinghui

    2015-06-01

    Fluorescent polymerase chain reaction (PCR) is becoming the preferred method of quantitative analysis due to its high specificity and sensitivity. We propose to use a new kind of micro-lens, dynamically solidified with optic glue, to improve the sensitivity of fluorescent PCR micro-detector. We developed light ray track equations for these lenses and used them to calculate relative light intensity distribution curve for stimulation lenses and illumination point probability distribution curve for detection lenses. We manufactured dynamically solidified micro-lenses using optic glue NOA61, and measured their light gathering ability. Lenses with radius/thickness (R/H) ratio of 4 reached light focusing ratio of 3.85 (stimulation lens) and photon collection efficiency of 0.86 (detection lens). We then used dynamically solidified lenses in PCR fluorescence micro-detector and analyzed their effect on the detector sensitivity. We showed that the use of dynamically solidified micro-lenses with R/H = 4 resulted in over 4.4-fold increased sensitivity of the detector.

  13. Experimental study on the properties of drum-packed, cement solidified waste package of pre and after sea dumping test of sea depth 30m and 100m

    International Nuclear Information System (INIS)

    Maki, Yasuro; Abe, Hirotoshi; Hattori, Seiichi

    1976-01-01

    Japan Marine Science and Technology Center has been tackling with the development of the monitoring system to confirm the soundness of drum-packed, cement-solidified low level radioactive waste (the package) during falling and after reaching at sea bed when it is dumped into sea. The test was carried out at Sagami Bay of 30 m and 100 m sea depth using non-radioactive packages. The observation of the falling behaviour of packages in sea was carried out by taking photographs of the motion of packages with an underwater 16 mm movie camera and an underwater industrial TV (ITV), and the observation of the soundness and the area of packages scattered on sea bed was carried out with an underwater ITV and an underwater 70 mm snap camera which were set up on the frame. The proportion of cement-solidified waste was decided so that the uni-axial compressive strength of the cement-solidified waste satisfies the condition of ''The tentative guideline''. Prior to tests at sea, hydrostatic pressure test of packages are carried out on land. After that, core specimens were sampled to obtain the uniaxial compressive strength from packages and were tested. After sea dumping tests, 6 packages were recovered from sea bed, and the soundness were tested. As the results, the deformation and damage of drums and cement solidified waste packages did not occur at all. (Kako, I.)

  14. Rapid compression induced solidification of two amorphous phases of poly(ethylene terephthalate)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S M [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Liu, X R [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Su, L [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Huang, D H [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Li, L B [Foods Research Centre Unilever R and D, Vlaardingen Olivier van Noortlaan, 120, 3133 AT Vlaardingen (Netherlands)

    2006-08-21

    Melts of poly(ethylene terephthalate) were solidified by rapid compression to 2 GPa within 20 ms and by a series of comparative processes including natural cooling, slow compressing and rapid cooling, respectively. By combining XRD and differential scanning calorimetry data of the recovered samples, it is made clear that rapid compression induces two kinds of amorphous phases. One is relatively stable and can also be formed in the slow compression and the cooling processes. Another is metastable and transforms to crystalline phase at 371 K. This metastable amorphous phase cannot be obtained by slow compression or natural cooling, and its crystallization temperature is remarkably different from that of the metastable amorphous phase formed in the rapid cooling sample.

  15. Phase transformations in the rapidly solidified Ti{sub 40}Zr{sub 20}Hf{sub 20}Pd{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N. [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Yao Kefu [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: kfyao@tsinghua.edu.cn; Louzguine-Luzgin, D.V. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Qiu Shengbao [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India); Inoue, A. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2007-10-15

    We report that an approximant phase was initially obtained in amorphous Ti{sub 40}Zr{sub 20}Hf{sub 20}Pd{sub 20} alloy. In the initial stage of the devitrification process, the approximant phase transforms into an icosahedral (I) phase with a high thermal stability while the cF96 Zr{sub 2}Ni-type (space group Fd3-bar m with a=1.25nm and 96 atoms cell{sup -1}) particles precipitate from the amorphous matrix. Eventually the I phase grows to several hundred nanometers when annealed at about 1000K and then transforms into the Zr{sub 2}Ni-type phase with an endothermic reaction.

  16. Fatigue crack growth rates and fracture toughness of rapidly solidified Al-8.5 pct Fe-1.2 pct V-1.7 pct Si alloys

    International Nuclear Information System (INIS)

    Hariprasad, S.; Sastry, S.M.L.; Jerina, K.L.

    1994-01-01

    The room-temperature fatigue crack growth rates (FCGR) and fracture toughness were evaluated for different crack plane Orientations of an Al-8.5 pct Fe-1.2 pct V-1.7 pct Si alloy produced by planar flow casting (PFC) and atomized melt deposition (AMD) processes. For the alloy produced by the PFC process, properties were determined in six different orientations, including the short transverse directions S-T and S-L. Diffusion bonding and adhesive bonding methods were used to prepare specimens for determining FCGR and fracture toughness in the short transverse direction. Interparticle boundaries control fracture properties in the alloy produced by PFC. Fracture toughness of the PFC alloy varies from 13.4 MPa√ bar m to 30.8 MPa√ bar m, depending on the orientation of the crack plane relative to the interparticle boundaries. Fatigue crack growth resistance and fracture toughness are greater in the L-T, L-S, and T-S directions than in the T-L, S-T, and S-L orientations. The alloy produced by AMD does not exhibit anisotropy in fracture toughness and fatigue crack growth resistance in the as-deposited condition or in the extruded condition. The fracture toughness varies from 17.2 MPa√ bar m to 18.5 MPa√ bar m for the as-deposited condition and from 19.8 MPa√ bar m to 21.0 MPa√ bar m for the extruded condition. Fracture properties are controlled by intrinsic factors in the alloy produced by AMD. Fatigue crack growth rates of the AMD alloy are comparable to those of the PFC alloy in the L-T orientation. The crack propagation modes were studied by optical metallographic examination of crack-microstructure interactions and scanning electron microscopy of the fracture surfaces

  17. Effect of Fe addition on the magnetic and giant magneto-impedance behaviour of CoCrSiB rapidly solidified alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Seema; Chattoraj, I; Panda, A K; Mitra, A; Pal, S K [National Metallurgical Laboratory, Jamshedpur 831 007 (India)

    2006-05-21

    Thermal electrical resistivity, magnetic hysteresis and magneto-impedance behaviour of melt spun and annealed Co{sub 71-X}Fe{sub X}Cr{sub 7}Si{sub 8}B{sub 14} (X = 0, 2, 3.2, 4, 6, 8 and 12 at.%) were investigated. The addition of Fe in the system changed crystallization as well as the magnetic properties of the materials. The alloy containing 6 at.% Fe showed an increase in resistivity during the first crystallization process. A TEM micrograph indicated the formation of nanostructure during the crystallization process. The GMI properties of the alloys are evaluated at a driving current amplitude of 5 mA and a frequency of 4 MHz. The two-peak behaviour in the GMI profile was observed for all the samples. It is found that the alloy with 4 at.% Fe has the maximum GMI ratio because of the nearly zero magnetostriction value of the sample. About 62% change in the GMI ratio was observed in the alloy with 4 at.% Fe when annealed at 673 K. The anisotropy field was also minimum for the annealed alloy. The results were explained by the formation of directional ordering and the reduction of the magnetostriction constant of the alloy due to nanocrystallization during the annealing process.

  18. Characterization of the Ni-45wt% Ti shape memory alloy rapidly solidified; Caracterizacao da liga Ni-45wt%Ti com efeito de memoria de forma solidificadas rapidamente

    Energy Technology Data Exchange (ETDEWEB)

    Anselmo, G.C.S.; Castro, W.B. de; Araujo, C.J. de, E-mail: walman@dem.ufcg.edu.b [Universidade Federal de Campina Grande (UAEM/UFCG), PB (Brazil). Unidade Academica de Engenharia Mecanica

    2010-07-01

    One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. shape memory characteristics of Ni-45wt%Ti alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray. In these experiments particular attention has been paid to change the velocity of cooling wheel from 30 to 50 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on martensitic transformation behaviors and structure are discussed. (author)

  19. Microstructure and properties of extruded rapidly solidified AlCr4.7Fe1.1Si0.3 (at.%) alloys

    Czech Academy of Sciences Publication Activity Database

    Cavojsky, M.; Balog, M.; Dvořák, Jiří; Illekova, E.; Svec, P.; Krizik, P.; Janičkovič, D.; Simancik, F.

    2012-01-01

    Roč. 549, July (2012), s. 233-241 ISSN 0921-5093 Institutional research plan: CEZ:AV0Z20410507 Keywords : aluminium * mechanical properties * melt- spinning * powder metallurgy Subject RIV: JJ - Other Materials Impact factor: 2.108, year: 2012

  20. Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys

    International Nuclear Information System (INIS)

    Shalaby, Rizk Mostafa

    2013-01-01

    Mechanical properties and indentation creep of the melt-spun process Bi–42 wt%Sn, Bi–40 wt%Sn–2 wt%In, Bi–40 wt%Sn–2 wt%Ag and Bi–38 wt%Sn–2 wt%In–2 wt%Ag were studied by dynamic resonance technique and Vickers indentation testing at room temperature and compared to that of the traditional Sn–37 wt%Pb eutectic alloy. The results show that the structure of Bi–42 wt%Sn alloy is characterized by the presence of rhombohedral Bi and body centered tetragonal β-Sn. The two ternary alloys exhibit additional constituent phases of intermetallic compounds SnIn 19 for Bi–40 wt%Sn–2 wt%In and ε-Ag 3 Sn for Bi–40 wt%Sn–2 wt%Ag alloys. Attention has been paid to the role of intermetallic compounds on mechanical and creep behavior. The In and Ag containing solder alloy exhibited a good combination of higher creep resistance, good mechanical properties and lower melting temperature as compared with Pb–Sn eutectic solder alloy. This was attributed to the strengthening effect of Bi as a strong solid solution element in the Sn matrix and formation of intermetallic compounds β-SnBi, ε-Ag 3 Sn and InSn 19 which act as both strengthening agent and grain refiner in the matrix of the material. Addition of In and Ag decreased the melting temperature of Bi–Sn lead-free solder from 143 °C to 133 °C which was possible mainly due to the existence of InSn 19 and Ag 3 Sn intermetallic compounds. Elastic constants, internal friction and thermal properties of Bi–Sn based alloys have been studied and analyzed.

  1. Pressure-jump induced rapid solidification of melt: a method of preparing amorphous materials

    Science.gov (United States)

    Liu, Xiuru; Jia, Ru; Zhang, Doudou; Yuan, Chaosheng; Shao, Chunguang; Hong, Shiming

    2018-04-01

    By using a self-designed pressure-jump apparatus, we investigated the melt solidification behavior in rapid compression process for several kinds of materials, such as elementary sulfur, polymer polyether-ether-ketone (PEEK) and poly-ethylene-terephthalate, alloy La68Al10Cu20Co2 and Nd60Cu20Ni10Al10. Experimental results clearly show that their melts could be solidified to be amorphous states through the rapid compression process. Bulk amorphous PEEK with 24 mm in diameter and 12 mm in height was prepared, which exceeds the size obtained by melt quenching method. The bulk amorphous sulfur thus obtained exhibited extraordinarily high thermal stability, and an abnormal exothermic transition to liquid sulfur was observed at around 396 K for the first time. Furthermore, it is suggested that the glass transition pressure and critical compression rate exist to form the amorphous phase. This approach of rapid compression is very attractive not only because it is a new technique of make bulk amorphous materials, but also because novel properties are expected in the amorphous materials solidified by the pressure-jump within milliseconds or microseconds.

  2. Rapid shallow breathing

    Science.gov (United States)

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the ...

  3. Ammonolysis-induced solvent removal: a facile approach for solidifying emulsion droplets into PLGA microspheres.

    Science.gov (United States)

    Kim, Jayoung; Hong, Dasom; Chung, Younglim; Sah, Hongkee

    2007-12-01

    An ammonolysis-based microencapsulation technique useful for the preparation of biodegradable microspheres was described in this study. A dispersed phase consisting of poly- d, l-lactide- co-glycolide, progesterone, and methyl chloroacetate was emulsified in an aqueous phase. Upon addition of ammonia solution, the emulsion droplets were quickly transformed into poly- d, l-lactide- co-glycolide microspheres laden with progesterone. Rapid solvent removal was accompanied by ammonolysis. The chemical reaction converted water-immiscible methyl chloroacetate to water-miscible chloroacetamide and methanol. Chloroacetamide formation was proved by (1)H NMR and ESI-MS studies. Thermogravimetric analysis showed that the microspheres contained only small amounts of residual methyl chloroacetate. Incorporation efficiencies of progesterone ranged from 64.3 +/- 1.1 to 72.8 +/- 0.3%, depending upon microsphere formulations. X-ray powder diffractometry analysis substantiated that no polymorphic transition of progesterone occurred during microencapsulation. To evaluate the feasibility of this new method against the commonly used microencapsulation method, microspheres were also prepared by a typical dichloromethane-based solvent evaporation process. The important attributes of microspheres prepared from both methods were characterized for comparison. The new ammonolysis-based microencapsulation process showed interesting features distinct from those of the solvent evaporation process. The microencapsulation process reported in this study might be applicable in loading pharmaceuticals into various polymeric microspheres.

  4. Structure observation of single solidified droplet by in situ controllable quenching based on nanocalorimetry

    International Nuclear Information System (INIS)

    Zhao, Bingge; Li, Linfang; Yang, Bin; Yan, Ming; Zhai, Qijie; Gao, Yulai

    2013-01-01

    Highlights: •Controllable quenching rate up to 15,000 K/s was realized by FSC. •FSC sample was novelly characterized by FIB and HRTEM. •Solidification structure with undercooling of 110.9 K was investigated. •This study opens a new approach in rapid solidification and FSC measurement. -- Abstract: Fast scanning calorimetry (FSC) based on nanocalorimetry and thin film technique is a newly developed attractive tool to investigate the solidification behavior of single droplet by in situ controllable ultrafast cooling. In this paper, we introduced this novel technique to in situ control the quenching of single Sn3.5Ag metallic droplet at cooling rate up to 15,000 K/s with corresponding undercooling of 110.9 K. In particular, the solidification structure of this real time quenched single droplet was observed and analyzed with focused ion beam (FIB), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). This research proposed a new approach to research the solidification structure of single droplet with precisely controlled size and extreme cooling rate

  5. Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei

    Science.gov (United States)

    Bolzoni, Leandro; Xia, Mingxu; Babu, Nadendla Hari

    2016-01-01

    The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces the undercooling needed for solidification to take place. Moreover, we present evidences that these Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles. PMID:28008967

  6. Long-term reactive transport modelling of stabilized/solidified waste: from dynamic leaching tests to disposal scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Windt, Laurent de [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)]. E-mail: laurent.dewindt@ensmp.fr; Badreddine, Rabia [INERIS, Direction des Risques Chroniques, Unite Dechets et Sites Pollues, Parc Technologique Alata BP 2, 60550 Verneuil-en-Halatte (France); Lagneau, Vincent [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)

    2007-01-31

    Environmental impact assessment of hazardous waste disposal relies, among others, on standardized leaching tests characterized by a strong coupling between diffusion and chemical processes. In that respect, this study shows that reactive transport modelling is a useful tool to extrapolate laboratory results to site conditions characterized by lower solution/solid (L/S) ratios, site specific geometry, infiltration, etc. A cement solidified/stabilized (S/S) waste containing lead is investigated as a typical example. The reactive transport model developed in a previous study to simulate the initial state of the waste as well as laboratory batch and dynamic tests is first summarized. Using the same numerical code (HYTEC), this model is then integrated to a simplified waste disposal scenario assuming a defective cover and rain water infiltration. The coupled evolution of the S/S waste chemistry and the pollutant plume migration are modelled assessing the importance of the cracking state of the monolithic waste. The studied configurations correspond to an undamaged and fully sealed system, a few main fractures between undamaged monoliths and, finally, a dense crack-network in the monoliths. The model considers the potential effects of cracking, first the increase of rain water and carbon dioxide infiltration and, secondly, the increase of L/S ratio and reactive surfaces, using either explicit fracture representation or dual porosity approaches.

  7. Mechanism of nucleation and growth of hydrogen porosity in solidifying A356 aluminum alloy: an analytical solution

    International Nuclear Information System (INIS)

    Li, K.-D.; Chang, Edward

    2004-01-01

    This study derives an analytical solution for the mechanism of nucleation and growth of hydrogen pore in the solidifying A356 aluminum alloy. A model of initial transient hydrogen redistribution in the growing dendritic grain is used to modify the lever rule for the mechanism of nucleation of pore. The model predicts the fraction of solid at nucleation, the temperature range of nucleation, the radius of hydrogen diffusion cell, and the supersaturation of hydrogen needed for nucleation. The role of solidus velocity in nucleation is explained. The parameters calculated from the model of nucleation are used for analyzing the mechanism of kinetic diffusion-controlled growth of pore, in which the mathematical transformations of variables are introduced. With the transformations, it is argued that the diffusion problem involving the liquid and solid phases during solidification could be treated as a classic problem of precipitation in the single-phase medium treated by Ham or Avrami. The analytical solution for the nucleation of pore is compared with the mechanism of macrosegregation. The predicted volume percent of porosity and radius of pore based on the mechanism of growth of pore is discussed with respect to the thermodynamic solution, the published experimental data, the numerical solutions, and the role of interdendritic fluid flow governed by Darcy's law

  8. Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity

    Science.gov (United States)

    Lauer, M.; Ghods, M.; Angart, S. G.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-08-01

    As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data.

  9. Evolution of the microstructure and nanohardness of Ti-48 at.%Al alloy solidified under high pressure

    International Nuclear Information System (INIS)

    Wang, Hongwei; Zhu, Dongdong; Zou, Chunming; Wei, Zunjie

    2012-01-01

    Highlights: → The microstructure of Ti-48Al alloy changes under high pressure. → With increasing pressure, the amount of γ s phase decreases. → High pressure leads to the decreasing of lamellar spacing. → The nanohardness of lamellar structure increases with pressure. -- Abstract: In this work the microstructure and nanohardness of Ti-48 at.%Al alloy solidified under different pressures (normal pressure, 2 GPa, 4 GPa) were experimental investigated by using a tungsten-carbide six-anvil apparatus. The results indicate that high pressure does not change the phase constitution of Ti-48 at.%Al alloy. However, the microstructure changes under high pressure. With increasing pressure, the volume fraction of interdendritic γ (γ s ) phase decreases and Al concentration in lamellae increases. When the pressure is 4 GPa, there is only a little γ s embedded in lamellar structure. The volume fraction of γ s phase is approximately 17.0% for normal pressure, 8.73% for 2 GPa, 0.69% for 4 GPa. The lamellar spacings also decrease with pressure, which are 495 nm, 345 nm, 227 nm under normal pressure, 2 GPa, 4 GPa, respectively. The change in nanohardness was discussed based on the microstructural observations. It shows a certain increase of the nanohardness as the pressure increases from normal pressure to 4 GPa. When the pressure is 4 GPa, the nanohardness increases by 50.2% compared with that of normal pressure.

  10. Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy.

    Science.gov (United States)

    Akkaya, Erhan; Chormey, Dotse Selali; Bakırdere, Sezgin

    2017-09-20

    In this study, solidified floating organic drop microextraction (SFODME) by 1-undecanol was combined with slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) for the determination of cadmium at trace levels. Formation of a complex with 4,4'-dimethyl-2,2'-bipyridine facilitated the extraction of cadmium from aqueous solutions. Several chemical variables were optimized in order to obtain high extraction outputs. Parameters such as concentration of the ligand, pH, and amount of buffer solution were optimized to enhance the formation of cadmium complex. The SFODME method was assisted by dispersion of extractor solvent into aqueous solutions using 2-propanol. Under the optimum extraction and instrumental conditions, the limit of detection and limit of quantitation values obtained for cadmium using the combined methods (SFODME-SQT-FAAS) were found to be 0.4 and 1.3 μg L -1 , respectively. Matrix effects on the method were also examined for tap water and wastewater, and spiked recovery results were found to be very satisfactory. Graphical Abstract SFODME-SQT-FAAS system for sensitive determination of cadmium.

  11. Granulation of Cu-Al-Fe-Ni Bronze

    Directory of Open Access Journals (Sweden)

    Pisarek B.P.

    2014-08-01

    Full Text Available With the increase in wall thickness of the casting of iron-nickel-aluminium-bronze, by the reduction of the cooling rate the size of κII phase precipitates increases. This process, in the case of complex aluminium bronzes with additions of Cr, Mo and W is increased. Crystallization of big κII phase, during slow cooling of the casting, reduces the concentration of additives introduced to the bronze matrix and hardness. Undertaken research to develop technology of thick-walled products (g> 6 mm of complex aluminium bronzes. Particular attention was paid to the metallurgy of granules. As a result, a large cooling speed of the alloy, and also high-speed solidification casting a light weight of the granules allows: to avoid micro-and macrosegregation, decreasing the particle size, increase the dispersion of phases in multiphase alloys. Depending on the size granules as possible is to provide finished products with a wall thickness greater than 6 mm by infiltration of liquid alloy of granules (composites. Preliminary studies was conducted using drip method granulate of CuAl10Fe5Ni5 bronze melted in a INDUTHERM-VC 500 D Vacuum Pressure Casting Machine. This bronze is a starting alloy for the preparation of the complex aluminium bronzes with additions of Cr, Mo, W and C or Si. Optimizations of granulation process was carried out. As the process control parameters taken a casting temperature t (°C and the path h (mm of free-fall of the metal droplets in the surrounding atmosphere before it is intensively cooled in a container of water. The granulate was subjected to a sieve analysis. For the objective function was assume maximize of the product of Um*n, the percentage weight “Um” and the quantity of granules ‘n’ in the mesh fraction. The maximum value of the ratio obtained for mesh fraction a sieve with a mesh aperture of 6.3 mm. In the intensively cooled granule of bronze was identified microstructure composed of phases: β and fine bainite (α+β′+β′1 and a small quantity of small precipitates κII phase. Get high microhardness bronze at the level of 323±27,9 HV0,1.

  12. Microtexture formation of Ni99B1 alloys solidified on an ESL and an EML-a study based on the EBSP technique

    International Nuclear Information System (INIS)

    Li Mingjun; Ishikawa, Takehiko; Nagashio, Kosuke; Kuribayashi, Kazuhiko; Yoda, Shinichi

    2007-01-01

    We employed an electrostatic levitator (ESL) and an electromagnetic levitator (EML) to solidify Ni 99 B 1 (at.%) alloys at various undercoolings. The microstructures and microtextures were revealed by using the electron backscatter diffraction pattern (EBSP) technique in a scanning electron microscope. It is found that that no significant refinement can be identified at the low and medium undercooling regimes for the primary trunk in the sample solidified on the ESL, while the fragmentation of the secondary and even tertiary branches may take place to generate equiaxed grains. Further investigation by the EBSP reveals that neighboring grains have small misorientation angles, which may be ascribed to the absence of mechanical stirring from electromagnetic eddy current. A sharp contrast is that the samples solidified on the EML at low and medium undercoolings have refined equiaxed microstructures. The EBSP mapping reveals that the equiaxed grains yielded on the EML have a random distribution in crystallographic orientations among neighboring grains, indicating that electromagnetic stirring (EMS) induced by the electromagnetic field in the EML plays a vital role in promoting fragmentation and thus generating refined grains and random distribution in orientation. Regarding to the refined microstructure at high undercoolings, no significant difference arises in the samples processed between the EML and ESL

  13. A comparative EBSP study of microstructure and microtexture formation from undercooled Ni99B1 melts solidified on an electrostatic levitator and an electromagnetic levitator

    International Nuclear Information System (INIS)

    Li Mingjun; Ishikawa, Takehiko; Nagashio, Kosuke; Kuribayashi, Kazuhiko; Yoda, Shinichi

    2006-01-01

    Ni 99 B 1 alloys were solidified by containerless processing at various melt undercoolings on an electrostatic levitator (ESL) and an electromagnetic levitator (EML). A scanning electron microscope in combination with an electron backscatter diffraction pattern mapping technique was employed to reveal microstructures and microtextures formed on these two facilities. The microstructure consists of well-developed primary dendrites with coarse secondary arms in the alloys solidified on the ESL at low and medium undercooling levels, whereas equiaxed grains are yielded in alloys solidified on the EML at almost the same undercoolings. Further analysis indicates that the melt flow induced by the electromagnetic field in the EML may play a significant role in promoting fragmentation of primary dendrites in the mushy zone and thus resulting in equiaxed grains. In contrast, the primary dendrites in the alloy processed on the ESL can fully develop in the absence of melt flow. The fluid flow in the sample on the EML can rotate, move, and displace surviving fragments, yielding a random distribution of grain orientation and thus leading to a random microtexture at low and medium undercoolings. At high undercoolings, refined equiaxed grains can be obtained on both the ESL and the EML and the influence of melt flow on refinement seems negligible due to the enhanced driving force in capillarity and solute effects. A great number of coherent annealing twins are formed, making the pole figures more complex and random

  14. Microtexture formation of Ni{sub 99}B{sub 1} alloys solidified on an ESL and an EML-a study based on the EBSP technique

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingjun [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)], E-Mail: li.mingjun@aist.go.jp; Ishikawa, Takehiko [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Nagashio, Kosuke [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Kuribayashi, Kazuhiko [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Yoda, Shinichi [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)

    2007-03-25

    We employed an electrostatic levitator (ESL) and an electromagnetic levitator (EML) to solidify Ni{sub 99}B{sub 1} (at.%) alloys at various undercoolings. The microstructures and microtextures were revealed by using the electron backscatter diffraction pattern (EBSP) technique in a scanning electron microscope. It is found that that no significant refinement can be identified at the low and medium undercooling regimes for the primary trunk in the sample solidified on the ESL, while the fragmentation of the secondary and even tertiary branches may take place to generate equiaxed grains. Further investigation by the EBSP reveals that neighboring grains have small misorientation angles, which may be ascribed to the absence of mechanical stirring from electromagnetic eddy current. A sharp contrast is that the samples solidified on the EML at low and medium undercoolings have refined equiaxed microstructures. The EBSP mapping reveals that the equiaxed grains yielded on the EML have a random distribution in crystallographic orientations among neighboring grains, indicating that electromagnetic stirring (EMS) induced by the electromagnetic field in the EML plays a vital role in promoting fragmentation and thus generating refined grains and random distribution in orientation. Regarding to the refined microstructure at high undercoolings, no significant difference arises in the samples processed between the EML and ESL.

  15. Microstructure formation and in situ phase identification from undercooled Co-61.8 at.% Si melts solidified on an electromagnetic levitator and an electrostatic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingjun [National Institute of Advanced Industrial Science and Technology (AIST), Materials Research Institute for Sustainable Development, 2266-98 Shimo-Shidami, Moriyama, Nagoya, Aichi 463-8560 (Japan); Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)], E-mail: li.mingjun@aist.go.jp; Nagashio, Kosuke [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Ishikawa, Takehiko [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Mizuno, Akitoshi; Adachi, Masayoshi; Watanabe, Masahito [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588 (Japan); Yoda, Shinichi [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Kuribayashi, Kazuhiko [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Katayama, Yoshinori [Japan Atomic Energy Agency (JAEA), 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5148 (Japan)

    2008-06-15

    Co-61.8 at.% Si (CoSi-CoSi{sub 2}) eutectic alloys were solidified on an electromagnetic levitator (EML) and an electrostatic levitator (ESL) at different undercooling levels. The results indicated that there is only a single recalescence event at low undercooling with the CoSi intermetallic compound as primary phase, which is independent of processing facilities, on either an EML or an ESL. The microstructure, however, is strongly dependent on the processing facility. The interior melt flow behavior in the sphere solidified at the EML differs substantially from that at the ESL, thus yielding different microstructures. On high undercooling, double recalescence takes place regardless of levitation condition. In situ X-ray diffraction of alloys solidified on the EML demonstrates that the CoSi{sub 2} compound becomes the primary phase upon the first recalescence, and the CoSi intermetallic phase crystallizes during the second recalescence. In addition to phase identification, real-time diffraction patterns can also provide additional evidence of the fragmentation of the primary phase and the ripening feature in the subsequent cooling process in the semisolid state. The phase competition between the CoSi and CoSi{sub 2} compounds is discussed when considering the nucleation barrier. The low interfacial energy of the CoSi{sub 2} phase favors a preferential nucleation event over the CoSi phase, which also plays a critical role in non-reciprocity nucleation and thus yields a double recalescence profile at high undercooling.

  16. Examination of solidified and stabilized matrices as a result of solidification and stabilization process of arseniccontaining sludge with portland cement and lime

    Directory of Open Access Journals (Sweden)

    Tanapon Phenrat

    2004-02-01

    Full Text Available By solidification and stabilization (S/S with Portland cement and lime, it is possible to reduce arsenic concentration in leachate of the arsenic-containing sludge from arsenic removal process by coagulation with ferric chloride. From the initial arsenic concentration in leachate of unsolidified /unstabilized sludge which was around 20.75 mg/L, the arsenic concentrations in leachate of solidified/stabilized waste were reduced to 0.3, 0.58, 1.09, and 1.85 mg/L for the waste-to-binder ratios of 0.15, 0.25, 0.5, and 1, respectively, due tothe formation of insoluble calcium-arsenic compounds. To be more cost effective for the future, alternative uses of these S/S products were also assessed by measurement of compressive strength of the mortar specimens. It was found that the compressive strengths of these matrices were from 28 ksc to 461 ksc. In conclusion, considering compressive strength and leachability of the solidified matrices, some of these solidified/ stabilized products have potential to serve as an interlocking concrete paving block.

  17. Magnetic anisotropy in rapidly quenched amorphous glass-coated nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Óvári, T.-A.; Rotărescu, C.; Atițoaie, A.; Corodeanu, S.; Lupu, N., E-mail: nicole@phys-iasi.ro; Chiriac, H.

    2016-07-15

    Results on the roles played by the magnetoelastic and magnetostatic anisotropy terms in the magnetic behavior of glass-coated magnetostrictive amorphous nanowires prepared by means of rapid solidification are reported. Their contributions have been analyzed both experimentally, through hysteresis loop measurements, and theoretically, using micromagnetic simulations. All the investigated samples exhibit a magnetically bistable behavior, characterized by a single-step magnetization reversal when the applied field reaches a critical threshold value, called switching field. The combined interpretation of the experimental and theoretical data allows one to understand the effect of the magnetoelastic term on the value of the switching field, on one hand, and the effect of the magnetostatic term on the nucleation mechanism on the other, both with an essential impact on the characteristics of the nanowires’ magnetic bistability. The results are crucial for understanding the basic magnetic properties of these novel rapidly solidified ultrathin magnetic wires, as well as for tailoring their properties according to the specific requirements of various sensing applications. - Highlights: • Glass-coated nanowires have been very recently prepared by rapid solidification. • Amorphous wires change their properties as their diameter reaches the nano range. • Here we report on their main anisotropy terms: magnetoelastic and shape. • The results are essential for tailoring their properties for future applications.

  18. Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu,Ag) solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Bismarck L., E-mail: bismarck_luiz@yahoo.com.br [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-860 Campinas, SP (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil)

    2016-04-15

    Low temperature soldering technology encompasses Sn–Bi based alloys as reference materials for joints since such alloys may be molten at temperatures less than 180 °C. Despite the relatively high strength of these alloys, segregation problems and low ductility are recognized as potential disadvantages. Thus, for low-temperature applications, Bi–Sn eutectic or near-eutectic compositions with or without additions of alloying elements are considered interesting possibilities. In this context, additions of third elements such as Cu and Ag may be an alternative in order to reach sounder solder joints. The length scale of the phases and their proportions are known to be the most important factors affecting the final wear, mechanical and corrosions properties of ternary Sn–Bi–(Cu,Ag) alloys. In spite of this promising outlook, studies emphasizing interrelations of microstructure features and solidification thermal parameters regarding these multicomponent alloys are rare in the literature. In the present investigation Sn–Bi–(Cu,Ag) alloys were directionally solidified (DS) under transient heat flow conditions. A complete characterization is performed including experimental cooling thermal parameters, segregation (XRF), optical and scanning electron microscopies, X-ray diffraction (XRD) and length scale of the microstructural phases. Experimental growth laws relating dendritic spacings to solidification thermal parameters have been proposed with emphasis on the effects of Ag and Cu. The theoretical predictions of the Rappaz-Boettinger model are shown to be slightly above the experimental scatter of secondary dendritic arm spacings for both ternary Sn–Bi–Cu and Sn–Bi–Ag alloys examined. - Highlights: • Dendritic growth prevailed for the ternary Sn–Bi–Cu and Sn–Bi–Ag solder alloys. • Bi precipitates within Sn-rich dendrites were shown to be unevenly distributed. • Morphology and preferential region for the Ag{sub 3}Sn growth depend on Ag

  19. Formulation development and in vitro evaluation of solidified self-microemulsion in the form of tablet containing atorvastatin calcium.

    Science.gov (United States)

    Ali, Kazi Asraf; Mukherjee, Biswajit; Bandyopadhyay, Amal Kumar

    2013-11-01

    The objective of our present study was to prepare solid self-microemulsion in the form of tablet of a poorly water soluble drug, Atorvastatin calcium (ATNC) to increase the solubility, dissolution rate, and minimize the hazards experienced from liquid emulsions. Self-microemulsifying ATNC tablet was formulated mainly by using self-emulsifying base, solidifying agent silicon dioxide and sodium starch glycolate as tablet disintegrant. Self-emulsifying base containing Transcutol P, Gelucire 44/14, and Lutrol F68 with their ratios in the formulation, were best selected by solubility study and ternary phase diagram in different vehicles. Particle size of microemulsion from tablet, physical parameters of the tablet and drug content has been checked. In vitro drug release rate has been carried out in phosphate buffer medium (pH 6.8). Physicochemical characterization of the drug in the optimized formulation has been performed to check drug-excipient incompatibility, if any. Average particle diameter of the emulsions formed from the tablet was found to be below 100 nm in case of formulation F4 and F5, which indicated microemulsions has been formed. In vitro drug release from the formulations F3, F4, and F5 was found to be >90%, indicated the enhancement of solubility of ATNC compared to parent drug. Differential thermal analysis (DTA), Powder X-ray Diffraction (X-RD) and Fourier transform infra red (FTIR) study proved the identity of the drug in the optimized formulation. The tablet form of self-microemulsifying (SME) drug delivery is good for solubility enhancement.

  20. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcelino; Costa, Thiago [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Rocha, Otávio [Federal Institute of Education, Science and Technology of Pará — IFPA, 66093-020 Belém, PA (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos — UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé, E-mail: cheung@fem.unicamp.br [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil)

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  1. Effect of a high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys

    International Nuclear Information System (INIS)

    Li, Xi; Gagnoud, Annie; Wang, Jiang; Li, Xiaolong; Fautrelle, Yves; Ren, Zhongming; Lu, Xionggang; Reinhart, Guillaume; Nguyen-Thi, Henri

    2014-01-01

    The effect of an axial high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys was investigated. The experimental results indicated that the magnetic field induced the destabilization of the liquid–solid interface and the formation of a band-like structure. The magnetic field also caused the disruption of the columnar η-Zn and ε-Zn 5 Cu dendrites. As the applied magnetic field increased, the columnar-to-equiaxed transition occurred, and the size of the equiaxed grains gradually decreased. The magnetic effects, the magnetic moment and the thermoelectric magnetic effects during the directional solidification of Zn–Cu peritectic alloys under an axial magnetic field were studied. Regular ε-Zn 5 Cu hexagons appeared on the transverse section of the sample fabricated with a high magnetic field (i.e. 16 T). In addition, electron backscatter diffraction analysis revealed that the 〈0 0 0 1〉-crystal direction of the Zn 5 Cu crystal is not only its easy magnetization direction but also its preferred growth direction. The thermoelectric magnetic effects were numerically simulated. The results indicated that a thermoelectric magnetic force acts on the solid near the liquid–solid interface and increases linearly with an increase in the magnetic field. As the effect of the magnetic moment arising from the magnetic crystalline anisotropy is eliminated, the thermoelectric magnetic effect has a substantial effect on the solidification structure. Therefore, the destabilization of the liquid–solid interface and the disruption of the dendrites during directional solidification under the magnetic field are primarily due to the thermoelectric magnetic force acting on the solid

  2. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    Science.gov (United States)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  3. Effect of Rapid Solidification and Addition of Cu3P on the Mechanical Properties of Hypereutectic Al-Si Alloys

    OpenAIRE

    Suárez-Rosales,Miguel Ángel; Pinto-Segura,Raúl; Palacios-Beas,Elia Guadalupe; Hernández-Herrera,Alfredo; Chávez-Alcalá,José Federico

    2016-01-01

    The combined processes; rapid solidification, addition of Cu3P compound and heat treatments to improve the mechanical properties of the hypereutectic Al-13Si, Al-20Si and Al-20Si-1.5Fe-0.7Mn alloys (in wt. %) was studied. Optical microscopy and scanning electron microscopy were used to characterize the microstructures. The mechanical properties were evaluated by tensile tests. It was found that the cooling rate (20-50°C/s) used to solidify the alloys plus the addition of Cu3P compound favored...

  4. Ultra-flexible framework breathing in response to dehydration in liskeardite, [(Al,Fe){sub 16}(AsO{sub 4}){sub 9}(OH){sub 21}(H{sub 2}O){sub 11}]·26H{sub 2}O, a natural open-framework compound

    Energy Technology Data Exchange (ETDEWEB)

    Grey, Ian. E., E-mail: Ian.Grey@csiro.au [CSIRO Mineral Resources, Private Bag 10, Clayton South, VIC 3169 (Australia); Brand, Helen E.A. [Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168 (Australia); Rumsey, Michael S. [Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Gozukara, Yesim [CSIRO Manufacturing, Private Bag 10, Clayton South, VIC 3169 (Australia)

    2015-08-15

    Dehydration of the natural open-framework compound, liskeardite, [(Al,Fe){sub 16}(AsO{sub 4}){sub 9}(OH){sub 21}(H{sub 2}O){sub 11}]·26H{sub 2}O, is accompanied by a change in the sign of the thermal expansion from positive to negative above room temperature, and at ~100 °C the structure undergoes a dramatic 2D contraction by co-operative rotation of heteropolyhedral columns that constitute the framework walls. Monoclinic liskeardite, I112 with a≈b≈24.7 Å, c ≈7.8 Å and β≈90° is transformed to a tetragonal phase, I-4 with a≈20.6 Å, c ≈7.7 Å. The associated 30% decrease in volume is unprecedented in inorganic microporous compounds. The flexibility of the contraction is related to the double-hinged nature of the column rotations about [001]. Octahedra in adjacent columns are interconnected by corner-sharing with the two pairs of anions forming opposing edges of AsO{sub 4} tetrahedra, so a double-hinged rotation mechanism operates. Thermal analysis and mass spectroscopic results for liskeardite show that the phase transition at ~100 °C is related to removal of the channel water. The tetragonal phase shows exceptionally large NTE behaviour. Over the temperature range 148–178 the NTE along a and b is close to linear with a magnitude of the order of −900×10{sup −6} °C{sup −1}. The contraction along the channel direction is smaller but still appreciable at −200×10{sup −6} °C{sup −1}. - Graphical abstract: Structure of the collapsed liskeardite framework, formed on dehydration above 100 °C. - Highlights: • The thermal expansion of the mineral liskeardite changes + to − above ambient. • Dehydration at 100 °C results in a record reversible 30% volume reduction. • In situ synchrotron XRD has led to a structural model for the dehydrated phase. • Framework breathing flexibility is attributed to a double-hinge rotation mechanism. • The dehydrated phase shows unprecedented -ve expansion for inorganic materials.

  5. Directionally Solidified Multifunctional Ceramics

    Science.gov (United States)

    2006-12-01

    Vidrio , Vol. 44 [5] (2005) pp 347 - 352. 9. F. W. Dynys and A. Sayir, "Self Assemble Silicide Architectures by Directional Solidification," Journal...Sociedad Espanola de Ceramica y Vidrio , Vol. 43 [4] (2004) pp 753 - 758. 21. A. Sayir and F. S. Lowery, "Combustion-Resistance of Silicon-Based Ceramics...Espafiola de Cerdmica y Vidrio , Vol. 43 [3], 2004. ISSN-0366-3175-BSCVB9. 14 37. P. Berger, A. Sayir and M. H. Berger, "Nuclear Microprobe using Elastic

  6. Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangyang; Li, Jiheng; Gao, Xuexu, E-mail: gaox@skl.ustb.edu.cn

    2017-02-01

    Alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} (x=0, 4.5, 6, 9, 12, 13.5) were prepared by directional solidification technique and exhibited a <001> preferred orientation along the axis of alloy rods. The saturation magnetostriction value of the Fe{sub 82}Ga{sub 13.5}Al{sub 4.5} alloy was 247 ppm under no pre-stress. The tensile properties of alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} at room temperature were investigated. The results showed that tensile ductility of binary Fe-Ga alloy was significantly improved with Al addition. The fracture elongation of the Fe{sub 82}Ga{sub 18} alloy was only 1.3%, while that of the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy increased up to 16.5%. Addition of Al increased the strength of grain boundary and cleavage, resulting in the enhancement of tensile ductility of the Fe-Ga-Al alloys. Analysis of deformation microstructure showed that a great number of deformation twins formed in the Fe-Ga-Al alloys, which were thought to be the source of serrated yielding in the stress-strain curves. The effect of Al content in the Fe-Ga-Al alloys on tensile ductility was also studied by the analysis of deformation twins. It indicated that the joint effect of slip and twinning was beneficial to obtain the best ductility in the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy. - Highlights: • Tensile ductility of directional solidified Fe-Ga alloys was significantly improved with Al addition. • The fracture elongation of binary Fe{sub 82}Ga{sub 18} alloy was only 1.3% at room temperature. • The fracture elongation of Fe{sub 82}Ga{sub 9}Al{sub 9} alloy was 16.5% at room temperature. • A great number of deformation twins formed in the Fe-Ga-Al alloys during tensile tests at room temperature.

  7. The potential of solidified molasses-based blocks for the correction of multinutritional deficiencies in buffaloes and other ruminants fed low-quality agro-industrial byproducts

    International Nuclear Information System (INIS)

    Leng, R.A.

    1984-01-01

    The main principles for formulating diets for ruminant animals in developing countries are outlined and examples provided of the successful application of these principles for feeding buffaloes and cattle in India, Philippines and Australia. It is concluded that the provision of a continuous supply of urea in the form of solidified feed blocks to increase the intake and digestibility of roughage-based diets is a management tool that could be used by small farmers in developing countries to improve weight gains and milk yields. Since such blocks can be easily supplemented with macro- and micro-elements needed by ruminants, they could also be useful for correcting multi-nutritional deficiencies. (author)

  8. Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy

    Science.gov (United States)

    Li, Zongbin; Hu, Wei; Chen, Fenghua; Zhang, Mingang; Li, Zhenzhuang; Yang, Bo; Zhao, Xiang; Zuo, Liang

    2018-04-01

    Polycrystalline Ni44.5Co5.1Mn37.1In13.3 alloy with coarse columnar-shaped grains and 〈0 0 1〉A preferred orientation was prepared by directional solidification. Due to the strong magnetostructural coupling, inverse martensitic transformation can be induced by the magnetic field, resulting in large negative magnetoresistance up to -58% under the field of 3 T. Such significant field controlled functional behaviors should be attributed to the coarse grains and strong preferred orientation in the directionally solidified alloy.

  9. Determination of performance criteria for high-level solidified nuclear waste from the commercial nuclear fuel cycle: a probabilistic safety analysis

    International Nuclear Information System (INIS)

    Heckman, R.A.

    1978-01-01

    To minimize the radiological risk from the operation of a waste management system for the safe disposal of high-level waste, performance characteristics of the solidified waste form must be specified. The minimum waste form characteristics that must be specified are the radionuclide volatilization fraction, airborne particulate dispersion fraction, and the aqueous dissolution characteristics. The results indicate that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. The actual values of expected risk are sensitive to modeling assumptions and data base uncertainties. The transportation step appears to be the most limiting in determining the required performance characteristics

  10. An Abnormal Increase of Fatigue Life with Dwell Time during Creep-Fatigue Deformation for Directionally Solidified Ni-Based Superalloy DZ445

    Science.gov (United States)

    Ding, Biao; Ren, Weili; Deng, Kang; Li, Haitao; Liang, Yongchun

    2018-03-01

    The paper investigated the creep-fatigue behavior for directionally solidified nickel-based superalloy DZ445 at 900 °C. It is found that the fatigue life shows an abnormal increase when the dwell time exceeds a critical value during creep-fatigue deformation. The area of hysteresis loop and fractograph explain the phenomenon quite well. The shortest life corresponds to the maximal area of hysteresis loop, i. e. the maximum energy to be consumed during the creep-fatigue cycle. The fractographic observation of failed samples further supports the abnormal behavior of fatigue life.

  11. Ligandless, ion pair-based and ultrasound assisted emulsification solidified floating organic drop microextraction for simultaneous preconcentration of ultra-trace amounts of gold and thallium and determination by GFAAS.

    Science.gov (United States)

    Fazelirad, Hamid; Taher, Mohammad Ali

    2013-01-15

    In the present work, a new, simple and efficient method for simultaneous preconcentration of ultra-trace amounts of gold and thallium is developed using an ion pair based-ultrasound assisted emulsification-solidified floating organic drop microextraction procedure before graphite furnace atomic absorption spectrometry determination. This methodology was used to preconcentrate the ion pairs formed between AuCl(4)(-) and TlCl(4)(-) and [C(23)H(42)]N(+) in a microliter-range volume of 1-undecanol. Several factors affecting the microextraction efficiency, such as HCl volume, type and volume of extraction solvent, sonication time, sample volume, temperature, ionic strength and [C(23)H(42)]NCl volume were investigated and optimized. Under the optimized conditions, the enrichment factor of 441 and 443 and calibration graphs of 2.2-89 and 22.2-667 ng L(-1) for gold and thallium were obtained, respectively. The intra- and inter-day precision of ± 4.4 and ± 4.9% for Au and ± 4.8 and ± 5.4% for Tl were obtained. The detection limit was 0.66 ng L(-1) for Au and 4.67 ng L(-1) for Tl. The results show that the liquid-liquid pretreatment using ion pair forming, is sensitive, rapid, simple and safe method for the simultaneous preconcentration of gold and thallium. The method was successfully applied for determination of gold and thallium in natural water and hair samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  13. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible

    Science.gov (United States)

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2017-12-01

    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c < h 1 + h 2 < h c + δ is satisfied. Lower frequency and smaller charge diameter can improve the uniformity of the magnetic field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  14. NWTS program criteria for mined geologic disposal of nuclear waste: functional requirements and performance criteria for waste packages for solidified high-level waste and spent fuel

    International Nuclear Information System (INIS)

    1982-07-01

    The Department of Energy (DOE) has primary federal responsibility for the development and implementation of safe and environmentally acceptable nuclear waste disposal methods. Currently, the principal emphasis in the program is on emplacement of nuclear wastes in mined geologic repositories well beneath the earth's surface. A brief description of the mined geologic disposal system is provided. The National Waste Terminal Storage (NWTS) program was established under DOE's predecessor, the Energy Research and Development Administration, to provide facilities for the mined geologic disposal of radioactive wastes. The NWTS program includes both the development and the implementation of the technology necessary for designing, constructing, licensing, and operating repositories. The program does not include the management of processing radioactive wastes or of transporting the wastes to repositories. The NWTS-33 series, of which this document is a part, provides guidance for the NWTS program in the development and implementation of licensed mined geologic disposal systems for solidified high-level and transuranic (TRU) wastes. This document presents the functional requirements and performance criteria for waste packages for solidified high-level waste and spent fuel. A separate document to be developed, NWTS-33(4b), will present the requirements and criteria for waste packages for TRU wastes. The hierarchy and application of these requirements and criteria are discussed in Section 2.2

  15. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.

    1991-06-01

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs

  16. Influence of Thermal Parameters, Microstructure, and Morphology of Si on Machinability of an Al–7.0 wt.% Si Alloy Directionally Solidified

    Directory of Open Access Journals (Sweden)

    Cássio A. P. Silva

    2018-01-01

    Full Text Available This study aims to correlate the influence of thermal and microstructural parameters such as growth rate and cooling rate (VL and TR and secondary dendrite spacing (λ2, respectively, in the machining cutting temperature and tool wear on the necking process of the Al–7 wt.% Si alloy solidified in a horizontal directional device using a high-speed steel with a tungsten tool. The dependence of λ2 on VL and TR and dependence of the maximum cutting temperature and maximum flank wear on λ2 were determined by power experimental laws given by λ2 = constant (VL and TRn and TMAX, VBMAX = constant (λ2n, respectively. The maximum cutting temperature increased with increasing of λ2. The opposite occurred with the maximum flank wear. The role of Si alloying element on the aforementioned results has also been analyzed. A morphological change of Si along the solidified ingot length has been observed, that is, the morphology of Si in the eutectic matrix has indicated a transition from particles to fibers along the casting together with an increase of the particle diameters with the position from the metal/mold interface.

  17. Rapid Tooling via Stereolithography

    OpenAIRE

    Montgomery, Eva

    2006-01-01

    Approximately three years ago, composite stereolithography (SL) resins were introduced to the marketplace, offering performance features beyond what traditional SL resins could offer. In particular, the high heat deflection temperatures and high stiffness of these highly filled resins have opened the door to several new rapid prototyping (RP) applications, including wind tunnel test modelling and, more recently, rapid tooling.

  18. Rapid improvement teams.

    Science.gov (United States)

    Alemi, F; Moore, S; Headrick, L; Neuhauser, D; Hekelman, F; Kizys, N

    1998-03-01

    Suggestions, most of which are supported by empirical studies, are provided on how total quality management (TQM) teams can be used to bring about faster organizationwide improvements. Ideas are offered on how to identify the right problem, have rapid meetings, plan rapidly, collect data rapidly, and make rapid whole-system changes. Suggestions for identifying the right problem include (1) postpone benchmarking when problems are obvious, (2) define the problem in terms of customer experience so as not to blame employees nor embed a solution in the problem statement, (3) communicate with the rest of the organization from the start, (4) state the problem from different perspectives, and (5) break large problems into smaller units. Suggestions for having rapid meetings include (1) choose a nonparticipating facilitator to expedite meetings, (2) meet with each team member before the team meeting, (3) postpone evaluation of ideas, and (4) rethink conclusions of a meeting before acting on them. Suggestions for rapid planning include reducing time spent on flowcharting by focusing on the future, not the present. Suggestions for rapid data collection include (1) sample patients for surveys, (2) rely on numerical estimates by process owners, and (3) plan for rapid data collection. Suggestions for rapid organizationwide implementation include (1) change membership on cross-functional teams, (2) get outside perspectives, (3) use unfolding storyboards, and (4) go beyond self-interest to motivate lasting change in the organization. Additional empirical investigations of time saved as a consequence of the strategies provided are needed. If organizations solve their problems rapidly, fewer unresolved problems may remain.

  19. Rapid response systems.

    Science.gov (United States)

    Lyons, Patrick G; Edelson, Dana P; Churpek, Matthew M

    2018-07-01

    Rapid response systems are commonly employed by hospitals to identify and respond to deteriorating patients outside of the intensive care unit. Controversy exists about the benefits of rapid response systems. We aimed to review the current state of the rapid response literature, including evolving aspects of afferent (risk detection) and efferent (intervention) arms, outcome measurement, process improvement, and implementation. Articles written in English and published in PubMed. Rapid response systems are heterogeneous, with important differences among afferent and efferent arms. Clinically meaningful outcomes may include unexpected mortality, in-hospital cardiac arrest, length of stay, cost, and processes of care at end of life. Both positive and negative interventional studies have been published, although the two largest randomized trials involving rapid response systems - the Medical Early Response and Intervention Trial (MERIT) and the Effect of a Pediatric Early Warning System on All-Cause Mortality in Hospitalized Pediatric Patients (EPOCH) trial - did not find a mortality benefit with these systems, albeit with important limitations. Advances in monitoring technologies, risk assessment strategies, and behavioral ergonomics may offer opportunities for improvement. Rapid responses may improve some meaningful outcomes, although these findings remain controversial. These systems may also improve care for patients at the end of life. Rapid response systems are expected to continue evolving with novel developments in monitoring technologies, risk prediction informatics, and work in human factors. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Microstructural investigation of D2 tool steel during rapid solidification

    Science.gov (United States)

    Delshad Khatibi, Pooya

    Solidification is considered as a key processing step in developing the microstructure of most metallic materials. It is, therefore, important that the solidification process can be designed and controlled in such a way so as to obtain the desirable properties in the final product. Rapid solidification refers to the system's high undercooling and high cooling rate, which can yield a microstructure with unique chemical composition and mechanical properties. An area of interest in rapid solidification application is high-chromium, high-carbon tool steels which experience considerable segregation of alloying elements during their solidification in a casting process. In this dissertation, the effect of rapid solidification (undercooling and cooling rate) of D2 tool steel on the microstructure and carbide precipitation during annealing was explored. A methodology is described to estimate the eutectic and primary phase undercooling of solidifying droplets. The estimate of primary phase undercooling was confirmed using an online measurement device that measured the radiation energy of the droplets. The results showed that with increasing primary phase and eutectic undercooling and higher cooling rate, the amount of supersaturation of alloying element in metastable retained austenite phase also increases. In the case of powders, the optimum hardness after heat treatment is achieved at different temperatures for constant periods of time. Higher supersaturation of austenite results in obtaining secondary hardness at higher annealing temperature. D2 steel ingots generated using spray deposition have high eutectic undercooling and, as a result, high supersaturation of alloying elements. This can yield near net shape D2 tool steel components with good mechanical properties (specifically hardness). The data developed in this work would assist in better understanding and development of near net shape D2 steel spray deposit products with good mechanical properties.

  1. Effect of swaging on the 1000 C compressive slow plastic flow characteristics of the directionally solidified eutectic alloy gamma/gamma prime-alpha

    Science.gov (United States)

    Whittenberger, J. D.; Wirth, G.

    1983-01-01

    Swaging between 750 and 1050 C has been investigated as a means to introduce work into the directionally solidified eutectic alloy gamma/gamma prime-alpha (Ni-32.3 wt percent Mo-6.3 wt percent Al) and increase the elevated temperature creep strength. The 1000 C slow plastic compressive flow stress-strain rate properties in air of as-grown, annealed, and worked nominally 10 and 25 percent materials have been determined. Swaging did not improve the slow plastic behavior. In fact large reductions tended to degrade the strength and produced a change in the deformation mechanism from uniform flow to one involving intense slip band formation. Comparison of 1000 C tensile and compressive strength-strain rate data reveals that deformation is independent of the stress state.

  2. Determination of the leaching rate of radionuclide 134Cs from the solidified radioactive wastes in Syrian Portland cement and cement-microsilica matrixes

    International Nuclear Information System (INIS)

    Ismail Shaaban; Nasim Assi

    2010-01-01

    The suitability of Syrian Portland cement for disposal of solidified low-level radioactive waste was assessed by measuring the leaching rate of 134 Cs. In ordinary cement concrete, a leaching rate of 1.309 x 10 -3 g/cm 2 per day was measured. Mixing this concrete with microsilica reduced significantly the leaching rate to 3.106 x 10 -4 g/cm 2 per day for 1% mixing, and to 9.645 x 10 -5 g/cm 2 per day for 3% mixing. It was also found that the application of a latex paint reduced these leaching rates by about 10%. These results, along with mechanical strength tests (under radiation exposure, high temperature, long water immersion and freeze-thaw cycling) indicate that Syrian Portland cement is suited for the disposal of low-level radioactive waste. (author)

  3. Instabilities in rapid directional solidification under weak flow

    Science.gov (United States)

    Kowal, Katarzyna N.; Davis, Stephen H.; Voorhees, Peter W.

    2017-12-01

    We examine a rapidly solidifying binary alloy under directional solidification with nonequilibrium interfacial thermodynamics viz. the segregation coefficient and the liquidus slope are speed dependent and attachment-kinetic effects are present. Both of these effects alone give rise to (steady) cellular instabilities, mode S , and a pulsatile instability, mode P . We examine how weak imposed boundary-layer flow of magnitude |V | affects these instabilities. For small |V | , mode S becomes a traveling and the flow stabilizes (destabilizes) the interface for small (large) surface energies. For small |V | , mode P has a critical wave number that shifts from zero to nonzero giving spatial structure. The flow promotes this instability and the frequencies of the complex conjugate pairs each increase (decrease) with flow for large (small) wave numbers. These results are obtained by regular perturbation theory in powers of V far from the point where the neutral curves cross, but requires a modified expansion in powers of V1 /3 near the crossing. A uniform composite expansion is then obtained valid for all small |V | .

  4. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  5. Rapid solidification of Ni50Nb28Zr22 glass former alloy through suction-casting

    International Nuclear Information System (INIS)

    Miyamoto, M.I.; Santos, F.S.; Bolfarini, C.; Botta Filho, W.J.; Kiminami, C.S.

    2010-01-01

    To select new alloys with high glass forming ability (GFA) to present amorphous structure in millimeter scale, several semi-empirical models have been developed. In the present work, a new alloy, Ni 50 Nb 28 Zr 22 d, was designed based on the combination of topological instability lambda (A) criterion and electronegativity difference (Δe). The alloy was rapidly solidified in a bulk wedge sample by cooper mold suction casting in order to investigate its amorphization. The sample was characterized by the combination of scanning electron microscopy (MEV), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). For the minimum thickness of 200 μm analyzed, it was found that the alloy did not show a totally amorphous structure. Factor such as low cooling rate, existence of oxides on the surface of the elements and presence of oxygen in the atmosphere of equipment did not allowed the achievement of higher amorphous thickness. (author)

  6. Rapid world modeling

    International Nuclear Information System (INIS)

    Little, Charles; Jensen, Ken

    2002-01-01

    Sandia National Laboratories has designed and developed systems capable of large-scale, three-dimensional mapping of unstructured environments in near real time. This mapping technique is called rapid world modeling and has proven invaluable when used by prototype systems consisting of sensory detection devices mounted on mobile platforms. These systems can be deployed into previously unmapped environments and transmit real-time 3-D visual images to operators located remotely. This paper covers a brief history of the rapid world modeling system, its implementation on mobile platforms, and the current state of the technology. Applications to the nuclear power industry are discussed. (author)

  7. JINR rapid communications

    International Nuclear Information System (INIS)

    1998-01-01

    The present collection of rapid communications from JINR, Dubna, contains seven separate records on relativistic multiparticle processes in the central rapidity region at asymptotically high energies, a new experimental study of charged K→3π decays, pre-Cherenkov radiation as a phenomenon of 'light barrier', stable S=-2 H dibaryon found in Dubna, calculation of Green functions and gluon top in some unambiguous gauges, a method of a fast selection of inelastic nucleus-nucleus collisions for the CMS experiment and the manifestation of jet quenching in differential distributions of the total transverse energy in nucleus-nucleus collisions

  8. Rapid microbiology - raising awareness.

    Science.gov (United States)

    Bailie, Jonathan

    2016-01-01

    A 'high-level overview' of some of the emerging rapid microbiology technologies designed to help healthcare engineering and infection control teams working in hospitals and other healthcare facilities more rapidly identify potentially hazardous levels of waterborne microorganisms in their water systems, enabling them to take prompt remedial action, and a look at the some of the 'pros and cons' of such testing techniques, was given by Nalco technical director, Howard Barnes, the vice-chair of the Legionella Control Association (LCA), at a recent LCA open day. HEJ editor, Jonathan Bailie, reports.

  9. JINR rapid communications

    International Nuclear Information System (INIS)

    1998-01-01

    The present collection of rapid communications from JINR, Dubna, contains seven separate records on invisible Z-boson width and restrictions on next-to-minimal supersymmetric standard model, cosmic test of honeycomb drift chambers, fission of 209 Bi, 232 Th, 235 U, 238 U and 237 Np in a spallation neutron field, rapid screening of spontaneous and radiation-induced structural changes at the vestigial gene of Drosophila melanogaster by polymerase chain reaction, gamma-ray multiplicities in sub-barrier fission of 226 Th and the decay constants of the scalar and pseudoscalar mesons in the quark models with quasilocal interaction

  10. Rapid Solidification of AB{sub 5} Hydrogen Storage Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen-Dahl, Sverre

    2002-01-01

    thesis the changes of the crystal structure and the grain structure of La{sub 0.60}Ce{sub 0.29}Pr{sub 0.04}Nd{sub 0.07}Ni{sub 3.37}Co{sub 0.79}Mn{sub 0.25}Al{sub 0.7}= cooling rate during chill-block melt spinning are described. Totally, the material was rapidly solidified at 9 different cooling rates. The grain structure, crystallographic texture and the lattice parameters were studied by means of electron microscopy and powder X-ray diffraction. Additionally, the density of the rapidly solidified materials was measured by a gas pycnometer. All these properties were found to change with increasing cooling rate. The grain size decreased continuously with increasing cooling rate and was in the range of 1-5 {mu}m. The strength of the crystallographic texture first increased and then decreased with increasing cooling rate. Transmission electron microscopy studies revealed that the grains contained a large amount of crystallographic twins and that the solidification morphology changed from cellular to plane front at a cooling rate during solidification of approximately 6*10{sup 4} Ks{sup -1}. The unit cell volume and the density followed the same pattern with increasing cooling rate and decreased within each solidification morphology, but at the cooling rate from which the morphology changed, both these parameters suddenly increased. The identical variations in the unit cell volume and the density is explained by formation of excess lattice vacancies during rapid solidification. In Part IV of the thesis rapid solidification of the materials La{sub 0.60}Ce{sub 0.27}Pr{sub 0.04}Nd{sub 0.09}Ni{sub 4.76}Sn{sub 0.24} and LaNi{sub 4.76}Sn different cooling rates are described. The materials were analysed by means of electron microscopy and powder X-ray diffraction. The grain structures of both alloys were found to be in the nanometer range, and the grain sizes were almost invariant with increasing cooling rate. Furthermore, the lattice parameters of these materials were almost

  11. The measurement of 129I for the cement and the paraffin solidified low and intermediate level wastes (LILWs), spent resin or evaporated bottom from the pressurized water reactor (PWR) nuclear power plants.

    Science.gov (United States)

    Park, S D; Kim, J S; Han, S H; Ha, Y K; Song, K S; Jee, K Y

    2009-09-01

    In this paper a relatively simple and low cost analysis procedure to apply to a routine analysis of (129)I in low and intermediate level radioactive wastes (LILWs), cement and paraffin solidified evaporated bottom and spent resin, which are produced from nuclear power plants (NPPs), pressurized water reactors (PWR), is presented. The (129)I is separated from other nuclides in LILWs using an anion exchange adsorption and solvent extraction by controlling the oxidation and reduction state and is then precipitated as silver iodide for counting the beta activity with a low background gas proportional counter (GPC). The counting efficiency of GPC was varied from 4% to 8% and it was reversely proportional to the weight of AgI by a self absorption of the beta activity. Compared to a higher pH, the chemical recovery of iodide as AgI was lowered at pH 4. It was found that the chemical recovery of iodide for the cement powder showed a lower trend by increasing the cement powder weight, but it was not affected for the paraffin sample. In this experiment, the overall chemical recovery yield of the cement and paraffin solidified LILW samples and the average weight of them were 67+/-3% and 5.43+/-0.53 g, 70+/-7% and 10.40+/-1.60 g, respectively. And the minimum detectable activity (MDA) of (129)I for the cement and paraffin solidified LILW samples was calculated as 0.070 and 0.036 Bq/g, respectively. Among the analyzed cement solidified LILW samples, (129)I activity concentration of four samples was slightly higher than the MDA and their ranges were 0.076-0.114 Bq/g. Also of the analyzed paraffin solidified LILW samples, five samples contained a little higher (129)I activity concentration than the MDA and their ranges were 0.036-0.107 Bq/g.

  12. The measurement of 129I for the cement and the paraffin solidified low and intermediate level wastes (LILWs), spent resin or evaporated bottom from the pressurized water reactor (PWR) nuclear power plants

    International Nuclear Information System (INIS)

    Park, S.D.; Kim, J.S.; Han, S.H.; Ha, Y.K.; Song, K.S.; Jee, K.Y.

    2009-01-01

    In this paper a relatively simple and low cost analysis procedure to apply to a routine analysis of 129 I in low and intermediate level radioactive wastes (LILWs), cement and paraffin solidified evaporated bottom and spent resin, which are produced from nuclear power plants (NPPs), pressurized water reactors (PWR), is presented. The 129 I is separated from other nuclides in LILWs using an anion exchange adsorption and solvent extraction by controlling the oxidation and reduction state and is then precipitated as silver iodide for counting the beta activity with a low background gas proportional counter (GPC). The counting efficiency of GPC was varied from 4% to 8% and it was reversely proportional to the weight of AgI by a self absorption of the beta activity. Compared to a higher pH, the chemical recovery of iodide as AgI was lowered at pH 4. It was found that the chemical recovery of iodide for the cement powder showed a lower trend by increasing the cement powder weight, but it was not affected for the paraffin sample. In this experiment, the overall chemical recovery yield of the cement and paraffin solidified LILW samples and the average weight of them were 67±3% and 5.43±0.53 g, 70±7% and 10.40±1.60 g, respectively. And the minimum detectable activity (MDA) of 129 I for the cement and paraffin solidified LILW samples was calculated as 0.070 and 0.036 Bq/g, respectively. Among the analyzed cement solidified LILW samples, 129 I activity concentration of four samples was slightly higher than the MDA and their ranges were 0.076-0.114 Bq/g. Also of the analyzed paraffin solidified LILW samples, five samples contained a little higher 129 I activity concentration than the MDA and their ranges were 0.036-0.107 Bq/g.

  13. Navigate the Digital Rapids

    Science.gov (United States)

    Lindsay, Julie; Davis, Vicki

    2010-01-01

    How can teachers teach digital citizenship when the digital landscape is changing so rapidly? How can teachers teach proper online social interactions when the students are outside their classroom and thus outside their control? Will encouraging students to engage in global collaborative environments land teachers in hot water? These are the…

  14. Rapid road repair vehicle

    Science.gov (United States)

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  15. Rapidly processable radiographic material

    International Nuclear Information System (INIS)

    Brabandere, L.A. de; Borginon, H.A.; Pattyn, H.A.; Pollet, R.J.

    1981-01-01

    A new rapidly processable radiographic silver halide material is described for use in mammography and non-destructive testing of industrial materials. The radiographic material is used for direct exposure to penetrating radiation without the use of fluorescent-intensifying screens. It consists of a transparent support with a layer of hydrophilic colloid silver halide emulsion on one or both sides. Examples of the preparation of three different silver halide emulsions are given including the use of different chemical sensitizers. These new radiographic materials have good resistance to the formation of pressure marks in rapid processing apparatus and they have improved sensitivity for direct exposure to penetrating radiation compared to conventional radiographic emulsions. (U.K.)

  16. Rapid manufacturing for microfluidics

    CSIR Research Space (South Africa)

    Land, K

    2012-10-01

    Full Text Available for microfluidics K. LAND, S. HUGO, M MBANJWA, L FOURIE CSIR Materials Science and Manufacturing P O Box 395, Pretoria 0001, SOUTH AFRICA Email: kland@csir.co.za INTRODUCTION Microfluidics refers to the manipulation of very small volumes of fluid.... Microfluidics is at the forefront of developing solutions for drug discovery, diagnostics (from glucose tests to malaria and TB testing) and environmental diagnostics (E-coli monitoring of drinking water). In order to quickly implement new designs, a rapid...

  17. Tiber Personal Rapid Transit

    Directory of Open Access Journals (Sweden)

    Diego Carlo D'agostino

    2011-02-01

    Full Text Available The project “Tiber Personal Rapid Transit” have been presented by the author at the Rome City Vision Competition1 2010, an ideas competition, which challenges architects, engineers, designers, students and creatives individuals to develop visionary urban proposals with the intention of stimulating and supporting the contemporary city, in this case Rome. The Tiber PRT proposal tries to answer the competition questions with the definition of a provocative idea: a Personal Rapid transit System on the Tiber river banks. The project is located in the central section of the Tiber river and aims at the renewal of the river banks with the insertion of a Personal Rapid Transit infrastructure. The project area include the riverbank of Tiber from Rome Transtevere RFI station to Piazza del Popolo, an area where main touristic and leisure attractions are located. The intervention area is actually no used by the city users and residents and constitute itself a strong barrier in the heart of the historic city.

  18. Rapid MR imaging

    International Nuclear Information System (INIS)

    Edelman, R.R.; Buxton, R.B.; Brady, T.J.

    1988-01-01

    Conventional magnetic resonance (MR) imaging methods typically require several minutes to produce an image, but the periods of respiration, cardiac motion and peristalsis are on the order of seconds or less. The need to reduce motion artifact, as well as the need to reduce imaging time for patient comfort and efficiency, have provided a strong impetus for the development of rapid imaging methods. For abdominal imaging, motion artifacts due to respiration can be significantly reduced by collecting the entire image during one breath hold. For other applications, such as following the kinetics of administered contrast agents, rapid imaging is essential to achieve adequate time resolution. A shorter imaging time entails a cost in image signal/noise (S/N), but improvements in recent years in magnet homogeneity, gradient and radiofrequency coil design have led to steady improvements in S/N and consequently in image quality. For many chemical applications the available S/N is greater than needed, and a trade-off of lower S/N for a shorter imaging time is acceptable. In this chapter, the authors consider the underlying principles of rapid imaging as well as clinical applications of these methods. The bulk of this review concentrates on short TR imaging, but methods that provide for a more modest decrease in imaging time as well as or those that dramatically shorten the imaging time to tens of milliseconds are also discussed

  19. Characterization of solidified radioactive waste and container due to the incorporation of high density polyethylene granules and powder in mortar matrices

    International Nuclear Information System (INIS)

    Peric, A.D.

    1999-01-01

    Powder and granules of the high density polyethylene (PEHD) were used to prepare mortar based matrices for immobilization of radioactive waste materials containing 137 Cs, as well as containers for solidified radioactive waste form. Seven types of matrices, differ due to the percentage of granules and filler material added, were investigated. PEHD powder and granules were added to mortar matrix preparations with the objective of improving physico-chemical characteristics of the radwaste-mortar matrix mixtures, in particular the leach-rate of the immobilized radionuclide, as well as mechanical characteristics either of mortar matrix and container. In this paper, only mechanical strength aspect of the investigated mortar and concrete container formulations, is presented. The equivalent diameter of the PEHD granules used was 2.0 mm. PEHD granules were used to replace 100 volume percent of stone granules, sifted size of 2.0 mm, normally used in the matrix preparation, in order to decrease the porosity and density of the mortar matrix and to avoid segregation of the stone particles at the bottom of the immobilized radioactive waste cylindrical form. PEHD powder, particle size of 250 micrometer, was added as filler to the mortar formulation, replacing 5, 8 and 10 wt% of the total cement weight in matrix formulation and 15 and 18 wt% of the total cement weight in container formulation. Cured samples were investigated on mechanical strength, using 150 MPa hydraulic press, in order to determine influence of added polyethylene granules and powder on samples resistance to mechanical forces that solidified waste materials and concrete containers may experience at the disposal site. Results of performed investigations have shown that samples prepared with polyethylene granules, replacing 100 wt% of the stone granules, have almost twice as much mechanical strength than samples prepared with stone aggregate. Samples prepared with PEHD granules and powder have mechanical strength

  20. Primary Dendrite Arm Spacing and Trunk Diameter in Al-7-Weight-Percentage Si Alloy Directionally Solidified Aboard the International Space Station

    Science.gov (United States)

    Ghods, M.; Tewari, S. N.; Lauer, M.; Poirier, D. R.; Grugel, R. N.

    2016-01-01

    Under a NASA-ESA collaborative research project, three Al-7-weight-percentage Si samples (MICAST-6, MICAST-7 and MICAST 2-12) were directionally solidified aboard the International Space Station to determine the effect of mitigating convection on the primary dendrite array. The samples were approximately 25 centimeters in length with a diameter of 7.8 millimeter-diameter cylinders that were machined from [100] oriented terrestrially grown dendritic Al-7Si samples and inserted into alumina ampoules within the Sample Cartridge Assembly (SCA) inserts of the Low Gradient Furnace (LGF). The feed rods were partially remelted in space and directionally solidified to effect the [100] dendrite-orientation. MICAST-6 was grown at 5 microns per second for 3.75 centimeters and then at 50 microns per second for its remaining 11.2 centimeters of its length. MICAST-7 was grown at 20 microns per second for 8.5 centimeters and then at 10 microns per second for 9 centimeters of its remaining length. MICAST2-12 was grown at 40 microns per second for 11 centimeters. The thermal gradient at the liquidus temperature varied from 22 to 14 degrees Kelvin per centimeter during growth of MICAST-6, from 26 to 24 degrees Kelvin per centimeter for MICAST-7 and from 33 to 31 degrees Kelvin per centimeter for MICAST2-12. Microstructures on the transverse sections along the sample length were analyzed to determine nearest-neighbor spacing of the primary dendrite arms and trunk diameters of the primary dendrite-arrays. This was done along the lengths where steady-state growth prevailed and also during the transients associated with the speed-changes. The observed nearest-neighbor spacings during steady-state growth of the MICAST samples show a very good agreement with predictions from the Hunt-Lu primary spacing model for diffusion controlled growth. The observed primary dendrite trunk diameters during steady-state growth of these samples also agree with predictions from a coarsening-based model

  1. Microdrilled cartilage defects treated with thrombin-solidified chitosan/blood implant regenerate a more hyaline, stable, and structurally integrated osteochondral unit compared to drilled controls.

    Science.gov (United States)

    Marchand, Catherine; Chen, Gaoping; Tran-Khanh, Nicolas; Sun, Jun; Chen, Hongmei; Buschmann, Michael D; Hoemann, Caroline D

    2012-03-01

    This study analyzed the long-term cartilage and subchondral bone repair of microdrilled defects treated with chitosan glycerol-phosphate/blood implant, using thrombin (Factor IIa) to accelerate in situ solidification. We also evaluated the cartilage repair response to six smaller microdrill holes compared with two larger holes. Bilateral knee trochlear cartilage defects were created in n=8 skeletally mature rabbits, drilled with six proximal 0.5 mm and two distal 0.9 mm holes, then covered with in situ-solidified IIa-implants (treated) or with IIa-alone (control). After 6.5 months of repair, cartilage repair tissues were analyzed by histological scoring and histomorphometry for hyaline matrix characteristics and osseous integration. Subchondral repair bone was analyzed by 3D microcomputed tomography and compared to acute defects (n=6) and intact trochlea (n=8). Implant-treated cartilage repair tissues had higher structural integrity through the entire defect (p=0.02), twofold higher percent staining for glycosaminoglycan (p=0.0004), and ~24% more collagen type II staining over the smaller drill holes (p=0.008) compared with controls. Otherwise, hole diameter had no specific effect on cartilage repair. The subchondral bone plate was partially restored in treated and control defects but less dense than intact trochlea, with evidence of incomplete regeneration of the calcified cartilage layer. More residual drill holes (p=0.054) were detected in control versus treated defects, and control defects with more than 40% residual holes presented abnormally thicker trabeculae compared with treated defects. Low osteoclast numbers after 6.5 months repair suggested that bone was no longer remodeling. The subchondral bone plate surrounding the defects exhibited a significant thickening compared with age-matched intact trochlea. These data suggest that debridement and drilling can lead to long-term subchondral bone changes outside the cartilage defect. Compared with drilled

  2. JINR rapid communications

    International Nuclear Information System (INIS)

    1998-01-01

    The present collection of rapid communications from JINR, Dubna, contains seven separate records on decays of excited strange mesons in the extended NJL model, production of heavy evaporation residues in the reactions induced by an extracted 48 Ca beam on a 208 Pb target, scaling behaviour of tensor analyzing power (A yy ) in the inelastic scattering or relativistic deuterons,two-photon collisions at very low Q 2 from LEP2: forthcoming results, high magnetic field uniformity superconducting magnet for a movable polarized target, multichannel time-to-digital converter for drift detector and wavelet-analysis: application to Gaussian signals

  3. JINR rapid communications

    International Nuclear Information System (INIS)

    1995-01-01

    The present collection of rapid communications from JINR, Dubna, contains eight separate reports on the measurement of charge radii for Ti nuclei, spectroscopy of 13 Be, concentrations of hadrons and quark-gluon plasma in mixed phase, experimental results on one-spin pion asymmetry in the d↑ + A → π±(90 0 ) + X process, new results on cumulative pion and proton production in p-D collisions, investigation of charge exchange reactions, the study of the tensor analyzing power in cumulative particle production on a deuteron beam and an evidence for the excited states of the S = -2 stable light dibaryon. 32 figs., 6 tabs

  4. JINR rapid communications

    International Nuclear Information System (INIS)

    1996-01-01

    The present collection of rapid communications from JINR, Dubna, contains five separate reports on analytic QCD running coupling with finite IR behaviour and universal α bar s (0) value, quark condensate in the interacting pion- nucleon medium at finite temperature and baryon number density, γ-π 0 discrimination with a shower maximum detector using neural networks for the solenoidal tracker at RHIC, off-specular neutron reflection from magnetic media with nondiagonal reflectivity matrices and molecular cytogenetics of radiation-induced gene mutations in Drosophila melanogaster. 21 fig., 1 tab

  5. JINR rapid communications

    International Nuclear Information System (INIS)

    1999-01-01

    The present collection of rapid communications from JINR, Dubna, contains seven separate records on additional conditions on eigenvectors in solving inverse problem for two-dimensional Schroedinger equation, on an absolute calibration of deuteron beam polarization at LHE, determination of the vector component of the polarization of the JINR synchrophasotron deuteron beam, wavelet-analysis: criterion of reliable signal selection, on asymptotics in inclusive production of antinuclei and nuclear fragments, use of neutron activation analysis at the IBR-2 reactor for atmospheric monitoring and impulse method for temperature measurement of silicon detectors

  6. JINR rapid communications

    International Nuclear Information System (INIS)

    1995-01-01

    The present collection of rapid communications from JINR, Dubna, contains six separate reports on Monte Carlo simulation of silicon detectors for the ALICE experiment at LHC, a study of single tagged multihadronic γγ* events at an average Q 2 of 90 GeV 2 , epithermal neutron activation analysis of moss, lichen and pine needles in atmospheric deposition monitoring, the theory of neutrino oscillation, coupled quadrupole and monopole vibrations of large amplitude and test of the Ellis-Jaffe sum rule using parametrization of the measured lepton-proton asymmetry. 21 figs., 18 tabs

  7. Rapidly variable relatvistic absorption

    Science.gov (United States)

    Parker, M.; Pinto, C.; Fabian, A.; Lohfink, A.; Buisson, D.; Alston, W.; Jiang, J.

    2017-10-01

    I will present results from the 1.5Ms XMM-Newton observing campaign on the most X-ray variable AGN, IRAS 13224-3809. We find a series of nine absorption lines with a velocity of 0.24c from an ultra-fast outflow. For the first time, we are able to see extremely rapid variability of the UFO features, and can link this to the X-ray variability from the inner accretion disk. We find a clear flux dependence of the outflow features, suggesting that the wind is ionized by increasing X-ray emission.

  8. Application of rapid solidification powder metallurgy to the fabrication of high-strength, high-ductility Mg-Al-Zn-Ca-La alloy through hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Ayman, Elsayed, E-mail: ayman@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Junko, Umeda; Katsuyoshi, Kondoh [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2011-01-15

    The microstructure and mechanical properties of hot extruded Mg-7Al-1Zn-1Ca powder alloys with an addition of 1.5% La or 3.3% La were investigated. Both rapidly solidified powders, produced via spinning water atomization process, and cast billets were extruded at 573, 623 and 673 K to optimize the processing conditions for obtaining better mechanical response. Powders were consolidated using both cold compaction and spark plasma sintering. The tensile properties of the extruded alloys were then evaluated and correlated to their microstructures. The results showed that the use of rapidly solidified Mg-7Al-1Zn-1Ca alloy powders with La additions could lead to effective grain refinement and super saturation of alloying elements, which in turn resulted in the improved mechanical response. The Mg-7Al-1Zn-1Ca-1.5La alloy extruded at 573 K attained ultimate tensile strength of 450 {+-} xx MPa and elongation of 17 {+-} xx%, superior to the Mg-7Al-1Zn-1Ca-3.3La alloy and other Mg alloys like Mg-Al-Mn-Ca. This may help extend the application of Mg alloys to higher load-carrying parts while maintaining the excellent advantage of light weight.

  9. Rapid Geophysical Surveyor

    International Nuclear Information System (INIS)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques

  10. Alloy composition dependence of formation of porous Ni prepared by rapid solidification and chemical dealloying

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhen [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Zhang Zhonghua [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)], E-mail: zh_zhang@sdu.edu.cn; Jia Haoling [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Qu Yingjie [Shandong Labor Occupational Technology College, Jingshi Road 388, Jinan 250022 (China); Liu Guodong; Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-03-20

    In this paper, the effect of alloy composition on the formation of porous Ni catalysts prepared by chemical dealloying of rapidly solidified Al-Ni alloys has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and N{sub 2} adsorption experiments. The experimental results show that rapid solidification and alloy composition have a significant effect on the phase constituent and microstructure of Al-Ni alloys. The melt spun Al-20 at.% Ni alloy consists of {alpha}-Al, NiAl{sub 3} and Ni{sub 2}Al{sub 3}, while the melt spun Al-25 and 31.5 at.% Ni alloys comprise NiAl{sub 3} and Ni{sub 2}Al{sub 3}. Moreover, the formation and microstructure of the porous Ni catalysts are dependent upon the composition of the melt spun Al-Ni alloys. The morphology and size of Ni particles in the Ni catalysts inherit from those of grains in the melt spun Al-Ni alloys. Rapid solidification can extend the alloy composition of Al-Ni alloys suitable for preparation of the Ni catalysts, and obviously accelerate the dealloying process of the Al-Ni alloys.

  11. Comparative Study on the Grain Refinement of Al-Si Alloy Solidified under the Impact of Pulsed Electric Current and Travelling Magnetic Field

    Directory of Open Access Journals (Sweden)

    Yunhu Zhang

    2016-07-01

    Full Text Available It is high of commercial importance to generate the grain refinement in alloys during solidification by means of electromagnetic fields. Two typical patterns of electromagnetic fields, pulsed electric currents (ECP and traveling magnetic field (TMF, are frequently employed to produce the finer equiaxed grains in solidifying alloys. Various mechanisms were proposed to understand the grain refinement in alloys caused by ECP and TMF. In this paper, a comparative study is carried out in the same solidification regime to investigate the grain refinement of Al-7 wt. %Si alloy driven by ECP and TMF. Experimental results show that the application of ECP or TMF can cause the same grain refinement occurrence period, during which the refinement of primary Al continuously occurs. In addition, the related grain refinement mechanisms are reviewed and discussed, which shows the most likely one caused by ECP and TMF is the promoted dendrite fragmentation as the result of the ECP-induced or TMF-induced forced flow. It suggests that the same grain refinement process in alloys is provoked when ECP and TMF are applied in the same solidification regime, respectively.

  12. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    Science.gov (United States)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  13. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr–Ti–Cu–Ni amorphous alloy ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.H. [University of Science and Technology, Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lim, C.H. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, J.G., E-mail: jglee88@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, M.K.; Rhee, C.K. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-10-15

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr{sub 48}Ti{sub 16}Cu{sub 17}Ni{sub 19} (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr{sub 2}Ni and particulate Zr{sub 2}Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr{sub 2}Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr{sub 2}Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C)

  14. Composition, Taste, Aroma, and Antioxidant Activity of Solidified Noncentrifugal Brown Sugars Prepared from Whole Stalk and Separated Pith of Sugarcane (Saccharum officinarum L.).

    Science.gov (United States)

    Takahashi, Makoto; Ishmael, Mutanda; Asikin, Yonathan; Hirose, Naoto; Mizu, Masami; Shikanai, Takesi; Tamaki, Hajime; Wada, Koji

    2016-10-25

    In this study, 2 types of solidified noncentrifugal brown sugars (W-NCS and P-NCS) were prepared from the whole stalk and separated pith, respectively, of raw sugarcane (Saccharum officinarum L.). These products were discriminated in terms of their quality attributes, including color, sugars and minerals composition, taste, aroma, and antioxidant activity. The brown color of P-NCS was clearly different compared with that of W-NCS with a color difference value (ΔE * ) of 9.36. There was no difference in the sugars and minerals composition between the 2 types of sugar, which led to very similar taste profiles. However, P-NCS had a weaker aroma intensity than W-NCS did. Moreover, P-NCS retained more than 60% of the antioxidant activity of W-NCS. The information gleaned from this study might be used to select appropriate end-uses for these 2 types of sugars. © 2016 Institute of Food Technologists®.

  15. Speciation and determination of ultra trace amounts of chromium by solidified floating organic drop microextraction (SFODME) and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moghadam, Masoud Rohani [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Dadfarnia, Shayessteh, E-mail: sdadfarnia@yazduni.ac.ir [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Haji Shabani, Ali Mohammad [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of)

    2011-02-15

    Solidified floating organic drop microextraction (SFODME) method in combination with graphite furnace atomic absorption spectrometry (GFAAS) has been used for the determination of chromium species in water and urine samples. 1-undecanol containing 2-thenoyltrifluoroacetone (TTA) was used as a selective chelating agent for the extraction of Cr(III). The total Cr was determined after the reduction of Cr(VI) to Cr(III) with hydroxylamine. The concentration of Cr(VI) was determined from the difference between the concentration of total chromium and the Cr(III). Several variables such as the sample pH, concentration of TTA, salt concentration, extraction time and the sample volume were investigated in detail. Under the optimum conditions, the limit of detection of the proposed method was 0.006 {mu}g l{sup -1} for Cr(III) and the relative standard deviation for six replicate determinations at 0.1 {mu}g l{sup -1} Cr(III) was 5.1%. The proposed method was successfully applied for the determination of chromium species in tap water, well water, mineral water, and urine samples.

  16. Standard test method for accelerated leach test for diffusive releases from solidified waste and a computer program to model diffusive, fractional leaching from cylindrical waste forms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method provides procedures for measuring the leach rates of elements from a solidified matrix material, determining if the releases are controlled by mass diffusion, computing values of diffusion constants based on models, and verifying projected long-term diffusive releases. This test method is applicable to any material that does not degrade or deform during the test. 1.1.1 If mass diffusion is the dominant step in the leaching mechanism, then the results of this test can be used to calculate diffusion coefficients using mathematical diffusion models. A computer program developed for that purpose is available as a companion to this test method (Note 1). 1.1.2 It should be verified that leaching is controlled by diffusion by a means other than analysis of the leach test solution data. Analysis of concentration profiles of species of interest near the surface of the solid waste form after the test is recommended for this purpose. 1.1.3 Potential effects of partitioning on the test results can...

  17. Microstructure investigation of NiAl-Cr(Mo) interface in a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal

    International Nuclear Information System (INIS)

    Chen, Y.X.; Cui, C.Y.; Guo, J.T.; Li, D.X.

    2004-01-01

    The microstructure of a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal in as-processed and heat-treated states has been studied by means of scanning electron microscopy and high resolution electron microscopy (HREM). The microstructure of the NiAl-Cr(Mo) eutectic was characterized by lamellar Cr(Mo) phases embedded within NiAl matrix with common growth direction of . The interface between NiAl and lamellar Cr(Mo) did not have any transition layers. Misfit dislocations were observed at the NiAl-Cr(Mo) interface. In addition to lamellar Cr(Mo) phases, coherent Cr(Mo, Ni, Al) precipitates and NiAl precipitates were also observed in the NiAl matrix and lamellar Cr(Mo) phases, respectively. After hot isostatic pressing and heat treatment, the NiAl-Cr(Mo) interfaces became smooth and straight. Square array of misfit dislocations was directly observed at the (0 0 1) interface between NiAl and Cr(Mo, Ni, Al) precipitate. The configuration of misfit dislocation network showed a generally good agreement with prediction based on the geometric O-lattice model

  18. Sustained-release diclofenac potassium-loaded solid lipid microparticle based on solidified reverse micellar solution: in vitro and in vivo evaluation.

    Science.gov (United States)

    Chime, Salome Amarachi; Attama, Anthony Amaechi; Builders, Philip F; Onunkwo, Godswill C

    2013-01-01

    To formulate sustained-release diclofenac potassium-loaded solid lipid microparticles (SLMs) based on solidified reverse micellar solution (SRMS) and to evaluate the in vitro and in vivo properties. SRMS consisting of mixtures of Phospholipon® 90H and Softisan® 154 were used to formulate diclofenac potassium-loaded SLMs. Characterization based on the particle size and morphology, stability and encapsulation efficiency (EE%) were carried out on the SLMs. In vitro release was carried out in simulated intestinal fluid (pH 7.5). Anti-inflammatory and ulcerogenic properties were studied using rats. Maximum EE% of 95%, 94% and 93% were obtained for SLMs formulated with SRMS 1:1, 2:1 and 1:2, respectively. In vitro release showed about 85-90% drug release at 13 h. Diclofenac potassium-loaded SLMs showed good anti-inflammatory and gastro-protective properties. Diclofenac potassium-loaded SLMs based on SRMS could be used orally or parenterally under controlled conditions, for once daily administration.

  19. Measurement of the leaching rate of radionuclide 134Cs from the solidified radioactive sources in Portland cement mixed with microsilica and barite matrixes

    International Nuclear Information System (INIS)

    Shaaban, Ismail; Assi, Nasim

    2011-01-01

    Portland cement was mixed with radionuclide 134 Cs to produce low-level radioactive sources. These sources were surrounded with cement mixed with different materials like microsilica and barite. The leaching rate of 134 Cs from the solidified radioactive source in Portland cement alone was found to be 4.481 x 10 -4 g/cm 2 per day. Mixing this Portland cement with microsilica and with barite reduced significantly the leaching rate to 1.091 x 10 -4 g/cm 2 per day and 3.153 x 10 -4 g/cm 2 per day for 1 wt.% mixing, and to 1.401 x 10 -5 g/cm 2 per day and 1.703 x 10 -4 g/cm 2 per day for 3 wt.% mixing, respectively. It was also found that the application of a latex paint reduced these leaching rates by about 6.5%, 20.3% and 13.3% for Portland cement, cement mixed with microsilica and with barite, respectively. The leaching data were also analyzed using the polynomial method. The obtained results showed that cement mixed with microsilica and with barite can be effectively used for radioactive sources solidification.

  20. Simultaneous extraction and quantification of lamotrigine, phenobarbital, and phenytoin in human plasma and urine samples using solidified floating organic drop microextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Asadi, Mohammad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Abbasi, Bijan

    2015-07-01

    A novel and simple method based on solidified floating organic drop microextraction followed by high-performance liquid chromatography with ultraviolet detection has been developed for simultaneous preconcentration and determination of phenobarbital, lamotrigine, and phenytoin in human plasma and urine samples. Factors affecting microextraction efficiency such as the type and volume of the extraction solvent, sample pH, extraction time, stirring rate, extraction temperature, ionic strength, and sample volume were optimized. Under the optimum conditions (i.e. extraction solvent, 1-undecanol (40 μL); sample pH, 8.0; temperature, 25°C; stirring rate, 500 rpm; sample volume, 7 mL; potassium chloride concentration, 5% and extraction time, 50 min), the limits of detection for phenobarbital, lamotrigine, and phenytoin were 1.0, 0.1, and 0.3 μg/L, respectively. Also, the calibration curves for phenobarbital, lamotrigine, and phenytoin were linear in the concentration range of 2.0-300.0, 0.3-200.0, and 1.0-200.0 μg/L, respectively. The relative standard deviations for six replicate extractions and determinations of phenobarbital, lamotrigine, and phenytoin at 50 μg/L level were less than 4.6%. The method was successfully applied to determine phenobarbital, lamotrigine, and phenytoin in plasma and urine samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Convection and macrosegregation in Al-19Cu alloy directionally solidified through an abrupt contraction in cross-section: A comparison with Al-7Si

    Science.gov (United States)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-02-01

    Hypoeutectic Al-19 wt. % Cu alloys were directionally solidified in cylindrical molds that featured an abrupt cross-section decrease 9.5 to 3.2 mm in diameter). Thermo-solutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-section before contraction. This alloy shows positive longitudinal macrosegregation near the contraction followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. The degree of thermo-solutal convection was compared to another study investigating directional solidification of Al-7 wt. % Si [1] in order to study the effect of solutal expansion coefficient on macrosegregation. An interesting change of the radial macrosegregation profile, attributable to the area-change-induced-shrinkage flow, was observed very close to the contraction. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification, the resulting steepling as well as axial and radial macrosegregation. The experimentally observed macrosegregation associated with the contraction during directional solidification was well predicted by the numerical simulations.

  2. Macrosegregation Due to Convection in Al-19Cu Alloy Directionally Solidified Through an Abrupt Expansion in Cross-Section: A Comparison with Al-7Si

    Science.gov (United States)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-10-01

    Hypoeutectic Al-19 wt.% Cu alloys were directionally solidified at two different growth speeds in cylindrical molds that featured an abrupt increase in cross-section, from 3.2 to 9.5 mm in diameter. The effects of thermosolutal convection and shrinkage flow induced by the cross-section change on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation were seen, particularly in the larger cross-section after expansion. Negative longitudinal macrosegregation right after the cross-section increase was observed; the extent of macrosegregation, however, decreases with increasing growth speed. Both thermal and flow effects due to cross-section change were seen to influence the radial macrosegregation immediately before, and after the expansion. Radial macrosegregation pattern was found to be changing as the mushy zone enters the larger cross-section region above the cross-section change where the solidification is in its unsteady state. The effect of the solutal expansion coefficient on macrosegregation was studied by comparing the degree of thermosolutal convection in Al-19 wt.% Cu with a previous study in which we investigated Al-7 wt.% Si. A two-dimensional model accounting for both shrinkage and thermosolutal convection was used to simulate the resulting steepling, as well as the axial and radial macrosegregation. The experimentally observed macrosegregation associated with the expansion during directional solidification is well predicted by the numerical simulations.

  3. A comparative EBSP study of microstructure and microtexture formation from undercooled Ni{sub 99}B{sub 1} melts solidified on an electrostatic levitator and an electromagnetic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingjun [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)]. E-mail: li.mingjun@aist.go.jp; Ishikawa, Takehiko [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Nagashio, Kosuke [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Kuribayashi, Kazuhiko [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Yoda, Shinichi [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)

    2006-08-15

    Ni{sub 99}B{sub 1} alloys were solidified by containerless processing at various melt undercoolings on an electrostatic levitator (ESL) and an electromagnetic levitator (EML). A scanning electron microscope in combination with an electron backscatter diffraction pattern mapping technique was employed to reveal microstructures and microtextures formed on these two facilities. The microstructure consists of well-developed primary dendrites with coarse secondary arms in the alloys solidified on the ESL at low and medium undercooling levels, whereas equiaxed grains are yielded in alloys solidified on the EML at almost the same undercoolings. Further analysis indicates that the melt flow induced by the electromagnetic field in the EML may play a significant role in promoting fragmentation of primary dendrites in the mushy zone and thus resulting in equiaxed grains. In contrast, the primary dendrites in the alloy processed on the ESL can fully develop in the absence of melt flow. The fluid flow in the sample on the EML can rotate, move, and displace surviving fragments, yielding a random distribution of grain orientation and thus leading to a random microtexture at low and medium undercoolings. At high undercoolings, refined equiaxed grains can be obtained on both the ESL and the EML and the influence of melt flow on refinement seems negligible due to the enhanced driving force in capillarity and solute effects. A great number of coherent annealing twins are formed, making the pole figures more complex and random.

  4. Rapid automated nuclear chemistry

    International Nuclear Information System (INIS)

    Meyer, R.A.

    1979-01-01

    Rapid Automated Nuclear Chemistry (RANC) can be thought of as the Z-separation of Neutron-rich Isotopes by Automated Methods. The range of RANC studies of fission and its products is large. In a sense, the studies can be categorized into various energy ranges from the highest where the fission process and particle emission are considered, to low energies where nuclear dynamics are being explored. This paper presents a table which gives examples of current research using RANC on fission and fission products. The remainder of this text is divided into three parts. The first contains a discussion of the chemical methods available for the fission product elements, the second describes the major techniques, and in the last section, examples of recent results are discussed as illustrations of the use of RANC

  5. JINR rapid communications

    International Nuclear Information System (INIS)

    1999-01-01

    The present collection of rapid communications from JINR, DUBNA, contains eight separate records on symmetry in modern physics (dedicated to the 100th anniversary of the birth of academician V.A.Fock), the double φ-meson production investigation on the Serpukhov accelerator, two-leptonic η-meson decays and SUSY without R parity, charge form factors and alpha-cluster internal structure of 12 C, increasing of muon-track reconstruction efficiency in ME1/1 Dubna prototype for the CMS/LHC, study of photon-structure function F 2 γ in the reaction e + e - → e + e - + hadrons at LEP2, jets reconstruction possibility in pAu and AuAu interactions at STAR RHIC and high-vacuum nondispersable gas absorber

  6. Rapid thermal pulse annealing

    International Nuclear Information System (INIS)

    Miller, M.G.; Koehn, B.W.; Chaplin, R.L.

    1976-01-01

    Characteristics of recovery processes have been investigated for cases of heating a sample to successively higher temperatures by means of isochronal annealing or by using a rapid pulse annealing. A recovery spectra shows the same features independent of which annealing procedure is used. In order to determine which technique provides the best resolution, a study was made of how two independent first-order processes are separated for different heating rates and time increments of the annealing pulses. It is shown that the pulse anneal method offers definite advantages over isochronal annealing when annealing for short time increments. Experimental data by means of the pulse anneal techniques are given for the various substages of stage I of aluminium. (author)

  7. JINR rapid communications

    International Nuclear Information System (INIS)

    1996-01-01

    The present collection of rapid communications from JINR, Dubna, contains seven separate reports on the identification of events with a secondary vertex in the experiment EXCHARM, the zero degree calorimeter for CERN WA-98 experiment, a new approach to increase the resource of installation elements for super-high energy physics, a method of the in-flight production of exotic systems in the charge-exchange reactions, the neutron activation analysis for monitoring northern terrestrial ecosystems, a search for 28 O and study of the neutron-rich nuclei near the neutron closure N=20, a search for new neutron-rich nuclei with a 70A MeV 48 Ca beam. 33 figs., 4 tabs

  8. JINR Rapid Communications. Collection

    International Nuclear Information System (INIS)

    1994-01-01

    The present collection of rapid communications from JINR, Dubna, contains nine separate reports on quasi-classical description of one-nucleon transfer reactions with heavy ions, elastic and inelastic scattering in the high energy approximation, experimental study of fission and evaporation cross sections for 6 He + 209 Bi reaction, d ↑ + 12 C → p + X at Θ p = 0 o in the region of high internal momenta in the deuteron, the Nuclotron internal targets, actively screened superconducting magnets, using of polarized target in backward elastic dp scattering, application of transputers in the data acquisition system of the INESS-ALPHA spectrometer, narrow dibaryon resonances with isotopic spin I=2. 93 refs., 27 figs., 4 tabs

  9. JINR Rapid Communications. Collection

    International Nuclear Information System (INIS)

    1994-01-01

    The present collection of rapid communications from JINR, Dubna, contains eight separate reports on Lorentz transformations with superluminal velocities, photo chromic effect in HTSC films, the investigation of hypernuclei in the Nuclotron accelerator, a new hadron jets finding algorithm in the four-dimensional velocity space, investigations of neutral particle production by relativistic nuclei on the LHE 90-channel γ-spectrometer (results and perspectives), coherent meson production in the dp → 3 HeX reaction, the relativistic projectile nuclei fragmentation and A-dependence of nucleon Fermi-momenta, energy spectra of γ-quanta from d-propane interactions at momentum P d = 1.25 GeV/c per nucleon. 86 refs., 26 figs., 4 tabs

  10. JINR rapid communications

    International Nuclear Information System (INIS)

    1999-01-01

    The present collection of rapid communications from JINR, Dubna, contains seven separate records on measurements of the total cross section difference Δσ L (np) at 1.59, 1.79, and 2.20 GeV, to the estimation of angular distributions of double charged spectator fragments in nucleus-nucleus interactions at superhigh energies, simulation dE/dx analysis results for silicon inner tracking system of ALICE set-up at LHC accelerator, high-multiplicity processes, triggering of high-multiplicity events using calorimetry, ORBIT-3.0 - a computer code for simulation and correction of the closed orbit and first turn in synchrotrons and determination of memory performance

  11. JINR rapid communications

    International Nuclear Information System (INIS)

    1999-01-01

    The present collection of rapid communications from JINR, Dubna, contains seven separate records on yields of the rare-earth neutron-deficient isotopes in the reactions of Mo isotopes with 40 Ca ions, observations of slow components of solitonic-type wave structure excited by e-beam in massive copper sample, development and investigation of low-mass multilayer drift chambers (MDC-2) for inner part of the HADES spectrometer, temperature measurement of the uranium sample irradiated with secondary neutrons, edge effects in multiwire proportional chambers, the influence of the dielectric frame, an object-oriented framework for the hadronic Monte-Carlo event generators and uranium-238 as a source for electronuclear power production. 32 figs., 3 tabs

  12. JINR rapid communications

    International Nuclear Information System (INIS)

    1997-01-01

    The present collection of rapid communications from JINR, Dubna, contains nine separate reports on collective energy dissipation and fluctuations in elastoplastic systems, diagnostics system of the circulating beam of the NUCLOTRON based on microchannel plates, time-of-flight detector for WA98 CERN experiment, fractal structure formation on the surfaces of solids subjected to high intensity electron and ion treatment, production of nuclei in 32,34,36 S-induced reactions in the energy range 6-75 MeV/A, rare-earth elements in soil and pine needle from northern terrestrial ecosystems, 'thermal' multifragmentation in p + Au collisions at relativistic energies, search for effects of the OZI rule violation in φ and ω mesons production in polarized deuteron beam interaction with polarized proton target (project DPHE3) and fast detector for triggering on charged particle multiplicity for relativistic nucleus-nucleus collisions

  13. JINR rapid communications

    International Nuclear Information System (INIS)

    1997-01-01

    The present collection of rapid communications from JINR, Dubna, contains seven separate reports on observation of transversal handedness in the diffractive production of pion triples, a possible experiment on the research of dibaryon states, Cherenkov beam counter system of the CERES/NA45 spectrometer for investigation with 160 GeV/n. lead ions, a profile-based gaseous detector with capacitive pad readout as the prototype of the shower maximum detector for the end-cap electromagnetic calorimeter for the STAR experiment, what DELPHI can get with an upgraded position for the very small angle tagger, estimation of the radiation environment and the shielding aspect for the point 2 area of the LHC and the orthopositronium decay puzzle

  14. Rapid chemical separations

    CERN Document Server

    Trautmann, N

    1976-01-01

    A survey is given on the progress of fast chemical separation procedures during the last few years. Fast, discontinuous separation techniques are illustrated by a procedure for niobium. The use of such techniques for the chemical characterization of the heaviest known elements is described. Other rapid separation methods from aqueous solutions are summarized. The application of the high speed liquid chromatography to the separation of chemically similar elements is outlined. The use of the gas jet recoil transport method for nuclear reaction products and its combination with a continuous solvent extraction technique and with a thermochromatographic separation is presented. Different separation methods in the gas phase are briefly discussed and the attachment of a thermochromatographic technique to an on-line mass separator is shown. (45 refs).

  15. JINR rapid communications

    International Nuclear Information System (INIS)

    1997-01-01

    The present collection of rapid communications from JINR, Dubna, contains seven separate reports on investigation of the tensor analyzing power A yy in the reaction A(d polarized, p)X at large transverse momenta of proton, double-differential ionization cross section calculations for fast collisions of ions and atoms, a study of the two-photon interactions tagged at an average 2 > of 90 GeV 2 , cluster and single-particle distributions in nucleus-nucleus interactions, the Coulomb interaction of charged pions in CC-and CTa-collisions at 4.2 A GeV/c, influence of nitrogen and oxygen gas admixtures on the response of the DELPHI HCAL and MUS detectors and an automation of physics research on base of open standards

  16. JINR rapid communications

    International Nuclear Information System (INIS)

    1997-01-01

    The present collection of rapid communications from JINR, Dubna, contains nine separate reports on effects arising from charged particles overcoming of the light velocity barrier, deformable templates for circle recognition, scintillation detectors for precise time measurements, atomic form factors and incoherent scattering functions of atoms and ions with the number of electrons N ≤ 10, experimental set-up ANOMALON for measurement of relativistic nuclear fragmentation cross sections, superconducting dipole magnet for ALICE dimuon arm spectrometer, analysis of transverse mass dependence of Bose-Einstein correlation radii using the DELPHI data, low-energy theorem in softly broken supersymmetry and study of the characteristics of particles in reactions π - , p, d, He, C + C with the total disintegration on carbon nucleus

  17. JINR rapid communications

    International Nuclear Information System (INIS)

    1998-01-01

    The present collection of rapid communications from JINR, Dubna, contains six separate records on test of a threshold aerogel Cherenkov counter on cosmic particles, first results of study of transversal dimension of region of cumulative particles production in d + C and d + Cu reactions for energy 2 GeV/nucleon, the evidence of σ[0 + (0 ++ 0)] meson at a mass of M π + π - = 750 ± 5 MeV/c 2 observed in π + π - combinations from the reaction np → npπ + π - at an incident momentum of P n (5.20 ± 0.16 GeV/c, inclusive spectra of protons and π - mesons emitted in 4 HeC and 12 CC interactions with total disintegration of nuclei, heavy quark-antiquark pair production by double pomeron exchange in pp and AA collisions on the CMS and global features of nucleus-nucleus collisions in ultrarelativistic domain

  18. Rapid Refresh (RAP) [13 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rapid Refresh (RAP) numerical weather model took the place of the Rapid Update Cycle (RUC) on May 1, 2012. Run by the National Centers for Environmental...

  19. Rapid Refresh (RAP) [20 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rapid Refresh (RAP) numerical weather model took the place of the Rapid Update Cycle (RUC) on May 1, 2012. Run by the National Centers for Environmental...

  20. Rapid population growth.

    Science.gov (United States)

    1972-01-01

    At the current rate of population growth, world population by 2000 is expected to reach 7 billion or more, with developing countries accounting for some 5.4 billion, and economically advanced nations accounting for 1.6 billion. 'Population explosion' is the result of falling mortality rates and continuing high birth rates. Many European countries, and Japan, have already completed what is termed as demographic transition, that is, birth rates have fallen to below 20 births per 1000 population, death rates to 10/1000 population, and annual growth rates are 1% or less; annual growth rates for less developed countries ranged from 2 to 3.5%. Less developed countries can be divided into 3 groups: 1) countries with both high birth and death rates; 2) countries with high birth rates and low death rates; and 3) countries with intermediate and declining birth rates and low death rates. Rapid population growth has serious economic consequences. It encourages inequities in income distribution; it limits rate of growth of gross national product by holding down level of savings and capital investments; it exerts pressure on agricultural production and land; and it creates unemployment problems. In addition, the quality of education for increasing number of chidren is adversely affected, as high proportions of children reduce the amount that can be spent for the education of each child out of the educational budget; the cost and adequacy of health and welfare services are affected in a similar way. Other serious consequences of rapid population growth are maternal death and illness, and physical and mental retardation of children of very poor families. It is very urgent that over a billion births be prevented in the next 30 years to reduce annual population growth rate from the current 2% to 1% per year.

  1. Rapid geophysical surveyor

    International Nuclear Information System (INIS)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved

  2. Rapid Evaporation of microbubbles

    Science.gov (United States)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  3. Rapid flow imaging method

    International Nuclear Information System (INIS)

    Pelc, N.J.; Spritzer, C.E.; Lee, J.N.

    1988-01-01

    A rapid, phase-contrast, MR imaging method of imaging flow has been implemented. The method, called VIGRE (velocity imaging with gradient recalled echoes), consists of two interleaved, narrow flip angle, gradient-recalled acquisitions. One is flow compensated while the second has a specified flow encoding (both peak velocity and direction) that causes signals to contain additional phase in proportion to velocity in the specified direction. Complex image data from the first acquisition are used as a phase reference for the second, yielding immunity from phase accumulation due to causes other than motion. Images with pixel values equal to MΔΘ where M is the magnitude of the flow compensated image and ΔΘ is the phase difference at the pixel, are produced. The magnitude weighting provides additional vessel contrast, suppresses background noise, maintains the flow direction information, and still allows quantitative data to be retrieved. The method has been validated with phantoms and is undergoing initial clinical evaluation. Early results are extremely encouraging

  4. JINR rapid communications

    International Nuclear Information System (INIS)

    1995-01-01

    The present collection of rapid communications from JINR, Dubna, contains twelve separate reports on an estimation of the possibility of fusion reactions in water molecules, an analysis of pion spectra of the charge-exchange reaction Mg(t, 3 He), the results of simulation of e + e - pair production and detection in the ALICE experiment, the data on the edge effects in multiwire proportional chambers, standard and nonstandard applications of wavelet analysis, the design and study of light readout system for scintillator shower maximum detector for the endcap electromagnetic calorimeter for the STAR experiment at RHIC, a study of multiparticle azimuthal correlations in high energy interactions, coherent multifragmentation of relativistic nuclei, superposition of neutrino eigenstates and neutrino oscillation, simulation results and suggestions for possible design of gaseous shower maximum detector for the endcap electromagnetic calorimeter for the STAR experiment at RHIC, determination of the sizes of the pion emission region in np-interactions at P n =(5.2±0.16)GeV/c using the interference correlation method for identical particles, inelasticity of nucleus-nucleus collisions in the CMS experiment. 65 figs., 19 tabs

  5. Rapid Polymer Sequencer

    Science.gov (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  6. The magnetic, structure and mechanical properties of rapidly solidified (Nd{sub 7}Y{sub 2.5})-(Fe{sub 64.5}Nb{sub 3})-B{sub 23} nanocomposite permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Zubair; Tao Shan; Ma Tianyu; Zhao Guoliang [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 312007 (China); Yan Mi, E-mail: mse_yanmi@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 312007 (China)

    2011-09-08

    The Nd{sub 7}Y{sub 2.5}Fe{sub 64.5}Nb{sub 3}B{sub 23} nanocomposite permanent magnets in the form of rods with 2 mm in diameter have been developed by annealing the amorphous precursors produced by copper mold casting technique. The phase evolution, structure, magnetic and mechanical properties were investigated with X-ray diffractometry, differential scanning calorimetry, electron microscopy, magnetometry and universal uniaxial compression strength techniques. The heat treatment conditions under which the magnets attained maximum magnetic and mechanical properties have been established. The results indicate that magnet properties are sensitive to grain size and volume content of the magnetic phases present in the microstructure. The composite microstructure was mainly composed of soft {alpha}-Fe (20-30 nm) and hard Nd{sub 2}Fe{sub 14}B (45-65 nm) magnetic phase grains. The maximum coercivity of 959.18 kA/m was achieved with the magnets annealed at 760 deg. C whereas the highest remanence of 0.57 T was obtained with the magnets treated at 710 deg. C. The optimally annealed magnets possessed promising magnetic properties such as {sub j}H{sub c} of 891.52 kA/m, B{sub r} of 0.57 T, M{sub r}/M{sub s} = 0.68, (BH){sub max} of 56.8 kJ/m{sup 3} as well as the micro-Vickers hardness (H{sub v}) of 1138 {+-} 20 and compressive stress ({sigma}{sub f}) of 239 {+-} 10 MPa.

  7. Giant magnetoimpedance intrinsic impedance and voltage sensitivity of rapidly solidified Co{sub 66}Fe{sub 2}Cr{sub 4}Si{sub 13}B{sub 15} amorphous wire for highly sensitive sensors applications

    Energy Technology Data Exchange (ETDEWEB)

    Das, Tarun K.; Mandal, Sushil K. [CSIR - National Metallurgical Laboratory, NDE and Magnetic Materials Group, MST Division, Jamshedpur (India); Banerji, Pallab [Indian Institute of Technology, Kharagpur, Materials Science Centre, Kharagpur (India)

    2016-11-15

    We report a systematic study of the influence of wire length, L, dependence of giant magneto-impedance (GMI) sensitivity of Co{sub 66}Fe{sub 2}Cr{sub 4}Si{sub 13}B{sub 15} soft magnetic amorphous wire of diameter ∝ 100 μm developed by in-water quenching technique. The magnetization behaviour (hysteresis loops) of the wire with different length (L = 1, 2, 3, 5, 8 and 10 cm) has been evaluated by fuxmetric induction method. It was observed that the behaviour of the hysteresis loops change drastically with the wire length, being attributed to the existence of a critical length, L{sub C}, found to be around 3 cm. GMI measurements have been taken using automated GMI measurement system and the GMI sensitivities in terms of intrinsic impedance sensitivity (S{sub Ω/Am}{sup -1}) and voltage sensitivity (S{sub V/Am}{sup -1}) of the wire have been evaluated under optimal bias field and excitation current. It was found that the maximum (S{sub Ω/Am}{sup -1}){sub max} ∼ 0.63 Ω/kAm{sup -1}/cm and (S{sub V/Am}{sup -1}){sub max} ∼ 3.10 V/kAm{sup -1}/cm were achieved at a critical length L{sub C} ∝ 3 cm of the wire for an AC current of 5 mA and a frequency of 5 MHz. These findings provide crucial insights for optimization of the geometrical dimensions of magnetic sensing elements and important practical guidance for designing high sensitive GMI sensors. The relevant combinations of magnetic material parameters and operating conditions that optimize the sensitivity are highlighted. (orig.)

  8. Thermal and mechanical effect during rapid heating of astroloy for improving structural integrity

    International Nuclear Information System (INIS)

    Popoolaa, A.P.I.; Oluwasegun, K.M.; Olorunniwo, O.E.; Atanda, P.O.; Aigbodion, V.S.

    2016-01-01

    The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astroloy(Turbine Disc alloy) a Powder metallurgy (PM) nickel base superalloy has been investigated. The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ) microstructure of an inertia friction welded Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual inertial friction welded specimens showed that γ′ particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favoured, and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the centre of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens. - Highlights: • The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astrology • The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ). • significantly enhanced resistance to weld liquation cracking of the alloy. • This was not observed in purely thermally simulated samples. • The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.

  9. Thermal and mechanical effect during rapid heating of astroloy for improving structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Popoolaa, A.P.I., E-mail: popoolaapi@tut.ac.za [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Oluwasegun, K.M. [Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Olorunniwo, O.E., E-mail: segun_nniwo@yahoo.com [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Atanda, P.O. [Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Aigbodion, V.S. [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka (Nigeria)

    2016-05-05

    The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astroloy(Turbine Disc alloy) a Powder metallurgy (PM) nickel base superalloy has been investigated. The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ) microstructure of an inertia friction welded Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual inertial friction welded specimens showed that γ′ particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favoured, and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the centre of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens. - Highlights: • The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astrology • The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ). • significantly enhanced resistance to weld liquation cracking of the alloy. • This was not observed in purely thermally simulated samples. • The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.

  10. Rapid prototyping: een veelbelovende methode

    NARCIS (Netherlands)

    Haverman, T.M.; Karagozoglu, K.H.; Prins, H.; Schulten, E.A.J.M.; Forouzanfar, T.

    2013-01-01

    Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization,

  11. Solidified package-storage device

    International Nuclear Information System (INIS)

    Takakura, Masahide

    1998-01-01

    Vitrification products such as high level radioactive liquid wastes are contained in a solidification package. A containing tube for vertically containing the solidification packages in multi-stages is disposed such that it passes through a ceiling slab. A shielding plug for preventing leakage of radiation from the solidification packages is fitted to an upper opening thereof. A lid of the containing tube is fitted above the plug. The lid is a carbon steel plate having a thickness of 10cm or more. A heat insulation layer comprising glass wool or rock wool is formed on the lower surface of the ceiling slab. A radiation shielding layer comprising such as an iron plate is formed on the lower surface of the heat insulation layer. Then, deterioration of the ceiling slug by heat can be prevented by the heat insulation layer even if high temperature cooling air flown from the upper opening of a ventilation tube should reach the lower surface of the ceiling slab. (I.N.)

  12. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Tomita, Toshihide; Minami, Yuji; Matsuura, Hiroyuki; Kageyama, Hisashi; Kobori, Junzo.

    1984-01-01

    Purpose: To perform the curing sufficiently even when copper hydroxide that interferes the curing reaction is contained in radioactive wastes. Method: Solidification of radioactive wastes containing copper hydroxide using thermoset resins is carried out under the presence of an alkaline material. The thermoset resin used herein is an polyester resin comprising unsaturated polyester and a polymerizable monomer. The alkaline substance usable herein can include powder or an aqueous solution of hydroxides or oxides of sodium, magnesium, calcium or the like. (Yoshino, Y.)

  13. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Tomita, Toshihide; Minami, Yuji; Matsuura, Hiroyuki

    1984-01-01

    Purpose: To enable complete curing even when radioactive wastes contain those materials hindering the curing reaction, for example, copper hydroxide. Method: After admixing an alkaline substance to radioactive concentrated liquid wastes containing copper hydroxide or other amphoteric substances, they are dried, powderized and then cured with thermosetting resins. The thermosetting resins usable herein include, for example, those prepared by mixing an unsaturated polyester with a monomer such as styrene. When a polymerization initiator such as methyl ethyl ketone peroxide and a polymerization promotor are added to the mixture, it takes places curing reaction at normal temperature. Suitable alkaline substances usable herein are those which are insoluble to the liquid wastes and do not change the chemical form under heating and drying. (Yoshihara, H.)

  14. Wrinkling of solidifying polymeric coatings

    Science.gov (United States)

    Basu, Soumendra Kumar

    2005-07-01

    In coatings, wrinkles are viewed as defects or as desired features for low gloss, and texture. In either case, discovering the origin of wrinkles and the conditions that lead to their formation is important. This research examines what wrinkling requires and proposes a mechanism to explain the observations. All curing wrinkling coatings contain multi-functional reactants. Upon curing, all develop a depth-wise gradient in solidification that result in a cross-linked elastic skin atop a viscous bottom layer. It is hypothesized that compressive stress develops in the skin when liquid below diffuses up into the skin. High enough compressive stress buckles the skin to produce wrinkles. The hypothesis is substantiated by experimental and theoretical evidences. Effects of various application and compositional parameters on wrinkle size in a liquid-applied acrylic coating and a powder-applied epoxy coating were examined. All three components, namely resin, cross-linker and catalyst blocked with at least equimolar volatile blocker, proved to be required for wrinkling. The wrinkling phenomenon was modeled with a theory that accounts for gradient generation, cross-linking reaction and skinning; predictions compared well with observations. Two-layer non-curing coatings that have a stiff elastic layer atop a complaint elastic bottom layer wrinkled when the top layer is compressed. The top layer was compressed by either moisture absorption or differential thermal expansion. Experimental observations compared well with predictions from a theory based on force balance in multilayer systems subjected to differential contraction or expansion. A model based on the Flory-Rehner free energy of a constrained cross-linked gel was constructed that predicts the compressive stress generated in a coating when it absorbs solvent. Linear stability analysis predicts that when a compressed elastic layer is attached atop a viscous layer, it is always unstable to buckles whose wavelength exceeds a critical value; more cross-linking and poor solvent produce higher wavelength, lower amplitude wrinkles. When a compressed elastic layer is attached atop an elastic layer and subjected to more than a critical compressive stress, it is unstable to intermediate wavelengths of buckling; better solvent, higher ratio of bottom-to-top layer thickness, and lower bottom layer modulus produce higher wavelength, higher amplitude wrinkles.

  15. Effect of permeable flow on cyclic layering in solidifying magma bodies: Insights from an analog experiment of diffusion-precipitation systems

    Science.gov (United States)

    Toramaru, A.; Yamauchi, S.

    2012-04-01

    Characteristic structures such as rhythmic layering, cress cumulate, cross bedding, perpendicular feldspar rock etc, are commonly observed in layered intrusion or shallow magmatic intrusions. These structures result from complex processes including thermal and compositional diffusions, crystallization, crystal settling, convection and interaction among three phases (crystals, bubble, melt). In order to understand how the differentiation proceeds in solidifying magma bodies from each characteristic structure together with chemical signatures, it is necessary to evaluate the relative importance among these elemental processes on structures. As an attempt to evaluate the effect of advection on a diffusion-related structure, we carried out an analog experiment of Liesegang system using lead-iodide (PbI2) crystallization in agar media which have been normally used to prohibit convection. In the ordinary Liesegang band formation experiments including only diffusion and crystallization kinetics without any advection and convection, the precipitation bands develop with regular spacing following a geometric progression due to two-component diffusion and reaction with supersaturation. This type of banding structure has been advocated as the same type of cyclic layering or vesicle layering (a sort of rhythmic layering) in dykes or sills. In order to see the effect of one-directional advection on Liesegang band, we apply the electric field (5 V to 25 V for a distance 15 cm) along the concentration gradient in agar media, thereby counteracting flows of lead anion Pb2+ and iodide ion I- are driven at constant velocities. The flows of anions and ions are equivalent to the permeable flows in porous media of crystal mush. The resultant precipitation structures exhibit very curious banding structure in which band spacings do not change with distance, are nearly constant and quite narrow, depending on the voltage, unlike those in ordinary Liesegang bands in which band spacings

  16. The effects of low-molecular-weight emulsifiers in O/W-emulsions on microviscosity of non-solidified oil in fat globules and the mobility of emulsifiers at the globule surfaces

    DEFF Research Database (Denmark)

    Munk, Merete B.; Erichsen, Henriette Rifbjerg; Andersen, Mogens Larsen

    2014-01-01

    caseinate and different combinations of lactic acid ester of monoglyceride (LACTEM), unsaturated monoglycerides (GMU) or saturated monoglyceride (GMS) were studied. The non-solidified oil in emulsions made with LACTEM. +. GMU had a high microviscosity, whereas the emulsion made with GMS had a low...... of the spin probe on the droplet surfaces. Conversely, in presence of LACTEM and GMS, the protein surface loads decreased and high surface mobilities were observed. Based on these results it is argued that the high macroscopic viscosity and lipid agglomeration of emulsions containing GMU is due to a lipid...

  17. How Rapid is Rapid Prototyping? Analysis of ESPADON Programme Results

    Directory of Open Access Journals (Sweden)

    Ian D. Alston

    2003-05-01

    Full Text Available New methodologies, engineering processes, and support environments are beginning to emerge for embedded signal processing systems. The main objectives are to enable defence industry to field state-of-the-art products in less time and with lower costs, including retrofits and upgrades, based predominately on commercial off the shelf (COTS components and the model-year concept. One of the cornerstones of the new methodologies is the concept of rapid prototyping. This is the ability to rapidly and seamlessly move from functional design to the architectural design to the implementation, through automatic code generation tools, onto real-time COTS test beds. In this paper, we try to quantify the term “rapid” and provide results, the metrics, from two independent benchmarks, a radar and sonar beamforming application subset. The metrics show that the rapid prototyping process may be sixteen times faster than a conventional process.

  18. Rapid deployment intrusion detection system

    International Nuclear Information System (INIS)

    Graham, R.H.

    1997-01-01

    A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs

  19. Rapid Continuous Multimaterial Extrusion Bioprinting

    NARCIS (Netherlands)

    Liu, Wanjun; Zhang, Yu Shrike; Heinrich, Marcel A.; De Ferrari, F; Jang, HL; Bakht, SM; Alvarez, MM; Yang, J; Li, YC; Trujillo-de Stantiago, G; Miri, AK; Zhu, K; Khoshakhlagh, P; Prakash, G; Cheng, H; Guan, X; Zhong, Z; Ju, J; Zhu, GH; Jin, X; Ryon Shin, Su; Dokmeci, M.R.; Khademhosseini, Ali

    The development of a multimaterial extrusion bioprinting platform is reported. This platform is capable of depositing multiple coded bioinks in a continuous manner with fast and smooth switching among different reservoirs for rapid fabrication of complex constructs, through digitally controlled

  20. Colour reconnections and rapidity gaps

    International Nuclear Information System (INIS)

    Loennblad, Leif

    1996-01-01

    I argue that the success of recently proposed models describing events with large rapidity gaps in DIS at HERA in terms of non-perturbative colour exchange is heavily reliant on suppression of perturbative gluon emission in the proton direction. There is little or no physical motivation for such suppression and I show that a model without this suppression cannot describe the rapidity gap events at HERA. (author)

  1. Dilepton distributions at backward rapidities

    International Nuclear Information System (INIS)

    Betemps, M. A.; Ducati, M. B. Gay; Oliveira, E. G. de

    2006-01-01

    The dilepton production at backward rapidities in pAu and pp collisions at RHIC and LHC energies is investigated in the dipole approach. The results are shown through the nuclear modification ratio R pA considering transverse momentum and rapidity spectra. The dilepton modification ratio presents interesting behavior at the backward rapidities when compared with the already known forward ones, since it is related with the large x kinematical region that is being probed. The rapidity dependence of the nuclear modification ratio in the dilepton production is strongly dependent on the Bjorken x behavior of the nuclear structure function ratio R F 2 =F 2 A /F 2 p . The R pA transverse momentum dependence at backward rapidities is modified due to the large x nuclear effects: at RHIC energies, for instance, the ratio R pA is reduced as p T increases, presenting an opposite behavior when compared with the forward one. It implies that the dilepton production at backward rapidities should carry information of the nuclear effects at large Bjorken x, as well as that it is useful to investigate the p T dependence of the observables in this kinematical regime

  2. Rapid

    Directory of Open Access Journals (Sweden)

    Nahla M. Wassim

    2013-01-01

    Full Text Available Members of Aedes caspius mosquitoes are incriminated to be a potential reservoir of “Rift Valley Fever Virus” (RVF during interepizootic periods in Egypt. Ae. caspius contains two distinct forms which are morphologically indistinguishable but differ in physiology and behavior; Ae. caspius form (a requires a blood meal for each egg batch(anautogeny, is unable to mate in confined spaces(eurygamous. The second form (b lays egg batch without blood meal (autogenous and can mate in confined spaces (stenogamous. In this work, we collected the autogenous and anautogenous forms of Ae. caspius from two different breeding habitats in the Qalyubia Governorate. Analysis of the Drosophila ace-Orthologous acetylecholinesterase gene revealed that a single polymorphic region characterized each species. Based on this region, specific primers were used to amplify the entire section of intron II, sections of Exon 2 and Exon 3 of ace-2 gene for differentiating the complex species of mosquitoes. The amplicons of anautogenous form sized 441 pb and increase 116 bp than autogenous form of Ae. caspius. High rates of point mutations were addressed; deletion/insertion events are 120 bases. The transversion mutations were 44 bases and were relatively close to the transtion mutations 43 base. The genetic distance was 0.01 between the two forms.

  3. Recyclable bio-reagent for rapid and selective extraction of contaminants from soil

    International Nuclear Information System (INIS)

    Lomasney, H.L.

    1997-01-01

    This Phase I Small Business Innovation Research program is confirming the effectiveness of a bio-reagent to cost-effectively and selectively extract a wide range of heavy metals and radionuclide contaminants from soil. This bioreagent solution, developed by ISOTRON reg-sign Corporation (New Orleans, LA), is flushed through the soil and recycled after flowing through an electrokinetic separation module, also developed by ISOTRON reg-sign. The process is ex situ, and the soil remains in its transport container through the decontamination process. The transport container can be a fiberglass box, or a bulk bag or open-quotes super sack.close quotes Rocks, vegetation, roots, etc. need not be removed. High clay content soils are accommodated. The process provides rapid injection of reagent solution, and when needed, sand is introduced to speed up the heap leach step. The concentrated waste form is eventually solidified. The bio-reagent is essentially a natural product, therefore any solubizer residual in soil is not expected to cause regulatory concern. The Phase I work will confirm the effectiveness of this bio-reagent on a wide range of contaminants, and the engineering parameters that are needed to carry out a full-scale demonstration of the process. ISOTRON reg-sign scientists will work with contaminated soil from Los Alamos National Laboratory. LANL is in the process of decontaminating and decommissioning more than 300 sites within its complex, many of which contain heavy metals or radionuclides; some are mixed wastes containing TCE, PCB, and metals

  4. Recyclable bio-reagent for rapid and selective extraction of contaminants from soil

    Energy Technology Data Exchange (ETDEWEB)

    Lomasney, H.L. [ISOTRON Corp., New Orleans, LA (United States)

    1997-10-01

    This Phase I Small Business Innovation Research program is confirming the effectiveness of a bio-reagent to cost-effectively and selectively extract a wide range of heavy metals and radionuclide contaminants from soil. This bioreagent solution, developed by ISOTRON{reg_sign} Corporation (New Orleans, LA), is flushed through the soil and recycled after flowing through an electrokinetic separation module, also developed by ISOTRON{reg_sign}. The process is ex situ, and the soil remains in its transport container through the decontamination process. The transport container can be a fiberglass box, or a bulk bag or {open_quotes}super sack.{close_quotes} Rocks, vegetation, roots, etc. need not be removed. High clay content soils are accommodated. The process provides rapid injection of reagent solution, and when needed, sand is introduced to speed up the heap leach step. The concentrated waste form is eventually solidified. The bio-reagent is essentially a natural product, therefore any solubizer residual in soil is not expected to cause regulatory concern. The Phase I work will confirm the effectiveness of this bio-reagent on a wide range of contaminants, and the engineering parameters that are needed to carry out a full-scale demonstration of the process. ISOTRON{reg_sign} scientists will work with contaminated soil from Los Alamos National Laboratory. LANL is in the process of decontaminating and decommissioning more than 300 sites within its complex, many of which contain heavy metals or radionuclides; some are mixed wastes containing TCE, PCB, and metals.

  5. Hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Brandt, A.

    1995-09-01

    The field of hard diffraction, which studies events with a rapidity gap and a hard scattering, has expanded dramatically recently. A review of new results from CDF, D OE, H1 and ZEUS will be given. These results include diffractive jet production, deep-inelastic scattering in large rapidity gap events, rapidity gaps between high transverse energy jets, and a search for diffractive W-boson production. The combination of these results gives new insight into the exchanged object, believed to be the pomeron. The results axe consistent with factorization and with a hard pomeron that contains both quarks and gluons. There is also evidence for the exchange of a strongly interacting color singlet in high momentum transfer (36 2 ) events

  6. On the rapid melt quenching

    International Nuclear Information System (INIS)

    Usatyuk, I.I.; Novokhatskij, I.A.; Kaverin, Yu.F.

    1994-01-01

    Specific features of instrumentation of traditionally employed method of melt spinning (rapid quenching), its disadvantages being discussed, were analyzed. The necessity of the method upgrading as applied to the problems of studying fine structure of molten metals and glasses was substantiated. The principle flowsheet of experimental facility for extremely rapid quenching of the melts of metals is described, specificity of its original functional units being considered. The sequence and character of all the principal stages of the method developed were discussed. 18 refs.; 3 figs

  7. Furnace for rapid thermal processing

    NARCIS (Netherlands)

    Roozeboom, F.; Duine, P.A.; Sluis, P. van der

    2001-01-01

    A Method (1) for Rapid Thermal Processing of a wafer (7), wherein the wafer (7) is heated by lamps (9), and the heat radiation is reflected by an optical switching device (15,17) which is in the reflecting state during the heating stage. During the cooling stage of the wafer (7), the heat is

  8. Rapid thermal processing of semiconductors

    CERN Document Server

    Borisenko, Victor E

    1997-01-01

    Rapid thermal processing has contributed to the development of single wafer cluster processing tools and other innovations in integrated circuit manufacturing environments Borisenko and Hesketh review theoretical and experimental progress in the field, discussing a wide range of materials, processes, and conditions They thoroughly cover the work of international investigators in the field

  9. Rapid general microdetermination of fluorine

    NARCIS (Netherlands)

    Leuven, H.C.E. van; Rotscheid, G.J.; Buis, W.J.

    1979-01-01

    A rapid micromethod for the determination of fluorine in a wide variety of materials has been developed. The method is based on the liberation of the fluorine (as HF) from the sample by means of pyrohydrolysis with steam at 1120?? C, The amount of fluoride in the condensate is subsequently measured

  10. Rapid Prototyping Enters Mainstream Manufacturing.

    Science.gov (United States)

    Winek, Gary

    1996-01-01

    Explains rapid prototyping, a process that uses computer-assisted design files to create a three-dimensional object automatically, speeding the industrial design process. Five commercially available systems and two emerging types--the 3-D printing process and repetitive masking and depositing--are described. (SK)

  11. Portable Diagnostics and Rapid Germination

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Zachary Spencer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-01

    In the Bioenergy and Defense Department of Sandia National Laboratories, characterization of the BaDx (Bacillus anthracis diagnostic cartridge) was performed and rapid germination chemistry was investigated. BaDx was tested with complex sample matrixes inoculated with Bacillus anthracis, and the trials proved that BaDx will detect Bacillus anthracis in a variety of the medium, such as dirt, serum, blood, milk, and horse fluids. The dimensions of the device were altered to accommodate an E. coli or Listeria lateral flow immunoassay, and using a laser printer, BaDx devices were manufactured to identify E. coli and Listeria. Initial testing with E. coli versions of BaDx indicate that the device will be viable as a portable diagnostic cartridge. The device would be more effective with faster bacteria germination; hence studies were performed the use of rapid germination chemistry. Trials with calcium dipicolinic acid displayed increased cell germination, as shown by control studies using a microplate reader. Upon lyophilization the rapid germination chemistry failed to change growth patterns, indicating that the calcium dipicolinic acid was not solubilized under the conditions tested. Although incompatible with the portable diagnostic device, the experiments proved that the rapid germination chemistry was effective in increasing cell germination.

  12. Rapid-scan EPR imaging.

    Science.gov (United States)

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. TEM Studies of Boron-Modified 17Cr-7Ni Precipitation-Hardenable Stainless Steel via Rapid Solidification Route

    Science.gov (United States)

    Gupta, Ankur; Bhargava, A. K.; Tewari, R.; Tiwari, A. N.

    2013-09-01

    Commercial grade 17Cr-7Ni precipitation-hardenable stainless steel has been modified by adding boron in the range 0.45 to 1.8 wt pct and using the chill block melt-spinning technique of rapid solidification (RS). Application of RS has been found to increase the solid solubility of boron and hardness of 17Cr-7Ni precipitation-hardenable stainless steel. The hardness of the boron-modified rapidly solidified alloys has been found to increase up to ~280 pct after isochronal aging to peak hardness. A TEM study has been carried out to understand the aging behavior. The presence of M23(B,C)6 and M2(B,C) borocarbides and epsilon-carbide in the matrix of austenite and ferrite with a change in heat treatment temperature has been observed. A new equation for Creq is also developed which includes the boron factor on ferrite phase stability. The study also emphasizes that aluminum only takes part in ferrite phase stabilization and remains in the solution.

  14. Formation of bands of ultrafine beryllium particles during rapid solidification of Al-Be alloys: Modeling and direct observations

    International Nuclear Information System (INIS)

    Elmer, J.W.; Tanner, L.E.; Smith, P.M.; Wall, M.A.; Aziz, M.J.

    1994-01-01

    Rapid solidification of dilute hyper-eutectic and monotectic alloys sometimes produces a dispersion of ultrafine randomly-oriented particles that lie in arrays parallel to the advancing solidification front. The authors characterize this effect in Al-Be where Be-rich particles with diameters on the order of 10 nm form in arrays spaced approximately 25 nm apart, and they present a model of macroscopically steady state but microscopically oscillatory motion of the solidification front to explain this unusual microstructure. The proposed mechanism involves; (i) the build-up of rejected solute in a diffusional boundary layer which slows down the growing crystal matrix, (2) the boundary layer composition entering a metastable liquid miscibility gap, (3) homogeneous nucleation of solute rich liquid droplets in the boundary layer, and crystallization of these droplets, and (4) growth of the matrix past the droplets and its reformation into a planar interface. The size of the Be-rich particles is limited by the beryllium supersaturation in the diffusional boundary layer. A numerical model was developed to investigate this solidification mechanism, and the results of the model are in good agreement with experimental observations of rapidly solidified Al-5 at.% Be

  15. The influence of Co substitution on the magnetocaloric effect of Gd(Al,Fe)2

    International Nuclear Information System (INIS)

    Deng, J Q; Yan, J L; Huang, J L; Zhu, J M; Chen, X; Zhuang, Y H

    2007-01-01

    The magnetocaloric effect (MCE) in samples GdAl 1.7 (Fe 1-x Co x ) 0.3 with x= 0, 0.1, 0.2, 0.3 and 0.4 were investigated by x-ray diffraction (XRD) and magnetization measurements. It was found that five samples crystallize well in the MgCu 2 -type structure. The lattice parameter and the values of Curie temperature decrease with increasing Co content, whereas the magnetic-entropy change and cooling capacity increase. In the magnetic-field change of 2.0 T the maximum of the magnetic-entropy change and refrigerant capacity in sample GdAl 1.7 Fe 0.7 Co 0.3 reach 4.8 J kg -1 K -1 and 88.3 J kg -1 , respectively. The maximum of the magnetic-entropy change is comparable to that of Gd metal (3.8 J kg -1 K -1 in Δ B=1.5 T)

  16. Magnetic structure of the magnetocaloric compound AlFe2B2

    Czech Academy of Sciences Publication Activity Database

    Cedervall, J.; Andersson, M. S.; Sarkar, T.; Delczeg-Czirjak, E. K.; Bergqvist, L.; Hansen, T. C.; Beran, Přemysl; Nordblad, P.; Sahlberg, M.

    2016-01-01

    Roč. 664, APR (2016), s. 784-791 ISSN 0925-8388 Institutional support: RVO:61389005 Keywords : X-ray diffraction * neutron diffraction * magnetic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.133, year: 2016

  17. Natural gels: crystal-chemistry of short range ordered components in Al, Fe, and Si systems

    International Nuclear Information System (INIS)

    Ildefonse, Ph.; Calas, G.

    1997-01-01

    In this review, the most important inorganic natural gels are presented: opal, aluminosilicate (allophanes) and hydrous iron oxides and silicates. It is demonstrated that natural gels are ordered at the atomic scale. In allophanes, Al is distributed between octahedral and tetrahedral sites. The amount of Al increases as Al/Si ratio decreases. Si-rich allophane have a local structure around Al and Si very different of that is known in kaolinite or halloysite. Transformation of Si-rich allophanes to crystallized minerals implies dissolution-recrystallization processes. On the contrary, in iron silicate with Fe/Si = 0.72, Si and Fe environments are close to those found in nontronite. The gel transformation to Fe-smectite may occur by long range ordering during ageing. In ferric silicate gels, the similarity of local structure around Fe in poorly ordered precursors and what is known in crystallized minerals suggests a solid transformation during ageing. This difference between iron and aluminium is mainly due to the ability of Al to enter both tetrahedral and octahedral sites, while the affinity of iron for octahedral sites is higher at low temperature

  18. Fatigue properties and microstructure of quasicrystalline AlFeCrTi alloy

    Czech Academy of Sciences Publication Activity Database

    Chlupová, Alice; Chlup, Zdeněk; Kruml, Tomáš

    2016-01-01

    Roč. 91, OCT (2016), s. 251-256 ISSN 0142-1123 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Aluminium alloy * Quasicrystals * Fatigue * Fractography Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  19. Observations of the Minor Species Al, Fe and Ca(+) in Mercury's Exosphere

    Science.gov (United States)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report the first detections of Al and Fe, and strict upper limits for Ca(+) in the exosphere of Mercury, using the HIRES spectrometer at the Keck I telescope. We report observed 4-sigma tangent columns of 1.5x10(exp 7) Al atoms per square centimeter at an altitude of 1220 km (1.5 Mercury radii (R(sub M)) from planet center), and that for Fe of 1.6 x 10 per square centimeter at an altitude of 950 km (1.4 R(sub M)). The observed 3-sigma Ca(+) column was 3.9x10(exp 6) ions per square centimeter at an altitude of 1630 km (1.67 R(sub M). A simple model for zenith column abundances of the neutral species were 9.5 x 10(exp 7) Al per square centimeter, and 3.0 x 10(exp 8) Fe per square centimeter. The observations appear to be consistent with production of these species by impact vaporization with a large fraction of the ejecta in molecular form. The scale height of the Al gas is consistent with a kinetic temperature of 3000 - 9000 K while that of Fe is 10500 K. The apparent high temperature of the Fe gas would suggest that it may be produced by dissociation of molecules. A large traction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  20. Potential assessment of using fly ash as a binding agent for stabilization and solidification of dredged material; Potentialbedoemning av flygaskor som bindemedelskomponent foer stabilisering och solidifiering (s/s) av muddermassor

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmsson, Anna; Holm, Goeran; Lagerlund, Johan; Maijala, Aino; Macsik, Josef

    2010-04-15

    Over the next few years, about 200 000-800 000 m3 of contaminated sediments, with a muddy, slimy texture, high water ratio and low strength, shall be dredged annually in the development of ports and maintenance dredging of navigable waterways. Dumping at sea is limited since the dredged materials are contaminated. Land disposal requires transports and land area and is thus high in costs. In the construction of new port areas, large volumes of crushed rock, etc. are normally used as construction filling materials. These materials can be replaced by stabilised and solidified dredged materials, with modified geotechnical properties. The method of stabilising/solidifying (s/s) contaminated dredged materials has been used internationally for a long period of time, and, in more recent years, also in the Nordic countries. In Sweden, for instance, the Port of Gaevle and the Port of Oxeloesund have received permissions to reuse s/s-treated contaminated dredged materials in the port structures. Reuse of the stabilised/solidified masses in a geotechnical structure is supported by the new Framework Directive (2008/98/EC) on waste where great emphasis is placed on recycling. Within the project, fly ashes were inventoried with respect to suitability and availability. Five fly ashes, both individual fly ashes and mixtures of different fly ashes, were investigated in the laboratory as a binder component in a binder mix consisting of 50% cement, 20% Merit 5000 and 30% fly ash. Sediment from the Port of Gaevle were stabilised with a binder mixture amount of 150 kg/m3. Produced samples were examined in terms of strength, permeability and leaching. An assessment of the fly ashes' potential was performed based on technological, environmental and economical aspects, as well as market demand and the acceptance of stabilised and solidified dredged materials as construction material. The results show that fly ash, together in a binder mixture with construction cement and slag cement