WorldWideScience

Sample records for rapidly presented streams

  1. Rapid grounding line migration induced by internal variability of a marine-terminating ice stream

    Science.gov (United States)

    Robel, A.; Schoof, C.; Tziperman, E.

    2013-12-01

    Numerous studies have found significant variability in the velocity of ice streams to be a prominent feature of geomorphologic records in the Siple Coast (Catania et al. 2012) and other regions in West Antarctica (Dowdeswell et al. 2008). Observations indicate that grounding line position is strongly influenced by ice stream variability, producing rapid grounding line migration in the recent past (Catania et al. 2006) and the modern (Joughin & Tulaczyk 2002). We analyze the interaction of grounding line mass flux and position in a marine-terminating ice stream using a stretch-coordinate flowline model. This model is based on that described in Schoof (2007), with a mesh refined near the grounding line to ensure accurate resolution of the mechanical transition zone. Here we have added lateral shear stress (Dupont & Alley 2005) and an undrained plastic bed (Tulaczyk et al. 2000). The parameter dependence of ice stream variability seen in this model compares favorably to both simpler (Robel et al. 2013) and more complex (van der Wel et al. 2013) models, though with some key differences. We find that thermally-induced internal ice stream variability can cause very rapid grounding line migration even in the absence of retrograde bed slopes or external forcing. Activation waves propagate along the ice stream length and trigger periods of rapid grounding line migration. We compare the behavior of the grounding line due to internal ice stream variability to changes triggered externally at the grounding line such as the rapid disintegration of buttressing ice shelves. Implications for Heinrich events and the Marine Ice Sheet Instability are discussed.

  2. Simultaneous and rapid determination of multiple component concentrations in a Kraft liquor process stream

    Science.gov (United States)

    Li, Jian [Marietta, GA; Chai, Xin Sheng [Atlanta, GA; Zhu, Junyoung [Marietta, GA

    2008-06-24

    The present invention is a rapid method of determining the concentration of the major components in a chemical stream. The present invention is also a simple, low cost, device of determining the in-situ concentration of the major components in a chemical stream. In particular, the present invention provides a useful method for simultaneously determining the concentrations of sodium hydroxide, sodium sulfide and sodium carbonate in aqueous kraft pulping liquors through use of an attenuated total reflectance (ATR) tunnel flow cell or optical probe capable of producing a ultraviolet absorbency spectrum over a wavelength of 190 to 300 nm. In addition, the present invention eliminates the need for manual sampling and dilution previously required to generate analyzable samples. The inventive method can be used in Kraft pulping operations to control white liquor causticizing efficiency, sulfate reduction efficiency in green liquor, oxidation efficiency for oxidized white liquor and the active and effective alkali charge to kraft pulping operations.

  3. Rapid Automated Dissolution and Analysis Techniques for Radionuclides in Recycle Process Streams

    International Nuclear Information System (INIS)

    Sudowe, Ralf; Roman, Audrey; Dailey, Ashlee; Go, Elaine

    2013-01-01

    The analysis of process samples for radionuclide content is an important part of current procedures for material balance and accountancy in the different process streams of a recycling plant. The destructive sample analysis techniques currently available necessitate a significant amount of time. It is therefore desirable to develop new sample analysis procedures that allow for a quick turnaround time and increased sample throughput with a minimum of deviation between samples. In particular, new capabilities for rapid sample dissolution and radiochemical separation are required. Most of the radioanalytical techniques currently employed for sample analysis are based on manual laboratory procedures. Such procedures are time- and labor-intensive, and not well suited for situations in which a rapid sample analysis is required and/or large number of samples need to be analyzed. To address this issue we are currently investigating radiochemical separation methods based on extraction chromatography that have been specifically optimized for the analysis of process stream samples. The influence of potential interferences present in the process samples as well as mass loading, flow rate and resin performance is being studied. In addition, the potential to automate these procedures utilizing a robotic platform is evaluated. Initial studies have been carried out using the commercially available DGA resin. This resin shows an affinity for Am, Pu, U, and Th and is also exhibiting signs of a possible synergistic effects in the presence of iron.

  4. Light Video Game Play is Associated with Enhanced Visual Processing of Rapid Serial Visual Presentation Targets.

    Science.gov (United States)

    Howard, Christina J; Wilding, Robert; Guest, Duncan

    2017-02-01

    There is mixed evidence that video game players (VGPs) may demonstrate better performance in perceptual and attentional tasks than non-VGPs (NVGPs). The rapid serial visual presentation task is one such case, where observers respond to two successive targets embedded within a stream of serially presented items. We tested light VGPs (LVGPs) and NVGPs on this task. LVGPs were better at correct identification of second targets whether they were also attempting to respond to the first target. This performance benefit seen for LVGPs suggests enhanced visual processing for briefly presented stimuli even with only very moderate game play. Observers were less accurate at discriminating the orientation of a second target within the stream if it occurred shortly after presentation of the first target, that is to say, they were subject to the attentional blink (AB). We find no evidence for any reduction in AB in LVGPs compared with NVGPs.

  5. Get In and Get Out: Assessing Stream Sediment Loading from Short Duration Forest Harvest Operations and Rapid Haul Road Decommissioning.

    Science.gov (United States)

    Corrigan, A.; Silins, U.; Stone, M.

    2016-12-01

    Best management practices (BMPs) and associated erosion control measures for mitigating sediment impacts from forestry roads and road-stream crossings are well documented. While rapid road decommissioning after forestry operations may serve to limit broader impacts on sediment production in high value headwater streams, few studies have evaluated the combined effects of accelerated harvest operations and rapid retirement of logging roads and road-stream crossings on stream sediment. The objectives of this study were to evaluate the initial impacts of these strategies on fine sediment loading and fate during a short duration harvesting operation in 3 headwater sub-catchments in the southwestern Rocky Mountains of Alberta, Canada. A multi-pronged sampling approach (ISCOs, event focused grab sampling, continuous wash load sampling, and stream bed sediment intrusion measurements) was used to measure sediment loading and deposition in streambeds upstream and downstream of road-stream bridge crossings during harvest operations (2015) and after road and bridge crossing retirement (2016). Sediment production from forestry roads was generally much lower than has been reported from other studies in similar settings. Average total suspended solids (TSS) downstream of the bridge crossings were actually lower (-3.28 g/L; -0.704 g/L) than upstream of two bridge crossings while in-stream sediment sources contributed to elevated sediment downstream of a third road-stream crossing. Minimal in stream sediment impacts from forest harvest and road-stream crossings was likely a reflection of combined factors including a) employment of erosion control BMPs to roads and bridge crossings, b) rapid decommissioning of roads and crossings to limit exposure of linear land disturbance features, and c) drier El Niño climatic conditions during the study.

  6. Apparatus and method for rapid separation and detection of hydrocarbon fractions in a fluid stream

    Science.gov (United States)

    Sluder, Charles S.; Storey, John M.; Lewis, Sr., Samuel A.

    2013-01-22

    An apparatus and method for rapid fractionation of hydrocarbon phases in a sample fluid stream are disclosed. Examples of the disclosed apparatus and method include an assembly of elements in fluid communication with one another including one or more valves and at least one sorbent chamber for removing certain classifications of hydrocarbons and detecting the remaining fractions using a detector. The respective ratios of hydrocarbons are determined by comparison with a non separated fluid stream.

  7. Convolutional Neural Network for Multi-Category Rapid Serial Visual Presentation BCI

    Directory of Open Access Journals (Sweden)

    Ran eManor

    2015-12-01

    Full Text Available Brain computer interfaces rely on machine learning algorithms to decode the brain's electrical activity into decisions. For example, in rapid serial visual presentation (RSVP tasks, the subject is presented with a continuous stream of images containing rare target images among standard images, while the algorithm has to detect brain activity associated with target images. Here, we continue our previous work, presenting a deep neural network model for the use of single trial EEG classification in RSVP tasks. Deep neural networks have shown state of the art performance in computer vision and speech recognition and thus have great promise for other learning tasks, like classification of EEG samples. In our model, we introduce a novel spatio-temporal regularization for EEG data to reduce overfitting. We show improved classification performance compared to our earlier work on a five categories RSVP experiment. In addition, we compare performance on data from different sessions and validate the model on a public benchmark data set of a P300 speller task. Finally, we discuss the advantages of using neural network models compared to manually designing feature extraction algorithms.

  8. Fish diversity in adjacent ambient, thermal, and post-thermal freshwater streams

    International Nuclear Information System (INIS)

    McFarlane, R.W.

    1976-01-01

    The Savannah River Plant area is drained by five streams of various sizes and thermal histories. One has never been thermally stressed, two presently receive thermal effluent, and two formerly received thermal effluent from nuclear production reactors. Sixty-four species of fishes are known to inhabit these streams; 55 species is the highest number obtained from any one stream. Thermal effluent in small streams excludes fish during periods of high temperatures, but the streams are rapidly reinvaded when temperatures subside below lethal limits. Some cyprinids become extinct in nonthermal tributaries upstream from the thermal effluents after extended periods of thermal stress. This extinction is similar to that which follows stream impoundment. Post-thermal streams rapidly recover their fish diversity and abundance. The alteration of the streambed and removal of overhead canopy may change the stream characteristics and modify the post-thermal fish fauna

  9. Monitoring sea lamprey pheromones and their degradation using rapid stream-side extraction coupled with UPLC-MS/MS

    Science.gov (United States)

    Wang, Huiyong; Johnson, Nicholas; Bernardy, Jeffrey; Hubert, Terry; Li, Weiming

    2013-01-01

    Pheromones guide adult sea lamprey (Petromyzon marinus) to suitable spawning streams and mates, and therefore, when quantified, can be used to assess population size and guide management. Here, we present an efficient sample preparation method where 100 mL of river water was spiked with deuterated pheromone as an internal standard and underwent rapid field-based SPE and elution in the field. The combination of field extraction with laboratory UPLC-MS/MS reduced the sample consumption from 1 to 0.1 L, decreased the sample process time from more than 1 h to 10 min, and increased the precision and accuracy. The sensitivity was improved more than one order of magnitude compared with the previous method. The influences of experimental conditions were assessed to optimize the separation and peak shapes. The analytical method has been validated by studies of stability, selectivity, precision, and linearity and by the determination of the limits of detection and quantification. The method was used to quantify pheromone concentration from five streams tributary to Lake Ontario and to estimate that the environmental half-life of 3kPZS is about 26 h.

  10. Dorsal stream involvement in recognition of objects with transient onset but not with ramped onset

    Directory of Open Access Journals (Sweden)

    Lourenco Tomas

    2011-08-01

    Full Text Available Abstract Background Although the ventral visual stream is understood to be responsible for object recognition, it has been proposed that the dorsal stream may contribute to object recognition by rapidly activating parietal attention mechanisms, prior to ventral stream object processing. Methods To investigate the relative contribution of the dorsal visual stream to object recognition a group of tertiary students were divided into good and poor motion coherence groups and assessed on tasks classically assumed to rely on ventral stream processing. Participants were required to identify simple line drawings in two tasks, one where objects were presented abruptly for 50 ms followed by a white-noise mask, the other where contrast was linearly ramped on and off over 325 ms and replaced with a mask. Results Although both groups only differed in motion coherence performance (a dorsal stream measure, the good motion coherence group showed superior contrast sensitivity for object recognition on the abrupt, but not the ramped presentation tasks. Conclusions We propose that abrupt presentation of objects activated attention mechanisms fed by the dorsal stream, whereas the ramped presentation had reduced transience and thus did not activate dorsal attention mechanisms as well. The results suggest that rapid dorsal stream activation may be required to assist with ventral stream object processing.

  11. In-stream nutrient uptake kinetics along stream size and development gradients in a rapidly developing mountain resort watershed

    Science.gov (United States)

    Covino, T.; McGlynn, B.; McNamarra, R.; Gardner, K.

    2012-04-01

    Land use / land cover (LULC) change including mountain resort development often lead to increased nutrient loading to streams, however the potential influence on stream ecosystem nutrient uptake kinetics and transport remain poorly understood. Given the deleterious impacts elevated nutrient loading can have on aquatic ecosystems, it is imperative to improve understanding of nutrient retention capacities across stream scales and watershed development intensities. We performed seventeen nutrient addition experiments on six streams across the West Fork Gallatin Watershed, Montana, USA, to quantify nitrogen (N) uptake kinetics and retention dynamics across stream sizes (1st to 4th order) and along a mountain resort development gradient. We observed that stream N uptake kinetics and spiraling parameters varied across streams of different development intensity and scale. In more developed watersheds we observed a fertilization affect, however, none of the streams exhibited saturation with respect to N. Additionally, we observed that elevated loading led to increased biomass and retentive capacities in developed streams that helped maintain export at low levels during baseflow. Our results indicate that LULC can enhance in-stream uptake of limiting nutrients and highlight the value of characterizing uptake kinetic curves from ambient to saturation.

  12. Rapid serial visual presentation design for cognition

    CERN Document Server

    Spence, Robert

    2013-01-01

    A powerful new image presentation technique has evolved over the last twenty years, and its value demonstrated through its support of many and varied common tasks. Conceptually, Rapid Serial Visual Presentation (RSVP) is basically simple, exemplified in the physical world by the rapid riffling of the pages of a book in order to locate a known image. Advances in computation and graphics processing allow RSVP to be applied flexibly and effectively to a huge variety of common tasks such as window shopping, video fast-forward and rewind, TV channel selection and product browsing. At its heart is a

  13. Rapid Bioassessment Methods for Assessing Stream Macroinvertebrate Community on the Savannah River Site

    International Nuclear Information System (INIS)

    Specht, W.L.

    1999-01-01

    Macroinvertebrate sampling was performed at 16 locations in the Savannah River Site (SRS) streams using Hester-Dendy multiplate samplers and EPA Rapid Bioassessment Protocols (RBP). Some of the sampling locations were unimpacted, while other locations had been subject to various forms of perturbation by SRS activities. In general, the data from the Hester-Dendy multiplate samplers were more sensitive at detecting impacts than were the RBP data. We developed a Biotic Index for the Hester-Dendy data which incorporated eight community structure, function, and balance parameters. when tested using a data set that was unrelated to the data set that was used in developing the Biotic Index, the index was very successful at detecting impact

  14. Rapid Bioassessment Methods for Assessing Stream Macroinvertebrate Community on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    1999-11-22

    Macroinvertebrate sampling was performed at 16 locations in the Savannah River Site (SRS) streams using Hester-Dendy multiplate samplers and EPA Rapid Bioassessment Protocols (RBP). Some of the sampling locations were unimpacted, while other locations had been subject to various forms of perturbation by SRS activities. In general, the data from the Hester-Dendy multiplate samplers were more sensitive at detecting impacts than were the RBP data. We developed a Biotic Index for the Hester-Dendy data which incorporated eight community structure, function, and balance parameters. when tested using a data set that was unrelated to the data set that was used in developing the Biotic Index, the index was very successful at detecting impact.

  15. RAPID AUTOMATED RADIOCHEMICAL ANALYZER FOR DETERMINATION OF TARGETED RADIONUCLIDES IN NUCLEAR PROCESS STREAMS

    International Nuclear Information System (INIS)

    O'Hara, Matthew J.; Durst, Philip C.; Grate, Jay W.; Egorov, Oleg; Devol, Timothy A.

    2008-01-01

    Some industrial process-scale plants require the monitoring of specific radionuclides as an indication of the composition of their feed streams or as indicators of plant performance. In this process environment, radiochemical measurements must be fast, accurate, and reliable. Manual sampling, sample preparation, and analysis of process fluids are highly precise and accurate, but tend to be expensive and slow. Scientists at Pacific Northwest National Laboratory (PNNL) have assembled and characterized a fully automated prototype Process Monitor instrument which was originally designed to rapidly measure Tc-99 in the effluent streams of the Waste Treatment Plant at Hanford, WA. The system is capable of a variety of tasks: extraction of a precise volume of sample, sample digestion/analyte redox adjustment, column-based chemical separations, flow-through radiochemical detection and data analysis/reporting. The system is compact, its components are fluidically inter-linked, and analytical results can be immediately calculated and electronically reported. It is capable of performing a complete analytical cycle in less than 15 minutes. The system is highly modular and can be adapted to a variety of sample types and analytical requirements. It exemplifies how automation could be integrated into reprocessing facilities to support international nuclear safeguards needs

  16. The Rapid Perceptual Impact of Emotional Distractors.

    Directory of Open Access Journals (Sweden)

    Briana L Kennedy

    Full Text Available The brief presentation of an emotional distractor can temporarily impair perception of a subsequent, rapidly presented target, an effect known as emotion-induced blindness (EIB. How rapidly does this impairment unfold? To probe this question, we examined EIB for targets that immediately succeeded ("lag-1" emotional distractors in a rapid stream of items relative to EIB for targets at later serial positions. Experiments 1 and 2 suggested that emotional distractors interfere with items presented very soon after them, with impaired target perception emerging as early as lag-1. Experiment 3 included an exploratory examination of individual differences, which suggested that EIB onsets more rapidly among participants scoring high in measures linked to negative affect.

  17. Individual differences in detecting rapidly presented fearful faces.

    Directory of Open Access Journals (Sweden)

    Dandan Zhang

    Full Text Available Rapid detection of evolutionarily relevant threats (e.g., fearful faces is important for human survival. The ability to rapidly detect fearful faces exhibits high variability across individuals. The present study aimed to investigate the relationship between behavioral detection ability and brain activity, using both event-related potential (ERP and event-related oscillation (ERO measurements. Faces with fearful or neutral facial expressions were presented for 17 ms or 200 ms in a backward masking paradigm. Forty-two participants were required to discriminate facial expressions of the masked faces. The behavioral sensitivity index d' showed that the detection ability to rapidly presented and masked fearful faces varied across participants. The ANOVA analyses showed that the facial expression, hemisphere, and presentation duration affected the grand-mean ERP (N1, P1, and N170 and ERO (below 20 Hz and lasted from 100 ms to 250 ms post-stimulus, mainly in theta band brain activity. More importantly, the overall detection ability of 42 subjects was significantly correlated with the emotion effect (i.e., fearful vs. neutral on ERP (r = 0.403 and ERO (r = 0.552 measurements. A higher d' value was corresponding to a larger size of the emotional effect (i.e., fearful--neutral of N170 amplitude and a larger size of the emotional effect of the specific ERO spectral power at the right hemisphere. The present results suggested a close link between behavioral detection ability and the N170 amplitude as well as the ERO spectral power below 20 Hz in individuals. The emotional effect size between fearful and neutral faces in brain activity may reflect the level of conscious awareness of fearful faces.

  18. Rapid Response Fault Drilling Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Demian M. Saffer

    2009-09-01

    Full Text Available New information about large earthquakes can be acquired by drilling into the fault zone quickly following a large seismic event. Specifically, we can learn about the levels of friction and strength of the fault which determine the dynamic rupture, monitor the healing process of the fault, record the stress changes that trigger aftershocks and capture important physical and chemical properties of the fault that control the rupture process. These scientific and associated technical issues were the focus of a three-day workshop on Rapid Response Fault Drilling: Past, Present, and Future, sponsored by the International Continental Scientific Drilling Program (ICDP and the Southern California Earthquake Center (SCEC. The meeting drewtogether forty-four scientists representing ten countries in Tokyo, Japan during November 2008. The group discussed the scientific problems and how they could be addressed through rapid response drilling. Focused talks presented previous work on drilling after large earthquakes and in fault zones in general, as well as the state of the art of experimental techniques and measurement strategies. Detailed discussion weighed the tradeoffs between rapid drilling andthe ability to satisfy a diverse range of scientific objectives. Plausible drilling sites and scenarios were evaluated. This is a shortened summary of the workshop report that discusses key scientific questions, measurement strategies, and recommendations. This report can provide a starting point for quickly mobilizing a drilling program following future large earthquakes. The full report can be seen at http://www.pmc.ucsc.edu/~rapid/.

  19. Prioritized Identification of Attractive and Romantic Partner Faces in Rapid Serial Visual Presentation.

    Science.gov (United States)

    Nakamura, Koyo; Arai, Shihoko; Kawabata, Hideaki

    2017-11-01

    People are sensitive to facial attractiveness because it is an important biological and social signal. As such, our perceptual and attentional system seems biased toward attractive faces. We tested whether attractive faces capture attention and enhance memory access in an involuntary manner using a dual-task rapid serial visual presentation (dtRSVP) paradigm, wherein multiple faces were successively presented for 120 ms. In Experiment 1, participants (N = 26) were required to identify two female faces embedded in a stream of animal faces as distractors. The results revealed that identification of the second female target (T2) was better when it was attractive compared to neutral or unattractive. In Experiment 2, we investigated whether perceived attractiveness affects T2 identification (N = 27). To this end, we performed another dtRSVP task involving participants in a romantic partnership with the opposite sex, wherein T2 was their romantic partner's face. The results demonstrated that a romantic partner's face was correctly identified more often than was the face of a friend or unknown person. Furthermore, the greater the intensity of passionate love participants felt for their partner (as measured by the Passionate Love Scale), the more often they correctly identified their partner's face. Our experiments indicate that attractive and romantic partners' faces facilitate the identification of the faces in an involuntary manner.

  20. Integrating unmanned aerial systems and LSPIV for rapid, cost-effective stream gauging

    Science.gov (United States)

    Lewis, Quinn W.; Lindroth, Evan M.; Rhoads, Bruce L.

    2018-05-01

    Quantifying flow in rivers is fundamental to assessments of water supply, water quality, ecological conditions, hydrological responses to storm events, and geomorphological processes. Image-based surface velocity measurements have shown promise in extending the range of discharge conditions that can be measured in the field. The use of Unmanned Aerial Systems (UAS) in image-based measurements of surface velocities has the potential to expand applications of this method. Thus far, few investigations have assessed this potential by evaluating the accuracy and repeatability of discharge measurements using surface velocities obtained from UAS. This study uses large-scale particle image velocimetry (LSPIV) derived from videos captured by cameras on a UAS and a fixed tripod to obtain discharge measurements at ten different stream locations in Illinois, USA. Discharge values are compared to reference values measured by an acoustic Doppler current profiler, a propeller meter, and established stream gauges. The results demonstrate the effects of UAS flight height, camera steadiness and leveling accuracy, video sampling frequency, and LSPIV interrogation area size on surface velocities, and show that the mean difference between fixed and UAS cameras is less than 10%. Differences between LSPIV-derived and reference discharge values are generally less than 20%, not systematically low or high, and not related to site parameters like channel width or depth, indicating that results are relatively insensitive to camera setup and image processing parameters typically required of LSPIV. The results also show that standard velocity indices (between 0.85 and 0.9) recommended for converting surface velocities to depth-averaged velocities yield reasonable discharge estimates, but are best calibrated at specific sites. The study recommends a basic methodology for LSPIV discharge measurements using UAS that is rapid, cost-efficient, and does not require major preparatory work at a

  1. Toward a Rapid Synthesis of Field and Desktop Data for Classifying Streams in the Pacific Northwest: Guiding the Sampling and Management of Salmonid Habitat

    Science.gov (United States)

    Kasprak, A.; Wheaton, J. M.; Bouwes, N.; Weber, N. P.; Trahan, N. C.; Jordan, C. E.

    2012-12-01

    River managers often seek to understand habitat availability and quality for riverine organisms within the physical template provided by their landscape. Yet the large amount of natural heterogeneity in landscapes gives rise to stream systems which are highly variable over small spatial scales, potentially complicating site selection for surveying aquatic habitat while simultaneously making a simple, wide-reaching management strategy elusive. This is particularly true in the rugged John Day River Basin of northern Oregon, where efforts as part of the Columbia Habitat Monitoring Program to conduct site-based surveys of physical habitat for endangered steelhead salmon (Oncorhynchus mykiss) are underway. As a complete understanding of the type and distribution of habitat available to these fish would require visits to all streams in the basin (impractical due to its large size), here we develop an approach for classifying channel types which combines remote desktop GIS analyses with rapid field-based stream and landscape surveys. At the core of this method, we build off of the River Styles Framework, an open-ended and process-based approach for classifying streams and informing management decisions. This framework is combined with on-the-ground fluvial audits, which aim to quickly and continuously map sediment dynamics and channel behavior along selected channels. Validation of this classification method is completed by on-the-ground stream surveys using a digital iPad platform and by rapid small aircraft overflights to confirm or refine predictions. We further compare this method with existing channel classification approaches for the region (e.g. Beechie, Montgomery and Buffington). The results of this study will help guide both the refinement of site stratification and selection for salmonid habitat monitoring within the basin, and will be vital in designing and prioritizing restoration and management strategies tailored to the distribution of river styles found

  2. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    Science.gov (United States)

    Li, Chenhui; Baciu, George; Han, Yu

    2018-03-01

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  3. Continuity-Aware Scheduling Algorithm for Scalable Video Streaming

    Directory of Open Access Journals (Sweden)

    Atinat Palawan

    2016-05-01

    Full Text Available The consumer demand for retrieving and delivering visual content through consumer electronic devices has increased rapidly in recent years. The quality of video in packet networks is susceptible to certain traffic characteristics: average bandwidth availability, loss, delay and delay variation (jitter. This paper presents a scheduling algorithm that modifies the stream of scalable video to combat jitter. The algorithm provides unequal look-ahead by safeguarding the base layer (without the need for overhead of the scalable video. The results of the experiments show that our scheduling algorithm reduces the number of frames with a violated deadline and significantly improves the continuity of the video stream without compromising the average Y Peek Signal-to-Noise Ratio (PSNR.

  4. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  5. Implementation of a Multichannel Serial Data Streaming Algorithm using the Xilinx Serial RapidIO Solution

    Science.gov (United States)

    Doxley, Charles A.

    2016-01-01

    In the current world of applications that use reconfigurable technology implemented on field programmable gate arrays (FPGAs), there is a need for flexible architectures that can grow as the systems evolve. A project has limited resources and a fixed set of requirements that development efforts are tasked to meet. Designers must develop robust solutions that practically meet the current customer demands and also have the ability to grow for future performance. This paper describes the development of a high speed serial data streaming algorithm that allows for transmission of multiple data channels over a single serial link. The technique has the ability to change to meet new applications developed for future design considerations. This approach uses the Xilinx Serial RapidIO LOGICORE Solution to implement a flexible infrastructure to meet the current project requirements with the ability to adapt future system designs.

  6. Recovery of stream communities from experimental selenium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Swift, M.C.; Kuklinskal, B.; Ferkull, K. [Univ. of Minnesota, Monticello, MN (United States); Allen, K.N.; Hermanutz, R.O.; Roush, T.H.; Hedtke, S.F. [Environmental Protection Agency, Duluth, MN (United States). Environmental Research Lab.

    1994-12-31

    The effects of selenium on stream communities and their recovery from those effects were studied at MERS from 1987--1991. Selenium was dosed into two replicate streams each at concentrations of 30, 10, 2.5 and 0 (control) {mu}g L{sup {minus}1} for 18, 30, and 12 months, respectively. Recovery was monitored for three (30) or two (1 0, 2.5) years following cessation of selenium dosing. Selenium rapidly accumulated in the sediment, plants, macroinvertebrates and fish during dosing. Selenium concentrations in sediment, macroinvertebrates, and plants were as high as 2X--4X, 2X--4X, and 1X--1OX the dosed concentration in the 30, 10, and 2.5 treatments, respectively. Selenium decreased relatively rapidly following cessation of dosing. By two years after dosing ceased, selenium concentrations in plants and macroinvertebrates were little different from the controls; selenium in sediment from the 30 and 10 streams was still higher than in the control streams two years after dosing ceased. The macroinvertebrate community changed little during the dosing and recovery period. Commonly used indices of community structure showed no effect of selenium dosing. The isopod Asellus and oligochaetes in the family Tubificidae decreased rapidly following the onset of selenium dosing; their recovery following cessation of dosing was slow.

  7. Spatial distribution of mercury in southeastern Alaskan streams influenced by glaciers, wetlands, and salmon

    International Nuclear Information System (INIS)

    Nagorski, Sonia A.; Engstrom, Daniel R.; Hudson, John P.; Krabbenhoft, David P.; Hood, Eran; DeWild, John F.; Aiken, George R.

    2014-01-01

    Southeastern Alaska is a remote coastal-maritime ecosystem that is experiencing increased deposition of mercury (Hg) as well as rapid glacier loss. Here we present the results of the first reported survey of total and methyl Hg (MeHg) concentrations in regional streams and biota. Overall, streams draining large wetland areas had higher Hg concentrations in water, mayflies, and juvenile salmon than those from glacially-influenced or recently deglaciated watersheds. Filtered MeHg was positively correlated with wetland abundance. Aqueous Hg occurred predominantly in the particulate fraction of glacier streams but in the filtered fraction of wetland-rich streams. Colonization by anadromous salmon in both glacier and wetland-rich streams may be contributing additional marine-derived Hg. The spatial distribution of Hg in the range of streams presented here shows that watersheds are variably, yet fairly predictably, sensitive to atmospheric and marine inputs of Hg. -- Highlights: • We sampled 21 streams in southeastern Alaska for water, sediments, and biota. • Aqueous Hg showed significant relationships with wetlands and DOC. • Biota had higher mercury in wetland-rich streams than in glacier-fed streams. • Spawning salmon appear to contribute methylmercury to stream foodwebs. -- This original survey of mercury concentration and form in southeastern Alaskan streamwater and biota shows substantial spatial variation linked to landscape factors and salmon influence

  8. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  9. Analisis Kebutuhan Bandwidth Pada Pemanfaatan Web Streaming Justin.tv Sebagai Media E-Learning Dengan Menggunakan Wirecast Dan Desktop Presenter

    Directory of Open Access Journals (Sweden)

    Muhammad Ubaidilah

    2014-05-01

    Full Text Available Perkembangan teknologi informasi begitu cepat seperti sekarang telah banyak mengubah sudut pandang banyak orang, antara lain sudut pandang orang untuk mengubah dunia pendidikan menjadi lebih baik. Salah satu contohnya pembelajaran berbasis Information and Communication Technologies (ICT yaitu pembelajaran menggunakan video streaming. Dengan instalasi software open source Wirecast dan Desktop presenter digunakan untuk membuat video pembelajaran Streaming, disiarkan secara real time melalui media broadcast justin.tv (internet TV Channel, diharapkan dapat lebih mendukung konsep pembelajaran kapan dan dimana saja. Masalah terbesar dari teknologi ini adalah keterbatasan bandwidth. Bandwidth adalah parameter penting untuk melakukan streaming dalam jaringan. Sedangkan proses komunikasi menggunakan video digital ini menghabiskan resource yang cukup besar. Sehingga penggunaan wireshark di sini sangat diperlukan untuk menganalisis bandwidth pada paket yang diterima oleh client. Dari hasil pengukuran video dengan standar H.264 resolusi (720 x 540, dengan rata-rata 20 menit dalam pengambilan sampel, sebanyak 30 pengujian sampel streaming video menggunakan wireshark, diperoleh rata-rata throughput keseluruhan 0,343 Mbps, rata-rata throughput terendah 0,309 Mbps dan throughput tertinggi 0,372 Mbps. Dapat disimpulkan bahwa jika dihasilkan throughput yang lebih besar maka kualitas video streaming akan lebih baik, tetapi jika throughput dihasilkan semakin kecil maka kualitas video streaming akan menurun

  10. Present and past Gulf Stream variability in a cold-water coral area off Cape Lookout, West Atlantic

    Science.gov (United States)

    Mienis, F.; Pedersen, A.; Duineveld, G.; Seidenkrantz, M.; Fischel, A.; Matos, L.; Bane, J. M.; Frank, N.; Hebbeln, D.; Ross, S.

    2012-12-01

    point at Gulfstream water moving over the deployment site as was confirmed by satellite images. The instantaneous increases in of the turbidity at the onset of warm events when the current speed increases, likely represent local erosion of the seafloor and of the coral mounds. Based on the foraminifera data three zones could be observed in the piston core (13000-10000 years, 10000-7200 years and 7200-4700 years. All zones show the gradual onshore movement of the Gulf Stream, which can be related to a rapid rise in sea-level after the last deglaciation. This movement has gradually widened the band of the Gulfstream thereby compressing the surface and deeper water masses. Current speed in the area are generally strong but weakened during periods of fresh water outflow in the North Atlantic, which weakened the thermohaline circulation. This was especially clear in zone 2 around 8200 years, due to a melt water pulse of lake Agassiz and Ojibway. Data presented here show that the Gulf Stream influenced cold-water coral growth and mound formation at the SE Us margin at present as well as in the past.

  11. StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams.

    Science.gov (United States)

    Wu, Yingcai; Chen, Zhutian; Sun, Guodao; Xie, Xiao; Cao, Nan; Liu, Shixia; Cui, Weiwei

    2017-10-18

    Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present Stream

  12. Pollutant Dispersion Modeling in Natural Streams Using the Transmission Line Matrix Method

    Directory of Open Access Journals (Sweden)

    Safia Meddah

    2015-09-01

    Full Text Available Numerical modeling has become an indispensable tool for solving various physical problems. In this context, we present a model of pollutant dispersion in natural streams for the far field case where dispersion is considered longitudinal and one-dimensional in the flow direction. The Transmission Line Matrix (TLM, which has earned a reputation as powerful and efficient numerical method, is used. The presented one-dimensional TLM model requires a minimum input data and provides a significant gain in computing time. To validate our model, the results are compared with observations and experimental data from the river Severn (UK. The results show a good agreement with experimental data. The model can be used to predict the spatiotemporal evolution of a pollutant in natural streams for effective and rapid decision-making in a case of emergency, such as accidental discharges in a stream with a dynamic similar to that of the river Severn (UK.

  13. Global perspectives on the urban stream syndrome

    Science.gov (United States)

    Roy, Allison; Booth, Derek B.; Capps, Krista A.; Smith, Benjamin

    2016-01-01

    Urban streams commonly express degraded physical, chemical, and biological conditions that have been collectively termed the “urban stream syndrome”. The description of the syndrome highlights the broad similarities among these streams relative to their less-impaired counterparts. Awareness of these commonalities has fostered rapid improvements in the management of urban stormwater for the protection of downstream watercourses, but the focus on the similarities among urban streams has obscured meaningful differences among them. Key drivers of stream responses to urbanization can vary greatly among climatological and physiographic regions of the globe, and the differences can be manifested in individual stream channels even through the homogenizing veneer of urban development. We provide examples of differences in natural hydrologic and geologic settings (within similar regions) that can result in different mechanisms of stream ecosystem response to urbanization and, as such, should lead to different management approaches. The idea that all urban streams can be cured using the same treatment is simplistic, but overemphasizing the tremendous differences among natural (or human-altered) systems also can paralyze management. Thoughtful integration of work that recognizes the commonalities of the urban stream syndrome across the globe has benefitted urban stream management. Now we call for a more nuanced understanding of the regional, subregional, and local attributes of any given urban stream and its watershed to advance the physical, chemical, and ecological recovery of these systems.

  14. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.

    Science.gov (United States)

    Collins, David J; Khoo, Bee Luan; Ma, Zhichao; Winkler, Andreas; Weser, Robert; Schmidt, Hagen; Han, Jongyoon; Ai, Ye

    2017-05-16

    Acoustic streaming has emerged as a promising technique for refined microscale manipulation, where strong rotational flow can give rise to particle and cell capture. In contrast to hydrodynamically generated vortices, acoustic streaming is rapidly tunable, highly scalable and requires no external pressure source. Though streaming is typically ignored or minimized in most acoustofluidic systems that utilize other acoustofluidic effects, we maximize the effect of acoustic streaming in a continuous flow using a high-frequency (381 MHz), narrow-beam focused surface acoustic wave. This results in rapid fluid streaming, with velocities orders of magnitude greater than that of the lateral flow, to generate fluid vortices that extend the entire width of a 400 μm wide microfluidic channel. We characterize the forces relevant for vortex formation in a combined streaming/lateral flow system, and use these acoustic streaming vortices to selectively capture 2 μm from a mixed suspension with 1 μm particles and human breast adenocarcinoma cells (MDA-231) from red blood cells.

  15. Urbanization and stream ecology: Diverse mechanisms of change

    Science.gov (United States)

    Roy, Allison; Capps, Krista A.; El-Sabaawi, Rana W.; Jones, Krista L.; Parr, Thomas B.; Ramirez, Alonso; Smith, Robert F.; Walsh, Christopher J.; Wenger, Seth J.

    2016-01-01

    The field of urban stream ecology has evolved rapidly in the last 3 decades, and it now includes natural scientists from numerous disciplines working with social scientists, landscape planners and designers, and land and water managers to address complex, socioecological problems that have manifested in urban landscapes. Over the last decade, stream ecologists have met 3 times at the Symposium on Urbanization and Stream Ecology (SUSE) to discuss current research, identify knowledge gaps, and promote future research collaborations. The papers in this special series on urbanization and stream ecology include both primary research studies and conceptual synthesis papers spurred from discussions at SUSE in May 2014. The themes of the meeting are reflected in the papers in this series emphasizing global differences in mechanisms and responses of stream ecosystems to urbanization and management solutions in diverse urban streams. Our hope is that this series will encourage continued interdisciplinary and collaborative research to increase the global understanding of urban stream ecology toward stream protection and restoration in urban landscapes.

  16. Frequency effects on the scale and behavior of acoustic streaming.

    Science.gov (United States)

    Dentry, Michael B; Yeo, Leslie Y; Friend, James R

    2014-01-01

    Acoustic streaming underpins an exciting range of fluid manipulation phenomena of rapidly growing significance in microfluidics, where the streaming often assumes the form of a steady, laminar jet emanating from the device surface, driven by the attenuation of acoustic energy within the beam of sound propagating through the liquid. The frequencies used to drive such phenomena are often chosen ad hoc to accommodate fabrication and material issues. In this work, we seek a better understanding of the effects of sound frequency and power on acoustic streaming. We present and, using surface acoustic waves, experimentally verify a laminar jet model that is based on the turbulent jet model of Lighthill, which is appropriate for acoustic streaming seen at micro- to nanoscales, between 20 and 936 MHz and over a broad range of input power. Our model eliminates the critically problematic acoustic source singularity present in Lighthill's model, replacing it with a finite emission area and enabling determination of the streaming velocity close to the source. At high acoustic power P (and hence high jet Reynolds numbers ReJ associated with fast streaming), the laminar jet model predicts a one-half power dependence (U∼P1/2∼ ReJ) similar to the turbulent jet model. However, the laminar model may also be applied to jets produced at low powers-and hence low jet Reynolds numbers ReJ-where a linear relationship between the beam power and streaming velocity exists: U∼P∼ReJ2. The ability of the laminar jet model to predict the acoustic streaming behavior across a broad range of frequencies and power provides a useful tool in the analysis of microfluidics devices, explaining peculiar observations made by several researchers in the literature. In particular, by elucidating the effects of frequency on the scale of acoustically driven flows, we show that the choice of frequency is a vitally important consideration in the design of small-scale devices employing acoustic streaming

  17. Analyzing indicators of stream health for Minnesota streams

    Science.gov (United States)

    Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.

    2005-01-01

    Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.

  18. Urethral triplication with meatuses terminating on the penis: a rare case presenting with bifid urinary stream

    Energy Technology Data Exchange (ETDEWEB)

    Hirselj, Daniel A.; Jayanthi, Venkata R. [Nationwide Children' s Hospital, Department of Pediatric Urology, Columbus, OH (United States); Lowe, Gregory K. [The Ohio State University Medical Center, Department of Urology, Columbus, OH (United States)

    2009-11-15

    Urethral duplication is an uncommon clinical finding, and classification systems have been described to explain the clinical findings. Urethral triplication is an extremely uncommon diagnosis, with few published case reports. We present the rare case of an infant noted to have a bifid urinary stream and found to have urethral triplication on voiding cystourethrography. (orig.)

  19. Urethral triplication with meatuses terminating on the penis: a rare case presenting with bifid urinary stream

    International Nuclear Information System (INIS)

    Hirselj, Daniel A.; Jayanthi, Venkata R.; Lowe, Gregory K.

    2009-01-01

    Urethral duplication is an uncommon clinical finding, and classification systems have been described to explain the clinical findings. Urethral triplication is an extremely uncommon diagnosis, with few published case reports. We present the rare case of an infant noted to have a bifid urinary stream and found to have urethral triplication on voiding cystourethrography. (orig.)

  20. Detecting and Remembering Simultaneous Pictures in a Rapid Serial Visual Presentation

    Science.gov (United States)

    Potter, Mary C.; Fox, Laura F.

    2009-01-01

    Viewers can easily spot a target picture in a rapid serial visual presentation (RSVP), but can they do so if more than 1 picture is presented simultaneously? Up to 4 pictures were presented on each RSVP frame, for 240 to 720 ms/frame. In a detection task, the target was verbally specified before each trial (e.g., "man with violin"); in a…

  1. Rapid, low-cost prototyping of centrifugal microfluidic devices for effective implementation of various microfluidic operations

    CSIR Research Space (South Africa)

    Hugo, S

    2013-10-01

    Full Text Available can be achieved. This work provides a complete centrifugal microfluidic platform and the building blocks on which to develop a variety of microfluidic applications and potential products rapidly and at a low cost. ... stream_source_info Hugo_2015_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 1281 Content-Encoding UTF-8 stream_name Hugo_2015_ABSTRACT.pdf.txt Content-Type text/plain; charset=UTF-8 Rapid Product Development...

  2. Physical Processes Affecting the Distribution of Diydymosphenia Geminata Biomass Bloom in Rapid Creek, South Dakota

    Science.gov (United States)

    Abessa, M. B.; Sundareshwar, P. V.; Updhayay, S.

    2010-12-01

    Didymosphenia geminata is a freshwater diatom that has invaded and colonized many of the world’s oligotrophic streams and rivers, including Rapid Creek in Western South Dakota - a perennial oligotrophic stream that emerges from the Black Hills and is fed by cold water release from the Pactola Reservoir. Since 2002, D. geminata blooms have been observed in certain stretches of the Rapid Creek. These massive blooms are localized to certain segments of the Creek where the flow is mainly slow, stable and shallow dominated by boulder type bed material and submerged large woody debris. Water chemistry data from this Creek showed the variability of major nutrients such as phosphate, nitrates/nitrites and ammonium are insignificant across our study sites while the nature of the stream flow is quite irregular. We measured flow rates, depth, temperature, stream bed characteristics, water chemistry, and D. geminata biomass in regions with and without blooms. The presentation will discuss how changes in physical parameters along the various reaches of the Creek impact the biomass distribution of this invasive alga.

  3. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    Directory of Open Access Journals (Sweden)

    Jake J Beaulieu

    Full Text Available Nitrogen (N uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams can increase watershed-scale N retention.

  4. Using Whole Stream {delta}{sup 15}N Additions to Understand the Effects of Land Use Change on Stream Function

    Energy Technology Data Exchange (ETDEWEB)

    Deegan, L. A.; Neill, C.; Thomas, S.; Haupert, C. [Marine Biological Laboratory, Woods Hole, MA (United States); Victoria, R. L.; Krusche, A. V.; Ballester, M. V.R. [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2013-05-15

    In this paper we introduce an emerging new technique; the use of {delta}{sup 15}N stable isotope tracers to understand both short term and long term alterations in stream ecosystem nitrogen biogeochemistry and food web dynamics. The use of {delta}{sup 15}N isotopes to determine stream nitrogen cycling was developed in small tundra streams in Alaska (USA), but a network of researchers using similar technique has rapidly grown to answer questions about nitrogen cycling and stream food webs in a variety of ecosystem types and subject to human modifications. Here we provide an overview of some of the information that can be provided using stable isotope additions and describe the general approach of an isotope addition experiment. To illustrate the scope of isotope applicability some examples are provided of work undertaken in the Brazilian Amazon. (author)

  5. A Rapid Method to Score Stream Reaches Based on the Overall Performance of Their Main Ecological Functions

    Science.gov (United States)

    Rowe, David K.; Parkyn, Stephanie; Quinn, John; Collier, Kevin; Hatton, Chris; Joy, Michael K.; Maxted, John; Moore, Stephen

    2009-06-01

    A method was developed to score the ecological condition of first- to third-order stream reaches in the Auckland region of New Zealand based on the performance of their key ecological functions. Such a method is required by consultants and resource managers to quantify the reduction in ecological condition of a modified stream reach relative to its unmodified state. This is a fundamental precursor for the determination of fair environmental compensation for achieving no-net-loss in overall stream ecological value. Field testing and subsequent use of the method indicated that it provides a useful measure of ecological condition related to the performance of stream ecological functions. It is relatively simple to apply compared to a full ecological study, is quick to use, and allows identification of the degree of impairment of each of the key ecological functions. The scoring system was designed so that future improvements in the measurement of stream functions can be incorporated into it. Although the methodology was specifically designed for Auckland streams, the principles can be readily adapted to other regions and stream types.

  6. ADAPTIVE STREAMING OVER HTTP (DASH UNTUK APLIKASI VIDEO STREAMING

    Directory of Open Access Journals (Sweden)

    I Made Oka Widyantara

    2015-12-01

    Full Text Available This paper aims to analyze Internet-based streaming video service in the communication media with variable bit rates. The proposed scheme on Dynamic Adaptive Streaming over HTTP (DASH using the internet network that adapts to the protocol Hyper Text Transfer Protocol (HTTP. DASH technology allows a video in the video segmentation into several packages that will distreamingkan. DASH initial stage is to compress the video source to lower the bit rate video codec uses H.26. Video compressed further in the segmentation using MP4Box generates streaming packets with the specified duration. These packages are assembled into packets in a streaming media format Presentation Description (MPD or known as MPEG-DASH. Streaming video format MPEG-DASH run on a platform with the player bitdash teritegrasi bitcoin. With this scheme, the video will have several variants of the bit rates that gave rise to the concept of scalability of streaming video services on the client side. The main target of the mechanism is smooth the MPEG-DASH streaming video display on the client. The simulation results show that the scheme based scalable video streaming MPEG-DASH able to improve the quality of image display on the client side, where the procedure bufering videos can be made constant and fine for the duration of video views

  7. Isolating the impact of sediment toxicity in urban streams

    International Nuclear Information System (INIS)

    Marshall, Stephen; Pettigrove, Vincent; Carew, Melissa; Hoffmann, Ary

    2010-01-01

    Several factors can contribute to the ecological degradation of stream catchments following urbanization, but it is often difficult to separate their relative importance. We isolated the impact of polluted sediment on the condition of an urban stream in Melbourne, Australia, using two complementary approaches. Using a rapid bioassessment approach, indices of stream condition were calculated based on macroinvertebrate field surveys. Urban stream reaches supported impoverished macroinvertebrate communities, and contained potentially toxic concentrations of heavy metals and hydrocarbons. Using a field microcosm approach, a bioassay was carried out to assess sediment pollution effects on native macroinvertebrates. Sediment from urban sites substantially altered the microcosm macroinvertebrate community, most likely due to elevated heavy metal and hydrocarbon concentrations. Macroinvertebrate surveys combined with a bioassay approach based on field microcosms can help isolate the effect of stream pollutants in degraded ecosystems. - Field microcosms isolate the ecological impact of polluted sediment in an urban stream.

  8. Structures linking physical and biological processes in headwater streams of the Maybeso watershed, Southeast Alaska

    Science.gov (United States)

    Mason D. Bryant; Takashi Gomi; Jack J. Piccolo

    2007-01-01

    We focus on headwater streams originating in the mountainous terrain of northern temperate rain forests. These streams rapidly descend from gradients greater than 20% to less than 5% in U-shaped glacial valleys. We use a set of studies on headwater streams in southeast Alaska to define headwater stream catchments, link physical and biological processes, and describe...

  9. Ammonium release from a blanket peatland into headwater stream systems

    International Nuclear Information System (INIS)

    Daniels, S.M.; Evans, M.G.; Agnew, C.T.; Allott, T.E.H.

    2012-01-01

    Hydrochemical sampling of South Pennine (UK) headwater streams draining eroded upland peatlands demonstrates these systems are nitrogen saturated, with significant leaching of dissolved inorganic nitrogen (DIN), particularly ammonium, during both stormflow and baseflow conditions. DIN leaching at sub-catchment scale is controlled by geomorphological context; in catchments with low gully densities ammonium leaching dominates whereas highly gullied catchments leach ammonium and nitrate since lower water tables and increased aeration encourages nitrification. Stormflow flux calculations indicate that: approximately equivalent amounts of nitrate are deposited and exported; ammonium export significantly exceeds atmospheric inputs. This suggests two ammonium sources: high atmospheric loadings; and mineralisation of organic nitrogen stored in peat. Downstream trends indicate rapid transformation of leached ammonium into nitrate. It is important that low-order headwater streams are adequately considered when assessing impacts of atmospheric loads on the hydrochemistry of stream networks, especially with respect to erosion, climate change and reduced precipitation. - Highlights: ► Headwaters draining eroded South Pennine (UK) peatlands are nitrogen saturated. ► Ammonium and nitrate leaching arises from aeration due to lower water tables. ► Nitrate deposition equals export during storms; ammonium export exceeds input. ► Ammonia input from high atmospheric loading and mineralisation of organic nitrogen. ► Downstream nitrogen trends indicate rapid transformation of ammonium into nitrate. - Inorganic nitrogen leaching from South Pennine peatlands is dominated by ammonium that is rapidly transformed within-streams to nitrate.

  10. Water Quality, Macroinvertebrates, and Fisheries in Tailwaters and Related Streams. An Annotated Bibliography.

    Science.gov (United States)

    1981-05-01

    more rapidly available source of energy and protein below the dam than that normally present in unregulated streams. Benthic diversity was lowest at...robusta; bluehead sucker, Pantosteus delphinus; and humpback sucker, Xyrauchen texanus) in Dinosaur National Monument were con- ducted from May 1964 to...duced successfully in Dinosaur National Monument every year since impoundment. During years of high summer discharge from the dam resultant lower water

  11. Larval salamanders and channel geomorphology are indicators of hydrologic permanence in forested headwater streams

    Science.gov (United States)

    Regulatory agencies need rapid indicators of hydrologic permanence for jurisdictional determinations of headwater streams. Our study objective was to assess the utility of larval salamander presence and assemblage structure and habitat variables for determining stream permanence ...

  12. Reading Time Allocation Strategies and Working Memory Using Rapid Serial Visual Presentation

    Science.gov (United States)

    Busler, Jessica N.; Lazarte, Alejandro A.

    2017-01-01

    Rapid serial visual presentation (RSVP) is a useful method for controlling the timing of text presentations and studying how readers' characteristics, such as working memory (WM) and reading strategies for time allocation, influence text recall. In the current study, a modified version of RSVP (Moving Window RSVP [MW-RSVP]) was used to induce…

  13. VALUE STREAM COST ANALYSIS IN THE ROMANIAN FOOTWEAR INDUSTRY

    Directory of Open Access Journals (Sweden)

    Dimi OFILEANU

    2015-06-01

    Full Text Available Once the Lean philosophy is developed and implemented to all levels in a company, a new accounting system appears: Lean accounting. Value Stream Cost Analysis is the main and the most powerful instrument of Lean accounting. Because of the fact that VSCA allows us to identify the company’s performance at the proper time, we can rapidly intervene to make the adjustments needed. The Romanian footwear industry is competitive worldwide (14th place in the top of exporters, but in order to improve, it has to rapidly react to clients’ expectations. In the case where the companies have a production system based on Lean philosophy, the implementation of VSCA does nothing but improve the obtained results. This article presents a case study of VSCA application in footwear industry.

  14. A novel brain-computer interface based on the rapid serial visual presentation paradigm.

    Science.gov (United States)

    Acqualagna, Laura; Treder, Matthias Sebastian; Schreuder, Martijn; Blankertz, Benjamin

    2010-01-01

    Most present-day visual brain computer interfaces (BCIs) suffer from the fact that they rely on eye movements, are slow-paced, or feature a small vocabulary. As a potential remedy, we explored a novel BCI paradigm consisting of a central rapid serial visual presentation (RSVP) of the stimuli. It has a large vocabulary and realizes a BCI system based on covert non-spatial selective visual attention. In an offline study, eight participants were presented sequences of rapid bursts of symbols. Two different speeds and two different color conditions were investigated. Robust early visual and P300 components were elicited time-locked to the presentation of the target. Offline classification revealed a mean accuracy of up to 90% for selecting the correct symbol out of 30 possibilities. The results suggest that RSVP-BCI is a promising new paradigm, also for patients with oculomotor impairments.

  15. Learning from medical data streams: an introduction

    NARCIS (Netherlands)

    Pereira Rodrigues, P.; Pechenizkiy, M.; Gaber, M.M.; Gama, J.

    2011-01-01

    Clinical practice and research are facing a new challenge created by the rapid growth of health information science and technology, and the complexity and volume of biomedical data. Machine learning from medical data streams is a recent area of research that aims to provide better knowledge

  16. Foundations for Streaming Model Transformations by Complex Event Processing.

    Science.gov (United States)

    Dávid, István; Ráth, István; Varró, Dániel

    2018-01-01

    Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.

  17. Hydraulic Properties related to Stream Reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E. C.; Wallace, J. R. [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  18. Hydraulic properties related to stream reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E C; Wallace, J R [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  19. Aeroacoustics of Three-Stream Jets

    Science.gov (United States)

    Henderson, Brenda S.

    2012-01-01

    Results from acoustic measurements of noise radiated from a heated, three-stream, co-annular exhaust system operated at subsonic conditions are presented. The experiments were conducted for a range of core, bypass, and tertiary stream temperatures and pressures. The nozzle system had a fan-to-core area ratio of 2.92 and a tertiary-to-core area ratio of 0.96. The impact of introducing a third stream on the radiated noise for third-stream velocities below that of the bypass stream was to reduce high frequency noise levels at broadside and peak jet-noise angles. Mid-frequency noise radiation at aft observation angles was impacted by the conditions of the third stream. The core velocity had the greatest impact on peak noise levels and the bypass-to-core mass flow ratio had a slight impact on levels in the peak jet-noise direction. The third-stream jet conditions had no impact on peak noise levels. Introduction of a third jet stream in the presence of a simulated forward-flight stream limits the impact of the third stream on radiated noise. For equivalent ideal thrust conditions, two-stream and three-stream jets can produce similar acoustic spectra although high-frequency noise levels tend to be lower for the three-stream jet.

  20. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    Science.gov (United States)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (hour). The high temporal sampling resolution of the sensors permits a more realistic

  1. Streams with Strahler Stream Order

    Data.gov (United States)

    Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...

  2. BLOSTREAM: A HIGH SPEED STREAM CIPHER

    Directory of Open Access Journals (Sweden)

    ALI H. KASHMAR

    2017-04-01

    Full Text Available Although stream ciphers are widely utilized to encrypt sensitive data at fast speeds, security concerns have led to a shift from stream to block ciphers, judging that the current technology in stream cipher is inferior to the technology of block ciphers. This paper presents the design of an improved efficient and secure stream cipher called Blostream, which is more secure than conventional stream ciphers that use XOR for mixing. The proposed cipher comprises two major components: the Pseudo Random Number Generator (PRNG using the Rabbit algorithm and a nonlinear invertible round function (combiner for encryption and decryption. We evaluate its performance in terms of implementation and security, presenting advantages and disadvantages, comparison of the proposed cipher with similar systems and a statistical test for randomness. The analysis shows that the proposed cipher is more efficient, high speed, and secure than current conventional stream ciphers.

  3. Characteristics of centrifugal rapid contactor, (3)

    International Nuclear Information System (INIS)

    Nakanishi, Mitsuo; Hirayama, Hiroshi; Takasu, Nobuyuki; Takeda, Hiroshi; Hoshino, Tadaya

    1979-01-01

    Organic solvent yields the degradation product as a result of irradiation, in the extraction process of spent fuel reprocessing. The development of a centrifugal rapid contactor is required for the reduction of the solvent degradation by shortening the contact time. The effects of fine solid particles were investigated with a SGN-Robatel LX-208N contactor, following the uranium extraction and re-extraction performance tests. It was found as the experimental result that the considerable quantity of solids accumulated in the rotor of the centrifugal contactor. As for this experimental apparatus, the flow diagram for the centrifugal rapid contactor and auxiliary apparatuses is shown, which are the same system used for the uranium extraction and re-extraction tests. The schematic diagram, the typical stage construction and fluid transfer path of the LX-208 contactor are illustrated. The main specifications of the LX-208 contactor are as follows: the internal diameter of a rotating bowl 200 mm, the material SUS 316, the number of stages 8, and the total hold-up volume of the contactor 1.8 l. Most tests were carried out with aqueous feed only, because white Alundum is easily deposited in the rotor, and the particle concentration in effluent stream becomes undetectable when organic and aqueous feeds are supplied simultaneously. As the experimental results, the correlation of Alundum concentration in effluent and running time, the effect of rotor speed on effluent stream concentration, the particle size distribution curves for No. 6000 and No. 8000 white Alundum, the effect of flow rate on effluent stream concentration and the effect of flow rate on particle size distribution for both No. 6000 and No. 8000 white Alundum are presented. (Nakai, Y.)

  4. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge

    Science.gov (United States)

    Constantz, Jim; Thomas, Carole L.; Zellweger, Gary W.

    1994-01-01

    We demonstrate that for losing reaches with significant diurnal variations in stream temperature, the effect of stream temperature on streambed seepage is a major factor contributing to reduced afternoon streamflows. An explanation is based on the effect of stream temperature on the hydraulic conductivity of the streambed, which can be expected to double in the 0° to 25°C temperature range. Results are presented for field experiments in which stream discharge and temperature were continuously measured for several days over losing reaches at St. Kevin Gulch, Colorado, and Tijeras Arroyo, New Mexico. At St. Kevin Gulch in July 1991, the diurnal stream temperature in the 160-m study reach ranged from about 4° to 18°C, discharges ranged from 10 to 18 L/s, and streamflow loss in the study reach ranged from 2.7 to 3.7 L/s. On the basis of measured stream temperature variations, the predicted change in conductivity was about 38%; the measured change in stream loss was about 26%, suggesting that streambed temperature varied less than the stream temperature. At Tijeras Arroyo in May 1992, diurnal stream temperature in the 655-m study reach ranged from about 10° to 25°C and discharge ranged from 25 to 55 L/s. Streamflow loss was converted to infiltration rates by factoring in the changing stream reach surface area and streamflow losses due to evaporation rates as measured in a hemispherical evaporation chamber. Infiltration rates ranged from about 0.7 to 2.0 m/d, depending on time and location. Based on measured stream temperature variations, the predicted change in conductivity was 29%; the measured change in infiltration was also about 27%. This suggests that high infiltration rates cause rapid convection of heat to the streambed. Evapotranspiration losses were estimated for the reach and adjacent flood plain within the arroyo. On the basis of these estimates, only about 5% of flow loss was consumed via stream evaporation and stream-side evapotranspiration

  5. Energy from streaming current and potential

    NARCIS (Netherlands)

    Olthuis, Wouter; Schippers, Bob; Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    It is investigated how much energy can be delivered by a streaming current source. A streaming current and subsequent streaming potential originate when double layer charge is transported by hydrodynamic flow. Theory and a network model of such a source is presented and initial experimental results

  6. SEDIMENTATION IN PACIFIC NORTHWEST COASTAL STREAMS -- EVIDENCE FROM REGIONAL SURVEY OF BED SUBSTRATE SIZE AND STABILITY

    Science.gov (United States)

    Excessive erosion, transport and deposition of sediment are major problems in streams and rivers throughout the United States. We examined evidence of anthropogenic sedimentation in Oregon and Washington coastal streams using relatively rapid measurements taken from surveys duri...

  7. Rapid and Accurate Idea Transfer: Presenting Ideas with Concept Maps

    Science.gov (United States)

    2008-07-30

    questions from the Pre-test were included in the Post-test. I. At the end of the day, people in the camps take home about __ taka to feed their families. 2...teachers are not paid regularly. Tuition fees for different classes are 40 to 80 taka (Bangladesh currency) 27 per month which is very high for the...October 26, 2002. 27 In April 2005, exchange rate, one $ = 60 taka . 44 Rapid and Accurate Idea Transfer: CDRL (DI-MIS-807 11 A, 00012 1) Presenting

  8. AN ANALYSIS OF THE RAPID GROWTH FACTORS PRESENTED IN THE LITERATURE OF THE FIELD

    Directory of Open Access Journals (Sweden)

    ALB MARIA

    2015-03-01

    Full Text Available This paper presents the main rapid growth factors, as encountered in literature and discusses the importance and contribution of these factors in achieving the rapid growth, respectively if this growth phenomenon may be achieved in the absence of the aforesaid factors. The paper examines the factors and subfactors considered or found by scholars to have an effect on or be in connection with the rapid growth. A comparative analysis was performed on several studies concerning the rapid growth companies. Among the main factors influencing the rapid growth are those related to the human resources management, the entrepreneur characteritics and the characteristics of the business. The paper also discusses several issues related to the will of the manager or the entrepreneur, repectively the need to understand the role of the factors that intervene when the growth is not wanted and still obtained or when the growth is targeted but not achieved. The conclusion is in agreement with other scholars’ findings reported in the literature. Certain factors correlated with the appropriate actions may lead to the rapid growth. The paper represents a starting point for the study of those management related aspects enabling companies to grow rapidly in the Romanian business environment.

  9. SmartCell: An Energy Efficient Coarse-Grained Reconfigurable Architecture for Stream-Based Applications

    Directory of Open Access Journals (Sweden)

    Liang Cao

    2009-01-01

    Full Text Available This paper presents SmartCell, a novel coarse-grained reconfigurable architecture, which tiles a large number of processor elements with reconfigurable interconnection fabrics on a single chip. SmartCell is able to provide high performance and energy efficient processing for stream-based applications. It can be configured to operate in various modes, such as SIMD, MIMD, and systolic array. This paper describes the SmartCell architecture design, including processing element, reconfigurable interconnection fabrics, instruction and control process, and configuration scheme. The SmartCell prototype with 64 PEs is implemented using 0.13  m CMOS standard cell technology. The core area is about 8.5  , and the power consumption is about 1.6 mW/MHz. The performance is evaluated through a set of benchmark applications, and then compared with FPGA, ASIC, and two well-known reconfigurable architectures including RaPiD and Montium. The results show that the SmartCell can bridge the performance and flexibility gap between ASIC and FPGA. It is also about 8% and 69% more energy efficient than Montium and RaPiD systems for evaluated benchmarks. Meanwhile, SmartCell can achieve 4 and 2 times more throughput gains when comparing with Montium and RaPiD, respectively. It is concluded that SmartCell system is a promising reconfigurable and energy efficient architecture for stream processing.

  10. A morphological comparison of narrow, low-gradient streams traversing wetland environments to alluvial streams.

    Science.gov (United States)

    Jurmu, Michael C

    2002-12-01

    Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.

  11. Asteroid/meteorite streams

    Science.gov (United States)

    Drummond, J.

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  12. The influence of light, stream gradient, and iron on Didymosphenia geminata bloom development in the Black Hills, South Dakota

    Science.gov (United States)

    James, Daniel A.; Mosel, Kyle; Chipps, Steven R.

    2014-01-01

    The aquatic nuisance species Didymosphenia geminata was first documented in Rapid Creek of South Dakota’s Black Hills during 2002. Since then, blooms have occurred primarily in a 39-km section of Rapid Creek while blooms were rarely observed in other Black Hills streams. In this study, we evaluated factors related to the presence and development of visible colonies of D. geminata in four streams of the Black Hills. At the watershed scale, stream gradient was negatively associated with the occurrence of D. geminata whereas stream width was positively related to D. geminata presence. At the stream scale, D. geminata coverage was inversely related to canopy coverage and iron concentration. At the local scale, shading by bridges virtually eliminated growth of D. geminata colonies under bridges. At all three scales, proxy measures of light such as stream width, canopy coverage, and bridge shading revealed that light availability was an important factor influencing the presence and coverage of D. geminata colonies. In general, streams that had relatively wide stream reaches (mean = 9.9 m), shallow gradients (mean = 0.22%), and little canopy cover (mean = 13%) were associated with D. geminata blooms. In addition, iron concentrations in streams with D. geminata colonies were lower than in streams without blooms.

  13. Streaming Visual Analytics Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Kristin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burtner, Edwin R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kritzstein, Brian P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brisbois, Brooke R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitson, Anna E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-31

    How can we best enable users to understand complex emerging events and make appropriate assessments from streaming data? This was the central question addressed at a three-day workshop on streaming visual analytics. This workshop was organized by Pacific Northwest National Laboratory for a government sponsor. It brought together forty researchers and subject matter experts from government, industry, and academia. This report summarizes the outcomes from that workshop. It describes elements of the vision for a streaming visual analytic environment and set of important research directions needed to achieve this vision. Streaming data analysis is in many ways the analysis and understanding of change. However, current visual analytics systems usually focus on static data collections, meaning that dynamically changing conditions are not appropriately addressed. The envisioned mixed-initiative streaming visual analytics environment creates a collaboration between the analyst and the system to support the analysis process. It raises the level of discourse from low-level data records to higher-level concepts. The system supports the analyst’s rapid orientation and reorientation as situations change. It provides an environment to support the analyst’s critical thinking. It infers tasks and interests based on the analyst’s interactions. The system works as both an assistant and a devil’s advocate, finding relevant data and alerts as well as considering alternative hypotheses. Finally, the system supports sharing of findings with others. Making such an environment a reality requires research in several areas. The workshop discussions focused on four broad areas: support for critical thinking, visual representation of change, mixed-initiative analysis, and the use of narratives for analysis and communication.

  14. Contaminant Dynamics and Trends in Hyperalkaline Urban Streams

    Science.gov (United States)

    Riley, Alex; Mayes, William

    2015-04-01

    Streams in post-industrial urban areas can have multiple contemporary and historic pressures impacting upon their chemical and ecological status. This paper presents analysis of long term data series (up to 36 years in length) from two small streams in northern England (catchment areas 0.5-0.6km2). Around 3.5 million m3 of steel making slags and other wastes were deposited in the headwater areas of the Howden Burn and Dene Burn in northeast England up to the closure of the workings in the early 1980s. This has led to streams draining from the former workings which have a hyperalkaline ambient pH (mean of 10.3 in both streams), elevated alkalinity (up to 487 mg/L as CaCO3) from leaching of lime and other calcium oxides / silicates within the slag, and enrichment of some trace elements (e.g. aluminium (Al), lithium (Li) and zinc (Zn)) including those which form oxyanions mobile at high pH such as vanadium (V). The high ionic strength of the waters and calcium enrichment also leads to waters highly supersaturated with calcium carbonate. Trace contaminant concentrations are strongly positively correlated, and concentrations generally diminish with increased flow rate suggesting the key source of metals in the system is the highly alkaline groundwater draining from the slag mounds. Some contaminants (notably Cr and ammonium) increase with high flow suggesting sources related to urban runoff and drainage from combined sewer overflows into one of the catchments. Loading estimates instream show that many of the contaminants (e.g. Al, V and Zn) are rapidly attenuated in secondary calcium carbonate-dominated deposits that precipitate vigorously on the streambeds with rates of up to 250 g CaCO3/m2/day. These secondary sinks limit the mobility of many contaminants in the water column, while concentrations in secondary deposits are relatively low given the rapid rates at which Ca is also attenuated. Long-term trend analysis showed modest declines in calcium and alkalinity over

  15. Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado front range

    Science.gov (United States)

    Miller, Matthew P.; McKnight, Diane M.; Cory, R.M.; Williams, Mark W.; Runkel, Robert L.

    2006-01-01

    The influence of hyporheic zone interactions on the redox state of fulvic acids and other redox active species was investigated in an alpine stream and adjacent wetland, which is a more reducing environment. A tracer injection experiment using bromide (Br-) was conducted in the stream system. Simulations with a transport model showed that rates of exchange between the stream and hyporheic zone were rapid (?? ??? 10-3 s -1). Parallel factor analysis of fluorescence spectra was used to quantify the redox state of dissolved fulvic acids. The rate coefficient for oxidation of reduced fulvic acids (?? = 6.5 ?? 10-3 s -1) in the stream indicates that electron-transfer reactions occur over short time scales. The rate coefficients for decay of ammonium (?? = 1.2 ?? 10-3 s-1) and production of nitrate (?? = -1.0 ?? 10-3 s-1) were opposite in sign but almost equal in magnitude. Our results suggest that fulvic acids are involved in rapid electron-transfer processes in and near the stream channel and may be important in determining ecological energy flow at the catchment scale. ?? 2006 American Chemical Society.

  16. LHCb trigger streams optimization

    Science.gov (United States)

    Derkach, D.; Kazeev, N.; Neychev, R.; Panin, A.; Trofimov, I.; Ustyuzhanin, A.; Vesterinen, M.

    2017-10-01

    The LHCb experiment stores around 1011 collision events per year. A typical physics analysis deals with a final sample of up to 107 events. Event preselection algorithms (lines) are used for data reduction. Since the data are stored in a format that requires sequential access, the lines are grouped into several output file streams, in order to increase the efficiency of user analysis jobs that read these data. The scheme efficiency heavily depends on the stream composition. By putting similar lines together and balancing the stream sizes it is possible to reduce the overhead. We present a method for finding an optimal stream composition. The method is applied to a part of the LHCb data (Turbo stream) on the stage where it is prepared for user physics analysis. This results in an expected improvement of 15% in the speed of user analysis jobs, and will be applied on data to be recorded in 2017.

  17. An Association-Oriented Partitioning Approach for Streaming Graph Query

    Directory of Open Access Journals (Sweden)

    Yun Hao

    2017-01-01

    Full Text Available The volumes of real-world graphs like knowledge graph are increasing rapidly, which makes streaming graph processing a hot research area. Processing graphs in streaming setting poses significant challenges from different perspectives, among which graph partitioning method plays a key role. Regarding graph query, a well-designed partitioning method is essential for achieving better performance. Existing offline graph partitioning methods often require full knowledge of the graph, which is not possible during streaming graph processing. In order to handle this problem, we propose an association-oriented streaming graph partitioning method named Assc. This approach first computes the rank values of vertices with a hybrid approximate PageRank algorithm. After splitting these vertices with an adapted variant affinity propagation algorithm, the process order on vertices in the sliding window can be determined. Finally, according to the level of these vertices and their association, the partition where the vertices should be distributed is decided. We compare its performance with a set of streaming graph partition methods and METIS, a widely adopted offline approach. The results show that our solution can partition graphs with hundreds of millions of vertices in streaming setting on a large collection of graph datasets and our approach outperforms other graph partitioning methods.

  18. Supporting seamless mobility for P2P live streaming.

    Science.gov (United States)

    Kim, Eunsam; Kim, Sangjin; Lee, Choonhwa

    2014-01-01

    With advent of various mobile devices with powerful networking and computing capabilities, the users' demand to enjoy live video streaming services such as IPTV with mobile devices has been increasing rapidly. However, it is challenging to get over the degradation of service quality due to data loss caused by the handover. Although many handover schemes were proposed at protocol layers below the application layer, they inherently suffer from data loss while the network is being disconnected during the handover. We therefore propose an efficient application-layer handover scheme to support seamless mobility for P2P live streaming. By simulation experiments, we show that the P2P live streaming system with our proposed handover scheme can improve the playback continuity significantly compared to that without our scheme.

  19. Supporting Seamless Mobility for P2P Live Streaming

    Directory of Open Access Journals (Sweden)

    Eunsam Kim

    2014-01-01

    Full Text Available With advent of various mobile devices with powerful networking and computing capabilities, the users' demand to enjoy live video streaming services such as IPTV with mobile devices has been increasing rapidly. However, it is challenging to get over the degradation of service quality due to data loss caused by the handover. Although many handover schemes were proposed at protocol layers below the application layer, they inherently suffer from data loss while the network is being disconnected during the handover. We therefore propose an efficient application-layer handover scheme to support seamless mobility for P2P live streaming. By simulation experiments, we show that the P2P live streaming system with our proposed handover scheme can improve the playback continuity significantly compared to that without our scheme.

  20. Stream dynamics: An overview for land managers

    Science.gov (United States)

    Burchard H. Heede

    1980-01-01

    Concepts of stream dynamics are demonstrated through discussion of processes and process indicators; theory is included only where helpful to explain concepts. Present knowledge allows only qualitative prediction of stream behavior. However, such predictions show how management actions will affect the stream and its environment.

  1. Streaming Velocities and the Baryon Acoustic Oscillation Scale.

    Science.gov (United States)

    Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M

    2016-03-25

    At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.

  2. Streaming Compression of Hexahedral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  3. StreamQRE: Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming Data.

    Science.gov (United States)

    Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G; Khanna, Sanjeev

    2017-06-01

    Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings.

  4. Periodic-drop-take calculus for stream transformers

    NARCIS (Netherlands)

    Mak, R.H.

    2005-01-01

    Stream transformers are a formalism to specify and reason about stream processing systems. Many application specific circuits, e.g. in the area of signal processing, classify as such systems. This paper presents a two- operator calculus to reason about a specific class of stream operators, viz. the

  5. Consciousness wanted, attention found: Reasons for the advantage of the left visual field in identifying T2 among rapidly presented series.

    Science.gov (United States)

    Verleger, Rolf; Śmigasiewicz, Kamila

    2015-09-01

    Everyday experience suggests that people are equally aware of events in both hemi-fields. However, when two streams of stimuli are rapidly presented left and right containing two targets, the second target is better identified in the left than in the right visual field. This might be considered evidence for a right-hemisphere advantage in generating conscious percepts. However, this putative asymmetry of conscious perception cannot be measured independently of participants' access to their conscious percepts, and there is actually evidence from split-brain patients for the reverse, left-hemisphere advantage in having access to conscious percepts. Several other topics were studied in search of the responsible mechanism, among others: Mutual inhibition of hemispheres, cooperation of hemispheres in perceiving midline stimuli, and asymmetries in processing various perceptual inputs. Directing attention by salient cues turned out to be one of the few mechanisms capable of modifying the left visual-field advantage in this paradigm. Thus, this left visual-field advantage is best explained by the notion of a right-hemisphere advantage in directing attention to salient events. Dovetailing with the pathological asymmetries of attention after right-hemisphere lesions and with asymmetries of brain activation when healthy participants shift their attention, the present results extend that body of evidence by demonstrating unusually large and reliable behavioral asymmetries for attention-directing processes in healthy participants. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Methodology to produce a water and energy stream map (WESM in the South African manufacturing industry

    Directory of Open Access Journals (Sweden)

    Davies, Edward

    2016-11-01

    Full Text Available The increasing demand for water and energy in South Africa, and the capacity constraints and restrictions of both resources, have led to a rapid increase in their cost. The manufacturing industry remains South Africa’s third-largest consumer of water and second- largest consumer of national energy. The improvement of water and energy efficiency is becoming an increasingly important theme for both organisational success and national economic sustainability. This paper presents the ‘lean based water and energy stream mapping framework’ developed for the manufacturing industry, with the specific objective of decreasing its water and energy intensity. As with the traditional value stream mapping tool, the water and energy stream mapping focuses on eliminating water- and energy-specific wastes within a process. Water and energy waste categories that will be used in conjunction with the framework will also be discussed. The key objective of this paper is to detail the process of creating the water and energy stream mapping, and the statistical forecasting methodology used to develop the baseline water and energy demand data. The outcome of the implementation of the framework is the future state water and energy stream mapping, which is effectively a blueprint for increased water and energy efficiency within a studied process.

  7. Rehabilitating agricultural streams in Australia with wood: a review.

    Science.gov (United States)

    Lester, Rebecca E; Boulton, Andrew J

    2008-08-01

    Worldwide, the ecological condition of streams and rivers has been impaired by agricultural practices such as broadscale modification of catchments, high nutrient and sediment inputs, loss of riparian vegetation, and altered hydrology. Typical responses include channel incision, excessive sedimentation, declining water quality, and loss of in-stream habitat complexity and biodiversity. We review these impacts, focusing on the potential benefits and limitations of wood reintroduction as a transitional rehabilitation technique in these agricultural landscapes using Australian examples. In streams, wood plays key roles in shaping velocity and sedimentation profiles, forming pools, and strengthening banks. In the simplified channels typical of many agricultural streams, wood provides habitat for fauna, substrate for biofilms, and refuge from predators and flow extremes, and enhances in-stream diversity of fish and macroinvertebrates.Most previous restoration studies involving wood reintroduction have been in forested landscapes, but some results might be extrapolated to agricultural streams. In these studies, wood enhanced diversity of fish and macroinvertebrates, increased storage of organic material and sediment, and improved bed and bank stability. Failure to meet restoration objectives appeared most likely where channel incision was severe and in highly degraded environments. Methods for wood reintroduction have logistical advantages over many other restoration techniques, being relatively low cost and low maintenance. Wood reintroduction is a viable transitional restoration technique for agricultural landscapes likely to rapidly improve stream condition if sources of colonists are viable and water quality is suitable.

  8. Motion of shocks through interplanetary streams

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Scudder, J.D.

    1975-01-01

    A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model

  9. Dynamical modeling of tidal streams

    International Nuclear Information System (INIS)

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  10. Emotional noun processing: an ERP study with rapid serial visual presentation.

    Science.gov (United States)

    Yi, Shengnan; He, Weiqi; Zhan, Lei; Qi, Zhengyang; Zhu, Chuanlin; Luo, Wenbo; Li, Hong

    2015-01-01

    Reading is an important part of our daily life, and rapid responses to emotional words have received a great deal of research interest. Our study employed rapid serial visual presentation to detect the time course of emotional noun processing using event-related potentials. We performed a dual-task experiment, where subjects were required to judge whether a given number was odd or even, and the category into which each emotional noun fit. In terms of P1, we found that there was no negativity bias for emotional nouns. However, emotional nouns elicited larger amplitudes in the N170 component in the left hemisphere than did neutral nouns. This finding indicated that in later processing stages, emotional words can be discriminated from neutral words. Furthermore, positive, negative, and neutral words were different from each other in the late positive complex, indicating that in the third stage, even different emotions can be discerned. Thus, our results indicate that in a three-stage model the latter two stages are more stable and universal.

  11. Emotional noun processing: an ERP study with rapid serial visual presentation.

    Directory of Open Access Journals (Sweden)

    Shengnan Yi

    Full Text Available Reading is an important part of our daily life, and rapid responses to emotional words have received a great deal of research interest. Our study employed rapid serial visual presentation to detect the time course of emotional noun processing using event-related potentials. We performed a dual-task experiment, where subjects were required to judge whether a given number was odd or even, and the category into which each emotional noun fit. In terms of P1, we found that there was no negativity bias for emotional nouns. However, emotional nouns elicited larger amplitudes in the N170 component in the left hemisphere than did neutral nouns. This finding indicated that in later processing stages, emotional words can be discriminated from neutral words. Furthermore, positive, negative, and neutral words were different from each other in the late positive complex, indicating that in the third stage, even different emotions can be discerned. Thus, our results indicate that in a three-stage model the latter two stages are more stable and universal.

  12. Knowledge discovery from data streams

    CERN Document Server

    Gama, Joao

    2010-01-01

    Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents a coherent overview of state-of-the-art research in learning from data streams.The book covers the fundamentals that are imperative to understanding data streams and describes important applications, such as TCP/IP traffic, GPS data, sensor networks,

  13. Towards adaptive, streaming analysis of x-ray tomography data

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.; Kuprat, Andrew P.; Carson, James P.; Lansing, Carina S.; Guillen, Zoe C.; Miller, Erin A.; Lanekoff, Ingela; Laskin, Julia

    2015-03-04

    Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing a framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.

  14. HUNTING THE PARENT OF THE ORPHAN STREAM: IDENTIFYING STREAM MEMBERS FROM LOW-RESOLUTION SPECTROSCOPY

    International Nuclear Information System (INIS)

    Casey, Andrew R.; Da Costa, Gary; Keller, Stefan C.; Maunder, Elizabeth

    2013-01-01

    We present candidate K-giant members in the Orphan Stream that have been identified from low-resolution data taken with the AAOmega spectrograph on the Anglo-Australian Telescope. From modest signal-to-noise spectra and independent cuts in photometry, kinematics, gravity, and metallicity we yield self-consistent, highly probable stream members. We find a revised stream distance of 22.5 ± 2.0 kpc near the celestial equator and our kinematic signature peaks at V GSR = 82.1 ± 1.4 km s –1 . The observed velocity dispersion of our most probable members is consistent with arising from the velocity uncertainties alone. This indicates that at least along this line of sight, the Orphan Stream is kinematically cold. Our data indicate an overall stream metallicity of [Fe/H] = –1.63 ± 0.19 dex which is more metal-rich than previously found and unbiased by spectral type. Furthermore, the significant metallicity dispersion displayed by our most probable members, σ([Fe/H]) = 0.56 dex, suggests that the unidentified Orphan Stream parent is a dSph satellite. We highlight likely members for high-resolution spectroscopic follow-up.

  15. Two tales of legacy effects on stream nutrient behaviour

    Science.gov (United States)

    Bieroza, M.; Heathwaite, A. L.

    2017-12-01

    Intensive agriculture has led to large-scale land use conversion, shortening of flow pathways and increased loads of nutrients in streams. This legacy results in gradual build-up of nutrients in agricultural catchments: in soil for phosphorus (biogeochemical legacy) and in the unsaturated zone for nitrate (hydrologic legacy), controlling the water quality in the long-term. Here we investigate these effects on phosphorus and nitrate stream concentrations using high-frequency (10-5 - 100 Hz) sampling with in situ wet-chemistry analysers and optical sensors. Based on our 5 year study, we observe that storm flow responses differ for both nutrients: phosphorus shows rapid increases (up to 3 orders of magnitude) in concentrations with stream flow, whereas nitrate shows both dilution and concentration effects with increasing flow. However, the range of nitrate concentrations change is narrow (up to 2 times the mean) and reflects chemostatic behaviour. We link these nutrient responses with their dominant sources and flow pathways in the catchment. Nitrate from agriculture (with the peak loading in 1983) is stored in the unsaturated zone of the Penrith Sandstone, which can reach up to 70 m depth. Thus nitrate legacy is related to a hydrologic time lag with long travel times in the unsaturated zone. Phosphorus is mainly sorbed to soil particles, therefore it is mobilised rapidly during rainfall events (biogeochemical legacy). The phosphorus stream response will however depend on how well connected is the stream to the catchment sources (driven by soil moisture distribution) and biogeochemical activity (driven by temperature), leading to both chemostatic and non-chemostatic responses, alternating on a storm-to-storm and seasonal basis. Our results also show that transient within-channel storage is playing an important role in delivery of phosphorus, providing an additional time lag component. These results show, that consistent agricultural legacy in the catchment (high

  16. Developing a national stream morphology data exchange: Needs, challenges, and opportunities

    Science.gov (United States)

    Collins, Mathias J.; Gray, John R.; Peppler, Marie C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph P.

    2012-05-01

    Stream morphology data, primarily consisting of channel and foodplain geometry and bed material size measurements, historically have had a wide range of applications and uses including culvert/ bridge design, rainfall- runoff modeling, food inundation mapping (e.g., U.S. Federal Emergency Management Agency food insurance studies), climate change studies, channel stability/sediment source investigations, navigation studies, habitat assessments, and landscape change research. The need for stream morphology data in the United States, and thus the quantity of data collected, has grown substantially over the past 2 decades because of the expanded interests of resource management agencies in watershed management and restoration. The quantity of stream morphology data collected has also increased because of state-of-the-art technologies capable of rapidly collecting high-resolution data over large areas with heretofore unprecedented precision. Despite increasing needs for and the expanding quantity of stream morphology data, neither common reporting standards nor a central data archive exist for storing and serving these often large and spatially complex data sets. We are proposing an open- access data exchange for archiving and disseminating stream morphology data.

  17. Rapid Presentation of Emotional Expressions Reveals New Emotional Impairments in Tourette’s Syndrome

    Directory of Open Access Journals (Sweden)

    Martial eMermillod

    2013-04-01

    Full Text Available Objective:Based on a variety of empirical evidence obtained within the theoretical framework of embodiment theory, we considered it likely that motor disorders in Tourette’s syndrome (TS would have emotional consequences for TS patients. However, previous research using emotional facial categorization tasks suggests that these consequences are limited to TS patients with obsessive-compulsive behaviors(OCB.Method:These studies used long stimulus presentations which allowed the participants to categorize the different emotional facial expressions (EFEs on the basis of a perceptual analysis that might potentially hide a lack of emotional feeling for certain emotions. In order to reduce this perceptual bias, we used a rapid visual presentation procedure.Results:Using this new experimental method, we revealed different and surprising impairments on several EFEs in TS patients compared to matched healthy control participants. Moreover, a spatial frequency analysis of the visual signal processed by the patients suggests that these impairments may be located at a cortical level.Conclusions:The current study indicates that the rapid visual presentation paradigm makes it possible to identify various potential emotional disorders that were not revealed by the standard visual presentation procedures previously reported in the literature. Moreover, the spatial frequency analysis performed in our study suggests that emotional deficit in TS might lie at the level of temporal cortical areas dedicated to the processing of HSF visual information.

  18. MEKANISME SEGMENTASI LAJU BIT PADA DYNAMIC ADAPTIVE STREAMING OVER HTTP (DASH UNTUK APLIKASI VIDEO STREAMING

    Directory of Open Access Journals (Sweden)

    Muhammad Audy Bazly

    2015-12-01

    Full Text Available This paper aims to analyze Internet-based streaming video service in the communication media with variable bit rates. The proposed scheme on Dynamic Adaptive Streaming over HTTP (DASH using the internet network that adapts to the protocol Hyper Text Transfer Protocol (HTTP. DASH technology allows a video in the video segmentation into several packages that will distreamingkan. DASH initial stage is to compress the video source to lower the bit rate video codec uses H.26. Video compressed further in the segmentation using MP4Box generates streaming packets with the specified duration. These packages are assembled into packets in a streaming media format Presentation Description (MPD or known as MPEG-DASH. Streaming video format MPEG-DASH run on a platform with the player bitdash teritegrasi bitcoin. With this scheme, the video will have several variants of the bit rates that gave rise to the concept of scalability of streaming video services on the client side. The main target of the mechanism is smooth the MPEG-DASH streaming video display on the client. The simulation results show that the scheme based scalable video streaming MPEG- DASH able to improve the quality of image display on the client side, where the procedure bufering videos can be made constant and fine for the duration of video views

  19. High Definition Video Streaming Using H.264 Video Compression

    OpenAIRE

    Bechqito, Yassine

    2009-01-01

    This thesis presents high definition video streaming using H.264 codec implementation. The experiment carried out in this study was done for an offline streaming video but a model for live high definition streaming is introduced, as well. Prior to the actual experiment, this study describes digital media streaming. Also, the different technologies involved in video streaming are covered. These include streaming architecture and a brief overview on H.264 codec as well as high definition t...

  20. Nitrate in watersheds: straight from soils to streams?

    Science.gov (United States)

    Sudduth, Elizabeth B.; Perakis, Steven S.; Bernhardt, Emily S.

    2013-01-01

    Human activities are rapidly increasing the global supply of reactive N and substantially altering the structure and hydrologic connectivity of managed ecosystems. There is long-standing recognition that N must be removed along hydrologic flowpaths from uplands to streams, yet it has proven difficult to assess the generality of this removal across ecosystem types, and whether these patterns are influenced by land-use change. To assess how well upland nitrate (NO3-) loss is reflected in stream export, we gathered information from >50 watershed biogeochemical studies that reported nitrate concentrations ([NO3-]) for stream water and for either upslope soil solution or groundwater NO3- to examine whether stream export of NO3- accurately reflects upland NO3- losses. In this dataset, soil solution and streamwater [NO3-] were correlated across 40 undisturbed forest watersheds, with streamwater [NO3-] typically half (median = 50%) soil solution [NO3-]. A similar relationship was seen in 10 disturbed forest watersheds. However, for 12 watersheds with significant agricultural or urban development, the intercept and slope were both significantly higher than the relationship seen in forest watersheds. Differences in concentration between soil solution or groundwater and stream water may be attributed to biological uptake, microbial processes including denitrification, and/or preferential flow routing. The results of this synthesis are consistent with the hypotheses that undisturbed watersheds have a significant capacity to remove nitrate after it passes below the rooting zone and that land use changes tend to alter the efficiency or the length of watershed flowpaths, leading to reductions in nitrate removal and increased stream nitrate concentrations.

  1. Modeling the effects of LID practices on streams health at watershed scale

    Science.gov (United States)

    Shannak, S.; Jaber, F. H.

    2013-12-01

    Increasing impervious covers due to urbanization will lead to an increase in runoff volumes, and eventually increase flooding. Stream channels adjust by widening and eroding stream bank which would impact downstream property negatively (Chin and Gregory, 2001). Also, urban runoff drains in sediment bank areas in what's known as riparian zones and constricts stream channels (Walsh, 2009). Both physical and chemical factors associated with urbanization such as high peak flows and low water quality further stress aquatic life and contribute to overall biological condition of urban streams (Maxted et al., 1995). While LID practices have been mentioned and studied in literature for stormwater management, they have not been studied in respect to reducing potential impact on stream health. To evaluate the performance and the effectiveness of LID practices at a watershed scale, sustainable detention pond, bioretention, and permeable pavement will be modeled at watershed scale. These measures affect the storm peak flows and base flow patterns over long periods, and there is a need to characterize their effect on stream bank and bed erosion, and aquatic life. These measures will create a linkage between urban watershed development and stream conditions specifically biological health. The first phase of this study is to design and construct LID practices at the Texas A&M AgriLife Research and Extension Center-Dallas, TX to collect field data about the performance of these practices on a smaller scale. The second phase consists of simulating the performance of LID practices on a watershed scale. This simulation presents a long term model (23 years) using SWAT to evaluate the potential impacts of these practices on; potential stream bank and bed erosion, and potential impact on aquatic life in the Blunn Watershed located in Austin, TX. Sub-daily time step model simulations will be developed to simulate the effectiveness of the three LID practices with respect to reducing

  2. The Stream-Catchment (StreamCat) and Lake-Catchment ...

    Science.gov (United States)

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate

  3. STREAMTO: Streaming Content using a Tamper-Resistant Token

    NARCIS (Netherlands)

    Cheng, Jieyin; Chong, C.N.; Doumen, J.M.; Etalle, Sandro; Hartel, Pieter H.; Nikolaus, Stefan

    2004-01-01

    StreamTo uses tamper resistant hardware tokens to generate the key stream needed to decrypt encrypted streaming music. The combination of a hardware token and steaming media effectively brings tried and tested PayTV technology to the Internet. We provide a security analysis and present two prototype

  4. Invertebrate composition and abundance associated with Didymosphenia geminata in a montane stream

    Science.gov (United States)

    James, Daniel A.; Ranney, Steven H.; Chipps, Steven R.; Spindler, Bryan D.

    2010-01-01

    Didymosphenia geminata, a relatively new aquatic nuisance species that can form extensive, mucilaginous mats on stream substrates, was reported from Rapid Creek, South Dakota in 2002. To examine the association between D. geminata and the invertebrate community in Rapid Creek, macroinvertebrates were quantified using three gear types in the fall of 2006. D. geminata was present at two of four sites sampled (range = 5.53 to 809.68 g m−2 dry mass). At each site, invertebrates were collected using dip nets, Surber samplers, and drift nets. The combined percentage of Ephemeroptera, Plecoptera, and Trichoptera in areas with D. geminata was lower (41%) than in areas without D. geminata (76%). Diptera abundance was higher at sites with D. geminata than in sites where D. geminata was absent.

  5. Rapidity distribution of photons from an anisotropic quark-gluon plasma

    International Nuclear Information System (INIS)

    Bhattacharya, Lusaka; Roy, Pradip

    2010-01-01

    We calculate rapidity distribution of photons due to Compton and annihilation processes from quark gluon plasma with pre-equilibrium momentum-space anisotropy. We also include contributions from hadronic matter with late-stage transverse expansion. A phenomenological model has been used for the time evolution of hard momentum scale, p hard (τ), and anisotropy parameter, ξ(τ). As a result of pre-equilibrium momentum-space anisotropy, we find significant modification of photons rapidity distribution. For example, with the fixed initial condition (FIC) free-streaming (δ=2) interpolating model we observe significant enhancement of photon rapidity distribution at fixed p T , where as for FIC collisionally broadened (δ=2/3) interpolating model the yield increases till y∼1. Beyond that suppression is observed. With fixed final multiplicity (FFM) free-streaming interpolating model we predict enhancement of photon yield which is less than the case of FIC. Suppression is always observed for FFM collisionally broadened interpolating model.

  6. Carbon pools in stream-riparian corridors: legacy of disturbance along mountain streams of south-eastern Wyoming

    Science.gov (United States)

    Claire M. Ruffing; Kathleen A. Dwire; Melinda D. Daniels

    2016-01-01

    Streams and their accompanying riparian environments are intrinsic components of terrestrial carbon cycling. However, they have been understudied in terms of the magnitude of their storage components and the role of disturbance in determining carbon storage capacity. This study presents partial carbon budgets for stream-riparian corridors along six study...

  7. Streaming Pool: reuse, combine and create reactive streams with pleasure

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    When connecting together heterogeneous and complex systems, it is not easy to exchange data between components. Streams of data are successfully used in industry in order to overcome this problem, especially in the case of "live" data. Streams are a specialization of the Observer design pattern and they provide asynchronous and non-blocking data flow. The ongoing effort of the ReactiveX initiative is one example that demonstrates how demanding this technology is even for big companies. Bridging the discrepancies of different technologies with common interfaces is already done by the Reactive Streams initiative and, in the JVM world, via reactive-streams-jvm interfaces. Streaming Pool is a framework for providing and discovering reactive streams. Through the mechanism of dependency injection provided by the Spring Framework, Streaming Pool provides a so called Discovery Service. This object can discover and chain streams of data that are technologically agnostic, through the use of Stream IDs. The stream to ...

  8. Hydroelectric plant turbine, stream and spillway flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lampa, J.; Lemon, D.; Buermans, J. [ASL AQ Flow Inc., Sidney, BC (Canada)

    2004-07-01

    This presentation provided schematics of the turbine flow measurements and typical bulb installations at the Kootenay Canal and Wells hydroelectric power facilities in British Columbia. A typical arrangement for measuring stream flow using acoustic scintillation was also illustrated. Acoustic scintillation is portable, non-intrusive, suitable for short intakes, requires minimal maintenance and is cost effective and accurate. A comparison between current meters and acoustic scintillation was also presented. Stream flow measurement is valuable in evaluating downstream areas that are environmentally important for fish habitat. Stream flow measurement makes it possible to define circulation. The effects of any changes can be assessed by combining field measurements and numerical modelling. The presentation also demonstrated that computational fluid dynamics modelling appears promising in determining stream flow and turbulent flow at spillways. tabs., figs.

  9. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    Science.gov (United States)

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  10. Slope failure as an upslope source of stream wood

    Science.gov (United States)

    Daniel. Miller

    2013-01-01

    Large woody debris is recognized as an important component of stream geomorphology and stream ecosystem function, and forest-land management is recognized as an important control on the quantity (and size and species distributions) of wood available for recruitment to streams. Much of the wood present in streams comes from adjacent forests, and riparian management...

  11. Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks.

    Science.gov (United States)

    Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok

    2016-01-01

    Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN).

  12. Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks

    Science.gov (United States)

    Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok

    2016-01-01

    Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN). PMID:27907113

  13. Flood-frequency characteristics of Wisconsin streams

    Science.gov (United States)

    Walker, John F.; Peppler, Marie C.; Danz, Mari E.; Hubbard, Laura E.

    2017-05-22

    Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of the equations presented in this report. The State was divided into eight areas of similar physiographic characteristics. The most significant basin characteristics are drainage area, soil saturated hydraulic conductivity, main-channel slope, and several land-use variables. The standard error of prediction for the equation for the 1-percent annual exceedance probability flood ranges from 56 to 70 percent for Wisconsin Streams; these values are larger than results presented in previous reports. The increase in the standard error of prediction is likely due to increased variability of the annual-peak discharges, resulting in increased variability in the magnitude of flood peaks at higher frequencies. For each of the unregulated rural streamflow-gaging stations, a weighted estimate based on the at-site log Pearson type III analysis and the multiple regression results was determined. The weighted estimate generally has a lower uncertainty than either the Log Pearson type III or multiple regression estimates. For regulated streams, a graphical method for estimating flood-frequency characteristics was developed from the relations of discharge and drainage area for selected annual exceedance probabilities. Graphs for the major regulated streams in Wisconsin are presented in the report.

  14. Gamma streaming experiments for validation of Monte Carlo code

    International Nuclear Information System (INIS)

    Thilagam, L.; Mohapatra, D.K.; Subbaiah, K.V.; Iliyas Lone, M.; Balasubramaniyan, V.

    2012-01-01

    In-homogeneities in shield structures lead to considerable amount of leakage radiation (streaming) increasing the radiation levels in accessible areas. Development works on experimental as well as computational methods for quantifying this streaming radiation are still continuing. Monte Carlo based radiation transport code, MCNP is usually a tool for modeling and analyzing such problems involving complex geometries. In order to validate this computational method for streaming analysis, it is necessary to carry out some experimental measurements simulating these inhomogeneities like ducts and voids present in the bulk shields for typical cases. The data thus generated will be analysed by simulating the experimental set up employing MCNP code and optimized input parameters for the code in finding solutions for similar radiation streaming problems will be formulated. Comparison of experimental data obtained from radiation streaming experiments through ducts will give a set of thumb rules and analytical fits for total radiation dose rates within and outside the duct. The present study highlights the validation of MCNP code through the gamma streaming experiments carried out with the ducts of various shapes and dimensions. Over all, the present study throws light on suitability of MCNP code for the analysis of gamma radiation streaming problems for all duct configurations considered. In the present study, only dose rate comparisons have been made. Studies on spectral comparison of streaming radiation are in process. Also, it is planned to repeat the experiments with various shield materials. Since the penetrations and ducts through bulk shields are unavoidable in an operating nuclear facility the results on this kind of radiation streaming simulations and experiments will be very useful in the shield structure optimization without compromising the radiation safety

  15. Relation between Streaming Potential and Streaming Electrification Generated by Streaming of Water through a Sandwich-type Cell

    OpenAIRE

    Maruyama, Kazunori; Nikaido, Mitsuru; Hara, Yoshinori; Tanizaki, Yoshie

    2012-01-01

    Both streaming potential and accumulated charge of water flowed out were measured simultaneously using a sandwich-type cell. The voltages generated in divided sections along flow direction satisfied additivity. The sign of streaming potential agreed with that of streaming electrification. The relation between streaming potential and streaming electrification was explained from a viewpoint of electrical double layer in glass-water interface.

  16. Firn thickness variations across the Northeast Greenland Ice Stream margins indicating nonlinear densification rates

    Science.gov (United States)

    Riverman, K. L.; Anandakrishnan, S.; Alley, R. B.; Peters, L. E.; Christianson, K. A.; Muto, A.

    2013-12-01

    Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland, draining approximately 8.4% of the ice sheet's area. The flow pattern and stability mechanism of this ice stream are unique to others in Greenland and Antarctica, and merit further study to ascertain the sensitivity of this ice stream to future climate change. Geophysical methods are valuable tools for this application, but their results are sensitive to the structure of the firn and any spatial variations in firn properties across a given study region. Here we present firn data from a 40-km-long seismic profile across the upper reaches of NEGIS, collected in the summer of 2012 as part of an integrated ground-based geophysical survey. We find considerable variations in firn thickness that are coincident with the ice stream shear margins, where a thinner firn layer is present within the margins, and a thicker, more uniform firn layer is present elsewhere in our study region. Higher accumulation rates in the marginal surface troughs due to drift-snow trapping can account for some of this increased densification; however, our seismic results also highlight enhanced anisotropy within the firn and upper ice column that is confined to narrow bands within the shear margins. We thus interpret these large firn thickness variations and abrupt changes in anisotropy as indicators of firn densification dependent on the effective stress state as well as the overburden pressure, suggesting that the strain rate increases nonlinearly with stress across the shear margins. A GPS strain grid maintained for three weeks across both margins observed strong side shearing, with rapid stretching and then compression along particle paths, indicating large deviatoric stresses in the margins. This work demonstrates the importance of developing a high-resolution firn densification model when conducting geophysical field work in regions possessing a complex ice flow history; it also motivates the need for a more

  17. Local correlation detection with linearity enhancement in streaming data

    KAUST Repository

    Xie, Qing

    2013-01-01

    This paper addresses the challenges in detecting the potential correlation between numerical data streams, which facilitates the research of data stream mining and pattern discovery. We focus on local correlation with delay, which may occur in burst at different time in different streams, and last for a limited period. The uncertainty on the correlation occurrence and the time delay make it diff cult to monitor the correlation online. Furthermore, the conventional correlation measure lacks the ability of ref ecting visual linearity, which is more desirable in reality. This paper proposes effective methods to continuously detect the correlation between data streams. Our approach is based on the Discrete Fourier Transform to make rapid cross-correlation calculation with time delay allowed. In addition, we introduce a shape-based similarity measure into the framework, which ref nes the results by representative trend patterns to enhance the signif cance of linearity. The similarity of proposed linear representations can quickly estimate the correlation, and the window sliding strategy in segment level improves the eff ciency for online detection. The empirical study demonstrates the accuracy of our detection approach, as well as more than 30% improvement of eff ciency. Copyright 2013 ACM.

  18. Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes

    Science.gov (United States)

    Arp, Christopher D.; Whitman, Matthew S.; Jones, Benjamin M.; Grosse, Guido; Gaglioti, Benjamin V.; Heim, Kurt C.

    2015-01-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high- ground ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate a relatively stable landform and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in riparian zones effectively insulates channel ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2°C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools thermally stratify, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m/s, yet channel runs still move water rapidly

  19. Rapidly progressive cryptogenic organising pneumonia presenting as a lung mass

    Science.gov (United States)

    Akram, Saeed; Irfan, Muhammad; Aftab, Kanwal

    2009-01-01

    A very rare case of a rapidly progressive variant of cryptogenic organising pneumonia (COP) presenting as a focal mass-like lesion with compression of the large airways leading to respiratory failure is described. A 60-year-old lady presented to the Aga Khan University Hospital Emergency Department in hypoxaemic respiratory failure with a 6-day history of dyspnoea, productive cough and fever. Chest x ray showed a right upper lobe mass-like lesion compressing the large airways and right pleural effusion. She deteriorated in the Emergency Department and was intubated due to worsening hypoxaemic respiratory failure. The pleural fluid and bronchoscopic specimens were negative on microbiological and cytological examination. CT-guided right lung biopsy revealed chronic non-specific inflammation without granuloma and malignancy. COP was diagnosed on video-assisted thoracoscopic (VATS) lung biopsy. She was successfully treated with high dose steroids and discharged in a stable condition; her 3-month follow-up chest x rays showed complete resolution of the lung lesion with some residual fibrosis. PMID:21686529

  20. Data Stream Clustering With Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang

    2014-07-09

    Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.

  1. Data Stream Clustering With Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang; Furtlehner, Cyril; Germain-Renaud, Cecile; Sebag, Michele

    2014-01-01

    Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.

  2. Surficial Geologic Map of the Roanoke Rapids 30' x 60' Quadrangle, North Carolina

    Science.gov (United States)

    Weems, Robert E.; Lewis, William C.; Aleman-Gonzalez, Wilma

    2009-01-01

    The Roanoke Rapids 1:100,000 map sheet is located in northeastern North Carolina. Most of the area is flat to gently rolling, though steep slopes occur occasionally along some of the larger streams. Total relief in the area is slightly less than 400 feet (ft), with elevations ranging from sea level east of Murfreesboro in the far northeastern corner of the map to 384 ft near the northwestern map border near Littleton. The principal streams are the Roanoke River and Fishing Creek, which on average flow from northwest to southeast in the map area. The principal north-south roads are Interstate Route 95, U.S. Route 258, and U.S. Route 301. Two lines of the CSX railroad also cross the area in a north-south and northeast-southwest direction. This part of North Carolina is primarily rural and agricultural. The only large community in the area is Roanoke Rapids. The map lies astride the Tidewater Fall Line, a prominent physiographic feature marked by rapids and waterfalls that separate the rocky streams of the eastern Piedmont physiographic province from the sandy and alluviated streams of the western Atlantic Coastal Plain physiographic province. The energy from the Roanoke River descending the Tidewater Fall Line has been harnessed by dams to produce hydroelectric power, and this source of energy was a major factor in the growth and development of Roanoke Rapids. The Piedmont in the western part of the map area is underlain by Neoproterozoic to Cambrian metavolcanic and metasedimentary rocks that are intruded by granite in some areas. In the central and eastern part of the map area, the folded and faulted igneous and metamorphic rocks of the Piedmont, as well as tilted sedimentary rocks in a buried Triassic basin, are all overlain with profound unconformity by generally unlithified and only slightly eastward-tilted Cretaceous, Paleogene, and Neogene sediments of the Atlantic Coastal Plain. The Coastal Plain sediments lap westward onto the eastern Piedmont along the high

  3. Children with Autism Detect Targets at Very Rapid Presentation Rates with Similar Accuracy as Adults

    Science.gov (United States)

    Hagmann, Carl Erick; Wyble, Bradley; Shea, Nicole; LeBlanc, Megan; Kates, Wendy R.; Russo, Natalie

    2016-01-01

    Enhanced perception may allow for visual search superiority by individuals with Autism Spectrum Disorder (ASD), but does it occur over time? We tested high-functioning children with ASD, typically developing (TD) children, and TD adults in two tasks at three presentation rates (50, 83.3, and 116.7 ms/item) using rapid serial visual presentation.…

  4. Modelling the fate of six common pharmaceuticals in a small stream: quantification of attenuation and retention in different stream-specific environments

    Science.gov (United States)

    Riml, Joakim; Wörman, Anders; Kunkel, Uwe; Radke, Michael

    2013-04-01

    Detection of pharmaceutical residues in streaming waters is common in urbanized areas. Although the occurrence and source of these micropollutants is known, their behavior in these aquatic ecosystems is still only partly understood. Specifically, quantitative information of biogeochemical processes in stream-specific environments where predominant reactions occur is often missing. In an attempt to address this knowledge gap, we performed simultaneous tracer tests in Säva Brook, Sweden, with bezafibrate, clofibric acid, diclofenac, ibuprofen, metoprolol and naproxen, as well as with the more inert solutes uranine and Rhodamine WT. The breakthrough curves at five successive sampling stations along a 16 km long stream reach were evaluated using a coupled physical-biogeochemical model framework containing surface water transport together with a representation of transient storage in slow/immobile zones of the stream. The multi-tracer experiment opens for decoupling of hydrological and biogeochemical contribution to the fate, and by linking impact and sensitivity analyses to relative significance of model parameters the most important processes for each contaminant were elucidated. Specifically for Säva Brook, the proposed methodology revealed that the pharmaceutical-contaminated stream water remained in the storage zones for times corresponding to 5-25% of the flow time of the stream. Furthermore, the results indicate a great variability in terms of predominant biogeochemical processes between the different contaminants. Rapid reactions occurring in the transient storage zone attenuated both ibuprofen and clofibric acid, and we conclude that a major degradation pathway for these contaminants was biodegradation in the hyporheic zone. In contrast, bezafibrate, metoprolol, and naproxen were mainly affected by sorption both in the storage zone and the main channel, while diclofenac displayed negligible effects of biogeochemical reactions.

  5. Stick-slip Cycles and Tidal Modulation of Ice Stream Flow

    Science.gov (United States)

    Lipovsky, B.; Dunham, E. M.

    2016-12-01

    The reactivation of a single dormant Antarctic ice stream would double the continent's mass imbalance. Despite importance of understanding the likelihood of such an event, direct observation of the basal processes that lead to the activation and stagnation of streaming ice are minimal. As the only ice stream undergoing stagnation, the Whillans Ice Plain (WIP) occupies a central role in our understanding of these subglacial processes. Complicating matters is the observation, from GPS records, that the WIP experiences most of its motion during episodes of rapid sliding. These sliding events are tidally modulated and separated by 12 hour periods of quiescence. We conduct numerical simulations of ice stream stick-slip cycles. Our simulations include rate- and state-dependent frictional sliding, tidal forcing, inertia, upstream loading in a cross-stream, thickness-averaged formulation. Our principal finding is that ice stream motion may respond to ocean tidal forcing with one of two end member behaviors. In one limit, tidally modulated slip events have rupture velocities that approach the shear wave speed and slip events have a duration that scales with the ice stream width divided by the shear wave speed. In the other limit, tidal modulation results in ice stream sliding velocities with lower amplitude variation but at much longer timescales, i.e. semi-diurnal and longer. This latter behavior more closely mimics the behavior of several active ice streams (Bindschadler, Rutford). We find that WIP slip events exist between these two end member behaviors: rupture velocities are far below the inertial limit yet sliding occurs only episodically. The continuum of sliding behaviors is governed by a critical ice stream width over which slip event nucleate. When the critical width is much longer than the ice stream width, slip events are unable to nucleate. The critical width depends on the subglacial effective pressure, ice thickness, and frictional and elastic constitutive

  6. Interaction of streaming and attention in human auditory cortex.

    Science.gov (United States)

    Gutschalk, Alexander; Rupp, André; Dykstra, Andrew R

    2015-01-01

    Serially presented tones are sometimes segregated into two perceptually distinct streams. An ongoing debate is whether this basic streaming phenomenon reflects automatic processes or requires attention focused to the stimuli. Here, we examined the influence of focused attention on streaming-related activity in human auditory cortex using magnetoencephalography (MEG). Listeners were presented with a dichotic paradigm in which left-ear stimuli consisted of canonical streaming stimuli (ABA_ or ABAA) and right-ear stimuli consisted of a classical oddball paradigm. In phase one, listeners were instructed to attend the right-ear oddball sequence and detect rare deviants. In phase two, they were instructed to attend the left ear streaming stimulus and report whether they heard one or two streams. The frequency difference (ΔF) of the sequences was set such that the smallest and largest ΔF conditions generally induced one- and two-stream percepts, respectively. Two intermediate ΔF conditions were chosen to elicit bistable percepts (i.e., either one or two streams). Attention enhanced the peak-to-peak amplitude of the P1-N1 complex, but only for ambiguous ΔF conditions, consistent with the notion that automatic mechanisms for streaming tightly interact with attention and that the latter is of particular importance for ambiguous sound sequences.

  7. Scientific stream pollution analysis

    National Research Council Canada - National Science Library

    Nemerow, Nelson Leonard

    1974-01-01

    A comprehensive description of the analysis of water pollution that presents a careful balance of the biological,hydrological, chemical and mathematical concepts involved in the evaluation of stream...

  8. Streams in the urban heat island: spatial and temporal variability in temperature

    Science.gov (United States)

    Somers, Kayleigh A.; Bernhardt, Emily S.; Grace, James B.; Hassett, Brooke A.; Sudduth, Elizabeth B.; Wang, Siyi; Urban, Dean L.

    2013-01-01

    Streams draining urban heat islands tend to be hotter than rural and forested streams at baseflow because of warmer urban air and ground temperatures, paved surfaces, and decreased riparian canopy. Urban infrastructure efficiently routes runoff over hot impervious surfaces and through storm drains directly into streams and can lead to rapid, dramatic increases in temperature. Thermal regimes affect habitat quality and biogeochemical processes, and changes can be lethal if temperatures exceed upper tolerance limits of aquatic fauna. In summer 2009, we collected continuous (10-min interval) temperature data in 60 streams spanning a range of development intensity in the Piedmont of North Carolina, USA. The 5 most urbanized streams averaged 21.1°C at baseflow, compared to 19.5°C in the 5 most forested streams. Temperatures in urban streams rose as much as 4°C during a small regional storm, whereas the same storm led to extremely small to no changes in temperature in forested streams. Over a kilometer of stream length, baseflow temperature varied by as much as 10°C in an urban stream and as little as 2°C in a forested stream. We used structural equation modeling to explore how reach- and catchment-scale attributes interact to explain maximum temperatures and magnitudes of storm-flow temperature surges. The best predictive model of baseflow temperatures (R2  =  0.461) included moderately strong pathways directly (extent of development and road density) and indirectly, as mediated by reach-scale factors (canopy closure and stream width), from catchment-scale factors. The strongest influence on storm-flow temperature surges appeared to be % development in the catchment. Reach-scale factors, such as the extent of riparian forest and stream width, had little mitigating influence (R2  =  0.448). Stream temperature is an essential, but overlooked, aspect of the urban stream syndrome and is affected by reach-scale habitat variables, catchment-scale urbanization

  9. Male patients presenting with rapidly progressive puberty associated with malignant tumors

    Directory of Open Access Journals (Sweden)

    Soo Jung Kim

    2016-03-01

    Full Text Available In males, precocious puberty (PP is defined as the development of secondary sexual characteristics before age 9 years. PP is usually idiopathic; though, organic abnormalities including tumors are more frequently found in male patients with PP. However, advanced puberty in male also can be an important clinical manifestation in tumors. We report 2 cases of rapidly progressive puberty in males, each associated with a germ-cell tumor. First, an 11-year-old boy presented with mild fever and weight loss for 1 month. Physical examination revealed a pubertal stage of G3P3 with 10-mL testes. Investigations revealed advanced bone age (16 years with elevated basal luteinizing hormone and testosterone levels. An anterior mediastinal tumor was identified by chest radiography and computed tomography, and elevated α-fetoprotein (AFP and β-human chorionic gonadotropin (β-hCG levels were noted. Histopathologic analysis confirmed a yolk-sac tumor. Second, a 12-year-old boy presented with diplopia, polydipsia, and polyuria for 4 months. Physical examination revealed a pubertal stage of G3P3 with 8-mL testes. Bone age was advanced (16 years and laboratory tests indicated panhypopituitarism with elevated testosterone level. A mixed germ-cell tumor was diagnosed with elevated AFP and β-hCG levels. Of course, these patients also have other symptoms of suspecting tumors, however, rapidly progressive puberty can be the more earlier screening sign of tumors. Therefore, in male patients with accelerated or advanced puberty, malignancy should be considered, with evaluation of tumor markers. In addition, advanced puberty in male should be recognized more widely as a unique sign of neoplasm.

  10. STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Geoffrey [Indiana Univ., Bloomington, IN (United States); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), were conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report

  11. Dissociable effects of inter-stimulus interval and presentation duration on rapid face categorization.

    Science.gov (United States)

    Retter, Talia L; Jiang, Fang; Webster, Michael A; Rossion, Bruno

    2018-04-01

    Fast periodic visual stimulation combined with electroencephalography (FPVS-EEG) has unique sensitivity and objectivity in measuring rapid visual categorization processes. It constrains image processing time by presenting stimuli rapidly through brief stimulus presentation durations and short inter-stimulus intervals. However, the selective impact of these temporal parameters on visual categorization is largely unknown. Here, we presented natural images of objects at a rate of 10 or 20 per second (10 or 20 Hz), with faces appearing once per second (1 Hz), leading to two distinct frequency-tagged EEG responses. Twelve observers were tested with three squarewave image presentation conditions: 1) with an ISI, a traditional 50% duty cycle at 10 Hz (50-ms stimulus duration separated by a 50-ms ISI); 2) removing the ISI and matching the rate, a 100% duty cycle at 10 Hz (100-ms duration with 0-ms ISI); 3) removing the ISI and matching the stimulus presentation duration, a 100% duty cycle at 20 Hz (50-ms duration with 0-ms ISI). The face categorization response was significantly decreased in the 20 Hz 100% condition. The conditions at 10 Hz showed similar face-categorization responses, peaking maximally over the right occipito-temporal (ROT) cortex. However, the onset of the 10 Hz 100% response was delayed by about 20 ms over the ROT region relative to the 10 Hz 50% condition, likely due to immediate forward-masking by preceding images. Taken together, these results help to interpret how the FPVS-EEG paradigm sets temporal constraints on visual image categorization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Acoustic Streaming and Its Suppression in Inhomogeneous Fluids

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Qiu, Wei; Augustsson, Per

    2018-01-01

    We present a theoretical and experimental study of boundary-driven acoustic streaming in an inhomogeneous fluid with variations in density and compressibility. In a homogeneous fluid this streaming results from dissipation in the boundary layers (Rayleigh streaming). We show...... that in an inhomogeneous fluid, an additional nondissipative force density acts on the fluid to stabilize particular inhomogeneity configurations, which markedly alters and even suppresses the streaming flows. Our theoretical and numerical analysis of the phenomenon is supported by ultrasound experiments performed...

  13. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  14. Primary leiomyosarcoma presenting as a rapidly enlarging gingival mass of the mandible

    International Nuclear Information System (INIS)

    Cho, Bong Hae; Nah, Kyung Soo; Jung, Yun Hoa

    2006-01-01

    Leiomyosarcoma of the oral cavity is a very rare tumor that is associated with aggressive clinical behavior and low survival. In this paper, we report a case of leiomyosarcoma presenting with a gingival exophytic mass that rapidly grew, causing facial asymmetry within 16 days in a 9-year-old boy. After an excisional biopsy, microscopy revealed a spindle cell neoplasm that, on immunohistochemistry analysis, demonstrated reactivity for SMA. This established the diagnosis of leiomyosarcoma; subsequently, a marginal mandibulectomy and supraomohyoid neck dissection were performed

  15. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    Science.gov (United States)

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  16. Active micromixer using surface acoustic wave streaming

    Science.gov (United States)

    Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  17. Gaze-independent BCI-spelling using rapid serial visual presentation (RSVP).

    Science.gov (United States)

    Acqualagna, Laura; Blankertz, Benjamin

    2013-05-01

    A Brain Computer Interface (BCI) speller is a communication device, which can be used by patients suffering from neurodegenerative diseases to select symbols in a computer application. For patients unable to overtly fixate the target symbol, it is crucial to develop a speller independent of gaze shifts. In the present online study, we investigated rapid serial visual presentation (RSVP) as a paradigm for mental typewriting. We investigated the RSVP speller in three conditions, regarding the Stimulus Onset Asynchrony (SOA) and the use of color features. A vocabulary of 30 symbols was presented one-by-one in a pseudo random sequence at the same location of display. All twelve participants were able to successfully operate the RSVP speller. The results show a mean online spelling rate of 1.43 symb/min and a mean symbol selection accuracy of 94.8% in the best condition. We conclude that the RSVP is a promising paradigm for BCI spelling and its performance is competitive with the fastest gaze-independent spellers in literature. The RSVP speller does not require gaze shifts towards different target locations and can be operated by non-spatial visual attention, therefore it can be considered as a valid paradigm in applications with patients for impaired oculo-motor control. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Progressive Conversion from B-rep to BSP for Streaming Geometric Modeling.

    Science.gov (United States)

    Bajaj, Chandrajit; Paoluzzi, Alberto; Scorzelli, Giorgio

    2006-01-01

    We introduce a novel progressive approach to generate a Binary Space Partition (BSP) tree and a convex cell decomposition for any input triangles boundary representation (B-rep), by utilizing a fast calculation of the surface inertia. We also generate a solid model at progressive levels of detail. This approach relies on a variation of standard BSP tree generation, allowing for labeling cells as in, out and fuzzy, and which permits a comprehensive representation of a solid as the Hasse diagram of a cell complex. Our new algorithm is embedded in a streaming computational framework, using four types of dataflow processes that continuously produce, transform, combine or consume subsets of cells depending on their number or input/output stream. A varied collection of geometric modeling techniques are integrated in this streaming framework, including polygonal, spline, solid and heterogeneous modeling with boundary and decompositive representations, Boolean set operations, Cartesian products and adaptive refinement. The real-time B-rep to BSP streaming results we report in this paper are a large step forward in the ultimate unification of rapid conceptual and detailed shape design methodologies.

  19. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    Science.gov (United States)

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging tested how these opposing stream states influenced organic matter, benthic macroinvertebrate secondary production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  20. Plasmablastic myeloma presenting as rapidly progressive renal failure in a young adult

    Directory of Open Access Journals (Sweden)

    M Srija

    2014-01-01

    Full Text Available Multiple myeloma (MM is a condition where there is malignant proliferation of plasma cells. There is a strong correlation with age, peaking at 60-70 years. The clinical course in adolescents and young individuals is generally indolent and the survival is longer. We report a case of a 28-year-old male, who was diagnosed to have plasmablastic myeloma, an atypical variant of MM with a poor prognosis, presenting as rapidly progressive renal failure. He was given induction chemotherapy and then underwent autologous peripheral blood stem cell transplantation.

  1. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    Science.gov (United States)

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  2. Characteristics of radioactive waste streams generated in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Lin, K.H.

    1976-01-01

    Results are presented of a study concerned with identification and characterization of radioactive waste streams from an HTGR fuel reprocessing plant. Approximate quantities of individual waste streams as well as pertinent characteristics of selected streams have been estimated. Most of the waste streams are unique to HTGR fuel reprocessing. However, waste streams from the solvent extraction system and from the plant facilities do not differ greatly from the corresponding LWR fuel reprocessing wastes

  3. Acoustic Streaming and Its Suppression in Inhomogeneous Fluids.

    Science.gov (United States)

    Karlsen, Jonas T; Qiu, Wei; Augustsson, Per; Bruus, Henrik

    2018-02-02

    We present a theoretical and experimental study of boundary-driven acoustic streaming in an inhomogeneous fluid with variations in density and compressibility. In a homogeneous fluid this streaming results from dissipation in the boundary layers (Rayleigh streaming). We show that in an inhomogeneous fluid, an additional nondissipative force density acts on the fluid to stabilize particular inhomogeneity configurations, which markedly alters and even suppresses the streaming flows. Our theoretical and numerical analysis of the phenomenon is supported by ultrasound experiments performed with inhomogeneous aqueous iodixanol solutions in a glass-silicon microchip.

  4. Vitality of optical vortices (Presentation)

    CSIR Research Space (South Africa)

    Roux, FS

    2014-02-01

    Full Text Available stream_source_info Roux3_2014.pdf.txt stream_content_type text/plain stream_size 3018 Content-Encoding UTF-8 stream_name Roux3_2014.pdf.txt Content-Type text/plain; charset=UTF-8 Title Vitality of optical vortices F Stef... Roux Presented at Complex Light and Optical Force VIII SPIE Photonics West 2014 Moscone Center, San Francisco, California USA 5 February 2014 CSIR National Laser Centre, Pretoria, South Africa – p. 1/11 Speckle Amplitude Phase – p. 2/11 Vortex...

  5. Online feature selection with streaming features.

    Science.gov (United States)

    Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan

    2013-05-01

    We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.

  6. Relative effects of climate change and wildfires on stream temperatures: A simulation modeling approach in a Rocky Mountain watershed

    Science.gov (United States)

    Lisa Holsinger; Robert E. Keane; Daniel J. Isaak; Lisa Eby; Michael K. Young

    2014-01-01

    Freshwater ecosystems are warming globally from the direct effects of climate change on air temperature and hydrology and the indirect effects on near-stream vegetation. In fire-prone landscapes, vegetative change may be especially rapid and cause significant local stream temperature increases but the importance of these increases relative to broader changes associated...

  7. On-stream analysis of coal by prompt neutron activation analysis

    International Nuclear Information System (INIS)

    Barker, D.

    1981-01-01

    The need for rapid continuous on-stream analysis of coal was recognised in 1975. Analytical systems capable of determining some of the most important compositional properties of coal have been developed. The research programme has produced a series of analysers suitable for on-stream, batch, slurry and laboratory analytical determination of coal. This series of analysers is marketed under the name of 'Nucoalyzer'. The Nucoalyzer - CONAC (Continuous On-line Nuclear Analyzer for Coal) offers real-time, continuous determination of calorific value, percentage ash, percentage moisture, percentage sulphur, boiler fouling and slagging indices. The CONAC model is described in this article. The analytical principle employed in the various Nucoalyzer systems is based on prompt neutron activation analysis

  8. The ClusTree : indexing micro-clusters for anytime stream mining

    DEFF Research Database (Denmark)

    Kranen, Philipp; Assent, Ira; Baldauf, Corinna

    2011-01-01

    -arrival times of the stream. Likewise, memory is limited, making it impossible to store all data. For clustering, we are faced with the challenge of maintaining a current result that can be presented to the user at any given time. In this work, we propose a parameter-free algorithm that automatically adapts...... introduce the ClusTree, a compact and self-adaptive index structure for maintaining stream summaries. Additionally we present solutions to handle very fast streams through aggregation mechanisms and propose novel descent strategies that improve the clustering result on slower streams as long as time permits...

  9. Automaticity and primacy of auditory streaming: Concurrent subjective and objective measures.

    Science.gov (United States)

    Billig, Alexander J; Carlyon, Robert P

    2016-03-01

    Two experiments used subjective and objective measures to study the automaticity and primacy of auditory streaming. Listeners heard sequences of "ABA-" triplets, where "A" and "B" were tones of different frequencies and "-" was a silent gap. Segregation was more frequently reported, and rhythmically deviant triplets less well detected, for a greater between-tone frequency separation and later in the sequence. In Experiment 1, performing a competing auditory task for the first part of the sequence led to a reduction in subsequent streaming compared to when the tones were attended throughout. This is consistent with focused attention promoting streaming, and/or with attention switches resetting it. However, the proportion of segregated reports increased more rapidly following a switch than at the start of a sequence, indicating that some streaming occurred automatically. Modeling ruled out a simple "covert attention" account of this finding. Experiment 2 required listeners to perform subjective and objective tasks concurrently. It revealed superior performance during integrated compared to segregated reports, beyond that explained by the codependence of the two measures on stimulus parameters. We argue that listeners have limited access to low-level stimulus representations once perceptual organization has occurred, and that subjective and objective streaming measures partly index the same processes. (c) 2016 APA, all rights reserved).

  10. Akamai Streaming

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Akamai offers world-class streaming media services that enable Internet content providers and enterprises to succeed in today's Web-centric marketplace. They deliver live event Webcasts (complete with video production, encoding, and signal acquisition services), streaming media on demand, 24/7 Webcasts and a variety of streaming application services based upon their EdgeAdvantage.

  11. Is the Stream Always Bluer on the Other Side?

    Science.gov (United States)

    Jenkins, T.; Chase, Z.

    2017-12-01

    Examining water quality, fish species present, habitat quality, and sources of pollution are important to better understanding the health of a stream. In Florida, the Fish and Wildlife Conservation Commission (FWC) works to monitor the health of its streams, and partnerships with . By collecting, analyzing, and comparing fish abundance data from a couple of streams in Escambia County, Florida, we can help FWC determine how to best support and protect stream habitats and fish-species in our Florida community.

  12. Symbol-stream Combiner: Description and Demonstration Plans

    Science.gov (United States)

    Hurd, W. J.; Reder, L. J.; Russell, M. D.

    1984-01-01

    A system is described and demonstration plans presented for antenna arraying by symbol stream combining. This system is used to enhance the signal-to-noise ratio of a spacecraft signals by combining the detected symbol streams from two or more receiving stations. Symbol stream combining has both cost and performance advantages over other arraying methods. Demonstrations are planned on Voyager 2 both prior to and during Uranus encounter. Operational use is possible for interagency arraying of non-Deep Space Network stations at Neptune encounter.

  13. A simple method for rapidly processing HEU from weapons returns

    Energy Technology Data Exchange (ETDEWEB)

    McLean, W. II; Miller, P.E.

    1994-01-01

    A method based on the use of a high temperature fluidized bed for rapidly oxidizing, homogenizing and down-blending Highly Enriched Uranium (HEU) from dismantled nuclear weapons is presented. This technology directly addresses many of the most important issues that inhibit progress in international commerce in HEU; viz., transaction verification, materials accountability, transportation and environmental safety. The equipment used to carry out the oxidation and blending is simple, inexpensive and highly portable. Mobile facilities to be used for point-of-sale blending and analysis of the product material are presented along with a phased implementation plan that addresses the conversion of HEU derived from domestic weapons and related waste streams as well as material from possible foreign sources such as South Africa or the former Soviet Union.

  14. The Midwest Stream Quality Assessment—Influences of human activities on streams

    Science.gov (United States)

    Van Metre, Peter C.; Mahler, Barbara J.; Carlisle, Daren M.; Coles, James F.

    2018-04-16

    Healthy streams and the fish and other organisms that live in them contribute to our quality of life. Extensive modification of the landscape in the Midwestern United States, however, has profoundly affected the condition of streams. Row crops and pavement have replaced grasslands and woodlands, streams have been straightened, and wetlands and fields have been drained. Runoff from agricultural and urban land brings sediment and chemicals to streams. What is the chemical, physical, and biological condition of Midwestern streams? Which physical and chemical stressors are adversely affecting biological communities, what are their origins, and how might we lessen or avoid their adverse effects?In 2013, the U.S. Geological Survey (USGS) conducted the Midwest Stream Quality Assessment to evaluate how human activities affect the biological condition of Midwestern streams. In collaboration with the U.S. Environmental Protection Agency National Rivers and Streams Assessment, the USGS sampled 100 streams, chosen to be representative of the different types of watersheds in the region. Biological condition was evaluated based on the number and diversity of fish, algae, and invertebrates in the streams. Changes to the physical habitat and chemical characteristics of the streams—“stressors”—were assessed, and their relation to landscape factors and biological condition was explored by using mathematical models. The data and models help us to better understand how the human activities on the landscape are affecting streams in the region.

  15. Complicated acute appendicitis presenting as a rapidly progressive soft tissue infection of the abdominal wall: a case report.

    Science.gov (United States)

    Beerle, Corinne; Gelpke, Hans; Breitenstein, Stefan; Staerkle, Ralph F

    2016-12-01

    We report a case of a rare complication of acute appendicitis with perforation through the abdominal wall. The case points out that an intraabdominal origin should be considered in patients presenting with rapidly spreading soft tissue infections of the trunk. A 58-year-old European woman presented to our hospital with a 1-week history of severe abdominal pain accompanied by rapidly spreading erythema and emphysema of the lower abdomen. On admission, the patient was in septic shock with leukocytosis and elevation of C-reactive protein. Among other diagnoses, necrotizing fasciitis was suspected. Computed tomography showed a large soft tissue infection with air-fluid levels spreading through the lower abdominal wall. During the operation, we found a perforated appendicitis breaking through the fascia and causing a rapidly progressive soft tissue infection of the abdominal wall. Appendicitis was the origin of the soft tissue infection. The abdominal wall was only secondarily involved. Even though perforated appendicitis as an etiology of a rapidly progressive soft tissue infection of the abdominal wall is very rare, it should be considered in the differential diagnosis of abdominal wall cellulitis. The distinction between rapidly spreading subcutaneous infection with abscess formation and early onset of necrotizing fasciitis is often difficult and can be confirmed only by surgical intervention.

  16. Nutrient spiraling in streams and river networks

    Science.gov (United States)

    Ensign, Scott H.; Doyle, Martin W.

    2006-12-01

    Over the past 3 decades, nutrient spiraling has become a unifying paradigm for stream biogeochemical research. This paper presents (1) a quantitative synthesis of the nutrient spiraling literature and (2) application of these data to elucidate trends in nutrient spiraling within stream networks. Results are based on 404 individual experiments on ammonium (NH4), nitrate (NO3), and phosphate (PO4) from 52 published studies. Sixty-nine percent of the experiments were performed in first- and second-order streams, and 31% were performed in third- to fifth-order streams. Uptake lengths, Sw, of NH4 (median = 86 m) and PO4 (median = 96 m) were significantly different (α = 0.05) than NO3 (median = 236 m). Areal uptake rates of NH4 (median = 28 μg m-2 min-1) were significantly different than NO3 and PO4 (median = 15 and 14 μg m-2 min-1, respectively). There were significant differences among NH4, NO3, and PO4 uptake velocity (median = 5, 1, and 2 mm min-1, respectively). Correlation analysis results were equivocal on the effect of transient storage on nutrient spiraling. Application of these data to a stream network model showed that recycling (defined here as stream length ÷ Sw) of NH4 and NO3 generally increased with stream order, while PO4 recycling remained constant along a first- to fifth-order stream gradient. Within this hypothetical stream network, cumulative NH4 uptake decreased slightly with stream order, while cumulative NO3 and PO4 uptake increased with stream order. These data suggest the importance of larger rivers to nutrient spiraling and the need to consider how stream networks affect nutrient flux between terrestrial and marine ecosystems.

  17. Featured collection introduction: Connectivity of streams and wetlands to downstream waters

    Science.gov (United States)

    Alexander, Laurie C.; Fritz, Ken M.; Schofield, Kate; Autrey, Bradley; DeMeester, Julie; Golden, Heather E.; Goodrich, David C.; Kepner, William G.; Kiperwas, Hadas R.; Lane, Charles R.; LeDuc, Stephen D.; Leibowitz, Scott; McManus, Michael G.; Pollard, Amina I.; Ridley, Caroline E.; Vanderhoof, Melanie; Wigington, Parker J.

    2018-01-01

    Connectivity is a fundamental but highly dynamic property of watersheds. Variability in the types and degrees of aquatic ecosystem connectivity presents challenges for researchers and managers seeking to accurately quantify its effects on critical hydrologic, biogeochemical, and biological processes. However, protecting natural gradients of connectivity is key to protecting the range of ecosystem services that aquatic ecosystems provide. In this featured collection, we review the available evidence on connections and functions by which streams and wetlands affect the integrity of downstream waters such as large rivers, lakes, reservoirs, and estuaries. The reviews in this collection focus on the types of waters whose protections under the U.S. Clean Water Act have been called into question by U.S. Supreme Court cases. We synthesize 40+ years of research on longitudinal, lateral, and vertical fluxes of energy, material, and biota between aquatic ecosystems included within the Act's frame of reference. Many questions about the roles of streams and wetlands in sustaining downstream water integrity can be answered from currently available literature, and emerging research is rapidly closing data gaps with exciting new insights into aquatic connectivity and function at local, watershed, and regional scales. Synthesis of foundational and emerging research is needed to support science‐based efforts to provide safe, reliable sources of fresh water for present and future generations.

  18. Analysis of hydraulic characteristics for stream diversion in small stream

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang-Jin; Jun, Kye-Won [Chungbuk National University, Cheongju(Korea)

    2001-10-31

    This study is the analysis of hydraulic characteristics for stream diversion reach by numerical model test. Through it we can provide the basis data in flood, and in grasping stream flow characteristics. Analysis of hydraulic characteristics in Seoknam stream were implemented by using computer model HEC-RAS(one-dimensional model) and RMA2(two-dimensional finite element model). As a result we became to know that RMA2 to simulate left, main channel, right in stream is more effective method in analysing flow in channel bends, steep slope, complex bed form effect stream flow characteristics, than HEC-RAS. (author). 13 refs., 3 tabs., 5 figs.

  19. The metaphors we stream by: Making sense of music streaming

    OpenAIRE

    Hagen, Anja Nylund

    2016-01-01

    In Norway music-streaming services have become mainstream in everyday music listening. This paper examines how 12 heavy streaming users make sense of their experiences with Spotify and WiMP Music (now Tidal). The analysis relies on a mixed-method qualitative study, combining music-diary self-reports, online observation of streaming accounts, Facebook and last.fm scrobble-logs, and in-depth interviews. By drawing on existing metaphors of Internet experiences we demonstrate that music-streaming...

  20. Scenario driven data modelling: a method for integrating diverse sources of data and data streams

    Science.gov (United States)

    2011-01-01

    Background Biology is rapidly becoming a data intensive, data-driven science. It is essential that data is represented and connected in ways that best represent its full conceptual content and allows both automated integration and data driven decision-making. Recent advancements in distributed multi-relational directed graphs, implemented in the form of the Semantic Web make it possible to deal with complicated heterogeneous data in new and interesting ways. Results This paper presents a new approach, scenario driven data modelling (SDDM), that integrates multi-relational directed graphs with data streams. SDDM can be applied to virtually any data integration challenge with widely divergent types of data and data streams. In this work, we explored integrating genetics data with reports from traditional media. SDDM was applied to the New Delhi metallo-beta-lactamase gene (NDM-1), an emerging global health threat. The SDDM process constructed a scenario, created a RDF multi-relational directed graph that linked diverse types of data to the Semantic Web, implemented RDF conversion tools (RDFizers) to bring content into the Sematic Web, identified data streams and analytical routines to analyse those streams, and identified user requirements and graph traversals to meet end-user requirements. Conclusions We provided an example where SDDM was applied to a complex data integration challenge. The process created a model of the emerging NDM-1 health threat, identified and filled gaps in that model, and constructed reliable software that monitored data streams based on the scenario derived multi-relational directed graph. The SDDM process significantly reduced the software requirements phase by letting the scenario and resulting multi-relational directed graph define what is possible and then set the scope of the user requirements. Approaches like SDDM will be critical to the future of data intensive, data-driven science because they automate the process of converting

  1. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  2. Reduced trace element concentrations in fast-growing juvenile Atlantic salmon in natural streams.

    Science.gov (United States)

    Ward, Darren M; Nislow, Keith H; Chen, Celia Y; Folt, Carol L

    2010-05-01

    To assess the effect of rapid individual growth on trace element concentrations in fish, we measured concentrations of seven trace elements (As, Cd, Cs, Hg, Pb, Se, Zn) in stream-dwelling Atlantic salmon (Salmo salar) from 15 sites encompassing a 10-fold range in salmon growth. All salmon were hatched under uniform conditions, released into streams, and sampled approximately 120 days later for trace element analysis. For most elements, element concentrations in salmon tracked those in their prey. Fast-growing salmon had lower concentrations of all elements than slow growers, after accounting for prey concentrations. This pattern held for essential and nonessential elements, as well as elements that accumulate from food and those that can accumulate from water. At the sites with the fastest salmon growth, trace element concentrations in salmon were 37% (Cs) to 86% (Pb) lower than at sites where growth was suppressed. Given that concentrations were generally below levels harmful to salmon and that the pattern was consistent across all elements, we suggest that dilution of elements in larger biomass led to lower concentrations in fast-growing fish. Streams that foster rapid, efficient fish growth may produce fish with lower concentrations of elements potentially toxic for human and wildlife consumers.

  3. 4kUHD H264 Wireless Live Video Streaming Using CUDA

    Directory of Open Access Journals (Sweden)

    A. O. Adeyemi-Ejeye

    2014-01-01

    Full Text Available Ultrahigh definition video streaming has been explored in recent years. Most recently the possibility of 4kUHD video streaming over wireless 802.11n was presented, using preencoded video. Live encoding for streaming using x264 has proven to be very slow. The use of parallel encoding has been explored to speed up the process using CUDA. However there hasnot been a parallel implementation for video streaming. We therefore present for the first time a novel implementation of 4kUHD live encoding for streaming over a wireless network at low bitrate indoors, using CUDA for parallel H264 encoding. Our experimental results are used to verify our claim.

  4. Noise Prediction Module for Offset Stream Nozzles

    Science.gov (United States)

    Henderson, Brenda S.

    2011-01-01

    A Modern Design of Experiments (MDOE) analysis of data acquired for an offset stream technology was presented. The data acquisition and concept development were funded under a Supersonics NRA NNX07AC62A awarded to Dimitri Papamoschou at University of California, Irvine. The technology involved the introduction of airfoils in the fan stream of a bypass ratio (BPR) two nozzle system operated at transonic exhaust speeds. The vanes deflected the fan stream relative to the core stream and resulted in reduced sideline noise for polar angles in the peak jet noise direction. Noise prediction models were developed for a range of vane configurations. The models interface with an existing ANOPP module and can be used or future system level studies.

  5. Baseline Channel Geometry and Aquatic Habitat Data for Selected Streams in the Matanuska-Susitna Valley, Alaska

    Science.gov (United States)

    Curran, Janet H.; Rice, William J.

    2009-01-01

    Small streams in the rapidly developing Matanuska-Susitna Valley in south-central Alaska are known to support anadromous and resident fish but little is known about their hydrologic and riparian conditions, or their sensitivity to the rapid development of the area or climate variability. To help address this need, channel geometry and aquatic habitat data were collected in 2005 as a baseline of stream conditions for selected streams. Three streams were selected as representative of various stream types, and one drainage network, the Big Lake drainage basin, was selected for a systematic assessment. Streams in the Big Lake basin were drawn in a Geographic Information System (GIS), and 55 reaches along 16 miles of Meadow Creek and its primary tributary Little Meadow Creek were identified from orthoimagery and field observations on the basis of distinctive physical and habitat parameters, most commonly gradient, substrate, and vegetation. Data-collection methods for sites at the three representative reaches and the 55 systematically studied reaches consisted of a field survey of channel and flood-plain geometry and collection of 14 habitat attributes using published protocols or slight modifications. Width/depth and entrenchment ratios along the Meadow-Little Meadow Creek corridor were large and highly variable upstream of Parks Highway and lower and more consistent downstream of Parks Highway. Channel width was strongly correlated with distance, increasing downstream in a log-linear relation. Runs formed the most common habitat type, and instream vegetation dominated the habitat cover types, which collectively covered 53 percent of the channel. Gravel suitable for spawning covered isolated areas along Meadow Creek and about 29 percent of Little Meadow Creek. Broad wetlands were common along both streams. For a comprehensive assessment of small streams in the Mat-Su Valley, critical additional data needs include hydrologic, geologic and geomorphic, and biologic data

  6. Stormwater management impacts on urban stream water quality and quantity during and after development in Clarksburg, MD

    Science.gov (United States)

    Loperfido, J. V.; Noe, G. B.; Jarnagin, S.; Mohamoud, Y. M.; Van Ness, K.; Hogan, D. M.

    2012-12-01

    Urbanization and urban land use leads to degradation of local stream habitat and 'urban stream syndrome.' Best Management Practices (BMPs) are often used in an attempt to mitigate the impact of urban land use on stream water quality and quantity. Traditional development has employed stormwater BMPs that were placed in a centralized manner located either in the stream channel or near the riparian zone to treat stormwater runoff from large drainage areas; however, urban streams have largely remained impaired. Recently, distributed placement of BMPs throughout the landscape has been implemented in an attempt to detain, treat, and infiltrate stormwater runoff from smaller drainage areas near its source. Despite increasing implementation of distributed BMPs, little has been reported on the catchment-scale (1-10 km^2) performance of distributed BMPs and how they compare to centralized BMPs. The Clarksburg Special Protection Area (CSPA), located in the Washington, DC exurbs within the larger Chesapeake Bay watershed, is undergoing rapid urbanization and employs distributed BMPs on the landscape that treat small drainage areas with the goal of preserving high-quality stream resources in the area. In addition, the presence of a nearby traditionally developed (centralized BMPs) catchment and an undeveloped forested catchment makes the CSPA an ideal setting to understand how the best available stormwater management technology implemented during and after development affects stream water quality and quantity through a comparative watershed analysis. The Clarksburg Integrated Monitoring Partnership is a consortium of local and federal agencies and universities that conducts research in the CSPA including: monitoring of stream water quality, geomorphology, and biology; analysis of stream hydrological and water quality data; and GIS mapping and analysis of land cover, elevation change and BMP implementation data. Here, the impacts of urbanization on stream water quantity

  7. Climate-induced glacier and snow loss imperils alpine stream insects

    Science.gov (United States)

    Giersch, J. Joseph; Hotaling, Scott; Kovach, Ryan; Jones, Leslie A.; Muhlfeld, Clint C.

    2017-01-01

    Climate warming is causing rapid loss of glaciers and snowpack in mountainous regions worldwide. These changes are predicted to negatively impact the habitats of many range-restricted species, particularly endemic, mountaintop species dependent on the unique thermal and hydrologic conditions found only in glacier-fed and snowmelt-driven alpine streams. Though progress has been made, existing understanding of the status, distribution, and ecology of alpine aquatic species, particularly in North America, is lacking, thereby hindering conservation and management programs. Two aquatic insects – the meltwater stonefly Lednia tumana and the glacier stonefly Zapada glacier – were recently proposed for listing under the U.S. Endangered Species Act due to climate-change-induced habitat loss. Using a large dataset (272 streams, 482 total sites) with high-resolution climate and habitat information, we describe the distribution, status, and key environmental features that limit L. tumana and Z. glacier across the northern Rocky Mountains. Lednia tumana was detected in 113 streams (175 sites) within Glacier National Park (GNP) and surrounding areas. The probability of L. tumana occurrence increased with cold stream temperatures and close proximity to glaciers and permanent snowfields. Similarly, densities of L. tumana declined with increasing distance from stream source. Zapada glacier was only detected in 10 streams (20 sites), six in GNP and four in mountain ranges up to ~600 km southwest. Our results show that both L. tumana and Z. glacier inhabit an extremely narrow distribution, restricted to short sections of cold, alpine streams often below glaciers predicted to disappear over the next two decades. Climate warming-induced glacier and snow loss clearly imperils the persistence of L. tumana and Z. glacier throughout their ranges, highlighting the role of mountaintop aquatic invertebrates as sentinels of climate change in mid-latitude regions.

  8. Reverse stream flow routing by using Muskingum models

    Indian Academy of Sciences (India)

    Reverse stream flow routing is a procedure that determines the upstream hydrograph given the downstream hydrograph. This paper presents the development of methodology for Muskingum models parameter estimation for reverse stream flow routing. The standard application of the Muskingum models involves calibration ...

  9. Kinesthetic working memory and action control within the dorsal stream.

    Science.gov (United States)

    Fiehler, Katja; Burke, Michael; Engel, Annerose; Bien, Siegfried; Rösler, Frank

    2008-02-01

    There is wide agreement that the "dorsal (action) stream" processes visual information for movement control. However, movements depend not only on vision but also on tactile and kinesthetic information (=haptics). Using functional magnetic resonance imaging, the present study investigates to what extent networks within the dorsal stream are also utilized for kinesthetic action control and whether they are also involved in kinesthetic working memory. Fourteen blindfolded participants performed a delayed-recognition task in which right-handed movements had to be encoded, maintained, and later recognized without any visual feedback. Encoding of hand movements activated somatosensory areas, superior parietal lobe (dorsodorsal stream), anterior intraparietal sulcus (aIPS) and adjoining areas (ventrodorsal stream), premotor cortex, and occipitotemporal cortex (ventral stream). Short-term maintenance of kinesthetic information elicited load-dependent activity in the aIPS and adjacent anterior portion of the superior parietal lobe (ventrodorsal stream) of the left hemisphere. We propose that the action representation system of the dorsodorsal and ventrodorsal stream is utilized not only for visual but also for kinesthetic action control. Moreover, the present findings demonstrate that networks within the ventrodorsal stream, in particular the left aIPS and closely adjacent areas, are also engaged in working memory maintenance of kinesthetic information.

  10. Programmable stream prefetch with resource optimization

    Science.gov (United States)

    Boyle, Peter; Christ, Norman; Gara, Alan; Mawhinney, Robert; Ohmacht, Martin; Sugavanam, Krishnan

    2013-01-08

    A stream prefetch engine performs data retrieval in a parallel computing system. The engine receives a load request from at least one processor. The engine evaluates whether a first memory address requested in the load request is present and valid in a table. The engine checks whether there exists valid data corresponding to the first memory address in an array if the first memory address is present and valid in the table. The engine increments a prefetching depth of a first stream that the first memory address belongs to and fetching a cache line associated with the first memory address from the at least one cache memory device if there is not yet valid data corresponding to the first memory address in the array. The engine determines whether prefetching of additional data is needed for the first stream within its prefetching depth. The engine prefetches the additional data if the prefetching is needed.

  11. Rapid extraction of lexical tone phonology in Chinese characters: a visual mismatch negativity study.

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Wang

    Full Text Available BACKGROUND: In alphabetic languages, emerging evidence from behavioral and neuroimaging studies shows the rapid and automatic activation of phonological information in visual word recognition. In the mapping from orthography to phonology, unlike most alphabetic languages in which there is a natural correspondence between the visual and phonological forms, in logographic Chinese, the mapping between visual and phonological forms is rather arbitrary and depends on learning and experience. The issue of whether the phonological information is rapidly and automatically extracted in Chinese characters by the brain has not yet been thoroughly addressed. METHODOLOGY/PRINCIPAL FINDINGS: We continuously presented Chinese characters differing in orthography and meaning to adult native Mandarin Chinese speakers to construct a constant varying visual stream. In the stream, most stimuli were homophones of Chinese characters: The phonological features embedded in these visual characters were the same, including consonants, vowels and the lexical tone. Occasionally, the rule of phonology was randomly violated by characters whose phonological features differed in the lexical tone. CONCLUSIONS/SIGNIFICANCE: We showed that the violation of the lexical tone phonology evoked an early, robust visual response, as revealed by whole-head electrical recordings of the visual mismatch negativity (vMMN, indicating the rapid extraction of phonological information embedded in Chinese characters. Source analysis revealed that the vMMN was involved in neural activations of the visual cortex, suggesting that the visual sensory memory is sensitive to phonological information embedded in visual words at an early processing stage.

  12. Rapid extraction of lexical tone phonology in Chinese characters: a visual mismatch negativity study.

    Science.gov (United States)

    Wang, Xiao-Dong; Liu, A-Ping; Wu, Yin-Yuan; Wang, Peng

    2013-01-01

    In alphabetic languages, emerging evidence from behavioral and neuroimaging studies shows the rapid and automatic activation of phonological information in visual word recognition. In the mapping from orthography to phonology, unlike most alphabetic languages in which there is a natural correspondence between the visual and phonological forms, in logographic Chinese, the mapping between visual and phonological forms is rather arbitrary and depends on learning and experience. The issue of whether the phonological information is rapidly and automatically extracted in Chinese characters by the brain has not yet been thoroughly addressed. We continuously presented Chinese characters differing in orthography and meaning to adult native Mandarin Chinese speakers to construct a constant varying visual stream. In the stream, most stimuli were homophones of Chinese characters: The phonological features embedded in these visual characters were the same, including consonants, vowels and the lexical tone. Occasionally, the rule of phonology was randomly violated by characters whose phonological features differed in the lexical tone. We showed that the violation of the lexical tone phonology evoked an early, robust visual response, as revealed by whole-head electrical recordings of the visual mismatch negativity (vMMN), indicating the rapid extraction of phonological information embedded in Chinese characters. Source analysis revealed that the vMMN was involved in neural activations of the visual cortex, suggesting that the visual sensory memory is sensitive to phonological information embedded in visual words at an early processing stage.

  13. Modelling climate change impacts on stream habitat conditions

    DEFF Research Database (Denmark)

    Boegh, Eva; Conallin, John; Karthikeyan, Matheswaran

    Impact from groundwater abstraction on freshwater resources and ecosystems is an issue of sincere concern in Denmark and many other countries worldwide. In addition, climate change projections add complexity to the existing conflict between water demands to satisfy human needs and water demands...... required to conserve streams as biologically diverse and healthy ecosystems. Solutions to this intensifying conflict require a holistic approach whereby stream biota is related to their physical environment at catchment scale, as also demanded by the EU Water Framework Directive. In the present study......, climate impacts on stream ecological conditions were quantified by combining a heat and mass stream flow with a habitat suitability modelling approach. Habitat suitability indices were developed for stream velocity, water depth, water temperature and substrate. Generally, water depth was found...

  14. Temporal Segmentation of MPEG Video Streams

    Directory of Open Access Journals (Sweden)

    Janko Calic

    2002-06-01

    Full Text Available Many algorithms for temporal video partitioning rely on the analysis of uncompressed video features. Since the information relevant to the partitioning process can be extracted directly from the MPEG compressed stream, higher efficiency can be achieved utilizing information from the MPEG compressed domain. This paper introduces a real-time algorithm for scene change detection that analyses the statistics of the macroblock features extracted directly from the MPEG stream. A method for extraction of the continuous frame difference that transforms the 3D video stream into a 1D curve is presented. This transform is then further employed to extract temporal units within the analysed video sequence. Results of computer simulations are reported.

  15. Assessment of corn and banana leaves as potential standardized substrates for leaf decomposition in streams affected by mountaintop removal coal mining, West Virginia, USA

    Science.gov (United States)

    Mountaintop removal and valley filling is a method of coal mining that buries Central Appalachian headwater streams. A 2007 federal court ruling highlighted the need for measurement of both ecosystem structure and function when assessing streams for mitigaton. Rapid functional as...

  16. Estimation of free acidity in some hydrolysable metal ions present in reprocessing streams by fiber optic aided spectrophotometry

    International Nuclear Information System (INIS)

    Ganesh, S.; Velavendan, P.; Pandey, N.K.; Kamachi Mudali, U.; Natarajan, R.

    2014-01-01

    A fiber optic aided spectrophotometric technique has been developed for the determination of free acidity in nuclear fuel reprocessing streams. In this method, nitric acid forms yellow colour complex with chrome azurol s. The system obeys Lambert-Beer's law at 542 nm in the range of acidity 4-14 M. The molar absorption coefficient (ε) and Sandell's sensitivity (S) of complex are 5.23 × 10 3 L.mol -1 .cm -1 and 1.91 × 10 -4 µg/cm 2 respectively. Relative standard deviation is less than 1 % and correlation coefficient is 0.999. Results of the present method are in good agreement with those obtained by the standard procedure. (author)

  17. Present status and future development of the European Community rapid information system

    International Nuclear Information System (INIS)

    Fraser, G.

    1990-01-01

    Following the Chernobyl reactor accident it was rapidly appreciated that, in addition to upgrading national radiological monitoring systems, action was required to facilitate international communication of the results obtained. The first such system was established by the Vienna Convention, drawn up under the auspices of the IAEA, which came into force in September, 1986. Subsequently the EC Council of Ministers decided in December, 1987, to set up a Community system which in many ways parallels that established by the Convention but differs significantly in certain aspects concerning its legal basis, initiation criteria, data provisions and communications requirements. The present paper describes the present status of the Community system and foreseeable future developments. It is a matter of policy that, to avoid unnecessary complications, this system should be, to the maximum extent practicable, fully compatible with that established by the Convention. Where appropriate, therefore, reference is also made to the latter system

  18. Principles of selection ofdrilling mud stream volume when drilling with a stream pump

    Directory of Open Access Journals (Sweden)

    Jan Macuda

    2006-10-01

    Full Text Available The reverse mud circulation induced by a stream pump is most frequently applied for large diameter drilling. This system is treated as auxiliary in all design solutions. It is implemented to drilling wells from the surface to the depth of deposition of the preliminary column. It enables performing wells in loose sands, gravel, clays clayey shales, marls, limestones, sandstones and other sedimentary rocks.A principle of selecting a drilling mud stream volume for various bit diameters and drilling rates in loose rocks are presented in the paper. A special attention has been paid to the drop of efficiency of cuttings removal with an increasing depth of the borehole.

  19. StreamCat

    Data.gov (United States)

    U.S. Environmental Protection Agency — The StreamCat Dataset provides summaries of natural and anthropogenic landscape features for ~2.65 million streams, and their associated catchments, within the...

  20. Stream Crossings

    Data.gov (United States)

    Vermont Center for Geographic Information — Physical measurements and attributes of stream crossing structures and adjacent stream reaches which are used to provide a relative rating of aquatic organism...

  1. Survival of Acetate in Biodegraded Stream Water DOM: New Insights Based on NMR Spectroscopy

    Science.gov (United States)

    Whitty, S.; Waggoner, D. C.; Bowen, J. C.; Cory, R. M.; Kaplan, L.; Hatcher, P.

    2017-12-01

    DOM is a complex chemical mixture of high- (HMW) and low-molecular-weight (LMW) organic molecules that serve as the primary energy sources for heterotrophic bacteria in freshwater environments. However, there are still large uncertainties on the composition of DOM that is labile and thus rapidly metabolized. The current thinking is that labile DOM is primarily composed of monosaccharides, amino acids, and other LMW organic acids such as formic, acetic, or propionic among others, although some humic substances also are biologically labile. To test the contribution of LMW organic acids to the labile fraction of DOM, freshwater samples were collected from five streams within the Rio Tempisquito watershed in Costa Rica and subjected to differing degrees of biodegradation using a series of plug-flow bioreactors with residence times ranging from 0.5-150 min. Varying the residence times of bioreactors allows for separation and identification of labile from less labile to more recalcitrant DOM. The stream water fed into the bioreactors had DOC concentrations that ranged from 0.7-1.2 ppm C and the GF/F-filtered stream water as well as the bioreactor effluents were analyzed directly without pre-treatment using proton nuclear magnetic resonance spectroscopy (1H NMR). Small molecules dominated the 1H NMR spectra with the greatest changes, as a function of bioreactor residence time, in the carbohydrate, terminal methyl, and long-chain methylene structures. In contrast, acetate remained relatively constant after 150 min of bioreactor residence time, thus raising the question of why this inherently labile volatile fatty acid was not consumed by stream microbes colonizing bioreactors that otherwise metabolized approximately 35% of the total dissolved organic carbon present in the stream water. We suggest that acetate may resist biodegradation because it is complexed strongly with inorganic cations.

  2. Effects of Concrete Channels on Stream Biogeochemistry, Maryland Coastal Plain

    Science.gov (United States)

    Prestegaard, K. L.; Gilbert, L.; Phemister, K.

    2005-05-01

    In the 1950's and 60's, extensive networks of cement-lined channels were built in suburban watersheds near Washington, D.C. to convey storm water to downstream locations. These cement-lined stream channels limit interactions between surface and groundwater and they provide sources of alkalinity in Maryland Coastal Plain watersheds that normally have low alkalinity. This project was designed to 1) compare base flow water chemistry in headwater reaches of urban and non-urban streams, and 2) to evaluate downstream changes in water chemistry in channelized urban streams in comparison with non-urban reference streams. During a drought year, headwater streams in both urban and non-urban sites had significant concentrations of Fe(II) that were discharged from groundwater sources and rapidly oxidized by iron-oxidizing bacteria. During a wet year, the concentrations of Fe(II) were higher in headwater urban streams than in the non-urban streams. This suggests that impervious surfaces in headwater urban watersheds prevent the recharge of oxygen-rich waters during storm events, which maintains iron-rich groundwater discharge to the stream. Downstream changes in water chemistry are prominent in cement-lined urban channels because they are associated with distinctive microbial communities. The headwater zones of channelized streams are dominated by iron-ozidizing bacteria, that are replaced downstream by manganese-oxidizing zones, and replaced further downstream by biofilms dominated by photosynthesizing cyanobacteria. The reaches dominated by cyanobacteria exhibit diurnal changes in pH due to uptake of CO2 for photosynthesis. Diurnal changes range from 7.5 to 8.8 in the summer months to 7.0 to 7.5 in the cooler months, indicating both the impact of photosynthesis and the additional source of alkalinity provided by concrete. The dissolved oxygen, pH, and other characteristics of tributaries dominated by cyanobacteria are similar to the water chemistry characteristics observed in

  3. Implementation and Analysis of Real-Time Streaming Protocols.

    Science.gov (United States)

    Santos-González, Iván; Rivero-García, Alexandra; Molina-Gil, Jezabel; Caballero-Gil, Pino

    2017-04-12

    Communication media have become the primary way of interaction thanks to the discovery and innovation of many new technologies. One of the most widely used communication systems today is video streaming, which is constantly evolving. Such communications are a good alternative to face-to-face meetings, and are therefore very useful for coping with many problems caused by distance. However, they suffer from different issues such as bandwidth limitation, network congestion, energy efficiency, cost, reliability and connectivity. Hence, the quality of service and the quality of experience are considered the two most important issues for this type of communication. This work presents a complete comparative study of two of the most used protocols of video streaming, Real Time Streaming Protocol (RTSP) and the Web Real-Time Communication (WebRTC). In addition, this paper proposes two new mobile applications that implement those protocols in Android whose objective is to know how they are influenced by the aspects that most affect the streaming quality of service, which are the connection establishment time and the stream reception time. The new video streaming applications are also compared with the most popular video streaming applications for Android, and the experimental results of the analysis show that the developed WebRTC implementation improves the performance of the most popular video streaming applications with respect to the stream packet delay.

  4. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  5. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats...... and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled...... along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored...

  6. New Stream-reach Development: A Comprehensive Assessment of Hydropower Energy Potential in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Shih-Chieh [ORNL; McManamay, Ryan A [ORNL; Stewart, Kevin M [ORNL; Samu, Nicole M [ORNL; Hadjerioua, Boualem [ORNL; DeNeale, Scott T [ORNL; Yeasmin, Dilruba [California State University, Fresno; Pasha, M. Fayzul K. [California State University, Fresno; Oubeidillah, Abdoul A [ORNL; Smith, Brennan T [ORNL

    2014-04-01

    The rapid development of multiple national geospatial datasets related to topography, hydrology, and environmental characteristics in the past decade have provided new opportunities for the refinement of hydropower resource potential from undeveloped stream-reaches. Through 2011 to 2013, the Oak Ridge National Laboratory (ORNL) was tasked by the Department of Energy (DOE) Water Power Program to evaluate the new stream-reach development (NSD) resource potential for more than 3 million US streams. A methodology was designed that contains three main components: (1) identification of stream-reaches with high energy density, (2) topographical analysis of stream-reaches to estimate inundated surface area and reservoir storage, and (3) environmental attribution to spatially join information related to the natural ecological systems, social and cultural settings, policies, management, and legal constraints to stream-reaches of energy potential. An initial report on methodology (Hadjerioua et al., 2013) was later reviewed and revised based on the comments gathered from two peer review workshops. After implementing the assessment across the entire United States, major findings were summarized in this final report. The estimated NSD capacity and generation, including both higher-energy-density (>1 MW per reach) and lower-energy-density (<1 MW per reach) stream-reaches is 84.7 GW, around the same size as the existing US conventional hydropower nameplate capacity (79.5 GW; NHAAP, 2013). In terms of energy, the total undeveloped NSD generation is estimated to be 460 TWh/year, around 169% of average 2002 2011 net annual generation from existing conventional hydropower plants (272 TWh/year; EIA, 2013). Given the run-of-river assumption, NSD stream-reaches have higher capacity factors (53 71%), especially compared with conventional larger-storage peaking-operation projects that usually have capacity factors of around 30%. The highest potential is identified in the Pacific Northwest

  7. Adjustment to subtle time constraints and power law learning in rapid serial visual presentation

    Directory of Open Access Journals (Sweden)

    Jacqueline Chakyung Shin

    2015-11-01

    Full Text Available We investigated whether attention could be modulated through the implicit learning of temporal information in a rapid serial visual presentation (RSVP task. Participants identified two target letters among numeral distractors. The stimulus-onset asynchrony immediately following the first target (SOA1 varied at three levels (70, 98, and 126 ms randomly between trials or fixed within blocks of trials. Practice over three consecutive days resulted in a continuous improvement in the identification rate for both targets and attenuation of the attentional blink (AB, a decrement in target (T2 identification when presented 200-400 ms after another target (T1. Blocked SOA1s led to a faster rate of improvement in RSVP performance and more target order reversals relative to random SOA1s, suggesting that the implicit learning of SOA1 positively affected performance. The results also reveal power law learning curves for individual target identification as well as the reduction in the AB decrement. These learning curves reflect the spontaneous emergence of skill through subtle attentional modulations rather than general attentional distribution. Together, the results indicate that implicit temporal learning could improve high level and rapid cognitive processing and highlights the sensitivity and adaptability of the attentional system to subtle constraints in stimulus timing.

  8. Biological Assessment of Streams Associated with the Northern Training Complex at Fort knox, Kentucky, August 2000

    National Research Council Canada - National Science Library

    Payne, Berry

    2001-01-01

    .... The benthic macroinvertebrate aspect of the U.S. Environmental Protection Agency's Rapid Bioassessment Protocol was applied in August 2000 to selected streams likely to be affected by proposed improvements of training facilities on Fort Knox...

  9. Continuous sampling from distributed streams

    DEFF Research Database (Denmark)

    Graham, Cormode; Muthukrishnan, S.; Yi, Ke

    2012-01-01

    A fundamental problem in data management is to draw and maintain a sample of a large data set, for approximate query answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly difficult when the data is shared across multiple distribu......A fundamental problem in data management is to draw and maintain a sample of a large data set, for approximate query answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly difficult when the data is shared across multiple...... distributed sites. The main challenge is to ensure that a sample is drawn uniformly across the union of the data while minimizing the communication needed to run the protocol on the evolving data. At the same time, it is also necessary to make the protocol lightweight, by keeping the space and time costs low...... for each participant. In this article, we present communication-efficient protocols for continuously maintaining a sample (both with and without replacement) from k distributed streams. These apply to the case when we want a sample from the full streams, and to the sliding window cases of only the W most...

  10. The chemical evolution of a travertine-depositing stream: Geochemical processes and mass transfer reactions

    Science.gov (United States)

    Lorah, Michelle M.; Herman, Janet S.

    1988-01-01

    This field study focuses on quantitatively defining the chemical changes occurring in Falling Spring Creek, a travertine-depositing stream located in Alleghany County, Virginia. The processes of CO2outgassing and calcite precipitation or dissolution control the chemical evolution of the stream. The observed chemical composition of the water was used with the computerized geochemical model WATEQF to calculate aqueous speciation, saturation indices, and CO2 partial pressure values. Mass balance calculations were performed to obtain mass transfers of CO2 and calcite. Reaction times, estimated from stream discharge, were used with the mass transfer results to calculate rates of CO2, outgassing and calcite precipitation between consecutive sampling points. The stream, which is fed by a carbonate spring, is supersaturated with respect to CO2 along the entire 5.2-km flow path. Outgassing of CO2 drives the solution to high degrees of supersaturation with respect to calcite. Metabolic uptake of CO2 by photosynthetic plants is insignificant, because the high supply rate of dissolved carbon dioxide and the extreme agitation of the stream at waterfalls and rapids causes a much greater amount of inorganic CO2 outgassing to occur. Calcite precipitation is kinetically inhibited until near the crest of a 20-m vertical waterfall. Calcite precipitation rates then reach a maximum at the waterfall where greater water turbulence allows the most rapid escape of CO2. Physical evidence for calcite precipitation exists in the travertine deposits which are first observed immediately above the waterfall and extend for at least 1.0 km below the falls. Net calcite precipitation occurs at all times of the year but is greatest during low-flow conditions in the summer and early fall.

  11. Pilot-Streaming: Design Considerations for a Stream Processing Framework for High-Performance Computing

    OpenAIRE

    Andre Luckow; Peter Kasson; Shantenu Jha

    2016-01-01

    This White Paper (submitted to STREAM 2016) identifies an approach to integrate streaming data with HPC resources. The paper outlines the design of Pilot-Streaming, which extends the concept of Pilot-abstraction to streaming real-time data.

  12. innovation in radioactive waste water-stream management

    International Nuclear Information System (INIS)

    Shaaban, D.A.E.F.

    2010-01-01

    treatment of radioactive waste dtreams is receiving considereble attention in most countries. the present work is for the radioactive wastewater stream management, by volume reduction by a mutual heating and humidificaction of a compressed dry air introduced through the wastewater. in the present work, a mathematical model describing the volume reduction by at the optimum operating condition is determined. a set of coupled first order differential equations, obtained through the mass and energy conservations laws, are used to obtain the humidity ratio, water diffused to the air stream, water temperature, and humid air stream temperature distributions through the bubbling column. these coupled differential equations are simulataneously solved numerically by the developed computer program using fourth order rung-kutta method. the results obtained, according to the present mathematical model, revealed that the air bubble state variables such as mass transfer coefficient (K G ) and interfacial area (a) have a strong effect on the process. therefore, the behavior of the air bubble state variables with coulmn height can be predicted and optimized. moreover, the design curves of the volumetric reduction of the wastewater streams are obtained and assessed at the different operating conditions. an experimental setup was constructed to verify the suggested model. comperhensive comparison between suggested model results, recent experimental measurements and the results of previous work was carried out

  13. [Allocation of attentional resource and monitoring processes under rapid serial visual presentation].

    Science.gov (United States)

    Nishiura, K

    1998-08-01

    With the use of rapid serial visual presentation (RSVP), the present study investigated the cause of target intrusion errors and functioning of monitoring processes. Eighteen students participated in Experiment 1, and 24 in Experiment 2. In Experiment 1, different target intrusion errors were found depending on different kinds of letters --romaji, hiragana, and kanji. In Experiment 2, stimulus set size and context information were manipulated in an attempt to explore the cause of post-target intrusion errors. Results showed that as stimulus set size increased, the post-target intrusion errors also increased, but contextual information did not affect the errors. Results concerning mean report probability indicated that increased allocation of attentional resource to response-defining dimension was the cause of the errors. In addition, results concerning confidence rating showed that monitoring of temporal and contextual information was extremely accurate, but it was not so for stimulus information. These results suggest that attentional resource is different from monitoring resource.

  14. CC_TRS: Continuous Clustering of Trajectory Stream Data Based on Micro Cluster Life

    Directory of Open Access Journals (Sweden)

    Musaab Riyadh

    2017-01-01

    Full Text Available The rapid spreading of positioning devices leads to the generation of massive spatiotemporal trajectories data. In some scenarios, spatiotemporal data are received in stream manner. Clustering of stream data is beneficial for different applications such as traffic management and weather forecasting. In this article, an algorithm for Continuous Clustering of Trajectory Stream Data Based on Micro Cluster Life is proposed. The algorithm consists of two phases. There is the online phase where temporal micro clusters are used to store summarized spatiotemporal information for each group of similar segments. The clustering task in online phase is based on temporal micro cluster lifetime instead of time window technique which divides stream data into time bins and clusters each bin separately. For offline phase, a density based clustering approach is used to generate macro clusters depending on temporal micro clusters. The evaluation of the proposed algorithm on real data sets shows the efficiency and the effectiveness of the proposed algorithm and proved it is efficient alternative to time window technique.

  15. Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R

    Directory of Open Access Journals (Sweden)

    Michael Hahsler

    2017-02-01

    Full Text Available In recent years, data streams have become an increasingly important area of research for the computer science, database and statistics communities. Data streams are ordered and potentially unbounded sequences of data points created by a typically non-stationary data generating process. Common data mining tasks associated with data streams include clustering, classification and frequent pattern mining. New algorithms for these types of data are proposed regularly and it is important to evaluate them thoroughly under standardized conditions. In this paper we introduce stream, a research tool that includes modeling and simulating data streams as well as an extensible framework for implementing, interfacing and experimenting with algorithms for various data stream mining tasks. The main advantage of stream is that it seamlessly integrates with the large existing infrastructure provided by R. In addition to data handling, plotting and easy scripting capabilities, R also provides many existing algorithms and enables users to interface code written in many programming languages popular among data mining researchers (e.g., C/C++, Java and Python. In this paper we describe the architecture of stream and focus on its use for data stream clustering research. stream was implemented with extensibility in mind and will be extended in the future to cover additional data stream mining tasks like classification and frequent pattern mining.

  16. A model for the origin of solar wind stream interfaces

    International Nuclear Information System (INIS)

    Hundhausen, A.J.; Burlaga, L.F.

    1975-01-01

    The basic variations in solar wind properties that have been observed at 'stream interfaces' near 1 AU are explained by a gas dynamic model in which a radially propagating stream, produced by a temperature variation in the solar envelope, steepens nonlinearly while moving through interplanetary space. The region thus identified with the stream interface separates the ambient solar wind from the fresh hot material originally in the stream. However, the interface regions given by the present model are thicker than most stream interfaces observed in the solar wind, a fact suggesting that some additional physical process may be important in determining that thickness. Variations in the density, speed, or Alfven pressure alone appear not to produce streams with such an interface

  17. Directional bias of illusory stream caused by relative motion adaptation.

    Science.gov (United States)

    Tomimatsu, Erika; Ito, Hiroyuki

    2016-07-01

    Enigma is an op-art painting that elicits an illusion of rotational streaming motion. In the present study, we tested whether adaptation to various motion configurations that included relative motion components could be reflected in the directional bias of the illusory stream. First, participants viewed the center of a rotating Enigma stimulus for adaptation. There was no physical motion on the ring area. During the adaptation period, the illusory stream on the ring was mainly seen in the direction opposite to that of the physical rotation. After the physical rotation stopped, the illusory stream on the ring was mainly seen in the same direction as that of the preceding physical rotation. Moreover, adapting to strong relative motion induced a strong bias in the illusory motion direction in the subsequently presented static Enigma stimulus. The results suggest that relative motion detectors corresponding to the ring area may produce the illusory stream of Enigma. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Stream Width Dynamics in a Small Headwater Catchment

    Science.gov (United States)

    Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.

  19. Principles for urban stormwater management to protect stream ecosystems

    Science.gov (United States)

    Walsh, Christopher J.; Booth, Derek B.; Burns, Matthew J.; Fletcher, Tim D.; Hale, Rebecca L.; Hoang, Lan N.; Livingston, Grant; Rippy, Megan A.; Roy, Allison; Scoggins, Mateo; Wallace, Angela

    2016-01-01

    Urban stormwater runoff is a critical source of degradation to stream ecosystems globally. Despite broad appreciation by stream ecologists of negative effects of stormwater runoff, stormwater management objectives still typically center on flood and pollution mitigation without an explicit focus on altered hydrology. Resulting management approaches are unlikely to protect the ecological structure and function of streams adequately. We present critical elements of stormwater management necessary for protecting stream ecosystems through 5 principles intended to be broadly applicable to all urban landscapes that drain to a receiving stream: 1) the ecosystems to be protected and a target ecological state should be explicitly identified; 2) the postdevelopment balance of evapotranspiration, stream flow, and infiltration should mimic the predevelopment balance, which typically requires keeping significant runoff volume from reaching the stream; 3) stormwater control measures (SCMs) should deliver flow regimes that mimic the predevelopment regime in quality and quantity; 4) SCMs should have capacity to store rain events for all storms that would not have produced widespread surface runoff in a predevelopment state, thereby avoiding increased frequency of disturbance to biota; and 5) SCMs should be applied to all impervious surfaces in the catchment of the target stream. These principles present a range of technical and social challenges. Existing infrastructural, institutional, or governance contexts often prevent application of the principles to the degree necessary to achieve effective protection or restoration, but significant potential exists for multiple co-benefits from SCM technologies (e.g., water supply and climate-change adaptation) that may remove barriers to implementation. Our set of ideal principles for stream protection is intended as a guide for innovators who seek to develop new approaches to stormwater management rather than accept seemingly

  20. Benthic invertebrate fauna, small streams

    Science.gov (United States)

    J. Bruce Wallace; S.L. Eggert

    2009-01-01

    Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...

  1. The kinematic footprints of five stellar streams in Andromeda's halo

    Science.gov (United States)

    Chapman, S. C.; Ibata, R.; Irwin, M.; Koch, A.; Letarte, B.; Martin, N.; Collins, M.; Lewis, G. F.; McConnachie, A.; Peñarrubia, J.; Rich, R. M.; Trethewey, D.; Ferguson, A.; Huxor, A.; Tanvir, N.

    2008-11-01

    We present a spectroscopic analysis of five stellar streams (`A', `B', `Cr', `Cp' and `D') as well as the extended star cluster, EC4, which lies within Stream`C', all discovered in the halo of M31 from our Canada-France-Hawaii Telescope/MegaCam survey. These spectroscopic results were initially serendipitous, making use of our existing observations from the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, and thereby emphasizing the ubiquity of tidal streams that account for ~70 per cent of the M31 halo stars in the targeted fields. Subsequent spectroscopy was then procured in Stream`C' and Stream`D' to trace the velocity gradient along the streams. Nine metal-rich ([Fe/H] ~ -0.7) stars at vhel = -349.5kms-1,σv,corr ~ 5.1 +/- 2.5km s-1 are proposed as a serendipitous detection of Stream`Cr', with follow-up kinematic identification at a further point along the stream. Seven metal-poor ([Fe/H] ~-1.3) stars confined to a narrow, 15 km s-1 velocity bin centred at vhel = -285.6, σv,corr = 4.3+1.7-1.4 km s-1 represent a kinematic detection of Stream`Cp', again with follow-up kinematic identification further along the stream. For the cluster EC4, candidate member stars with average [Fe/H] ~-1.4, are found at vhel = -282 suggesting it could be related to Stream`Cp'. No similarly obvious cold kinematic candidate is found for Stream`D', although candidates are proposed in both of two spectroscopic pointings along the stream (both at ~ -400km s-1). Spectroscopy near the edge of Stream`B' suggests a likely kinematic detection at vhel ~ -330, σv,corr ~ 6.9km s-1, while a candidate kinematic detection of Stream`A' is found (plausibly associated to M33 rather than M31) with vhel ~ -170, σv,corr = 12.5km s-1. The low dispersion of the streams in kinematics, physical thickness and metallicity makes it hard to reconcile with a scenario whereby these stream structures as an ensemble are related to the giant southern stream. We conclude that the M31 stellar

  2. Inventory of miscellaneous streams

    International Nuclear Information System (INIS)

    Lueck, K.J.

    1995-09-01

    On December 23, 1991, the US Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order. The Consent Order lists the regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code. The RL provided the US Congress a Plan and Schedule to discontinue disposal of contaminated liquid effluent into the soil column on the Hanford Site. The plan and schedule document contained a strategy for the implementation of alternative treatment and disposal systems. This strategy included prioritizing the streams into two phases. The Phase 1 streams were considered to be higher priority than the Phase 2 streams. The actions recommended for the Phase 1 and 2 streams in the two reports were incorporated in the Hanford Federal Facility Agreement and Consent Order. Miscellaneous Streams are those liquid effluents streams identified within the Consent Order that are discharged to the ground but are not categorized as Phase 1 or Phase 2 Streams. This document consists of an inventory of the liquid effluent streams being discharged into the Hanford soil column

  3. Time-Based Data Streams: Fundamental Concepts for a Data Resource for Streams

    Energy Technology Data Exchange (ETDEWEB)

    Beth A. Plale

    2009-10-10

    Real time data, which we call data streams, are readings from instruments, environmental, bodily or building sensors that are generated at regular intervals and often, due to their volume, need to be processed in real time. Often a single pass is all that can be made on the data, and a decision to discard or keep the instance is made on the spot. Too, the stream is for all practical purposes indefinite, so decisions must be made on incomplete knowledge. This notion of data streams has a different set of issues from a file, for instance, that is byte streamed to a reader. The file is finite, so the byte stream is becomes a processing convenience more than a fundamentally different kind of data. Through the duration of the project we examined three aspects of streaming data: the first, techniques to handle streaming data in a distributed system organized as a collection of web services, the second, the notion of the dashboard and real time controllable analysis constructs in the context of the Fermi Tevatron Beam Position Monitor, and third and finally, we examined provenance collection of stream processing such as might occur as raw observational data flows from the source and undergoes correction, cleaning, and quality control. The impact of this work is severalfold. We were one of the first to advocate that streams had little value unless aggregated, and that notion is now gaining general acceptance. We were one of the first groups to grapple with the notion of provenance of stream data also.

  4. Switch of flow direction in an Antarctic ice stream.

    Science.gov (United States)

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  5. Use of the PISCES Database: power plant aqueous stream compositions

    International Nuclear Information System (INIS)

    Behrens, G.P.; Orr, D.A.; Wetherold, R.G.; O'Neil, B.T.

    1996-01-01

    The Power Plant Integrated Systems: Chemical Emissions Studies (PISCES) Database sponsored by the Electric Power Research Institute is a powerful tool for evaluating and comparing the level of trace substances in power plant process streams. In this paper, data are presented on the level of several selected trace metals found in a few of the aqueous streams present in power plants. A brief discussion of other features of the Database is presented. The majority of the data is for coal fired power plants, with only 5% pertaining to oil and gas. Sources of pollution include: ash streams; cooling water; coal pile runoff; FGD liquids; makeup water; and wastewater. 11 refs., 10 figs., 1 tab

  6. Long-term patterns and short-term dynamics of stream solutes and suspended sediment in a rapidly weathering tropical watershed

    Science.gov (United States)

    Shanley, James B.; McDowell, William H.; Stallard, Robert F.

    2011-07-01

    The 326 ha Río Icacos watershed in the tropical wet forest of the Luquillo Mountains, northeastern Puerto Rico, is underlain by granodiorite bedrock with weathering rates among the highest in the world. We pooled stream chemistry and total suspended sediment (TSS) data sets from three discrete periods: 1983-1987, 1991-1997, and 2000-2008. During this period three major hurricanes crossed the site: Hugo in 1989, Hortense in 1996, and Georges in 1998. Stream chemistry reflects sea salt inputs (Na, Cl, and SO4), and high weathering rates of the granodiorite (Ca, Mg, Si, and alkalinity). During rainfall, stream composition shifts toward that of precipitation, diluting 90% or more in the largest storms, but maintains a biogeochemical watershed signal marked by elevated K and dissolved organic carbon (DOC) concentration. DOC exhibits an unusual "boomerang" pattern, initially increasing with flow but then decreasing at the highest flows as it becomes depleted and/or vigorous overland flow minimizes contact with watershed surfaces. TSS increased markedly with discharge (power function slope 1.54), reflecting the erosive power of large storms in a landslide-prone landscape. The relations of TSS and most solute concentrations with stream discharge were stable through time, suggesting minimal long-term effects from repeated hurricane disturbance. Nitrate concentration, however, increased about threefold in response to hurricanes then returned to baseline over several years following a pseudo first-order decay pattern. The combined data sets provide insight about important hydrologic pathways, a long-term perspective to assess response to hurricanes, and a framework to evaluate future climate change in tropical ecosystems.

  7. SlipStream: automated provisioning and continuous deployment in the cloud

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Cloud technology is now everywhere. Beyond the hype, it provides a real opportunity to improve the engineering of software systems. Lately the DevOps movement has also gain momentum, which take an agile approach at bringing developers and system administrators closer together to better engineer software systems. In this context, this presentation focuses on new tools for exploiting cloud services (private and public) in order to create a continuous flow between software commits and fully deployed and configured software systems, automatically and on-demand. To illustrate this, we present SlipStream and StratusLab. SlipStream is a new product developed by SixSq, able to create virtual machines and orchestrate multi-machine deployments.  SlipStream started from an idea developed in the context of the ETICS project, led by CERN. StratusLab is an open-source IaaS distribution, able to create public and private clouds. This presentation will also describe a case study where SlipStream dep...

  8. Development of a rapid approach for the enumeration of Escherichia coli in riverbed sediment: case study, the Apies River, South Africa

    CSIR Research Space (South Africa)

    Abia

    2015-12-01

    Full Text Available stream_source_info Abia_2015_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 3292 Content-Encoding UTF-8 stream_name Abia_2015_ABSTRACT.pdf.txt Content-Type text/plain; charset=UTF-8 Journal of Soils... and Sediments Development of a rapid approach for the enumeration of Escherichia coli in riverbed sediment: case study, the Apies River, South Africa L. K. A. Abia: M. N. B. Momba Department of Environmental, Water and Earth Science, Tshwane University...

  9. Corotating pressure waves without streams in the solar wind

    International Nuclear Information System (INIS)

    Burlaga, L.F.

    1983-01-01

    Voyager 1 and 2 magnetic field and plasma data are presented which demonstrate the existence of large scale, corotating, non-linear pressure waves between 2 AU and 4 AU that are not accompanied by fast streams. The pressure waves are presumed to be generated by corotating streams near the Sun. For two of the three pressure waves that are discussed, the absence of a stream is probably a real, physical effect, viz., a consequence of deceleration of the stream by the associated compression wave. For the third pressure wave, the apparent absence of a stream may be a geometrical effect it is likely that the stream was at latitudes just above those of the spacecraft, while the associated shocks and compression wave extended over a broader range of latitudes so that they could be observed by the spacecraft. It is suggested that the development of large-scale non-linear pressure waves at the expense of the kinetic energy of streams produces a qualitative change in the solar wind in the outer heliosphere. Within a few AU the quasi-stationary solar wind structure is determined by corotating streams whose structure is determined by the boundary conditions near the Sun

  10. Hierarchical spatial structure of stream fish colonization and extinction

    Science.gov (United States)

    Hitt, N.P.; Roberts, J.H.

    2012-01-01

    Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182-194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life-history traits such as spawning mound construction, associations with mound-building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound-building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound-building fishes serve as keystone species for colonization of headwater streams.

  11. Structural Responses of a Stream Community to a Channel Relocation Using a Natural Channel Design Approach

    Science.gov (United States)

    Jack, J.; Word, D.; Daniel, W.; Pritchard, S.; Parola, A.; Vesely, B.

    2005-05-01

    Streams have been heavily impacted by historical and contemporary management practices. Restorations are seen as a way to enhance stream ecosystem integrity, but there are few restoration sites where pre- and post-restoration data are available to assess "success." In 2003, a channelized reach of Wilson Creek (Kentucky, USA) was relocated using a natural channel design approach. We compared the structural and functional responses of the stream pre- and post restoration/relocation at sites within Wilson and two reference streams. Despite the construction disturbance, water chemistry parameters such as nitrate and turbidity were nearly identical at sampling stations above and below the relocation for 2003-2004. Macroinvertebrate colonization of the relocation sites was rapid, with communities dominated by Cheumatopsyche, Perlesta and Baetis. Assessments of CPOM transport indicated that the new stream channel is more retentive of leaf and woody debris material than the pre-restoration Wilson sites or unrestored reference stream sites. The restoration of suitable habitat and the presence of "source populations" for colonization may compensate for even large-scale (but short-term) construction disturbance. More research is needed to assess the balance between the disturbance impacts of restoration installation and the long term benefits of stream ecological improvement.

  12. Stream Processing Using Grammars and Regular Expressions

    DEFF Research Database (Denmark)

    Rasmussen, Ulrik Terp

    disambiguation. The first algorithm operates in two passes in a semi-streaming fashion, using a constant amount of working memory and an auxiliary tape storage which is written in the first pass and consumed by the second. The second algorithm is a single-pass and optimally streaming algorithm which outputs...... as much of the parse tree as is semantically possible based on the input prefix read so far, and resorts to buffering as many symbols as is required to resolve the next choice. Optimality is obtained by performing a PSPACE-complete pre-analysis on the regular expression. In the second part we present...... Kleenex, a language for expressing high-performance streaming string processing programs as regular grammars with embedded semantic actions, and its compilation to streaming string transducers with worst-case linear-time performance. Its underlying theory is based on transducer decomposition into oracle...

  13. Academic Self-Concepts in Ability Streams: Considering Domain Specificity and Same-Stream Peers

    Science.gov (United States)

    Liem, Gregory Arief D.; McInerney, Dennis M.; Yeung, Alexander S.

    2015-01-01

    The study examined the relations between academic achievement and self-concepts in a sample of 1,067 seventh-grade students from 3 core ability streams in Singapore secondary education. Although between-stream differences in achievement were large, between-stream differences in academic self-concepts were negligible. Within each stream, levels of…

  14. Stream ciphers and number theory

    CERN Document Server

    Cusick, Thomas W; Renvall, Ari R

    2004-01-01

    This is the unique book on cross-fertilisations between stream ciphers and number theory. It systematically and comprehensively covers known connections between the two areas that are available only in research papers. Some parts of this book consist of new research results that are not available elsewhere. In addition to exercises, over thirty research problems are presented in this book. In this revised edition almost every chapter was updated, and some chapters were completely rewritten. It is useful as a textbook for a graduate course on the subject, as well as a reference book for researchers in related fields. · Unique book on interactions of stream ciphers and number theory. · Research monograph with many results not available elsewhere. · A revised edition with the most recent advances in this subject. · Over thirty research problems for stimulating interactions between the two areas. · Written by leading researchers in stream ciphers and number theory.

  15. Stream systems.

    Science.gov (United States)

    Jack E. Williams; Gordon H. Reeves

    2006-01-01

    Restored, high-quality streams provide innumerable benefits to society. In the Pacific Northwest, high-quality stream habitat often is associated with an abundance of salmonid fishes such as chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss). Many other native...

  16. Streaming-based verification of XML signatures in SOAP messages

    DEFF Research Database (Denmark)

    Somorovsky, Juraj; Jensen, Meiko; Schwenk, Jörg

    2010-01-01

    approach for XML processing, the Web Services servers easily become a target of Denial-of-Service attacks. We present a solution for these problems: an external streaming-based WS-Security Gateway. Our implementation is capable of processing XML Signatures in SOAP messages using a streaming-based approach...

  17. Acoustofluidics 13: Analysis of acoustic streaming by perturbation methods.

    Science.gov (United States)

    Sadhal, S S

    2012-07-07

    In this Part 13 of the tutorial series "Acoustofluidics--exploiting ultrasonic standing waves forces and acoustic streaming in microfluidic systems for cell and particle manipulation," the streaming phenomenon is presented from an analytical standpoint, and perturbation methods are developed for analyzing such flows. Acoustic streaming is the phenomenon that takes place when a steady flow field is generated by the absorption of an oscillatory field. This can happen either by attenuation (quartz wind) or by interaction with a boundary. The latter type of streaming can also be generated by an oscillating solid in an otherwise still fluid medium or vibrating enclosure of a fluid body. While we address the first kind of streaming, our focus is largely on the second kind from a practical standpoint for application to microfluidic systems. In this Focus article, we limit the analysis to one- and two-dimensional problems in order to understand the analytical techniques with examples that most-easily illustrate the streaming phenomenon.

  18. Mining Frequent Item Sets in Asynchronous Transactional Data Streams over Time Sensitive Sliding Windows Model

    International Nuclear Information System (INIS)

    Javaid, Q.; Memon, F.; Talpur, S.; Arif, M.; Awan, M.D.

    2016-01-01

    EPs (Extracting Frequent Patterns) from the continuous transactional data streams is a challenging and critical task in some of the applications, such as web mining, data analysis and retail market, prediction and network monitoring, or analysis of stock market exchange data. Many algorithms have been developed previously for mining FPs (Frequent Patterns) from a data stream. Such algorithms are currently highly required to develop new solutions and approaches to the precise handling of data streams. New techniques, solutions, or approaches are developed to address unbounded, ordered, and continuous sequences of data and for the generation of data at a rapid speed from data streams. Hence, extracting FPs using fresh or recent data involves the high-level analysis of data streams. We have suggested an efficient technique for the window sliding model; this technique extracts new and fresh FPs from high-speed data streams. In this study, a CPILT (Compacted Tree Compact Pattern Tree) is developed to capture the latest contents in the stream and to efficiently remove outdated contents from the data stream. The main concept introduced in this work on CPILT is the dynamic restructuring of a tree, which is helpful in producing a compacted tree and the frequency descending structure of a tree on runtime. With the help of the mining technique of FP growth, a complete list of new and fresh FPs is obtained from a CPILT using an existing window. The memory usage and time complexity of the latest FPs in high-speed data streams can efficiently be determined through proper experimentation and analysis. (author)

  19. Electrical streaming potential precursors to catastrophic earthquakes in China

    OpenAIRE

    Zhao, Y.; Zhao, B.; Qian, F.

    1997-01-01

    The majority of anomalies in self-potential at 7 stations within 160 km from the epicentre showed a similar pattern of rapid onset and slow decay during and before the M 7.8 Tangshan earthquake of 1976. Considering that some of these anomalies associated with episodical spouting from boreholes or the increase in pore pressure in wells, observed anomalies are streaming potential generated by local events of sudden movements and diffusion process of high-pressure fluid in parallel faults. These...

  20. VALUE STREAM COST ANALYSIS IN THE ROMANIAN FOOTWEAR INDUSTRY

    OpenAIRE

    Dimi OFILEANU

    2015-01-01

    Once the Lean philosophy is developed and implemented to all levels in a company, a new accounting system appears: Lean accounting. Value Stream Cost Analysis is the main and the most powerful instrument of Lean accounting. Because of the fact that VSCA allows us to identify the company’s performance at the proper time, we can rapidly intervene to make the adjustments needed. The Romanian footwear industry is competitive worldwide (14th place in the top of exporters), but in order to improve,...

  1. Solution and scope of utilization of the cross-stream cooling towers

    International Nuclear Information System (INIS)

    Zembaty, W.

    1995-01-01

    Technical solutions and operational properties of the cross-stream cooling towers as well as the scope of their utilization are presented. The differences within thermodynamic calculations of the cross-stream and counter-stream cooling towers due to the direction of the air flow as well as water flow in sprinkling system are discussed. The assessment of the capital and operational costs of the cross-stream cooling towers is given and compared with the cost of counter-stream cooling towers (utilizing as an example a calculation conducted for the cooling towers of the 720, 1100 and 1400 MW units). (author). 6 refs, 9 figs

  2. Effects of rapid urbanization on streamflow, erosion, and sedimentation in a desert stream in the American Southwest

    Science.gov (United States)

    Whitney, John W.; Glancy, Patrick A.; Buckingham , Susan E.; Ehrenberg, Arthur C.

    2015-01-01

    Rapid urbanization has resulted in a series of sequential effects on a desert stream in the American Southwest. Lower Las Vegas Wash was a dry wash characterized by infrequent flood deposition when Las Vegas, Nevada was established in 1905. Wastewater effluent was discharged into the wash in low volumes for over 3 decades. Wastewater volumes increased commensurably with accelerated population growth during the late 20th century and created a sequence of feedback effects on the floodplain. Initially slow saturation of the valley fill created a desert oasis of dense floodplain vegetation and wetlands. Annual streamflow began in 1958 and erosion began a decade later with shallow incision in discontinuous channel segments. Increasing baseflow gradually enlarged channels; headcutting was active during the 1970s to 1984. The incised channels concentrated storm runoff, which accelerated local channel erosion, and in 1984 the headcuts were integrated during a series of monsoon floods. Wetlands were drained and most floodplain vegetation destroyed. Channel erosion continued unabated until engineering interventions began in the 21st century. No natural channel recovery occurred after initial urbanization effects because streamflow never stabilized in the late 20th century. A 6.6 M m3 sediment slug, eroded from the wash in ∼25 years, was deposited in Las Vegas Bay in Lake Mead. Falling reservoir levels during the 21st century are responsible for sediment redistribution and infilling of the bay. Close monitoring of impacts is recommended when urban wastewater and storm runoff are discharged on a desert wash. Channel interventions, when necessary, are advised in order to prevent costly engineering schemes of channel stabilization, flood control, and floodplain restoration.

  3. Innovation in radioactive wastewater-stream management: Part one

    International Nuclear Information System (INIS)

    Karameldin, A.

    2005-01-01

    Treatment of radioactive wastewater streams is receiving considerable attention in most countries that have nuclear reactors. The first Egyptian research reactor ETRR-1 has been operating for 40 years, resulting in accumulation of large quantities of wastewater collected in special drainage tanks called SDTs. Previous attempts were aimed at the volumetric reduction of streams present in SDTs, by reverse osmosis systems, which previously succeeded in reducing the water volume present in SDTs from 450 m 3 to 50 m 3 (during the period 1998-2000). The main drawbacks of the RO system are the additional amount of secondary wastes (turbidity and emulsion filters media replacement, and the excessive amounts of chemicals for the membrane cleaning, flushing and storing), and a limited contaminant release in the SDTs area, resulting in the decommissioning of the RO system. Meanwhile, the SDTs waste contents recently reached 500 m 3 . Recently, the invention of a system for volume reduction of the wastewater streams present in SDTs has been achieved. This system substantially utilises the air conditioning and ventilation techniques in water transfer from the wastewater to air. This process is promoted by a mutual heating and humidification of a compressed dry air introduced through SDTs. From the probable release of radioactive nuclides point of view, the analysis of the evaporation of waste streams present in SDTs has indicated that the proposed optimal evaporating temperature is around 75 deg. C. The design curve of the daily volumetric reduction of the wastewater streams vs. the necessary volumetric airflow rates at different operating temperatures has been achieved. Recently, an experimental facility is being constructed to obtain the optimal operating parameters of the system, regarding the probable emissions of the radioactive nuclides within the permissible release limits. (author)

  4. PROXY-BASED PATCHING STREAM TRANSMISSION STRATEGY IN MOBILE STREAMING MEDIA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Liao Jianxin; Lei Zhengxiong; Ma Xutao; Zhu Xiaomin

    2006-01-01

    A mobile transmission strategy, PMPatching (Proxy-based Mobile Patching) transmission strategy is proposed, it applies to the proxy-based mobile streaming media system in Wideband Code Division Multiple Access (WCDMA) network. Performance of the whole system can be improved by using patching stream to transmit anterior part of the suffix that had been played back, and by batching all the demands for the suffix arrived in prefix period and patching stream transmission threshold period. Experimental results show that this strategy can efficiently reduce average network transmission cost and number of channels consumed in central streaming media server.

  5. Spectral measurements of gamma radiation streaming through ducts

    International Nuclear Information System (INIS)

    Meenakshisundaram, P.K.; Bhatnagar, V.M.; Raghunath, V.M.; Gopinath, D.V.

    1979-01-01

    The paper presents the spectral measurements of gamma radiation streaming through multi-legged rectangular concrete ducts for cesium-137 and cobald-60 sources. Effect of lead lining the inner surface of the duct on the streaming radiation spectrum and optimization of liner thickness for minimum streaming radiation dose have been studied. For three-legged ducts, a comparative analysis of lead lining the entire duct as against lining any one or both the corners of the duct is reported. It is seen that lead lining any one of the corners would reduce the streaming radiation dose by a factor of 5 to 12. Lining both the corners which is nearly as effective as lining the entire duct reduces the dose by a factor of 16 to 60 depending on the soruce energy and duct dimensions. (orig.)

  6. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    Science.gov (United States)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  7. Real-Time Joint Streaming Data Processing from Social and Physical Sensors

    Science.gov (United States)

    Kropivnitskaya, Y. Y.; Qin, J.; Tiampo, K. F.; Bauer, M.

    2014-12-01

    The results of the technological breakthroughs in computing that have taken place over the last few decades makes it possible to achieve emergency management objectives that focus on saving human lives and decreasing economic effects. In particular, the integration of a wide variety of information sources, including observations from spatially-referenced physical sensors and new social media sources, enables better real-time seismic hazard analysis through distributed computing networks. The main goal of this work is to utilize innovative computational algorithms for better real-time seismic risk analysis by integrating different data sources and processing tools into streaming and cloud computing applications. The Geological Survey of Canada operates the Canadian National Seismograph Network (CNSN) with over 100 high-gain instruments and 60 low-gain or strong motion seismographs. The processing of the continuous data streams from each station of the CNSN provides the opportunity to detect possible earthquakes in near real-time. The information from physical sources is combined to calculate a location and magnitude for an earthquake. The automatically calculated results are not always sufficiently precise and prompt that can significantly reduce the response time to a felt or damaging earthquake. Social sensors, here represented as Twitter users, can provide information earlier to the general public and more rapidly to the emergency planning and disaster relief agencies. We introduce joint streaming data processing from social and physical sensors in real-time based on the idea that social media observations serve as proxies for physical sensors. By using the streams of data in the form of Twitter messages, each of which has an associated time and location, we can extract information related to a target event and perform enhanced analysis by combining it with physical sensor data. Results of this work suggest that the use of data from social media, in conjunction

  8. Evaluation of the streaming-matrix method for discrete-ordinates duct-streaming calculations

    International Nuclear Information System (INIS)

    Clark, B.A.; Urban, W.T.; Dudziak, D.J.

    1983-01-01

    A new deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) is applied to two realistic duct-shielding problems. The results are compared to standard discrete-ordinates and Monte Carlo calculations. The SMHM shows promise as an alternative deterministic streaming method to standard discrete-ordinates

  9. Membrane potential dynamics of populations of cortical neurons during auditory streaming

    Science.gov (United States)

    Farley, Brandon J.

    2015-01-01

    How a mixture of acoustic sources is perceptually organized into discrete auditory objects remains unclear. One current hypothesis postulates that perceptual segregation of different sources is related to the spatiotemporal separation of cortical responses induced by each acoustic source or stream. In the present study, the dynamics of subthreshold membrane potential activity were measured across the entire tonotopic axis of the rodent primary auditory cortex during the auditory streaming paradigm using voltage-sensitive dye imaging. Consistent with the proposed hypothesis, we observed enhanced spatiotemporal segregation of cortical responses to alternating tone sequences as their frequency separation or presentation rate was increased, both manipulations known to promote stream segregation. However, across most streaming paradigm conditions tested, a substantial cortical region maintaining a response to both tones coexisted with more peripheral cortical regions responding more selectively to one of them. We propose that these coexisting subthreshold representation types could provide neural substrates to support the flexible switching between the integrated and segregated streaming percepts. PMID:26269558

  10. Consequences of variation in stream-landscape connections for stream nitrate retention and export

    Science.gov (United States)

    Handler, A. M.; Helton, A. M.; Grimm, N. B.

    2017-12-01

    Hydrologic and material connections among streams, the surrounding terrestrial landscape, and groundwater systems fluctuate between extremes in dryland watersheds, yet the consequences of this variation for stream nutrient retention and export remain uncertain. We explored how seasonal variation in hydrologic connection among streams, landscapes, and groundwater affect nitrate and ammonium concentrations across a dryland stream network and how this variation mediates in-stream nitrate uptake and watershed export. We conducted spatial surveys of stream nitrate and ammonium concentration across the 1200 km2 Oak Creek watershed in central Arizona (USA). In addition, we conducted pulse releases of a solution containing biologically reactive sodium nitrate, with sodium chloride as a conservative hydrologic tracer, to estimate nitrate uptake rates in the mainstem (Q>1000 L/s) and two tributaries. Nitrate and ammonium concentrations generally increased from headwaters to mouth in the mainstem. Locally elevated concentrations occurred in spring-fed tributaries draining fish hatcheries and larger irrigation ditches, but did not have a substantial effect on the mainstem nitrogen load. Ambient nitrate concentration (as N) ranged from below the analytical detection limit of 0.005 mg/L to 0.43 mg/L across all uptake experiments. Uptake length—average stream distance traveled for a nutrient atom from the point of release to its uptake—at ambient concentration ranged from 250 to 704 m and increased significantly with higher discharge, both across streams and within the same stream on different experiment dates. Vertical uptake velocity and aerial uptake rate ranged from 6.6-10.6 mm min-1 and 0.03 to 1.4 mg N m-2 min-1, respectively. Preliminary analyses indicate potentially elevated nitrogen loading to the lower portion of the watershed during seasonal precipitation events, but overall, the capacity for nitrate uptake is high in the mainstem and tributaries. Ongoing work

  11. Disinfectant properties of acid mine drainage: its effects on enteric bacteria in a sewage-contaminated stream

    Energy Technology Data Exchange (ETDEWEB)

    Keating, S.T.; Celements, C.M.; Ostrowski, D.; Hanlon, T. [St. Francis College, Loretto, PA (United States). Dept. of Biology

    1996-09-01

    Studies conducted in a Cambria County, Pennsylvania, acid mine drainage stream suggest that mine drainage rapidly reduces in situ populations of fecal bacteria associated with inputs of untreated sewage. The density of lactose-fermenting bacteria, mostly coliform species from sewage, declined 1000-fold over a distance of less than 100 m following the input of high acid (pH 3.5 to 4.0), high ferrous iron (45 mg/l) acid mine drainage. Enterobacteriaceae were isolated from the stream, identified, and tested for tolerance to acid mine drainage by exposing cells to drainage for 10 minutes at 0 or 37{degree}C. Populations of all tested isolates were reduced by this treatment, but some isolates were significantly less affected than others. Thus, while mine drainage may act as a disinfectant, it may not reduce all populations of disease-causing intestinal bacteria at an equal, rapid rate.

  12. Advanced real-time manipulation of video streams

    CERN Document Server

    Herling, Jan

    2014-01-01

    Diminished Reality is a new fascinating technology that removes real-world content from live video streams. This sensational live video manipulation actually removes real objects and generates a coherent video stream in real-time. Viewers cannot detect modified content. Existing approaches are restricted to moving objects and static or almost static cameras and do not allow real-time manipulation of video content. Jan Herling presents a new and innovative approach for real-time object removal with arbitrary camera movements.

  13. Hydraulic Aspects of Vegetation Maintanence in Streams

    DEFF Research Database (Denmark)

    Larsen, Torben; Vestergaard, Kristian

    1991-01-01

    This paper describes the importance of the underwater vegetation on Danish streams and some of the consequences of vegetation maintenance. the influence of the weed on the hydraulic conditions is studied through experiments in a smaller stream and the effect of cutting channels through the weed...... is measured. A method for predicting the Manning's n as a function of the discharge conditions is suggested, and also a working hypothesis for predictions of the effect of channel cutting is presented....

  14. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  15. Delivering Instruction via Streaming Media: A Higher Education Perspective.

    Science.gov (United States)

    Mortensen, Mark; Schlieve, Paul; Young, Jon

    2000-01-01

    Describes streaming media, an audio/video presentation that is delivered across a network so that it is viewed while being downloaded onto the user's computer, including a continuous stream of video that can be pre-recorded or live. Discusses its use for nontraditional students in higher education and reports on implementation experiences. (LRW)

  16. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    International Nuclear Information System (INIS)

    De Bruin, D.

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab

  17. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    Energy Technology Data Exchange (ETDEWEB)

    De Bruin, D

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab.

  18. Hydrodynamical simulations of the stream-core interaction in the slow merger of massive stars

    Science.gov (United States)

    Ivanova, N.; Podsiadlowski, Ph.; Spruit, H.

    2002-08-01

    We present detailed simulations of the interaction of a stream emanating from a mass-losing secondary with the core of a massive supergiant in the slow merger of two stars inside a common envelope. The dynamics of the stream can be divided into a ballistic phase, starting at the L1 point, and a hydrodynamical phase, where the stream interacts strongly with the core. Considering the merger of a 1- and 5-Msolar star with a 20-Msolar evolved supergiant, we present two-dimensional hydrodynamical simulations using the PROMETHEUS code to demonstrate how the penetration depth and post-impact conditions depend on the initial properties of the stream material (e.g. entropy, angular momentum, stream width) and the properties of the core (e.g. density structure and rotation rate). Using these results, we present a fitting formula for the entropy generated in the stream-core interaction and a recipe for the determination of the penetration depth based on a modified Bernoulli integral.

  19. InSTREAM: the individual-based stream trout research and environmental assessment model

    Science.gov (United States)

    Steven F. Railsback; Bret C. Harvey; Stephen K. Jackson; Roland H. Lamberson

    2009-01-01

    This report documents Version 4.2 of InSTREAM, including its formulation, software, and application to research and management problems. InSTREAM is a simulation model designed to understand how stream and river salmonid populations respond to habitat alteration, including altered flow, temperature, and turbidity regimes and changes in channel morphology. The model...

  20. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinver...

  1. Destabilization of the Northeast Greenland Ice Stream

    DEFF Research Database (Denmark)

    Korsgaard, N. J.; Khan, Shfaqat Abbas; Kjaer, K. H.

    . Here, we reveal that the Northeast Greenland Ice Stream (NEGIS), which extends more than 600 km into the interior of the ice sheet, is now undergoing dynamic thinning after more than a quarter of a century of stability. This sector of the GrIS is of particular interest in sea level projections, because...... the glacier flows into a large submarine basin with a negative bed slope near the grounding line. Our findings unfold the next step in mass loss of the GrIS as we show a heightened risk of rapid sustained loss from Northeast Greenland on top of the thinning in Southeast and Northwestern Greenland....

  2. Protein tethering enables rapid and label-free SERS platform for screening drugs of abuse (Conference Presentation)

    Science.gov (United States)

    Siddhanta, Soumik; Wróbel, Maciej S.; Barman, Ishan

    2017-02-01

    A quick, cost-effective method for detection of drugs of abuse in biological fluids would be of great value in healthcare, law enforcement, and home testing applications. The alarming rise in narcotics abuse has led to considerable focus on developing potent and versatile analytical tools that can address this societal problem. While laboratory testing plays a key role in the current detection of drug misuse and the evaluation of patients with drug induced intoxication, these typically require expensive reagents and trained personnel, and may take hours to complete. Thus, a significant unmet need is to engineer a facile method that can rapidly detect drugs with little sample preparation, especially the bound fraction that is typically dominant in the blood stream. Here we report an approach that combines the exquisite sensitivity of surface enhanced Raman spectroscopy (SERS) and a facile protein tethering mechanism to reliably detect four different classes of drugs, barbiturate, benzodiazepine, amphetamine and benzoylecgonine. The proposed approach harnesses the reliable and specific attachment of proteins to both drugs and nanoparticle to facilitate the enhancement of spectral markers that are sensitive to the presence of the drugs. In conjunction with chemometric tools, we have shown the ability to quantify these drugs lower than levels achievable by existing clinical immunoassays. Through molecular docking simulations, we also probe the mechanistic underpinnings of the protein tethering approach, opening the door to detection of a broad class of narcotics in biological fluids within a few minutes as well as for groundwater analysis and toxin detection.

  3. Case study and presentation of the DOE treatability group concept for low-level and mixed waste streams

    International Nuclear Information System (INIS)

    Kirkpatrick, T.D.; Heath, B.A.; Davis, K.D.

    1994-01-01

    The Federal Facility Compliance Act of 1992 requires the US Department of Energy (DOE) to prepare an inventory report of its mixed waste and treatment capacities and technologies. Grouping waste streams according to technological requirements is the logical means of matching waste streams to treatment technologies, and streamlines the effort of identifying technology development needs. To provide consistency, DOE has developed a standard methodology for categorizing waste into treatability groups based on three characteristic parameters: radiological, bulk physical/chemical form, and regulated contaminant. Based on category and component definitions in the methodology, descriptive codes or strings of codes are assigned under each parameter, resulting in a waste characterization amenable to a computerized format for query and sort functions. By using only the applicable parameters, this methodology can be applied to all waste types generated within the DOE complex: radioactive, hazardous, mixed, and sanitary/municipal. Implementation of this methodology will assist the individual sites and DOE Headquarters in analyzing waste management technology and facility needs

  4. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    Science.gov (United States)

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  5. Engineering hyporheic zones to target nitrification versus denitrification: performance data from constructed stream flumes

    Science.gov (United States)

    Herzog, S.; Portmann, A. C.; Halpin, B. N.; Higgins, C.; McCray, J. E.

    2017-12-01

    Nonpoint source nitrogen pollution from agricultural and urban runoff is one of the leading causes of impairment to US rivers and streams. The hyporheic zone (HZ) offers a natural biogeochemical hotspot for the attenuation of nitrogen within streams, thereby complementing efforts to prevent aquatic nitrogen pollution in the first place. However, HZ in urban and agricultural streams are often degraded by scouring and colmation, which limit their potential to improve stream water quality at the reach scale. A recent effort to mitigate nitrogen pollution in the Chesapeake Bay region provides denitrification credits for hyporheic restoration projects. Unfortunately, many of the featured hyporheic zone best management practices (BMP) (e.g., weirs, cross-vanes) tend to create only localized, aerobic hyporheic flows that are not optimal for the anaerobic denitrification reaction. In short, practitioners lack an adaptable BMP that can both 1) increase hyporheic exchange, and 2) tailor HZ residence times to match reactions of interest. Here we present new performance data for an HZ engineering technique called Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST are subsurface modules that utilize low-permeability sediments to drive efficient hyporheic exchange and control residence times, along with reactive geomedia to increase reaction rates within HZ sediments. This research utilized two artificial stream flumes: One flume served as an all-sand control condition, the other featured BEST modules at 1m spacing with a mixture of 70/30 sand/woodchips (v/v). Two different BEST media were tested: a coarse sand module with K 0.5 cm/s, and a fine sand module with K 0.15 cm/s. The flume with coarse sand BEST modules created aerobic HZ conditions and demonstrated rapid nitrification of ammonia at rates significantly higher than the control. However, denitrification was much slower and not significantly different between the two streams. In contrast, the fine sand

  6. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    Science.gov (United States)

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  7. Learning From Short Text Streams With Topic Drifts.

    Science.gov (United States)

    Li, Peipei; He, Lu; Wang, Haiyan; Hu, Xuegang; Zhang, Yuhong; Li, Lei; Wu, Xindong

    2017-09-18

    Short text streams such as search snippets and micro blogs have been popular on the Web with the emergence of social media. Unlike traditional normal text streams, these data present the characteristics of short length, weak signal, high volume, high velocity, topic drift, etc. Short text stream classification is hence a very challenging and significant task. However, this challenge has received little attention from the research community. Therefore, a new feature extension approach is proposed for short text stream classification with the help of a large-scale semantic network obtained from a Web corpus. It is built on an incremental ensemble classification model for efficiency. First, more semantic contexts based on the senses of terms in short texts are introduced to make up of the data sparsity using the open semantic network, in which all terms are disambiguated by their semantics to reduce the noise impact. Second, a concept cluster-based topic drifting detection method is proposed to effectively track hidden topic drifts. Finally, extensive studies demonstrate that as compared to several well-known concept drifting detection methods in data stream, our approach can detect topic drifts effectively, and it enables handling short text streams effectively while maintaining the efficiency as compared to several state-of-the-art short text classification approaches.

  8. Temporal limits of selection and memory encoding: A comparison of whole versus partial report in rapid serial visual presentation.

    Science.gov (United States)

    Nieuwenstein, Mark R; Potter, Mary C

    2006-06-01

    People often fail to recall the second of two visual targets presented within 500 ms in rapid serial visual presentation (RSVP). This effect is called the attentional blink. One explanation of the attentional blink is that processes involved in encoding the first target into memory are slow and capacity limited. Here, however, we show that the attentional blink should be ascribed to attentional selection, not consolidation of the first target. Rapid sequences of six letters were presented, and observers had to report either all the letters (whole-report condition) or a subset of the letters (partial-report condition). Selection in partial report was based on color (e.g., report the two red letters) or identity (i.e., report all letters from a particular letter onward). In both cases, recall of letters presented shortly after the first selected letter was impaired, whereas recall of the corresponding letters was relatively accurate with whole report.

  9. 7Q10 flows for SRS streams

    International Nuclear Information System (INIS)

    Chen, K.F.

    1996-01-01

    The Environmental Transport Group of the Environmental Technology Section was requested to predict the seven-day ten-year low flow (7Q10 flow) for the SRS streams based on historical stream flow records. Most of the historical flow records for the SRS streams include reactor coolant water discharged from the reactors and process water released from the process facilities. The most straight forward way to estimate the stream daily natural flow is to subtract the measured upstream reactor and/or facility daily effluents from the measured downstream daily flow. Unfortunately, this method does not always work, as indicated by the fact that sometimes the measured downstream volumetric flow rates are lower than the reactor effluent volumetric flow rates. For those cases that cannot be analyzed with the simple subtracting method, an alternative method was used to estimate the stream natural flows by statistically separating reactor coolant and process water flow data. The correlation between the calculated 7Q10 flows and the watershed areas for Four Mile Branch and Pen Branch agrees with that calculated by the USGS for Upper Three Runs and Lower Three Runs Creeks. The agreement between these two independent calculations lends confidence to the 7Q10 flow calculations presented in this report

  10. A Statistical Method to Predict Flow Permanence in Dryland Streams from Time Series of Stream Temperature

    Directory of Open Access Journals (Sweden)

    Ivan Arismendi

    2017-12-01

    Full Text Available Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs, to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels between April and August (2015–2016. We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%, but a portion of them showed one or more shifts among states (17%. We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  11. A statistical method to predict flow permanence in dryland streams from time series of stream temperature

    Science.gov (United States)

    Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David

    2017-01-01

    Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  12. A Pan-STARRS1 VIEW OF THE BIFURCATED SAGITTARIUS STREAM

    International Nuclear Information System (INIS)

    Slater, C. T.; Bell, E. F.; Schlafly, E. F.; Jurić, M.; Finkbeiner, D. P.; Martin, N. F.; Rix, H.-W.; Goldman, B.; Morganson, E. P.; Bernard, E. J.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Magnier, E. A.; Tonry, J. L.; Price, P. A.

    2013-01-01

    We use data from the Pan-STARRS1 survey to present a panoramic view of the Sagittarius tidal stream in the southern Galactic hemisphere. As a result of the extensive sky coverage of Pan-STARRS1, the southern stream is visible along more than 60° of its orbit, nearly double the length seen by the Sloan Digital Sky Survey. The recently discovered southern bifurcation of the stream is also apparent, with the fainter branch of the stream visible over at least 30°. Using a combination of fitting both the main-sequence turnoff and the red clump, we measure the distance to both arms of the stream in the south. We find that the distances to the bright arm of the stream agree very well with the N-body models of Law and Majewski. We also find that the faint arm lies ∼5 kpc closer to the Sun than the bright arm, similar to the behavior seen in the northern hemisphere.

  13. Modeling transient streaming potentials in falling-head permeameter tests.

    Science.gov (United States)

    Malama, Bwalya; Revil, André

    2014-01-01

    We present transient streaming potential data collected during falling-head permeameter tests performed on samples of two sands with different physical and chemical properties. The objective of the work is to estimate hydraulic conductivity (K) and the electrokinetic coupling coefficient (Cl ) of the sand samples. A semi-empirical model based on the falling-head permeameter flow model and electrokinetic coupling is used to analyze the streaming potential data and to estimate K and Cl . The values of K estimated from head data are used to validate the streaming potential method. Estimates of K from streaming potential data closely match those obtained from the associated head data, with less than 10% deviation. The electrokinetic coupling coefficient was estimated from streaming potential vs. (1) time and (2) head data for both sands. The results indicate that, within limits of experimental error, the values of Cl estimated by the two methods are essentially the same. The results of this work demonstrate that a temporal record of the streaming potential response in falling-head permeameter tests can be used to estimate both K and Cl . They further indicate the potential for using transient streaming potential data as a proxy for hydraulic head in hydrogeology applications. © 2013, National Ground Water Association.

  14. Layer-based buffer aware rate adaptation design for SHVC video streaming

    Science.gov (United States)

    Gudumasu, Srinivas; Hamza, Ahmed; Asbun, Eduardo; He, Yong; Ye, Yan

    2016-09-01

    This paper proposes a layer based buffer aware rate adaptation design which is able to avoid abrupt video quality fluctuation, reduce re-buffering latency and improve bandwidth utilization when compared to a conventional simulcast based adaptive streaming system. The proposed adaptation design schedules DASH segment requests based on the estimated bandwidth, dependencies among video layers and layer buffer fullness. Scalable HEVC video coding is the latest state-of-art video coding technique that can alleviate various issues caused by simulcast based adaptive video streaming. With scalable coded video streams, the video is encoded once into a number of layers representing different qualities and/or resolutions: a base layer (BL) and one or more enhancement layers (EL), each incrementally enhancing the quality of the lower layers. Such layer based coding structure allows fine granularity rate adaptation for the video streaming applications. Two video streaming use cases are presented in this paper. The first use case is to stream HD SHVC video over a wireless network where available bandwidth varies, and the performance comparison between proposed layer-based streaming approach and conventional simulcast streaming approach is provided. The second use case is to stream 4K/UHD SHVC video over a hybrid access network that consists of a 5G millimeter wave high-speed wireless link and a conventional wired or WiFi network. The simulation results verify that the proposed layer based rate adaptation approach is able to utilize the bandwidth more efficiently. As a result, a more consistent viewing experience with higher quality video content and minimal video quality fluctuations can be presented to the user.

  15. STREAMFINDER I: A New Algorithm for detecting Stellar Streams

    Science.gov (United States)

    Malhan, Khyati; Ibata, Rodrigo A.

    2018-04-01

    We have designed a powerful new algorithm to detect stellar streams in an automated and systematic way. The algorithm, which we call the STREAMFINDER, is well suited for finding dynamically cold and thin stream structures that may lie along any simple or complex orbits in Galactic stellar surveys containing any combination of positional and kinematic information. In the present contribution we introduce the algorithm, lay out the ideas behind it, explain the methodology adopted to detect streams and detail its workings by running it on a suite of simulations of mock Galactic survey data of similar quality to that expected from the ESA/Gaia mission. We show that our algorithm is able to detect even ultra-faint stream features lying well below previous detection limits. Tests show that our algorithm will be able to detect distant halo stream structures >10° long containing as few as ˜15 members (ΣG ˜ 33.6 mag arcsec-2) in the Gaia dataset.

  16. Trapping, focusing, and sorting of microparticles through bubble streaming

    Science.gov (United States)

    Wang, Cheng; Jalikop, Shreyas; Hilgenfeldt, Sascha

    2010-11-01

    Ultrasound-driven oscillating microbubbles can set up vigorous steady streaming flows around the bubbles. In contrast to previous work, we make use of the interaction between the bubble streaming and the streaming induced around mobile particles close to the bubble. Our experiment superimposes a unidirectional Poiseuille flow containing a well-mixed suspension of neutrally buoyant particles with the bubble streaming. The particle-size dependence of the particle-bubble interaction selects which particles are transported and which particles are trapped near the bubbles. The sizes selected for can be far smaller than any scale imposed by the device geometry, and the selection mechanism is purely passive. Changing the amplitude and frequency of ultrasound driving, we can further control focusing and sorting of the trapped particles, leading to the emergence of sharply defined monodisperse particle streams within a much wider channel. Optimizing parameters for focusing and sorting are presented. The technique is applicable in important fields like cell sorting and drug delivery.

  17. An Alternative to Channel-Centered Views of the Landscape for Understanding Modern Streams in the Mid-Atlantic Piedmont Region, Eastern USA

    Science.gov (United States)

    Merritts, D. J.; Walter, R. C.; Rahnis, M. A.; Oberholtzer, W.

    2008-12-01

    older) alluvial fans and fan pediments at tributary confluences. Two-dimensional views along incised stream banks give the appearance of overbank sediment atop stream bed gravel, but the fine- grained bank (1-5 m) is mostly the result of slackwater sedimentation from damming, whereas the underlying gravel polygenetic in origin. The gravel is Pleistocene or older in age, and not the result of active stream channel migration and point-bar formation during the Holocene. The Holocene warm period was dominated by valley-bottom stability and widespread wetland formation, fostered by beaver activity. Modern stream channel forms are largely the result of incision and bank erosion in response to dam breaching and base- level fall, not hydraulic adjustment to prevailing (or changed) supplies of sediment and water. Rather, channel dimensions are controlled by thickness of historic sediment (i.e., dam height and distance upstream of dam) and depth of incision. Changes in slope (i.e., rapid base-level fall), rather than changes in sediment supply and runoff, are powerful determinants of modern channel forms, and there are no pre-settlement forms for comparison. At present, there is an "impedance mismatch" between those with channel-centered views and those who view the deeply weathered mid-Atlantic landscape as the result of hundreds of thousands to millions of years of slow landscape evolution.

  18. Productivity of Stream Definitions

    NARCIS (Netherlands)

    Endrullis, Jörg; Grabmayer, Clemens; Hendriks, Dimitri; Isihara, Ariya; Klop, Jan

    2007-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continuously in such a way that a uniquely determined stream is obtained as the limit. Whereas productivity is undecidable

  19. Productivity of stream definitions

    NARCIS (Netherlands)

    Endrullis, J.; Grabmayer, C.A.; Hendriks, D.; Isihara, A.; Klop, J.W.

    2008-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continually in such a way that a uniquely determined stream in constructor normal form is obtained as the limit. Whereas

  20. Altitudinal changes in diversity of macroinvertebrates from small streams in the Ecuadorian Andes

    DEFF Research Database (Denmark)

    Jacobsen, Dean

    2003-01-01

    was dominated by insects, mainly Ephemeroptera, Trichoptera and Diptera at all three altitudes. Odonata and Hemiptera were relatively rich in lowland streams, scarcely present in the midland streams and absent in the highland streams (as was the case for the less diverse orders Lepidoptera and Megaloptera...

  1. Determining the times and distances of particle transit in a mountain stream using fallout radionuclides

    Science.gov (United States)

    Bonniwell, Everett C.; Matisoff, Gerald; Whiting, Peter J.

    1999-02-01

    Targeting of erosion and pollution control programs is much more effective if the time for fine particles to be transported through a watershed, the travel distance, the proportions of old and new sediment in suspension, and the rate of erosion of the landscape can be estimated. In this paper we present a novel technique for tracing suspended sediment in a mountain stream using fallout radionuclides sorbed to sediment. Atmospherically-delivered 7Be, 210Pb, and 137Cs accumulate in the snowpack, are released with its melting and sorb to fine particulates, a portion of which are carried downslope into stream channels. The half-life of cosmogenic 7Be is short (53.4 days), thus, sediment residing on the stream bed should contain little of the radionuclide. The different signatures of newly delivered sediment from the landscape with its 7Be tag and older untagged sediment from the channel is the basis for the tracing. The total flux of such radionuclides, compared to the inventory in the soil, permits estimates of the rates of erosion of the landscape. Fine suspended particulates in the Gold Fork River, ID, are transported downstream through the drainage in one or more steps having lengths of tens of kilometers. Length of the step decreases from about 60 km near the peak of the hydrograph to about 12 km near baseflow. The percent of sediment in suspension that is `new' (i.e., recently delivered from the landscape) ranges from 96 to 12%. The remaining sediment is resuspended older channel sediment. Residence times for particulates range from 1.6 days, early in the hydrograph at the upper site, to 103 days late in the hydrograph at the lowest elevation location. Rates of erosion of fine sediment calculated from the flux of radionuclides average 0.0023 cm/year. The long distance transport of fine particles suggests that delivery through the Gold Fork drainage to the basin outlet is fairly rapid once particles reach the channel and perhaps is also rapid in similar and

  2. Models of Tidally Induced Gas Filaments in the Magellanic Stream

    Science.gov (United States)

    Pardy, Stephen A.; D’Onghia, Elena; Fox, Andrew J.

    2018-04-01

    The Magellanic Stream and Leading Arm of H I that stretches from the Large and Small Magellanic Clouds (LMC and SMC) and over 200° of the Southern sky is thought to be formed from multiple encounters between the LMC and SMC. In this scenario, most of the gas in the Stream and Leading Arm is stripped from the SMC, yet recent observations have shown a bifurcation of the Trailing Arm that reveals LMC origins for some of the gas. Absorption measurements in the Stream also reveal an order of magnitude more gas than in current tidal models. We present hydrodynamical simulations of the multiple encounters between the LMC and SMC at their first pass around the Milky Way, assuming that the Clouds were more extended and gas-rich in the past. Our models create filamentary structures of gas in the Trailing Stream from both the LMC and SMC. While the SMC trailing filament matches the observed Stream location, the LMC filament is offset. In addition, the total observed mass of the Stream in these models is underestimated by a factor of four when the ionized component is accounted for. Our results suggest that there should also be gas stripped from both the LMC and SMC in the Leading Arm, mirroring the bifurcation in the Trailing Stream. This prediction is consistent with recent measurements of spatial variation in chemical abundances in the Leading Arm, which show that gas from multiple sources is present, although its nature is still uncertain.

  3. Event Streams Clustering Using Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Hanen Bouali

    2015-10-01

    Full Text Available Data streams are usually of unbounded lengths which push users to consider only recent observations by focusing on a time window, and ignore past data. However, in many real world applications, past data must be taken in consideration to guarantee the efficiency, the performance of decision making and to handle data streams evolution over time. In order to build a selectively history to track the underlying event streams changes, we opt for the continuously data of the sliding window which increases the time window based on changes over historical data. In this paper, to have the ability to access to historical data without requiring any significant storage or multiple passes over the data. In this paper, we propose a new algorithm for clustering multiple data streams using incremental support vector machine and data representative points’ technique. The algorithm uses a sliding window model for the most recent clustering results and data representative points to model the old data clustering results. Our experimental results on electromyography signal show a better clustering than other present in the literature

  4. Three-Dimensional Phenomena in Microbubble Acoustic Streaming

    Science.gov (United States)

    Marin, Alvaro; Rossi, Massimiliano; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2015-04-01

    Ultrasound-driven oscillating microbubbles are used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting, and manipulation of microparticles. A common configuration consists of side bubbles created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration consists of acoustically excited bubbles with a semicylindrical shape that generate significant streaming flow. Because of the geometry of the channels, such flows are generally considered as quasi-two-dimensional. Similar assumptions are often made in many other microfluidic systems based on flat microchannels. However, in this Letter we show that microparticle trajectories actually present a much richer behavior, with particularly strong out-of-plane dynamics in regions close to the microbubble interface. Using astigmatism particle-tracking velocimetry, we reveal that the apparent planar streamlines are actually projections of a stream surface with a pseudotoroidal shape. We, therefore, show that acoustic streaming cannot generally be assumed as a two-dimensional phenomenon in confined systems. The results have crucial consequences for most of the applications involving acoustic streaming such as particle trapping, sorting, and mixing.

  5. Seasonal pattern of anthropogenic salinization in temperate forested headwater streams.

    Science.gov (United States)

    Timpano, Anthony J; Zipper, Carl E; Soucek, David J; Schoenholtz, Stephen H

    2018-04-15

    Salinization of freshwaters by human activities is of growing concern globally. Consequences of salt pollution include adverse effects to aquatic biodiversity, ecosystem function, human health, and ecosystem services. In headwater streams of the temperate forests of eastern USA, elevated specific conductance (SC), a surrogate measurement for the major dissolved ions composing salinity, has been linked to decreased diversity of aquatic insects. However, such linkages have typically been based on limited numbers of SC measurements that do not quantify intra-annual variation. Effective management of salinization requires tools to accurately monitor and predict salinity while accounting for temporal variability. Toward that end, high-frequency SC data were collected within the central Appalachian coalfield over 4 years at 25 forested headwater streams spanning a gradient of salinity. A sinusoidal periodic function was used to model the annual cycle of SC, averaged across years and streams. The resultant model revealed that, on average, salinity deviated approximately ±20% from annual mean levels across all years and streams, with minimum SC occurring in late winter and peak SC occurring in late summer. The pattern was evident in headwater streams influenced by surface coal mining, unmined headwater reference streams with low salinity, and larger-order salinized rivers draining the study area. The pattern was strongly responsive to varying seasonal dilution as driven by catchment evapotranspiration, an effect that was amplified slightly in unmined catchments with greater relative forest cover. Evaluation of alternative sampling intervals indicated that discrete sampling can approximate the model performance afforded by high-frequency data but model error increases rapidly as discrete sampling intervals exceed 30 days. This study demonstrates that intra-annual variation of salinity in temperate forested headwater streams of Appalachia USA follows a natural seasonal

  6. Estimating stream discharge using stage and multi-level acoustic Doppler velocimetry

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Rasmussen, Keld Rømer; Ovesen, Niels Bering

    than traditional stage-discharge methods. In this presentation we shall present results from a study where, at two sites in Denmark, the stream velocity field has been mapped by the use of three Acoustic Doppler Velocity Meter (ADVM) instruments. The ADVM instruments are mounted in three different......For temperate region countries with small or moderately sized streams, such as those in Denmark, seasonal weed growth imposes a significant temporal change of the stage-discharge relation. In the past such problems were often avoided by using hydraulic structures, however, firm ecology based...... in the Northern part of Europe may further violate a stable relation between stage and discharge in streams. Extreme high flow situations cause abrupt rise in stage, and consequently weed can be partly uprooted and partly bend down along the bed, thereby changing the conveyance of the stream. In addition, extreme...

  7. Streams and their future inhabitants

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Friberg, Nikolai

    2006-01-01

    In this fi nal chapter we look ahead and address four questions: How do we improve stream management? What are the likely developments in the biological quality of streams? In which areas is knowledge on stream ecology insuffi cient? What can streams offer children of today and adults of tomorrow?...

  8. Salamander occupancy in headwater stream networks

    Science.gov (United States)

    Grant, E.H.C.; Green, L.E.; Lowe, W.H.

    2009-01-01

    1. Stream ecosystems exhibit a highly consistent dendritic geometry in which linear habitat units intersect to create a hierarchical network of connected branches. 2. Ecological and life history traits of species living in streams, such as the potential for overland movement, may interact with this architecture to shape patterns of occupancy and response to disturbance. Specifically, large-scale habitat alteration that fragments stream networks and reduces connectivity may reduce the probability a stream is occupied by sensitive species, such as stream salamanders. 3. We collected habitat occupancy data on four species of stream salamanders in first-order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern U.S.A. We then used an information-theoretic approach to test alternative models of salamander occupancy based on a priori predictions of the effects of network configuration, region and salamander life history. 4. Across all four species, we found that streams connected to other first-order streams had higher occupancy than those flowing directly into larger streams and rivers. For three of the four species, occupancy was lower in the urbanised region than in the undeveloped region. 5. These results demonstrate that the spatial configuration of stream networks within protected areas affects the occurrences of stream salamander species. We strongly encourage preservation of network connections between first-order streams in conservation planning and management decisions that may affect stream species.

  9. Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarctica: A long-term geomorphological experiment

    Science.gov (United States)

    McKnight, Diane M.; Tate, C.M.; Andrews, E.D.; Niyogi, D.K.; Cozzetto, K.; Welch, K.; Lyons, W.B.; Capone, D.G.

    2007-01-01

    The McMurdo Dry Valleys of Antarctica contain many glacial meltwater streams that flow for 6 to 12??weeks during the austral summer and link the glaciers to the lakes on the valley floors. Dry valley streams gain solutes longitudinally through weathering reactions and microbial processes occurring in the hyporheic zone. Some streams have thriving cyanobacterial mats. In streams with regular summer flow, the mats are freeze-dried through the winter and begin photosynthesizing with the onset of flow. To evaluate the longer term persistence of cyanobacterial mats, we diverted flow to an abandoned channel, which had not received substantial flow for approximately two decades. Monitoring of specific conductance showed that for the first 3??years after the diversion, the solute concentrations were greater in the reactivated channel than in most other dry valley streams. We observed that cyanobacterial mats became abundant in the reactivated channel within a week, indicating that the mats had been preserved in a cryptobiotic state in the channel. Over the next several years, these mats had high rates of productivity and nitrogen fixation compared to mats from other streams. Experiments in which mats from the reactivated channel and another stream were incubated in water from both of the streams indicated that the greater solute concentrations in the reactivated channel stimulated net primary productivity of mats from both streams. These stream-scale experimental results indicate that the cryptobiotic preservation of cyanobacterial mats in abandoned channels in the dry valleys allows for rapid response of these stream ecosystems to climatic and geomorphological change, similar to other arid zone stream ecosystems. ?? 2006 Elsevier B.V. All rights reserved.

  10. Neutron streaming studies along JET shielding penetrations

    Science.gov (United States)

    Stamatelatos, Ion E.; Vasilopoulou, Theodora; Batistoni, Paola; Obryk, Barbara; Popovichev, Sergey; Naish, Jonathan

    2017-09-01

    Neutronic benchmark experiments are carried out at JET aiming to assess the neutronic codes and data used in ITER analysis. Among other activities, experiments are performed in order to validate neutron streaming simulations along long penetrations in the JET shielding configuration. In this work, neutron streaming calculations along the JET personnel entrance maze are presented. Simulations were performed using the MCNP code for Deuterium-Deuterium and Deuterium- Tritium plasma sources. The results of the simulations were compared against experimental data obtained using thermoluminescence detectors and activation foils.

  11. Enhanced winds and tidal streams in massive X-ray binaries

    International Nuclear Information System (INIS)

    Blondin, J.M.; Stevens, I.R.; Kallman, T.R.

    1991-01-01

    The tidal effects created by the presence of a compact companion are expected to induce a stream of enhanced wind from the early-type primary star in massive X-ray binary systems. In this paper, two-dimensional gasdynamical simulations of such streams are presented. It is found that the wind enhancement is a sensitive function of the binary separation, and develops into a tidal stream as the primary approaches its critical surface. For typical system parameters, the Coriolis force deflects the stream sufficiently that it does not impact directly on the compact companion but passes behind it. The density in the stream can reach values of 20-30 times the ambient wind density, leading to strong attenuation of the X-ray flux that passes through the tidal stream, providing a possible explanation of the enhanced absorption events seen at later phases in the X-ray observations of massive X-ray binary systems such as Vela X-1. In contrast to the time-variable accretion wake, the tidal stream is relatively stationary, producing absorption features that should remain fixed from orbit to orbit. For systems with a strong tidal stream, the large asymmetry in the accreting wind results in the accretion of angular momentum of constant sign, as opposed to systems without streams, where the sign of the accreted angular momentum can change. 39 refs

  12. The energy and greenhouse-gas implications of internet video streaming in the United States

    International Nuclear Information System (INIS)

    Shehabi, Arman; Walker, Ben; Masanet, Eric

    2014-01-01

    The rapid growth of streaming video entertainment has recently received attention as a possibly less energy intensive alternative to the manufacturing and transportation of digital video discs (DVDs). This study utilizes a life-cycle assessment approach to estimate the primary energy use and greenhouse-gas emissions associated with video viewing through both traditional DVD methods and online video streaming. Base-case estimates for 2011 video viewing energy and CO 2 (e) emission intensities indicate video streaming can be more efficient than DVDs, depending on DVD viewing method. Video streaming benefits from relatively more efficient end-user devices than DVD viewing, though much of that savings is lost when accounting for the additional energy from network data transmission. Video streaming appears distinctly favorable when compared against any DVD viewing that includes consumer driving, which significantly increases the energy and CO 2 (e) emissions per viewing hour. Total US 2011 video viewing required about 192 PJ of primary energy and emitted about 10.5 billion kg of CO 2 (e). Shifting all 2011 DVD viewing to video streaming reduces the total primary energy use to about 162 PJ and the CO 2 (e) emissions to about 8.6 billion kg, representing a savings equivalent to the primary energy used to meet the electricity demand of nearly 200 000 US households each year. Sensitivity analysis indicates that results are most influenced by the end-user DVD player power demand, data transmission energy, and consumer travel for store DVDs. Data center energy use—both operational and embodied within the IT equipment—account for <1% of the total video streaming energy use. Results from this study indicate that designers and policy makers should focus on the efficiency of end-user devices and network transmission energy to curb future increases in energy use from the proliferation of video streaming. (letters)

  13. The Rabbit Stream Cipher

    DEFF Research Database (Denmark)

    Boesgaard, Martin; Vesterager, Mette; Zenner, Erik

    2008-01-01

    The stream cipher Rabbit was first presented at FSE 2003, and no attacks against it have been published until now. With a measured encryption/decryption speed of 3.7 clock cycles per byte on a Pentium III processor, Rabbit does also provide very high performance. This paper gives a concise...... description of the Rabbit design and some of the cryptanalytic results available....

  14. The role of DOM in nitrogen processing in streams across arctic regions affected by fire

    Science.gov (United States)

    Rodriguez-Cardona, B.; Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Wymore, A.; Coble, A. A.; Prokishkin, A. S.; Zito, P.; Podgorski, D. C.; Spencer, R. G.; McDowell, W. H.

    2017-12-01

    In stream ecosystems, inputs of dissolved organic carbon (DOC) have a strong influence on nitrogen (N) processing. Previous studies have demonstrated that increases in DOC concentrations can promote greater N removal in many stream ecosystems. Most of what we know about C and N coupling comes from studies of temperate streams; less is known about this relationship in the Arctic. Streams in Arctic ecosystems are facing rapid changes in climate and disturbance regimes, in particular increasing fire frequencies that are likely to alter biogeochemical cycles. Although fires can lead to increases in NO3 concentrations in streams, the effects of fire on DOC (concentration and composition) have been difficult to generalize. We studied the relationships between DOC and N in two locations; the Central Siberian Plateau, Russia and the Yukon-Kuskokwim (YK) River Delta, Alaska. Streams in both regions show increases in NO3 concentrations after fire, while DOC concentrations decrease in Siberia but increase in streams within the YK-Delta. These patterns in DOC and NO3 create a gradient in DOC and nutrient concentrations, allowing us to study this coupling in a wider Pan-Arctic scope. In order to assess the role of DOC in Arctic N processing, we conducted NO3 and NH4 additions to stream microcosms at the Alaskan site as well as whole-stream additions in Siberia. We hypothesized that nutrient uptake would be high in older burn sites of Siberia and recently burned sites in the YK-Delta, due to greater DOC concentrations and availability. Our results suggest that nitrogen dynamics in the Alaskan sites is strongly responsive to C availability, but is less so in Siberian sites. The potential impacts of permafrost thawing and fires on DOM and nutrient dynamics thus appear to not be consistent across the Arctic suggesting that different regions of the Arctic have unique biogeochemical controls.

  15. Stream hydraulics and temperature determine the metabolism of geothermal Icelandic streams

    Directory of Open Access Journals (Sweden)

    Demars B. O.L.

    2011-07-01

    Full Text Available Stream ecosystem metabolism plays a critical role in planetary biogeochemical cycling. Stream benthic habitat complexity and the available surface area for microbes relative to the free-flowing water volume are thought to be important determinants of ecosystem metabolism. Unfortunately, the engineered deepening and straightening of streams for drainage purposes could compromise stream natural services. Stream channel complexity may be quantitatively expressed with hydraulic parameters such as water transient storage, storage residence time, and water spiralling length. The temperature dependence of whole stream ecosystem respiration (ER, gross primary productivity (GPP and net ecosystem production (NEP = GPP − ER has recently been evaluated with a “natural experiment” in Icelandic geothermal streams along a 5–25 °C temperature gradient. There remained, however, a substantial amount of unexplained variability in the statistical models, which may be explained by hydraulic parameters found to be unrelated to temperature. We also specifically tested the additional and predicted synergistic effects of water transient storage and temperature on ER, using novel, more accurate, methods. Both ER and GPP were highly related to water transient storage (or water spiralling length but not to the storage residence time. While there was an additional effect of water transient storage and temperature on ER (r2 = 0.57; P = 0.015, GPP was more related to water transient storage than temperature. The predicted synergistic effect could not be confirmed, most likely due to data limitation. Our interpretation, based on causal statistical modelling, is that the metabolic balance of streams (NEP was primarily determined by the temperature dependence of respiration. Further field and experimental work is required to test the predicted synergistic effect on ER. Meanwhile, since higher metabolic activities allow for higher pollutant degradation or uptake

  16. Determination of the self purification of streams using tracers

    International Nuclear Information System (INIS)

    Salviano, J.S.

    1982-04-01

    A methodology for the 'in situ' evaluation of the self purification of streams is discussed. It consists of the simultaneous injection of two tracers into the stream. One of the tracers is oxidized by biochemical processes. It can be either artificially supplied to the stream or a naturally present component can be used. This tracer is used for the determination of the self purification parameters. The other tracer is conservative and allows for the hydrodynamic effects. Tests have been carried out in two streams with quite different hydrodynamic and physicochemical conditions. In the first stream, with a flow-rate of about 0.9 m 3 /s, urea was used as the nonconservative tracer. In the other stream, which had a flow-rate of about 5 m 3 /s, only a radioactive tracer has been used, and the rate of biochemical oxidation has been determined from BOD measurements. Calculations have been implemented on a digital computer. In both cases it was found that the reoxygenation rate is more conveniently determined by empirical formulas. Results from both tests have been deemed realistic by comparison with similar experiments. (Author) [pt

  17. Regional Comparison of Nitrogen Export to Japanese Forest Streams

    Directory of Open Access Journals (Sweden)

    Hideaki Shibata

    2001-01-01

    Full Text Available Nitrogen (N emissions in Asian countries are predicted to increase over the next several decades. An understanding of the mechanisms that control temporal and spatial fluctuation of N export to forest streams is important not only to quantify critical loads of N, N saturation status, and soil acidification N dynamics and budgets in Japanese forested watersheds is not clear due to the lack of regional comparative studies on stream N chemistry. To address the lack of comparative studies, we measured inorganic N (nitrate and ammonium concentrations from June 2000 to May 2001 in streams in 18 experimental forests located throughout the Japanese archipelago and belonging to the Japanese Union of University Forests. N concentrations in stream water during base flow and high flow periods were monitored, and N mineralization potential in soil was measured using batch incubation experiments. Higher nitrate concentrations in stream water were present in central Japan, an area that receives high rates of atmospheric N deposition. In northern Japan, snowmelt resulted in increased nitrate concentrations in stream water. The potential net N mineralization rate was higher in surface soil than in subsurface soil, and the high potential for N mineralization in the surface soil partly contributed to the increase in nitrate concentration in stream water during a storm event. Regional differences in the atmospheric N deposition and seasonality of precipitation and high discharge are principal controls on the concentrations and variations of nitrates in stream water in forested watersheds of Japan.

  18. Handling multiple metadata streams regarding digital learning material

    NARCIS (Netherlands)

    Roes, J.B.M.; Vuuren, J. van; Verbeij, N.; Nijstad, H.

    2010-01-01

    This paper presents the outcome of a study performed in the Netherlands on handling multiple metadata streams regarding digital learning material. The paper describes the present metadata architecture in the Netherlands, the present suppliers and users of metadata and digital learning materials. It

  19. Method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stolz, R.A.

    1992-01-01

    This patent describes a method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream from a sand chlorinator in which the silicon and metals present in sand fed to the chlorinator are converted to chlorides at temperatures over about 800 degrees C. It comprises cooling a vapor stream from a sand chlorinator, the vapor stream containing principally silicon tetrachloride, zirconium tetrachloride, and hafnium tetrachloride contaminated with ferric chloride, to a temperature of from about 335 degrees C to about 600 degrees C; flowing the vapor stream through a gaseous diffusion separative barrier to produce a silicon tetrachloride-containing vapor stream concentrated in zirconium tetrachloride and hafnium tetrachloride and a silicon tetrachloride-containing vapor stream depleted in zirconium tetrachloride and hafnium tetrachloride; adsorbing the ferric chloride in the separative barrier; and recovering the silicon tetrachloride stream concentrated in zirconium tetrachloride and hafnium tetrachloride separately from the silicon tetrachloride stream depleted in zirconium tetrachloride and hafnium tetrachloride

  20. A Multivariant Stream Analysis Approach to Detect and Mitigate DDoS Attacks in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Raenu Kolandaisamy

    2018-01-01

    Full Text Available Vehicular Ad Hoc Networks (VANETs are rapidly gaining attention due to the diversity of services that they can potentially offer. However, VANET communication is vulnerable to numerous security threats such as Distributed Denial of Service (DDoS attacks. Dealing with these attacks in VANET is a challenging problem. Most of the existing DDoS detection techniques suffer from poor accuracy and high computational overhead. To cope with these problems, we present a novel Multivariant Stream Analysis (MVSA approach. The proposed MVSA approach maintains the multiple stages for detection DDoS attack in network. The Multivariant Stream Analysis gives unique result based on the Vehicle-to-Vehicle communication through Road Side Unit. The approach observes the traffic in different situations and time frames and maintains different rules for various traffic classes in various time windows. The performance of the MVSA is evaluated using an NS2 simulator. Simulation results demonstrate the effectiveness and efficiency of the MVSA regarding detection accuracy and reducing the impact on VANET communication.

  1. Stream macroinvertebrate communities across a gradient of natural gas development in the Fayetteville Shale.

    Science.gov (United States)

    Johnson, Erica; Austin, Bradley J; Inlander, Ethan; Gallipeau, Cory; Evans-White, Michelle A; Entrekin, Sally

    2015-10-15

    Oil and gas extraction in shale plays expanded rapidly in the U.S. and is projected to expand globally in the coming decades. Arkansas has doubled the number of gas wells in the state since 2005 mostly by extracting gas from the Fayetteville Shale with activity concentrated in mixed pasture-deciduous forests. Concentrated well pads in close proximity to streams could have adverse effects on stream water quality and biota if sedimentation associated with developing infrastructure or contamination from fracturing fluid and waste occurs. Cumulative effects of gas activity and local habitat conditions on macroinvertebrate communities were investigated across a gradient of gas well activity (0.2-3.6 wells per km(2)) in ten stream catchments in spring 2010 and 2011. In 2010, macroinvertebrate density was positively related to well pad inverse flowpath distance from streams (r=0.84, pgas activity close to streams. However, stream water turbidity (r=0.69, p=0.02) and chlorophyll a (r=0.89, pgas well activities. In 2011, a year with record spring flooding, a different pattern emerged where mayfly density (p=0.74, p=0.01) and mayfly, stonefly, and caddisfly richness (r=0.78, p=0.008) increased in streams with greater well density and less silt cover. Hydrology and well pad placement in a catchment may interact to result in different relationships between biota and catchment activity between the two sample years. Our data show evidence of different macroinvertebrate communities expressed in catchments with different levels of gas activity that reinforce the need for more quantitative analyses of cumulative freshwater-effects from oil and gas development. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  3. Exploring inter-frame correlation analysis and wavelet-domain modeling for real-time caption detection in streaming video

    Science.gov (United States)

    Li, Jia; Tian, Yonghong; Gao, Wen

    2008-01-01

    In recent years, the amount of streaming video has grown rapidly on the Web. Often, retrieving these streaming videos offers the challenge of indexing and analyzing the media in real time because the streams must be treated as effectively infinite in length, thus precluding offline processing. Generally speaking, captions are important semantic clues for video indexing and retrieval. However, existing caption detection methods often have difficulties to make real-time detection for streaming video, and few of them concern on the differentiation of captions from scene texts and scrolling texts. In general, these texts have different roles in streaming video retrieval. To overcome these difficulties, this paper proposes a novel approach which explores the inter-frame correlation analysis and wavelet-domain modeling for real-time caption detection in streaming video. In our approach, the inter-frame correlation information is used to distinguish caption texts from scene texts and scrolling texts. Moreover, wavelet-domain Generalized Gaussian Models (GGMs) are utilized to automatically remove non-text regions from each frame and only keep caption regions for further processing. Experiment results show that our approach is able to offer real-time caption detection with high recall and low false alarm rate, and also can effectively discern caption texts from the other texts even in low resolutions.

  4. Phosphate dynamics in an acidic mountain stream: Interactions involving algal uptake, sorption by iron oxide, and photoreduction

    Science.gov (United States)

    Tate, Cathy M.; Broshears, Robert E.; McKnight, Diane M.

    1995-01-01

    Acid mine drainage streams in the Rocky Mountains typically have few algal species and abundant iron oxide deposits which can sorb phosphate. An instream injection of radiolabeled phosphate (32P0,) into St. Kevin Gulch, an acid mine drainage stream, was used to test the ability of a dominant algal species, Ulothrix sp., to rapidly assimilate phosphate. Approximately 90% of the injected phosphate was removed from the water column in the 175-m stream reach. When shaded stream reaches were exposed to full sunlight after the injection ended, photoreductive dissolution of iron oxide released sorbed 32P, which was then also removed downstream. The removal from the stream was modeled as a first-order process by using a reactive solute transport transient storage model. Concentrations of 32P mass-’ of algae were typically lo-fold greater than concentrations in hydrous iron oxides. During the injection, concentrations of 32P increased in the cellular P pool containing soluble, low-molecular-weight compounds and confirmed direct algal uptake of 32P0, from water. Mass balance calculations indicated that algal uptake and sorption on iron oxides were significant in removing phosphate. We conclude that in stream ecosystems, PO, sorbed by iron oxides can act as a dynamic nutrient reservoir regulated by photoreduction.

  5. Radon in streams and ground waters of Pennsylvania as a guide to uranium deposits

    International Nuclear Information System (INIS)

    Korner, L.A.; Rose, A.W.

    1977-06-01

    Radon-222, a daughter in the radioactive decay of uranium, has potential as a geochemical guide to uranium ores because of its chemical inertness and its relatively easy determination. The radon contents of 59 stream and 149 ground waters have been determined with a newly designed portable radon detector in order to test the method in uranium exploration. Radon contents of stream waters do not appear useful for reconnaissance uranium exploration of areas like Pennsylvania because of relatively rapid degassing of radon from turbulent waters, and because most radon is derived from nearby influx of ground waters into the streams. Radon in streams near uranium occurrences in Carbon and Lycoming counties is lower than many background streams. Radon in ground water is recommended as a reconnaissance method of uranium exploration because most samples from near mineralized areas are anomalous in radon. In contrast, uranium in ground waters is not anomalous near mineralized areas in Carbon County. Equations are derived to show the relation of radon in ground waters to uranium contents of enclosing rocks, emanation of radon from the solids to water, and porosity or fracture width. Limonites are found to be highly enriched in radium, the parent of radon. A model for detection of a nearby uranium ore body by radon measurement on a pumping well has been developed

  6. Simulating pesticide transport from a sloped tropical soil to an adjacent stream.

    Science.gov (United States)

    Kahl, G; Ingwersen, J; Totrakool, S; Pansombat, K; Thavornyutikarn, P; Streck, T

    2010-01-01

    Preferential flow from stream banks is an important component of pesticide transport in the mountainous areas of northern Thailand. Models can help evaluate and interpret field data and help identify the most important transport processes. We developed a simple model to simulate the loss of pesticides from a sloped litchi (Litchi chinensis Sonn.) orchard to an adjacent stream. The water regime was modeled with a two-domain reservoir model, which accounts for rapid preferential flow simultaneously with slow flow processes in the soil matrix. Preferential flow is triggered when the topsoil matrix is saturated or the infiltration capacity exceeded. In addition, close to matrix saturation, rainfall events induce water release to the fractures and lead to desorption of pesticides from fracture walls and outflow to the stream. Pesticides undergo first order degradation and equilibrium sorption to soil matrix and fracture walls. The model was able to reproduce the dynamics of the discharge reasonably well (model efficiency [EF] = 0.56). The cumulative pesticide mass (EF = 0.91) and the pesticide concentration in the stream were slightly underestimated, but the deviation from measurement data is acceptable. Shape and timing of the simulated concentration peaks occurred in the same pattern as observed data. While the effect of surface runoff and preferential interflow on pesticide mass transport could not be absolutely clarified, according to our simulations, most concentration peaks in the stream are caused by preferential interflow pointing to the important role of this flow path in the hilly areas of northern Thailand.

  7. The distribution of radionuclides between the dissolved and particulate phases of a contaminated freshwater stream

    International Nuclear Information System (INIS)

    Murdock, R.N.; Johnson, M.S.; Hemingway, J.D.

    1995-01-01

    Streamwater concentrations of the radionuclides 137 Cs, 241 Am and 239,240 Pu from a contaminated freshwater stream showed significant relationships between total concentration and flow rate. When total concentrations were divided into their dissolved and particulate components 239,240 Pu was shown to exist mainly (>80%) in the solute phase ( 137 Cs and 241 Am were distributed equally between the two phases. 137 Cs was most likely present either as the dissolved ion or as the specifically adsorbed ion on particulate sediments. Particle-associated 241 Am and the small particulate component of 239,240 Pu, were believed to be bound to sediment surface coatings, such as organic or oxide/hydroxides, rather than the truly adsorbed ion. Solute phase 239,240 Pu was most likely associated with colloidal organic carbon species (such as humic or fulvic acids). This was also apparent, but to a lesser extent, for 241 Am. Distribution coefficients were determined for a number of discrete sites and environmental conditions. The response of the stream to removal of its source of radioactivity (via a re-routing scheme) was both significant and rapid. (author)

  8. From a water resource to a point pollution source: the daily journey of a coastal urban stream

    Directory of Open Access Journals (Sweden)

    LR. Rörig

    Full Text Available The aim of this study was to understand how a stream ecosystem that flows from its fountainhead to its mouth inside a city, changes from a water resource to a point pollution source. A multidisciplinary descriptive approach was adopted, including the short-term temporal and spatial determination of physical, chemical, biological and ecotoxicological variables. Results showed that water quality rapidly decreases with increasing urbanization, leading the system to acquire raw sewage attributes even in the first hundred meters after the fountainheads. Despite the tidal circulation near the stream mouth being restricted by shallowness, some improvement of the water quality was detected in this area. The multidisciplinary evaluation showed to be useful for obtaining a more realistic understanding of the stream degradation process, and to forecast restoration and mitigation measures.

  9. Streaming Audio and Video: New Challenges and Opportunities for Museums.

    Science.gov (United States)

    Spadaccini, Jim

    Streaming audio and video present new challenges and opportunities for museums. Streaming media is easier to author and deliver to Internet audiences than ever before; digital video editing is commonplace now that the tools--computers, digital video cameras, and hard drives--are so affordable; the cost of serving video files across the Internet…

  10. VALUE STREAM MAPPINGIN THE ROMANIAN FOOTWEAR INDUSTRY

    Directory of Open Access Journals (Sweden)

    Sorin BRICIU

    2015-04-01

    Full Text Available Cost reduction, productivity increase and creating value for the client are just a few of the arguments that managers use when they adopt Lean philosophy. Businesses’ concern is to create products that have value in the eyes of the client, continuously analyzing the existing value stream in order to improve it. Value stream mapping (VSM is a technique used to visually present the chain of processes, within the company, necessary to obtain the product. Due to the many advantages and to the ease of use experienced by Toyota since the ’80, VSM use has constantly increased as this activity improvement technique was discovered by managers. The article presents a case study of the application of VSM in footwear industry.

  11. Opposing dorsal/ventral stream dynamics during figure-ground segregation.

    Science.gov (United States)

    Wokke, Martijn E; Scholte, H Steven; Lamme, Victor A F

    2014-02-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist between the dorsal and the ventral stream. Here, we used TMS and concurrent EEG recordings to explore these interactions between the dorsal and ventral stream during figure-ground segregation. In two separate experiments, we used repetitive TMS and single-pulse TMS to disrupt processing in the dorsal (V5/HMT⁺) and the ventral (lateral occipital area) stream during a motion-defined figure discrimination task. We presented stimuli that made it possible to differentiate between relatively low-level (figure boundary detection) from higher-level (surface segregation) processing steps during figure-ground segregation. Results show that disruption of V5/HMT⁺ impaired performance related to surface segregation; this effect was mainly found when V5/HMT⁺ was perturbed in an early time window (100 msec) after stimulus presentation. Surprisingly, disruption of the lateral occipital area resulted in increased performance scores and enhanced neural correlates of surface segregation. This facilitatory effect was also mainly found in an early time window (100 msec) after stimulus presentation. These results suggest a "push-pull" interaction in which dorsal and ventral extrastriate areas are being recruited or inhibited depending on stimulus category and task demands.

  12. Modelling and simulation-based acquisition decision support: present & future

    CSIR Research Space (South Africa)

    Naidoo, S

    2009-10-01

    Full Text Available stream_source_info Naidoo1_2009.pdf.txt stream_content_type text/plain stream_size 24551 Content-Encoding UTF-8 stream_name Naidoo1_2009.pdf.txt Content-Type text/plain; charset=UTF-8 1 Modelling & Simulation...-Based Acquisition Decision Support: Present & Future Shahen Naidoo Abstract The Ground Based Air Defence System (GBADS) Programme, of the South African Army has been applying modelling and simulation (M&S) to provide acquisition decision and doctrine...

  13. Two-stream Convolutional Neural Network for Methane Emissions Quantification

    Science.gov (United States)

    Wang, J.; Ravikumar, A. P.; McGuire, M.; Bell, C.; Tchapmi, L. P.; Brandt, A. R.

    2017-12-01

    Methane, a key component of natural gas, has a 25x higher global warming potential than carbon dioxide on a 100-year basis. Accurately monitoring and mitigating methane emissions require cost-effective detection and quantification technologies. Optical gas imaging, one of the most commonly used leak detection technology, adopted by Environmental Protection Agency, cannot estimate leak-sizes. In this work, we harness advances in computer science to allow for rapid and automatic leak quantification. Particularly, we utilize two-stream deep Convolutional Networks (ConvNets) to estimate leak-size by capturing complementary spatial information from still plume frames, and temporal information from plume motion between frames. We build large leak datasets for training and evaluating purposes by collecting about 20 videos (i.e. 397,400 frames) of leaks. The videos were recorded at six distances from the source, covering 10 -60 ft. Leak sources included natural gas well-heads, separators, and tanks. All frames were labeled with a true leak size, which has eight levels ranging from 0 to 140 MCFH. Preliminary analysis shows that two-stream ConvNets provides significant accuracy advantage over single steam ConvNets. Spatial stream ConvNet can achieve an accuracy of 65.2%, by extracting important features, including texture, plume area, and pattern. Temporal stream, fed by the results of optical flow analysis, results in an accuracy of 58.3%. The integration of the two-stream ConvNets gives a combined accuracy of 77.6%. For future work, we will split the training and testing datasets in distinct ways in order to test the generalization of the algorithm for different leak sources. Several analytic metrics, including confusion matrix and visualization of key features, will be used to understand accuracy rates and occurrences of false positives. The quantification algorithm can help to find and fix super-emitters, and improve the cost-effectiveness of leak detection and repair

  14. Percent Forest Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  15. Percent Agriculture Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  16. Efficient Streaming Mass Spatio-Temporal Vehicle Data Access in Urban Sensor Networks Based on Apache Storm.

    Science.gov (United States)

    Zhou, Lianjie; Chen, Nengcheng; Chen, Zeqiang

    2017-04-10

    The efficient data access of streaming vehicle data is the foundation of analyzing, using and mining vehicle data in smart cities, which is an approach to understand traffic environments. However, the number of vehicles in urban cities has grown rapidly, reaching hundreds of thousands in number. Accessing the mass streaming data of vehicles is hard and takes a long time due to limited computation capability and backward modes. We propose an efficient streaming spatio-temporal data access based on Apache Storm (ESDAS) to achieve real-time streaming data access and data cleaning. As a popular streaming data processing tool, Apache Storm can be applied to streaming mass data access and real time data cleaning. By designing the Spout/bolt workflow of topology in ESDAS and by developing the speeding bolt and other bolts, Apache Storm can achieve the prospective aim. In our experiments, Taiyuan BeiDou bus location data is selected as the mass spatio-temporal data source. In the experiments, the data access results with different bolts are shown in map form, and the filtered buses' aggregation forms are different. In terms of performance evaluation, the consumption time in ESDAS for ten thousand records per second for a speeding bolt is approximately 300 milliseconds, and that for MongoDB is approximately 1300 milliseconds. The efficiency of ESDAS is approximately three times higher than that of MongoDB.

  17. Efficient Streaming Mass Spatio-Temporal Vehicle Data Access in Urban Sensor Networks Based on Apache Storm

    Directory of Open Access Journals (Sweden)

    Lianjie Zhou

    2017-04-01

    Full Text Available The efficient data access of streaming vehicle data is the foundation of analyzing, using and mining vehicle data in smart cities, which is an approach to understand traffic environments. However, the number of vehicles in urban cities has grown rapidly, reaching hundreds of thousands in number. Accessing the mass streaming data of vehicles is hard and takes a long time due to limited computation capability and backward modes. We propose an efficient streaming spatio-temporal data access based on Apache Storm (ESDAS to achieve real-time streaming data access and data cleaning. As a popular streaming data processing tool, Apache Storm can be applied to streaming mass data access and real time data cleaning. By designing the Spout/bolt workflow of topology in ESDAS and by developing the speeding bolt and other bolts, Apache Storm can achieve the prospective aim. In our experiments, Taiyuan BeiDou bus location data is selected as the mass spatio-temporal data source. In the experiments, the data access results with different bolts are shown in map form, and the filtered buses’ aggregation forms are different. In terms of performance evaluation, the consumption time in ESDAS for ten thousand records per second for a speeding bolt is approximately 300 milliseconds, and that for MongoDB is approximately 1300 milliseconds. The efficiency of ESDAS is approximately three times higher than that of MongoDB.

  18. Detecting the Disruption of Dark-Matter Halos with Stellar Streams.

    Science.gov (United States)

    Bovy, Jo

    2016-03-25

    Narrow stellar streams in the Milky Way halo are uniquely sensitive to dark-matter subhalos, but many of these subhalos may be tidally disrupted. I calculate the interaction between stellar and dark-matter streams using analytical and N-body calculations, showing that disrupting objects can be detected as low-concentration subhalos. Through this effect, we can constrain the lumpiness of the halo as well as the orbit and present position of individual dark-matter streams. This will have profound implications for the formation of halos and for direct- and indirect-detection dark-matter searches.

  19. Morphology of a Wetland Stream

    Science.gov (United States)

    Jurmu; Andrle

    1997-11-01

    / Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg

  20. Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices.

    Science.gov (United States)

    Lei, Junjun; Glynne-Jones, Peter; Hill, Martyn

    2013-06-07

    In acoustofluidic manipulation and sorting devices, Rayleigh streaming flows are typically found in addition to the acoustic radiation forces. However, experimental work from various groups has described acoustic streaming that occurs in planar devices in a plane parallel to the transducer face. This is typically a four-quadrant streaming pattern with the circulation parallel to the transducer. Understanding its origins is essential for creating designs that limit or control this phenomenon. The cause of this kind of streaming pattern has not been previously explained as it is different from the well-known classical streaming patterns such as Rayleigh streaming and Eckart streaming, whose circulation planes are generally perpendicular to the face of the acoustic transducer. In order to gain insight into these patterns we present a numerical method based on Nyborg's limiting velocity boundary condition that includes terms ignored in the Rayleigh analysis, and verify its predictions against experimental PIV results in a simple device. The results show that the modelled particle trajectories match those found experimentally. Analysis of the dominant terms in the driving equations shows that the origin of this kind of streaming pattern is related to the circulation of the acoustic intensity.

  1. Fish movement in an Atlantic Forest stream

    Directory of Open Access Journals (Sweden)

    Rosana Mazzoni

    2018-03-01

    Full Text Available ABSTRACT Given the importance of fish movement to the dynamics and maintenance of stream dwelling fish communities from the Atlantic Forest, we analysed patterns of fish movement in a coastal stream from Southeastern Brazil, using mark-recapture technique. Displacement distance of each species were presented and discussed considering seasonal (rainy and dry and body size patterns. We marked 10 species along the stream and recaptured 440 (34.6% of the 1,270 marked fishes. The species with significant number of upstream moving individuals were Astyanax janeiroensis, Characidium interruptum, Astyanax hastatus, Parotocinclus maculicauda and Awaous tajasica. Only Pimelodella lateristriga presented significant differences between resident and moving individuals. Characidium interruptum and A. tajasica demonstrated greater downstream and upstream movement, respectively, moving up to 2,100 m. Even after controlling for species identity we found no significant correlation between fish length and individual displacement distance. Fishes moved longer distances during the rainy season, in accordance to the breeding season. Patterns of fish movement were in agreement to life-history traits of many of the studied species and can be reflecting specific behaviour and morphologies.

  2. Human impacts to mountain streams

    Science.gov (United States)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  3. Heavy metals in Pantanoso and Miguelete small stream

    International Nuclear Information System (INIS)

    Odino, R.; Delmonte, D.; Feola, G.; Velez, A.; Cacho, C.

    1998-01-01

    The streams Miguelete and Pantanoso in the city of Montevideo present high levels of organic and inorganic contamination. The main causes of this deterioration are: old and inadequate reparation systems and the contamination is generated by the pokers and the industry. The tanneries and laundries of wools are the highly pollutant industries. The analytic technique applied is the Fluorescence of Rays x Dispersiva in Energy (EDFRX). In the two streams a marked relationship between the levels of heavy metals and the distribution of the industries responsible for the contamination was observed. A study of the enrichment of Pb,Cu, Zn and Cr in the sediments exists. Levels of Chromium in the Pantanoso Stream is very high due to the existence of three tanneries [es

  4. Sampling methods for amphibians in streams in the Pacific Northwest.

    Science.gov (United States)

    R. Bruce Bury; Paul Stephen. Corn

    1991-01-01

    Methods describing how to sample aquatic and semiaquatic amphibians in small streams and headwater habitats in the Pacific Northwest are presented. We developed a technique that samples 10-meter stretches of selected streams, which was adequate to detect presence or absence of amphibian species and provided sample sizes statistically sufficient to compare abundance of...

  5. The physics of the relativistic counter-streaming instability that drives mass inflation inside black holes

    International Nuclear Information System (INIS)

    Hamilton, Andrew J.S.; Avelino, Pedro P.

    2010-01-01

    If you fall into a real astronomical black hole (choosing a supermassive black hole, to make sure that the tidal forces do not get you first), then you will probably meet your fate not at a central singularity, but rather in the exponentially growing, relativistic counter-streaming instability at the inner horizon first pointed out by Poisson and Israel (1990), who called it mass inflation. The chief purpose of this paper is to present a clear exposition of the physical cause and consequence of inflation in spherical, charged black holes. Inflation acts like a particle accelerator in that it accelerates cold ingoing and outgoing streams through each other to prodigiously high energies. Inflation feeds on itself: the acceleration is powered by the gravity produced by the streaming energy. The paper: (1) uses physical arguments to develop simple approximations that follow the evolution of inflation from ignition, through inflation itself, to collapse; (2) confirms that the simple approximations capture accurately the results of fully nonlinear one- and two-fluid self-similar models; (3) demonstrates that, counter-intuitively, the smaller the accretion rate, the more rapidly inflation exponentiates; (4) shows that in single perfect fluid models, inflation occurs only if the sound speed equals the speed of light, supporting the physical idea that inflation in single fluids is driven by relativistic counter-streaming of waves; (5) shows that what happens during inflation up to the Planck curvature depends not on the distant past or future, but rather on events happening only a few hundred black hole crossing times into the past or future; (6) shows that, if quantum gravity does not intervene, then the generic end result of inflation is not a general relativistic null singularity, but rather a spacelike singularity at zero radius.

  6. Continuous-Flow Detector for Rapid Pathogen Identification

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Louise M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Skulan, Andrew J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Singh, Anup K. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Cummings, Eric B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Fiechtner, Gregory J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics

    2006-09-01

    This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit from the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).

  7. Interactive collision detection for deformable models using streaming AABBs.

    Science.gov (United States)

    Zhang, Xinyu; Kim, Young J

    2007-01-01

    We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB

  8. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    Science.gov (United States)

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  9. Stream Deniable-Encryption Algorithms

    Directory of Open Access Journals (Sweden)

    N.A. Moldovyan

    2016-04-01

    Full Text Available A method for stream deniable encryption of secret message is proposed, which is computationally indistinguishable from the probabilistic encryption of some fake message. The method uses generation of two key streams with some secure block cipher. One of the key streams is generated depending on the secret key and the other one is generated depending on the fake key. The key streams are mixed with the secret and fake data streams so that the output ciphertext looks like the ciphertext produced by some probabilistic encryption algorithm applied to the fake message, while using the fake key. When the receiver or/and sender of the ciphertext are coerced to open the encryption key and the source message, they open the fake key and the fake message. To disclose their lie the coercer should demonstrate possibility of the alternative decryption of the ciphertext, however this is a computationally hard problem.

  10. CAMS: OLAPing Multidimensional Data Streams Efficiently

    Science.gov (United States)

    Cuzzocrea, Alfredo

    In the context of data stream research, taming the multidimensionality of real-life data streams in order to efficiently support OLAP analysis/mining tasks is a critical challenge. Inspired by this fundamental motivation, in this paper we introduce CAMS (C ube-based A cquisition model for M ultidimensional S treams), a model for efficiently OLAPing multidimensional data streams. CAMS combines a set of data stream processing methodologies, namely (i) the OLAP dimension flattening process, which allows us to obtain dimensionality reduction of multidimensional data streams, and (ii) the OLAP stream aggregation scheme, which aggregates data stream readings according to an OLAP-hierarchy-based membership approach. We complete our analytical contribution by means of experimental assessment and analysis of both the efficiency and the scalability of OLAPing capabilities of CAMS on synthetic multidimensional data streams. Both analytical and experimental results clearly connote CAMS as an enabling component for next-generation Data Stream Management Systems.

  11. Synchronized Multimedia Streaming on the iPhone Platform with Network Coding

    DEFF Research Database (Denmark)

    Vingelmann, Peter; Fitzek, Frank; Pedersen, Morten Videbæk

    2011-01-01

    on the iPhone that use point-to-point architectures. After acknowledging their limitations, we propose a solution based on network coding to efficiently and reliably deliver the multimedia content to many devices in a synchronized manner. Then we introduce an application that implements this technique......This work presents the implementation of synchronized multimedia streaming for the Apple iPhone platform. The idea is to stream multimedia content from a single source to multiple receivers with direct or multihop connections to the source. First we look into existing solutions for video streaming...... on the iPhone. We also present our testbed, which consists of 16 iPod Touch devices to showcase the capabilities of our application....

  12. Enhancing creative cognition with a rapid right-parietal neurofeedback procedure.

    Science.gov (United States)

    Agnoli, Sergio; Zanon, Marco; Mastria, Serena; Avenanti, Alessio; Corazza, Giovanni Emanuele

    2018-02-14

    The present article describes an innovative neurofeedback training (NFT) procedure aimed at increasing creative cognition through the enhancement of specific brain activities previously associated with divergent thinking. We designed and tested two NFT protocols based on training alpha and beta EEG oscillations selectively measured over the right parietal region. A total of 80 participants were involved, 40 in the alpha NFT protocol and 40 in the beta NFT protocol. The NFT loop was closed on a video stream that would advance only when oscillation power exceeded a normalized threshold. The total duration of the protocol was two hours in a single day, hence its classification as rapid. Changes in ideational fluency and originality, measured with a divergent thinking task, were compared between participants receiving real video feedback and participants receiving sham feedback. We controlled for individual differences in creative achievement level. Results showed that the protocols were effective at enhancing alpha and beta activities in the targeted area. Differences between the two protocols emerged in their effectiveness at promoting divergent thinking. While no significant changes in originality resulted from the rapid alpha NFT, increases in both originality and fluency emerged as a consequence of the rapid beta NFT. These results were particularly evident in participants starting with a low creative achievement level. Possible interpretations and future directions are proposed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Asynchronous stream processing with S-Net

    NARCIS (Netherlands)

    Grelck, C.; Scholz, S.-B.; Shafarenko, A.

    2010-01-01

    We present the rationale and design of S-Net, a coordination language for asynchronous stream processing. The language achieves a near-complete separation between the application code, written in any conventional programming language, and the coordination/communication code written in S-Net. Our

  14. PLASMA EMISSION BY COUNTER-STREAMING ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Petruzzellis, L. T.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2016-02-10

    The radiation emission mechanism responsible for both type-II and type-III solar radio bursts is commonly accepted as plasma emission. Recently Ganse et al. suggested that type-II radio bursts may be enhanced when the electron foreshock geometry of a coronal mass ejection contains a double hump structure. They reasoned that the counter-streaming electron beams that exist between the double shocks may enhance the nonlinear coalescence interaction, thereby giving rise to more efficient generation of radiation. Ganse et al. employed a particle-in-cell simulation to study such a scenario. The present paper revisits the same problem with EM weak turbulence theory, and show that the fundamental (F) emission is not greatly affected by the presence of counter-streaming beams, but the harmonic (H) emission becomes somewhat more effective when the two beams are present. The present finding is thus complementary to the work by Ganse et al.

  15. Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization.

    Science.gov (United States)

    Woodhouse, Francis G; Goldstein, Raymond E

    2013-08-27

    Many cells exhibit large-scale active circulation of their entire fluid contents, a process termed cytoplasmic streaming. This phenomenon is particularly prevalent in plant cells, often presenting strikingly regimented flow patterns. The driving mechanism in such cells is known: myosin-coated organelles entrain cytoplasm as they process along actin filament bundles fixed at the periphery. Still unknown, however, is the developmental process that constructs the well-ordered actin configurations required for coherent cell-scale flow. Previous experimental works on streaming regeneration in cells of Characean algae, whose longitudinal flow is perhaps the most regimented of all, hint at an autonomous process of microfilament self-organization driving the formation of streaming patterns during morphogenesis. Working from first principles, we propose a robust model of streaming emergence that combines motor dynamics with both microscopic and macroscopic hydrodynamics to explain how several independent processes, each ineffectual on its own, can reinforce to ultimately develop the patterns of streaming observed in the Characeae and other streaming species.

  16. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa

    International Nuclear Information System (INIS)

    Polidoro, Beth A.; Comeros-Raynal, Mia T.; Cahill, Thomas; Clement, Cassandra

    2017-01-01

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. - Highlights: • Several coastal stream sediments in American Samoa are high in lead and mercury. • Organophosphate pesticides, including Parathion, are present in coastal streams. • More research is needed on the sources, fate and impacts of these contaminants.

  17. Three-dimensional model of corotating streams in the solar wind 3. Magnetohydrodynamic streams

    International Nuclear Information System (INIS)

    Pizzo, V.J.

    1982-01-01

    The focus of this paper is two-fold: (1) to examine how the presence of the spiral magnetic field affects the evolution of interplanetary corotating solar wind streams, and (2) to ascertain the nature of secondary large-scale phenomena likely to be associated with streams having a pronounced three-dimensional (3-D) structure. The dynamics are presumed to be governed by the nonlinear polytropic, single-fluid, 3-D MHD equations. Solutions are obtained with an explicit, Eulerian, finite differences technique that makes use of a simple form of artificial diffusion for handling shocks. For smooth axisymmetric flows, the picture of magnetically induced meridional motions previously established by linear models requires only minor correction. In the case of broad 3-D streams input near the sun, inclusion of the magnetic field is found to retard the kinematic steepening at the stream front substantially but to produce little deviation from planar flow. For the more realistic case of initially sharply bounded streams, however, it becomes essential to account for magnetic effects in the formulation. Whether a full 3-D treatment is required depends upon the latitudinal geometry of the stream

  18. Cytoplasmic Streaming in the Drosophila Oocyte.

    Science.gov (United States)

    Quinlan, Margot E

    2016-10-06

    Objects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.

  19. Identifying Watershed, Landscape, and Engineering Design Factors that Influence the Biotic Condition of Restored Streams

    Directory of Open Access Journals (Sweden)

    Barbara Doll

    2016-04-01

    Full Text Available Restored stream reaches at 79 sites across North Carolina were sampled for aquatic macroinvertebrates using a rapid bioassessment protocol. Morphological design parameters and geographic factors, including watershed and landscape parameters (e.g., valley slope, substrate, were also compiled for these streams. Principal component regression analyses revealed correlations between design and landscape variables with macroinvertebrate metrics. The correlations were strengthened by adding watershed variables. Ridge regression was used to find the best-fit model for predicting dominant taxa from the “pollution sensitive” orders of Ephemeroptera (mayflies, Plecoptera (stoneflies, and Trichoptera (caddisflies, or EPT taxa, resulting in coefficient weights that were most interpretable relative to site selection and design parameters. Results indicate that larger (wider streams located in the mountains and foothills where there are steeper valleys, larger substrate, and undeveloped watersheds are expected to have higher numbers of dominant EPT taxa. In addition, EPT taxa numbers are positively correlated with accessible floodplain width and negatively correlated with width-to-depth ratio and sinuosity. This study indicates that both site selection and design should be carefully considered in order to maximize the resulting biotic condition and associated potential ecological uplift of the stream.

  20. In-stream Physical Heterogeneity, Rainfall Aided Flushing, and Discharge on Stream Water Quality.

    Science.gov (United States)

    Gomes, Pattiyage I A; Wai, Onyx W H

    2015-08-01

    Implications of instream physical heterogeneity, rainfall-aided flushing, and stream discharge on water quality control have been investigated in a headwater stream of a climatic region that has contrasting dry and wet seasons. Dry (low flow) season's physical heterogeneity showed a positive correlation with good water quality. However, in the wet season, physical heterogeneity showed minor or no significance on water quality variations. Furthermore, physical heterogeneity appeared to be more complementary with good water quality subsequent to rainfall events. In many cases stream discharge was a reason for poor water quality. For the dry season, graywater inputs to the stream could be held responsible. In the wet season, it was probably the result of catchment level disturbances (e.g., regulation of ephemeral freshwater paths). Overall, this study revealed the importance of catchment-based approaches on water quality improvement in tandem with in-stream approaches framed on a temporal scale.

  1. Stream II-V5: Revision Of Stream II-V4 To Account For The Effects Of Rainfall Events

    International Nuclear Information System (INIS)

    Chen, K.

    2010-01-01

    STREAM II-V4 is the aqueous transport module currently used by the Savannah River Site emergency response Weather Information Display (WIND) system. The transport model of the Water Quality Analysis Simulation Program (WASP) was used by STREAM II to perform contaminant transport calculations. WASP5 is a US Environmental Protection Agency (EPA) water quality analysis program that simulates contaminant transport and fate through surface water. STREAM II-V4 predicts peak concentration and peak concentration arrival time at downstream locations for releases from the SRS facilities to the Savannah River. The input flows for STREAM II-V4 are derived from the historical flow records measured by the United States Geological Survey (USGS). The stream flow for STREAM II-V4 is fixed and the flow only varies with the month in which the releases are taking place. Therefore, the effects of flow surge due to a severe storm are not accounted for by STREAM II-V4. STREAM II-V4 has been revised to account for the effects of a storm event. The steps used in this method are: (1) generate rainfall hyetographs as a function of total rainfall in inches (or millimeters) and rainfall duration in hours; (2) generate watershed runoff flow based on the rainfall hyetographs from step 1; (3) calculate the variation of stream segment volume (cross section) as a function of flow from step 2; (4) implement the results from steps 2 and 3 into the STREAM II model. The revised model (STREAM II-V5) will find the proper stream inlet flow based on the total rainfall and rainfall duration as input by the user. STREAM II-V5 adjusts the stream segment volumes (cross sections) based on the stream inlet flow. The rainfall based stream flow and the adjusted stream segment volumes are then used for contaminant transport calculations.

  2. Dating base flow in streams using dissolved gases and diurnal temperature changes

    Science.gov (United States)

    Sanford, Ward E.; Casile, Gerolamo C.; Haase, Karl B.

    2015-01-01

    A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12–14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.

  3. Stream Clustering of Growing Objects

    Science.gov (United States)

    Siddiqui, Zaigham Faraz; Spiliopoulou, Myra

    We study incremental clustering of objects that grow and accumulate over time. The objects come from a multi-table stream e.g. streams of Customer and Transaction. As the Transactions stream accumulates, the Customers’ profiles grow. First, we use an incremental propositionalisation to convert the multi-table stream into a single-table stream upon which we apply clustering. For this purpose, we develop an online version of K-Means algorithm that can handle these swelling objects and any new objects that arrive. The algorithm also monitors the quality of the model and performs re-clustering when it deteriorates. We evaluate our method on the PKDD Challenge 1999 dataset.

  4. THE USE OF RADIOISOTOPES IN ON-STREAM ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Haffner, James W.

    1963-09-15

    A wide variety of radioisotope techniques is presently in use for on- stream measurements. Among these are gages to measure thickness, density, viscosity, dilution, volume, velocity, and level. A few unique combinations of the above techniques are also detailed--a mass-flow gage, a beryllium-in-air monitor, and a double thickness/double density gage. Several available on-stream techniques utilizing neutrons, which have not been fully exploited, are discussed, including neutron inelastic scattering, neutron thermalization, neutron capture, and neutron activation. (auth)

  5. Site investigation SFR. Vegetation in streams in the Forsmark area

    International Nuclear Information System (INIS)

    Andersson, Eva; Aquilonius, Karin; Sivars Becker, Lena; Borgiel, Mikael

    2011-09-01

    The streams in the model area of Forsmark have previously been thoroughly investigated regarding water chemistry, hydrology, bottom substrate, flooding, percentage coverage of macrophytes and fish migration. Retention of radionuclides in a stream ecosystem is assumed to occur by sorption to sediments or by uptake of radionuclides by macrophytes and it is therefore of interest to know the biomass and production of macrophytes in the streams included in a safety assessment. The general aim of this study was to examine the relation between biomass and the percentage cover of vegetation in streams in the Forsmark area. In this study streams within and nearby the candidate area in Forsmark was investigated. The somewhat larger streams Forsmarksaan and Olandsaan nearby the candidate area, are assumed to be more similar to future streams developing in Forsmark due to landrise, than the smaller streams present in the candidate area today. In total 22 vegetation samples were gathered in order to estimate the biomass at the sites. Percentage coverage of macrophytes, and dominating species were noted and the above ground macrophytes were sampled for biomass analysis. In the smaller streams, the biomass varied between 6 and almost 358 g dry weight per square metre. In the larger streams, the dry biomass varied between 0 and 247 g dry weight per square meter. There were no significant difference between macrophyte biomass in smaller and the larger stream. In total 13 macrophyte species were found. The biomass dry weight at 100% covering degree varied depending on macrophyte species. Although this was a rather small study, it is evident that the biomasses do vary a wide range between sampling squares in the area. However, although it may be difficult to use this data set to estimate the biomass in a specific square meter in the stream section, the relation between biomass weight and covering degree is sufficient to be used when fitting biomass to macrophyte coverage for entire

  6. Site investigation SFR. Vegetation in streams in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Eva (Svensk Nuclear Fuel and Waste Management Co. (Sweden)); Aquilonius, Karin; Sivars Becker, Lena (Studsvik Nuclear AB (Sweden)); Borgiel, Mikael (Sveriges Vattenekologer AB (Sweden))

    2011-09-15

    The streams in the model area of Forsmark have previously been thoroughly investigated regarding water chemistry, hydrology, bottom substrate, flooding, percentage coverage of macrophytes and fish migration. Retention of radionuclides in a stream ecosystem is assumed to occur by sorption to sediments or by uptake of radionuclides by macrophytes and it is therefore of interest to know the biomass and production of macrophytes in the streams included in a safety assessment. The general aim of this study was to examine the relation between biomass and the percentage cover of vegetation in streams in the Forsmark area. In this study streams within and nearby the candidate area in Forsmark was investigated. The somewhat larger streams Forsmarksaan and Olandsaan nearby the candidate area, are assumed to be more similar to future streams developing in Forsmark due to landrise, than the smaller streams present in the candidate area today. In total 22 vegetation samples were gathered in order to estimate the biomass at the sites. Percentage coverage of macrophytes, and dominating species were noted and the above ground macrophytes were sampled for biomass analysis. In the smaller streams, the biomass varied between 6 and almost 358 g dry weight per square metre. In the larger streams, the dry biomass varied between 0 and 247 g dry weight per square meter. There were no significant difference between macrophyte biomass in smaller and the larger stream. In total 13 macrophyte species were found. The biomass dry weight at 100% covering degree varied depending on macrophyte species. Although this was a rather small study, it is evident that the biomasses do vary a wide range between sampling squares in the area. However, although it may be difficult to use this data set to estimate the biomass in a specific square meter in the stream section, the relation between biomass weight and covering degree is sufficient to be used when fitting biomass to macrophyte coverage for entire

  7. Battling memory requirements of array programming through streaming

    DEFF Research Database (Denmark)

    Kristensen, Mads Ruben Burgdorff; Avery, James Emil; Blum, Troels

    2016-01-01

    A barrier to efficient array programming, for example in Python/NumPy, is that algorithms written as pure array operations completely without loops, while most efficient on small input, can lead to explosions in memory use. The present paper presents a solution to this problem using array streaming......, implemented in the automatic parallelization high-performance framework Bohrium. This makes it possible to use array programming in Python/NumPy code directly, even when the apparent memory requirement exceeds the machine capacity, since the automatic streaming eliminates the temporary memory overhead...... by performing calculations in per-thread registers. Using Bohrium, we automatically fuse, JIT-compile, and execute NumPy array operations on GPGPUs without modification to the user programs. We present performance evaluations of three benchmarks, all of which show dramatic reductions in memory use from...

  8. Electrogravitational stability of oscillating streaming fluid cylinder

    International Nuclear Information System (INIS)

    Hasan, Alfaisal A.

    2011-01-01

    The electrogravitational instability of on oscillating streaming fluid cylinder under the action of the selfgravitating, capillary and electrodynamic forces has been discussed. The model is governed by the Mathieu second order integro-differential equation. Some limiting cases are recovering from the present general one. The capillary force is destabilizing in a small axisymmetric domain 0< x<1 and stabilizing otherwise. In the absence of electric fields, we found that the model is unstable in a small domain while it is selfgravitating stable in all other domains. The presence of the electric field led to the presence of a great number of stable waves. The electric field has a strong stabilizing influence on the selfgravitating instability of the model. The capillary force has a strong destabilizing influence on the selfgravitating instability of the model. Generally, the uniform stream supports the unstable waves, while the oscillating streaming has stability tendency.

  9. Stream temperature investigations: field and analytic methods

    Science.gov (United States)

    Bartholow, J.M.

    1989-01-01

    This document provides guidance to the user of the U.S. Fish and Wildlife Service’s Stream Network Temperature Model (SNTEMP). Planning a temperature study is discussed in terms of understanding the management objectives and ensuring that the questions will be accurately answered with the modeling approach being used. A sensitivity analysis of SNTEMP is presented to illustrate which input variables are most important in predicting stream temperatures. This information helps prioritize data collection activities, highlights the need for quality control, focuses on which parameters can be estimated rather than measured, and offers a broader perspective on management options in terms of knowing where the biggest temperature response will be felt. All of the major input variables for stream geometry, meteorology, and hydrology are discussed in detail. Each variable is defined, with guidance given on how to measure it, what kind of equipment to use, where to obtain it from another agency, and how to calculate it if the data are in a form other than that required by SNTEMP. Examples are presented for the various forms in which water temperature, discharge, and meteorological data are commonly found. Ranges of values for certain input variables that are difficult to measure of estimate are given. Particular attention is given to those variables not commonly understood by field biologists likely to be involved in a stream temperature study. Pertinent literature is cited for each variable, with emphasis on how other people have treated particular problems and on results they have found.

  10. The ventral stream offers more affordance and the dorsal stream more memory than believed

    NARCIS (Netherlands)

    Postma, Albert; van der Lubbe, Robert Henricus Johannes; Zuidhoek, Sander

    2002-01-01

    Opposed to Norman's proposal, processing of affordance is likely to occur not solely in the dorsal stream but also in the ventral stream. Moreover, the dorsal stream might do more than just serve an important role in motor actions. It supports egocentric location coding as well. As such, it would

  11. The role of remediation, natural alkalinity sources and physical stream parameters in stream recovery.

    Science.gov (United States)

    Kruse, Natalie A; DeRose, Lisa; Korenowsky, Rebekah; Bowman, Jennifer R; Lopez, Dina; Johnson, Kelly; Rankin, Edward

    2013-10-15

    Acid mine drainage (AMD) negatively impacts not only stream chemistry, but also aquatic biology. The ultimate goal of AMD treatment is restoration of the biological community, but that goal is rarely explicit in treatment system design. Hewett Fork in Raccoon Creek Watershed, Ohio, has been impacted by historic coal mining and has been treated with a calcium oxide doser in the headwaters of the watershed since 2004. All of the acidic inputs are isolated to a 1.5 km stretch of stream in the headwaters of the Hewett Fork watershed. The macroinvertebrate and fish communities have begun to recover and it is possible to distinguish three zones downstream of the doser: an impaired zone, a transition zone and a recovered zone. Alkalinity from both the doser and natural sources and physical stream parameters play a role in stream restoration. In Hewett Fork, natural alkaline additions downstream are higher than those from the doser. Both, alkaline additions and stream velocity drive sediment and metal deposition. Metal deposition occurs in several patterns; aluminum tends to deposit in regions of low stream velocity, while iron tends to deposit once sufficient alkalinity is added to the system downstream of mining inputs. The majority of metal deposition occurs upstream of the recovered zone. Both the physical stream parameters and natural alkalinity sources influence biological recovery in treated AMD streams and should be considered in remediation plans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A Streaming Language Implementation of the Discontinuous Galerkin Method

    Science.gov (United States)

    Barth, Timothy; Knight, Timothy

    2005-01-01

    We present a Brook streaming language implementation of the 3-D discontinuous Galerkin method for compressible fluid flow on tetrahedral meshes. Efficient implementation of the discontinuous Galerkin method using the streaming model of computation introduces several algorithmic design challenges. Using a cycle-accurate simulator, performance characteristics have been obtained for the Stanford Merrimac stream processor. The current Merrimac design achieves 128 Gflops per chip and the desktop board is populated with 16 chips yielding a peak performance of 2 Teraflops. Total parts cost for the desktop board is less than $20K. Current cycle-accurate simulations for discretizations of the 3-D compressible flow equations yield approximately 40-50% of the peak performance of the Merrimac streaming processor chip. Ongoing work includes the assessment of the performance of the same algorithm on the 2 Teraflop desktop board with a target goal of achieving 1 Teraflop performance.

  13. Interactive real-time media streaming with reliable communication

    Science.gov (United States)

    Pan, Xunyu; Free, Kevin M.

    2014-02-01

    Streaming media is a recent technique for delivering multimedia information from a source provider to an end- user over the Internet. The major advantage of this technique is that the media player can start playing a multimedia file even before the entire file is transmitted. Most streaming media applications are currently implemented based on the client-server architecture, where a server system hosts the media file and a client system connects to this server system to download the file. Although the client-server architecture is successful in many situations, it may not be ideal to rely on such a system to provide the streaming service as users may be required to register an account using personal information in order to use the service. This is troublesome if a user wishes to watch a movie simultaneously while interacting with a friend in another part of the world over the Internet. In this paper, we describe a new real-time media streaming application implemented on a peer-to-peer (P2P) architecture in order to overcome these challenges within a mobile environment. When using the peer-to-peer architecture, streaming media is shared directly between end-users, called peers, with minimal or no reliance on a dedicated server. Based on the proposed software pɛvμa (pronounced [revma]), named for the Greek word meaning stream, we can host a media file on any computer and directly stream it to a connected partner. To accomplish this, pɛvμa utilizes the Microsoft .NET Framework and Windows Presentation Framework, which are widely available on various types of windows-compatible personal computers and mobile devices. With specially designed multi-threaded algorithms, the application can stream HD video at speeds upwards of 20 Mbps using the User Datagram Protocol (UDP). Streaming and playback are handled using synchronized threads that communicate with one another once a connection is established. Alteration of playback, such as pausing playback or tracking to a

  14. Time course of auditory streaming: Do CI users differ from normal-hearing listeners?

    Directory of Open Access Journals (Sweden)

    Martin eBöckmann-Barthel

    2014-07-01

    Full Text Available In a complex acoustical environment with multiple sound sources the auditory system uses streaming as a tool to organize the incoming sounds in one or more streams depending on the stimulus parameters. Streaming is commonly studied by alternating sequences of signals. These are often tones with different frequencies. The present study investigates stream segregation in cochlear implant (CI users, where hearing is restored by electrical stimulation of the auditory nerve. CI users listened to 30-s long sequences of alternating A and B harmonic complexes at four different fundamental frequency separations, ranging from 2 to 14 semitones. They had to indicate as promptly as possible after sequence onset, if they perceived one stream or two streams and, in addition, any changes of the percept throughout the rest of the sequence. The conventional view is that the initial percept is always that of a single stream which may after some time change to a percept of two streams. This general build-up hypothesis has recently been challenged on the basis of a new analysis of data of normal-hearing listeners which showed a build-up response only for an intermediate frequency separation. Using the same experimental paradigm and analysis, the present study found that the results of CI users agree with those of the normal-hearing listeners: (i the probability of the first decision to be a one-stream percept decreased and that of a two-stream percept increased as Δf increased, and (ii a build-up was only found for 6 semitones. Only the time elapsed before the listeners made their first decision of the percept was prolonged as compared to normal-hearing listeners. The similarity in the data of the CI user and the normal-hearing listeners indicates that the quality of stream formation is similar in these groups of listeners.

  15. Large-scale environmental controls on microbial biofilms in high-alpine streams

    Directory of Open Access Journals (Sweden)

    T. J. Battin

    2004-01-01

    Full Text Available Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater geochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal, groundwater-fed (krenal and snow-fed (rhithral streams - all of them representative for alpine stream networks - and present evidence that these hydrologic and hydrogeochemical factors differentially affect sediment microbial biofilms. Average microbial biomass and bacterial carbon production were low in the glacial streams, whereas bacterial cell size, biomass, and carbon production were higher in the tributaries, most notably in the krenal stream. Whole-cell in situ fluorescence hybridization revealed reduced detection rates of the Eubacteria and higher abundance of α-Proteobacteria in the glacial stream, a pattern that most probably reflects the trophic status of this ecosystem. Our data suggest low flow during the onset of snowmelt and autumn as a short period (hot moment of favorable environmental conditions with pulsed inputs of allochthonous nitrate and dissolved organic carbon, and with disproportionately high microbial growth. Tributaries are relatively more constant and favorable environments than kryal streams, and serve as possible sources of microbes and organic matter to the main glacial channel during periods (e.g., snowmelt of elevated hydrologic linkage among streams. Ice and snow dynamics - and their impact on the amount and composition of dissolved organic matter - have a crucial impact on stream biofilms, and we thus need to consider microbes and critical hydrological episodes in future models of alpine stream communities.

  16. The long term response of stream flow to climatic warming in headwater streams of interior Alaska

    Science.gov (United States)

    Jeremy B. Jones; Amanda J. Rinehart

    2010-01-01

    Warming in the boreal forest of interior Alaska will have fundamental impacts on stream ecosystems through changes in stream hydrology resulting from upslope loss of permafrost, alteration of availability of soil moisture, and the distribution of vegetation. We examined stream flow in three headwater streams of the Caribou-Poker Creeks Research Watershed (CPCRW) in...

  17. Simulation of acoustic streaming by means of the finite-difference time-domain method

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2012-01-01

    Numerical simulations of acoustic streaming generated by a standing wave in a narrow twodimensional cavity are presented. In this case, acoustic streaming arises from the viscous boundary layers set up at the surfaces of the walls. It is known that streaming vortices inside the boundary layer have...... directions of rotation that are opposite to those of the outer streaming vortices (Rayleigh streaming). The general objective of the work described in this paper has been to study the extent to which it is possible to simulate both the outer streaming vortices and the inner boundary layer vortices using...... the finite-difference time-domain method. To simplify the problem, thermal effects are not considered. The motivation of the described investigation has been the possibility of using the numerical method to study acoustic streaming, particularly under non-steady conditions. Results are discussed for channels...

  18. Factors influencing detection of eDNA from a stream-dwelling amphibian

    Science.gov (United States)

    Pilliod, David S.; Goldberg, Caren S.; Arkle, Robert S.; Waits, Lisette P.

    2013-01-01

    Environmental DNA (eDNA) methods for detecting and estimating abundance of aquatic species are emerging rapidly, but little is known about how processes such as secretion rate, environmental degradation, and time since colonization or extirpation from a given site affect eDNA measurements. Using stream-dwelling salamanders and quantitative PCR (qPCR) analysis, we conducted three experiments to assess eDNA: (i) production rate; (ii) persistence time under different temperature and light conditions; and (iii) detectability and concentration through time following experimental introduction and removal of salamanders into previously unoccupied streams. We found that 44–50 g individuals held in aquaria produced 77 ng eDNA/h for 2 h, after which production either slowed considerably or began to equilibrate with degradation. eDNA in both full-sun and shaded treatments degraded exponentially to 2) and when samples were collected within 5 m of the animals. Concentrations of eDNA detected were very low and increased steadily from 6–24 h after introduction, reaching 0.0022 ng/L. Within 1 h of removing salamanders from the stream, eDNA was no longer detectable. These results suggest that eDNA detectability and concentration depend on production rates of individuals, environmental conditions, density of animals, and their residence time.

  19. The Stream-Catchment (StreamCat) Dataset: A database of watershed metrics for the conterminous USA

    Science.gov (United States)

    We developed an extensive database of landscape metrics for ~2.65 million streams, and their associated catchments, within the conterminous USA: The Stream-Catchment (StreamCat) Dataset. These data are publically available and greatly reduce the specialized geospatial expertise n...

  20. Stream processing health card application.

    Science.gov (United States)

    Polat, Seda; Gündem, Taflan Imre

    2012-10-01

    In this paper, we propose a data stream management system embedded to a smart card for handling and storing user specific summaries of streaming data coming from medical sensor measurements and/or other medical measurements. The data stream management system that we propose for a health card can handle the stream data rates of commonly known medical devices and sensors. It incorporates a type of context awareness feature that acts according to user specific information. The proposed system is cheap and provides security for private data by enhancing the capabilities of smart health cards. The stream data management system is tested on a real smart card using both synthetic and real data.

  1. Leaf litter processing in West Virginia mountain streams: effects of temperature and stream chemistry

    Science.gov (United States)

    Jacquelyn M. Rowe; William B. Perry; Sue A. Perry

    1996-01-01

    Climate change has the potential to alter detrital processing in headwater streams, which receive the majority of their nutrient input as terrestrial leaf litter. Early placement of experimental leaf packs in streams, one month prior to most abscission, was used as an experimental manipulation to increase stream temperature during leaf pack breakdown. We studied leaf...

  2. Resonant Drag Instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities

    Science.gov (United States)

    Squire, Jonathan; Hopkins, Philip F.

    2018-04-01

    We identify and study a number of new, rapidly growing instabilities of dust grains in protoplanetary disks, which may be important for planetesimal formation. The study is based on the recognition that dust-gas mixtures are generically unstable to a Resonant Drag Instability (RDI), whenever the gas, absent dust, supports undamped linear modes. We show that the "streaming instability" is an RDI associated with epicyclic oscillations; this provides simple interpretations for its mechanisms and accurate analytic expressions for its growth rates and fastest-growing wavelengths. We extend this analysis to more general dust streaming motions and other waves, including buoyancy and magnetohydrodynamic oscillations, finding various new instabilities. Most importantly, we identify the disk "settling instability," which occurs as dust settles vertically into the midplane of a rotating disk. For small grains, this instability grows many orders of magnitude faster than the standard streaming instability, with a growth rate that is independent of grain size. Growth timescales for realistic dust-to-gas ratios are comparable to the disk orbital period, and the characteristic wavelengths are more than an order of magnitude larger than the streaming instability (allowing the instability to concentrate larger masses). This suggests that in the process of settling, dust will band into rings then filaments or clumps, potentially seeding dust traps, high-metallicity regions that in turn seed the streaming instability, or even overdensities that coagulate or directly collapse to planetesimals.

  3. Repetition blindness has a perceptual locus: evidence from online processing of targets in RSVP streams

    Science.gov (United States)

    Johnston, James C.; Hochhaus, Larry; Ruthruff, Eric

    2002-01-01

    Four experiments tested whether repetition blindness (RB; reduced accuracy reporting repetitions of briefly displayed items) is a perceptual or a memory-recall phenomenon. RB was measured in rapid serial visual presentation (RSVP) streams, with the task altered to reduce memory demands. In Experiment 1 only the number of targets (1 vs. 2) was reported, eliminating the need to remember target identities. Experiment 2 segregated repeated and nonrepeated targets into separate blocks to reduce bias against repeated targets. Experiments 3 and 4 required immediate "online" buttonpress responses to targets as they occurred. All 4 experiments showed very strong RB. Furthermore, the online response data showed clearly that the 2nd of the repeated targets is the one missed. The present results show that in the RSVP paradigm, RB occurs online during initial stimulus encoding and decision making. The authors argue that RB is indeed a perceptual phenomenon.

  4. KDE-Track: An Efficient Dynamic Density Estimator for Data Streams

    KAUST Repository

    Qahtan, Abdulhakim Ali Ali; Wang, Suojin; Zhang, Xiangliang

    2016-01-01

    Recent developments in sensors, global positioning system devices and smart phones have increased the availability of spatiotemporal data streams. Developing models for mining such streams is challenged by the huge amount of data that cannot be stored in the memory, the high arrival speed and the dynamic changes in the data distribution. Density estimation is an important technique in stream mining for a wide variety of applications. The construction of kernel density estimators is well studied and documented. However, existing techniques are either expensive or inaccurate and unable to capture the changes in the data distribution. In this paper, we present a method called KDE-Track to estimate the density of spatiotemporal data streams. KDE-Track can efficiently estimate the density function with linear time complexity using interpolation on a kernel model, which is incrementally updated upon the arrival of new samples from the stream. We also propose an accurate and efficient method for selecting the bandwidth value for the kernel density estimator, which increases its accuracy significantly. Both theoretical analysis and experimental validation show that KDE-Track outperforms a set of baseline methods on the estimation accuracy and computing time of complex density structures in data streams.

  5. KDE-Track: An Efficient Dynamic Density Estimator for Data Streams

    KAUST Repository

    Qahtan, Abdulhakim Ali Ali

    2016-11-08

    Recent developments in sensors, global positioning system devices and smart phones have increased the availability of spatiotemporal data streams. Developing models for mining such streams is challenged by the huge amount of data that cannot be stored in the memory, the high arrival speed and the dynamic changes in the data distribution. Density estimation is an important technique in stream mining for a wide variety of applications. The construction of kernel density estimators is well studied and documented. However, existing techniques are either expensive or inaccurate and unable to capture the changes in the data distribution. In this paper, we present a method called KDE-Track to estimate the density of spatiotemporal data streams. KDE-Track can efficiently estimate the density function with linear time complexity using interpolation on a kernel model, which is incrementally updated upon the arrival of new samples from the stream. We also propose an accurate and efficient method for selecting the bandwidth value for the kernel density estimator, which increases its accuracy significantly. Both theoretical analysis and experimental validation show that KDE-Track outperforms a set of baseline methods on the estimation accuracy and computing time of complex density structures in data streams.

  6. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data.

    Science.gov (United States)

    Wallace, J Bruce; Eggert, Susan L; Meyer, Judy L; Webster, Jackson R

    2015-05-01

    Riparian habitats provide detrital subsidies of varying quantities and qualities to recipient ecosystems. We used long-term data from three reference streams (covering 24 stream-years) and 13-year whole-stream organic matter manipulations to investigate the influence of terrestrial detrital quantity and quality on benthic invertebrate community structure, abundance, biomass, and secondary production in rockface (RF) and mixed substrates (MS) of forested headwater streams. Using a mesh canopy covering the entire treatment stream, we examined effects of litter ex'clusion, small- and large-wood removal, and addition of artificial wood (PVC) and leaves of varying quality on organic matter standing crops and invertebrate community structure and function. We assessed differences in functional feeding group distribution between substrate types as influenced by organic matter manipulations and long-term patterns of predator and prey production in manipulated vs. reference years. Particulate organic matter standing crops in MS of the treatment stream declined drastically with each successive year of litter exclusion, approaching zero after three years. Monthly invertebrate biomass and annual secondary production was positively related to benthic organic matter in the MS habitats. Rockface habitats exhibited fewer changes than MS habitats across all organic matter manipulations. With leaf addition, the patterns of functional group distribution among MS and RF habitats returned to patterns seen in reference streams. Secondary production per unit organic matter standing crop was greatest for the leaf addition period, followed by the reference streams, and significantly less for the litter exclusion and wood removal periods. These data indicate that the limited organic matter remaining in the stream following litter exclusion and wood removal was more refractory than that in the reference streams, whereas the added leaf material was more labile and readily converted into

  7. Effects of anthropogenic silt on aquatic macroinvertebrates and abiotic variables in streams in the Brazilian Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Couceiro, Sheyla Regina Marques; Hamada, Neusa [Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Entomologia, Manaus, AM (Brazil); Forsberg, Bruce Rider [Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Entomologia, Manaus, AM (Brazil); Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Ecologia, Manaus, AM (Brazil); Padovesi-Fonseca, Claudia [Univ. de Brasilia, Dept. de Ecologia, Brasilia, DF (Brazil)

    2010-01-15

    on stream beds. The reddish color of SIS in impacted streams reflects terrestrial erosion and indicates the rapid flow of suspended sediments through these reaches, impacting macroinvertebrate richness, density, and species composition. Conclusions: Anthropogenic suspended silt has had a significant negative impact on aquatic macroinvertebrate diversity and density in streams in the Urucu Petroleum Province. Soil conservation measures are needed to reduce silt inputs and restore these streams to their natural condition. Additional studies are also needed to investigate the dynamics of sediments in the impacted streams. (orig.)

  8. Mercury removal from SRP radioactive waste streams using ion exchange

    International Nuclear Information System (INIS)

    Bibler, J.P.; Wallace, R.M.; Ebra, M.A.

    1986-01-01

    Mercury is present in varying concentrations in some Savannah River Plant (SRP) waste streams as a result of its use as a catalyst in the dissolution of fuel elements composed of uranium-aluminum alloys. It may be desirable to remove mercury from these streams before treatment of the waste for incorporation in glass for long-term storage. The glass forming process will also create waste from which mercury will have to be removed. The goal of mercury would be to eliminate ultimate emission of the toxic substance into the environment. This paper describes tests that demonstrate the feasibility of using a specific cation exchange resin, Duolite GT-73 for the removal of mercury from five waste streams generated at the SRP. Two of these streams are dilute; one is the condensate from a waste evaporator while the other is the effluent from an effluent treatment plant now under development. The three other streams are related to the Defense Waste Processing Facility (DWPF) that is being built at SRP. One of these streams is a concentrated salt solution (principally sodium nitrate and sodium hydroxide) that constitutes the soluble fraction of SRP waste and contains 20% mercury in the waste. The second stream is a slurry of the insoluble components in SRP waste and contains 80% of the mercury. The third stream is the offgas condensate from the glass melter system in the DWPF

  9. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.

    Science.gov (United States)

    Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine

    2013-09-01

    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes.

  10. Diagnostics of high-speed streams and coronal holes using geomagnetic pulsations

    International Nuclear Information System (INIS)

    Bol'shakova, O.V.; Troitskaya, V.A.

    1980-01-01

    In order to study the relations of high-speed solar wind streams and coronal holes analyzed are the parameters of geomagnetic pulsations of the Rs3 type and of high-speed streams at the decrease branch and in the minimum of solar activity. On the basis of the analysis of exciting pulsation regime determined are the differences in characteristics of high-speed stream properties. Presented are the graphical distributions of a number of occurrances of high-speed streams, coronal holes and pure regimes of Rs3R pulsations in several sections of 1973 in the Sun rotations of N1903-1919 and of the change of solar wind velocity while passing through the high-speed streams. It is found that Rs3R occurrance can serve an indicator of the high-speed flux connection with the large equatorial coronal hole. On the basis of the analysis of exciting pulsation properties determined are the differences in the stream characteristics. However the preliminary estimates permit to adopt neither the first nor the second of the existing hypotheses on the sourse of formation of high-speed streams

  11. Fruit-80: A Secure Ultra-Lightweight Stream Cipher for Constrained Environments

    Directory of Open Access Journals (Sweden)

    Vahid Amin Ghafari

    2018-03-01

    Full Text Available In Fast Software Encryption (FSE 2015, while presenting a new idea (i.e., the design of stream ciphers with the small internal state by using a secret key, not only in the initialization but also in the keystream generation, Sprout was proposed. Sprout was insecure and an improved version of Sprout was presented in FSE 2017. We introduced Fruit stream cipher informally in 2016 on the web page of IACR (eprint and few cryptanalysis were published on it. Fortunately, the main structure of Fruit was resistant. Now, Fruit-80 is presented as a final version which is easier to implement and is secure. The size of LFSR and NFSR in Fruit-80 is only 80 bits (for 80-bit security level, while for resistance to the classical time-memory-data tradeoff (TMDTO attacks, the internal state size should be at least twice that of the security level. To satisfy this rule and to design a concrete cipher, we used some new design ideas. It seems that the bottleneck of designing an ultra-lightweight stream cipher is TMDTO distinguishing attacks. A countermeasure was suggested, and another countermeasure is proposed here. Fruit-80 is better than other small-state stream ciphers in terms of the initialization speed and area size in hardware. It is possible to redesign many of the stream ciphers and achieve significantly smaller area size by using the new idea.

  12. SP@CE - An SP-based programming model for consumer electronics streaming applications

    NARCIS (Netherlands)

    Varbanescu, Ana Lucia; Nijhuis, Maik; Escribano, Arturo González; Sips, Henk; Bos, Herbert; Bal, Henri

    2007-01-01

    Efficient programming of multimedia streaming applications for Consumer Electronics (CE) devices is not trivial. As a solution for this problem, we present SP@CE, a novel programming model designed to balance the specific requirements of CE streaming applications with the simplicity and efficiency

  13. Effects of sequential streaming on auditory masking using psychoacoustics and auditory evoked potentials.

    Science.gov (United States)

    Verhey, Jesko L; Ernst, Stephan M A; Yasin, Ifat

    2012-03-01

    The present study was aimed at investigating the relationship between the mismatch negativity (MMN) and psychoacoustical effects of sequential streaming on comodulation masking release (CMR). The influence of sequential streaming on CMR was investigated using a psychoacoustical alternative forced-choice procedure and electroencephalography (EEG) for the same group of subjects. The psychoacoustical data showed, that adding precursors comprising of only off-signal-frequency maskers abolished the CMR. Complementary EEG data showed an MMN irrespective of the masker envelope correlation across frequency when only the off-signal-frequency masker components were present. The addition of such precursors promotes a separation of the on- and off-frequency masker components into distinct auditory objects preventing the auditory system from using comodulation as an additional cue. A frequency-specific adaptation changing the representation of the flanking bands in the streaming conditions may also contribute to the reduction of CMR in the stream conditions, however, it is unlikely that adaptation is the primary reason for the streaming effect. A neurophysiological correlate of sequential streaming was found in EEG data using MMN, but the magnitude of the MMN was not correlated with the audibility of the signal in CMR experiments. Dipole source analysis indicated different cortical regions involved in processing auditory streaming and modulation detection. In particular, neural sources for processing auditory streaming include cortical regions involved in decision-making. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. STREAM

    DEFF Research Database (Denmark)

    Godsk, Mikkel

    This paper presents a flexible model, ‘STREAM’, for transforming higher science education into blended and online learning. The model is inspired by ideas of active and collaborative learning and builds on feedback strategies well-known from Just-in-Time Teaching, Flipped Classroom, and Peer...... Instruction. The aim of the model is to provide both a concrete and comprehensible design toolkit for adopting and implementing educational technologies in higher science teaching practice and at the same time comply with diverse ambitions. As opposed to the above-mentioned feedback strategies, the STREAM...... model supports a relatively diverse use of educational technologies and may also be used to transform teaching into completely online learning. So far both teachers and educational developers have positively received the model and the initial design experiences show promise....

  15. Streaming potential of superhydrophobic microchannels.

    Science.gov (United States)

    Park, Hung Mok; Kim, Damoa; Kim, Se Young

    2017-03-01

    For the purpose of gaining larger streaming potential, it has been suggested to employ superhydrophobic microchannels with a large velocity slip. There are two kinds of superhydrophobic surfaces, one having a smooth wall with a large Navier slip coefficient caused by the hydrophobicity of the wall material, and the other having a periodic array of no- shear slots of air pockets embedded in a nonslip wall. The electrokinetic flows over these two superhydrophobic surfaces are modelled using the Navier-Stokes equation and convection-diffusion equations of the ionic species. The Navier slip coefficient of the first kind surfaces and the no-shear slot ratio of the second kind surfaces are similar in the sense that the volumetric flow rate increases as these parameter values increase. However, although the streaming potential increases monotonically with respect to the Navier slip coefficient, it reaches a maximum and afterward decreases as the no-shear ratio increases. The results of the present investigation imply that the characterization of superhydrophobic surfaces employing only the measurement of volumetric flow rate against pressure drop is not appropriate and the fine structure of the superhydrophobic surfaces must be verified before predicting the streaming potential and electrokinetic flows accurately. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Distributed Flocking Approach for Information Stream Clustering Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL

    2006-01-01

    Intelligence analysts are currently overwhelmed with the amount of information streams generated everyday. There is a lack of comprehensive tool that can real-time analyze the information streams. Document clustering analysis plays an important role in improving the accuracy of information retrieval. However, most clustering technologies can only be applied for analyzing the static document collection because they normally require a large amount of computation resource and long time to get accurate result. It is very difficult to cluster a dynamic changed text information streams on an individual computer. Our early research has resulted in a dynamic reactive flock clustering algorithm which can continually refine the clustering result and quickly react to the change of document contents. This character makes the algorithm suitable for cluster analyzing dynamic changed document information, such as text information stream. Because of the decentralized character of this algorithm, a distributed approach is a very natural way to increase the clustering speed of the algorithm. In this paper, we present a distributed multi-agent flocking approach for the text information stream clustering and discuss the decentralized architectures and communication schemes for load balance and status information synchronization in this approach.

  17. M-Stream Deficits and Reading-Related Visual Processes in Developmental Dyslexia

    Science.gov (United States)

    Boden, Catherine; Giaschi, Deborah

    2007-01-01

    Some visual processing deficits in developmental dyslexia have been attributed to abnormalities in the subcortical M stream and/or the cortical dorsal stream of the visual pathways. The nature of the relationship between these visual deficits and reading is unknown. The purpose of the present article was to characterize reading-related perceptual…

  18. Estimated Perennial Streams of Idaho and Related Geospatial Datasets

    Science.gov (United States)

    Rea, Alan; Skinner, Kenneth D.

    2009-01-01

    The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of

  19. Activity Based Costing in Value Stream Mapping

    Directory of Open Access Journals (Sweden)

    S. S. Abuthakeer

    2010-12-01

    Full Text Available This paper attempts to integrate Value Stream Map (VSM with the cost aspects. A value stream map provides a blueprint for implementing lean manufacturing concepts by illustrating information and materials flow in a value stream. The objective of the present work is to integrate the various cost aspects. The idea is to introduce a cost line, which enhances the clarity in decision making. The redesigned map proves to be effective in highlighting the improvement areas, in terms of quantitative data. TAKT time calculation is carried out to set the pace of production. Target cost is set as a bench mark for product cost. The results of the study indicates that implementing VSM led to reduction in the following areas: processing lead time by 34%, processing cycle time was reduced by 35%, Inventory level by 66% and product cost from Rs 137 to Rs 125. It was found that adopting VSM in a small scale industry can make significant improvements.

  20. Java parallel secure stream for grid computing

    International Nuclear Information System (INIS)

    Chen, J.; Akers, W.; Chen, Y.; Watson, W.

    2001-01-01

    The emergence of high speed wide area networks makes grid computing a reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve the bandwidth and to reduce latency on a high speed wide area network. The authors present a pure Java package called JPARSS (Java Parallel Secure Stream) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a gird environment without the necessity of tuning the TCP window size. Several experimental results are provided to show that using parallel stream is more effective than tuning TCP window size. In addition X.509 certificate based single sign-on mechanism and SSL based connection establishment are integrated into this package. Finally a few applications using this package will be discussed

  1. On feathers, bifurcations and shells: the dynamics of tidal streams across the mass scale

    Science.gov (United States)

    Amorisco, N. C.

    2015-06-01

    I present an organic description of the spectrum of regimes of collisionless tidal streams and define the orderings between the relevant physical quantities that shape their morphology. Three fundamental dichotomies are identified and described in the form of dimensionless inequalities. These govern (i) the speed of the stream's growth, (ii) the internal coherence of the stream and (iii) its thickness or opening angle, within and outside the orbital plane. The mechanisms through which such main qualitative properties are regulated and the relevant limiting cases are analysed. For example, the slope of the host's density profile strongly influences the speed of the stream's growth, in both length and width, as steeper density profiles enhance differential streaming. Internal coherence is the natural requirement for the appearance of substructure and overdensities in tidal debris, and I concentrate on the characteristic `feathering' typical of streams of star clusters. Overdensities and substructures are associated with minima in the relative streaming velocity of the stream members. For streams with high circularity, these are caused by the epicyclic oscillations of stars; however, for highly non-circular progenitor's orbits, internal substructure is caused by the oscillating differences in energy and actions with which material is shed at different orbital phases of the progenitor. This modulation results in different streaming speeds along the tidal arm: the streakline of material shed between two successive apocentric passages is folded along its length, pulled at its centre by the faster differential streaming of particles released near pericentre, which are therefore more widely scattered. When the stream is coherent enough, the same mechanism is potentially capable of generating a bimodal profile in the density distributions of the longer wraps of more massive progenitors, which I dub `bifurcations'. The conditions that allow streams to be internally coherent

  2. Perceived Non-Overlap of Objects in an Audiovisual Stream/Bounce Display

    Directory of Open Access Journals (Sweden)

    Yousuke Kawachi

    2011-10-01

    Full Text Available In a stream/bounce display in which two identical visual objects move toward each other, coincide (completely overlap, and then move apart, the objects can be perceived as either streaming through or bouncing off each other. Despite the perceptual ambiguity in this display, the streaming percept is dominant. However, a sound burst presented at the time that the objects coincide facilitates the bouncing percept. Herein, we report a perceptual phenomenon in which the overlap between objects is illusorily perceived as a non-overlap in the stream/bounce display accompanied with sound. In the experiment, the amount of overlap between two objects was systematically manipulated in the presence/absence of a sound. Observers were asked to judge whether the two objects overlapped with each other and then asked whether the objects appeared to stream through or bounce off each other. The results were consistent with those of previous studies showing that sound promoted the bouncing percept. Most importantly, the sound presentation facilitated the perception of a non-overlap between the objects instead of a physical overlap, suggesting that the momentary overlap was inadequately perceived. We discuss the possibility that an abrupt sound temporally interrupts visual processing such as the formation of dynamic object representations.

  3. Potential Impacts of Organic Wastes on Small Stream Water Quality

    Science.gov (United States)

    Kaushal, S. S.; Groffman, P. M.; Findlay, S. E.; Fischer, D. T.; Burke, R. A.; Molinero, J.

    2005-05-01

    We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. The subwatersheds were chosen to reflect a range of land uses including forested, pasture, mixed, and developed. The SFBR watershed is heavily impacted by organic wastes, primarily from its large poultry industry, but also from its rapidly growing human population. The poultry litter is primarily disposed of by application to pastures. Our monthly monitoring results showed a strong inverse relationship between mean DOC and mean DO and suggested that concentrations of total nitrogen (TN), DOC, and the trace gases nitrous oxide, methane and carbon dioxide are impacted by organic wastes and/or nutrients from animal manure applied to the land and/or human wastes from wastewater treatment plants or septic tanks in these watersheds. Here we estimate the organic waste loads of these watersheds and evaluate the impact of organic wastes on stream DOC and alkalinity concentrations, electrical conductivity, sediment potential denitrification rate and plant stable nitrogen isotope ratios. All of these water quality parameters are significantly correlated with watershed waste loading. DOC is most strongly correlated with total watershed waste loading whereas conductivity, alkalinity, potential denitrification rate and plant stable nitrogen isotope ratio are most strongly correlated with watershed human waste loading. These results suggest that more direct inputs (e.g., wastewater treatment plant effluents, near-stream septic tanks) have a greater relative impact on stream water quality than more dispersed inputs (land applied poultry litter, septic tanks far from streams) in the SFBR watershed. Conductivity, which is generally elevated in organic wastes, is also significantly correlated with total watershed waste loading suggesting it may be a useful indicator of overall

  4. Costs of Stream Maintenance Works in the Poznań District

    Directory of Open Access Journals (Sweden)

    Piotr Stachowski

    2017-12-01

    Full Text Available Water reclamation works, especially those related to stream maintenance, are necessary wherever their lack may cause a risk to the natural environment, as well as human life and property. This paper presents the assessment of the maintenance costs on natural and regulated streams in the years 2010-2016 in the Poznań district. In the analysed years, the costs for works on streams and water-drainage constructions amounted to an average of 1,214,800 PLN per year, which in terms of a 1km stream is approximately 3,575 PLN/km per year. Higher maintenance costs occurred on the regulated streams, where the average cost of a 1 km stream was approximately 7,042 PLN. Moreover, high costs were noted in the works on unregulated streams, where the average cost was approximately 8,948 PLN. The amount of public funding for the maintenance and current operation was quite insufficient, as it covered only 4.2% of the annual average demand. The positive trend is nearly a 6-fold increase in funds for current maintenance compared to the year 2010, when a flood occurred. The results of the conducted analyses indicate the cognitive need and purpose, as well as the economic importance, to establish water reclamation monitoring, as well as develop the existing IT system for recording water reclamation works and water management in agriculture.

  5. A framework to preserve the privacy of electronic health data streams.

    Science.gov (United States)

    Kim, Soohyung; Sung, Min Kyoung; Chung, Yon Dohn

    2014-08-01

    The anonymization of health data streams is important to protect these data against potential privacy breaches. A large number of research studies aiming at offering privacy in the context of data streams has been recently conducted. However, the techniques that have been proposed in these studies generate a significant delay during the anonymization process, since they concentrate on applying existing privacy models (e.g., k-anonymity and l-diversity) to batches of data extracted from data streams in a period of time. In this paper, we present delay-free anonymization, a framework for preserving the privacy of electronic health data streams. Unlike existing works, our method does not generate an accumulation delay, since input streams are anonymized immediately with counterfeit values. We further devise late validation for increasing the data utility of the anonymization results and managing the counterfeit values. Through experiments, we show the efficiency and effectiveness of the proposed method for the real-time release of data streams. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. POLA RASIO KEUANGAN PADA SAAT UP STREAM DAN DOWN STREAM DI INDUSTRI REALESTAT YANG GO PUBLIC

    Directory of Open Access Journals (Sweden)

    David Sukardi Kodrat

    2006-01-01

    Full Text Available This research has purpose to explain differences on indicator financial ratio in up and down stream condition. This research uses real estate industries listed on Jakarta Stock Exchange as a sample. Sample selection is performed based on purposive sampling method with object to gain sample according to the research aim. Based on those criteria, there are 18 companies, which have fulfilling the conditions needed, starting from 1994 until 2002. The classification of business cycle on up and down stream conditions to used stock pricing indexes of property and real estate which calculated by arithmatic mean method. Based on those criteria, the classifications from 1994 until 1997 are represented by up stream condition and from 1998 until 2002 are represented by down stream condition. The result shows indicators: profitability ratios, gross margin ratios, capital turnover ratios, asset to equity ratios, growth ratios, liquidity ratios, leverage ratios, and cash flow ratios are different in up and down stream conditions, both simultaneously and partially. Simultaneously, there is a significant difference between up and down stream condition with wilks lambda of 0,346 and p value of 0,000. This research shows financial ratio indicator has differences on business cycle. Abstract in Bahasa Indonesia : Penelitan ini mempunyai tujuan untuk mengetahui perbedaan indikator rasio keuangan pada kondisi up stream dan down stream. Penelitian ini menggunakan sampel pada industri di sektor properti yang terdaftar di Bursa Efek Jakarta. Pemilihan sampel dalam penelitian ini menggunakan Purposive Sampling yaitu sampel diambil berdasarkan kriteria-kriteria tertentu yang sesuai dengan tujuan penelitian ini. Berdasarkan kriteria tersebut, terdapat 18 perusahaan yang dapat dijadikan sampel mulai tahun 1994 sampai dengan 2002. Untuk menentukan perubahan business cycle pada kondisi up stream dan down stream dilakukan dengan menggunakan indeks harga saham di sektor properti

  7. Changing Groundwater-Surface Water Interactions Impact Stream Chemistry and Ecology at the Arctic-Boreal Transition in Western Alaska

    Science.gov (United States)

    Koch, J. C.; Carey, M.; O'Donnell, J.; Sjoberg, Y.; Zimmerman, C. E.

    2016-12-01

    The arctic-boreal transition zone of Alaska is experiencing rapid change related to unprecedented warming and subsequent loss of permafrost. These changes in turn may affect groundwater-surface water (GW-SW) interactions, biogeochemical cycling, and ecosystem processes. While recent field and modeling studies have improved our understanding of hydrology in watersheds underlain by thawing permafrost, little is known about how these hydrologic shifts will impact bottom-up controls on stream food webs. To address this uncertainty, we are using an integrative experimental design to link GW-SW interactions to stream biogeochemistry and biota in 10 first-order streams in northwest Alaska. These study streams drain watersheds that span several gradients, including elevation, aspect, and vegetation (tundra vs. forest). We have developed a robust, multi-disciplinary data set to characterize GW-SW interactions and to mechanistically link GW-SW dynamics to water quality and the stream ecosystem. Data includes soil hydrology and chemistry; stream discharge, temperature, and inflow rates; water chemistry (including water isotopes, major ions, carbon concentration and isotopes, nutrients and chlorophyll-a), and invertebrate and fish communities. Stream recession curves indicate a decreasing rate later in the summer in some streams, consistent with seasonal thaw in lower elevation and south-facing catchments. Base cation and water isotope chemistry display similar impacts of seasonal thaw and also suggest the dominance of groundwater in many streams. Coupled with estimates of GW-SW exchange at point, reach, and catchment scales, these results will be used to predict how hydrology and water quality are likely to impact fish habitat and growth given continued warming at the arctic-boreal transition.

  8. Influence of Soils, Riparian Zones, and Hydrology on Nutrients, Herbicides, and Biological Relations in Midwestern Agricultural Streams

    Science.gov (United States)

    Porter, S.

    2001-12-01

    Chemical, biological, and habitat conditions were characterized in 70 streams in the upper Mississippi River basin during August 1997, as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The study was designed to evaluate algal and macroinvertebrate responses to high agricultural intensity in relation to nonpoint sources of nutrients and herbicides, characteristics of basin soils, wooded-riparian vegetation, and hydrology. Concentrations and forms of nutrients, herbicides and their metabolites, and seston constituents varied significantly with regional differences in soil properties, ground and surface water relations, density of riparian trees, and precedent rainfall-runoff conditions. Dissolved nitrate concentrations were relatively low in streams with high algal productivity; however, nitrate concentrations increased with basin water yield, which was associated with the regional distribution of rainfall during the month prior to the study. Stream productivity and respiration were positively correlated with seston (phytoplankton) chlorophyll concentrations, which were significantly larger in streams in areas with poorly drained soils and low riparian-tree density. Concentrations of dissolved phosphorus were low in streams where periphyton biomass was high. Periphyton biomass was relatively larger in streams with clear water and low abundance of macroinvertebrates that consume algae. Periphyton biomass decreased rapidly with modest increases in the abundance of scrapers such as snails and certain mayfly taxa. Differences in dissolved oxygen, organic carbon, stream velocity, and precedent hydrologic conditions explained much of the variance in macroinvertebrate community structure. The overall number of macroinvertebrate species and number of mayfly, caddisfly, and stonefly (EPT) taxa that are sensitive to organic enrichment were largest in streams with moderate periphyton biomass, in areas with moderately-well drained soils

  9. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream.

    Science.gov (United States)

    Berthier, Marcelo L; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez Y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia

    2013-01-01

    Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and(18)FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The

  10. Habitat hydraulic models - a tool for Danish stream quality assessment?

    DEFF Research Database (Denmark)

    Olsen, Martin

    and hydromorphological and chemical characteristics has to be enlightened (EUROPA, 2005). This study links catchment hydrology, stream discharge and physical habitat in a small Danish stream, the stream Ledreborg, and discusses the utility of habitat hydraulic models in relation to the present criteria and methods used......).  Hydromorphological conditions in the stream are measured through field study, using a habitat mapping approach and modelled using a habitat hydraulic model (RHYHABSIM). Using RHYHABSIM and both "site-specific" and general HSI's, Weighted Usable Area (WUA) for the trout population at different discharges is assessed...... and differences between simulated WUA using "site-specific" and general habitat preferences are discussed. In RHYHABSIM it is possible to use two different approaches to investigate the hydromorphological conditions in a river, the habitat mapping approach used in this project and the representative reach...

  11. Rapid Statistical Learning Supporting Word Extraction From Continuous Speech.

    Science.gov (United States)

    Batterink, Laura J

    2017-07-01

    The identification of words in continuous speech, known as speech segmentation, is a critical early step in language acquisition. This process is partially supported by statistical learning, the ability to extract patterns from the environment. Given that speech segmentation represents a potential bottleneck for language acquisition, patterns in speech may be extracted very rapidly, without extensive exposure. This hypothesis was examined by exposing participants to continuous speech streams composed of novel repeating nonsense words. Learning was measured on-line using a reaction time task. After merely one exposure to an embedded novel word, learners demonstrated significant learning effects, as revealed by faster responses to predictable than to unpredictable syllables. These results demonstrate that learners gained sensitivity to the statistical structure of unfamiliar speech on a very rapid timescale. This ability may play an essential role in early stages of language acquisition, allowing learners to rapidly identify word candidates and "break in" to an unfamiliar language.

  12. Dry Stream Reaches in Carbonate Terranes: Surface Indicators of Ground-Water Reservoirs

    Science.gov (United States)

    Brahana, J.V.; Hollyday, E.F.

    1988-01-01

    In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: remotely sensed black and white infrared aerial photography; and surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.

  13. Drainage basins, channels, and flow characteristics of selected streams in central Pennsylvania

    Science.gov (United States)

    Brush, Lucien M.

    1961-01-01

    material. Wear does not appear to account for some of the changes noted in particle size in a downstream direction. Comparison with laboratory studies indicates that at least in some streams the downstream decrease in size is much greater than would be expected from wear alone. The type of bedrock underlying the channels included in this study appears to affect both channel slope and particle size. For a given length of stream, a stream channel underlain by sandstone tends to have a steeper slope and larger bed material than channels underlain by shale or limestone. Hence, a stream which heads in sandstone and ends in limestone tends to have a more rapid decrease in slope and particle size than a stream heading in limestone and ending in sandstone. The association of steep slopes and small particles for limestone channels implies that slope and particle size may show a vague correlation between lithologic groups although no correlation may exist within a given lithologic type. In addition to the effect of bedrock on slope and particle size, there is some evidence that channels in limestone or dolomite have a slightly smaller cross section at bankfull stage than channels in shale or sandstone. Near the headwaters of many of these streams, a deposit of periglacial rubble affects the slope and bed material size. Some of the debris contains residual boulders which are too large to be moved by ordinary floods and, therefore, impose larger particle sizes in the bed of the stream. The addition of this very coarse debris to the bed material is another example of the influence of geologic factors on stream channels even though the channel consists of unconsolidated debris instead of bedrock. The influence of geologic factors noted in selected streams in central Pennsylvania may not be directly applicable to areas other than the Appalachian Mountains, but the general process is no doubt similar in most areas. In large alluvial valleys bedrock cannot be much of an influencing factor

  14. The case for a large heavy oil stream

    International Nuclear Information System (INIS)

    Reimer, P.

    2005-01-01

    EnCana Corporation markets significant proprietary and third party crude oil production in North America. This presentation presented details of EnCana's projected resources as well as estimated proved reserves in Canadian oil sands. Details of the Western Canadian heavy oil market were presented. Issues concerning Western Canadian Select (WCS) were also presented, including details of distillation and asphalt characteristics. Details of the WCS synthetic bitumen synergy were examined, as well as quality management issues. It was suggested that further optimization of WCS facilities include reduced operating complexity; less tank proliferation; delivery quality consistency; and reliability. WCS refiner advantages were also evaluated. Shipping and ramping details were discussed, along with growth potential. It was noted that WCS satisfies all the criteria for a benchmark crude. It was concluded that the case for a large Canadian heavy oil stream includes reduced operating complexity; optimized logistics; delivery quality consistency; improved stream liquidity; and enhanced price discovery. tabs., figs

  15. High performance multiple stream data transfer

    International Nuclear Information System (INIS)

    Rademakers, F.; Saiz, P.

    2001-01-01

    The ALICE detector at LHC (CERN), will record raw data at a rate of 1.2 Gigabytes per second. Trying to analyse all this data at CERN will not be feasible. As originally proposed by the MONARC project, data collected at CERN will be transferred to remote centres to use their computing infrastructure. The remote centres will reconstruct and analyse the events, and make available the results. Therefore high-rate data transfer between computing centres (Tiers) will become of paramount importance. The authors will present several tests that have been made between CERN and remote centres in Padova (Italy), Torino (Italy), Catania (Italy), Lyon (France), Ohio (United States), Warsaw (Poland) and Calcutta (India). These tests consisted, in a first stage, of sending raw data from CERN to the remote centres and back, using a ftp method that allows connections of several streams at the same time. Thanks to these multiple streams, it is possible to increase the rate at which the data is transferred. While several 'multiple stream ftp solutions' already exist, the authors' method is based on a parallel socket implementation which allows, besides files, also objects (or any large message) to be send in parallel. A prototype will be presented able to manage different transfers. This is the first step of a system to be implemented that will be able to take care of the connections with the remote centres to exchange data and monitor the status of the transfer

  16. IoT Stream Processing and Analytics in The Fog

    OpenAIRE

    Yang, Shusen

    2017-01-01

    The emerging Fog paradigm has been attracting increasing interests from both academia and industry, due to the low-latency, resilient, and cost-effective services it can provide. Many Fog applications such as video mining and event monitoring, rely on data stream processing and analytics, which are very popular in the Cloud, but have not been comprehensively investigated in the context of Fog architecture. In this article, we present the general models and architecture of Fog data streaming, ...

  17. Uncertainty of solute flux estimation in ungauged small streams: potential implications for input-output nutrient mass balances at stream reach scale

    Directory of Open Access Journals (Sweden)

    A. Butturini

    2005-01-01

    Full Text Available Input-output mass balances within stream reaches provide in situ estimates of stream nutrient retention/release under a wide spectrum of hydrological conditions. Providing good estimates of the mass balances for nutrients depends on precise hydrological monitoring and good chemical characterisation of stream water at the input and output ends of the stream reach. There is a need to optimise the hydrological monitoring and the frequencies of water sampling to yield precise annual mass balances, so as to avoid undue cost - high resolution monitoring and subsequent chemical analysis can be labour intensive and costly. In this paper, simulation exercises were performed using a data set created to represent the instantaneous discharge and solute dynamics at the input and output ends of a model stream reach during a one year period. At the output end, stream discharge and water chemistry were monitored continuously, while the input end was assumed to be ungauged; water sampling frequency was changed arbitrarily. Instantaneous discharge at the ungauged sampling point was estimated with an empirical power model linking the discharge to the catchment area (Hooper, 1986. The model thus substitutes for the additional gauge station. Simulations showed that 10 days was the longest chemical sampling interval which could provide reach annual mass balances of acceptable precision. Presently, the relationship between discharge and catchment area is usually assumed to be linear but simulations indicate that small departures from the linearity of this relationship could cause dramatic changes in the mass balance estimations.

  18. SST: Single-Stream Temporal Action Proposals

    KAUST Repository

    Buch, Shyamal; Escorcia, Victor; Shen, Chuanqi; Ghanem, Bernard; Niebles, Juan Carlos

    2017-01-01

    Our paper presents a new approach for temporal detection of human actions in long, untrimmed video sequences. We introduce Single-Stream Temporal Action Proposals (SST), a new effective and efficient deep architecture for the generation of temporal action proposals. Our network can run continuously in a single stream over very long input video sequences, without the need to divide input into short overlapping clips or temporal windows for batch processing. We demonstrate empirically that our model outperforms the state-of-the-art on the task of temporal action proposal generation, while achieving some of the fastest processing speeds in the literature. Finally, we demonstrate that using SST proposals in conjunction with existing action classifiers results in improved state-of-the-art temporal action detection performance.

  19. SST: Single-Stream Temporal Action Proposals

    KAUST Repository

    Buch, Shyamal

    2017-11-09

    Our paper presents a new approach for temporal detection of human actions in long, untrimmed video sequences. We introduce Single-Stream Temporal Action Proposals (SST), a new effective and efficient deep architecture for the generation of temporal action proposals. Our network can run continuously in a single stream over very long input video sequences, without the need to divide input into short overlapping clips or temporal windows for batch processing. We demonstrate empirically that our model outperforms the state-of-the-art on the task of temporal action proposal generation, while achieving some of the fastest processing speeds in the literature. Finally, we demonstrate that using SST proposals in conjunction with existing action classifiers results in improved state-of-the-art temporal action detection performance.

  20. Modeling of immision from power plants using stream-diffusion model

    International Nuclear Information System (INIS)

    Kanevce, Lj.; Kanevce, G.; Markoski, A.

    1996-01-01

    Analyses of simple empirical and integral immision models, comparing with complex three dimensional differential models is given. Complex differential models needs huge computer power, so they can't be useful for practical engineering calculations. In this paper immision modeling, using stream-diffusion approach is presented. Process of dispersion is divided into two parts. First part is called stream part, it's near the source of the pollutants, and it's presented with defected turbulent jet in wind field. This part finished when the velocity of stream (jet) becomes equal with wind speed. Boundary conditions in the end of the first part, are initial for the second, called diffusion part, which is modeling with tri dimensional diffusion equation. Gradient of temperature, wind speed profile and coefficient of diffusion in this model must not be constants, they can change with the height. Presented model is much simpler than the complete meteorological differential models which calculates whole fields of meteorological parameters. Also, it is more complex and gives more valuable results for dispersion of pollutants from widely used integral and empirical models

  1. Assessment of stability of a revitalized stream T12 in Orlické Záhoří

    Directory of Open Access Journals (Sweden)

    Jana Marková

    2013-01-01

    Full Text Available The aim of presented project is to execute an analysis and evaluation of stream-bed conditions for streams after revitalisation measures. Revitalisation of stream T12 in Orlické Záhoří has been comprehensive, included changes of stream line and longitudinal and transversal profile. The evaluation was so provided in two absolutely different stream-beds. The evaluation was focused on stream-bed ground and slopes stability, which were established on the base of tangential stress, scouring and nonscouring velocity and of mean velocity in vertical calculation. Then the individual methods of calculation were compared and the results were faced with actual status of stream-bed and supposed development of stream-bed morphology.

  2. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data

    Science.gov (United States)

    J. Bruce Wallace; Susan L Eggert; Judy L. Meyer; Jackson R. Webster

    2015-01-01

    Riparian habitats provide detrital subsidies of varying quantities and qualities to recipient ecosystems. We used long-term data from three reference streams (covering 24 stream-years) and 13-year whole-stream organic matter manipulations to investigate the influence of terrestrial detrital quantity and quality on benthic invertebrate community structure, abundance,...

  3. Size Control of Sessile Microbubbles for Reproducibly Driven Acoustic Streaming

    Science.gov (United States)

    Volk, Andreas; Kähler, Christian J.

    2018-05-01

    Acoustically actuated bubbles are receiving growing interest in microfluidic applications, as they induce a streaming field that can be used for particle sorting and fluid mixing. An essential but often unspoken challenge in such applications is to maintain a constant bubble size to achieve reproducible conditions. We present an automatized system for the size control of a cylindrical bubble that is formed at a blind side pit of a polydimethylsiloxane microchannel. Using a pressure control system, we adapt the protrusion depth of the bubble into the microchannel to a precision of approximately 0.5 μ m on a timescale of seconds. By comparing the streaming field generated by bubbles of width 80 μ m with a protrusion depth between -12 and 60 μ m , we find that the mean velocity of the induced streaming fields varies by more than a factor of 4. We also find a qualitative change of the topology of the streaming field. Both observations confirm the importance of the bubble size control system in order to achieve reproducible and reliable bubble-driven streaming experiments.

  4. How wide is a stream? Spatial extent of the potential "stream signature" in terrestrial food webs using meta-analysis.

    Science.gov (United States)

    Muehlbauer, Jeffrey D; Collins, Scott F; Doyle, Martin W; Tockner, Klement

    2014-01-01

    The magnitude of cross-ecosystem resource subsidies is increasingly well recognized; however, less is known about the distance these subsidies travel into the recipient landscape. In streams and rivers, this distance can delimit the "biological stream width," complementary to hydro-geomorphic measures (e.g., channel banks) that have typically defined stream ecosystem boundaries. In this study we used meta-analysis to define a "stream signature" on land that relates the stream-to-land subsidy to distance. The 50% stream signature, for example, identifies the point on the landscape where subsidy resources are still at half of their maximum (in- or near-stream) level. The decay curve for these data was best fit by a negative power function in which the 50% stream signature was concentrated near stream banks (1.5 m), but a non-trivial (10%) portion of the maximum subsidy level was still found > 0.5 km from the water's edge. The meta-analysis also identified explanatory variables that affect the stream signature. This improves our understanding of ecosystem conditions that permit spatially extensive subsidy transmission, such as in highly productive, middle-order streams and rivers. Resultant multivariate models from this analysis may be useful to managers implementing buffer rules and conservation strategies for stream and riparian function, as they facilitate prediction of the extent of subsidies. Our results stress that much of the subsidy remains near the stream, but also that subsidies (and aquatic organisms) are capable of long-distance dispersal into adjacent environments, and that the effective "biological stream width" of stream and river ecosystems is often much larger than has been defined by hydro-geomorphic metrics alone. Limited data available from marine and lake sources overlap well with the stream signature data, indicating that the "signature" approach may also be applicable to subsidy spatial dynamics across other ecosystems.

  5. The Northeast Stream Quality Assessment

    Science.gov (United States)

    Van Metre, Peter C.; Riva-Murray, Karen; Coles, James F.

    2016-04-22

    In 2016, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) is assessing stream quality in the northeastern United States. The goal of the Northeast Stream Quality Assessment (NESQA) is to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and evaluating the relation between these stressors and biological communities. The focus of NESQA in 2016 will be on the effects of urbanization and agriculture on stream quality in all or parts of eight states: Connecticut, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont.Findings will provide the public and policymakers with information about the most critical factors affecting stream quality, thus providing insights about possible approaches to protect the health of streams in the region. The NESQA study will be the fourth regional study conducted as part of NAWQA and will be of similar design and scope to the first three, in the Midwest in 2013, the Southeast in 2014, and the Pacific Northwest in 2015 (http://txpub.usgs.gov/RSQA/).

  6. PROBLEM OF OPTIMIZATION OF ENTERPRISE FINANCIAL STREAMS: URGENCY UNDER ECONOMIC CRISIS CONDITIONS

    Directory of Open Access Journals (Sweden)

    J. E. Gorbach

    2011-01-01

    Full Text Available The paper considers a problem of structural optimization of financial streams in the economic activities of the enterprises. The authors describe a general process of enterprise capital structure optimization while breaking it in stages and consider the most interesting financial stream theories. The paper presents for the first time «Combined optimization model». In order to develop the model the most commonly applied methods have been used, namely: an optimization  method on the basis of an average capital price, an optimization method on the basis of financial leverage effect and an optimization method on the basis of the average managing subject price. Alternative calculations of optimum structure of financial stream sources on the basis of the proposed «combined model» have been presented in corresponding tables. The authors also use for the first time such concepts as «a break-even point» and «a safety zone» in respect of enterprise financial streams while using a graphic method.

  7. What Can Hierarchies Do for Data Streams?

    DEFF Research Database (Denmark)

    Yin, Xuepeng; Pedersen, Torben Bach

    Much effort has been put into building data streams management systems for querying data streams. Here, data streams have been viewed as a flow of low-level data items, e.g., sensor readings or IP packet data. Stream query languages have mostly been SQL-based, with the STREAM and TelegraphCQ lang...

  8. StreamSqueeze: a dynamic stream visualization for monitoring of event data

    Science.gov (United States)

    Mansmann, Florian; Krstajic, Milos; Fischer, Fabian; Bertini, Enrico

    2012-01-01

    While in clear-cut situations automated analytical solution for data streams are already in place, only few visual approaches have been proposed in the literature for exploratory analysis tasks on dynamic information. However, due to the competitive or security-related advantages that real-time information gives in domains such as finance, business or networking, we are convinced that there is a need for exploratory visualization tools for data streams. Under the conditions that new events have higher relevance and that smooth transitions enable traceability of items, we propose a novel dynamic stream visualization called StreamSqueeze. In this technique the degree of interest of recent items is expressed through an increase in size and thus recent events can be shown with more details. The technique has two main benefits: First, the layout algorithm arranges items in several lists of various sizes and optimizes the positions within each list so that the transition of an item from one list to the other triggers least visual changes. Second, the animation scheme ensures that for 50 percent of the time an item has a static screen position where reading is most effective and then continuously shrinks and moves to the its next static position in the subsequent list. To demonstrate the capability of our technique, we apply it to large and high-frequency news and syslog streams and show how it maintains optimal stability of the layout under the conditions given above.

  9. Stream temperature responses to timber harvest and best management practices—findings from the ODF RipStream project

    Science.gov (United States)

    Jeremy D. Groom

    2013-01-01

    Studies over the past 40 years have established that riparian buff er retention along streams protects against stream temperature increase. Th is protection is neither universal nor complete; some buff ered streams still warm, while other streams’ temperatures remain stable. Oregon Department of Forestry developed riparian rules in the Forest Practices Act (FPA) to...

  10. A MULTICORE COMPUTER SYSTEM FOR DESIGN OF STREAM CIPHERS BASED ON RANDOM FEEDBACK

    Directory of Open Access Journals (Sweden)

    Borislav BEDZHEV

    2013-01-01

    Full Text Available The stream ciphers are an important tool for providing information security in the present communication and computer networks. Due to this reason our paper describes a multicore computer system for design of stream ciphers based on the so - named random feedback shift registers (RFSRs. The interest to this theme is inspired by the following facts. First, the RFSRs are a relatively new type of stream ciphers which demonstrate a significant enhancement of the crypto - resistance in a comparison with the classical stream ciphers. Second, the studding of the features of the RFSRs is in very initial stage. Third, the theory of the RFSRs seems to be very hard, which leads to the necessity RFSRs to be explored mainly by the means of computer models. The paper is organized as follows. First, the basics of the RFSRs are recalled. After that, our multicore computer system for design of stream ciphers based on RFSRs is presented. Finally, the advantages and possible areas of application of the computer system are discussed.

  11. Hydrological regime as key to the morpho-texture and activity of braided streams

    Science.gov (United States)

    Storz-Peretz, Y.; Laronne, J. B.

    2012-04-01

    Braided streams are a common fluvial pattern in different climates. However, studies of gravel braided streams have mainly been conducted in humid braided systems or in flume simulations thereof, leaving arid braided streams scarcely investigated. Dryland rivers have bare catchments, rapid flow recession and unarmoured channel beds which are responsible for very high bedload discharges, thereby increasing the likelihood for braiding. Our main objective is to characterize the morpho-texture of the main morphological elements - mid-channel bars, chutes and anabranches (braid-cells) in the dryland braided system and compare them to their humid counterparts. Selected areas of the dryland braided Wadis Ze'elim, Rahaf and Roded in the SE hyper-arid Israel were measured, as were La-Bleone river in the French pre-alps along with the Saisera and Cimoliana rivers in NE Italy representing humid braided systems. Terrestrial Laser Scanning (TLS) of morphological units produced point clouds from which high resolution accurate Digital Elevation Models (DEMs) were extracted. Active braid cells in humid environments were also surveyed by electronic theodolite. Roughness and upper tail Grain Size Distribution (GSD) quantiles were derived from the scanned point clouds or from Wolman sampling. Results indicate that dryland anabranches tend to be finer-grained and less armoured than the bars, contrary to the humid braided systems, where the main or larger anabranches are coarser-grained and more armoured than the bars. Chutes are commonly similar or coarser-grained than the bars they dissect, in accordance with their steeper gradients due to the considerable relief of the bar-anabranch. The morpho-texture displayed in the steep braided Saisera River, located in the Italian Dolomites having the highest annual precipitation, has similarity to that of the dryland braided channels. In drylands coarse gravel is deposited mainly as bars due to the high flux of bedload, whereas the rapid flow

  12. Percent Forest Adjacent to Streams (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  13. Percent Agriculture Adjacent to Streams (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  14. Composite media for fluid stream processing, a method of forming the composite media, and a related method of processing a fluid stream

    Science.gov (United States)

    Garn, Troy G; Law, Jack D; Greenhalgh, Mitchell R; Tranter, Rhonda

    2014-04-01

    A composite media including at least one crystalline aluminosilicate material in polyacrylonitrile. A method of forming a composite media is also disclosed. The method comprises dissolving polyacrylonitrile in an organic solvent to form a matrix solution. At least one crystalline aluminosilicate material is combined with the matrix solution to form a composite media solution. The organic solvent present in the composite media solution is diluted. The composite media solution is solidified. In addition, a method of processing a fluid stream is disclosed. The method comprises providing a beads of a composite media comprising at least one crystalline aluminosilicate material dispersed in a polyacrylonitrile matrix. The beads of the composite media are contacted with a fluid stream comprising at least one constituent. The at least one constituent is substantially removed from the fluid stream.

  15. A stream temperature model for the Peace-Athabasca River basin

    Science.gov (United States)

    Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.

  16. Ecological health in the Nation's streams

    Science.gov (United States)

    Carlisle, Daren M.; Woodside, Michael D.

    2013-01-01

    Aquatic biological communities, which are collections of organisms, are a direct measure of stream health because they indicate the ability of a stream to support life. This fact sheet highlights selected findings of a national assessment of stream health by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). The assessment was unique in that it integrated the condition of three biological communities—algae, macroinvertebrates, and fish—as well as measures of streamflow modification, pesticides, nutrients, and other factors. At least one biological community was altered at 83 percent of assessed streams, and the occurrence of altered communities was highest in urban streams. Streamflows were modified at 86 percent of assessed streams, and increasing severity of streamflow modification was associated with increased occurrence of altered biological communities. Agricultural and urban land use in watersheds may contribute pesticides and nutrients to stream waters, and increasing concentrations of these chemicals were associated with increased occurrence of altered biological communities.

  17. Long-term monitoring of stream bank stability under different vegetation cover

    Science.gov (United States)

    Krzeminska, Dominika; Skaalsveen, Kamilla; Kerkhof, Tjibbe

    2017-04-01

    Vegetated buffer zones are common environmental measures in many countries, including Norway. The presence of riparian vegetation on stream banks not only provides ecological benefits but also influence bank slope stability, through several complex interactions between riparian vegetation and hydro - mechanical processes. The hydrological processes associated with slope stability are complex and yet difficult to quantify, especially because their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field scale research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation type, and none dedicated to marine clay soils (typically soil for Norway). In order to fill this gap we established continues, long term hydrogeological monitoring o selected cross - section within stream bank, covered with different types of vegetation, typical for Norwegian agriculture areas (grass, shrubs, and trees). The monitoring involves methods such as spatial and temporal monitoring of soil moisture conditions, ground water level and fluctuation of water level in the stream. Herein we will present first 10 months of monitoring data: observed hydrological trends and differences between three cross - sections. Moreover, we will present first modelling exercises that aims to estimate stream banks stability with accounting on presence of different vegetation types using BSTEM and HYDRUS models. With this presentation, we would like to stimulate the discussion and get feedback that could help us to improve both, our experimental set up and analysis approach.

  18. Detecting rapid mass movements using electrical self-potential measurements

    Science.gov (United States)

    Heinze, Thomas; Limbrock, Jonas; Pudasaini, Shiva P.; Kemna, Andreas

    2017-04-01

    Rapid mass movements are a latent danger for lives and infrastructure in almost any part of the world. Often such mass movements are caused by increasing pore pressure, for example, landslides after heavy rainfall or dam breaking after intrusion of water in the dam. Among several other geophysical methods used to observe water movement, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing and for earthquake prediction. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than the pressure diffusion. We will present results of laboratory experiments under drained and undrained conditions with fluid triggered as well as manually triggered mass movements, monitored with self-potential measurements. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. We will discuss results of numerical simulations reproducing the observed effect. Our

  19. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica

    International Nuclear Information System (INIS)

    Lyons, W.B.; Leslie, D.L.; Harmon, R.S.; Neumann, K.; Welch, K.A.; Bisson, K.M.; McKnight, D.M.

    2013-01-01

    Highlights: ► δ 13 C-DIC reported from McMurdo Dry Valleys, Antarctica, streams. ► Stream water δ 13 C PDB values range −9.4‰ to +5.1‰, largely inorganic in character. ► Atmospheric exchange is the dominant control on δ 13 C-DIC. - Abstract: The McMurdo Dry Valleys region of Antarctica is the largest ice-free region on the continent. This study reports the first C stable isotope measurements for dissolved inorganic C present in ephemeral streams in four dry valleys that flow for four to twelve weeks during the austral summer. One of these valleys, Taylor Valley, has been the focus of the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program since 1993. Within Taylor Valley, numerous ephemeral streams deliver water to three perennially ice-covered, closed-basin lakes: Lake Fryxell, Lake Hoare, and Lake Bonney. The Onyx River in the Wright Valley, the longest river in Antarctica, flows for 40 km from the Wright Lower Glacier and Lake Brownworth at the foot of the glacier to Lake Vanda. Streamflow in the McMurdo Dry Valley streams is produced primarily from glacial melt, as there is no overland flow. However, hyporheic zone exchange can be a major hydrogeochemical process in these streams. Depending on landscape position, these streams vary in gradient, channel substrate, biomass abundance, and hyporheic zone extent. This study sampled streams from Taylor, Wright, Garwood, and Miers Valleys and conducted diurnal sampling of two streams of different character in Taylor Valley. In addition, transect sampling was undertaken of the Onyx River in Wright Valley. The δ 13 C PDB values from these streams span a range of greater than 14‰, from −9.4‰ to +5.1‰, with the majority of samples falling between −3‰ and +2‰, suggesting that the C stable isotope composition of dissolved C in McMurdo Dry Valley streams is largely inorganic in character. Because there are no vascular plants on this landscape and no groundwater input to these

  20. Comparison of active and passive stream restoration

    DEFF Research Database (Denmark)

    Kristensen, Esben Astrup; Thodsen, Hans; Dehli, Bjarke

    2013-01-01

    Modification and channelization of streams and rivers have been conducted extensively throughout the world during the past century. Subsequently, much effort has been directed at re-creating the lost habitats and thereby improving living conditions for aquatic organisms. However, as restoration...... methods are plentiful, it is difficult to determine which one to use to get the anticipated result. The aim of this study was to compare two commonly used methods in small Danish streams to improve the physical condition: re-meandering and passive restoration through cease of maintenance. Our...... investigation included measurement of the physical conditions in 29 stream reaches covering four different groups: (1) re-meandered streams, (2) LDC streams (the least disturbed streams available), (3) passively restored streams (>10 years stop of aintenance) and (4) channelized and non-restored streams. The in...

  1. The Pacific northwest stream quality assessment

    Science.gov (United States)

    Van Metre, Peter C.; Morace, Jennifer L.; Sheibley, Rich W.

    2015-01-01

    In 2015, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program is assessing stream quality in the Pacific Northwest. The goals of the Pacific Northwest Stream Quality Assessment (Pacific Northwest study) are to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and to evaluate the relation between these stressors and biological communities. The effects of urbanization and agriculture on stream quality for the Puget Lowlands and Willamette Valley are the focus of this regional study. Findings will provide the public and policymakers with information regarding which human and environmental factors are the most critical in affecting stream quality and, thus, provide insights about possible approaches to protect or improve the health of streams in the region.

  2. Acoustic Investigation of Jet Mixing Noise in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Dahl, Milo D.

    2012-01-01

    In an earlier study, a prediction model for jet noise in dual stream jets was proposed that is founded on velocity scaling laws in single stream jets and similarity features of the mean velocity and turbulent kinetic energy in dual stream flows. The model forms a composite spectrum from four component single-stream jets each believed to represent noise-generation from a distinct region in the actual flow. While the methodology worked effectively at conditions considered earlier, recent examination of acoustic data at some unconventional conditions indicate that further improvements are necessary in order to expand the range of applicability of the model. The present work demonstrates how these predictions compare with experimental data gathered by NASA and industry for the purpose of examining the aerodynamic and acoustic performance of such nozzles for a wide range of core and fan stream conditions. Of particular interest are jets with inverted velocity and temperature profiles and the appearance of a second spectral peak at small aft angles to the jet under such conditions. It is shown that a four-component spectrum succeeds in modeling the second peak when the aft angle refraction effects are properly incorporated into the model. A tradeoff of noise emission takes place between two turbulent regions identified as transition and fully mixed regions as the fan stream velocity exceeds that of the core stream. The effect of nozzle discharge coefficients will also be discussed.

  3. Rapid screening method for plutonium in mixed waste samples

    International Nuclear Information System (INIS)

    Somers, W.; Culp, T.; Miller, R.

    1987-01-01

    A waste stream sampling program was undertaken to determine those waste streams which contained hazardous constituents, and would therefore be regulated as a hazardous waste under the Resource Conservation and Recovery Act. The waste streams also had the potential of containing radioactive material, either plutonium, americium, or depleted uranium. Because of the potential for contamination with radioactive material, a method of rapidly screening the liquid samples for radioactive material was required. A counting technique was devised to count a small aliquot of a sample, determine plutonium concentration, and allow the sample to be shipped the same day they were collected. This technique utilized the low energy photons (x-rays) that accompany α decay. This direct, non-destructive x-ray analysis was applied to quantitatively determine Pu-239 concentrations in industrial samples. Samples contained a Pu-239, Am-241 mixture; the ratio and/or concentrations of these two radionuclides was not constant. A computer program was designed and implemented to calculate Pu-239 activity and concentration (g/ml) using the 59.5 keV Am-241 peak to determine Am-241's contribution to the 17 keV region. Am's contribution was subtracted, yielding net counts in the 17 keV region due to Pu. 2 figs., 1 tab

  4. An ecohydrological stream type cassification of intermittent and ephemeral streams in the Southwestern United States 2397

    Science.gov (United States)

    Ephemeral and intermittent streams are the predominant fluvial forms in arid and semi-arid environments. Various studies have shown biological and habitat diversity in these lands to be considerably higher along stream corridors in comparison to adjacent uplands, yet knowledge of how these streams f...

  5. Streaming Media Seminar--Effective Development and Distribution of Streaming Multimedia in Education

    Science.gov (United States)

    Mainhart, Robert; Gerraughty, James; Anderson, Kristine M.

    2004-01-01

    Concisely defined, "streaming media" is moving video and/or audio transmitted over the Internet for immediate viewing/listening by an end user. However, at Saint Francis University's Center of Excellence for Remote and Medically Under-Served Areas (CERMUSA), streaming media is approached from a broader perspective. The working definition includes…

  6. Process for humidifying a gaseous fuel stream

    International Nuclear Information System (INIS)

    Sederquist, R. A.

    1985-01-01

    A fuel gas stream for a fuel cell is humidified by a recirculating hot liquid water stream using the heat of condensation from the humidified stream as the heat to vaporize the liquid water. Humidification is accomplished by directly contacting the liquid water with the dry gas stream in a saturator to evaporate a small portion of water. The recirculating liquid water is reheated by direct contact with the humidified gas stream in a condenser, wherein water is condensed into the liquid stream. Between the steps of humidifying and condensing water from the gas stream it passes through the fuel cell and additional water, in the form of steam, is added thereto

  7. Stream Tracker: Crowd sourcing and remote sensing to monitor stream flow intermittence

    Science.gov (United States)

    Puntenney, K.; Kampf, S. K.; Newman, G.; Lefsky, M. A.; Weber, R.; Gerlich, J.

    2017-12-01

    Streams that do not flow continuously in time and space support diverse aquatic life and can be critical contributors to downstream water supply. However, these intermittent streams are rarely monitored and poorly mapped. Stream Tracker is a community powered stream monitoring project that pairs citizen contributed observations of streamflow presence or absence with a network of streamflow sensors and remotely sensed data from satellites to track when and where water is flowing in intermittent stream channels. Citizens can visit sites on roads and trails to track flow and contribute their observations to the project site hosted by CitSci.org. Data can be entered using either a mobile application with offline capabilities or an online data entry portal. The sensor network provides a consistent record of streamflow and flow presence/absence across a range of elevations and drainage areas. Capacitance, resistance, and laser sensors have been deployed to determine the most reliable, low cost sensor that could be mass distributed to track streamflow intermittence over a larger number of sites. Streamflow presence or absence observations from the citizen and sensor networks are then compared to satellite imagery to improve flow detection algorithms using remotely sensed data from Landsat. In the first two months of this project, 1,287 observations have been made at 241 sites by 24 project members across northern and western Colorado.

  8. Structured multi-stream command language

    International Nuclear Information System (INIS)

    Glad, A.S.

    1982-12-01

    A multi-stream command language was implemented to provide the sequential and decision-making operations necessary to run the neutral-beam ion sources connected to the Doublet III tokamak fusion device. A multi-stream command language was implemented in Pascal on a Classic 7870 running under MAX IV. The purpose of this paper is threefold. First, to provide a brief description of the programs comprising the command language including the operating system interaction. Second, to give a description of the language syntax and commands necessary to develop a procedure stream. Third, to provide a description of the normal operating procedures for executing either the sequential or interactive streams

  9. A Method for Calculating the Mean Orbits of Meteor Streams

    Science.gov (United States)

    Voloshchuk, Yu. I.; Kashcheev, B. L.

    An examination of the published catalogs of orbits of meteor streams and of a large number of works devoted to the selection of streams, their analysis and interpretation, showed that elements of stream orbits are calculated, as a rule, as arithmetical (sometimes, weighed) sample means. On the basis of these means, a search for parent bodies, a study of the evolution of swarms generating these streams, an analysis of one-dimensional and multidimensional distributions of these elements, etc., are performed. We show that systematic errors in the estimates of elements of the mean orbits are present in each of the catalogs. These errors are caused by the formal averaging of orbital elements over the sample, while ignoring the fact that they represent not only correlated, but dependent quantities, with nonlinear, in most cases, interrelations between them. Numerous examples are given of such inaccuracies, in particular, the cases where the "mean orbit of the stream" recorded by ground-based techniques does not cross the Earth's orbit. We suggest the computation algorithm, in which the averaging over the sample is carried out at the initial stage of the calculation of the mean orbit, and only for the variables required for subsequent calculations. After this, the known astrometric formulas are used to sequentially calculate all other parameters of the stream, considered now as a standard orbit. Variance analysis is used to estimate the errors in orbital elements of the streams, in the case that their orbits are obtained by averaging the orbital elements of meteoroids forming the stream, without taking into account their interdependence. The results obtained in this analysis indicate the behavior of systematic errors in the elements of orbits of meteor streams. As an example, the effect of the incorrect computation method on the distribution of elements of the stream orbits close to the orbits of asteroids of the Apollo, Aten, and Amor groups (AAA asteroids) is examined.

  10. Acoustic streaming of a sharp edge.

    Science.gov (United States)

    Ovchinnikov, Mikhail; Zhou, Jianbo; Yalamanchili, Satish

    2014-07-01

    Anomalous acoustic streaming is observed emanating from sharp edges of solid bodies that are vibrating in fluids. The streaming velocities can be orders of magnitude higher than expected from the Rayleigh streaming at similar amplitudes of vibration. Acoustic velocity of fluid relative to a solid body diverges at a sharp edge, giving rise to a localized time-independent body force acting on the fluid. This force results in a formation of a localized jet. Two-dimensional numerical simulations are performed to predict acoustic streaming for low amplitude vibration using two methods: (1) Steady-state solution utilizing perturbation theory and (2) direct transient solution of the Navier-Stokes equations. Both analyses agree with each other and correctly predict the streaming of a sharp-edged vibrating blade measured experimentally. The origin of the streaming can be attributed to the centrifugal force of the acoustic fluid flow around a sharp edge. The dependence of this acoustic streaming on frequency and velocity is examined using dimensional analysis. The dependence law is devised and confirmed by numerical simulations.

  11. Organic carbon spiralling in stream ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Mulholland, P J; Elwood, J W; O' Neill, R V

    1982-01-01

    The term spiralling has been used to describe the combined processes of cycling and longitudinal transport in streams. As a measure or organic carbon spiralling, we introduced organic carbon turnover length, S, defined as the average or expected downstream distance travelled by a carbon atom between its entry or fixation in the stream and its oxidation. Using a simple model for organic carbon dynamics in a stream, we show that S is closely related to fisher and Likens' ecosystem efficiency. Unlike efficiency, however, S is independent of the length of the study reach, and values of S determined in streams of differing lengths can be compared. Using data from three different streams, we found the relationship between S and efficiency to agree closely with the model prediction. Hypotheses of stream functioning are discussed in the context of organic carbeon spiralling theory.

  12. H(+) - O(+) two-stream interaction on auroral field lines

    International Nuclear Information System (INIS)

    Bergmann, R.

    1990-01-01

    Upflowing beams of hydrogen, oxygen, and minor ion species, and downward accelerated electrons have been observed above several thousand kilometers altitude on evening auroral field lines. The mechanism for electron and ion acceleration is generally accepted to be the presence of a quasi-static electric field with a component parallel to the earth's magnetic field. The thermal energy of the observed beams is much larger than ionospheric ion temperatures indicating that the beams have been heated as they are accelerated upward. This heating is probably due to a two-stream interaction between beams of different mass ions. The beams gain equal energy in the potential drop and so have different average velocities. Their relative streaming initiates an ion-ion two-stream interaction which then mediates a transfer of energy and momentum between the beams and causes thermalization of each beam. The qualitative evidence that supports this scenario is reviewed. Properties of the two-stream instability are presented in order to demonstrate that a calculation of the evolution of ion beams requires a model that includes field-aligned spatial structure. 26 refs

  13. ESTIMATION OF THE TEMPERATURE RISE OF A MCU ACID STREAM PIPE IN NEAR PROXIMITY TO A SLUDGE STREAM PIPE

    International Nuclear Information System (INIS)

    Fondeur, F; Michael Poirier, M; Samuel Fink, S

    2007-01-01

    Effluent streams from the Modular Caustic-Side Solvent Extraction Unit (MCU) will transfer to the tank farms and to the Defense Waste Processing Facility (DWPF). These streams will contain entrained solvent. A significant portion of the Strip Effluent (SE) pipeline (i.e., acid stream containing Isopar(reg s ign) L residues) length is within one inch of a sludge stream. Personnel envisioned the sludge stream temperature may reach 100 C during operation. The nearby SE stream may receive heat from the sludge stream and reach temperatures that may lead to flammability issues once the contents of the SE stream discharge into a larger reservoir. To this end, personnel used correlations from the literature to estimate the maximum temperature rise the SE stream may experience if the nearby sludge stream reaches boiling temperature. Several calculation methods were used to determine the temperature rise of the SE stream. One method considered a heat balance equation under steady state that employed correlation functions to estimate heat transfer rate. This method showed the maximum temperature of the acid stream (SE) may exceed 45 C when the nearby sludge stream is 80 C or higher. A second method used an effectiveness calculation used to predict the heat transfer rate in single pass heat exchanger. By envisioning the acid and sludge pipes as a parallel flow pipe-to-pipe heat exchanger, this method provides a conservative estimation of the maximum temperature rise. Assuming the contact area (i.e., the area over which the heat transfer occurs) is the whole pipe area, the results found by this method nearly matched the results found with the previous calculation method. It is recommended that the sludge stream be maintained below 80 C to minimize a flammable vapor hazard from occurring

  14. Environmental effects of the Big Rapids dam remnant removal, Big Rapids, Michigan, 2000-02

    Science.gov (United States)

    Healy, Denis F.; Rheaume, Stephen J.; Simpson, J. Alan

    2003-01-01

    The U.S. Geological Survey (USGS), in cooperation with the city of Big Rapids, investigated the environmental effects of removal of a dam-foundation remnant and downstream cofferdam from the Muskegon River in Big Rapids, Mich. The USGS applied a multidiscipline approach, which determined the water quality, sediment character, and stream habitat before and after dam removal. Continuous water-quality data and discrete water-quality samples were collected, the movement of suspended and bed sediment were measured, changes in stream habitat were assessed, and streambed elevations were surveyed. Analyses of water upstream and downstream from the dam showed that the dam-foundation remnant did not affect water quality. Dissolved-oxygen concentrations downstream from the dam remnant were depressed for a short period (days) during the beginning of the dam removal, in part because of that removal effort. Sediment transport from July 2000 through March 2002 was 13,800 cubic yards more at the downstream site than the upstream site. This increase in sediment represents the remobilized sediment upstream from the dam, bank erosion when the impoundment was lowered, and contributions from small tributaries between the sites. Five habitat reaches were monitored before and after dam-remnant removal. The reaches consisted of a reference reach (A), upstream from the effects of the impoundment; the impoundment (B); and three sites below the impoundment where habitat changes were expected (C, D, and E, in downstream order). Stream-habitat assessment reaches varied in their responses to the dam-remnant removal. Reference reach A was not affected. In impoundment reach B, Great Lakes and Environmental Assessment Section (GLEAS) Procedure 51 ratings went from fair to excellent. For the three downstream reaches, reach C underwent slight habitat degradation, but ratings remained good; reach D underwent slight habitat degradation with ratings changing from excellent to good; and, in an area

  15. Streaming of Continuous Media for Distance Education Systems

    Science.gov (United States)

    Dashti, Ali; Safar, Maytham

    2007-01-01

    Distance education created new challenges regarding the delivery of large size isochronous continuous streaming media (SM) objects. In this paper, we consider the design of a framework for customized SM presentations, where each presentation consists of a number of SM objects that should be retrieved and displayed to the user in a coherent…

  16. Applicability of Existing Objective Metrics of Perceptual Quality for Adaptive Video Streaming

    DEFF Research Database (Denmark)

    Søgaard, Jacob; Krasula, Lukás; Shahid, Muhammad

    2016-01-01

    Objective video quality metrics are designed to estimate the quality of experience of the end user. However, these objective metrics are usually validated with video streams degraded under common distortion types. In the presented work, we analyze the performance of published and known full......-reference and noreference quality metrics in estimating the perceived quality of adaptive bit-rate video streams knowingly out of scope. Experimental results indicate not surprisingly that state of the art objective quality metrics overlook the perceived degradations in the adaptive video streams and perform poorly...

  17. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Bruus, Henrik

    2014-01-01

    We present a numerical study of thermoviscous effects on the acoustic streaming flow generated by an ultrasound standing-wave resonance in a long straight microfluidic channel containing a Newtonian fluid. These effects enter primarily through the temperature and density dependence of the fluid...... viscosity. The resulting magnitude of the streaming flow is calculated and characterized numerically, and we find that even for thin acoustic boundary layers, the channel height affects the magnitude of the streaming flow. For the special case of a sufficiently large channel height, we have successfully...

  18. Plan and schedule for disposition and regulatory compliance for miscellaneous streams. Revision 1

    International Nuclear Information System (INIS)

    1994-12-01

    On December 23, 1991, the U.S. Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of Department of Ecology Consent Order No. DE 91NM-177 (Consent Order). The Consent Order lists regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code (WAC) 173-216 (State Waste Discharge Permit Program) or WAC 173-218 (Washington Underground Injection Control Program) where applicable. Hanford Site liquid effluent streams discharging to the soil column have been categorized in the Consent Order as follows: Phase I Streams Phase II Streams Miscellaneous Streams. Phase I and Phase II Streams are addressed in two RL reports: open-quotes Plan and Schedule to Discontinue Disposal of Contaminated Liquids into the Soil Column at the Hanford Siteclose quotes (DOE-RL 1987), and open-quotes Annual Status of the Report of the Plan and Schedule to Discontinue Disposal of Contaminated Liquids into the Soil Column at the Hanford Siteclose quotes. Miscellaneous Streams are those liquid effluent streams discharged to the ground that are not categorized as Phase I or Phase II Streams. Miscellaneous Streams discharging to the soil column at the Hanford Site are subject to the requirements of several milestones identified in the Consent Order. This document provides a plan and schedule for the disposition of Miscellaneous Streams. The disposition process for the Miscellaneous Streams is facilitated using a decision tree format. The decision tree and corresponding analysis for determining appropriate disposition of these streams is presented in this document

  19. Hysteretic behavior of stage-discharge relationships in urban streams

    Science.gov (United States)

    Miller, A. J.; Lindner, G. A.

    2009-12-01

    Reliable stage-discharge relationships or rating curves are of critical importance for accurate calculation of streamflow and maintenance of long-term flow records. Urban streams offer particular challenges for the maintenance of accurate rating curves. It is often difficult or impossible to collect direct discharge measurements at high flows, many of which are generated by short-duration high-intensity summer thunderstorms, both because of dangerous conditions in the channel and also because the stream rises and falls so rapidly that field crews cannot reach sites in time and sometimes cannot make measurements rapidly enough to keep pace with changing water levels even when they are on site during a storm. Work in urban streams in the Baltimore metropolitan area has shown that projection of rating curves beyond the range of measured flows can lead to overestimation of flood peaks by as much as 100%, and these can only be corrected when adequate field data are available to support modeling efforts. Even moderate flows that are above safe wading depth and velocity may best be estimated using hydraulic models. Current research for NSF CNH project 0709659 includes the application of 2-d depth-averaged hydraulic models to match existing rating curves over a range of low to moderate flows and to extend rating curves for higher flows, based on field collection of high-water marks. Although it is generally assumed that stage-discharge relationships are single-valued, we find that modeling results in small urban streams often generate hysteretic relationships, with higher discharges on the rising limb of the hydrograph than on the falling limb. The difference between discharges for the same stage on the rising and falling limb can be on the order of 20-30% even for in-channel flows that are less than 1 m deep. As safety considerations dictate that it is preferable to make direct discharge measurements on the falling limb of the hydrograph, the higher direct measurements

  20. On-stream chemical element monitor

    International Nuclear Information System (INIS)

    Averitt, O.R.; Dorsch, R.R.

    1979-01-01

    An apparatus and method for on-stream chemical element monitoring are described wherein a multiplicity of sample streams are flowed continuously through individual analytical cells and fluorescence analyses are performed on the sample streams in sequence, together with a method of controlling the time duration of each analysis as a function of the concomitant radiation exposure of a preselected perforate reference material interposed in the sample-radiation source path

  1. A New Streamflow-Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000

    Science.gov (United States)

    Prudic, David E.; Konikow, Leonard F.; Banta, Edward R.

    2004-01-01

    stream reach is based on a mass-balance approach and accounts for exchanges with (inputs from or losses to) ground-water systems. Two test examples are used to illustrate some of the capabilities of the SFR1 Package. The first test simulation was designed to illustrate how pumping of ground water from an aquifer connected to streams can affect streamflow, depth, width, and streambed conductance using the different options. The second test simulation was designed to illustrate solute transport through interconnected lakes, streams, and aquifers. Because of the need to examine time series results from the model simulations, the Gage Package first described in the LAK3 documentation was revised to include time series results of selected variables (streamflows, stream depth and width, streambed conductance, solute concentrations, and solute loads) for specified stream reaches. The mass-balance or continuity approach for routing flow and solutes through a stream network may not be applicable for all interactions between streams and aquifers. The SFR1 Package is best suited for modeling long-term changes (months to hundreds of years) in ground-water flow and solute concentrations using averaged flows in streams. The Package is not recommended for modeling the transient exchange of water between streams and aquifers when the objective is to examine short-term (minutes to days) effects caused by rapidly changing streamflows.

  2. Reconfigurable Multicore Architectures for Streaming Applications

    NARCIS (Netherlands)

    Smit, Gerardus Johannes Maria; Kokkeler, Andre B.J.; Rauwerda, G.K.; Jacobs, J.W.M.; Nicolescu, G.; Mosterman, P.J.

    2009-01-01

    This chapter addresses reconfigurable heterogenous and homogeneous multicore system-on-chip (SoC) platforms for streaming digital signal processing applications, also called DSP applications. In streaming DSP applications, computations can be specified as a data flow graph with streams of data items

  3. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael; Kosinka, Jin; Calo, Victor M.

    2015-01-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these 'stretch-free' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  4. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  5. Bringing Legacy Visualization Software to Modern Computing Devices via Application Streaming

    Science.gov (United States)

    Fisher, Ward

    2014-05-01

    Planning software compatibility across forthcoming generations of computing platforms is a problem commonly encountered in software engineering and development. While this problem can affect any class of software, data analysis and visualization programs are particularly vulnerable. This is due in part to their inherent dependency on specialized hardware and computing environments. A number of strategies and tools have been designed to aid software engineers with this task. While generally embraced by developers at 'traditional' software companies, these methodologies are often dismissed by the scientific software community as unwieldy, inefficient and unnecessary. As a result, many important and storied scientific software packages can struggle to adapt to a new computing environment; for example, one in which much work is carried out on sub-laptop devices (such as tablets and smartphones). Rewriting these packages for a new platform often requires significant investment in terms of development time and developer expertise. In many cases, porting older software to modern devices is neither practical nor possible. As a result, replacement software must be developed from scratch, wasting resources better spent on other projects. Enabled largely by the rapid rise and adoption of cloud computing platforms, 'Application Streaming' technologies allow legacy visualization and analysis software to be operated wholly from a client device (be it laptop, tablet or smartphone) while retaining full functionality and interactivity. It mitigates much of the developer effort required by other more traditional methods while simultaneously reducing the time it takes to bring the software to a new platform. This work will provide an overview of Application Streaming and how it compares against other technologies which allow scientific visualization software to be executed from a remote computer. We will discuss the functionality and limitations of existing application streaming

  6. Streaming reversal of energetic particles in the magnetetail during a substorm

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Williams, D.J.; Eastman, T.E.; Frank, L.A.; Akasofu, S.

    1984-01-01

    Reversal from tailward streaming to earthward streaming of energetic ions at 0.29--0.50 MeV during a substorm on February 3, 1978, is studied with measurements of energetic particles, plasma, and magnetic field from that IMP 8 spacecraft near the dusk flank of the magnetotail. Four new features emerge when high time resolution data are examined in detail. The times of reversal from tailward to earthward streaming of energetic ions and from tailward to earthward plasma flow do not coincide. Second, the velocity distribution in the tailward flowing plasma has a cresent shape, whereas the velocity distribution in the earthward flowing plasma has a crescent shape, whereas the velocity distribution in the earthward flowing plasma resembles a convecting Maxwellian. Third, tailward streaming of energetic ions is sometime detected in northward magnetic field regions and conversely, earthward streaming in southward field environments. Fourth, energetic ions scattering earthward are occasionally present in conjunction with a strong tailward streaming population in the same energy range. These new features suggest that the streaming reversal of energetic ions and the plasma flow reversal in this event are due to the spacecraft traversing different plasma regions during the substorm-associated configurational change of the plasma sheet and the magnetotail and is unrelated to the motion of an acceleration region such as an X type neutral line moving past the spacecraft

  7. Self-focusing relativistic electron streams in plasmas

    International Nuclear Information System (INIS)

    Cox, J.L. Jr.

    1975-01-01

    A relativistic electron stream propagating through a dense plasma induces current and charge densities which determine how the stream can self-focus. Magnetic self-focusing is possible because stream-current neutralization, although extensive, is not complete. Electric self-focusing can occur because the stream charge becomes overneutralized when the net current is smaller than a critical value. Under some circumstances, the latter process can cause the stream to focus into a series of electron bunches

  8. Removal of sulfur from process streams

    International Nuclear Information System (INIS)

    Brignac, D.G.

    1984-01-01

    A process wherein water is added to a non-reactive gas stream, preferably a hydrogen or hydrogen-containing gas stream, sufficient to raise the water level thereof to from about 0.2 percent to about 50 percent, based on the total volume of the process gas stream, and the said moist gas stream is contacted, at elevated temperature, with a particulate mass of a sulfur-bearing metal alumina spinel characterized by the formula MAl 2 O 4 , wherein M is chromium, iron, cobalt, nickel, copper, cadmium, mercury, or zinc to desorb sulfur thereon. In the sulfur sorption cycle, due to the simultaneous adsorption of water and sulfur, the useful life of the metal alumina spinel for sulfur adsorption can be extended, and the sorbent made more easily regenerable after contact with a sulfur-bearing gas stream, notably sulfur-bearing wet hydrogen or wet hydrogen-rich gas streams

  9. StreamStats in Oklahoma - Drainage-Basin Characteristics and Peak-Flow Frequency Statistics for Ungaged Streams

    Science.gov (United States)

    Smith, S. Jerrod; Esralew, Rachel A.

    2010-01-01

    The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at http://water.usgs.gov/osw/streamstats/. The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the

  10. Collaborative Media Streaming

    OpenAIRE

    Kahmann, Verena

    2008-01-01

    Mit Hilfe der IP-Technologie erbrachte Multimedia-Dienste wie IPTV oder Video-on-Demand sind zur Zeit ein gefragtes Thema. Technisch werden solche Dienste unter dem Begriff "Streaming" eingeordnet. Ein Server sendet Mediendaten kontinuierlich an Empfänger, welche die Daten sofort weiterverarbeiten und anzeigen. Über einen Rückkanal hat der Kunde die Möglichkeit der Einflussnahme auf die Wiedergabe. Eine Weiterentwicklung dieser Streaming-Dienste ist die Möglichkeit, gemeinsam mit anderen dens...

  11. Polymer-enhanced energy harvesting from streaming potential

    NARCIS (Netherlands)

    Nguyen, Trieu; Xie, Yanbo; de Vreede, Lennart; van den Berg, Albert; Eijkel, Jan C.T.; Fujii, T.; Hibara, A.; Takeuchi, S.; Fukuba, T.

    2012-01-01

    In this contribution, we present the experimental results of energy conversion from the streaming potential when a polymer, polyacrylic acid (PAA) with concentration from 200 ppm to 4000 ppm in background electrolyte KCl solution was used as the working fluid. The results show that when PAA was

  12. Stream chemistry in the eastern United States. 2. Current sources of acidity in acidic and low acid-neutralizing-capacity streams

    International Nuclear Information System (INIS)

    Herlihy, A.T.; Kaufmann, P.R.; Mitch, M.E.

    1991-01-01

    The authors examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probable sources of current acidity in acidic and low acid neutralizing capacity (ANC) streams in the eastern United States. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small forested watersheds in the Mid-Atlantic Highlands (an estimated 1950 km of stream length) and in the Mid-Atlantic Coastal Plain (1250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1180 km of acidic stream length and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands

  13. The effect of in-stream activities on the Njoro River, Kenya. Part I: Stream flow and chemical water quality

    Science.gov (United States)

    Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.

    For shallow streams in sub-Saharan Africa, in-stream activities could be described as the actions by people and livestock, which take place within or besides stream channels. This study examined the nature of in-stream activities along a rural stream in Kenya and established the inequality in water allocation for various livelihood needs, as well as the negative impact they have on dry weather stream flow and chemical water quality. Seven locations along the stream were studied in wet and dry weather of 2006. Enumeration consisted of making head counts of people and livestock and tallying visitors at hourly intervals from 6 a.m. to 7 p.m. To estimate water abstraction, filled containers of known volume were counted and the stream was sampled to examine the impact on water quality. Water samples were obtained upstream and downstream of in-stream activities before (6 a.m.) and during (11 a.m., 6 p.m.) activities. Samples were analyzed for suspended solids, turbidity, BOD 5, total nitrogen and total phosphorus. The daily total abstraction at the middle reaches during dry weather was 120-150 m 3 day -1. More than 60% of abstraction was done by water vendors. Vended water from the stream was sold at US 3.5-7.5 per m 3 and vendors earned between US 3-6 a day. Abstracted water contributed approximately 40-60% of the total daily consumptive water use in the riparian area during dry weather but >30% of the morning stream flow was abstracted thereby upsetting stream flow in the lower reaches. The daily total water abstraction correlated positively ( R2, 0.98) and significantly ( p < 0.05) with the daily total human visit, which was diurnally periodic with two peaks, occurring between 9 a.m. and 10 a.m. and from 4 p.m. to 5 p.m. This diurnal pattern of visits and the corresponding in-stream activities affected water quality. In particular, suspended solids, turbidity and BOD 5 levels increased significantly ( p < 0.05) downstream during in-stream activities. It was concluded

  14. Characterizing Milky Way Tidal Streams and Dark Matter with MilkyWay@home

    Science.gov (United States)

    Newberg, Heidi Jo; Shelton, Siddhartha; Weiss, Jake

    2018-01-01

    MilkyWay@home is a 0.5 PetaFLOPS volunteer computing platform that is mapping out the density substructure of the Sagittarius Dwarf Tidal Stream, the so-called bifurcated portion of the Sagittarius Stream, and the Virgo Overdensity, using turnoff stars from the Sloan Digital Sky Survey. It is also using the density of stars along tidal streams such as the Orphan Stream to constrain properties of the dwarf galaxy progenitor of this stream, including the dark matter portion. Both of these programs are enabled by a specially-built optimization package that uses differential evolution or particle swarm methods to find the optimal model parameters to fit a set of data. To fit the density of tidal streams, 20 parameters are simultaneously fit to each 2.5-degree-wide stripe of SDSS data. Five parameters describing the stellar and dark matter profile of the Orphan Stream progenitor and the time that the dwarf galaxy has been evolved through the Galactic potential are used in an n-body simulation that is then fit to observations of the Orphan Stream. New results from MilkyWay@home will be presented. This project was supported by NSF grant AST 16-15688, the NASA/NY Space Grant fellowship, and contributions made by The Marvin Clan, Babette Josephs, Manit Limlamai, and the 2015 Crowd Funding Campaign to Support Milky Way Research.

  15. Nitrous oxide emission from denitrification in stream and river networks

    Science.gov (United States)

    Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Poole, G.C.; Maurice, Valett H.; Arango, C.P.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N 2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3-) concentrations, but that production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg??y -1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

  16. A rapid radiative transfer model for reflection of solar radiation

    Science.gov (United States)

    Xiang, X.; Smith, E. A.; Justus, C. G.

    1994-01-01

    A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.

  17. Macroinvertebrate community responses to a dewatering disturbance gradient in a restored stream

    Directory of Open Access Journals (Sweden)

    J. D. Muehlbauer

    2011-06-01

    Full Text Available Dewatering disturbances are common in aquatic systems and represent a relatively untapped field of disturbance ecology, yet studying dewatering events along gradients in non-dichotomous (i.e. wet/dry terms is often difficult. Because many stream restorations can essentially be perceived as planned hydrologic manipulations, such systems can make ideal test-cases for understanding processes of hydrological disturbance. In this study we used an experimental drawdown in a 440 ha stream/wetland restoration site to assess aquatic macroinvertebrate community responses to dewatering and subsequent rewetting. The geomorphic nature of the site and the design of the restoration allowed dewatering to occur predictably along a gradient and decoupled the hydrologic response from any geomorphic (i.e. habitat heterogeneity effects. In the absence of such heterogeneous habitat refugia, reach-scale wetted perimeter and depth conditions exerted a strong control on community structure. The community exhibited an incremental response to dewatering severity over the course of this disturbance, which was made manifest not as a change in community means but as an increase in community variability, or dispersion, at each site. The dewatering also affected inter-species abundance and distributional patterns, as dewatering and rewetting promoted alternate species groups with divergent habitat tolerances. Finally, our results indicate that rapid rewetting – analogous to a hurricane breaking a summer drought – may represent a recovery process rather than an additional disturbance and that such processes, even in newly restored systems, may be rapid.

  18. Wadeable Streams Assessment Data

    Science.gov (United States)

    The Wadeable Streams Assessment (WSA) is a first-ever statistically-valid survey of the biological condition of small streams throughout the U.S. The U.S. Environmental Protection Agency (EPA) worked with the states to conduct the assessment in 2004-2005. Data for each parameter sampled in the Wadeable Streams Assessment (WSA) are available for downloading in a series of files as comma separated values (*.csv). Each *.csv data file has a companion text file (*.txt) that lists a dataset label and individual descriptions for each variable. Users should view the *.txt files first to help guide their understanding and use of the data.

  19. YouTube Live and Twitch: A Tour of User-Generated Live Streaming Systems

    OpenAIRE

    Pires , Karine; SIMON , Gwendal

    2015-01-01

    International audience; User-Generated live video streaming systems are services that allow anybody to broadcast a video stream over the Internet. These Over-The-Top services have recently gained popularity, in particular with e-sport, and can now be seen as competitors of the traditional cable TV. In this paper, we present a dataset for further works on these systems. This dataset contains data on the two main user-generated live streaming systems: Twitch and the live service of YouTube. We ...

  20. Male choice in the stream-anadromous stickleback complex.

    Directory of Open Access Journals (Sweden)

    Jeffrey S McKinnon

    Full Text Available Studies of mating preferences and pre-mating reproductive isolation have often focused on females, but the potential importance of male preferences is increasingly appreciated. We investigated male behavior in the context of reproductive isolation between divergent anadromous and stream-resident populations of threespine stickleback, Gasterosteus aculeatus, using size-manipulated females of both ecotypes. Specifically, we asked if male courtship preferences are present, and if they are based on relative body size, non-size aspects of ecotype, or other traits. Because male behaviors were correlated with each other, we conducted a principal components analysis on the correlations and ran subsequent analyses on the principal components. The two male ecotypes differed in overall behavioral frequencies, with stream-resident males exhibiting consistently more vigorous and positive courtship than anadromous males, and an otherwise aggressive behavior playing a more positive role in anadromous than stream-resident courtship. We observed more vigorous courtship toward smaller females by (relatively small stream-resident males and the reverse pattern for (relatively large anadromous males. Thus size-assortative male courtship preferences may contribute to reproductive isolation in this system, although preferences are far from absolute. We found little indication of males responding preferentially to females of their own ecotype independent of body size.

  1. Subglacial hydrology and the formation of ice streams.

    Science.gov (United States)

    Kyrke-Smith, T M; Katz, R F; Fowler, A C

    2014-01-08

    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice-water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model.

  2. Thief carbon catalyst for oxidation of mercury in effluent stream

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  3. Industrial-Strength Streaming Video.

    Science.gov (United States)

    Avgerakis, George; Waring, Becky

    1997-01-01

    Corporate training, financial services, entertainment, and education are among the top applications for streaming video servers, which send video to the desktop without downloading the whole file to the hard disk, saving time and eliminating copyrights questions. Examines streaming video technology, lists ten tips for better net video, and ranks…

  4. Trends in stream nitrogen concentrations for forested reference catchments across the USA

    Science.gov (United States)

    A. Argerich; S.L. Johnson; S.D. Sebestyen; C.C. Rhoades; E. Greathouse; J.D. Knoepp; M.B. Adams; G.E. Likens; J.L. Campbell; W.H. McDowell; F.N. Scatena; G.G. Ice

    2013-01-01

    To examine whether stream nitrogen concentrations in forested reference catchments have changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr of data collected from 22 catchments at seven USDA Forest Service Experimental Forests. Trends in stream nitrogen presented high spatial variability both among catchments at a site and among...

  5. Online and unsupervised face recognition for continuous video stream

    Science.gov (United States)

    Huo, Hongwen; Feng, Jufu

    2009-10-01

    We present a novel online face recognition approach for video stream in this paper. Our method includes two stages: pre-training and online training. In the pre-training phase, our method observes interactions, collects batches of input data, and attempts to estimate their distributions (Box-Cox transformation is adopted here to normalize rough estimates). In the online training phase, our method incrementally improves classifiers' knowledge of the face space and updates it continuously with incremental eigenspace analysis. The performance achieved by our method shows its great potential in video stream processing.

  6. Design methods of Coanda effect nozzle with two streams

    Directory of Open Access Journals (Sweden)

    Michele TRANCOSSI

    2014-03-01

    Full Text Available This paper continues recent research of the authors about the ACHEON Coanda effect two streams nozzle. This nozzle aims to produce an effective deflection of a propulsive jet with a correspondent deviation of the thrust vector in a 2D plane. On the basis of a previously published mathematical model, based on integral equations, it tries to produce an effective design guideline, which can be adopted for design activities of the nozzle for aeronautic propulsion. The presented model allows defining a governing method for this innovative two stream synthetic jet nozzle. The uncertainness level of the model are discussed and novel aircraft architectures based on it are presented. A CFD validation campaign is produced focusing on validating the model and the designs produced.

  7. Natural stream flow-rates measurements by tracer techniques

    International Nuclear Information System (INIS)

    Cuellar Mansilla, J.

    1982-01-01

    This paper presents the study of the precision obtained measuring the natural stream flow rates by tracer techniques, especially when the system presents a great slope and a bed constituted by large and extended particle size. The experiences were realized in laboratory pilot channels with flow-rates between 15 and 130 [1/s]; and in natural streams with flow-rates from 1 to 25 m 3 /s. Tracer used were In-133m and Br-82 for laboratory and field measurements respectively. In both cases the tracer was injected as a pulse and its dilution measured collecting samples in the measured section, at constant flow-rates, of 5[1] in laboratory experiences and 60[1] of water in field experiences. Precisions obtained at a 95% confidence level were about 2% for laboratory and 3% for field. (I.V.)

  8. Nucleocapsid Protein from Fig Mosaic Virus Forms Cytoplasmic Agglomerates That Are Hauled by Endoplasmic Reticulum Streaming

    Science.gov (United States)

    Ishikawa, Kazuya; Miura, Chihiro; Maejima, Kensaku; Komatsu, Ken; Hashimoto, Masayoshi; Tomomitsu, Tatsuya; Fukuoka, Misato; Yusa, Akira; Yamaji, Yasuyuki

    2014-01-01

    ABSTRACT Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. IMPORTANCE Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly

  9. Sudden Onset, Rapidly Expansile, Cervical Cystic Hygroma in an Adult: A Rare Case with Unusual Presentation and Extensive Review of the Literature

    Directory of Open Access Journals (Sweden)

    Vivek Dokania

    2017-01-01

    Full Text Available Cystic hygroma (CH is a benign infiltrative malformation of the lymphatic channels. We report a case of a 28-year-old Indian female who presented with rapidly enlarging right sided neck swelling over the posterior triangle since 5 days. Complete resection of CH is sometimes not amenable because of its infiltrative nature and involvement of surrounding vital structures. However, in our patient successful complete surgical resection was undertaken. The MRI findings of our patient were consistent with brachial cleft cyst; this posed a challenge in the diagnosis of CH. The histopathological analysis of the resected mass confirmed CH. CH is rare in adults and such an acute presentation is exceptionally atypical. History of prior trauma and infection are known etiological factors for adult CH; these were conspicuously absent in our patient. CH should be considered in the differentials of rapidly enlarging cystic swelling of posterior region of neck in adults. Optimal and timely management is necessary to achieve a favorable prognosis. Therefore, we report a case of rapidly enlarging cervical CH in an adult along with extensive literature review to have a better understanding regarding epidemiology, etiopathogenesis, clinical presentation, optimal management, and prognosis of such a rare entity in adults.

  10. Tracing the sources of stream sediments by Pb isotopes and trace elements

    International Nuclear Information System (INIS)

    Kyung-Seok Ko; Jae Gon Kim; Kyoochul Ha; Kil Yong Lee

    2012-01-01

    The objective of this research is to trace the sources of stream sediments in a small watershed influenced by anthropogenic and lithogenic origins identified by the spatial distributions and temporal variations of stream sediments using geochemical interpretation of the stable and radiogenic isotopes, major components, and heavy metals data and principal component analysis. To know the effects of both present and past mining, the stream sediments were sampled at the stream tributaries and sediment coring work. The spatial distributions of heavy metals clearly showed the effects of Cu and Pb-Zn mineralization zones at the site. Anthropogenic Pb was elevated at the downstream area by the stream sediments due to an active quarry. The results of principal components analysis also represent the effects of the stream sediments origins, including anthropogenic wastes and the active quarry and lithogenic sediment. Anomalous Cu, indicating the effect of past Guryong mining, was identified at the deep core sediments of 1.80-5.05 m depth. The influence of active quarry was shown in the recently deposited sediments of 210 Pb and stable Pb and Sr isotopes. This study suggests that the chemical studies using radiogenic and stable isotopes and heavy metals and multivariate statistical method are useful tools to discriminate the sources of stream sediments with different origins. (author)

  11. STREAMS - Technology Programme. Yearbook 2003

    International Nuclear Information System (INIS)

    2003-01-01

    The STREAMS Technology Programme addresses municipal waste. Municipal waste is composed of waste from households and small businesses. The programme focuses on five areas Waste prevention, Collection, transportation, and management of waste streams, Waste treatment technologies, Waste recycling into raw materials and new products, Landfill technologies. The development projects of the STREAMS Programme utilize a number of different technologies, such as biotechnology, information technology, materials technology, measurement and analysis, and automation technology. Finnish expertise in materials recycling technologies and related electronics and information technology is extremely high on a worldwide scale even though the companies represent SMEs. Started in 2001, the STREAMS programme has a total volume of 27 million euros, half of which is funded by Tekes. The programme runs through the end of 2004. (author)

  12. Low-flow characteristics of streams in the Puget Sound region, Washington

    Science.gov (United States)

    Hidaka, F.T.

    1973-01-01

    Periods of low streamflow are usually the most critical factor in relation to most water uses. The purpose of this report is to present data on low-flow characteristics of streams in the Puget Sound region, Washington, and to briefly explain some of the factors that influence low flow in the various basins. Presented are data on low-flow frequencies of streams in the Puget Sound region, as gathered at 150 gaging stations. Four indexes were computed from the flow-flow-frequency curves and were used as a basis to compare the low-flow characteristics of the streams. The indexes are the (1) low-flow-yield index, expressed in unit runoff per square mile; (2) base-flow index, or the ratio of the median 7-day low flow to the average discharge; (3) slope index, or slope of annual 7-day low-flow-frequency curve; and (4) spacing index, or spread between the 7-day and 183-day low-flow-frequency curves. The indexes showed a wide variation between streams due to the complex interrelation between climate, topography, and geology. The largest low-flow-yield indexes determined--greater than 1.5 cfs (cubic feet per second) per square mile--were for streams that head at high altitudes in the Cascade and Olympic Mountains and have their sources at glaciers. The smallest low-flow-yield indexes--less than 0.5 cfs per square mile--were for the small streams that drain the lowlands adjacent to Puget Sound. Indexes between the two extremes were for nonglacial streams that head at fairly high altitudes in areas of abundant precipitation. The base-flow index has variations that can be attributed to a basin's hydrogeology, with very little influence from climate. The largest base-flow indexes were obtained for streams draining permeable unconsolidated glacial and alluvial sediments in parts of the lowlands adjacent to Puget Sound. Large volume of ground water in these materials sustain flows during late summer. The smallest indexes were computed for streams draining areas underlain by

  13. Stream water chemistry in watersheds receiving different atmospheric inputs of H+, NH4+, NO3-, and SO42-1

    Science.gov (United States)

    Stottlemyer, R.

    1997-01-01

    Weekly precipitation and stream water samples were collected from small watersheds in Denali National Park, Alaska, the Fraser Experimental Forest, Colorado, Isle Royale National Park, Michigan, and the Calumet watershed on the south shore of Lake Superior, Michigan. The objective was to determine if stream water chemistry at the mouth and upstream stations reflected precipitation chemistry across a range of atmospheric inputs of H+, NH4+, NO3-, and SO42-. Volume-weighted precipitation H+, NH4+, NO3-, and SO42- concentrations varied 4 to 8 fold with concentrations highest at Calumet and lowest in Denali. Stream water chemistry varied among sites, but did not reflect precipitation chemistry. The Denali watershed, Rock Creek, had the lowest precipitation NO3- and SO42- concentrations, but the highest stream water NO3and SO42- concentrations. Among sites, the ratio of mean monthly upstream NO3- concentration to precipitation NO3- concentration declined (p 90 percent inputs) across inputs ranging from 0.12 to > 6 kg N ha-1 y-1. Factors possibly accounting for the weak or non-existent signal between stream water and precipitation ion concentrations include rapid modification of meltwater and precipitation chemistry by soil processes, and the presence of unfrozen soils which permits winter mineralization and nitrification to occur.

  14. Stream Lifetimes Against Planetary Encounters

    Science.gov (United States)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  15. THE PAL 5 STAR STREAM GAPS

    International Nuclear Information System (INIS)

    Carlberg, R. G.; Hetherington, Nathan; Grillmair, C. J.

    2012-01-01

    Pal 5 is a low-mass, low-velocity-dispersion, globular cluster with spectacular tidal tails. We use the Sloan Digital Sky Survey Data Release 8 data to extend the density measurements of the trailing star stream to 23 deg distance from the cluster, at which point the stream runs off the edge of the available sky coverage. The size and the number of gaps in the stream are measured using a filter which approximates the structure of the gaps found in stream simulations. We find 5 gaps that are at least 99% confidence detections with about a dozen gaps at 90% confidence. The statistical significance of a gap is estimated using bootstrap resampling of the control regions on either side of the stream. The density minimum closest to the cluster is likely the result of the epicyclic orbits of the tidal outflow and has been discounted. To create the number of 99% confidence gaps per unit length at the mean age of the stream requires a halo population of nearly a thousand dark matter sub-halos with peak circular velocities above 1 km s –1 within 30 kpc of the galactic center. These numbers are a factor of about three below cold stream simulation at this sub-halo mass or velocity but, given the uncertainties in both measurement and more realistic warm stream modeling, are in substantial agreement with the LCDM prediction.

  16. Fish populations in Plynlimon streams

    Directory of Open Access Journals (Sweden)

    D. T. Crisp

    1997-01-01

    Full Text Available In Plynlimon streams, brown trout (Salmo trutta L. are widespread in the upper Wye at population densities of 0.03 to 0.32 fish m-2 and show evidence of successful recruitment in most years. In the upper Severn, brown trout are found only in an area of c. 1670 -2 downstream of Blaenhafren Falls at densities of 0.03 to 0.24 fish -2 and the evidence suggests very variable year to year success in recruitment (Crisp & Beaumont, 1996. Analyses of the data show that temperature differences between afforested and unafforested streams may affect the rates of trout incubation and growth but are not likely to influence species survival. Simple analyses of stream discharge data suggest, but do not prove, that good years for recruitment in the Hafren population were years of low stream discharge. This may be linked to groundwater inputs detected in other studies in this stream. More research is needed to explain the survival of the apparently isolated trout population in the Hafren.

  17. Pre-coincidence brain activity predicts the perceptual outcome of streaming/bouncing motion display.

    Science.gov (United States)

    Zhao, Song; Wang, Yajie; Jia, Lina; Feng, Chengzhi; Liao, Yu; Feng, Wenfeng

    2017-08-18

    When two identical visual discs move toward each other on a two-dimensional visual display, they can be perceived as either "streaming through" or "bouncing off" each other after their coincidence. Previous studies have observed a strong bias toward the streaming percept. Additionally, the incidence of the bouncing percept in this ambiguous display could be increased by various factors, such as a brief sound at the moment of coincidence and a momentary pause of the two discs. The streaming/bouncing bistable motion phenomenon has been studied intensively since its discovery. However, little is known regarding the neural basis underling the perceptual ambiguity in the classic version of the streaming/bouncing motion display. The present study investigated the neural basis of the perception disambiguating underling the processing of the streaming/bouncing bistable motion display using event-related potential (ERP) recordings. Surprisingly, the amplitude of frontal central P2 (220-260 ms) that was elicited by the moving discs ~200 ms before the coincidence of the two discs was observed to be predictive of subsequent streaming or bouncing percept. A larger P2 amplitude was observed for streaming percept than the bouncing percept. These findings suggest that the streaming/bouncing bistable perception may have been disambiguated unconsciously ~200 ms before the coincidence of the two discs.

  18. Stream Response to an Extreme Defoliation Event

    Science.gov (United States)

    Gold, A.; Loffredo, J.; Addy, K.; Bernhardt, E. S.; Berdanier, A. B.; Schroth, A. W.; Inamdar, S. P.; Bowden, W. B.

    2017-12-01

    Extreme climatic events are known to profoundly impact stream flow and stream fluxes. These events can also exert controls on insect outbreaks, which may create marked changes in stream characteristics. The invasive Gypsy Moth (Lymantria dispar dispar) experiences episodic infestations based on extreme climatic conditions within the northeastern U.S. In most years, gypsy moth populations are kept in check by diseases. In 2016 - after successive years of unusually warm, dry spring and summer weather -gypsy moth caterpillars defoliated over half of Rhode Island's 160,000 forested ha. No defoliation of this magnitude had occurred for more than 30 years. We examined one RI headwater stream's response to the defoliation event in 2016 compared with comparable data in 2014 and 2015. Stream temperature and flow was gauged continuously by USGS and dissolved oxygen (DO) was measured with a YSI EXO2 sonde every 30 minutes during a series of deployments in the spring, summer and fall from 2014-2016. We used the single station, open channel method to estimate stream metabolism metrics. We also assessed local climate and stream temperature data from 2009-2016. We observed changes in stream responses during the defoliation event that suggest changes in ET, solar radiation and heat flux. Although the summer of 2016 had more drought stress (PDSI) than previous years, stream flow occurred throughout the summer, in contrast to several years with lower drought stress when stream flow ceased. Air temperature in 2016 was similar to prior years, but stream temperature was substantially higher than the prior seven years, likely due to the loss of canopy shading. DO declined dramatically in 2016 compared to prior years - more than the rising stream temperatures would indicate. Gross Primary Productivity was significantly higher during the year of the defoliation, indicating more total fixation of inorganic carbon from photo-autotrophs. In 2016, Ecosystem Respiration was also higher and Net

  19. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    Science.gov (United States)

    Goldberg, Caren S; Pilliod, David S; Arkle, Robert S; Waits, Lisette P

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  20. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    Directory of Open Access Journals (Sweden)

    Caren S Goldberg

    Full Text Available Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus. We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  1. THE COS/UVES ABSORPTION SURVEY OF THE MAGELLANIC STREAM. I. ONE-TENTH SOLAR ABUNDANCES ALONG THE BODY OF THE STREAM

    International Nuclear Information System (INIS)

    Fox, Andrew J.; Richter, Philipp; Wakker, Bart P.; Lehner, Nicolas; Howk, J. Christopher; Ben Bekhti, Nadya; Bland-Hawthorn, Joss; Lucas, Stephen

    2013-01-01

    The Magellanic Stream (MS) is a massive and extended tail of multi-phase gas stripped out of the Magellanic Clouds and interacting with the Galactic halo. In this first paper of an ongoing program to study the Stream in absorption, we present a chemical abundance analysis based on HST/COS and VLT/UVES spectra of four active galactic nuclei (RBS 144, NGC 7714, PHL 2525, and HE 0056-3622) lying behind the MS. Two of these sightlines yield good MS metallicity measurements: toward RBS 144 we measure a low MS metallicity of [S/H] = [S II/H I] = –1.13 ± 0.16 while toward NGC 7714 we measure [O/H] = [O I/H I] = –1.24 ± 0.20. Taken together with the published MS metallicity toward NGC 7469, these measurements indicate a uniform abundance of ≈0.1 solar along the main body of the Stream. This provides strong support to a scenario in which most of the Stream was tidally stripped from the SMC ≈ 1.5-2.5 Gyr ago (a time at which the SMC had a metallicity of ≈0.1 solar), as predicted by several N-body simulations. However, in Paper II of this series, we report a much higher metallicity (S/H = 0.5 solar) in the inner Stream toward Fairall 9, a direction sampling a filament of the MS that Nidever et al. claim can be traced kinematically to the Large Magellanic Cloud, not the Small Magellanic Cloud. This shows that the bifurcation of the Stream is evident in its metal enrichment, as well as its spatial extent and kinematics. Finally we measure a similar low metallicity [O/H] = [O I/H I] = –1.03 ± 0.18 in the v LSR = 150 km s –1 cloud toward HE 0056-3622, which belongs to a population of anomalous velocity clouds near the south Galactic pole. This suggests these clouds are associated with the Stream or more distant structures (possibly the Sculptor Group, which lies in this direction at the same velocity), rather than tracing foreground Galactic material

  2. Multiple drivers, scales, and interactions influence southern Appalachian stream salamander occupancy

    Science.gov (United States)

    Cecala, Kristen K.; Maerz, John C.; Halstead, Brian J.; Frisch, John R.; Gragson, Ted L.; Hepinstall-Cymerman, Jeffrey; Leigh, David S.; Jackson, C. Rhett; Peterson, James T.; Pringle, Catherine M.

    2018-01-01

    Understanding how factors that vary in spatial scale relate to population abundance is vital to forecasting species responses to environmental change. Stream and river ecosystems are inherently hierarchical, potentially resulting in organismal responses to fine‐scale changes in patch characteristics that are conditional on the watershed context. Here, we address how populations of two salamander species are affected by interactions among hierarchical processes operating at different scales within a rapidly changing landscape of the southern Appalachian Mountains. We modeled reach‐level occupancy of larval and adult black‐bellied salamanders (Desmognathus quadramaculatus) and larval Blue Ridge two‐lined salamanders (Eurycea wilderae) as a function of 17 different terrestrial and aquatic predictor variables that varied in spatial extent. We found that salamander occurrence varied widely among streams within fully forested catchments, but also exhibited species‐specific responses to changes in local conditions. While D. quadramaculatus declined predictably in relation to losses in forest cover, larval occupancy exhibited the strongest negative response to forest loss as well as decreases in elevation. Conversely, occupancy of E. wilderae was unassociated with watershed conditions, only responding negatively to higher proportions of fast‐flowing stream habitat types. Evaluation of hierarchical relationships demonstrated that most fine‐scale variables were closely correlated with broad watershed‐scale variables, suggesting that local reach‐scale factors have relatively smaller effects within the context of the larger landscape. Our results imply that effective management of southern Appalachian stream salamanders must first focus on the larger scale condition of watersheds before management of local‐scale conditions should proceed. Our findings confirm the results of some studies while refuting the results of others, which may indicate that

  3. Recovery of Three Arctic Stream Reaches From Experimental Nutrient Enrichment.

    Science.gov (United States)

    Green, A. C.; Benstead, J. P.; Deegan, L. A.; Peterson, B. J.; Bowden, W. B.; Huryn, A. D.; Slavik, K.; Hershey, A. E.

    2005-05-01

    We examined multi-year patterns in community recovery from experimental low-concentration nutrient (N+P and P only) enrichment in three reaches of two Arctic tundra streams (Kuparuk River and Oksrukuyik Creek) on the North Slope of Alaska (USA). Rates of recovery varied among community components and depended on duration of enrichment (2 to 13 consecutive growing seasons). Biomass and C:P ratio of epilithic algae returned to reference levels rapidly (within 2 years), regardless of enrichment duration. Bryophyte cover, which increased greatly after long-term enrichment (>8 years), recovered to reference levels only after 7 years, when a storm scoured most remnant moss in the recovering reach. Persistence of bryophytes slowed recovery rates of insect taxa that had either been positively (e.g., Ephemerella, most chironomid taxa) or negatively (e.g., Orthocladius rivulorum) affected by this shift in dominant primary producer and its consequence for benthic habitat. Growth of Arctic grayling (adults and young-of-year), the top predator, returned to reference rates within two years. Recovery of these Arctic stream ecosystems from nutrient enrichment was consequently controlled largely by interactions between duration of enrichment and physical disturbance, mediated through physical habitat shifts caused by bryophytes.

  4. Component flow processes at four streams in the Catskill Mountains, New York, analysed using episodic concentration/discharge relationship

    Science.gov (United States)

    Evans, C.; Davies, T.D.; Murdoch, Peter S.

    1999-01-01

    Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event-event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the

  5. Resource synergy in stream periphyton communities

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Walter [University of Illinois, Urbana-Champaign; Fanta, S.E. [University of Illinois; Roberts, Brian J [ORNL; Francoeur, Steven N. [Eastern Michigan University, Ypsilanti, MI

    2011-03-01

    1. Light and nutrients play pivotal roles in determining the growth of autotrophs, yet the potential for synergistic interactions between the two resources in algal communities is poorly understood, especially in stream ecosystems. In this study, light and phosphorus were manipulated in large experimental streams to examine resource colimitation and synergy in stream periphyton. 2. Whole-stream metabolism was simultaneously limited by light and phosphorus. Increasing the supply of either light or phosphorus resulted in significant increases in primary production and the transformation of the streams from heterotrophy to autotrophy. 3. Resource-driven changes in periphyton community structure occurred in concert with changes in production. Algal assemblages in highly shaded streams were composed primarily of small diatoms such as Achnanthidium minutissima, whereas larger diatoms such as Melosira varians predominated at higher irradiances. Phosphorus enrichment had relatively little effect on assemblage structure, but it did substantially diminish the abundance of Meridion circulare, a diatom whose mucilaginous colonies were conspicuously abundant in phosphorus-poor, high-light streams. Bacterial biomass declined relative to algal biomass with increases in primary productivity, regardless of whether the increases were caused by light or phosphorus. 4. Synergistic effects on primary production appeared to occur because the availability of one resource facilitated the utilization of the other. Light increased the abundance of large diatoms, which are known to convert high concentrations of nutrients into primary production more effectively than smaller taxa. Phosphorus enrichment led to the replacement of Meridion circulare by non-mucilaginous taxa in phosphorus-enriched streams, and we hypothesize that this change enabled more efficient use of light in photosynthesis. Higher ratios of chlorophyll a : biomass in phosphorus-enriched streams may have also led to more

  6. Discharge modulates stream metabolism dependence on fine particulate organic carbon in a Mediterranean WWTP-influenced stream

    Science.gov (United States)

    Drummond, J. D.; Bernal, S.; Meredith, W.; Schumer, R.; Martí Roca, E.

    2017-12-01

    Waste water treatment plant (WWTP) effluents constitute point source inputs of fine sediment, nutrients, carbon, and microbes to stream ecosystems. A range of responses to these inputs may be observed in recipient streams, including increases in respiration rates, which augment CO2 emissions to the atmosphere. Yet, little is known about which fractions of organic carbon (OC) contribute the most to stream metabolism in WWTP-influenced streams. Fine particulate OC (POC) represents ca. 40% of the total mass of OC in river networks, and is generally more labile than dissolved OC. Therefore, POC inputs from WWTPs could contribute disproportionately to higher rates of heterotrophic metabolism by stream microbial communities. The aim of this study was to investigate the influence of POC inputs from a WWTP effluent on the metabolism of a Mediterranean stream over a wide range of hydrologic conditions. We hypothesized that POC inputs would have a positive effect on respiration rates, and that the response to POC availability would be larger during low flows when the dilution capacity of the recipient stream is negligible. We focused on the easily resuspended fine sediment near the sediment-water interface (top 3 cm), as this region is a known hot spot for biogeochemical processes. For one year, samples of resuspended sediment were collected bimonthly at 7 sites from 0 to 800 m downstream of the WWTP point source. We measured total POC, organic matter (OM) content (%), and the associated metabolic activity of the resuspended sediment using the resazurin-resorufin smart tracer system as a proxy for aerobic ecosystem respiration. Resuspended sediment showed no difference in total POC over the year, while the OM content increased with decreasing discharge. This result together with the decreasing trend of total POC observed downstream of the point source during autumn after a long dry period, suggests that the WWTP effluent was the main contributor to stream POC. Furthermore

  7. Data Stream Processing Study in a Multichannel Telemetry Data Registering System

    Directory of Open Access Journals (Sweden)

    I. M. Sidyakin

    2015-01-01

    Full Text Available The paper presents the results of research that is aimed to improve the reliability of transmission of telemetry information (TMI through a communication channel with noise from the object of telemeasurements to the telemetry system for collecting and processing data. It considers the case where the quality of received information changes over time, due to movement of the object relative to the receiving station, or other factors that cause changes in the characteristics of noise in the channel, up to the total loss due to some temporary sites. To improve the reliability of transmission and ensure continuous communication with the object, it is proposed to use a multi-channel system to record the TMI. This system consists of several telemetry stations, which simultaneously register data stream transmitted from the telemetry object. The multichannel system generates a single stream of TMI for the user at the output. The stream comprises the most reliable pieces of information, being received at all inputs of the system.The paper investigates the task of constructing a multi-channel registration scheme for telemetry information (TMI to provide a simultaneous reception of the telemeasurement data by multiple telemetry stations and to form a single TMI stream containing the most reliable pieces of received data on the basis of quality analysis of information being received.In a multichannel registering system of TMI there are three main factors affecting the quality of the output of a single stream of information: 1 quality of the method used for protecting against errors during transmission over the communication channel with noise; 2 efficiency of the synchronization process of telemetry frames in the received flow of information; 3 efficiency of the applied criteria to form a single output stream from multiple input streams coming from different stations in the discussed multichannel registering system of TMI.In the paper, in practical

  8. Fast algorithm for automatically computing Strahler stream order

    Science.gov (United States)

    Lanfear, Kenneth J.

    1990-01-01

    An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.

  9. Contamination of water in Oliwski Stream after the flood in 2016

    Directory of Open Access Journals (Sweden)

    Matej-Łukowicz Karolina

    2017-01-01

    Full Text Available In the article pollution of stream waters with surface runoff from an urbanized area caused by an extremely high rainfall is discussed. The analyzes were carried out after the rainfall of the depth 152 mm which took place in Gdańsk on 14th and 15th July 2016. This extreme rainfall caused urban flooding, damage of several retention ponds and pollution of surface waters. In the article the results of physical and chemical analyzes of the water samples from Oliwski Stream, inflowing to the Gulf of Gdańsk at the beach in Jelitkowo, are presented. The samples were collected at six points along the Stream in order to evaluate potential pollution sources. The results of the study indicated elevated concentrations of phosphorus compounds and nitrates (V. Additionally, the concentrations of total suspended solids (TSS, solids granulometry and grain size distribution along the stream was investigated.

  10. Waste streams from reprocessing operations

    International Nuclear Information System (INIS)

    Andersson, B.; Ericsson, A.-M.

    1978-03-01

    The three main products from reprocessing operations are uranium, plutonium and vitrified high-level-waste. The purpose of this report is to identify and quantify additional waste streams containing radioactive isotops. Special emphasis is laid on Sr, Cs and the actinides. The main part, more than 99 % of both the fission-products and the transuranic elements are contained in the HLW-stream. Small quantities sometimes contaminate the U- and Pu-streams and the rest is found in the medium-level-waste

  11. Modeling the Gravitational Potential of a Cosmological Dark Matter Halo with Stellar Streams

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, Robyn E. [Department of Astronomy, Columbia University, 550 W 120th St, New York, NY 10027 (United States); Hartke, Johanna; Helmi, Amina, E-mail: robyn@astro.columbia.edu [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen (Netherlands)

    2017-02-20

    Stellar streams result from the tidal disruption of satellites and star clusters as they orbit a host galaxy, and can be very sensitive probes of the gravitational potential of the host system. We select and study narrow stellar streams formed in a Milky-Way-like dark matter halo of the Aquarius suite of cosmological simulations, to determine if these streams can be used to constrain the present day characteristic parameters of the halo’s gravitational potential. We find that orbits integrated in both spherical and triaxial static Navarro–Frenk–White potentials reproduce the locations and kinematics of the various streams reasonably well. To quantify this further, we determine the best-fit potential parameters by maximizing the amount of clustering of the stream stars in the space of their actions. We show that using our set of Aquarius streams, we recover a mass profile that is consistent with the spherically averaged dark matter profile of the host halo, although we ignored both triaxiality and time evolution in the fit. This gives us confidence that such methods can be applied to the many streams that will be discovered by the Gaia mission to determine the gravitational potential of our Galaxy.

  12. Analytical data and sample locality map for aqua-regia leachates of stream sediments analyzed by ICP, and emission spectrographic and ICP results for many NURE stream sediments from the Killik River Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Motooka, J.M.; Adrian, B.M.; Church, S.E.; McDougal, C.M.; Fife, J.B.

    1989-01-01

    A U.S. Geological Survey report is presented giving analytical data and sample locality map for aqua-regia leachates of stream sediments analyzed by ICP, and emission spectrographic and ICP results for many NURE stream sediments from the Killik River Quadrangle, Alaska

  13. Estimation of traveltime and longitudinal dispersion in streams in West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Messinger, Terence

    2013-01-01

    estimates can be made using the national equations for streams without plots. The estimating procedures are not valid for regulated stream reaches that were not individually studied or streamflows outside the limits studied. Rapidly changing streamflow and inadequate mixing across the stream channel affect traveltime and dispersion, and reduce the accuracy of estimates. Increases in streamflow typically result in decreases in the peak concentration and traveltime of the peak concentration. Decreases in streamflow typically result in increases in the peak concentration and traveltime of the peak concentration. Traveltimes will likely be less than those determined using the estimating equations and procedures if the spill is in the center of the stream, and traveltimes will likely be greater than those determined using the estimating equations and procedures if the spill is near the streambank.

  14. Potential stream density in Mid-Atlantic US watersheds.

    Science.gov (United States)

    Elmore, Andrew J; Julian, Jason P; Guinn, Steven M; Fitzpatrick, Matthew C

    2013-01-01

    Stream network density exerts a strong influence on ecohydrologic processes in watersheds, yet existing stream maps fail to capture most headwater streams and therefore underestimate stream density. Furthermore, discrepancies between mapped and actual stream length vary between watersheds, confounding efforts to understand the impacts of land use on stream ecosystems. Here we report on research that predicts stream presence from coupled field observations of headwater stream channels and terrain variables that were calculated both locally and as an average across the watershed upstream of any location on the landscape. Our approach used maximum entropy modeling (MaxEnt), a robust method commonly implemented to model species distributions that requires information only on the presence of the entity of interest. In validation, the method correctly predicts the presence of 86% of all 10-m stream segments and errors are low (stream density and compare our results with the National Hydrography Dataset (NHD). We find that NHD underestimates stream density by up to 250%, with errors being greatest in the densely urbanized cities of Washington, DC and Baltimore, MD and in regions where the NHD has never been updated from its original, coarse-grain mapping. This work is the most ambitious attempt yet to map stream networks over a large region and will have lasting implications for modeling and conservation efforts.

  15. Heavy metal contamination of stream water and sediment in the Taejon area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Woong [Paichai University, Taejon (Korea, Republic of); Lee, Hyun Koo [Chungnam National University, Taejon (Korea, Republic of)

    1996-08-31

    Associated with the rapid pace of overpopulation and industrialization is the increase of municipal and industrial wastewater and heavy metal contamination from these point sources have received much attention in the Taejon area. To reduce the environmental problems, 21 stream sediments from Gap-chun, Yudeung-chun, Yusung-chun and Keum river have been analyzed for Cd, Cu, Pb and Zn. The results show that heavy metal concentrations are high in sediments from the Sintanjin and Taehwa Industrial Complex area with particular reference to 1388 {mu}g/g Cu in the stream sediment of Yusung-chun. When the geochemical map drawn from the Kriging technique of these data are compared with the industrialization and urbanization index map, high concentrations of heavy metals are found in stream sediments in industrialized areas resulting from the accumulation of heavy metals from the polluting factories. Concentrations of Cu in sediments from the Taehwa Industrial Complex area and those of Zn in sediments from the Sintanjin Complex area higher than EPA standard in the U.S.A and may be the potential sources of pollution in Keum river with possible implications to human health. For the speciation of Cu, Pb and Zn, the high proportions of exchangeable phase of Cu and Zn in stream sediments indicate that the metals originate not from parent materials but from wastewater and exist as the adsorbed phase on the surface of sediments. These metals are easily dissolved into the water by the reaction and relative amounts of easily dissolved phase of metals are in the order of Cu = Zn > Pb. (author). 17 refs., 4 tabs., 7 figs.

  16. Stream network responses to evapotranspiration in mountain systems: evidence from spatially-distributed network mapping and sapflow measurements

    Science.gov (United States)

    Godsey, S.; Whiting, J. A.; Reinhardt, K.

    2015-12-01

    Stream networks respond to decreased inputs by shrinking from their headwaters and disconnecting along their length. Both the relative stability of the stream network and the degree of disconnection along the network length can strongly affect stream ecology, including fish migration and nutrient spiraling. Previous data suggests that stream network lengths decrease measurably as discharge decreases, and that evapotranspiration may be an important control on stream network persistence. We hypothesized that changes in sapflow timing and magnitude across a gradient from rain-dominated to snow-dominated elevations would be reflected in the stability of the stream network in a steep watershed draining to the Middle Fork Salmon in central Idaho. We expected that the relative timing of water availability across the gradient would drive differences in water delivery to both trees and the stream network. Here we present results that highlight the stability of sapflow timing across the gradient and persistence of the stream network at this site. We discuss geologic controls on network stability and present a conceptual framework identifying characteristics of stable flowheads. We test this framework at four sites in central Idaho with mapped stream networks. We also discuss late summer sapflow patterns across the elevation gradient and their linkages to soil and atmospheric characteristics. Finally, we compare these patterns to those observed at other sites and discuss the role of vegetation in controlling spatiotemporal patterns across the stream network.

  17. High resolution stream water quality assessment in the Vancouver, British Columbia region: a citizen science study.

    Science.gov (United States)

    Shupe, Scott M

    2017-12-15

    Changing land cover and climate regimes modify water quantity and quality in natural stream systems. In regions undergoing rapid change, it is difficult to effectively monitor and quantify these impacts at local to regional scales. In Vancouver, British Columbia, one of the most rapidly urbanizing areas in Canada, 750 measurements were taken from a total of 81 unique sampling sites representing 49 streams located in urban, forest, and agricultural-dominant watersheds at a frequency of up to 12 times per year between 2013 and 2016. Dissolved nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations, turbidity, water temperature, pH and conductivity were measured by citizen scientists in addition to observations of hydrology, vegetation, land use, and visible stream impacts. Land cover was mapped at a 15-m resolution using Landsat 8 OLI imagery and used to determine dominant land cover for each watershed in which a sample was recorded. Regional, seasonal, and catchment-type trends in measurements were determined using statistical analyses. The relationships of nutrients to land cover varied seasonally and on a catchment-type basis. Nitrate showed seasonal highs in winter and lows in summer, though phosphate had less seasonal variation. Overall, nitrate concentrations were positively associated to agriculture and deciduous forest and negatively associated with coniferous forest. In contrast, phosphate concentrations were positively associated with agricultural, deciduous forest, and disturbed land cover and negatively associated with urban land cover. Both urban and agricultural land cover were significantly associated with an increase in water conductivity. Increased forest land cover was associated with better water quality, including lower turbidity, conductivity, and water temperature. This study showed the importance of high resolution sampling in understanding seasonal and spatial dynamics of stream water quality, made possible with the large number of

  18. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method

    Science.gov (United States)

    Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.

    2018-06-01

    A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.

  19. Alignment data streams for the ATLAS inner detector

    CERN Document Server

    Pinto, B; Pereira, P; Elsing, M; Hawkings, R; Schieck, J; García, S; Schaffer, A; Ma, H; Anjos, A

    2008-01-01

    The ATLAS experiment uses a complex trigger strategy to be able to reduce the Event Filter rate output, down to a level that allows the storage and processing of these data. These concepts are described in the ATLAS Computing Model which embraces Grid paradigm. The output coming from the Event Filter consists of four main streams: physical stream, express stream, calibration stream, and diagnostic stream. The calibration stream will be transferred to the Tier-0 facilities that will provide the prompt reconstruction of this stream with a minimum latency of 8 hours, producing calibration constants of sufficient quality to allow a first-pass processing. The Inner Detector community is developing and testing an independent common calibration stream selected at the Event Filter after track reconstruction. It is composed of raw data, in byte-stream format, contained in Readout Buffers (ROBs) with hit information of the selected tracks, and it will be used to derive and update a set of calibration and alignment cons...

  20. Stream Habitat Reach Summary - NCWAP [ds158

    Data.gov (United States)

    California Natural Resource Agency — The Stream Habitat - NCWAP - Reach Summary [ds158] shapefile contains in-stream habitat survey data summarized to the stream reach level. It is a derivative of the...

  1. Nord Stream 2: keeping the head cool

    International Nuclear Information System (INIS)

    Aoun, Marie-Claire

    2016-01-01

    Nord Stream 2 is the name of a project of a pipeline which will transport Russian natural gas into the European Union. The author first presents the context of this project announced during a forum in Saint Petersburg, and signed in september 2015 between Gazprom and several European stakeholders (Eon, BASF, Engie, Shell and OMV). The objective is for Moscow to secure its north-western European market on the long term. Some physical characteristics of the project are evoked, and the European dependence on gas imports is described. The author then discusses how European countries are divided about this project: some support it (like mainly Germany) while some others are fiercely against (Eastern European countries which complain about their loss of transfer revenues, or countries like Bulgaria, Greece and Italy about the loss of an alternative gas corridor). The project also faces legal obstacles related to patrimony separation and access of third parties to the network. Finally, and while mentioning other projects (Nord Stream 1 and South Stream), the author shows that the difficulties and problems faced by this project are a perfect illustration of a fractured European gas sector

  2. Stream Biodiversity: The Ghost of Land Use Past

    Science.gov (United States)

    H.E. Harding; J.S. Benfield; E.F. Bolstad; P.V. Helfman; E.B.D. Jones

    1998-01-01

    The influece of past land use on the present-day diversity of stream invertebrates and fish was investigated by comparing watersheds with different land-use history. Whole watershed land use in the 1950s was the best predictor of present-day diversity, whereas riparian land use and watershed land use in the 1990s were comparatively poor indicators. Our findings...

  3. Improved Neural Signal Classification in a Rapid Serial Visual Presentation Task Using Active Learning.

    Science.gov (United States)

    Marathe, Amar R; Lawhern, Vernon J; Wu, Dongrui; Slayback, David; Lance, Brent J

    2016-03-01

    The application space for brain-computer interface (BCI) technologies is rapidly expanding with improvements in technology. However, most real-time BCIs require extensive individualized calibration prior to use, and systems often have to be recalibrated to account for changes in the neural signals due to a variety of factors including changes in human state, the surrounding environment, and task conditions. Novel approaches to reduce calibration time or effort will dramatically improve the usability of BCI systems. Active Learning (AL) is an iterative semi-supervised learning technique for learning in situations in which data may be abundant, but labels for the data are difficult or expensive to obtain. In this paper, we apply AL to a simulated BCI system for target identification using data from a rapid serial visual presentation (RSVP) paradigm to minimize the amount of training samples needed to initially calibrate a neural classifier. Our results show AL can produce similar overall classification accuracy with significantly less labeled data (in some cases less than 20%) when compared to alternative calibration approaches. In fact, AL classification performance matches performance of 10-fold cross-validation (CV) in over 70% of subjects when training with less than 50% of the data. To our knowledge, this is the first work to demonstrate the use of AL for offline electroencephalography (EEG) calibration in a simulated BCI paradigm. While AL itself is not often amenable for use in real-time systems, this work opens the door to alternative AL-like systems that are more amenable for BCI applications and thus enables future efforts for developing highly adaptive BCI systems.

  4. Assessing effects of water abstraction on fish assemblages in Mediterranean streams

    Science.gov (United States)

    Benejam, Lluis; Angermeier, Paul L.; Munne, Antoni; García-Berthou, Emili

    2010-01-01

    1. Water abstraction strongly affects streams in arid and semiarid ecosystems, particularly where there is a Mediterranean climate. Excessive abstraction reduces the availability of water for human uses downstream and impairs the capacity of streams to support native biota. 2. We investigated the flow regime and related variables in six river basins of the Iberian Peninsula and show that they have been strongly altered, with declining flows (autoregressive models) and groundwater levels during the 20th century. These streams had lower flows and more frequent droughts than predicted by the official hydrological model used in this region. Three of these rivers were sometimes dry, whereas there were predicted by the model to be permanently flowing. Meanwhile, there has been no decrease in annual precipitation. 3. We also investigated the fish assemblage of a stream in one of these river basins (Tordera) for 6 years and show that sites more affected by water abstraction display significant differences in four fish metrics (catch per unit effort, number of benthic species, number of intolerant species and proportional abundance of intolerant individuals) commonly used to assess the biotic condition of streams. 4. We discuss the utility of these metrics in assessing impacts of water abstraction and point out the need for detailed characterisation of the natural flow regime (and hence drought events) prior to the application of biotic indices in streams severely affected by water abstraction. In particular, in cases of artificially dry streams, it is more appropriate for regulatory agencies to assign index scores that reflect biotic degradation than to assign ‘missing’ scores, as is presently customary in assessments of Iberian streams.

  5. Preventing DoS attacks in peer-to-peer media streaming systems

    Science.gov (United States)

    Conner, William; Nahrstedt, Klara; Gupta, Indranil

    2006-01-01

    This paper presents a framework for preventing both selfishness and denial-of-service attacks in peer-to-peer media streaming systems. Our framework, called Oversight, achieves prevention of these undesirable activities by running a separate peer-to-peer download rate enforcement protocol along with the underlying peer-to-peer media streaming protocol. This separate Oversight protocol enforces download rate limitations on each participating peer. These limitations prevent selfish or malicious nodes from downloading an overwhelming amount of media stream data that could potentially exhaust the entire system. Since Oversight is based on a peer-to-peer architecture, it can accomplish this enforcement functionality in a scalable, efficient, and decentralized way that fits better with peer-to-peer media streaming systems compared to other solutions based on central server architectures. As peer-to-peer media streaming systems continue to grow in popularity, the threat of selfish and malicious peers participating in such large peer-to-peer networks will continue to grow as well. For example, since peer-to-peer media streaming systems allow users to send small request messages that result in the streaming of large media objects, these systems provide an opportunity for malicious users to exhaust resources in the system with little effort expended on their part. However, Oversight addresses these threats associated with selfish or malicious peers who cause such disruptions with excessive download requests. We evaluated our Oversight solution through simulations and our results show that applying Oversight to peer-to-peer media streaming systems can prevent both selfishness and denial-of-service attacks by effectively limiting the download rates of all nodes in the system.

  6. Online Class Review: Using Streaming-Media Technology

    Science.gov (United States)

    Loudon, Marc; Sharp, Mark

    2006-01-01

    We present an automated system that allows students to replay both audio and video from a large nonmajors' organic chemistry class as streaming RealMedia. Once established, this system requires no technical intervention and is virtually transparent to the instructor. This gives students access to online class review at any time. Assessment has…

  7. Chemical changes to leaf litter from trees grown under elevated CO2 and the implications for microbial utilization in a stream ecosystem

    International Nuclear Information System (INIS)

    Rier, S. T.; Tuchman, N. C.; Wetzel, R. G.

    2005-01-01

    The effects of elevated carbon dioxide on the chemistry and subsequent response of stream microorganisms growing on leaf litter of three riparian tree species (quaking aspen, white willow and sugar maple) were studied. Results showed that the effects were species-specific, i.e. aspen leaves contained high concentrations of lignin, maple leafs contained higher concentrations of soluble phenolic compounds and willow leaves contained higher concentrations of carbohydrate-bound condensed tannins. Initially, the higher concentrations of soluble phenolic compounds in maple leaves were rapidly leached in stream water, but overall, the impact of altered leaf chemistry on riparian trees grown under elevated carbon dioxide was clearly variable; no strongly suppressed microbial activity during stream incubation was observed. Any evidence of suppression observed, was species-specific. 49 refs., 2 tabs., 3 figs

  8. Numeric Analysis for Relationship-Aware Scalable Streaming Scheme

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2014-01-01

    Full Text Available Frequent packet loss of media data is a critical problem that degrades the quality of streaming services over mobile networks. Packet loss invalidates frames containing lost packets and other related frames at the same time. Indirect loss caused by losing packets decreases the quality of streaming. A scalable streaming service can decrease the amount of dropped multimedia resulting from a single packet loss. Content providers typically divide one large media stream into several layers through a scalable streaming service and then provide each scalable layer to the user depending on the mobile network. Also, a scalable streaming service makes it possible to decode partial multimedia data depending on the relationship between frames and layers. Therefore, a scalable streaming service provides a way to decrease the wasted multimedia data when one packet is lost. However, the hierarchical structure between frames and layers of scalable streams determines the service quality of the scalable streaming service. Even if whole packets of layers are transmitted successfully, they cannot be decoded as a result of the absence of reference frames and layers. Therefore, the complicated relationship between frames and layers in a scalable stream increases the volume of abandoned layers. For providing a high-quality scalable streaming service, we choose a proper relationship between scalable layers as well as the amount of transmitted multimedia data depending on the network situation. We prove that a simple scalable scheme outperforms a complicated scheme in an error-prone network. We suggest an adaptive set-top box (AdaptiveSTB to lower the dependency between scalable layers in a scalable stream. Also, we provide a numerical model to obtain the indirect loss of multimedia data and apply it to various multimedia streams. Our AdaptiveSTB enhances the quality of a scalable streaming service by removing indirect loss.

  9. Bilinear common spatial pattern for single-trial ERP-based rapid serial visual presentation triage

    Science.gov (United States)

    Yu, K.; Shen, K.; Shao, S.; Ng, W. C.; Li, X.

    2012-08-01

    Common spatial pattern (CSP) analysis is a useful tool for the feature extraction of event-related potentials (ERP). However, CSP is essentially time invariant, and thus unable to exploit the temporal information of ERP. This paper proposes a variant of CSP, namely bilinear common spatial pattern (BCSP), which is capable of accommodating both spatial and temporal information. BCSP generalizes CSP through iteratively optimizing bilinear filters. These bilinear filters constitute a spatio-temporal subspace in which the separation between two conditions is maximized. The method is unique in the sense that it is mathematically intuitive and simple, as all the bilinear filters are obtained by maximizing the power ratio as CSP does. The proposed method was evaluated on 20 subjects’ ERP data collected in rapid serial visual presentation triage experiments. The results show that BCSP achieved significantly higher average test accuracy (12.3% higher, p < 0.001).

  10. Probing dark matter streams with CoGeNT

    International Nuclear Information System (INIS)

    Natarajan, Aravind; Savage, Christopher; Freese, Katherine

    2011-01-01

    We examine the future sensitivity of CoGeNT to the presence of dark matter streams and find that consideration of streams in the data may lead to differences in the interpretation of the results. We show the allowed particle mass and cross section for different halo parameters, assuming spin-independent elastic scattering. As an example, we choose a stream with the same velocity profile as that of the Sagittarius stream (and in the Solar neighborhood) and find that, with an exposure of ∼10 kg yr, the CoGeNT results can be expected to exclude the standard-halo-model-only halo in favor of a standard halo model+stream halo at the 95% (99.7%) confidence level, provided the stream contributes 3% (5%) of the local dark matter density. The presence of a significant stream component may result in incorrect estimates of the particle mass and cross section unless the presence of the stream is taken into account. We conclude that the CoGeNT experiment is sensitive to streams and care should be taken to include the possibility of streams when analyzing experimental results.

  11. Downstream reduction of rural channel size with contrasting urban effects in small coastal streams of southeastern Australia

    Science.gov (United States)

    Nanson, G. C.; Young, R. W.

    1981-07-01

    Although most streams show a downstream increase in channel size corresponding to a downstream increase in flood discharges, those flowing off the Illawarra escarpment of New South Wales show a marked reduction of channel size, accompanied by a down-stream increase in flood frequency in their lower reaches. Within the confined and steeply sloping valleys of the escarpment foothills, bed and bank sediments are relatively coarse and uncohesive, and channels increase in size, corresponding to increasing discharge downstream. However, once these streams emerge into more open rural valleys at lower slopes and are accompanied by extensive floodplains formed of fine cohesive sediment, there is a dramatic reduction in channel size. This decrease in channel size apparently results from a sudden decline in channel slope and associated stream power, the cohesive nature of downstream alluvium, its retention on the channel banks by a dense cover of pasture grasses, and the availability of an extensive floodplain to carry displaced floodwater. Under these conditions floodwaters very frequently spill out over the floodplain and the downstream channel-flow becomes a relatively unimportant component of the total peak discharge. This emphasizes the importance of these floodplains as a part of the total channel system. In situations where urban development has increased peak runoff and reduced the available area of effective floodplain, stream channels formed in this fine alluvium rapidly entrench and increase in cross-sectional area by 2-3 times. Minor man-induced channel alteration and maintenance appears to trigger this enlargement.

  12. Use of RTIGS data streams for validating the performance of the IGS Ultra-Rapid products

    Science.gov (United States)

    Thaler, Gottfried; Weber, Robert

    2010-05-01

    The IGS (International GNSS Service) Real-Time Working Group (RTIGS) disseminates for several years raw observation data of a globally distributed steady growing station network in real-time via the internet. This observation data can be used for validating the performance of the IGS predicted orbits and clocks (Ultra-Rapid (IGU)). Therefore, based on pre-processed ITRF- station coordinates, clock corrections w.r.t GPS-Time for GPS-satellites and site-receivers as well as satellite orbits are calculated in quasi real-time and compared to the IGU solutions. The Institute for "Geodesy and Geophysics" of the Technical University of Vienna develops based on the software RTIGS Multicast Receive (RTIGSMR) provided by National Resources Canada (NRCan) the software RTIGU-Control. Using Code-smoothed observations RTIGU-Control calculates in a first step by means of a linear KALMAN-Filter and based on the orbit information of the IGUs real-time clock corrections and clock drifts w.r.t GPS-Time for the GPS-satellites and stations. The second extended KALMAN-Filter (kinematic approach) uses again the Code-smoothed observations corrected for the clock corrections of step 1 to calculate the positions and velocities of the satellites. The calculation interval is set to 30 seconds. The results and comparisons to IGU-products are displayed online but also stored as clock-RINEX- and SP3-files on the ftp-server of the institute, e.g. for validation of the performance of the IGU predicted products. A comparison to the more precise but delayed issued IGS Rapid products (IGR) allows also to validate the performance of RTIGU-Control. To carry out these comparisons the MatLab routine RTIGU-Analyse was established. This routine is for example able to import and process standard clock-RINEX-files of several sources and delivers a variety of comparisons both in graphical or numerical form. Results will become part of this presentation. Another way to analyse the quality and consistency of

  13. Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream

    Science.gov (United States)

    Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Bentham, Adam J.

    2012-01-01

    Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest

  14. Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream

    Science.gov (United States)

    Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Benthem, Adam J.

    2013-01-01

    Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest

  15. Innovation in radioactive wastewater-stream management. Pt. 1

    International Nuclear Information System (INIS)

    Karameldin, A.

    2002-01-01

    Recently an invention of a system for volume reduction of the wastewater streams present in SDTs has been achieved. This system substantially utilized the air conditioning and ventilation techniques in water transfer from the wastewater to air. This process is promoted by a mutual heating and humidification of a compressed dry air introduced through SDTs (or in another tank). From the probable release of radioactive nuclides point of view, the analysis of the evaporation of waste streams present in SDTs have been indicated that the proposed optimal evaporating temperature is round 75 C. The design curve of the daily volumetric reduction of the wastewater streams versus the necessary volumetric airflow rates at different operating temperature has been achieved. The evaporating temperature varied from 40 C to 95 C with a step of 5 C. The obtained curve illustrates that the required volumetric airflow rate utilized to evaporate one m 3 /day (when maintaining SDTs at the temperature 75 C) is less than 90 m 3 /h. The assessments of the obtained curve have been indicated that this system is feasible and viable, economic and has no secondary waste residuals. Recently, an experimental facility proposed to be constructed to obtain the optimal operating parameters of the system, regarding to the probable emissions of the radioactive nuclides within the permissible release limits. (authors)

  16. Survival of brown trout during spring flood in DOC-rich streams in northern Sweden: the effect of present acid deposition and modelled pre-industrial water quality

    International Nuclear Information System (INIS)

    Laudon, Hjalmar; Poleo, Antonio B.S.; Voellestad, Leif Asbjoern; Bishop, Kevin

    2005-01-01

    Mortality and physiological responses in brown trout (Salmo trutta) were studied during spring snow melt in six streams in northern Sweden that differed in concentrations of dissolved organic carbon (DOC) and pH declines. Data from these streams were used to create an empirical model for predicting fish responses (mortality and physiological disturbances) in DOC-rich streams using readily accessible water chemistry parameters. The results suggest that fish in these systems can tolerate higher acidity and inorganic aluminium levels than fish in low DOC streams. But even with the relatively low contemporary deposition load, anthropogenic deposition can cause fish mortality in the most acid-sensitive surface waters in northern Sweden during spring flood. However, the results suggests that it is only in streams with high levels of organically complexed aluminium in combination with a natural pH decline to below 5.0 during the spring where current sulphur deposition can cause irreversible damage to brown trout in the region. This study support earlier studies suggesting that DOC has an ameliorating effect on physiological disturbances in humic waters but the study also shows that surviving fish recover physiologically when the water quality returns to less toxic conditions following a toxic high flow period. The physiological response under natural, pre-industrial conditions was also estimated. - High levels of complexed aluminum, at pH levels below 5.0, predisposes brown trout to sulfur-caused damage in the spring

  17. Survival of brown trout during spring flood in DOC-rich streams in northern Sweden: the effect of present acid deposition and modelled pre-industrial water quality

    Energy Technology Data Exchange (ETDEWEB)

    Laudon, Hjalmar [Department of Forest Ecology, Swedish University of Agricultural Sciences, SE-901 83 Umeaa (Sweden)]. E-mail: hjalmar.laudon@sek.slu.se; Poleo, Antonio B.S. [Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Voellestad, Leif Asbjoern [Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Bishop, Kevin [Department of Environmental Assessment, Swedish University of Agricultural Sciences, SE-750 07 Uppsala (Sweden)

    2005-05-01

    Mortality and physiological responses in brown trout (Salmo trutta) were studied during spring snow melt in six streams in northern Sweden that differed in concentrations of dissolved organic carbon (DOC) and pH declines. Data from these streams were used to create an empirical model for predicting fish responses (mortality and physiological disturbances) in DOC-rich streams using readily accessible water chemistry parameters. The results suggest that fish in these systems can tolerate higher acidity and inorganic aluminium levels than fish in low DOC streams. But even with the relatively low contemporary deposition load, anthropogenic deposition can cause fish mortality in the most acid-sensitive surface waters in northern Sweden during spring flood. However, the results suggests that it is only in streams with high levels of organically complexed aluminium in combination with a natural pH decline to below 5.0 during the spring where current sulphur deposition can cause irreversible damage to brown trout in the region. This study support earlier studies suggesting that DOC has an ameliorating effect on physiological disturbances in humic waters but the study also shows that surviving fish recover physiologically when the water quality returns to less toxic conditions following a toxic high flow period. The physiological response under natural, pre-industrial conditions was also estimated. - High levels of complexed aluminum, at pH levels below 5.0, predisposes brown trout to sulfur-caused damage in the spring.

  18. Streaming effect of wall oscillation to boundary layer separation

    Science.gov (United States)

    Wu, X. H.; Wu, J. Z.; Wu, J. M.

    1991-01-01

    This paper presents a preliminary theoretical result on the time averaged streaming effect of local forcing excitation to the boundary layer separation from smooth surface. The problem is formulated as a periodic disturbance to a basic steady breakaway separating flow, for which the data are taken from a numerical triple-deck solution. The ratio of Strouhal number St and Reynolds number Re plays an important role, both being assumed sufficiently high. The analytical and numerical results show that this streaming effect is quite strong at proper values of St/Re exp 1/4, which may delay or even suppress the separation.

  19. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    Science.gov (United States)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    rates markedly increased after the YD and the ice sheet became limited to the Canadian Shield. This hard-bed substrate brought a change in the character of ice streaming, which became less frequent but generated much broader terrestrial ice streams. The final collapse of the ice sheet saw a series of small ephemeral ice streams that resulted from the rapidly changing ice sheet geometry in and around Hudson Bay. Our reconstruction indicates that the LIS underwent a transition from a topographically-controlled ice drainage network at the LGM to an ice drainage network characterised by less frequent, broad ice streams during the later stages of deglaciation. These deglacial ice streams are mostly interpreted as a reaction to localised ice-dynamical forcing (flotation and calving of the ice front in glacial lakes and transgressing sea; basal de-coupling due to large amount of meltwater reaching the bed, debuttressing due to rapid changes in ice sheet geometry) rather than as conveyors of excess mass from the accumulation area of the ice sheet. At an ice sheet scale, the ice stream drainage network became less widespread and less efficient with the decreasing size of the deglaciating ice sheet, the final elimination of which was mostly driven by surface melt.

  20. Near boundary acoustic streaming in Ni-Fe alloy electrodeposition control

    DEFF Research Database (Denmark)

    Pocwiardowski, Pawel; Lasota, H.; Ravn, Christian

    2005-01-01

    Alloy electrodeposition is strongly influenced by diffusion layer phenomena affecting the ion concentration distribution in a different way for each component. This paper presents the method of acoustic agitation leading to controlled uniform electrodeposition of alloys. The method consists...... in generating acoustic flow perpendicular to the surface in the field of an acoustic standing wave parallel to the plated substrate - so called modified Rayleigh streaming. The result showed that the near boundary streaming offers controlled mass transportation in the micrometer thick layer close to the cathode...