Rapid and Sustained Nuclear-Cytoplasmic ERK Oscillations Induced by Epidermal Growth Factor
Energy Technology Data Exchange (ETDEWEB)
Shankaran, Harish; Ippolito, Danielle L.; Chrisler, William B.; Resat, Haluk; Bollinger, Nikki; Opresko, Lee K.; Wiley, H. S.
2009-12-01
Mathematical modeling has predicted that ERK activity should oscillate in response to cell stimulation, but this has never been observed. To explore this inconsistency, we expressed an ERK1-GFP fusion protein in mammary epithelial cells. Following EGF stimulation, we observed rapid and continuous ERK oscillations between the nucleus and cytoplasm with a periodicity of approximately 15 minutes. These oscillations were remarkably persistent (>45 cycles), displayed an asymmetric waveform, and were highly dependent on cell density, essentially disappearing at confluency. We conclude that the ERK pathway is an intrinsic oscillator. Although the functional implications of the observed oscillations are uncertain, this property can be used to continuously monitor ERK activity in single cells.
Asteroseismic Theory of Rapidly Oscillating Ap Stars Margarida S ...
Indian Academy of Sciences (India)
roAp) stars depends strongly on our ability to understand their oscillation spectra. Questions like: which modes are excited and why, what is the expected spacing between eigenfrequencies, how many components are expected to be found in ...
Fitzpatrick, Richard
2017-12-01
An investigation is made into the interaction of a magnetic island chain, embedded in a tokamak plasma, with an externally generated magnetic perturbation of the same helicity whose helical phase is rapidly oscillating. The analysis is similar in form to the classic analysis used by Kapitza [Sov. Phys. JETP 21, 588 (1951)] to examine the angular motion of a rigid pendulum whose pivot point undergoes rapid vertical oscillations. The phase oscillations are found to modify the existing terms, and also to give rise to new terms, in the equations governing the secular evolution of the island chain's radial width and helical phase. An examination of the properties of the new secular evolution equation reveals that it is possible to phase-lock an island chain to an external magnetic perturbation with an oscillating helical phase in a stabilizing phase relation provided that the amplitude, ɛ, of the phase oscillations (in radians) is such that |J0(ɛ )|≪1 , and the mean angular frequency of the perturbation closely matches the natural angular frequency of the island chain.
Short-Term Monocular Deprivation Enhances Physiological Pupillary Oscillations
Directory of Open Access Journals (Sweden)
Paola Binda
2017-01-01
Full Text Available Short-term monocular deprivation alters visual perception in adult humans, increasing the dominance of the deprived eye, for example, as measured with binocular rivalry. This form of plasticity may depend upon the inhibition/excitation balance in the visual cortex. Recent work suggests that cortical excitability is reliably tracked by dilations and constrictions of the pupils of the eyes. Here, we ask whether monocular deprivation produces a systematic change of pupil behavior, as measured at rest, that is independent of the change of visual perception. During periods of minimal sensory stimulation (in the dark and task requirements (minimizing body and gaze movements, slow pupil oscillations, “hippus,” spontaneously appear. We find that hippus amplitude increases after monocular deprivation, with larger hippus changes in participants showing larger ocular dominance changes (measured by binocular rivalry. This tight correlation suggests that a single latent variable explains both the change of ocular dominance and hippus. We speculate that the neurotransmitter norepinephrine may be implicated in this phenomenon, given its important role in both plasticity and pupil control. On the practical side, our results indicate that measuring the pupil hippus (a simple and short procedure provides a sensitive index of the change of ocular dominance induced by short-term monocular deprivation, hence a proxy for plasticity.
Applying the Averaging Principle to a Logistic Equation with Rapidly Oscillating Delay
Directory of Open Access Journals (Sweden)
N. D. Bykova
2014-01-01
Full Text Available The problem about the local dynamics of the logistic equation with rapidly oscillating time-periodic piecewise constant coefficient of delay was considered. It was shown that the averaged equation is a logistic equation with two delays. The criterion of equilibrium point stability was obtained. Dynamical properties of the original equation was considered provided that the critical case of equilibrium point stability problem was implemented. It was found that an increase of delay coefficient oscillation frequency may lead to an unlimited process of “birth” and “death” steady mode.
Rapidly oscillating scatteringless non-Hermitian potentials and the absence of Kapitza stabilization
Longhi, S.
2017-04-01
In the framework of the ordinary non-relativistic quantum mechanics, it is known that a quantum particle in a rapidly oscillating bound potential with vanishing time average can be scattered off or even trapped owing to the phenomenon of dynamical (Kapitza) stabilization. A similar phenomenon occurs for scattering and trapping of optical waves. Such a remarkable result stems from the fact that, even though the particle is not able to follow the rapid external oscillations of the potential, these are still able to affect the average dynamics by means of an effective —albeit small— nonvanishing potential contribution. Here we consider the scattering and dynamical stabilization problem for matter or classical waves by a bound potential with oscillating ac amplitude f(t) in the framework of a non-Hermitian extension of the Schrödinger equation, and predict that for a wide class of imaginary amplitude modulations f(t) possessing a one-sided Fourier spectrum, the oscillating potential is effectively canceled, i.e., it does not have any effect on the particle dynamics, contrary to what happens in the Hermitian case.
Boker, Steven M.; Leibenluft, Ellen; Deboeck, Pascal R.; Virk, Gagan; Postolache, Teodor T.
2008-01-01
Rapid Cycling Bipolar Disorder (RCBD) outpatients completed twice-daily mood self-ratings for 3 consecutive months. These ratings were matched with local measurements of atmospheric pressure, cloud cover, and temperature. Several alternative second order differential equation models were fit to the data in which mood oscillations in RCBD were allowed to be linearly coupled with daily weather patterns. The modeling results were consistent with an account of mood regulation that included intrin...
Oscillation modes of rapidly rotating neutron stars in scalar-tensor theories of gravity
Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Kokkotas, Kostas D.
2017-09-01
We perform the first study of the oscillation frequencies of rapidly rotating neutron stars in alternative theories of gravity, focusing mainly on the fundamental f modes. We concentrated on a particular class of alternative theories—the (massive) scalar-tensor theories. The generalization to rapid rotation is important because on one hand the rapid rotation can magnify the deviations from general relativity compared to the static case and on the other hand some of the most efficient emitters of gravitational radiation, such as the binary neutron star merger remnants, are supposed to be rotating close to their Kepler (mass-shedding) limits shortly after their formation. We have constructed several sequences of models starting from the nonrotating case and reaching up to the Kepler limit, with different values of the scalar-tensor theory coupling constant and the scalar field mass. The results show that the deviations from pure Einstein's theory can be significant, especially in the case of nonzero scalar field mass. An important property of the oscillation modes of rapidly rotating stars is that they can become secularly unstable due to the emission of gravitational radiation, the so-called Chandrasekhar-Friedman-Schutz instability. Such unstable modes are efficient emitters of gravitational radiation. Our studies show that the inclusion of a nonzero scalar field would decrease the threshold value of the normalized angular momentum where this instability starts to operate, but the growth time of the instability seems to be increased compared to pure general relativity.
Higgs Field in Universe: Long-Term Oscillation and Deceleration/Acceleration Phases
Directory of Open Access Journals (Sweden)
Vladimir Dzhunushaliev
2014-01-01
Full Text Available It is shown that the Einstein gravity and Higgs scalar field have (a a long-term oscillation phase; (b cosmological regular solutions with deceleration/acceleration phases. The first has a preceding contracting and subsequent expanding phases and between them there exists an oscillating phase with arbitrary time duration. The behavior of the second solution near to a flex point is in detail considered.
Energy Technology Data Exchange (ETDEWEB)
Pachon, Leonardo A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Rueda, Jorge A. [Dipartimento di Fisica and ICRA, Sapienza Universita di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); Valenzuela-Toledo, Cesar A., E-mail: leonardo.pachon@fisica.udea.edu.co, E-mail: jorge.rueda@icra.it, E-mail: cesar.valenzuela@correounivalle.edu.co [Departamento de Fisica, Universidad del Valle, A.A. 25360, Santiago de Cali (Colombia)
2012-09-01
Whether or not analytic exact vacuum (electrovacuum) solutions of the Einstein (Einstein-Maxwell) field equations can accurately describe the exterior space-time of compact stars still remains an interesting open question in relativistic astrophysics. As an attempt to establish their level of accuracy, the radii of the innermost stable circular orbits (ISCOs) of test particles given by analytic exterior space-time geometries have been compared with those given by numerical solutions for neutron stars (NSs) obeying a realistic equation of state (EOS). It has been so shown that the six-parametric solution of Pachon et al. (PRS) more accurately describes the NS ISCO radii than other analytic models do. We propose here an additional test of accuracy for analytic exterior geometries based on the comparison of orbital frequencies of neutral test particles. We compute the Keplerian, frame-dragging, and precession and oscillation frequencies of the radial and vertical motions of neutral test particles for the Kerr and PRS geometries and then compare them with the numerical values obtained by Morsink and Stella for realistic NSs. We identify the role of high-order multipole moments such as the mass quadrupole and current octupole in the determination of the orbital frequencies, especially in the rapid rotation regime. The results of this work are relevant to cast a separatrix between black hole and NS signatures and to probe the nuclear-matter EOS and NS parameters from the quasi-periodic oscillations observed in low-mass X-ray binaries.
Rapidly tunable optical parametric oscillator based on aperiodic quasi-phase matching.
Descloux, Delphine; Dherbecourt, Jean-Baptiste; Melkonian, Jean-Michel; Raybaut, Myriam; Lai, Jui-Yu; Drag, Cyril; Godard, Antoine
2016-05-16
A new optical parametric oscillator (OPO) architecture with high tuning speed capability is demonstrated. This device exploits the versatility offered by aperiodic quasi-phase matching (QPM) to provide a broad parametric gain spectrum without changing the temperature, angle, or position of the nonlinear crystal. Rapid tuning is then straightforwardly achieved using a fast intracavity spectral filter. This concept is demonstrated here for a picosecond synchronously pumped OPO containing an aperiodically poled MgO-doped LiNbO3 crystal and a rapidly tunable spectral filter based on a diffraction grating. Tuning over 160 nm around 3.86 μm is achieved at fixed temperature and a fast tuning over 30 nm in 40 μs is demonstrated. Different configurations are tested and compared. The cavity length detuning is analyzed and discussed. This device is successfully used to detect N2O by absorption. This approach could be generalized to other spectral ranges (e.g., visible) and temporal regimes (e.g., continuous-wave or nanosecond).
Directory of Open Access Journals (Sweden)
Gordon Pipa
2009-10-01
Full Text Available Short-term memory requires the coordination of sub-processes like encoding, retention, retrieval and comparison of stored material to subsequent input. Neuronal oscillations have an inherent time structure, can effectively coordinate synaptic integration of large neuron populations and could therefore organize and integrate distributed sub-processes in time and space. We observed field potential oscillations (14-95Hz in ventral prefrontal cortex of monkeys performing a visual memory task. Stimulus-selective and performance-dependent oscillations occurred simultaneously at 65-95Hz and 14-50Hz, the latter being phase-locked throughout memory maintenance. We propose that prefrontal oscillatory activity may be instrumental for the dynamical integration of local and global neuronal processes underlying short-term memory.
Kepler observations of rapidly oscillating Ap, δ Scuti and γ Doradus pulsations in Ap stars
DEFF Research Database (Denmark)
Balona, Luis A.; Cunha, Margarida S.; Kurtz, Donald W.
2011-01-01
Observations of the A5p star KIC 8677585 obtained during the Kepler 10-d commissioning run with 1-min time resolution show that it is a rapidly oscillating Ap (roAp) star with several frequencies with periods near 10 min. In addition, a low frequency at 3.142 d−1 is also clearly present....... Multiperiodic γ Doradus (γ Dor) and δ Scuti (δ Sct) pulsations, never before seen in any Ap star, are present in Kepler observations of at least three other Ap stars. Since γ Dor pulsations are seen in Ap stars, it is likely that the low frequency in KIC 8677585 is also a γ Dor pulsation. The simultaneous...... presence of both γ Dor and roAp pulsations and the unexpected detection of δ Sct and γ Dor pulsations in Ap stars present new opportunities and challenges for the interpretation of these stars. Since it is easy to confuse Am and Ap stars at classification dispersions, the nature of these Ap stars...
Sakamoto, T; Yokota, S; Ando, M
2000-05-01
Morphological changes in the chloride cells or mitochondrion-rich (MR) cells in the skin under the pectoral fin of the estuarine mudskipper (Periophthalmus modestus) were examined in relation to intertidal salinity oscillation in river mouth. MR cells were distinguished between those in contact with the water (cells labeled with both mitochondrial probe DASPEI and Concanavalin-A, an apical surface marker of MR cells) and those that are not (DASPEI-positive only). After transfer of the fish from seawater to freshwater, no difference in the total MR cell density was observed, but the subpopulation of MR cells that are Concanavalin-A-positive decreased dramatically within 30 min. After 6 hr in freshwater, the fish were returned to seawater; the number of Con-A-positive MR cells increased to the initial levels rapidly. Thus, in seawater, mudskippers seem to open the apical crypts of the MR cells to secrete salt; in freshwater, they close the crypt of the MR cells tentatively, and tolerate hypotonicity until the rising tide. This unique response of chloride cells may also be seen in gills of other estuarine species.
A new technique to monitor the long-term stability of an optoelectronic oscillator.
Pham, Toan Thang; Ledoux-Rak, Isabelle; Journet, Bernard; Vu, Van Yem
2015-01-01
The main advantage of an optoelectronic oscillator (OEO) is the ability to synthesize directly very high spectral purity frequency in microwave domain. Beside applications in radar, telecommunication and satellite systems, OEO can also be used in sensor applications such as refractive index or distance measurements. However, the long-term stability of the OEO is easily affected by ambient environment variations. The optical fiber loop effective refractive index varies corresponding to its surrounding temperature changes. Consequently, it makes the optical transmission path inside the fiber loop differ from the initial state, leading to oscillation frequency changes. To stabilize the single loop OEO, it is essential to keep its high Q elements in a well-controlled thermal box as much as possible. Unfortunately, in the real implementation condition, this requirement is difficult to be satisfied. In this paper, we present a new technique to estimate the oscillation frequency variation under the room temperature by using a vector network analyzer (VNA). Experimental results show a good correlation between OEO oscillation frequency drift and the phase measured by the VNA. This technique can be implemented to apply corrections when using the OEO as a distance variation or a refractive index measurement tool. We also tracked the temperature of the fiber loop at the same time with the VNAbased experiment to compare two correlations of temperature and phase with OEO oscillation frequency.
Averaging of the Equations of the Standard Cosmological Model over Rapid Oscillations
Ignat'ev, Yu. G.; Samigullina, A. R.
2017-11-01
An averaging of the equations of the standard cosmological model (SCM) is carried out. It is shown that the main contribution to the macroscopic energy density of the scalar field comes from its microscopic oscillations with the Compton period. The effective macroscopic equation of state of the oscillations of the scalar field corresponds to the nonrelativistic limit.
Boker, Steven M; Leibenluft, Ellen; Deboeck, Pascal R; Virk, Gagan; Postolache, Teodor T
2008-01-01
Rapid Cycling Bipolar Disorder (RCBD) outpatients completed twice-daily mood self-ratings for 3 consecutive months. These ratings were matched with local measurements of atmospheric pressure, cloud cover, and temperature. Several alternative second order differential equation models were fit to the data in which mood oscillations in RCBD were allowed to be linearly coupled with daily weather patterns. The modeling results were consistent with an account of mood regulation that included intrinsic homeostatic regulation as well as coupling between weather and mood. Models were tested first in a nomothetic method where models were fit over all individuals and fit statistics of each model compared to one another. Since substantial individual differences in intrinsic dynamics were observed, the models were next fit using an ideographic method where each individual's data were fit separately and best-fitting models identified. The best-fitting within-individual model for the largest number of individuals was also the best-fitting nomothetic model: temperature and the first derivative of temperature coupled to mood and no effect of barometric pressure or cloud cover. But this model was not the best-fitting model for all individuals, suggesting that there may be substantial individual differences in the dynamic association between weather and mood in RCBD patients. Heterogeneity in the parameters of the differential equation model of homeostatic equilibrium as well as the coupling of mood to an inherently unpredictable (i.e., nonstationary) process such as weather provide an alternative account for reported broadband frequency spectra of daily mood in RCBD.
Boker, Steven M.; Leibenluft, Ellen; Deboeck, Pascal R.; Virk, Gagan; Postolache, Teodor T.
2008-01-01
Rapid Cycling Bipolar Disorder (RCBD) outpatients completed twice-daily mood self-ratings for 3 consecutive months. These ratings were matched with local measurements of atmospheric pressure, cloud cover, and temperature. Several alternative second order differential equation models were fit to the data in which mood oscillations in RCBD were allowed to be linearly coupled with daily weather patterns. The modeling results were consistent with an account of mood regulation that included intrinsic homeostatic regulation as well as coupling between weather and mood. Models were tested first in a nomothetic method where models were fit over all individuals and fit statistics of each model compared to one another. Since substantial individual differences in intrinsic dynamics were observed, the models were next fit using an ideographic method where each individual’s data were fit separately and best-fitting models identified. The best-fitting within-individual model for the largest number of individuals was also the best-fitting nomothetic model: temperature and the first derivative of temperature coupled to mood and no effect of barometric pressure or cloud cover. But this model was not the best-fitting model for all individuals, suggesting that there may be substantial individual differences in the dynamic association between weather and mood in RCBD patients. Heterogeneity in the parameters of the differential equation model of homeostatic equilibrium as well as the coupling of mood to an inherently unpredictable (i.e., nonstationary) process such as weather provide an alternative account for reported broadband frequency spectra of daily mood in RCBD. PMID:19266057
Non-radial oscillations of the rapidly rotating Be star HD 163868
Savonije, G.J.
2007-01-01
Context: Oscillations in rotating stars with frequency barsigma of the same order or smaller than the rotation rate Omega cannot be described by a single spherical harmonic due to the effect of the Coriolis force. This is a serious complication which is usually treated by writing the eigenfunctions
The impact of long-term oceanic warming on the Antarctic Oscillation in austral winter.
Hao, Xin; He, Shengping; Wang, Huijun; Han, Tingting
2017-09-26
Increasing greenhouse gas concentration and ozone depletion are generally considered two important factors that affect the variability of the Antarctic Oscillation (AAO). Here, we find that the first leading mode of sea surface temperature (SST) variability (rotated empirical orthogonal functions) shows a long-term upward trend from 1901 to 2004 and is closely related to the AAO index that is obtained using the observationally constrained reanalysis data. Further, regressions of the sea level pressure and the 500-hPa geopotential height anomalies, against the principle component associated with the long-term SST anomalies, display a seesaw behavior between the middle and high latitudes of the Southern Hemisphere in austral winter, which is similar to the high polarity of the AAO. The circulation responses to the long-term oceanic warming in three numerical models are consistent with the observed results. This finding suggests that the long-term oceanic warming is partly responsible for the upward trend of the AAO in austral winter. The thermal wind response to the oceanic warming in South Indian and South Atlantic Ocean may be a possible mechanism for this process.
EEG oscillations reflect visual short-term memory processes for the change detection in human faces.
Park, Hyoung-Dong; Min, Byoung-Kyong; Lee, Kyoung-Min
2010-11-01
People often fail to notice a large change in the visual scene when the change occurs during a brief interruption of the viewing. Since the change is well above perceptual threshold in continuous viewing, the failure (termed change blindness) has been attributed to abnormal visual short-term memory (VSTM). However, it is still unclear where the abnormality lies among the phases in VSTM, namely, encoding, maintenance, and retrieval-comparison. EEG oscillations, especially the gamma activity, have been suggested as neural signatures of VSTM, but have not been examined in the context of change blindness. Thus, we asked in the present study whether change detection or failure is correlated with EEG oscillatory activities and, if so, whether the timing and the spatial distribution of the oscillations could pin-point the abnormal phase of VSTM in change blindness. While on EEG recording, subjects watched morphed pictures of human faces in trials which consisted of a 200-ms initial image display, a 500-ms blank period, and a 200-ms comparison image display. The two images were either the same or clearly different above threshold. Trials with different images were classified as hit or missed, based on subjects' responses, and EEG data were compared between the two types of trials. Enhanced gamma activity was observed in the right temporal-parietal region during all periods in the hit trials compared to the missed ones. Frontal theta activity was increased during initial image encoding, whereas beta activity was decreased during maintenance and retrieval-comparison in the hit trials. These results point to weak encoding of initial images as the culprit for a later failure in change detection, while abnormal processing in subsequent phases of VSTM may result from the weak encoding and also contribute to change blindness. Copyright 2010 Elsevier Inc. All rights reserved.
Long-term stationarity of El Niño-Southern Oscillation teleconnections in southeastern Australia
Ashcroft, Linden; Gergis, Joëlle; Karoly, David John
2016-05-01
The El Niño-Southern Oscillation (ENSO) phenomenon plays a large role in the modulation of Australian rainfall, particularly in the highly populated southeast. However, this influence is not stationary over time: weak ENSO teleconnections in Australia have been identified during 1920-1950, and palaeoclimate reconstructions indicate that a breakdown in global ENSO teleconnections may have also occurred in the early to mid-1800s. A lack of long-term instrumental data has prevented detailed examination of this intriguing earlier period. This study uses newly recovered instrumental rainfall observations to determine whether the weakening of ENSO teleconnections in the nineteenth century is apparent in eastern and southern southeastern Australia (SEA). Quantitative rainfall and rainday data from 1788 to 2012 are compared with three ENSO indices derived from palaeoclimate data. Statistical analysis suggests a weakening of the relationship between ENSO and SEA rainfall in the early nineteenth century data (~1835-1850), supporting results reported in previous global and regional studies based on palaeoclimate and documentary rainfall reconstructions. Possible causes of this weakening in teleconnection strength are then explored by examining a range of Southern Hemisphere circulation indices. The 1835-1850 period of low ENSO-SEA rainfall correlations appears to be characterised by a combination of reduced La Niña events and ENSO variance associated with a positive phase of the Interdecadal Pacific Oscillation, with the possible influence of a predominately negative phase of the Southern Annular Mode. However, current temporal and geographical data limitations prevent definitive conclusions from being drawn. Despite these caveats, this study illustrates the considerable value of historical instrumental climate data in assessing long-term variations in climate mode teleconnections, particularly in the data-poor Southern Hemisphere.
Directory of Open Access Journals (Sweden)
Chunxiu Yu
Full Text Available The medial prefrontal cortex (mPFC and mediodorsal thalamus (MD together form a thalamocortical circuit that has been implicated in the learning and production of goal-directed actions. In this study we measured neural activity in both regions simultaneously, as rats learned to press a lever to earn food rewards. In both MD and mPFC, instrumental learning was accompanied by dramatic changes in the firing patterns of the neurons, in particular the rapid emergence of single-unit neural activity reflecting the completion of the action and reward delivery. In addition, we observed distinct patterns of changes in the oscillatory LFP response in MD and mPFC. With learning, there was a significant increase in theta band oscillations (6-10 Hz in the MD, but not in the mPFC. By contrast, gamma band oscillations (40-55 Hz increased in the mPFC, but not in the MD. Coherence between these two regions also changed with learning: gamma coherence in relation to reward delivery increased, whereas theta coherence did not. Together these results suggest that, as rats learned the instrumental contingency between action and outcome, the emergence of task related neural activity is accompanied by enhanced functional interaction between MD and mPFC in response to the reward feedback.
Energy Technology Data Exchange (ETDEWEB)
Reasoner, M.A.; Jodry, M.A.
2000-01-01
Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by {approximately}0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation.
DEFF Research Database (Denmark)
Kurtz, Donald W.; Cunha, Margarida S.; Saio, H.
2011-01-01
We have discovered a new rapidly oscillating Ap (roAp) star among the Kepler mission target stars, KIC 10195926. This star shows two pulsation modes with periods that are amongst the longest known for roAp stars at 17.1 and 18.1 min, indicating that the star is near the terminal-age main sequence...... of νrot/2. We propose that this and other subharmonics are the first observed manifestation of torsional modes in an roAp star. From high-resolution spectra, we determine Teff= 7400 K, log g= 3.6 and v sin i= 21 km s−1. We have found a magnetic pulsation model with fundamental parameters close...
“Rapid-Fire” Spectroscopy of Kepler Solar-Like Oscillators
Thygesen, Anders O.; Bruntt, Hans; Chaplin, William J.; Basu, Sarbani
The NASA Kepler mission has been continuously monitoring the same field of the sky since the successful launch in March 2009, providing high-quality stellar lightcurves that are excellent data for asteroseismology, far superior to any other observations available at the present. In order to make a meaningful analysis and interpretation of the asteroseismic data, accurate fundamental parameters for the observed stars are needed. The currently available parameters are quite uncertain as illustrated by e.g. Thygesen et al. (A&A 543:A160, 2012), who found deviations as extreme as 2 dex in [Fe/H] and logg, compared to catalogue values. Thus, additional follow-up observations for these targets are needed in order to put firm limits on the parameter space investigated by the asteroseismic modellers. Here, we propose a method for deriving accurate metallicities of main sequence and subgiant solar-like oscillators from medium resolution spectra with a moderate S/N. The method takes advantage of the additional constraints on the fundamental parameters, available from asteroseismology and multi-color photometry. The approach enables us to reduce the analysis overhead significantly when doing spectral synthesis, which in turn will increases the efficiency of follow-up observations.
2013-01-01
Background Ultrasonic bone-cutting surgery has been introduced as a feasible alternative to the conventional sharp instruments used in craniomaxillofacial surgery because of its precision and safety. The piezosurgery medical device allows the efficient cutting of mineralized tissues with minimal trauma to soft tissues. Piezoelectric osteotome has found its role in surgically assisted rapid maxillary expansion (SARME), a procedure well established to correct transverse maxillary discrepancies. The advantages include minimal risk to critical anatomic structures. The purpose of this clinical comparative study (CIS 2007-237-M) was to present the advantages of the piezoelectric cut as a minimally invasive device in surgically assisted, rapid maxillary expansion by protecting the maxillary sinus mucosal lining. Methods Thirty patients (18 females and 12 males) at the age of 18 to 54 underwent a surgically assisted palatal expansion of the maxilla with a combined orthodontic and surgical approach. The patients were randomly divided into two separate treatment groups. While Group 1 received conventional surgery using an oscillating saw, Group 2 was treated with piezosurgery. The following parameters were examined: blood pressure, blood values, required medication, bleeding level in the maxillary sinus, duration of inpatient stay, duration of surgery and height of body temperature. Results The results displayed no statistically significant differences between the two groups regarding laboratory blood values and inpatient stay. The duration of surgery revealed a significant discrepancy. Deploying piezosurgery took the surgeon an average of 10 minutes longer than working with a conventional-saw technique. However, the observation of the bleeding level in the paranasal sinus presented a major and statistically significant advantage of piezosurgery: on average the bleeding level was one category above the one of the remaining patients. Conclusion This method of piezoelectric
Holdsworth, Daniel L.; Kurtz, D. W.; Saio, H.; Provencal, J. L.; Letarte, B.; Sefako, R. R.; Petit, V.; Smalley, B.; Thomsen, H.; Fletcher, C. L.
2018-01-01
We present a new analysis of the rapidly oscillating Ap (roAp) star, 2MASS J19400781 - 4420093 (J1940; V = 13.1). The star was discovered using SuperWASP broad-band photometry to have a frequency of 176.39 d-1 (2041.55 μHz; P = 8.2 min; Holdsworth et al. 2014a) and is shown here to have a peak-to-peak amplitude of 34 mmag. J1940 has been observed during three seasons at the South African Astronomical Observatory, and has been the target of a Whole Earth Telescope campaign. The observations reveal that J1940 pulsates in a distorted quadrupole mode with unusual pulsational phase variations. A higher signal-to-noise ratio spectrum has been obtained since J1940's first announcement, which allows us to classify the star as A7 Vp Eu(Cr). The observing campaigns presented here reveal no pulsations other than the initially detected frequency. We model the pulsation in J1940 and conclude that the pulsation is distorted by a magnetic field of strength 1.5 kG. A difference in the times of rotational maximum light and pulsation maximum suggests a significant offset between the spots and pulsation axis, as can be seen in roAp stars.
Basic properties of sunspots: equilibrium, stability and long-term eigen oscillations
Solov'ev, A.; Kirichek, E.
2014-07-01
magnetic energy. Therefore, the range of stable equilibria turns out to be limited: large spots, with radius a larger than some limit value (about 12-18 Mm, depending on the magnetic field configuration), are unstable. It explains the absence of very large spots on the Sun and the appearance of light bridges in big spots that divide the spot into a few parts. The sunspots with B 0≈2.6÷2.7 kilogauss (kG) and a≈5 Mm are most stable. For these spots, taken as a single magnetic structure, the period of their vertical eigen oscillations is minimal and amounts, according to the model, to 10-12 hours. It corresponds well to the period derived from the study of long-term oscillations of sunspots using SOHO/MDI data.
Active-sterile neutrino oscillations in the early Universe with full collision terms
DEFF Research Database (Denmark)
Hannestad, Steen; Hansen, Rasmus Sloth; Tram, Thomas
2015-01-01
Sterile neutrinos are thermalised in the early Universe via oscillations with the active neutrinos for certain mixing parameters. The most detailed calculation of this thermalisation process involves the solution of the momentum-dependent quantum kinetic equations, which track the evolution...
Rapid maxillary expansion treatment could produce long-term dental arch changes
Ren, Yijin
2005-01-01
: Data Sources: Medline, Medline In-Process, LILACS (Latin American and Caribbean Health Sciences Literature), PUBMED, Embase, Web of Science and the Cochrane Library were searched. Search terms were rapid palatal expansion or rapid maxillary expansion (RME) and tooth or dental changes. Reference
Cadavid, A. C.; Lawrence, J. K.; Christian, D. J.; Jess, D. B.; Mathioudakis, M.
2012-12-01
Using the Rapid Oscillation in the Solar Atmosphere (ROSA) instrument at the Dunn Solar Telescope we have found that the spectra of fluctuations of the G-band (cadence 1.05 s) and Ca II K-line (cadence 4.2 s) intensities show correlated fluctuations above white noise out to frequencies beyond 300 mHz and up to 70 mHz, respectively. The noise-corrected G-band spectrum presents a scaling range (Ultra High Frequency “UHF”) for f = 25-100 mHz, with an exponent consistent with the presence of turbulent motions. The UHF power, is concentrated at the locations of magnetic bright points in the intergranular lanes, it is highly intermittent in time and characterized by a positive kurtosis κ. Combining values of G-band and K-line intensities, the UHF power, and κ, reveals two distinct “states” of the internetwork solar atmosphere. State 1, with κ ≍ 6, which includes almost all the data, is characterized by low intensities and low UHF power. State 2, with κ ≍ 3, including a very small fraction of the data, is characterized by high intensities and high UHF power. Superposed epoch analysis shows that for State 1, the K-line intensity presents 3.5 min chromospheric oscillations with maxima occurring 21 s after G-band intensity maxima implying a 150-210 km effective height difference. For State 2, the G-band and K-line intensity maxima are simultaneous, suggesting that in the highly magnetized environment sites of G-band and K-line emission may be spatially close together. Analysis of observations obtained with Hinode/SOT confirm a scaling range in the G-band spectrum up to 53 mHz also consistent with turbulent motions as well as the identification of two distinct states in terms of the H-line intensity and G-band power as functions of G-band intensity.
Anomalous biennial oscillations in a Fisher equation with a discretized verhulst term
Walsh, C.; Ray, T. S.; Jan, Naeem
1995-11-01
The dynamics of a biological population governed by a modified Fisher equation is studied by means of Monte Carlo simulations. Reproduction of the population occurs at discrete times, while transport caused by diffusion and conduction takes place on shorter time scales. The discrete reproduction, modeled with a set of coupled logistic maps, exhibits phenomena which are not evident in the usual continuum version of the Fisher equation. Several mechanisms for biennial oscillations of the total population are investigated. One of these shows an ordered coupling between random diffusive motion and the chaotic attractor of the logistic map.
Directory of Open Access Journals (Sweden)
A. Guharay
2009-11-01
Full Text Available Extensive measurement of middle atmospheric temperature with the help of lidar data of more than 10 years (1998–2008 and TIMED/SABER data of 7 years (2002–2008, has been carried out from a low latitude station, Gadanki, India (13.5° N, 79.2° E, which exhibits the presence of semiannual oscillation (SAO and annual oscillation (AnO. The AnO component is stronger in the mesospheric region (80–90 km and the SAO is dominant at stratospheric altitudes (30–50 km. Overall, the AnO possesses higher amplitude ~6–7 K, and the SAO shows less amplitude ~1–2 K. The AnO present at 90 km finds crest near summer solstice, and the same at 80 km shows peak near winter solstice with a downward progression speed ~1.7 km/month. The SAO propagates downward with an average phase speed ~9 km/month and phase maximizes around equinox and solstice at 50 and 30 km, respectively. The observed SAO has also shown seasonal asymmetry in peaks.
Lindsay, I.D.; Adhimoolam, B.; Gross, P.; Klein, M.E.; Boller, Klaus J.
2005-01-01
A singly-resonant continuous-wave optical parametric oscillator (cw-OPO) pumped by a fiber-amplified diode laser is described. Tuning of the pump source allowed the OPO output to be tuned continuously, without mode-hops, over 110 GHz in 29 ms. Discontinuous pump tuning over 20 nm in the region of
Al-Tahtamouni, R.; Bencheikh, K.; Storz, R.; Schneider, K.; Lang, M.; Mlynek, J.; Schiller, S.
1998-06-01
We demonstrate a doubly resonant optical parametric oscillator that operated on a single mode pair for 18 h without mode hops, and whose output frequencies can be tuned by almost 10 GHz without mode hops by the tuning of the pump laser frequency. The tuning range is limited by the available pump tuning range. Active stabilization is used that minimizes the detuning of the parametrically generated waves with respect to the DRO cavity resonances. Absolute frequency stabilization of the idler wave is achieved by locking its frequency to an ultra-stable cryogenic reference resonator, using the pump laser frequency as control parameter. The frequency instability reached is below the 1-kHz level.
Directory of Open Access Journals (Sweden)
Milica Vilušić
2003-07-01
Full Text Available In this work the rheological properties of stirred yoghurt during the longterm storage at 4 and 8°C were investigated. The optimal quantity of additives, in order to increase dry matter content (whole milk powder and whey protein-lactalbumin, was preliminary determined and the fermentation was performed. During 42 days, i.e., 1st, 7th, 14th, 21st, 28th, 35th and 42nd day of storage of stirred yoghurt, in refrigerator at 4 and 8°C, the changes of pH value, acidity and rheological properties by using of dynamic oscillation method were observed. Results of this work indicated that an addition of whole milk powder and whey protein have an influence on rheological properties of stirred yoghurt. The long-term storage of stirred yoghurt and the results of dynamic oscilations showed permanently higher G’storage (elasticity modulus, where elastic properties of viscoelastic products dominate, in comparison with the G” loss (viscosity modulus. Increased moduls of elasticy and viscosity, as function of time, permanently occurs at pH value 4.00 and lower, as an indication of alteration of long casein chains in the coagulum structure. Different temperatures of storage had no influence on changes of rheological properties of examinated types of stirred yoghur. The relation of above mentioned moduls of elasticy and viscosity kept the same increasing tendency.
Tropical rodents change rapidly germinating seeds into long-term food supplies
Jansen, P.A.; Bongers, F.J.J.M.; Prins, H.H.T.
2006-01-01
Seed-hoarding vertebrates may survive yearly periods of food scarcity by storing seeds during the preceding fruiting season. It is poorly understood why rodents creating long-term reserves, especially those in the tropics, incorporate seeds from plant species that germinate rapidly and hence seem
Feng, Zhanlian; Liu, Chang; Guan, Xinping; Mor, Vincent
2012-12-01
In China, formal long-term care services for the large aging population have increased to meet escalating demands as demographic shifts and socioeconomic changes have eroded traditional elder care. We analyze China's evolving long-term care landscape and trace major government policies and private-sector initiatives shaping it. Although home and community-based services remain spotty, institutional care is booming with little regulatory oversight. Chinese policy makers face mounting challenges overseeing the rapidly growing residential care sector, given the tension arising from policy inducements to further institutional growth, a weak regulatory framework, and the lack of enforcement capacity. We recommend addressing the following pressing policy issues: building a balanced system of services and avoiding an "institutional bias" that promotes rapid growth of elder care institutions over home or community-based care; strengthening regulatory oversight and quality assurance with information systems; and prioritizing education and training initiatives to grow a professionalized long-term care workforce.
Fundamental relations between short-term RR interval and arterial pressure oscillations in humans
Taylor, J. A.; Eckberg, D. L.
1996-01-01
BACKGROUND: One of the principal explanations for respiratory sinus arrhythmia is that it reflects arterial baroreflex buffering of respiration-induced arterial pressure fluctuations. If this explanation is correct, then elimination of RR interval fluctuations should increase respiratory arterial pressure fluctuations. METHODS AND RESULTS: We measured RR interval and arterial pressure fluctuations during normal sinus rhythm and fixed-rate atrial pacing at 17.2+/-1.8 (SEM) beats per minute greater than the sinus rate in 16 healthy men and 4 healthy women, 20 to 34 years of age. Measurements were made during controlled-frequency breathing (15 breaths per minute or 0.25 Hz) with subjects in the supine and 40 degree head-up tilt positions. We characterized RR interval and arterial pressure variabilities in low-frequency (0.05 to 0.15 Hz) and respiratory-frequency (0.20 to 0.30 Hz) ranges with fast Fourier transform power spectra and used cross-spectral analysis to determine the phase relation between the two signals. As expected, cardiac pacing eliminated beat-to-beat RR interval variability. Against expectations, however, cardiac pacing in the supine position significantly reduced arterial pressure oscillations in the respiratory frequency (systolic, 6.8+/-1.8 to 2.9 +/-0.6 mm Hg2/Hz, P=.017). In contrast, cardiac pacing in the 40 degree tilt position increased arterial pressure variability (systolic, 8.0+/-1.8 to 10.8 +/-2.6, P=.027). Cross-spectral analysis showed that 40 degree tilt shifted the phase relation between systolic pressure and RR interval at the respiratory frequency from positive to negative (9 +/-7 degrees versus -17+/-11 degrees, P=.04); that is, in the supine position, RR interval changes appeared to lead arterial pressure changes, and in the upright position, RR interval changes appeared to follow arterial pressure changes. CONCLUSIONS: These results demonstrate that respiratory sinus arrhythmia can actually contribute to respiratory arterial
Directory of Open Access Journals (Sweden)
Frederik B. Laun
2017-11-01
Full Text Available Nuclear magnetic resonance (NMR diffusion measurements can be used to probe porous structures or biological tissues by means of the random motion of water molecules. The short-time expansion of the diffusion coefficient in powers of t1/2, where t is the diffusion time related to the duration of the diffusion-weighting magnetic field gradient profile, is universally connected to structural parameters of the boundaries restricting the diffusive motion. The t1/2-term is proportional to the surface to volume ratio. The t-term is related to permeability and curvature. The short time expansion can be measured with two approaches in NMR-based diffusion experiments: First, by the use of diffusion encodings of short total duration and, second, by application of oscillating gradients of long total duration. For oscillating gradients, the inverse of the oscillation frequency becomes the relevant time scale. The purpose of this manuscript is to show that the oscillating gradient approach is blind to the t-term. On the one hand, this prevents fitting of permeability and curvature measures from this term. On the other hand, the t-term does not bias the determination of the t1/2-term in experiments.
Directory of Open Access Journals (Sweden)
Iñigo Arregui
2012-04-01
Full Text Available Prominences are intriguing, but poorly understood, magnetic structures of the solar corona. The dynamics of solar prominences has been the subject of a large number of studies, and of particular interest is the study of prominence oscillations. Ground- and space-based observations have confirmed the presence of oscillatory motions in prominences and they have been interpreted in terms of magnetohydrodynamic (MHD waves. This interpretation opens the door to perform prominence seismology, whose main aim is to determine physical parameters in magnetic and plasma structures (prominences that are difficult to measure by direct means. Here, we review the observational information gathered about prominence oscillations as well as the theoretical models developed to interpret small amplitude oscillations and their temporal and spatial attenuation. Finally, several prominence seismology applications are presented.
Directory of Open Access Journals (Sweden)
Jürgen Jensen
2012-02-01
Full Text Available Changes in the seasonal cycle of mean sea level (MSL may affect the heights of storm surges and thereby flood risk in coastal areas. This study investigates the intra- and inter-annual variability of monthly MSL and its link to the North Atlantic Oscillation using records from 13 tide gauges located in the German Bight. The amplitudes of the seasonal MSL cycle are not regionally uniform and vary between 20 and 29 cm. Generally, the amplitudes are smaller at the southwestern stations, increasing as one travels to the northeastern part. The amplitudes, as well as the phase of the seasonal cycle, are characterized by a large inter-annual and inter-decadal variability, but no long-term trend could be detected. Nevertheless, in the last two decades annual maximum peaks more frequently occurred in January and February, whereas beforehand an accumulation was detected for the November and December period. These changes in phase in the various sea level time series are consistent with a shift in the annual cycle, which is, however, not significant. The changes are associated with strongly increasing trends in monthly MSL of the winter season (J–M, which are considerably higher compared to the remaining seasons. For the same season, the MSL and North Atlantic Oscillation (NAO indices show strong similarities, resulting in statistically significant correlations (r ~ 0.7. Hence, these changes are linked with changing pressure conditions over the North Atlantic, which lead to a strong phase of positive values in the NAO index between the 1960’s and 1990’s.
Directory of Open Access Journals (Sweden)
Manuel Tobias Munz
2015-08-01
Full Text Available Background: Behavioral inhibition, which is a later-developing executive function (EF and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD. While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM slow-wave sleep. Recently, slow oscillations (SO during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective: By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: 14 boys (10-14 yrs diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.
Mazza, G. (Giuseppe); Al-Akkad, W. (Walid); Telese, A. (Andrea); Longato, L. (Lisa); Urbani, L. (Luca); Robinson, B. (Benjamin); Hall, A. (Andrew); Kong, K. (Kenny); Frenguelli, L. (Luca); Marrone, G. (Giusi); Willacy, O. (Oliver); Shaeri, M. (Mohsen); A.J. Burns (Alan); Malago, M. (Massimo); Gilbertson, J. (Janet); Rendell, N. (Nigel); Moore, K. (Kevin); Hughes, D. (David); Notingher, I. (Ioan); Jell, G. (Gavin); Del Rio Hernandez, A. (Armando); P. de Coppi (Paolo); Rombouts, K. (Krista); Pinzani, M. (Massimo)
2017-01-01
textabstractThe development of human liver scaffolds retaining their 3-dimensional structure and extra-cellular matrix (ECM) composition is essential for the advancement of liver tissue engineering. We report the design and validation of a new methodology for the rapid and accurate production of
Directory of Open Access Journals (Sweden)
Yannick Jeantet
Full Text Available STUDY OBJECTIVES: To search for early abnormalities in electroencephalogram (EEG during sleep which may precede motor symptoms in a transgenic mouse model of hereditary neurodegenerative Huntington's disease (HD. DESIGN: In the R6/1 transgenic mouse model of HD, rhythmic brain activity in EEG recordings was monitored longitudinally and across vigilance states through the onset and progression of disease. MEASUREMENTS AND RESULTS: Mice with chronic electrode implants were recorded monthly over wake-sleep cycles (4 hours, beginning at 9-11 weeks (presymptomatic period through 6-7 months (symptomatic period. Recording data revealed a unique β rhythm (20-35 Hz, present only in R6/1 transgenic mice, which evolves in close parallel with the disease. In addition, there was an unusual relationship between this β oscillation and vigilance states: while nearly absent during the active waking state, the β oscillation appeared with drowsiness and during slow wave sleep (SWS and, interestingly, strengthened rather than dissipating when the brain returned to an activated state during rapid eye movement (REM sleep. CONCLUSIONS: In addition to providing a new in vivo biomarker and insight into Huntington's disease pathophysiology, this serendipitous observation opens a window onto the rarely explored neurophysiology of the cortico-basal ganglia circuit during SWS and REM sleep.
Jeantet, Yannick; Cayzac, Sebastien; Cho, Yoon H
2013-01-01
To search for early abnormalities in electroencephalogram (EEG) during sleep which may precede motor symptoms in a transgenic mouse model of hereditary neurodegenerative Huntington's disease (HD). In the R6/1 transgenic mouse model of HD, rhythmic brain activity in EEG recordings was monitored longitudinally and across vigilance states through the onset and progression of disease. Mice with chronic electrode implants were recorded monthly over wake-sleep cycles (4 hours), beginning at 9-11 weeks (presymptomatic period) through 6-7 months (symptomatic period). Recording data revealed a unique β rhythm (20-35 Hz), present only in R6/1 transgenic mice, which evolves in close parallel with the disease. In addition, there was an unusual relationship between this β oscillation and vigilance states: while nearly absent during the active waking state, the β oscillation appeared with drowsiness and during slow wave sleep (SWS) and, interestingly, strengthened rather than dissipating when the brain returned to an activated state during rapid eye movement (REM) sleep. In addition to providing a new in vivo biomarker and insight into Huntington's disease pathophysiology, this serendipitous observation opens a window onto the rarely explored neurophysiology of the cortico-basal ganglia circuit during SWS and REM sleep.
Yu, Z.
2003-12-01
Large and abrupt climatic oscillations occurred during the last deglaciation evident from ice, lacustrine and marine records in different regions. Stable isotopes retrieved from these records could provide a common proxy in correlating the records and detecting temporal and spatial patterns. The emerging pattern is critical in understanding the nature and forcing mechanisms of climate changes. Here I provide new isotopic and pollen results from the Mid-Atlantic region of USA to expand the existing late-glacial records from the Great Lakes region to the Atlantic Seaboard. White Lake, a marl lake in NW New Jersey, provides high-resolution sedimentary records since ca. 15,000 cal yr BP (15 ka). The chronology of late-glacial and early Holocene period was controlled by 6 AMS 14C dates on terrestrial macrofossils. Oxygen isotopes of marl samples (contain >90% carbonates) from this period vary between -8 and -4 permil (VPDB) and show multiple oscillations at millennial and centennial scales, including the Younger Dryas (YD) with ca. 3 permil shifts in δ 18O at 12.6-11.3 ka and three cold events of 1-2 permil shifts during the Bølling-Allerød (B-A) period at 14.3-12.6 ka. Pollen diagram from this site shows strong similarity with previously published pollen records from this region, with the YD event having high boreal taxa (Alnus, Abies, Betula) after establishment of a mixed deciduous-coniferous forest containing Quercus, Fraxinus and Ostrya/Carpinus. A plateau-like B-A period is similar to some (Ammersee, Germany; Cariaco Basin, Caribbean) but not other records (ice cores form Greenland Summit; Crawford Lake, Ontario) around the Atlantic Ocean, suggesting that a strong climate gradient might have existed then. Vegetation shows different sensitivity in responding to the YD at sites along a transect from New Jersey, through western New York, to southern Ontario, which was probably caused by a combination of species migration/availability, location of then ecotones
Lamb, Frederick K.; Miller, M. Coleman
2014-08-01
We have developed new, more sophisticated, and much faster Bayesian analysis methods that enable us to estimate the masses and radii of rapidly rotating, oblate neutron stars using the energy-resolved waveforms of their X-ray burst oscillations and to determine the uncertainties in these mass and radius estimates. We first generate the energy-resolved burst oscillation waveforms that would be produced by a hot spot on various rapidly rotating, oblate stars, using the oblate-star Schwarzschild-spacetime (OS) approximation. In generating these synthetic data, we assume that 1 million counts have been collected from the hot spot and that the background is 9 million counts. This produces a realistic modulation amplitude and a total number of counts comparable to the number that could be obtained by a future space mission such as the proposed LOFT or AXTAR missions or the accepted NICER mission by combining data from many bursts from a given star. We then compute the joint posterior distribution of the mass M and radius R in standard models, for each synthetic waveform, and use these posterior distributions to determine the 1-, 2-, and 3-sigma confidence regions in the M-R plane for each synthetic waveform and model. We report here the confidence regions obtained when Schwarzschild+Doppler (S+D) and OS waveform models are used, including results obtained when the properties of the star used to generate the synthetic waveform data differ from the properties of the star used in modeling the waveform. These results are based on research supported by NSF grant AST0709015 at the University of Illinois and NSF grant AST0708424 at the University of Maryland.
Using Bayesian Belief Network (BBN) modelling for rapid source term prediction. Final report
Energy Technology Data Exchange (ETDEWEB)
Knochenhauer, M.; Swaling, V.H.; Dedda, F.D.; Hansson, F.; Sjoekvist, S.; Sunnegaerd, K. [Lloyd' s Register Consulting AB, Sundbyberg (Sweden)
2013-10-15
The project presented in this report deals with a number of complex issues related to the development of a tool for rapid source term prediction (RASTEP), based on a plant model represented as a Bayesian belief network (BBN) and a source term module which is used for assigning relevant source terms to BBN end states. Thus, RASTEP uses a BBN to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, composition, timing, and release path of released radio-nuclides). The output is a set of possible source terms with associated probabilities. One major issue has been associated with the integration of probabilistic and deterministic analyses are addressed, dealing with the challenge of making the source term determination flexible enough to give reliable and valid output throughout the accident scenario. The potential for connecting RASTEP to a fast running source term prediction code has been explored, as well as alternative ways of improving the deterministic connections of the tool. As part of the investigation, a comparison of two deterministic severe accident analysis codes has been performed. A second important task has been to develop a general method where experts' beliefs can be included in a systematic way when defining the conditional probability tables (CPTs) in the BBN. The proposed method includes expert judgement in a systematic way when defining the CPTs of a BBN. Using this iterative method results in a reliable BBN even though expert judgements, with their associated uncertainties, have been used. It also simplifies verification and validation of the considerable amounts of quantitative data included in a BBN. (Author)
Rapid prediction of long-term rates of contaminant desorption from soils and sediments.
Johnson, M D; Weber, W J
2001-01-15
A method using heated and superheated (subcritical) water is described for rapid prediction of long-term desorption rates from contaminated geosorbents. Rates of contaminant release are measured at temperatures between 75 and 150 degrees C using a dynamic water desorption technique. The subcritical desorption rate data are then modeled to calculate apparent activation energies, and these activation energies are used to predict desorption behaviors at any desired ambient temperature. Predictions of long-term release rates based on this methodology were found to correlate well with experimental 25 degrees C desorption data measured over periods of up to 640 days, even though the 25 degrees C desorption rates were observed to vary by up to 2 orders of magnitude for different geosorbent types and initial solid phase contaminant loading levels. Desorption profiles measured under elevated temperature and pressure conditions closely matched those at 25 degrees C and ambient pressure, but the time scales associated with the high-temperature measurements were up to 3 orders of magnitude lower. The subcritical water technique rapidly estimates rates of desorption-resistant contaminant release as well as those for more labile substances. The practical implications of the methodology are significant because desorption observed under field conditions and ambient temperatures typically proceeds over periods of months or years, while the high temperature experiments used for prediction of such field desorption phenomena can be completed within periods of only hours or days.
Nikolaidou, Thalia; Santos, Marcelo
2017-04-01
The caused time delay induced by the atmosphere on the GNSS signals (NAD), depends primarily on the amount of atmosphere the signal traverses till it reaches to the Earth's surface and can exceed t 20 m for low elevation angles (around 3 degrees). For a particular ray i.e. satellite/quasar-antenna link, the delay depends on the atmospheric parameters of total pressure, temperature, and the partial pressure of water vapor. Because of that, numerical weather models (NWM) have already proven beneficial for atmospheric modelling and geodesy. By direct raytracing, inside NWM, the VMF1 and the University of New Brunswick VMF1 (UNB-VMF1) (Urquhart et al. 2011), access the 3D variation of the meteorological parameters that determine the delay thus being the state-the-art mapping functions used today. The raytracing procedure is capable of providing NADs delays for any point on the Earth's surface. In this study we study the impact of regional numerical weather models, with high spatial and temporal resolution, namely 25km and 6h. These models outweigh the currently used NWM by having about 2.6 times better spatial resolution. Raytracing through such NWM, using the independent raytracing algorithm develop at UNB (Nievinski, 2009), we acquire superior quality NADs with regional application. We ray-trace for the International GNSS service (IGS) network stations for a time span of 11 years. Benchmarking against the IGS troposphere product is performed to access the accuracy of our results. A periodicity analysis is conducted to examine the signature of atmospheric oscillations on the NAD time series. In order to recognize the NAD periodicities, we compared our product against the GPS-derived IGS troposphere product. Systematic effects within each single technique are identified and long-term NAD stability is accessed.
Heim, Sabine; Keil, Andreas; Choudhury, Naseem; Thomas Friedman, Jennifer; Benasich, April A
2013-04-01
Children with language-learning impairment (LLI) have consistently shown difficulty with tasks requiring precise, rapid auditory processing. Remediation based on neural plasticity assumes that the temporal precision of neural coding can be improved by intensive training protocols. Here, we examined the extent to which early oscillatory responses in auditory cortex change after audio-visual training, using combined source modeling and time-frequency analysis of the human electroencephalogram (EEG). Twenty-one elementary school students diagnosed with LLI underwent the intervention for an average of 32 days. Pre- and post-training assessments included standardized language/literacy tests and EEG recordings in response to fast-rate tone doublets. Twelve children with typical language development were also tested twice, with no intervention given. Behaviorally, improvements on measures of language were observed in the LLI group following completion of training. During the first EEG assessment, we found reduced amplitude and phase-locking of early (45-75 ms) oscillations in the gamma-band range (29-52 Hz), specifically in the LLI group, for the second stimulus of the tone doublet. Amplitude reduction for the second tone was no longer evident for the LLI children post-intervention, although these children still exhibited attenuated phase-locking. Our findings suggest that specific aspects of inefficient sensory cortical processing in LLI are ameliorated after training. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gabis, Irina; Troshichev, Oleg
Quasi-biennial oscillation (QBO) of zonal winds in the equatorial stratosphere is the important component of general atmospheric circulation affecting the variability of many phenomena beyond the equatorial region. Wind QBO is the alternating easterly and westerly wind regimes descending in height with time. The stagnation stage, i.e. interruption of the easterly wind descent at altitude range 20-40 hPa within some months, is a typical feature inherent to each QBO-cycle. Start and end of stagnation stages are distinctly related to solstice and equinox, respectively. As a result, the complete QBO-cycle, appointed as a time interval between the beginnings of successive stagnation stages, displays the clearly defined quantized period that can be equal to 24, 30 or 36 months. The strong seasonal regularity and the appropriate discreteness of QBO-period make it possible to forecast in advance the current QBO-cycle evolution and the subsequent QBO-cycle start date. The tropical total column ozone associated with the equatorial wind QBO is also subjected to variations related to the seasons in course of irregular alternation of QBO-cycles. This regularity is indicative of possibility to forecast the equatorial total ozone QBO basing on the predicted wind QBO. The method for wind QBO forecasting was validated by excellent agreement between the predictions by Gabis (2012) made as far forward as two years and actually observed wind changes. The justice of the long-term QBO forecast provides a convincing confirmation of the seasonal dependency of wind QBO evolution in contrast to common belief in the irregularly varying QBO-period. It means that discretely variable QBO-period and its unambiguous relation to seasons should be taken into account in mechanisms of the QBO generation. The analysis of zonal wind observations for period January-June 2014 makes it possible to predict the wind changes during the whole current QBO-cycle, starting in January 2014 and to define
Champeroux, P; Thireau, J; Judé, S; Laigot-Barbé, C; Maurin, A; Sola, M L; Fowler, J S L; Richard, S; Le Guennec, J Y
2015-06-01
The present study was undertaken to investigate an effect of dofetilide, a potent arrhythmic blocker of the voltage-gated K(+) channel, hERG, on cardiac autonomic control. Combined with effects on ardiomyocytes, these properties could influence its arrhythmic potency. The short-term variability of beat-to-beat QT interval (STVQT ), induced by dofetilide is a strong surrogate of Torsades de pointes liability. Involvement of autonomic modulation in STVQT was investigated in healthy cynomolgus monkeys and beagle dogs by power spectral analysis under conditions of autonomic blockade with hexamethonium. Increase in STVQT induced by dofetilide in monkeys and dogs was closely associated with an enhancement of endogenous heart rate and QT interval high-frequency (HF) oscillations. These effects were fully suppressed under conditions of autonomic blockade with hexamethonium. Ventricular arrhythmias, including Torsades de pointes in monkeys, were prevented in both species when HF oscillations were suppressed by autonomic blockade. Similar enhancements of heart rate HF oscillations were found in dogs with other hERG blockers described as causing Torsades de pointes in humans. These results demonstrate for the first time that beat-to-beat ventricular repolarization variability and ventricular arrhythmias induced by dofetilide are dependent on endogenous HF autonomic oscillations in heart rate. When combined with evidence of hERG-blocking properties, enhancement of endogenous HF oscillations in heart rate could constitute an earlier and more sensitive biomarker than STVQT for Torsades de pointes liability, applicable to preclinical regulatory studies conducted in healthy animals. © 2015 The British Pharmacological Society.
Champeroux, P; Thireau, J; Judé, S; Laigot-Barbé, C; Maurin, A; Sola, M L; Fowler, J S L; Richard, S; Le Guennec, J Y
2015-01-01
Background and Purpose The present study was undertaken to investigate an effect of dofetilide, a potent arrhythmic blocker of the voltage-gated K+ channel, hERG, on cardiac autonomic control. Combined with effects on ardiomyocytes, these properties could influence its arrhythmic potency. Experimental Approach The short-term variability of beat-to-beat QT interval (STVQT), induced by dofetilide is a strong surrogate of Torsades de pointes liability. Involvement of autonomic modulation in STVQT was investigated in healthy cynomolgus monkeys and beagle dogs by power spectral analysis under conditions of autonomic blockade with hexamethonium. Key Results Increase in STVQT induced by dofetilide in monkeys and dogs was closely associated with an enhancement of endogenous heart rate and QT interval high-frequency (HF) oscillations. These effects were fully suppressed under conditions of autonomic blockade with hexamethonium. Ventricular arrhythmias, including Torsades de pointes in monkeys, were prevented in both species when HF oscillations were suppressed by autonomic blockade. Similar enhancements of heart rate HF oscillations were found in dogs with other hERG blockers described as causing Torsades de pointes in humans. Conclusions and Implications These results demonstrate for the first time that beat-to-beat ventricular repolarization variability and ventricular arrhythmias induced by dofetilide are dependent on endogenous HF autonomic oscillations in heart rate. When combined with evidence of hERG-blocking properties, enhancement of endogenous HF oscillations in heart rate could constitute an earlier and more sensitive biomarker than STVQT for Torsades de pointes liability, applicable to preclinical regulatory studies conducted in healthy animals. PMID:25625756
Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces
Hemmilä, Samu; Cauich-Rodríguez, Juan V.; Kreutzer, Joose; Kallio, Pasi
2012-10-01
This paper describes rapid, simple, and cost-effective treatments for producing biocompatible and long-term hydrophilic polydimethylsiloxane (PDMS) surfaces identified in an experimental study investigating 39 treatments in all. The wetting of the surfaces was monitored during six months. Changes in surface morphology and chemical composition were also analyzed. Some of the treatments are presented here for the first time, while for earlier presented treatments the selection of investigated parameters was wider and the observation period for the surface wetting longer. The PDMS surfaces were modified by surface activation, physisorption, and synthesis of both “grafting to” and “grafting from” polymer brushes. In surface activation, the PDMS sample was exposed to oxygen plasma, with several combinations of exposure time and RF power. In the physisorption and synthesis of polymer brushes, three commercially available and biocompatible chemicals were used: 2-hydroxyethyl methacrylate (HEMA), polyethylene glycol (PEG), and polyvinylpyrrolidone (PVP). Thirty-three of the 39 treatments rendered the PDMS hydrophilic, and in 12 cases the hydrophilicity lasted at least six months. Seven of these long-term hydrophilic coatings supported a contact angle of 30° or less. Three of the long-lasting hydrophilic coatings required only minutes to prepare.
Short-term memory trace in rapidly adapting synapses of inferior temporal cortex.
Directory of Open Access Journals (Sweden)
Yasuko Sugase-Miyamoto
2008-05-01
Full Text Available Visual short-term memory tasks depend upon both the inferior temporal cortex (ITC and the prefrontal cortex (PFC. Activity in some neurons persists after the first (sample stimulus is shown. This delay-period activity has been proposed as an important mechanism for working memory. In ITC neurons, intervening (nonmatching stimuli wipe out the delay-period activity; hence, the role of ITC in memory must depend upon a different mechanism. Here, we look for a possible mechanism by contrasting memory effects in two architectonically different parts of ITC: area TE and the perirhinal cortex. We found that a large proportion (80% of stimulus-selective neurons in area TE of macaque ITCs exhibit a memory effect during the stimulus interval. During a sequential delayed matching-to-sample task (DMS, the noise in the neuronal response to the test image was correlated with the noise in the neuronal response to the sample image. Neurons in perirhinal cortex did not show this correlation. These results led us to hypothesize that area TE contributes to short-term memory by acting as a matched filter. When the sample image appears, each TE neuron captures a static copy of its inputs by rapidly adjusting its synaptic weights to match the strength of their individual inputs. Input signals from subsequent images are multiplied by those synaptic weights, thereby computing a measure of the correlation between the past and present inputs. The total activity in area TE is sufficient to quantify the similarity between the two images. This matched filter theory provides an explanation of what is remembered, where the trace is stored, and how comparison is done across time, all without requiring delay period activity. Simulations of a matched filter model match the experimental results, suggesting that area TE neurons store a synaptic memory trace during short-term visual memory.
Kato, Shoji
2016-01-01
This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...
Bureau of Land Management, Department of the Interior — This map shows areas of high current, near-term, and long-term potential landscape development, based on factors such as urban areas, agriculture, roads, and energy...
Rapid Associative Learning and Stable Long-Term Memory in the Squid Euprymna scolopes.
Zepeda, Emily A; Veline, Robert J; Crook, Robyn J
2017-06-01
Learning and memory in cephalopod molluscs have received intensive study because of cephalopods' complex behavioral repertoire and relatively accessible nervous systems. While most of this research has been conducted using octopus and cuttlefish species, there has been relatively little work on squid. Euprymna scolopes Berry, 1913, a sepiolid squid, is a promising model for further exploration of cephalopod cognition. These small squid have been studied in detail for their symbiotic relationship with bioluminescent bacteria, and their short generation time and successful captive breeding through multiple generations make them appealing models for neurobiological research. However, little is known about their behavior or cognitive ability. Using the well-established "prawn-in-the-tube" assay of learning and memory, we show that within a single 10-min trial E. scolopes learns to inhibit its predatory behavior, and after three trials it can retain this memory for at least 12 d. Rapid learning and very long-term retention were apparent under two different training schedules. To our knowledge, this study is the first demonstration of learning and memory in this species as well as the first demonstration of associative learning in any squid.
Directory of Open Access Journals (Sweden)
Maryam Abedi
2015-06-01
Full Text Available In this paper, a gyroscopic mounting method for crystal oscillators to reduce the impact of dynamic loads on their output stability has been proposed. In order to prove the efficiency of this mounting approach, each dynamic load-induced instability has been analyzed in detail. A statistical study has been performed on the elevation angle of the g-sensitivity vector of Stress Compensated-cut (SC-cut crystals. The analysis results show that the proposed gyroscopic mounting method gives good performance for host vehicle attitude changes. A phase noise improvement of 27 dB maximum and 5.7 dB on average can be achieved in the case of steady state loads, while under sinusoidal vibration conditions, the maximum and average phase noise improvement are as high as 24 dB and 7.5 dB respectively. With this gyroscopic mounting method, random vibration-induced phase noise instability is reduced 30 dB maximum and 8.7 dB on average. Good effects are apparent for crystal g-sensitivity vectors with low elevation angle φ and azimuthal angle β. under highly dynamic conditions, indicating the probability that crystal oscillator instability will be significantly reduced by using the proposed mounting approach.
Schaefer, Sydney Y; Duff, Kevin
2015-01-01
Skill acquisition is a form of motor learning that may provide key insights into the aging brain. Although previous work suggests that older adults learn novel motor tasks slower and to a lesser extent than younger adults, we have recently demonstrated no significant effect of chronological age on the rates and amounts of skill acquisition, nor on its long-term retention, in adults over the age of 65. To better understand predictors of skill acquisition in non-demented older adults, we now explore the relationship between early improvements in motor performance due to practice (i.e., rapid responsiveness) and longer-term retention of an upper extremity motor skill, and whether the extent of rapid responsiveness was associated with global cognitive status. Results showed significant improvements in motor performance within the first five (of 150) trials, and that this "rapid responsiveness" was predictive of skill retention 1 month later. Notably, the extent of rapid responsiveness was not dependent on global cognitive status, as measured by the Montreal Cognitive Assessment (MoCA). Thus, rapid responsiveness appears to be an important variable in longer-term neurorehabilitative efforts with older adults, regardless of their cognitive status.
Magnetostatic wave oscillator frequencies
Sethares, J. C.; Stiglitz, M. R.; Weinberg, I. J.
1981-03-01
The frequencies of magnetostatic wave (MSW) oscillators employing three principal modes of propagation, surface (MSSW), forward (MSFVW), and backward (MSBVW) volume waves, have been investigated. Previous (MSW) oscillator papers dealt with MSSW. Oscillators were fabricated using LPE-YIG MSW delay lines in a feedback loop of a 2-4 GHz amplifier. Wide and narrow band transducers were employed. Oscillator frequency as a function of biasing field is in agreement with a theoretical analysis. The analysis predicts frequency in terms of material parameters, biasing field, and transducer geometry. With wide band transducers a comb of frequencies is generated. Narrow band transducers for MSSW and MSFVW select a single mode; and MSBVW selects two modes. Spurious modes, attributed to instrumentation, are more than 20 dB below the main response, and bandwidths are less than 0.005 percent. No other spurious modes are observed. MSW oscillators produce clean electronically tunable signals and appear attractive in frequency agile systems.
Effects of Bepridil on Atrial Electrical Remodeling in Short-Term Rapid Pacing
Directory of Open Access Journals (Sweden)
Hiroto Tsuchiya, MD
2009-01-01
Conclusions: Bepridil prevented the shortening of the ERP and MAPD90 induced by rapid atrial pacing in the acute phase. The results of this study might explain the efficacy of bepridil for preventing the recurrence of paroxysmal AF.
Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz
1995-01-01
Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.
Directory of Open Access Journals (Sweden)
Hualiang Lin
Full Text Available Hand, foot and mouth disease (HFMD was an emerging viral infectious disease in recent years in Shenzhen. The underlying risk factors have not yet been systematically examined. This study analyzed the short-term effect of El Niño-Southern Oscillation on pediatric HFMD in Shenzhen, China. Daily count of HFMD among children aged below 15 years old, Southern Oscillation Index (SOI, and weather variables were collected to construct the time series. A distributed lag non-linear model was applied to investigate the effect of daily SOI on pediatric HFMD occurrence during 2008-2010. We observed an acute effect of SOI variation on HFMD occurrence. The extremely high SOI (SOI = 45, with 0 as reference was associated with increased HFMD, with the relative risk (RR being 1.66 (95% Confidence Interval [CI]: 1.34-2.04. Further analyses of the association between HFMD and daily mean temperature and relative humidity supported the correlation between pediatric HFMD and SOI. Meteorological factors might be important predictors of pediatric HFMD occurrence in Shenzhen.
Lambrou, George I.; Chatziioannou, Aristotelis; Vlahopoulos, Spiros; Moschovi, Maria; Chrousos, George P.
Biological systems are dynamic and possess properties that depend on two key elements: initial conditions and the response of the system over time. Conceptualizing this on tumor models will influence conclusions drawn with regard to disease initiation and progression. Alterations in initial conditions dynamically reshape the properties of proliferating tumor cells. The present work aims to test the hypothesis of Wolfrom et al., that proliferation shows evidence for deterministic chaos in a manner such that subtle differences in the initial conditions give rise to non-linear response behavior of the system. Their hypothesis, tested on adherent Fao rat hepatoma cells, provides evidence that these cells manifest aperiodic oscillations in their proliferation rate. We have tested this hypothesis with some modifications to the proposed experimental setup. We have used the acute lymphoblastic leukemia cell line CCRF-CEM, as it provides an excellent substrate for modeling proliferation dynamics. Measurements were taken at time points varying from 24h to 48h, extending the assayed populations beyond that of previous published reports that dealt with the complex dynamic behavior of animal cell populations. We conducted flow cytometry studies to examine the apoptotic and necrotic rate of the system, as well as DNA content changes of the cells over time. The cells exhibited a proliferation rate of nonlinear nature, as this rate presented oscillatory behavior. The obtained data have been fit in known models of growth, such as logistic and Gompertzian growth.
Blaise, Paul
2011-01-01
An invaluable reference for an overall but simple approach to the complexity of quantum mechanics viewed through quantum oscillators Quantum oscillators play a fundamental role in many areas of physics; for instance, in chemical physics with molecular normal modes, in solid state physics with phonons, and in quantum theory of light with photons. Quantum Oscillators is a timely and visionary book which presents these intricate topics, broadly covering the properties of quantum oscillators which are usually dispersed in the literature at varying levels of detail and often combined with other p
The long-term fate of permafrost peatlands under rapid climate warming
DEFF Research Database (Denmark)
Swindles, Graeme T.; Morris, Paul J.; Mullan, Donal
2015-01-01
stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological...
Energy Technology Data Exchange (ETDEWEB)
Gruzdev, A.N. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics
1995-12-31
The quasi-biennial oscillation (QBO) in ozone is supposed to be related to the QBO of zonal wind in the tropical stratosphere, with an approximate period of 29 months. Generally speaking, mechanisms of QBO-related effects in the extratropical atmosphere should depend on season and region, resulting in other periodicities (e.g., a 20-month periodicity) due to nonlinear interaction between the `pure` QBO and an annual cycle. Seasonal and regional dependences of QBO-related effects in ozone not only influence the regime of ozone variability itself, but can have important consequences, for example, for interannual changes in biologically active UV-B radiation and for determination of long-term ozone trends. This work is concerned with these problems
Kishida, Ryo; Oshima, Azusa; Yabuuchi, Michitarou; Kobayashi, Kazutoshi
2015-04-01
The degradation of reliability caused by plasma-induced damage (PID) has become a significant concern with the miniaturization of device size. In particular, it is difficult to relieve PID in silicon-on-insulator (SOI) because it contains buried oxide (BOX) layers. In this work, we compare PID between a bulk and a silicon on thin BOX (SOTB), which has BOX layers of less than 10 nm. We measure frequencies of ring oscillators with an antenna structure on a single stage. In the bulk, PID is relieved by first connecting an antenna to a drain because electric charge flows to a substrate. The difference in initial frequency is 0.79% between structures, which cause and relieve PID. SOTB also relieves the same amount of PID. Initial frequencies are affected by PID, but there is no effect of PID on the long-term degradation mainly caused by bias temperature instability (BTI).
Schubert, T A; Chidester, R M; Chrisman, C L
2011-02-01
To describe the clinical characteristics, management and long-term outcome in dogs with suspected rapid eye movement sleep behaviour disorder. Medical records and video recordings of 14 dogs with suspected rapid eye movement sleep behaviour disorder were reviewed and the owners were contacted via telephone or email for further information. Clinical signs included episodes of violent limb movements, howling, barking, growling, chewing, or biting during sleep. Episodes occurred at night and during daytime naps. The age at onset ranged from 8 weeks to 7·5 years with a median of 6 years but 64% of dogs were one year or less. There was no apparent sex or breed predisposition. Rapid eye movement sleep behaviour disorder events were reduced in severity and frequency in 78% of the dogs treated with 40 mg/kg/day oral potassium bromide. One dog was euthanized within 3 months of the onset of signs because of their severity. The duration of the disorder in the 13 surviving dogs ranged from 1·5 to 9 years. None of the dogs spontaneously recovered. Rapid eye movement sleep behaviour disorder is suspected to occur in dogs, as it does in human beings. It causes concern to the owners and disrupts the home environment. Unlike human beings, rapid eye movement sleep behaviour disorder of dogs often has a juvenile onset. © 2011 British Small Animal Veterinary Association.
Using Bayesian Belief Network (BBN) modelling for Rapid Source Term Prediction. RASTEP Phase 1
Energy Technology Data Exchange (ETDEWEB)
Knochenhauer, M.; Swaling, V.H.; Alfheim, P. [Scandpower AB, Sundbyberg (Sweden)
2012-09-15
The project is connected to the development of RASTEP, a computerized source term prediction tool aimed at providing a basis for improving off-site emergency management. RASTEP uses Bayesian belief networks (BBN) to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, timing, and pathway of released radio-nuclides). The output is a set of possible source terms with associated probabilities. In the NKS project, a number of complex issues associated with the integration of probabilistic and deterministic analyses are addressed. This includes issues related to the method for estimating source terms, signal validation, and sensitivity analysis. One major task within Phase 1 of the project addressed the problem of how to make the source term module flexible enough to give reliable and valid output throughout the accident scenario. Of the alternatives evaluated, it is recommended that RASTEP is connected to a fast running source term prediction code, e.g., MARS, with a possibility of updating source terms based on real-time observations. (Author)
Indian Academy of Sciences (India)
processes at the cellular level like the glycolytic pathway, peroxi- dase-catalysed reaction or the biosynthesis of certain proteins. A systematic study of oscillating chemical reactions is of consider- able interest, since these oscillating reactions can be used as prototype examples of the behaviours possible in reactions gov-.
The Duffing oscillator with damping
DEFF Research Database (Denmark)
Johannessen, Kim
2015-01-01
An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....
Rapid infusion with rituximab: short term safety in systemic autoimmune diseases
DEFF Research Database (Denmark)
Larsen, Janni Lisander; Jacobsen, Soren
2013-01-01
To describe the incidence, types and severity of adverse events, related to an accelerated regime of rituximab infusion in patients with various autoimmune diseases. Fifty-four patients with systemic autoimmune disease, to be treated with 1,000 mg of rituximab twice 2 weeks apart, participated. Pre...... (1.8%) had grade 2 events on both infusions and two patients (3.6%) had a grade 3 event on both infusions. RA patients more often had an infusion-related reaction (IRR) (9.2%) than the rest. The types of IRR were mostly of allergic or angio-oedematic nature. In practise, the rapid infusion...
Radwan, Ahmed Gomaa
2014-06-18
This paper presents a digital implementation of a 3rd order chaotic system using the Euler approximation. Short-term predictability is studied in relation to system precision, Euler step size and attractor size and optimal parameters for maximum performance are derived. Defective bits from the native chaotic output are neglected and the remaining pass the NIST SP. 800-22 tests without post-processing. The resulting optimized pseudorandom number generator has throughput up to 17.60 Gbits/s for a 64-bit design experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.85%.
Long-term histories of land use and rapid urbaniSation of rural areas ...
African Journals Online (AJOL)
The authors reflect on how consideration of the long-term history of a landscape can and should contribute to urban planning strategies that, through the incorporation of concepts such as historical urban landscapes and sustainable social and economic development, could lead to a more equitable management of land and ...
Peter Caldwell; Catalina Segura; Shelby Gull Laird; Ge Sun; Steven G. McNulty; Maria Sandercock; Johnny Boggs; James M. Vose
2015-01-01
Assessment of potential climate change impacts on stream water temperature (Ts) across large scales remains challenging for resource managers because energy exchange processes between the atmosphere and the stream environment are complex and uncertain, and few long-term datasets are available to evaluate changes over time. In this study, we...
Vallurupalli, Srikanth; Kasula, Srikanth; Kumar Agarwal, Shiv; Pothineni, Naga Venkata K; Abualsuod, Amjad; Hakeem, Abdul; Ahmed, Zubair; Uretsky, Barry F
2017-08-01
High-pressure inflation for coronary stent deployment is universally performed. However, the duration of inflation is variable and does not take into account differences in lesion compliance. We developed a standardized "pressure optimization protocol" (POP) using inflation pressure stability rather than an arbitrary inflation time or angiographic balloon appearance for stent deployment. Whether this approach improves long-term outcomes is unknown. 792 patients who underwent PCI using either rapid inflation/deflation (n = 376) or POP (n = 416) between January 2009 and March 2014 were included. Exclusion criteria included PCI for acute myocardial infarction, in-stent restenosis, chronic total occlusion, left main, and saphenous vein graft lesions. Primary endpoint was target vessel failure [TVF = combined end point of target vessel revascularization (TVR), myocardial infarction, and cardiac death]. Outcomes were analyzed in the entire cohort and in a propensity analysis. Stent implantation using POP with a median follow-up of 1317 days was associated with lower TVF compared with rapid inflation/deflation (10.1 vs. 17.8%, P inflation/deflation (10 vs. 18%, P < 0.0001). Stent deployment using POP led to reduced TVF compared to rapid I/D. These results recommend this method to improve long-term outcomes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Federman, Steven Robert; Heidarian, Negar; Irving, Richard; Ellis, David; Ritchey, Adam M.; Cheng, Song; Curtis, Larry; Furman, Walter
2017-06-01
Radiative transitions of heavy elements are of great importance in astrophysics. Studying the transition rates and their corresponding oscillator strengths allows us to determine abundances of these heavy elements and therefore leads to better understanding of neutron capture processes. We provide the results of our studies on the transitions involving ns2nd 2D and nsnp2 2D terms to the ground term for Pb II, Sn II, and Ge II. These transitions are also of interest due to their strong mixing. Our studies involve experimental measurements performed at the Toledo Heavy Ion Accelerator and theoretical multi-configuration Dirac Hartree-Fock (MCDHF)1 calculations using the development version of the GRASP2K package2. The results are compared with Pb II lines seen in spectra acquired with the Hubble Space Telescope and with other values available in the literature. 1 P. Jönsson et al., The Computational Atomic Structure Group (2014).2 P. Jönsson et al., Comput. Phys. Commun. 184, 2197 (2013).
Coccolithophores in a High CO2 World: Long-Term Trends and Rapid Events in the Paleogene
Dunkley Jones, T.; Bown, P. R.; Maslin, M. A.
2008-12-01
Predicting the response of the calcareous phytoplankton to increased sea surface temperatures and ocean acidity has provoked extensive debate amongst biologists, oceanographers and micropaleontologists, with attention focusing on coccolithophore culture experiments and extreme climate events in the geological record such as the Paleocene/Eocene thermal maximum (PETM). Less attention has been directed at understanding the long-term macroevolutionary response of coccolithophores to high pCO2 warm-climate states or to rapid cooling events in earth history. The Paleogene epoch encompasses many of the key intervals of Cenozoic coccolithophore evolution and is ideally suited to an assessment of both the long-term impact of a high pCO2 warm-climate state on coccolithophore macroevolution and the effects of the most significant rapid warming (PETM) and cooling events (Eocene/Oligocene Transition; EOT) of the Cenozoic. Here we present records of the coccolithophore response to both the PETM and EOT from the Kilwa Group calcareous microfossil Konservat-Lagerstätte of southern Tanzania. Through all the intervals studied the calcareous nannoplankton recovered from these sediments are more diverse than any previously documented sections of the same age and include many small and fragile taxa that are new to science. In the Tanzanian sections the onset of the PETM is marked by rapid and significant nannoplankton assemblage shifts and synchronous extinctions representing around 10% of the total diversity, indicative of a severe disruption of the photic zone environment. Nannofossil assemblage data across the EOT reveal a significant drop in diversity and the abundance of oligotrophic taxa directly coincident with global cooling, indicating a significant increase in nutrient availability in the low-latitude surface ocean. These two rapid climatic events bound the Eocene epoch and we discuss the connections between coccolithophore macroevolution and Eocene climate and the critical
Energy Technology Data Exchange (ETDEWEB)
Arik, M. (Istanbul Technical Univ. (Turkey). Dept. of Mathematics Bogazici Univ., Istanbul (Turkey). Dept. of Physics); Demircan, E.; Turgut, T. (Texas Univ., Austin, TX (United States). Dept. of Physics); Ekinci, L.; Mungan, M. (Bogazici Univ., Istanbul (Turkey). Dept. of Physics)
1992-07-01
We discuss the properties of oscillators whose spectrum is given by a generalized Fibonacci sequence. The properties include: Invariance under the unitary quantum group, generalized angular momentum, coherent states and difference calculus, relativistic interpretation. (orig.).
Long-Term Soil Experiments: A Key to Managing Earth's Rapidly Changing Critical Zones
Richter, D., Jr.
2014-12-01
In a few decades, managers of Earth's Critical Zones (biota, humans, land, and water) will be challenged to double food and fiber production and diminish adverse effects of management on the wider environment. To meet these challenges, an array of scientific approaches is being used to increase understanding of Critical Zone functioning and evolution, and one amongst these approaches needs to be long-term soil field studies to move us beyond black boxing the belowground Critical Zone, i.e., to further understanding of processes driving changes in the soil environment. Long-term soil experiments (LTSEs) provide direct observations of soil change and functioning across time scales of decades, data critical for biological, biogeochemical, and environmental assessments of sustainability; for predictions of soil fertility, productivity, and soil-environment interactions; and for developing models at a wide range of temporal and spatial scales. Unfortunately, LTSEs globally are not in a good state, and they take years to mature, are vulnerable to loss, and even today remain to be fully inventoried. Of the 250 LTSEs in a web-based network, results demonstrate that soils and belowground Critical Zones are highly dynamic and responsive to human management. The objective of this study is to review the contemporary state of LTSEs and consider how they contribute to three open questions: (1) can soils sustain a doubling of food production in the coming decades without further impinging on the wider environment, (2) how do soils interact with the global C cycle, and (3) how can soil management establish greater control over nutrient cycling. While LTSEs produce significant data and perspectives for all three questions, there is on-going need and opportunity for reviews of the long-term soil-research base, for establishment of an efficiently run network of LTSEs aimed at sustainability and improving management control over C and nutrient cycling, and for research teams that
Rapid short-term clearance of chrysotile compared with amosite asbestos in the guinea pig.
Churg, A; Wright, J L; Gilks, B; DePaoli, L
1989-04-01
Compared with amphibole forms of asbestos, chrysotile asbestos fails to accumulate in lung tissue; the mechanism of this effect is disputed. To investigate this problem, we administered a mixture of the amphibole, amosite, and chrysotile to guinea pigs by intratracheal instillation. At 1 day, 1 week, and 1 month after instillation, animals were killed, and the numbers, types, sizes, and compositions of fibers in the lungs were determined by analytical electron microscopy. Both chrysotile and amosite fiber concentrations decreased with time, but relative chrysotile clearance was significantly greater than amosite clearance. There was no evidence of magnesium leaching from chrysotile fibers of any size at any time. Analysis of fiber lengths and widths showed a time trend toward shorter and narrower fibers (particularly toward fibers of less than 2 microns long and less than 0.025 microns wide) for chrysotile. This effect was not seen for amosite. We conclude that (1) failure of chrysotile accumulation in lung results from preferential chrysotile clearance during the first few days to weeks after exposure; (2) there is no evidence that fiber dissolution plays a role in chrysotile clearance; (3) preferential clearance may be a result of fragmentation and rapid removal of chrysotile fibers.
Filho, Roberto M A Lima; Lima, Anna Letícia
2003-08-01
The treatment of a patient with a skeletal Class II Division 1 malocclusion, with excessive overjet, complete overbite, airway obstruction, and severe arch length deficiency in the mandibular dental arch, is presented. The maxilla was narrow compared with the mandible, and the posterior teeth were compensated, with the maxillary teeth inclined buccally and the mandibular teeth inclined lingually. The palatal vault was extremely high. Treatment included rapid palatal expansion to correct the transverse maxillary deficiency and Kloehn cervical headgear to correct the anteroposterior skeletal discrepancy. Long-term stability (12-year follow-up) is reported.
Rapid and long-term gamma-radiation annealing in low-dropout voltage regulators
Directory of Open Access Journals (Sweden)
Vukić Vladimir Đ.
2017-01-01
Full Text Available Samples of four types of low-dropout voltage regulators, with both serial pnp and npn transistors, were examined in room-temperature isothermal gamma radiation annealing. After uninterrupted exposure to a total ionising dose of 500 Gy, biased and loaded voltage regulators were examined in room-temperature annealing within the first 30 minutes after the exposure. Beside the on-line measurement of output voltage and quiescent current during the thirty-minute period immediately after irradiation, also results were procured after 10-year room-temperature spontaneous recovery. Data obtained during the irradiation and rapid annealing were fitted with linear, exponential, and power-law regression functions. A simple procedure was proposed, based on the quiescent current annealing factor, for the quick estimation of the integrated voltage regulator's radiation sensitivity during the post-irradiation isothermal annealing. In order to estimate the circuit's radiation sensitivity, immediately after irradiation, tested devices have to be left in the same operating conditions as during the exposure. If a clear trend of the quiescent current recovery can be observed, further examinations have to be implemented to estimate if a circuit is acceptably radiation-tolerant. If no recovery trend can be observed within the first hour after irradiation, or even further degradation is noticed, then the examined voltage regulator is a radiation-sensitive device and cannot be used in radiation environments. The described procedure is based on the macroscopic effects of the radiation-induced charge-trapping in field oxides and interfaces. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 171007: Physical and functional effects of the interaction of radiation with electrical and biological systems
Deakin, Inga H.; Nissen, Wiebke; Law, Amanda J.; Lane, Tracy; Kanso, Riam; Schwab, Markus H.; Nave, Klaus-Armin; Lamsa, Karri P.; Paulsen, Ole; Bannerman, David M.
2012-01-01
Neuregulin 1 (NRG1) is a growth factor involved in neurodevelopment and plasticity. It is a schizophrenia candidate gene, and hippocampal expression of the NRG1 type I isoform is increased in the disorder. We have studied transgenic mice overexpressing NRG1 type I (NRG1tg-type I) and their wild-type littermates and measured hippocampal electrophysiological and behavioral phenotypes. Young NRG1tg-type I mice showed normal memory performance, but in older NRG1tg-type I mice, hippocampus-dependent spatial working memory was selectively impaired. Hippocampal slice preparations from NRG1tg-type I mice exhibited a reduced frequency of carbachol-induced gamma oscillations and an increased tendency to epileptiform activity. Long-term potentiation in NRG1tg-type I mice was normal. The results provide evidence that NRG1 type I impacts on hippocampal function and circuitry. The effects are likely mediated via inhibitory interneurons and may be relevant to the involvement of NRG1 in schizophrenia. However, the findings, in concert with those from other genetic and pharmacological manipulations of NRG1, emphasize the complex and pleiotropic nature of the gene, even with regard to a single isoform. PMID:21878485
Smith, Joanna; Cheater, Francine; Bekker, Hilary
2015-08-01
Living with a child with a long-term condition can result in challenges above usual parenting because of illness-specific demands. A critical evaluation of research exploring parents' experiences of living with a child with a long-term condition is timely because international health policy advocates that patients with long-term conditions become active collaborators in care decisions. A rapid structured review was undertaken (January 1999-December 2009) in accordance with the United Kingdom Centre for Reviews and Dissemination guidance. Three data bases (MEDLINE, CINAHL, PSYCINFO) were searched and also hand searching of the Journal of Advanced Nursing and Child: Care, Health and Development. Primary research studies written in English language describing parents' experiences of living with a child with a long-term condition were included. Thematic analysis underpinned data synthesis. Quality appraisal involved assessing each study against predetermined criteria. Thirty-four studies met the inclusion criteria. The impact of living with a child with a long-term condition related to dealing with immediate concerns following the child's diagnosis and responding to the challenges of integrating the child's needs into family life. Parents' perceived they are not always supported in their quest for information and forming effective relationships with health-care professionals can be stressful. Although having ultimate responsibility for their child's health can be overwhelming, parents developed considerable expertise in managing their child's condition. Parents' accounts suggest they not always supported in their role as manager for their child's long-term condition and their expertise, and contribution to care is not always valued. © 2013 John Wiley & Sons Ltd.
Stella, Elisa; Meneghetti, Erica; Cainelli, Oscar; Bellin, Alberto
2017-04-01
Alpine glaciers are shrinking at a relentless pace, as an effect of the increasing temperature and the concomitant reduction of snowfall that the Alpine region experienced in the last 40 years. The impact of these changes is relevant, given the importance of the Alps from ecological and economical points of view. While the ubiquitous reduction of glaciers mass through the Alps has been reported in a number of studies, its effect on streamflow is less studied, mainly because much less data are available on streamflow emerging from glaciers. In the present work we analyze a long streamflow time series, recorded since the 70s, in the Careser creek emerging from the Careser Glacier, which mass has been monitored since 1920, first discontinuously and then continuously from 1967. Because of these long-term observations, the Careser has been classified as one of the reference glaciers by the World Glacier Monitoring Service, which provides balances data every two years. We performed a comprehensive analysis of multiscale variations of precipitation, temperature, water discharge and glacier mass. In addition we explored the correlations between streamflow and climatic drivers at monthly and subdaily scales. We observed significant changes in the timing of streamflow, with anticipated snow melting and a reduction of summer runoff, while at the annual scale the increase of ice-melting offsets runoff reduction caused by less winter precipitation falling as snow. In fact, in most years since the 1990 ice melts from beginning of May to October, thereby causing a dramatic reduction of the glacier volume. However, in the last years the significant reduction of the glacier surface, attenuated this tendency to increase the total annual runoff volume. At the sub-daily scale we observed a progressive increase of the difference between the maximum and minimum water discharge. Overall the hydrological regime changes significantly as an effect of the rise in temperature and the lower
Stefani, Ambra; Gabelia, David; Högl, Birgit; Mitterling, Thomas; Mahlknecht, Philipp; Stockner, Heike; Poewe, Werner; Frauscher, Birgit
2015-11-15
Idiopathic rapid eye movement (REM) sleep behavior disorder (RBD) is a harbinger of synuclein-mediated neurodegenerative diseases. It is unknown if this also applies to isolated REM sleep without atonia (RWA). We performed a long-term follow-up investigation of subjects with isolated RWA. Participants were recruited from 50 subjects with isolated RWA who were identified at the sleep laboratory of the Department of Neurology at the Medical University of Innsbruck between 2003 and 2005. Eligible subjects underwent follow-up clinical examination, polysomnography, and assessment of neurodegenerative biomarkers (cognitive impairment, finger speed deficit, impaired color vision, olfactory dysfunction, orthostatic hypotension, and substantia nigra hyperechogenicity). After a mean of 8.6 ± 0.9 y, 1 of 14 participating subjects (7.3%) progressed to RBD. Ten of 14 RWA subjects (71.4%) were positive for at least one neurodegenerative biomarker. Substantia nigra hyperechogenicity and presence of mild cognitive impairment were both present in 4 of 14 subjects with isolated RWA. Electromyographic activity measures increased significantly from baseline to follow-up polysomnography ("any" mentalis and both anterior tibialis muscles: 32.5 ± 9.4 versus 52.2 ± 16.6%; p = 0.004). This study provides first evidence that isolated RWA is an early biomarker of synuclein-mediated neurodegeneration. These results will have to be replicated in larger studies with longer observational periods. If confirmed, these disease findings have implications for defining at-risk cohorts for Parkinson disease. © 2015 American Academy of Sleep Medicine.
Prospects for Neutrino Oscillation Physics
Directory of Open Access Journals (Sweden)
Silvia Pascoli
2013-01-01
Full Text Available Recently the last unknown lepton mixing angle θ 13 has been determined to be relatively large, not too far from its previous upper bound. This opens exciting possibilities for upcoming neutrino oscillation experiments towards addressing fundamental questions, among them the type of the neutrino mass hierarchy and the search for CP violation in the lepton sector. In this paper we review the phenomenology of neutrino oscillations, focusing on subleading effects, which will be the key towards these goals. Starting from a discussion of the present determination of three-flavour oscillation parameters, we give an outlook on the potential of near-term oscillation physics as well as on the long-term program towards possible future precision oscillation facilities. We discuss accelerator-driven long-baseline experiments as well as nonaccelerator possibilities from atmospheric and reactor neutrinos.
Rutten, R.J.
1999-01-01
This review concentrates on the quiet-Sun chromosphere. Its internetwork areas are dynamically dominated by the so-called chromospheric three-minute oscillation. They are interpretationally dominated by the so-called Ca II K 2V and H 2V grains. The main points of this review are that the one
Duan, Tingting; Gu, Ning; Wang, Ying; Wang, Feng; Zhu, Jie; Fang, Yiru; Shen, Yuan; Han, Jing; Zhang, Xia
2017-06-01
Pathological anxiety is the most common type of psychiatric disorder. The current first-line anti-anxiety treatment, selective serotonin/noradrenaline reuptake inhibitors, produces a delayed onset of action with modest therapeutic and substantial adverse effects, and long-term use of the fast-acting anti-anxiety benzodiazepines causes severe adverse effects. Inhibition of the fatty acid amide hydrolase (FAAH), the endocannabinoid N-arachidonoylethanolamine (AEA) degradative enzyme, produces anti-anxiety effects without substantial "unwanted effects" of cannabinoids, but its anti-anxiety mechanism is unclear. We used behavioural, electrophysiological, morphological and mutagenesis strategies to assess the anti-anxiety mechanism of the FAAH inhibitors PF3845 and URB597. PF3845 exerts rapid and long-lasting anti-anxiety effects in mice exposed acutely to stress or chronically to the stress hormone corticosterone. PF3845-induced anti-anxiety effects and in vivo long-term depression (LTD) of synaptic strength at the prefrontal cortical input onto the basolateral amygdala neurons are abolished in mutant mice without CB1 cannabinoid receptors (CB1R) in brain astroglial cells, but are conserved in mice without CB1R in glutamatergic neurons. Blockade of glutamate N-methyl-D-aspartate receptors and of synaptic trafficking of glutamate AMPA receptors also abolishes PF3845-induced anti-anxiety effects in mice and LTD production in rats. URB597 produces similar anti-anxiety effects, which are abolished by blockade of LTD induction in mice. The determination of FAAH in which types of brain cells contribute to AEA degradation for the maintenance of amygdala interstitial AEA has yet to be determined. We propose that the rapid anti-anxiety effects of FAAH inhibition are due to AEA activation of astroglial CB1R and subsequent basolateral amygdala LTD in vivo.
Ahmed, Md. Kawser; Alam, Mohammad Samsul; Yousuf, Abu Hena Muhammad; Islam, Md. Monirul
2017-07-01
A long-term (1948 to 2012) trend of precipitation (annual, pre-monsoon, monsoon, and post-monsoon seasons) in Bangladesh was analyzed in different regions using both parametric and nonparametric approaches. Moreover, the possible teleconnections of precipitation (annual and monsoon) variability with El Niño/Southern Oscillation (ENSO) episode and Indian Ocean Dipole (IOD) were investigated using both average and individual (both positive and negative) values of ENSO index and IOD. Our findings suggested that for annual precipitation, a significant increasing monotonic trend was found in whole Bangladesh (4.87 mm/year), its western region (5.82 mm/year) including Rangpur (9.41 mm/year) and Khulna (4.95 mm/year), and Sylhet (10.12 mm/year) and Barisal (6.94 mm/year) from eastern region. In pre-monsoon, only Rangpur (2.88 mm/year) showed significant increasing trend, while in monsoon, whole Bangladesh (3.04 mm/year), Sylhet (7.17 mm/year), and Barisal (6.94 mm/year) showed similar trend. In post-monsoon, there was no significant trend. Our results also revealed that the precipitation (annual or monsoon) of whole Bangladesh and almost all of the spatial regions did not show any significant correlation with ENSO events, whereas the average IOD values showed significant correlation only in monsoon precipitation of western region. The individual positive IODs showed significant correlation in whole Bangladesh, western region, and its two divisions (Rajshahi and Khulna). So, in the context of Bangladesh climate, IOD has the more teleconnection to precipitation than that of ENSO. Our findings indicate that the co-occurrence of ENSO and IOD events may suppress their influence on each other.
Molnos, Sophie; Baumbach, Clemens; Wahl, Simone; Müller-Nurasyid, Martina; Strauch, Konstantin; Wang-Sattler, Rui; Waldenberger, Melanie; Meitinger, Thomas; Adamski, Jerzy; Kastenmüller, Gabi; Suhre, Karsten; Peters, Annette; Grallert, Harald; Theis, Fabian J; Gieger, Christian
2017-09-29
Genome-wide association studies allow us to understand the genetics of complex diseases. Human metabolism provides information about the disease-causing mechanisms, so it is usual to investigate the associations between genetic variants and metabolite levels. However, only considering genetic variants and their effects on one trait ignores the possible interplay between different "omics" layers. Existing tools only consider single-nucleotide polymorphism (SNP)-SNP interactions, and no practical tool is available for large-scale investigations of the interactions between pairs of arbitrary quantitative variables. We developed an R package called pulver to compute p-values for the interaction term in a very large number of linear regression models. Comparisons based on simulated data showed that pulver is much faster than the existing tools. This is achieved by using the correlation coefficient to test the null-hypothesis, which avoids the costly computation of inversions. Additional tricks are a rearrangement of the order, when iterating through the different "omics" layers, and implementing this algorithm in the fast programming language C++. Furthermore, we applied our algorithm to data from the German KORA study to investigate a real-world problem involving the interplay among DNA methylation, genetic variants, and metabolite levels. The pulver package is a convenient and rapid tool for screening huge numbers of linear regression models for significant interaction terms in arbitrary pairs of quantitative variables. pulver is written in R and C++, and can be downloaded freely from CRAN at https://cran.r-project.org/web/packages/pulver/ .
Cartes, J. E.; Maynou, F.; Fanelli, E.; Papiol, V.; Lloris, D.
2009-07-01
For depths ranging between 650 and 1700 m we have compared recent (2007-2008) to older (from 1988 to 1992) data, searching for long-term changes in the distribution, abundance and composition of deep megafauna (fish and decapods) off the central Catalonian coasts (western Mediterranean). Overall, in the depth interval between 600 and 1100 m, we found higher abundance of fish in 1988-1992 than in 2007, a decrease simultaneous with an increase of decapod crustaceans. Older and more recent haul replicates (after 20 years) had similar assemblage composition in the depth range 1300-1700 m, whereas we found significant changes at 1000 m. Diversity of fish was greater in 1988-1992 than in 2007, while diversity of decapod crustaceans increased between the two periods. Thus, there was a reorganization in benthopelagic communities, rather than a loss of biodiversity. This was in agreement with long-term changes described for diversity of (neritic) zooplankton in the western Mediterranean. We found a dominance of plankton-suprabenthos feeders (e.g. fish such as Lepidion lepidion, Hymenocephalus italicus and Alepocephalus rostratus; the decapods Plesionika spp. and Sergestes arcticus) in 1988-1992. In 2007 by contrast, dominance of plankton-suprabenthos feeders decreased, and assemblages were increasingly composed of benthos-feeding decapods (e.g. Aristeus antennatus, Pontophilus norvegicus and some hermit crabs) preying for instance on polychaetes. These results coincided with low/negative North Atlantic Oscillation index (NAO) in 2007 and in the period immediately before (2004-2006) 2007 (increase of benthos feeders), and with high average NAO in 1988-1992 (decrease of benthos feeders, which in turn may enhance abundance of plankton feeders). The benthic decapod Calocaris macandreae and suprabenthos (small crustaceans, mostly peracarids, living on and just beneath the sediment surface) are key prey in food webs off Catalonian margins, acting as links between surface
Energy Technology Data Exchange (ETDEWEB)
George Neil
2003-05-12
FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. More than 30 FEL oscillators are presently operating around the world spanning a wavelength range from the mm region to the ultraviolet using DC and rf linear accelerators and storage rings as electron sources. The characteristics that have driven the development of these sources are the desire for high peak and average power, high micropulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. Substantial user programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few.
DEFF Research Database (Denmark)
Lindberg, Erik
1997-01-01
In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos.......In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear...
Ferris, Tyler; Alexander, R G; Boley, Jimmy; Buschang, Peter H
2005-09-01
The purpose of this study was to evaluate the long-term postretention stability of rapid palatal expansion-lip bumper therapy followed by full fixed appliances. The sample included 20 treated patients (11 women and 9 men) who were recalled to obtain postretention records. The subjects were out of retention for a minimum of 4 years and an average of 7.9 years. They had begun treatment in the late mixed dentition at a mean age of 11.1 with considerable incisor crowding but, on average, no tooth size-arch length discrepancies. Pretreatment, posttreatment (mean age, 13.6 years), and postretention (mean age, 24.3 years) models were digitized, and the computed measurements were compared with untreated reference data. The majority of treatment increases in maxillary and mandibular arch dimensions were statistically significant (P lip bumper expansion therapy in the late mixed dentition followed by full fixed appliances is an effective form of treatment for patients with up to moderate tooth size-arch length discrepancies.
Graf, Rudolf F
1996-01-01
This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing
Power oscillation damping controller
DEFF Research Database (Denmark)
2012-01-01
A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...... signal in response to the oscillation indicating signal, by processing the oscillation damping control signal in a signal processing chain. The signal processing chain includes a filter configured for passing only signals within a predetermined frequency range....
Neutrino oscillations: Present status and outlook
Indian Academy of Sciences (India)
more, an outlook on the measurement of the mixing angle θ13 in the near term future, as well as prospects to discover CP violation in neutrino oscillations and to determine the type of the neutrino mass ordering by long-baseline experiments in the long term future are given. Keyword. Neutrino oscillations. PACS Nos 14.60.
Badreddine, Fauze Ramez; Fujita, Reginaldo Raimundo; Cappellette, Mario
2017-06-26
Rapid maxillary expansion is an orthodontic and orthopedic procedure that can change the form and function of the nose. The soft tissue of the nose and its changes can influence the esthetics and the stability of the results obtained by this procedure. The objective of this study was to assess the changes in nose dimensions after rapid maxillary expansion (RME) in oral breathers with maxillary atresia, using a reliable and reproducible methodology through computed tomography. A total of 30 mouth-breathing patients with maxillary atresia were analyzed and divided into a treatment group who underwent RME (20 patients, 10 of which were male and 10 female, with a MA of 8.9 years and a SD of 2.16, ranging from 6.5 to 12.5 years) and a Control Group (10 patients, 5 of which were male and 5 female, with a MA of 9.2 years, SD of 2.17, ranging from 6.11 to 13.7 years). In the treatment group, multislice computed tomography scans were obtained at the start of the treatment (T1) and 3 months after expansion (T2). The patients of the control group were submitted to the same exams at the same intervals of time. Four variables related to soft tissue structures of the nose were analyzed (alar base width, alar width, height of soft tissue of the nose and length of soft tissue of the nose), and the outcomes between T1 and T2 were compared using Osirix MD software. In the TG, the soft tissues of the nose exhibited significant increases in all variables studied (p0.05). In the treatment group, mean alar base width increased by 4.87% (p=0.004), mean alar width increased by 4.04% (p=0.004), mean height of the soft tissues of the nose increased by 4.84% (p=0.003) and mean length of the soft tissues of the nose increased by 4.29% (p=0.012). In short-term, RME provided a statistically significant increase in the dimensions of the soft tissues of the nose. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All
Oscillating scalar fields in extended quintessence
Li, Dan; Pi, Shi; Scherrer, Robert J.
2018-01-01
We study a rapidly oscillating scalar field with potential V (ϕ )=k |ϕ |n nonminimally coupled to the Ricci scalar R via a term of the form (1 -8 π G0ξ ϕ2)R in the action. In the weak coupling limit, we calculate the effect of the nonminimal coupling on the time-averaged equation of state parameter γ =(p +ρ )/ρ . The change in ⟨γ ⟩ is always negative for n ≥2 and always positive for n values of n . Constraints on the time variation of G force this change to be infinitesimally small at the present time whenever the scalar field dominates the expansion, but constraints in the early universe are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show that, under reasonable assumptions, this effective energy density is always smaller than the density of the scalar field itself.
Entanglement in neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)
2009-03-15
Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)
Chaousis, Stephanie; Smout, Michael; Wilson, David; Loukas, Alex; Mulvenna, Jason; Seymour, Jamie
2014-03-01
The vertebrate cardiotoxic components of the venom produced by the Australian box jellyfish, Chironex fleckeri, have not previously been isolated. We have uncovered for the first time, three distinct cytotoxic crude fractions from within the vertebrate cardiotoxic peak of C. fleckeri venom by monitoring viability of human muscle cells with an impedance based assay (ACEA xCELLigence system) measuring cell detachment as cytotoxicity which was correlated with a reduction in cell metabolism using a cell proliferation (MTS) assay. When the effects of the venom components on human cardiomyocytes and human skeletal muscle cells were compared, two fractions were found to specifically affect cardiomyocytes with distinct temporal profiles (labelled Crude Toxic Fractions (CTF), α and β). A third fraction (CTF-γ) was toxic to both muscle cell types and therefore not cardio specific. The vertebrate, cardio specific CTF-α and CTF-β, presented distinct activities; CTF-α caused rapid but short term cell detachment and reduction in cell metabolism with enhanced activity at lower concentrations than CTF-β. This activity was not permanent, with cell reattachment and subsequent increased metabolism of heart muscle cells observed when exposed to all but the highest concentrations of CTF-α tested. The cytotoxic effect of CTF-β took twice as long to act on the cells compared to CTF-α, however, the activity was permanent. Furthermore, we showed that the two fractions combined have a synergistic effect causing a much stronger and faster cell detachment (death) when combined than the sum of the individual effects of each toxin. These data presented here improves the current understanding of the toxic mechanisms of the Australian box jellyfish, C. fleckeri, and provides a basis for in vivo research of these newly isolated toxic fractions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Long period oscillations in sunspots
Chorley, N.; Hnat, B.; Nakariakov, V. M.; Inglis, A. R.; Bakunina, I. A.
2010-04-01
Long period oscillations of the gyroresonant emission from sunspot atmospheres are studied. Time series data generated from the sequences of images obtained by the Nobeyama Radioheliograph operating at a frequency of 17 GHz for three sunspots have been analysed and are found to contain significant periods in the range of several tens of minutes. Wavelet analysis shows that these periods are persistent throughout the observation periods. The presence of the oscillations is confirmed by several methods (periodogram, wavelets, Fisher randomisation and empirical mode decomposition). Spatial analysis using the techniques of period, power, correlation and time lag mapping reveals regions of enhanced oscillatory power in the umbral regions. Also seen are two regions of coherent oscillation of about 25 pixels in size, that oscillate in anti-phase with each other. Possible interpretation of the observed periodicities is discussed, in terms of the shallow sunspot model and the leakage of the solar g-modes.
Samuel L. Zelinka; Donald S. Stone
2011-01-01
This paper compares two methods of measuring the corrosion of steel and galvanized steel in wood: a long-term exposure test in solid wood and a rapid test method where fasteners are electrochemically polarized in extracts of wood treated with six different treatments. For traditional wood preservatives, the electrochemical extract method correlates with solid wood...
Asteroseismic Theory of Rapidly Oscillating Ap Stars
Indian Academy of Sciences (India)
Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately.
Q-oscillators and relativistic position operators
Energy Technology Data Exchange (ETDEWEB)
Arik, M. (Dept. of Mathematics, Istanbul Technical Univ. (Turkey)); Mungan, M. (Dept. of Physics, Bogazici Univ., Istanbul (Turkey))
1992-05-21
We investigate the multi-dimensional q-oscillator whose commutation relations are invariant under the quantum group. The no-interaction limit corresponds to a contraction of the q-oscillator algebra and yields relativistic position operators which can be expressed in terms of the generators of the Poincare group. This leads to the interpretation of the interacting q-oscillator as an relativistic quantum system and results in a hamiltonian whose spectrum is exactly exponential. (orig.).
Modeling microtubule oscillations
DEFF Research Database (Denmark)
Jobs, E.; Wolf, D.E.; Flyvbjerg, H.
1997-01-01
Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....
Wendling, Lisa K; McNamara, James A; Franchi, Lorenzo; Baccetti, Tiziano
2005-01-01
This prospective clinical study evaluated the short-term treatment effects of acrylic-splint rapid maxillary expander in conjunction with lower Schwarz appliance (RME-Sz) therapy to the acrylic-splint rapid maxillary expansion alone (RME-only group). Pretreatment and posttreatment lateral cephalograms were analyzed for 25 RME patients and 19 RME-Sz patients. The average time between films ranged between nine and 12 months. Statistical comparisons of the treatment changes in the RME-only and RME-Sz groups were performed by means of independent sample t-tests (P appliance prevented the mesial movement of the lower molars during the treatment period.
Neutrino oscillations: Present status and outlook
Indian Academy of Sciences (India)
The status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results is also discussed. Further-more, an outlook on the measurement of the mixing angle 13 in the near term future, as well as prospects to discover CP violation in neutrino oscillations and to determine the type ...
Surface plasmon excitation by a quantum oscillator
Lidsky, V. V.
2009-01-01
Surface waves in a thin uniform metal film are described in terms of quantum electrodynamics.The interaction of surface waves with a quantum oscillator is discussed in the dipole approximation. The increase in the spontaneous emission rate of the excited quantum oscillator, the so called Purcell factor, is evaluated to be as high as by 10 to the five times.
Murrough, James W.; Perez, Andrew M.; Pillemer, Sarah; Stern, Jessica; Parides, Michael K.; aan het Rot, Marije; Collins, Katherine A.; Mathew, Sanjay J.; Charney, Dennis S.; Iosifescu, Dan V.
2013-01-01
Background: Ketamine is reported to have rapid antidepressant effects; however, there is limited understanding of the time-course of ketamine effects beyond a single infusion. A previous report including 10 participants with treatment-resistant major depression (TRD) found that six ketamine
Directory of Open Access Journals (Sweden)
Takahide Nakazawa
2010-08-01
Full Text Available Background: Sorafenib is the first molecular-targeted agent that is effective for advanced hepatocellular carcinoma (HCC, with prolongation of survival. However, a complete response is very rare, and rapid regression of HCC after short-term treatment with sorafenib has not been reported previously. Case Reports: We describe 2 patients with advanced multiple HCC who received sorafenib for short periods of 1 or 2 weeks, respectively. Longer treatment was precluded by the development of hepatic failure as an adverse event of sorafenib. Results: HCC rapidly regressed, and both patients had a partial response (PR, despite short-term treatment. Furthermore, an early elevation of des-gamma-carboxy prothrombin (DCP was temporarily seen in both patients, with no elevation of alpha-fetoprotein. Conclusions: Sorafenib can induce rapid regression of advanced HCC even after short-term treatment, and the initial response of HCC was identical in both patients. Since early elevation of DCP was observed in our patients with PR, DCP might be a predictive biomarker of anti-tumor response. Further studies are required to clarify the mechanisms underlying the effectiveness of sorafenib, including the alteration of DCP.
Ward, P. L.
2016-12-01
Total column ozone observed by satellite on February 19, 2010, increased 75% in a plume from Eyjafjallajökull volcano in southern Iceland eastward past Novaya Zemlya, extending laterally from northern Greenland to southern Norway (http://youtu.be/wJFZcPEfoR4). Contemporaneous ground deformation and rapidly increasing numbers of earthquakes imply magma began rising from a sill 4-6 km below the volcano, erupting a month later. Whether the ozone formed from the magma or from very hot gases rising through cracks in the ground is unclear. On February 20-22, 1991, similar increases in ozone were observed north of Pinatubo volcano before its initial eruption on April 2 (http://youtu.be/5y1PU2Qu3ag). Annual average total column ozone during the year of most moderate to large explosive volcanic eruptions since routine observations of ozone began in 1927 has been substantially higher than normal. Increased total column ozone absorbs more solar ultraviolet-B radiation, warming the ozone layer and cooling Earth. Most major volcanic eruptions form sulfuric-acid aerosols in the lower part of the ozone layer providing aqueous surfaces on which heterogeneous chemical reactions enhance ozone depletion. Within a year, aerosol droplets grew large enough to reflect and scatter high-frequency solar radiation, cooling Earth 0.5oC for 2-3 years. Temperature anomalies in the northern hemisphere rose 0.7oC in 28 years from 1970 to 1998 (HadCRUT4), while annual average ozone at Arosa dropped 27 DU because of manufactured CFC gases. Beginning in August 2014, temperature anomalies in the northern hemisphere rose another 0.6oC in less than two years apparently because of the 6-month eruption of Bárðarbunga volcano in central Iceland, the highest rate of basaltic lava extrusion since 1783. Large extrusions of basaltic lava are typically contemporaneous with the greatest periods of warming throughout Earth history. Ozone concentrations at Arosa change by season typically from 370 DU during
Ladder operators for isospectral oscillators
Seshadri, S.; Balakrishnan, V.; Lakshmibala, S.
1998-02-01
We present, for the isospectral family of oscillator Hamiltonians, a systematic procedure for constructing raising and lowering operators satisfying any prescribed "distorted" Heisenberg algebra (including the q-generalization). This is done by means of an operator transformation implemented by a shift operator. The latter is obtained by solving an appropriate partial isometry condition in the Hilbert space. Formal representations of the nonlocal operators concerned are given in terms of pseudo-differential operators. Using the new annihilation operators, new classes of coherent states are constructed for isospectral oscillator Hamiltonians. The corresponding Fock-Bargmann representations are also considered, with specific reference to the order of the entire function family in each case.
Sleep, Norman H.
2015-05-01
Strong tidal stresses brought much of the icy shell of Enceladus into frictional failure at past times of high orbital eccentricity. The frictional behavior of shallow terrestrial rock exposed to repeated episodes of strong seismic waves provides analogy. Frictional failure produces cracks that lower the shear modulus. Seismic regolith develops where the shear modulus increases linearly with depth. Imposed peak strains barely cause frictional failure within self-organized regolith. With regard to Enceladus, eccentricity could continue to build up in the past since little anelastic strain, and hence tidal dissipation occurred within the self-organized regolith and within the underlying cold ice. A frictional instability analogous to the formation of weak major faults on the Earth likely occurred once the regolith was many kilometers thick. The effective coefficient of friction dropped to low levels along major faults within the deep cold ice. Tidal dissipation on these faults heated the ice starting thermal convention within the South Polar Terrain. Once thermal buoyancy produced stresses, the oscillating stresses from tides nonlinearly enhanced the rate of tectonic convection. Warm ice that dissipates tides now exists within Enceladus. The eccentricity will likely decrease and the object will then freeze.
Hou, Jiaqi; Li, Mingxiao; Mao, Xuhui; Hao, Yan; Ding, Jie; Liu, Dongming; Xi, Beidou; Liu, Hongliang
2017-01-01
Rapid fermentation of food waste can be used to prepare soil conditioner. This process consumes less time and is more cost-effective than traditional preparation technology. However, the succession of the soil microbial community structure after long-term application of rapid fermentation-derived soil conditioners remains unclear. Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application of DRF-derived soil conditioner were investigated. Results showed that the treatment increased soil organic matter (SOM) accumulation and strawberry yield by 5.3 g/kg and 555.91 kg/ha, respectively. Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes became the dominant phyla, occupying 65.95%-77.52% of the bacterial sequences. Principal component analysis (PCA) results showed that the soil bacterial communities were largely influenced by the treatment. Redundancy analysis (RDA) results showed that the relative abundances of Gemmatimonadetes, Chloroflexi, Verrucomicrobia, Nitrospirae, and Firmicutes were significantly correlated with soil TC, TN, TP, NH4+-N, NO3--N, OM, and moisture. These communities were all distributed in the soil samples collected in the sixth year of application. Long-term treatment did not enhance the diversity of bacterial species but significantly altered the distribution of major functional bacterial communities in the soils. Application of DRF-derived soil conditioner could improve the soil quality and optimize the microbial community, ultimately enhancing fruit yields.
Kleinberg, L. L.
1969-01-01
Microelectronic oscillator uses a bipolar transistor to circumvent the problem of developing suitable inductors for lower frequencies. The oscillator is fabricated by hybrid thin film techniques or by monolithic construction. Discrete microminiature components may also be employed.
Ma, Hongbin
2015-01-01
This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation, theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary factors affecting oscillating motions and heat transfer, neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes. The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...
Phenomenology of neutrino oscillations
Indian Academy of Sciences (India)
Abstract. The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.
Dafoe, Nicole J; Huffaker, Alisa; Vaughan, Martha M; Duehl, Adrian J; Teal, Peter E; Schmelz, Eric A
2011-09-01
Plants damaged by insect herbivory often respond by inducing a suite of defenses that can negatively affect an insect's growth and fecundity. Ostrinia nubilalis (European corn borer, ECB) is one of the most devastating insect pests of maize, and in the current study, we examined the early biochemical changes that occur in maize stems in response to ECB herbivory and how these rapidly induced defenses influence the growth of ECB. We measured the quantities of known maize defense compounds, benzoxazinoids and the kauralexin class of diterpenoid phytoalexins. ECB herbivory resulted in decreased levels of the benzoxazinoid, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one)-β-D-glucopyranose (DIMBOA-Glc), and a corresponding increase in 2-(2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one)-β-D-glucopyranose (HDMBOA-Glc). Total quantities of benzoxazinoids and kauralexins were increased as early as 24 h after the initiation of ECB feeding. The plant hormones, jasmonic acid (JA) and ethylene (ET), and the transcripts encoding their key biosynthetic enzymes also accumulated in response to ECB herbivory, consistent with a role in defense regulation. The combined pharmacological application of JA and the ET precursor, 1-aminocyclopropane-1-carboxylic acid to stem internode tissue likewise resulted in changes in benzoxazinoids similar to that observed with ECB damage. Despite the fact that maize actively mounts a defense response to ECB stem feeding, no differences in percent weight gain were observed between ECB larvae that fed upon non-wounded control tissues compared to tissues obtained from plants previously subjected to 24 h ECB stem herbivory. These rapid defense responses in maize stems do not appear to negatively impact ECB growth, thus suggesting that ECB have adapted to these induced biochemical changes.
Shanley, James B.; McDowell, William H.; Stallard, Robert F.
2011-01-01
The 326 ha Río Icacos watershed in the tropical wet forest of the Luquillo Mountains, northeastern Puerto Rico, is underlain by granodiorite bedrock with weathering rates among the highest in the world. We pooled stream chemistry and total suspended sediment (TSS) data sets from three discrete periods: 1983-1987, 1991-1997, and 2000-2008. During this period three major hurricanes crossed the site: Hugo in 1989, Hortense in 1996, and Georges in 1998. Stream chemistry reflects sea salt inputs (Na, Cl, and SO4), and high weathering rates of the granodiorite (Ca, Mg, Si, and alkalinity). During rainfall, stream composition shifts toward that of precipitation, diluting 90% or more in the largest storms, but maintains a biogeochemical watershed signal marked by elevated K and dissolved organic carbon (DOC) concentration. DOC exhibits an unusual "boomerang" pattern, initially increasing with flow but then decreasing at the highest flows as it becomes depleted and/or vigorous overland flow minimizes contact with watershed surfaces. TSS increased markedly with discharge (power function slope 1.54), reflecting the erosive power of large storms in a landslide-prone landscape. The relations of TSS and most solute concentrations with stream discharge were stable through time, suggesting minimal long-term effects from repeated hurricane disturbance. Nitrate concentration, however, increased about threefold in response to hurricanes then returned to baseline over several years following a pseudo first-order decay pattern. The combined data sets provide insight about important hydrologic pathways, a long-term perspective to assess response to hurricanes, and a framework to evaluate future climate change in tropical ecosystems.
The colpitts oscillator family
DEFF Research Database (Denmark)
Lindberg, Erik; Murali, K.; Tamasevicius, A.
A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...
Coronal Waves and Oscillations
Directory of Open Access Journals (Sweden)
Nakariakov Valery M.
2005-07-01
Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.
Altun, Osman; Botero-Kleiven, Silvia; Carlsson, Sarah; Ullberg, Måns; Özenci, Volkan
2015-11-01
Rapid identification of bacteria from blood cultures enables early initiation of appropriate antibiotic treatment in patients with bloodstream infections (BSI). The objective of the present study was to evaluate the use of matrix-associated laser desorption ionization-time of flight (MALDI-TOF) MS after a short incubation on solid media for rapid identification of bacteria from positive blood culture bottles. MALDI-TOF MS was performed after 2.5 and 5.5 h plate incubation of samples from positive blood cultures. Identification scores with values ≥ 1.7 were accepted as successful identification if the results were confirmed by conventional methods. Conventional methods included MALDI-TOF MS, Vitek 2, and diverse biochemical and agglutination tests after overnight culture. In total, 515 positive blood cultures with monomicrobial bacterial growth representing one blood culture per patient were included in the study. There were 229/515 (44.5%) and 286/515 (55.5%) blood culture bottles with Gram-negative bacteria (GNB) and Gram-positive bacteria (GPB), respectively. MALDI-TOF MS following short-term culture could accurately identify 300/515 (58.3%) isolates at 2.5 h, GNB being identified in greater proportion (180/229; 78.6%) than GPB (120/286; 42.0%). In an additional 124/515 bottles (24.1%), identification was successful at 5.5 h, leading to accurate identification of bacteria from 424/515 (82.3%) blood cultures after short-term culture. Interestingly, 11/24 of the isolated anaerobic bacteria could be identified after 5.5 h. The present study demonstrates, in a large number of clinical samples, that MALDI-TOF MS following short-term culture on solid medium is a reliable and rapid method for identification of bacteria from blood culture bottles with monomicrobial bacterial growth.
Oscillation characteristics of zero-field spin transfer oscillators with field-like torque
Energy Technology Data Exchange (ETDEWEB)
Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn [Key Laboratory of Advanced Transducer and Intelligent Control system, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Zhe-Jie, E-mail: pandanlzj@hotmail.com [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)
2015-05-15
We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.
Oscillation characteristics of zero-field spin transfer oscillators with field-like torque
Directory of Open Access Journals (Sweden)
Yuan-Yuan Guo
2015-05-01
Full Text Available We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.
Nature's Autonomous Oscillators
Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.
2012-01-01
Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.
Scharnagel, R; Kaiser, U; Schütze, A; Heineck, R; Gossrau, G; Sabatowski, R
2013-02-01
Annually published data show a continual increase in the volume of opioid prescriptions in Germany, thus indicating an intensification of opioid therapy. The majority of opioids are prescribed to treat chronic non-cancer-related pain. On the basis of current guidelines, as well as in terms of the lack of data regarding long-term use of opioids and their effectiveness beyond a period of 3 months, this development must be viewed critically. With reference to four case reports, we discuss and evaluate opioid therapy in relation to medication misuse and the development of drug dependency. Particular emphasis is placed on the administration of rapid-release and short-acting opioid preparations, which we consider to be particularly problematic.
Oscillation theory for second order dynamic equations
Agarwal, Ravi P; O''Regan, Donal
2003-01-01
The qualitative theory of dynamic equations is a rapidly developing area of research. In the last 50 years, the Oscillation Theory of ordinary, functional, neutral, partial and impulsive differential equations, and their discrete versions, has inspired many scholars. Hundreds of research papers have been published in every major mathematical journal. Many books deal exclusively with the oscillation of solutions of differential equations, but most of these books appeal only to researchers who already know the subject. In an effort to bring Oscillation Theory to a new and broader audience, the authors present a compact, but thorough, understanding of Oscillation Theory for second order differential equations. They include several examples throughout the text not only to illustrate the theory, but also to provide new direction.
A memristor-based third-order oscillator: beyond oscillation
Talukdar, A.; Radwan, A. G.; Salama, K. N.
2011-09-01
This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.
A memristor-based third-order oscillator: beyond oscillation
Talukdar, Abdul Hafiz Ibne
2012-10-06
This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.
Relativistic quantum mechanics of a Dirac oscillator
Martines y Romero, R P; Salas-Brito, A L
1995-01-01
The Dirac oscillator is an exactly soluble model recently introduced in the context of many particle models in relativistic quantum mechanics. The model has been also considered as an interaction term for modelling quark confinement in quantum chromodynamics. These considerations should be enough for demonstrating that the Dirac oscillator can be an excellent example in relativistic quantum mechanics. In this paper we offer a solution to the problem and discuss some of its properties. We also discuss a physical picture for the Dirac oscillator's non-standard interaction, showing how it arises on describing the behaviour of a neutral particle carrying an anomalous magnetic moment and moving inside a uniformly charged sphere. (author)
Nishi, Nobuo; Yoshizawa, Takeshi; Okuda, Nagako
2017-10-01
The National Health and Nutrition Survey, Japan, has annually monitored two indicators of physical activity in adults. They are contrasting in the association with age; the prevalence of exercise habit is lower and step counts are higher among younger participants. The present study aimed to examine the effects of rapid aging of the Japanese population and the lower participation rate among younger adults on the short-term trend of two indicators of physical activity using tabulated data. The prevalence of exercise habit and step counts by age groups (≥20 years) from 2003 to 2010 were estimated using tabulated data from the National Health and Nutrition Survey by calculating sex-specific means weighted by age-specific Japanese population data for each year (population-weighted estimates) and for a fixed year (2005; age-standardized estimates). Linear regression analyses were used to test the statistical significance of their trends. Statistically significant increasing trends in the prevalence of exercise habit were observed for the crude means (P = 0.029), the population-weighted estimates (P = 0.007) and the age-standardized estimates (P = 0.016) only in men. Statistically significant decreasing trends in the step counts were observed for the crude means (P = 0.006 in men and P = 0.033 in women) and the population-weighted estimates (P = 0.008 in men and P = 0.049 in women) both in men and women, but for the age-standardized estimates (P = 0.039) only in men. The effects of rapid aging of the Japanese population and the lower participation rate among younger adults on the short-term trend are not small, and age-standardization is necessary to observe even the short-term trend of physical activity data. Geriatr Gerontol Int 2017; 17: 1677-1682. © 2017 Japan Geriatrics Society.
Dynamics-Enabled Nanoelectromechanical Systems (NEMS) Oscillators
2014-06-01
AFRL-RY-WP-TR-2014-0144 DYNAMICS-ENABLED NANOELECTROMECHANICAL SYSTEMS ( NEMS ) OSCILLATORS Michael Roukes California Institute...SYSTEMS ( NEMS ) OSCILLATORS 5a. CONTRACT NUMBER FA8650-10-1-7029 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61101E 6. AUTHOR(S) Michael Roukes...engineer, and demonstrate nonlinear-dynamics-enabled nanoelectromechanical system ( NEMS ) frequency-source technology. 15. SUBJECT TERMS
Pseudoclassical description of the Dirac Oscillator
Delsolmesa, Antonio; Martinezyromero, R. P.
1995-01-01
In this paper we discuss the Dirac Oscillator wave equation in terms of pseudoclassical language, using Grassmann variables to describe the internal degrees of freedom of the oscillator. Regarding the original wave equation as a classical constraint, we use the theory of constrained systems, to develop a reparameterization invariant lagrangian, which is the pseudoclassical equivalent of the quantum case. The consistency of the Hamiltonian formalism and the quantization procedure are also analyzed.
Bakuradze, Tamara; Lang, Roman; Hofmann, Thomas; Schipp, Dorothea; Galan, Jens; Eisenbrand, Gerhard; Richling, Elke
2016-03-01
Intervention studies provide evidence that long-term coffee consumption correlates with reduced DNA background damage in healthy volunteers. Here, we report on short-term kinetics of this effect, showing a rapid onset after normal coffee intake. In a short-term human intervention study, we determined the effects of coffee intake on DNA integrity during 8 h. Healthy male subjects ingested coffee in 200 mL aliquots every second hour up to a total volume of 800 mL. Blood samples were taken at baseline, immediately before the first coffee intake and subsequently every 2 h, prior to the respective coffee intake. DNA integrity was assayed by the comet assay. The results show a significant (p coffee intake. Continued coffee intake was associated with further decrements in background DNA damage within the 8 h intervention (p coffee consumption). Repeated coffee consumption was associated with reduced background DNA strand breakage, clearly measurable as early as 2 h after first intake resulting in a cumulative overall reduction by about one-third of the baseline value. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stabilization of a linear nanomechanical oscillator to its thermodynamic limit
National Research Council Canada - National Science Library
Gavartin, Emanuel; Verlot, Pierre; Kippenberg, Tobias J
2013-01-01
The rapid development of micro- and nanomechanical oscillators in the past decade has led to the emergence of novel devices and sensors that are opening new frontiers in both applied and fundamental science...
Yenuganti, Vengala Rao; Vanselow, Jens
2017-05-01
Cell culture models are essential for the detailed study of molecular processes. We analyze the dynamics of changes in a culture model of bovine granulosa cells. The cells were cultured for up to 8 days and analyzed for steroid production and gene expression. According to the expression of the marker genes CDH1, CDH2 and VIM, the cells maintained their mesenchymal character throughout the time of culture. In contrast, the levels of functionally important transcripts and of estradiol and progesterone production were rapidly down-regulated but showed a substantial up-regulation from day 4. FOXL2, a marker for granulosa cell identity, was also rapidly down-regulated after plating but completely recovered towards the end of culture. In contrast, expression of the Sertoli cell marker SOX9 and the lesion/inflammation marker PTGS2 increased during the first 2 days after plating but gradually decreased later on. We conclude that only long-term culture conditions (>4 days) allow the cells to recover from plating stress and to re-acquire characteristic granulosa cell features.
Curtoni, Antonio; Cipriani, Raffaella; Marra, Elisa Simona; Barbui, Anna Maria; Cavallo, Rossana; Costa, Cristina
2017-01-01
Matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a useful tool for rapid identification of microorganisms. Unfortunately, its direct application to positive blood culture is still lacking standardized procedures. In this study, we evaluated an easy- and rapid-to-perform protocol for MALDI-TOF MS direct identification of microorganisms from positive blood culture after a short-term incubation on solid medium. This protocol was used to evaluate direct identification of microorganisms from 162 positive monomicrobial blood cultures; at different incubation times (3, 5, 24 h), MALDI-TOF MS assay was performed from the growing microorganism patina. Overall, MALDI-TOF MS concordance with conventional methods at species level was 60.5, 80.2, and 93.8% at 3, 5, and 24 h, respectively. Considering only bacteria, the identification performances at species level were 64.1, 85.0, and 94.1% at 3, 5, and 24 h, respectively. This protocol applied to a commercially available MS typing system may represent, a fast and powerful diagnostic tool for pathogen direct identification and for a promptly and pathogen-driven antimicrobial therapy in selected cases.
The Oscillator Principle of Nature
DEFF Research Database (Denmark)
Lindberg, Erik
2012-01-01
Oscillators are found on all levels in Nature. The general oscillator concept is defined and investigated. Oscillators may synchronize into fractal patterns. Apparently oscillators are the basic principle in Nature. The concepts of zero and infinite are discussed. Electronic manmade oscillators...
Cubication of conservative nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Belendez, Augusto; Alvarez, Mariela L [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, Elena; Pascual, Inmaculada [Departamento de Optica, FarmacologIa y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es
2009-09-15
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.
DEFF Research Database (Denmark)
Hjorth, Poul G.
2008-01-01
We discuss nonlinear mechanical systems containing several oscillators whose frequecies are all much higher than frequencies associated with the remaining degrees of freedom. In this situation a near constant of the motion, an adiabatic invariant, exists which is the sum of all the oscillator...
Hyperchaotic Oscillator with Gyrators
DEFF Research Database (Denmark)
Tamasevicius, A; Cenys, A; Mykolaitis, G.
1997-01-01
A fourth-order hyperchaotic oscillator is described. It contains a negative impedance converter, two gyratots, two capacitors and a diode. The dynamics of the oscillator is shown to be characterised by two positive Lyapunov exponents. The performance of the circuit is investigated by means...
Weger, J.G.; Water, van de W.; Molenaar, J.
2000-01-01
An impact oscillator is a periodically driven system that hits a wall when its amplitude exceeds a critical value. We study impact oscillations where collisions with the wall are with near-zero velocity (grazing impacts). A characteristic feature of grazing impact dynamics is a geometrically
Synchronization of hyperchaotic oscillators
DEFF Research Database (Denmark)
Tamasevicius, A.; Cenys, A.; Mykolaitis, G.
1997-01-01
Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....
Prediction of resonant oscillation
DEFF Research Database (Denmark)
2010-01-01
oscillations and compare the measured oscillations using FFT analysis of signal correlations, variance analysis of signals and other comparisons. As an example, the presence of a growing peak around a frequency that doubles the roll natural frequency indicates the possibility that parametric roll is going...
An analytical formulation for phase noise in MEMS oscillators.
Agrawal, Deepak; Seshia, Ashwin
2014-12-01
In recent years, there has been much interest in the design of low-noise MEMS oscillators. This paper presents a new analytical formulation for noise in a MEMS oscillator encompassing essential resonator and amplifier nonlinearities. The analytical expression for oscillator noise is derived by solving a second-order nonlinear stochastic differential equation. This approach is applied to noise modeling of an electrostatically addressed MEMS resonator-based square-wave oscillator in which the resonator and oscillator circuit nonlinearities are integrated into a single modeling framework. By considering the resulting amplitude and phase relations, we derive additional noise terms resulting from resonator nonlinearities. The phase diffusion of an oscillator is studied and the phase diffusion coefficient is proposed as a metric for noise optimization. The proposed nonlinear phase noise model provides analytical insight into the underlying physics and a pathway toward the design optimization for low-noise MEMS oscillators.
Directory of Open Access Journals (Sweden)
Hadar Shahar-Gold
Full Text Available Mammalian social organizations require the ability to recognize and remember individual conspecifics. This social recognition memory (SRM can be examined in rodents using their innate tendency to investigate novel conspecifics more persistently than familiar ones. Here we used the SRM paradigm to examine the influence of housing conditions on the social memory of adult rats. We found that acute social isolation caused within few days a significant impairment in acquisition of short-term SRM of male and female rats. Moreover, SRM consolidation into long-term memory was blocked following only one day of social isolation. Both impairments were reversible, but with different time courses. Furthermore, only the impairment in SRM consolidation was reversed by systemic administration of arginine-vasopressin (AVP. In contrast to SRM, object recognition memory was not affected by social isolation. We conclude that acute social isolation rapidly induces reversible changes in the brain neuronal and molecular mechanisms underlying SRM, which hamper its acquisition and completely block its consolidation. These changes occur via distinct, AVP sensitive and insensitive mechanisms. Thus, acute social isolation of rats swiftly causes changes in their brain and interferes with their normal social behavior.
Zandi, Mohammad; Miresmaeili, Amirfarhang; Heidari, Ali
2014-10-01
To evaluate and compare the short-term (post-retention) skeletal and dental changes following bone-borne and tooth-borne surgically assisted rapid maxillary expansion (SARME) using cone beam computed tomography (CBCT). In this randomized clinical study, 30 patients with transverse maxillary deficiency underwent either tooth-borne (n = 15) or bone-borne (n = 15) SARME. Before treatment and immediately after the consolidation period, CBCT was obtained and the nasal floor width, interdental root distance, palatal bone width and interdental cusp distance were measured at first premolar and first molar regions of maxilla. Twenty eight patients completed the study protocol. In both tooth-borne (n = 13) and bone-borne (n = 15) groups the highest degree of expansion occurred in the dental arch, followed by palatal bone, and nasal floor (V-shaped widening in coronal dimension). The amount and pattern of expansion was comparable between anterior and posterior maxillary regions in each group (parallel posteroanterior expansion) and between the two groups. Dental and skeletal effects of tooth-borne and bone-borne devices were comparable. The overall complication rate was negligible. Selection of an expansion device should be based on each individual patient's requirements. Future long-term clinical trial studies to evaluate the stability and relapse of these two techniques are recommended. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Generalized decomposition methods for singular oscillators
Energy Technology Data Exchange (ETDEWEB)
Ramos, J.I. [Room I-320-D, E. T. S. Ingenieros Industriales, Universidad de Malaga, Plaza El Ejido, s/n 29013 Malaga (Spain)], E-mail: jirs@lcc.uma.es
2009-10-30
Generalized decomposition methods based on a Volterra integral equation, the introduction of an ordering parameter and a power series expansion of the solution in terms of the ordering parameter are developed and used to determine the solution and the frequency of oscillation of a singular, nonlinear oscillator with an odd nonlinearity. It is shown that these techniques provide solutions which are free from secularities if the unknown frequency of oscillation is also expanded in power series of the ordering parameter, require that the nonlinearities be analytic functions of their arguments, and, at leading-order, provide the same frequency of oscillation as two-level iterative techniques, the homotopy perturbation method if the constants that appear in the governing equation are expanded in power series of the ordering parameter, and modified artificial parameter - Linstedt-Poincare procedures.
Another look at synchronized neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Akhmedov, Evgeny, E-mail: akhmedov@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Mirizzi, Alessandro, E-mail: alessandro.mirizzi@ba.infn.it [Dipartimento Interateneo di Fisica “Michelangelo Merlin”, Via Amendola 173, 70126 Bari (Italy); Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Amendola 173, 70126 Bari (Italy)
2016-07-15
In dense neutrino backgrounds present in supernovae and in the early Universe neutrino oscillations may exhibit complex collective phenomena, such as synchronized oscillations, bipolar oscillations and spectral splits and swaps. We consider in detail possible decoherence effects on the simplest of these phenomena – synchronized neutrino oscillations that can occur in a uniform and isotropic neutrino gas. We develop an exact formalism of spectral moments of the flavour spin vectors describing such a system and then apply it to find analytical approaches that allow one to study decoherence effects on its late-time evolution. This turns out to be possible in part due to the existence of the (previously unknown) exact conservation law satisfied by the quantities describing the considered neutrino system. Interpretation of the decoherence effects in terms of neutrino wave packet separation is also given, both in the adiabatic and non-adiabatic regimes of neutrino flavour evolution.
On the κ-Dirac oscillator revisited
Energy Technology Data Exchange (ETDEWEB)
Andrade, F.M., E-mail: fmandrade@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa, PR (Brazil); Silva, E.O., E-mail: edilbertoos@pq.cnpq.br [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís, MA (Brazil); Ferreira, M.M., E-mail: manojr.ufma@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís, MA (Brazil); Rodrigues, E.C., E-mail: ednilson.fisica@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís, MA (Brazil)
2014-04-04
This Letter is based on the κ-Dirac equation, derived from the κ-Poincaré–Hopf algebra. It is shown that the κ-Dirac equation preserves parity while breaks charge conjugation and time reversal symmetries. Introducing the Dirac oscillator prescription, p→p−imωβr, in the κ-Dirac equation, one obtains the κ-Dirac oscillator. Using a decomposition in terms of spin angular functions, one achieves the deformed radial equations, with the associated deformed energy eigenvalues and eigenfunctions. The deformation parameter breaks the infinite degeneracy of the Dirac oscillator. In the case where ε=0, one recovers the energy eigenvalues and eigenfunctions of the Dirac oscillator.
Sustained oscillations for density dependent Markov processes.
Baxendale, Peter H; Greenwood, Priscilla E
2011-09-01
Simulations of models of epidemics, biochemical systems, and other bio-systems show that when deterministic models yield damped oscillations, stochastic counterparts show sustained oscillations at an amplitude well above the expected noise level. A characterization of damped oscillations in terms of the local linear structure of the associated dynamics is well known, but in general there remains the problem of identifying the stochastic process which is observed in stochastic simulations. Here we show that in a general limiting sense the stochastic path describes a circular motion modulated by a slowly varying Ornstein-Uhlenbeck process. Numerical examples are shown for the Volterra predator-prey model, Sel'kov's model for glycolysis, and a damped linear oscillator. © Springer-Verlag 2010
Slow oscillations orchestrating fast oscillations and memory consolidation.
Mölle, Matthias; Born, Jan
2011-01-01
Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.
Lenters, J. D.; Read, J. S.; Sharma, S.; O'Reilly, C.; Hampton, S. E.; Gray, D.; McIntyre, P. B.; Hook, S. J.; Schneider, P.; Soylu, M. E.; Barabás, N.; Lofton, D. D.
2014-12-01
Global and regional changes in climate have important implications for terrestrial and aquatic ecosystems. Recent studies, for example, have revealed significant warming of inland water bodies throughout the world. To better understand the global patterns, physical mechanisms, and ecological implications of lake warming, an initiative known as the "Global Lake Temperature Collaboration" (GLTC) was started in 2010, with the objective of compiling and analyzing lake temperature data from numerous satellite and in situ records dating back at least 20-30 years. The GLTC project has now assembled data from over 300 lakes, with some in situ records extending back more than 100 years. Here, we present an analysis of the long-term warming trends, interdecadal variability, and a direct comparison between in situ and remotely sensed lake surface temperature for the 3-month summer period July-September (January-March for some lakes). The overall results show consistent, long-term trends of increasing summer-mean lake surface temperature across most but not all sites. Lakes with especially long records show accelerated warming in the most recent two to three decades, with almost half of the lakes warming at rates in excess of 0.5 °C per decade during the period 1985-2009, and a few even exceeding 1.0 °C per decade. Both satellite and in situ data show a similar distribution of warming trends, and a direct comparison at lake sites that have both types of data reveals a close correspondence in mean summer water temperature, interannual variability, and long-term trends. Finally, we examine standardized lake surface temperature anomalies across the full 100-year period (1910-2009), and in conjunction with similar timeseries of air temperature. The results reveal a close correspondence between summer air temperature and lake surface temperature on interannual and interdecadal timescales, but with many lakes warming more rapidly than the ambient air temperature over 25- to 100
Long term oscillations in Danish rainfall extremes
DEFF Research Database (Denmark)
Gregersen, Ida Bülow; Madsen, Henrik; Rosbjerg, Dan
The frequent flooding of European cities within the last decade has motivated a vast number of studies, among others addressing the non-stationary behaviour of hydrological extremes driven by anthropogenic climate change. However, when considering future extremes it also becomes relevant to search...... for and understand natural variations on which the anthropogenic changes are imposed. This study identifies multi-decadal variations in six 137-years-long diurnal rainfall series from Denmark and southern Sweden, focusing on extremes with a reoccurrence level relevant for Danish drainage design. By means of a Peak...
2013-06-17
these radiation-induced oscillations do overlap the more-rapidly- varying-with-B Shubnikov–de Haas ( SdH ) oscillations; see also Refs. 17, 21, and 22. A... SdH Oscillations RIMRO FIG. 2. (Color online) Microwave (f < 300 GHz) and terahertz (f 300 GHz) radiation-induced magnetoresistance oscillations in...Shubnikov–de Haas ( SdH ) oscillations. A subset of oscillations of each type are marked on the figure. The solid vertical lines below 0.1 T marks the
Lowery, Rebecca L; Zhang, Yu; Kelly, Emily A; Lamantia, Cassandra E; Harvey, Brandon K; Majewska, Ania K
2009-09-01
Chronic in vivo imaging studies of the brain require a labeling method that is fast, long-lasting, efficient, nontoxic, and cell-type specific. Over the last decade, adeno-associated virus (AAV) has been used to stably express fluorescent proteins in neurons in vivo. However, AAV's main limitation for many studies (such as those of neuronal development) is the necessity of second-strand DNA synthesis, which delays peak transgene expression. The development of double-stranded AAV (dsAAV) vectors has overcome this limitation, allowing rapid transgene expression. Here, we have injected different serotypes (1, 2, 6, 7, 8, and 9) of a dsAAV vector carrying the green fluorescent protein (GFP) gene into the developing and adult mouse visual cortex and characterized its expression. We observed labeling of both neurons and astrocytes with serotype-specific tropism. dsAAV-GFP labeling showed high levels of neuronal GFP expression as early as 2 days postinjection and as long as a month, surpassing conventional AAV's onset of expression and matching its longevity. Neurons labeled with dsAAV-GFP appeared structurally and electrophysiologically identical to nonlabeled neurons, suggesting that dsAAV-GFP is neither cytotoxic nor alters normal neuronal function. We also demonstrated that dsAAV-labeled cells can be imaged with subcellular resolution in vivo over multiple days. We conclude that dsAAV is an excellent vector for rapid labeling and long-term in vivo imaging studies of astrocytes and neurons on the single cell level within the developing and adult visual cortex.
Directory of Open Access Journals (Sweden)
Kristina S Sobotka
Full Text Available A sustained inflation (SI rapidly restores cardiac function in asphyxic, bradycardic newborns but its effects on cerebral haemodynamics and brain injury are unknown. We determined the effect of different SI strategies on carotid blood flow (CaBF and cerebral vascular integrity in asphyxiated near-term lambs.Lambs were instrumented and delivered at 139 ± 2 d gestation and asphyxia was induced by delaying ventilation onset. Lambs were randomised to receive 5 consecutive 3 s SI (multiple SI; n = 6, a single 30 s SI (single SI; n = 6 or conventional ventilation (no SI; n = 6. Ventilation continued for 30 min in all lambs while CaBF and respiratory function parameters were recorded. Brains were assessed for gross histopathology and vascular leakage.CaBF increased more rapidly and to a greater extent during a single SI (p = 0.01, which then decreased below both other groups by 10 min, due to a higher cerebral oxygen delivery (p = 0.01. Blood brain barrier disruption was increased in single SI lambs as indicated by increased numbers of blood vessel profiles with plasma protein extravasation (p = 0.001 in the cerebral cortex. There were no differences in CaBF or cerebral oxygen delivery between the multiple SI and no SI lambs.Ventilation with an initial single 30 s SI improves circulatory recovery, but is associated with greater disruption of blood brain barrier function, which may exacerbate brain injury suffered by asphyxiated newborns. This injury may occur as a direct result of the initial SI or to the higher tidal volumes delivered during subsequent ventilation.
Sellin, Arne; Niglas, Aigar; Õunapuu-Pikas, Eele; Kupper, Priit
2014-03-24
Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought. The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P < 0.05) and leaf temperature lower in trees grown in elevated air humidity (H treatment) than in control trees (C treatment). Under severe water deficit (ΨL<-1.55 MPa), the treatments showed no difference. The humidification manipulation influenced most of the studied characteristics, while the effect was to a great extent realized through changes in soil water availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P < 0.05) sensitivity to water deficit in trees grown under increased air humidity. The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic
Kayser, Boris
2014-04-10
To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.
Oscillation of large air bubble cloud
Energy Technology Data Exchange (ETDEWEB)
Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)
2001-07-01
The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)
Classical oscillator driven by an oscillating chirped force
Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.
2006-01-01
The motion of a classical (harmonic) oscillator is studied in the case where the oscillator is driven by a pulsed oscillating force with a frequency varying in time (frequency chirp). The amplitude and phase of the oscillations left after the pulsed force in dependence on the profile and strength of
Pair creation and plasma oscillations.
Energy Technology Data Exchange (ETDEWEB)
Prozorkevich, A. V.; Vinnik, D. V.; Schmidt, S. M.; Hecht, M. B.; Roberts, C. D.
2000-12-15
We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses.
Making space for harmonic oscillators
Energy Technology Data Exchange (ETDEWEB)
Michelotti, Leo; /Fermilab
2004-11-01
If we restrict the number of harmonic oscillator energy eigenstates to some finite value, N, then the discrete spectrum of the corresponding position operator comprise the roots of the Hermite polynomial H{sub N+1}. Its range is just large enough to accommodate classical motion at high energy. A negative energy term must be added to the Hamiltonian which affects only the last eigenstate, |N>, suggesting it is concentrated at the extrema of this finite ''space''. Calculations support a conjecture that, in the limit of large N, the global distribution of points approaches the differential form for classical action.
High frequency nanotube oscillator
Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX
2012-02-21
A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.
Neutrino anomalies without oscillations
Indian Academy of Sciences (India)
conventional' neutrino oscillations induced by mass-mixing. Several of these require non-zero neutrino masses as well. Author Affiliations. Sandip Pakvasa1. Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA ...
Neural Oscillators Programming Simplified
Directory of Open Access Journals (Sweden)
Patrick McDowell
2012-01-01
Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.
Liu, Yongjun; Mao, Lin; He, Xinhua; Cheng, Gang; Ma, Xiaojun; An, Lizhe; Feng, Huyuan
2012-01-01
Plastic film mulching (PFM) is a widely used agricultural practice in the temperate semi-arid Loess Plateau of China. However, how beneficial soil microbes, arbuscular mycorrhizal (AM) fungi in particular, respond to the PFM practice is not known. Here, a field experiment was performed to study the effects of a 3-month short-term PFM practice on AM fungi in plots planted with spring wheat (Triticum aestivum L. cv. Dingxi-2) in the Loess Plateau. AM colonization, spore density, wheat spike weight, and grain phosphorus (P) content were significantly increased in the PFM treatments, and these changes were mainly attributable to changes in soil properties such as available P and soil moisture. Alkaline phosphatase activity was significantly higher in PFM soils, but levels of AM fungal-related glomalin were similar between treatments. A total of nine AM fungal phylotypes were detected in root samples based on AM fungal SSU rDNA analyses, with six and five phylotypes in PFM and no-PFM plots, respectively. Although AM fungal phylotype richness was not statistically different between treatments, the community compositions were different, with four and three specific phylotypes in the PFM and no-PFM plots, respectively. A significant and rapid change in AM fungal, wheat, and soil variables following PFM suggested that the functioning of the AM symbiosis had been changed in the wheat field under PFM. Future studies are needed to investigate whether PFM applied over a longer term has a similar effect on the AM fungal community and their functioning in an agricultural ecosystem.
solar neutrino oscillation phenomenology
Indian Academy of Sciences (India)
The sMA region and a large part of the vacuum oscillation region are seen to have been washed away with the inclusion of the sK spectrum data. In the left panel of figure 4 we show the dependence of the probabilities on energy. In the sMA and the VO oscillation regions the probability has a non- monotonic dependence ...
Directory of Open Access Journals (Sweden)
Lu Xu
2015-01-01
Full Text Available Long-term storage can largely degrade the taste and quality of dried shiitake mushroom (Lentinula edodes. This paper aimed at developing a rapid method for discrimination of the regular and aged shiitake by near infrared (NIR spectroscopic analysis and chemometrics. Regular (n=197 and aged (n=133 samples of shiitake were collected from six main producing areas in two successive years (2013 and 2014. NIR reflectance spectra (4000–12000 cm−1 were measured with finely ground powders. Different data preprocessing method including smoothing, taking second-order derivatives (D2, and standard normal variate (SNV were investigated to reduce the unwanted spectral variations. Partial least squares discriminant analysis (PLSDA and least squares support vector machine (LS-SVM were used to develop classification models. The results indicate that SNV and D2 can largely enhance the classification accuracy. The best sensitivity, specificity, and accuracy of classification were 0.967, 0.953, and 0.961 obtained by SNV-LS-SVM and 0.933, 0.930, and 0.932 obtained by SNV-PLSDA, respectively. Moreover, the low model complexity and the high accuracy in predicting objects produced in different years demonstrate that the classification models had a good generalization performance.
Jenkins, Alejandro
2011-01-01
Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain linear systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy from the environment into the vibration: no external rate needs to be tuned to the resonant frequency. A paper from 1830 by G. B. Airy gives us the opening to introduce self-oscillation as a sort of "perpetual motion" responsible for the human voice. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the more recent swaying of the London Millenium Footbridge. Clocks are self-oscillators, as are bowed and wind musical instruments, and the heartbeat. We review the criterion that determines whether an arbitrary line...
Directory of Open Access Journals (Sweden)
Kafui Dzirasa
Full Text Available Long-term changes in dopaminergic signaling are thought to underlie the pathophysiology of a number of psychiatric disorders. Several conditions are associated with cognitive deficits such as disturbances in attention processes and learning and memory, suggesting that persistent changes in dopaminergic signaling may alter neural mechanisms underlying these processes. Dopamine transporter knockout (DAT-KO mice exhibit a persistent five-fold increase in extracellular dopamine levels. Here, we demonstrate that DAT-KO mice display lower hippocampal theta oscillation frequencies during baseline periods of waking and rapid-eye movement sleep. These altered theta oscillations are not reversed via treatment with the antidopaminergic agent haloperidol. Thus, we propose that persistent hyperdopaminergia, together with secondary alterations in other neuromodulatory systems, results in lower frequency activity in neural systems responsible for various cognitive processes.
Analytical Solutions to Non-linear Mechanical Oscillation Problems
DEFF Research Database (Denmark)
Kaliji, H. D.; Ghadimi, M.; Barari, Amin
2011-01-01
In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated...... problems as indicated in the following cases....
Variable order variable stepsize algorithm for solving nonlinear Duffing oscillator
Fadly Nurullah Rasedee, Ahmad; Ishak, Norizarina; Raihana Hamzah, Siti; Ijam, Hazizah Mohd; Suleiman, Mohamed; Bibi Ibrahim, Zarina; Sathar, Mohammad Hasan Abdul; Ainna Ramli, Nur; Shuhada Kamaruddin, Nur
2017-09-01
Nonlinear phenomena in science and engineering such as a periodically forced oscillator with nonlinear elasticity are often modeled by the Duffing oscillator (Duffing equation). The Duffling oscillator is a type of nonlinear higher order differential equation. In this research, a numerical approximation for solving the Duffing oscillator directly is introduced using a variable order stepsize (VOS) algorithm coupled with a backward difference formulation. By selecting the appropriate restrictions, the VOS algorithm provides a cost efficient computational code without affecting its accuracy. Numerical results have demonstrated the advantages of a variable order stepsize algorithm over conventional methods in terms of total steps and accuracy.
Doppler Shift Oscillations from a Hot Line Observed by IRIS
Li, D.; Ning, Z. J.; Huang, Y.; Chen, N.-H.; Zhang, Q. M.; Su, Y. N.; Su, W.
2017-11-01
We present a detailed investigation of the Doppler shift oscillations in a hot loop during an M7.1 flare on 2014 October 27 observed by the Interface Region Imaging Spectrograph. The periodic oscillations are observed in the Doppler shift of Fe xxi 1354.09 Å (log T˜ 7.05), and the dominant period is about 3.1 minutes. However, such 3.1 minute oscillations are not found in the line-integrated intensity of Fe xxi 1354.09 Å, AIA EUV fluxes, or microwave emissions. Solar Dynamics Observatory/AIA and Hinode/XRT imaging observations indicate that the Doppler shift oscillations locate at the hot loop-top region (≥11 MK). Moreover, the differential emission measure results show that the temperature is increasing rapidly when the Doppler shift oscillates, but the number density does not exhibit the corresponding increases nor oscillations, implying that the flare loop is likely to oscillate in an incompressible mode. All of these facts suggest that the Doppler shift oscillations at the shorter period are most likely the standing kink oscillations in a flare loop. Meanwhile, a longer period of about 10 minutes is identified in the time series of Doppler shift and line-integrated intensity, GOES SXR fluxes, and AIA EUV light curves, indicating the periodic energy release in this flare, which may be caused by a slow mode wave.
van Gils, Marit J; Bunnik, Evelien M; Burger, Judith A; Jacob, Yodit; Schweighardt, Becky; Wrin, Terri; Schuitemaker, Hanneke
2010-04-01
A substantial proportion of human immunodeficiency virus type 1 (HIV-1)-infected individuals has cross-reactive neutralizing activity in serum, with a similar prevalence in progressors and long-term nonprogressors (LTNP). We studied whether disease progression in the face of cross-reactive neutralizing serum activity is due to fading neutralizing humoral immunity over time or to viral escape. In three LTNP and three progressors, high-titer cross-reactive HIV-1-specific neutralizing activity in serum against a multiclade pseudovirus panel was preserved during the entire clinical course of infection, even after AIDS diagnosis in progressors. However, while early HIV-1 variants from all six individuals could be neutralized by autologous serum, the autologous neutralizing activity declined during chronic infection. This could be attributed to viral escape and the apparent inability of the host to elicit neutralizing antibodies to the newly emerging viral escape variants. Escape from autologous neutralizing activity was not associated with a reduction in the viral replication rate in vitro. Escape from autologous serum with cross-reactive neutralizing activity coincided with an increase in the length of the variable loops and in the number of potential N-linked glycosylation sites in the viral envelope. Positive selection pressure was observed in the variable regions in envelope, suggesting that, at least in these individuals, these regions are targeted by humoral immunity with cross-reactive potential. Our results may imply that the ability of HIV-1 to rapidly escape cross-reactive autologous neutralizing antibody responses without the loss of viral fitness is the underlying explanation for the absent effect of potent cross-reactive neutralizing humoral immunity on the clinical course of infection.
Armoiry, Xavier; Sturt, Jackie; Phelps, Emma Elizabeth; Walker, Clare-Louise; Court, Rachel; Taggart, Frances; Sutcliffe, Paul; Griffiths, Frances; Atherton, Helen
2018-01-05
The communication relationship between parents of children or young people with health conditions and health professionals is an important part of treatment, but it is unclear how far the use of digital clinical communication tools may affect this relationship. The objective of our study was to describe, assess the feasibility of, and explore the impact of digital clinical communication between families or caregivers and health professionals. We searched the literature using 5 electronic databases. We considered all types of study design published in the English language from January 2009 to August 2015. The population of interest included families and caregivers of children and young people aged less than 26 years with any type of health condition. The intervention was any technology permitting 2-way communication. We included 31 articles. The main designs were randomized controlled trials (RCTs; n=10), cross-sectional studies (n=9), pre- and postintervention uncontrolled (pre/post) studies (n=7), and qualitative interview studies (n=2); 6 had mixed-methods designs. In the majority of cases, we considered the quality rating to be fair. Many different types of health condition were represented. A breadth of digital communication tools were included: videoconferencing or videoconsultation (n=14), and Web messaging or emails (n=12). Health care professionals were mainly therapists or cognitive behavioral therapists (n=10), physicians (n=8), and nurses (n=6). Studies were very heterogeneous in terms of outcomes. Interventions were mainly evaluated using satisfaction or acceptance, or outcomes relating to feasibility. Clinical outcomes were rarely used. The RCTs showed that digital clinical communication had no impact in comparison with standard care. Uncontrolled pre/post studies showed good rates of satisfaction or acceptance. Some economic studies suggested that digital clinical communication may save costs. This rapid review showed an emerging body of literature on
Optical, UV, and EUV Oscillations of SS Cygni in Outburst
Mauche, Christopher W.
2004-07-01
I provide a review of observations in the optical, UV (HST), and EUV (EUVE and Chandra LETG) of the rapid periodic oscillations of nonmagnetic, disk-accreting, high mass-accretion rate cataclysmic variables (CVs), with particular emphasis on the dwarf nova SS Cyg in outburst. In addition, I drawn attention to a correlation, valid over nearly six orders of magnitude in frequency, between the frequencies of the quasi-periodic oscillations (QPOs) of white dwarf, neutron star, and black hole binaries. This correlation identifies the high frequency quasi-coherent oscillations (so-called ``dwarf nova oscillations'') of CVs with the kilohertz QPOs of low mass X-ray binaries (LMXBs), and the low frequency and low coherence QPOs of CVs with the horizontal branch oscillations (or the broad noise component identified as such) of LMXBs. Assuming that the same mechanisms produce the QPOs of white dwarf, neutron star, and black hole binaries, this correlation has important implications for QPO models.
Energy Technology Data Exchange (ETDEWEB)
Hoeye, Gudrun Kristine
1999-07-01
We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)
Hagedorn, Peter
1982-01-01
Thoroughly revised and updated, the second edition of this concise text provides an engineer's view of non-linear oscillations, explaining the most important phenomena and solution methods. Non-linear descriptions are important because under certain conditions there occur large deviations from the behaviors predicted by linear differential equations. In some cases, completely new phenomena arise that are not possible in purely linear systems. The theory of non-linear oscillations thus has important applications in classical mechanics, electronics, communications, biology, and many other branches of science. In addition to many other changes, this edition has a new section on bifurcation theory, including Hopf's theorem.
Brownian parametric oscillators
Zerbe, Christine; Jung, Peter; Hänggi, Peter
1994-05-01
We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).
Friedel oscillations in graphene
DEFF Research Database (Denmark)
Lawlor, J. A.; Power, S. R.; Ferreira, M.S.
2013-01-01
Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...
Synchronization of Time-Continuous Chaotic Oscillators
DEFF Research Database (Denmark)
Yanchuk, S.; Maistrenko, Yuri; Mosekilde, Erik
2003-01-01
Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded...... in the fully synchronized state lose their transverse stability, and the appearance of globally and locally riddled basins of attraction is discussed, respectively, in terms of the subcritical, supercritical nature of the riddling bifurcations. We show how the introduction of a small parameter mismatch between...... the interacting chaotic oscillators causes a shift of the synchronization manifold. The presence of a coupling asymmetry is found to lead to further modifications of the destabilization process. Finally, the paper considers the problem of partial synchronization in a system of four coupled Rossler oscillators...
Theoretical Interpretation of Current Neutrino Oscillation Data
Fogli, Gianluigi; Lisi, Eligio
We discuss the theoretical interpretation of neutrino oscillation data in terms of 3v and 4v mixing. Two-neutrino oscillations, often used to describe experimental results in a first approximation, are briefly recalled (Sect. 5.1). The main focus of our review is 3v mixing (Sect. 5.2), which accommodates both the negative results of oscillation searches at reactors (Sect. 5.3) and the evidence for flavor transitions obtained from atmospheric and solar neutrino data (Sects. 5.4 and 5.5). The status and problems of 4v scenarios embedding the additional LSND signal are also discussed (Sect. 5.7). Finally, we outline the impact of the very latest data (Sect. 5.8). Standard electroweak neutrino interactions are assumed in all cases; scenarios with nonstandard dynamics are beyond the scope of this review.
Oscillations in atmospheric water above Switzerland
Hocke, Klemens; Navas-Guzmán, Francisco; Moreira, Lorena; Bernet, Leonie; Mätzler, Christian
2017-10-01
Cloud fraction (CF), integrated liquid water (ILW) and integrated water vapour (IWV) were continuously measured from 2004 to 2016 by the TROpospheric WAter RAdiometer (TROWARA) in Bern, Switzerland. There are indications for interannual variations of CF and ILW. A spectral analysis shows that IWV is dominated by an annual oscillation, leading to an IWV maximum of 24 kg m-2 in July to August and a minimum of 8 kg m-2 in February. The seasonal behaviour of CF and ILW is composed by both the annual and the semiannual oscillation. However, the annual oscillation of CF has a maximum in December while the annual oscillation of ILW has a maximum in July. The semiannual oscillations of CF and ILW are strong from 2010 to 2014. The normalized power spectra of ILW and CF show statistically significant spectral components with periods of 76, 85, 97 and 150 days. We find a similarity between the power spectra of ILW and CF with those of zonal wind at 830 hPa (1.5 km) above Bern. Particularly, the occurrence of higher harmonics in the CF and ILW spectra is possibly forced by the behaviour of the lower-tropospheric wind. The mean amplitude spectra of CF, ILW and IWV show increased short-term variability on timescales less than 40 days from spring to fall. We find a weekly cycle of CF and ILW from June to September with increased values on Saturday, Sunday and Monday.
Jones, R. T.
1976-01-01
For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.
Oscillators and operational amplifiers
DEFF Research Database (Denmark)
Lindberg, Erik
2005-01-01
A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation...
Phenomenology of neutrino oscillations
Kobzarev, I Yu; Okun, Lev Borisovich; Shchepkin, M G
1980-01-01
A complete phenomenological description of neutrino oscillations is given. The most general form of the mass matrix of N types of neutrino and of the matrix of neutrino mixing in the left charged current is analyzed. Measuring the parameters of the charged current matrix in oscillatory experiments and in the experimental studies of the beta -decay electron spectra, is discussed. (20 refs).
Neutrino oscillation experiments
Energy Technology Data Exchange (ETDEWEB)
Camilleri, L. [European Organization for Nuclear Research, Geneva (Switzerland)
1996-11-01
Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.
Proprioceptive evoked gamma oscillations
DEFF Research Database (Denmark)
Arnfred, Sidse M; Hansen, Lars Kai; Parnas, Josef
2007-01-01
to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...
Idelevich, E A; Schüle, I; Grünastel, B; Wüllenweber, J; Peters, G; Becker, K
2014-10-01
Rapid identification of the causative microorganism is important for appropriate antimicrobial therapy of bloodstream infections. Bacteria from positive blood culture (BC) bottles are not readily available for identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Lysis and centrifugation procedures suggested for direct MALDI-TOF MS from positive BCs without previous culture are associated with additional hands-on processing time and costs. Here, we describe an alternative approach applying MALDI-TOF MS from bacterial cultures incubated very briefly on solid medium. After plating of positive BC broth on Columbia blood agar (n = 165), MALDI-TOF MS was performed after 1.5, 2, 3, 4, 5, 6, 7, 8, 12 and (for control) 24 h of incubation until reliable identification to the species level was achieved (score ≥2.0). Mean incubation time needed to achieve species-level identification was 5.9 and 2.0 h for Gram-positive aerobic cocci (GPC, n = 86) and Gram-negative aerobic rods (GNR, n = 42), respectively. Short agar cultures with incubation times ≤2, ≤4, ≤6, ≤8 and ≤12 h yielded species identification in 1.2%, 18.6%, 64.0%, 96.5%, 98.8% of GPC, and in 76.2%, 95.2%, 97.6%, 97.6%, 97.6% of GNR, respectively. Control species identification at 24 h was achieved in 100% of GPC and 97.6% of GNR. Ethanol/formic acid protein extraction performed for an additional 34 GPC isolates cultivated from positive BCs showed further reduction in time to species identification (3.1 h). MALDI-TOF MS using biomass subsequent to very short-term incubation on solid medium allows very early and reliable bacterial identification from positive BCs without additional time and cost expenditure. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
National Research Council Canada - National Science Library
Jiaqi Hou; Mingxiao Li; Xuhui Mao; Yan Hao; Jie Ding; Dongming Liu; Beidou Xi; Hongliang Liu
2017-01-01
.... Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application...
Photonic local oscillator development
Kimberk, Robert; Tong, Edward; Hunter, Todd R.; Christensen, Robert; Blundell, Ray
2006-12-01
In the receiver lab, we have developed a 200 GHz to 230 GHz local oscillator constructed from mostly commercially available 1550 nm laser communication components. Theoretical and experimental work show that the laser adds negligible phase noise to this photonic local oscillator system and that spectral purity and phase stability are similar to Gunn oscillator based local oscillator output. The optical path consists of a single 1550 nm diode laser, a lithium niobate optical phase modulator, a Mach Zehnder interferometer (MZI) with a free spectral range of 75 GHz, and a 160 GHz to 260 GHz photomixer whose output is connected to a horn antenna. All of the optical devices and connections are polarization maintaining, and the photomixer was designed and fabricated at the CCLRC Rutherford Appleton Laboratory. The electrical path consists of a YIG synthesizer, operating in the frequency range 14-20 GHz, a frequency doubler, and a power amplifier connected to the RF port of the phase modulator. At the SMA on Mauna Kea, we incorporated the photonic LO into one element (Antenna 6) of a five antenna array for test observations of CO J=2-1 made towards the ultracompact HII region G138.295+1.555. Spectral features of comparable width occur on baselines with and without antenna 6, and noise increases with baseline length independent of antenna number. Continuum observations were also made toward the quasar 3c454.3 for a period of about one hour. In summary, the SMA has proven that the photonic local oscillator operates with adequate phase and frequency stability for radio-interferometry.
Identifying neuronal oscillations using rhythmicity
Fransen, A.M.M.; Ede, F.L. van; Maris, E.G.G.
2015-01-01
Neuronal oscillations are a characteristic feature of neuronal activity and are typically investigated through measures of power and coherence. However, neither of these measures directly reflects the distinctive feature of oscillations: their rhythmicity. Rhythmicity is the extent to which future
Heartbeat of the Southern Oscillation explains ENSO climatic resonances
Bruun, John T.; Allen, J. Icarus; Smyth, Timothy J.
2017-08-01
The El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and human activities. The up to 10 year quasi-period cycle of the El Niño and subsequent La Niña is known to be dominated in the tropics by nonlinear physical interaction of wind with the equatorial waveguide in the Pacific. Long-term cyclic phenomena do not feature in the current theory of the ENSO process. We update the theory by assessing low (>10 years) and high (type="synopsis">type="main">Plain Language SummaryThe Pacific El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and our human activities. This work can help predict both long-term and short-term future ENSO events and to assess the risk of future climate hysteresis changes: is the elastic band that regulates the ENSO climate breaking? We update the current theory of the ENSO process with a sophisticated analysis approach (Dominant Frequency State Analysis) to include long-term oscillations (up to 200 years) as well as tropical and extratropical interaction dynamics. The analysis uses instrumental and paleoproxy data records in combination with theoretical models of ENSO. This fundamental result that shows the ENSO phenomenon has a stable tropical Pacific attractor with El Niño and La Niña phases, tropical and extratropical coupling and an intermittency or longer-term form of chaos. We call this attractor the Heartbeat of the Southern Oscillation as the phenomenon is measurable in the Southern Oscillation. We predict future ENSO states based on a stable hysteresis scenario of short-term and long-term ENSO oscillations over the next century.
Solar Dynamo Driven by Periodic Flow Oscillation
Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)
2001-01-01
We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends
Bimodal oscillations in nephron autoregulation
DEFF Research Database (Denmark)
Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik
2002-01-01
The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular...
Spectral linewidths of Josephson oscillators
DEFF Research Database (Denmark)
Salerno, M; Samuelsen, Mogens Rugholm; Yulin, AV
2001-01-01
We show that the linewidth of a Josephson flux-flow oscillator has the same functional dependence on temperature, static, and dynamic resistances as the ones of Josephson single-fluxon oscillators and small Josephson junctions. This suggests a universal formula for the linewidth of Josephson...... oscillators....
Modified semi-classical methods for nonlinear quantum oscillations problems
Energy Technology Data Exchange (ETDEWEB)
Moncrief, Vincent [Department of Physics and Department of Mathematics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520 (United States); Marini, Antonella [Department of Mathematics, Yeshiva University, 500 West 185th Street, New York, New York 10033, USA and Department of Mathematics, University of L' Aquila, Via Vetoio, 67010 L' Aquila, AQ (Italy); Maitra, Rachel [Department of Physics, Albion College, 611 E. Porter Street, Albion, Michigan 49224 (United States)
2012-10-15
We develop a modified semi-classical approach to the approximate solution of Schroedinger's equation for certain nonlinear quantum oscillations problems. In our approach, at lowest order, the Hamilton-Jacobi equation of the conventional semi-classical formalism is replaced by an inverted-potential-vanishing-energy variant thereof. With suitable smoothness, convexity and coercivity properties imposed on its potential energy function, we prove, using methods drawn from the calculus of variations together with the (Banach space) implicit function theorem, the existence of a global, smooth 'fundamental solution' to this equation. Higher order quantum corrections thereto, for both ground and excited states, can then be computed through the integration of associated systems of linear transport equations, derived from Schroedinger's equation, and formal expansions for the corresponding energy eigenvalues obtained therefrom by imposing the natural demand for smoothness on the (successively computed) quantum corrections to the eigenfunctions. For the special case of linear oscillators our expansions naturally truncate, reproducing the well-known exact solutions for the energy eigenfunctions and eigenvalues. As an explicit application of our methods to computable nonlinear problems, we calculate a number of terms in the corresponding expansions for the one-dimensional anharmonic oscillators of quartic, sectic, octic, and dectic types and compare the results obtained with those of conventional Rayleigh/Schroedinger perturbation theory. To the orders considered (and, conjecturally, to all orders) our eigenvalue expansions agree with those of Rayleigh/Schroedinger theory whereas our wave functions more accurately capture the more-rapid-than-gaussian decay known to hold for the exact solutions to these problems. For the quartic oscillator in particular our results strongly suggest that both the ground state energy eigenvalue expansion and its associated wave
Nonlinear (Anharmonic Casimir Oscillator
Directory of Open Access Journals (Sweden)
Habibollah Razmi
2011-01-01
Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.
Acoustics waves and oscillations
Sen, S.N.
2013-01-01
Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...
Convection and stellar oscillations
DEFF Research Database (Denmark)
Aarslev, Magnus Johan
2017-01-01
of stars. For stars like the sun, energy transport in the outer layers occurs mainly through turbulent convection. Here, pressure mode oscillations are essentially propagating sound waves, whose properties can be altered by interaction with the turbulent motion of the gas. This has always been a problem...... for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...
Proprioceptive evoked gamma oscillations
DEFF Research Database (Denmark)
Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.
2007-01-01
A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...... contralateral to stimulus side and additionally an unexpected 20 Hz activity was observed slightly lateralized in the frontal central region. The gamma phase locking may be a manifestation of early somatosensory feature integration. The analyses suggest that the high frequency activity consists of two distinct...
Neutrino Masses and Oscillations
CERN. Geneva. Audiovisual Unit; Treille, Daniel
2002-01-01
This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.
Decay of oscillating universes
Mithani, Audrey Todhunter
2016-08-01
It has been suggested by Ellis et al that the universe could be eternal in the past, without beginning. In their model, the "emergent universe'' exists forever in the past, in an "eternal'' phase before inflation begins. We will show that in general, such an "eternal'' phase is not possible, because of an instability due to quantum tunneling. One candidate model, the "simple harmonic universe'' has been shown by Graham et al to be perturbatively stable; we find that it is unstable with respect to quantum tunneling. We also investigate the stability of a distinct oscillating model in loop quantum cosmology with respect to small perturbations and to quantum collapse. We find that the model has perturbatively stable and unstable solutions, with both types of solutions occupying significant regions of the parameter space. All solutions are unstable with respect to collapse by quantum tunneling to zero size. In addition, we investigate the effect of vacuum corrections, due to the trace anomaly and the Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. Finally, we determine the decay rate of the oscillating universe. Although the wave function of the universe lacks explicit time dependence in canonical quantum cosmology, time evolution may be present implicitly through the semiclassical superspace variables, which themselves depend on time in classical dynamics. Here, we apply this approach to the simple harmonic universe, by extending the model to include a massless, minimally coupled scalar field φ which has little effect on the dynamics but can play the role of a "clock''.
Oscillating stagnation point flow
Grosch, C. E.; Salwen, H.
1982-01-01
A solution of the Navier-Stokes equations is given for an incompressible stagnation point flow whose magnitude oscillates in time about a constant, non-zero, value (an unsteady Hiemenz flow). Analytic approximations to the solution in the low and high frequency limits are given and compared with the results of numerical integrations. The application of these results to one aspect of the boundary layer receptivity problem is also discussed.
Self-oscillating resonant power converter
DEFF Research Database (Denmark)
2014-01-01
The present invention relates to resonant power converters and inverters comprising a self-oscillating feedback loop coupled from a switch output to a control input of a switching network comprising one or more semiconductor switches. The self-oscillating feedback loop sets a switching frequency...... of the power converter and comprises a first intrinsic switch capacitance coupled between a switch output and a control input of the switching network and a first inductor. The first inductor is coupled in-between a first bias voltage source and the control input of the switching network and has...... a substantially fixed inductance. The first bias voltage source is configured to generate an adjustable bias voltage applied to the first inductor. The output voltage of the power converter is controlled in a flexible and rapid manner by controlling the adjustable bias voltage....
Oscillations in the Umbral Atmosphere
Brynildsen, N.; Maltby, P.; Foley, C. R.; Fredvik, T.; Kjeldseth-Moe, O.
2004-06-01
The results of simultaneous observations of oscillations in the chromosphere, transition region, and corona above nine sunspots are presented. The data are obtained through coordinated observing with the Solar and Heliospheric Observatory — SOHO and the Transition Region And Coronal Explorer — TRACE. Oscillations are detected above each umbra. The power spectra show one dominant frequency corresponding to a period close to 3 min. We show that the oscillations in the sunspot transition region can be modeled by upwardly propagating acoustic waves. In the corona the oscillations are limited to small regions that often coincide with the endpoints of sunspot coronal loops. Spectral observations show that oscillations in the corona contribute to the observed oscillations in the TRACE 171 Å channel observations. We show that a recent suggestion regarding a connection between sunspot plumes and 3-min oscillations conflicts with the observations.
Relaxation damping in oscillating contacts.
Popov, M; Popov, V L; Pohrt, R
2015-11-09
If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect "relaxation damping". The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed.
Short-period pulsar oscillations following a glitch
Energy Technology Data Exchange (ETDEWEB)
Van Eysden, C. A. [NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)
2014-07-10
Following a glitch, the crust and magnetized plasma in the outer core of a neutron star are believed to rapidly establish a state of co-rotation within a few seconds by process analogous to classical Ekman pumping. However, in ideal magnetohydrodynamics, a final state of co-rotation is inconsistent with conservation of energy of the system. We demonstrate that, after the Ekman-like spin up is completed, magneto-inertial waves continue to propagate throughout the star, exciting torsional oscillations in the crust and plasma. The crust oscillation is irregular and quasi-periodic, with a dominant frequency of the order of seconds. Crust oscillations commence after an Alfvén crossing time, approximately half a minute at the magnetic pole, and are subsequently damped by the electron viscosity over approximately an hour. In rapidly rotating stars, the magneto-inertial spectrum in the core approaches a continuum, and crust oscillations are damped by resonant absorption analogous to quasi-periodic oscillations in magnetars. The oscillations predicted are unlikely to be observed in timing data from existing radio telescopes, but may be visible to next generation telescope arrays.
Developmental Changes in Sleep Oscillations during Early Childhood
Directory of Open Access Journals (Sweden)
Eckehard Olbrich
2017-01-01
Full Text Available Although quantitative analysis of the sleep electroencephalogram (EEG has uncovered important aspects of brain activity during sleep in adolescents and adults, similar findings from preschool-age children remain scarce. This study utilized our time-frequency method to examine sleep oscillations as characteristic features of human sleep EEG. Data were collected from a longitudinal sample of young children (n=8; 3 males at ages 2, 3, and 5 years. Following sleep stage scoring, we detected and characterized oscillatory events across age and examined how their features corresponded to spectral changes in the sleep EEG. Results indicated a developmental decrease in the incidence of delta and theta oscillations. Spindle oscillations, however, were almost absent at 2 years but pronounced at 5 years. All oscillatory event changes were stronger during light sleep than slow-wave sleep. Large interindividual differences in sleep oscillations and their characteristics (e.g., “ultrafast” spindle-like oscillations, theta oscillation incidence/frequency also existed. Changes in delta and spindle oscillations across early childhood may indicate early maturation of the thalamocortical system. Our analytic approach holds promise for revealing novel types of sleep oscillatory events that are specific to periods of rapid normal development across the lifespan and during other times of aberrant changes in neurobehavioral function.
Developmental Changes in Sleep Oscillations during Early Childhood.
Olbrich, Eckehard; Rusterholz, Thomas; LeBourgeois, Monique K; Achermann, Peter
2017-01-01
Although quantitative analysis of the sleep electroencephalogram (EEG) has uncovered important aspects of brain activity during sleep in adolescents and adults, similar findings from preschool-age children remain scarce. This study utilized our time-frequency method to examine sleep oscillations as characteristic features of human sleep EEG. Data were collected from a longitudinal sample of young children (n = 8; 3 males) at ages 2, 3, and 5 years. Following sleep stage scoring, we detected and characterized oscillatory events across age and examined how their features corresponded to spectral changes in the sleep EEG. Results indicated a developmental decrease in the incidence of delta and theta oscillations. Spindle oscillations, however, were almost absent at 2 years but pronounced at 5 years. All oscillatory event changes were stronger during light sleep than slow-wave sleep. Large interindividual differences in sleep oscillations and their characteristics (e.g., "ultrafast" spindle-like oscillations, theta oscillation incidence/frequency) also existed. Changes in delta and spindle oscillations across early childhood may indicate early maturation of the thalamocortical system. Our analytic approach holds promise for revealing novel types of sleep oscillatory events that are specific to periods of rapid normal development across the lifespan and during other times of aberrant changes in neurobehavioral function.
Backward bifurcation and oscillations in a nested immuno-eco-epidemiological model.
Barfield, Michael; Martcheva, Maia; Tuncer, Necibe; Holt, Robert D
2018-12-01
This paper introduces a novel partial differential equation immuno-eco-epidemiological model of competition in which one species is affected by a disease while another can compete with it directly and by lowering the first species' immune response to the infection, a mode of competition termed stress-induced competition. When the disease is chronic, and the within-host dynamics are rapid, we reduce the partial differential equation model (PDE) to a three-dimensional ordinary differential equation (ODE) model. The ODE model exhibits backward bifurcation and sustained oscillations caused by the stress-induced competition. Furthermore, the ODE model, although not a special case of the PDE model, is useful for detecting backward bifurcation and oscillations in the PDE model. Backward bifurcation related to stress-induced competition allows the second species to persist for values of its invasion number below one. Furthermore, stress-induced competition leads to destabilization of the coexistence equilibrium and sustained oscillations in the PDE model. We suggest that complex systems such as this one may be studied by appropriately designed simple ODE models.
Effect of local phenomena on subcooled boiling oscillations in natural circulation boiling loop
Energy Technology Data Exchange (ETDEWEB)
Karmakar, Arnab [Birla Institute of Technology, Mesra, Jharkhand 835215 (India); Dey, Runa [Indian School of Mines, Dhanbad, Jharkhand 826004 (India); Paruya, Swapan, E-mail: swapanparuya@gmail.com [National Institute of Technology, Durgapur, West Bengal 713209 (India)
2016-12-15
Highlights: • The estimations of bubble frequency and oscillation of local void fraction α in a natural circulation boiling loop. • The effect of inlet subcooling on the bubble frequency and the oscillations of local α and local pressure. • Effect of local dynamic phenomena on the system oscillations in terms of loop flow rate. • The α-oscillations due to the presence of large bubbles trigger the high-amplitude system-oscillations with a time delay. - Abstract: In this paper, the authors report the estimations of bubble frequency and oscillation of local void fraction and their role in subcooled boiling oscillations in a low-pressure natural circulation boiling loop. The estimations primarily rely on the measurements of impedance using inductance L–capacitance C–resistance R (LCR) meter. The bubble frequencies determined from the impedance signals and the images are comparable. The effect of inlet subcooling on the bubble frequency and the oscillation of local void fraction has been studied and found to be remarkable. Based on the comparison of the oscillations of local void fraction, local pressure and loop flow rate, the effect of local dynamic phenomena on the system oscillations clearly demonstrates that the oscillations of void fraction trigger high-amplitude flow oscillations with a delay between the oscillations of void fraction and loop flow rate.
Glucose Oscillations Can Activate an Endogenous Oscillator in Pancreatic Islets.
Directory of Open Access Journals (Sweden)
Joseph P McKenna
2016-10-01
Full Text Available Pancreatic islets manage elevations in blood glucose level by secreting insulin into the bloodstream in a pulsatile manner. Pulsatile insulin secretion is governed by islet oscillations such as bursting electrical activity and periodic Ca2+ entry in β-cells. In this report, we demonstrate that although islet oscillations are lost by fixing a glucose stimulus at a high concentration, they may be recovered by subsequently converting the glucose stimulus to a sinusoidal wave. We predict with mathematical modeling that the sinusoidal glucose signal's ability to recover islet oscillations depends on its amplitude and period, and we confirm our predictions by conducting experiments with islets using a microfluidics platform. Our results suggest a mechanism whereby oscillatory blood glucose levels recruit non-oscillating islets to enhance pulsatile insulin output from the pancreas. Our results also provide support for the main hypothesis of the Dual Oscillator Model, that a glycolytic oscillator endogenous to islet β-cells drives pulsatile insulin secretion.
Magneto-elastic Oscillations and Magnetar QPOs
Stergioulas, N.; Gabler, M.; Cerdá-Durán, P.; Font, J. A.; Müller, E.
2012-07-01
The origin of the quasi-periodic oscillations (QPOs) observed in the giant flares of soft gamma-ray repeaters (SGRs) remains uncertain. Current models explore the idea that long-term quasi-periodic oscillations are trapped at the turning points of the continuum of torsional magneto-elastic oscillations in the magnetar's interior. After reviewing recent work in this field, we describe our latest efforts using two-dimensional, general-relativistic, magneto-hydrodynamical simulations, coupled to evolutions of shear waves in the solid crust, in order to explore the viability of this model when a purely dipolar magnetic field is assumed. We demonstrate the existence of three different regimes (a) B 1015 G, where magneto-elastic oscillations reach the surface and approach the behavior of purely Alfvén QPOs. Our results do not leave much room for a crustal-mode interpretation of observed QPOs in SGR giant flares, in the case of a purely dipolar magnetic field. On the other hand, the observed QPOs could originate from Alfvén-like, global, turning-point QPOs in models with dipolar magnetic field strengths in the narrow range of 5 × 1015 G ≤ B ≤ 1.4 × 1016 G. To agree with estimates for magnetic field strengths in known magnetars, a more complicated magnetic field structure or superfluidity of the neutrons and superconductivity of the protons should be taken into account.
Computational theories on the function of theta oscillations.
Lengyel, Máté; Huhn, Zsófia; Erdi, Péter
2005-06-01
Neural rhythms can be studied in terms of conditions for their generation, or in terms of their functional significance. The theta oscillation is a particularly prominent rhythm, reported to be present in many brain areas, and related to many important cognitive processes. The generating mechanisms of theta have extensively been studied and reviewed elsewhere; here we discuss ideas that have accumulated over the past decades on the computational roles it may subserve. Theories propose different aspects of theta oscillations as being relevant for their cognitive functions: limit cycle oscillations in neuronal firing rates, subthreshold membrane potential oscillations, periodic modulation of synaptic transmission and plasticity, and phase precession of hippocampal place cells. The relevant experimental data is briefly summarized in the light of these theories. Specific models proposing a function for theta in pattern recognition, memory, sequence learning and navigation are reviewed critically. Difficulties with testing and comparing alternative models are discussed, along with potentially important future research directions in the field.
From excitability to oscillations
DEFF Research Database (Denmark)
Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.
2013-01-01
One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow...... diffusive coupling that gives rise to wave dynamics and via fast changes in membrane potential that propagate almost instantly over significant distances. The model reproduces the basic calcium dynamics of the vascular smooth muscle cell: calcium waves which upon increased activity of cGMP-sensitive calcium...
Oscillations in nonlinear systems
Hale, Jack K
2015-01-01
By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Pa
Solution branches for nonlinear problems with an asymptotic oscillation property
Directory of Open Access Journals (Sweden)
Lin Gong
2015-10-01
Full Text Available In this article we employ an oscillatory condition on the nonlinear term, to prove the existence of a connected component of solutions of a nonlinear problem, which bifurcates from infinity and asymptotically oscillates over an interval of parameter values. An interesting and immediate consequence of such oscillation property of the connected component is the existence of infinitely many solutions to the nonlinear problem for all parameter values in that interval.
Brain Oscillations, Hypnosis, and Hypnotizability.
Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin
2015-01-01
This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.
Hyperchaos in coupled Colpitts oscillators
DEFF Research Database (Denmark)
Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas
2003-01-01
The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individu...... oscillators. The spectrum of the Lyapunov exponents (LE) have been calculated versus the coefficient k. For weakly coupled oscillators there are two positive LE indicating hyperchaotic behaviour of the overall system.......The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...
Spatio-temporal patterns with hyperchaotic dynamics in diffusively coupled biochemical oscillators
Directory of Open Access Journals (Sweden)
Gerold Baier
1997-01-01
Full Text Available We present three examples how complex spatio-temporal patterns can be linked to hyperchaotic attractors in dynamical systems consisting of nonlinear biochemical oscillators coupled linearly with diffusion terms. The systems involved are: (a a two-variable oscillator with two consecutive autocatalytic reactions derived from the Lotka–Volterra scheme; (b a minimal two-variable oscillator with one first-order autocatalytic reaction; (c a three-variable oscillator with first-order feedback lacking autocatalysis. The dynamics of a finite number of coupled biochemical oscillators may account for complex patterns in compartmentalized living systems like cells or tissue, and may be tested experimentally in coupled microreactors.
Effective long-time phase dynamics of limit-cycle oscillators driven by weak colored noise
Nakao, Hiroya; Teramae, Jun-nosuke; Goldobin, Denis S.; Kuramoto, Yoshiki
2010-09-01
An effective white-noise Langevin equation is derived that describes long-time phase dynamics of a limit-cycle oscillator driven by weak stationary colored noise. Effective drift and diffusion coefficients are given in terms of the phase sensitivity of the oscillator and the correlation function of the noise, and are explicitly calculated for oscillators with sinusoidal phase sensitivity functions driven by two typical colored Gaussian processes. The results are verified by numerical simulations using several types of stochastic or chaotic noise. The drift and diffusion coefficients of oscillators driven by chaotic noise exhibit anomalous dependence on the oscillator frequency, reflecting the peculiar power spectrum of the chaotic noise.
An Energetic Approach to Homogenization Problems with Rapidly Oscillating Potentials
1979-08-01
34 (studied by Benssoussan, Lions, and Papanicolau ) pus A + . W(’ Nu;; f on Q; u 0, as e goes n to zero. W is a periodic function (in each variable) from 3R...obe conjectured by Lionoussan, ian a d Papanicolau 12), Re ark 17.7, We are going to prove that unfortunately it Is not correct in the general caseo in
Linearization of conservative nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Belendez, A; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E; Pascual, I [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es
2009-03-11
A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for the complete range of oscillation amplitudes. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of the technique.
Detailed structure of pipe flow with water hammer oscillations | Kioni ...
African Journals Online (AJOL)
Herein, the evolution and detailed structure of velocity and pressure fields of an oscillating axi-symmetric pipe flow arising from a rapid closure of a valve has been determined through the solution, by the Finite Volume technique, of the full Navier Stokes equations. The method correctly predicts the distortion of the pressure ...
A Matterwave Transistor Oscillator
Caliga, Seth C; Zozulya, Alex A; Anderson, Dana Z
2012-01-01
A triple-well atomtronic transistor combined with forced RF evaporation is used to realize a driven matterwave oscillator circuit. The transistor is implemented using a metalized compound glass and silicon substrate. On-chip and external currents produce a cigar-shaped magnetic trap, which is divided into transistor source, gate, and drain regions by a pair of blue-detuned optical barriers projected onto the magnetic trap through a chip window. A resonant laser beam illuminating the drain portion of the atomtronic transistor couples atoms emitted by the gate to the vacuum. The circuit operates by loading the source with cold atoms and utilizing forced evaporation as a power supply that produces a positive chemical potential in the source, which subsequently drives oscillation. High-resolution in-trap absorption imagery reveals gate atoms that have tunneled from the source and establishes that the circuit emits a nominally mono-energetic matterwave with a frequency of 23.5(1.0) kHz by tunneling from the gate, ...
Heat exchanger with oscillating flow
Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)
1993-01-01
Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.
Unstable oscillators based hyperchaotic circuit
DEFF Research Database (Denmark)
Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.
1999-01-01
A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...
Generalized Boltzmann formalism for oscillating neutrinos
Strack, P.; Burrows, A.
2005-05-01
In the standard approaches to neutrino transport in the simulation of core-collapse supernovas, one will often start from the classical Boltzmann equation for the neutrino’s spatial, temporal, and spectral evolution. For each neutrino species, and its antiparticle, the classical density in phase space, or the associated specific intensity, will be calculated as a function of time. The neutrino radiation is coupled to matter by source and sink terms on the “right-hand side” of the transport equation and together with the equations of hydrodynamics this set of coupled partial differential equations for classical densities describes, in principle, the evolution of core collapse and explosion. However, with the possibility of neutrino oscillations between species, a purely quantum-physical effect, how to generalize this set of Boltzmann equations for classical quantities to reflect oscillation physics has not been clear. To date, the formalisms developed have retained the character of quantum operator physics involving complex quantities and have not been suitable for easy incorporation into standard supernova codes. In this paper, we derive generalized Boltzmann equations for quasiclassical, real-valued phase-space densities that retain all the standard oscillation phenomenology, including the matter-enhanced resonant flavor conversion (Mikheev-Smirnov-Wolfenstein effect), neutrino self-interactions, and the interplay between decohering matter coupling and flavor oscillations. With this formalism, any code(s) that can now handle the solution of the classical Boltzmann or transport equation can easily be generalized to include neutrino oscillations in a quantum-physically consistent fashion.
Oscillations in atmospheric water above Switzerland
Directory of Open Access Journals (Sweden)
K. Hocke
2017-10-01
Full Text Available Cloud fraction (CF, integrated liquid water (ILW and integrated water vapour (IWV were continuously measured from 2004 to 2016 by the TROpospheric WAter RAdiometer (TROWARA in Bern, Switzerland. There are indications for interannual variations of CF and ILW. A spectral analysis shows that IWV is dominated by an annual oscillation, leading to an IWV maximum of 24 kg m−2 in July to August and a minimum of 8 kg m−2 in February. The seasonal behaviour of CF and ILW is composed by both the annual and the semiannual oscillation. However, the annual oscillation of CF has a maximum in December while the annual oscillation of ILW has a maximum in July. The semiannual oscillations of CF and ILW are strong from 2010 to 2014. The normalized power spectra of ILW and CF show statistically significant spectral components with periods of 76, 85, 97 and 150 days. We find a similarity between the power spectra of ILW and CF with those of zonal wind at 830 hPa (1.5 km above Bern. Particularly, the occurrence of higher harmonics in the CF and ILW spectra is possibly forced by the behaviour of the lower-tropospheric wind. The mean amplitude spectra of CF, ILW and IWV show increased short-term variability on timescales less than 40 days from spring to fall. We find a weekly cycle of CF and ILW from June to September with increased values on Saturday, Sunday and Monday.
van Gils, Marit J.; Bunnik, Evelien M.; Burger, Judith A.; Jacob, Yodit; Schweighardt, Becky; Wrin, Terri; Schuitemaker, Hanneke
2010-01-01
A substantial proportion of human immunodeficiency virus type 1 (HIV-1)-infected individuals has cross-reactive neutralizing activity in serum, with a similar prevalence in progressors and long-term nonprogressors (LTNP). We studied whether disease progression in the face of cross-reactive
Relic neutrino decoupling including flavour oscillations
Energy Technology Data Exchange (ETDEWEB)
Mangano, Gianpiero [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II and INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Naples (Italy); Department of Physics, Syracuse University, Syracuse, NY 13244-1130 (United States); Miele, Gennaro [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II and INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Naples (Italy); Pastor, Sergio [Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Ed. Institutos de Investigacion, Apdo. 22085, E-46071 Valencia (Spain)]. E-mail: pastor@ific.uv.es; Pinto, Teguayco [Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Ed. Institutos de Investigacion, Apdo. 22085, E-46071 Valencia (Spain); Pisanti, Ofelia [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II and INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Naples (Italy); Serpico, Pasquale D. [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, D-80805 Munich (Germany)
2005-11-21
In the early universe, neutrinos are slightly coupled when electron-positron pairs annihilate transferring their entropy to photons. This process originates non-thermal distortions on the neutrino spectra which depend on neutrino flavour, larger for {nu}{sub e} than for {nu}{sub {mu}} or {nu}{sub {tau}}. We study the effect of three-neutrino flavour oscillations on the process of neutrino decoupling by solving the momentum-dependent kinetic equations for the neutrino spectra. We find that oscillations do not essentially modify the total change in the neutrino energy density, giving N{sub eff}=3.046 in terms of the effective number of neutrinos, while the small effect over the production of primordial {sup 4}He is increased by O(20%), up to 2.1x10{sup -4}. These results are stable within the presently favoured region of neutrino mixing parameters.
Directory of Open Access Journals (Sweden)
H. E. Rieder
2013-01-01
Full Text Available We present the first spatial analysis of "fingerprints" of the El Niño/Southern Oscillation (ENSO and atmospheric aerosol load after major volcanic eruptions (El Chichón and Mt. Pinatubo in extreme low and high (termed ELOs and EHOs, respectively and mean values of total ozone for the northern and southern mid-latitudes (defined as the region between 30° and 60° north and south, respectively. Significant influence on ozone extremes was found for the warm ENSO phase in both hemispheres during spring, especially towards low latitudes, indicating the enhanced ozone transport from the tropics to the extra-tropics. Further, the results confirm findings of recent work on the connection between the ENSO phase and the strength and extent of the southern ozone "collar". For the volcanic eruptions the analysis confirms findings of earlier studies for the northern mid-latitudes and gives new insights for the Southern Hemisphere. The results provide evidence that the negative effect of the eruption of El Chichón might be partly compensated by a strong warm ENSO phase in 1982–1983 at southern mid-latitudes. The strong west-east gradient in the coefficient estimates for the Mt. Pinatubo eruption and the analysis of the relationship between the AAO and ENSO phase, the extent and the position of the southern ozone "collar" and the polar vortex structure provide clear evidence for a dynamical "masking" of the volcanic signal at southern mid-latitudes. The paper also analyses the contribution of atmospheric dynamics and chemistry to long-term total ozone changes. Here, quite heterogeneous results have been found on spatial scales. In general the results show that EESC and the 11-yr solar cycle can be identified as major contributors to long-term ozone changes. However, a strong contribution of dynamical features (El Niño/Southern Oscillation (ENSO, North Atlantic Oscillation (NAO, Antarctic Oscillation (AAO, Quasi-Biennial Oscillation (QBO to ozone
Energy Technology Data Exchange (ETDEWEB)
Kashyap, Raghava; Eu, Peter [Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Jackson, Price [Peter MacCallum Cancer Centre, Department of Physical Sciences, Melbourne (Australia); Hofman, Michael S.; Hicks, Rodney J. [Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); The University of Melbourne, Departments of Medicine and Radiology, Melbourne (Australia); Beauregard, Jean-Mathieu [Universite Laval, Department of Radiology, Quebec City (Canada); Zannino, Diana [Peter MacCallum Cancer Centre, Department of Biostatistics and Clinical Trials, Melbourne (Australia)
2013-12-15
The aim of the study was to investigate the feasibility of shortening the recommended 4-h renoprotective amino acid infusion in patients receiving peptide receptor chemoradionuclide therapy (PRCRT) using radiosensitizing 5-fluorouracil. We evaluated the clearance of radiopeptide from the blood, long-term nephrotoxicity in patients undergoing PRCRT with the conventional 4-h amino acid infusion and renal uptake in patients receiving an abbreviated infusion. The whole-blood clearance of {sup 177}Lu-DOTA-octreotate (LuTate) was measured in 13 patients receiving PRCRT. A retrospective analysis of short-term and long-term changes in glomerular filtration rate (GFR) in 96 consecutive patients receiving a 4-h infusion was performed. Renal LuTate retention estimated using quantitative SPECT/CT in 22 cycles delivered with a 2.5-h amino acid infusion was compared with that in 72 cycles with the 4-h infusion. LuTate demonstrated biexponential blood clearance with an initial clearance half-time of 21 min. Approximately 88 % of blood activity was cleared within 2 h. With the 4-h protocol, there was no significant change in GFR (1.2 ml/min mean increase from baseline; 95 % CI -6.9 to 4.4 ml/min) and no grade 3 or 4 nephrotoxicity at the end of induction PRCRT. The long-term decline in GFR after a median follow up of 22 months was 2.2 ml/min per year. There was no significant difference in the renal LuTate retention measured in patients receiving a 2.5-h amino acid infusion compared to those who had a 4-h infusion. The greatest renal exposure to circulating radiopeptide occurs in the first 1 - 2 h after injection. This, combined with the safety of LuTate PRCRT, allows consideration of an abbreviated amino acid infusion, increasing patient convenience and reducing human resource allocation. (orig.)
Krashes, Michael J.; Waddell, Scott
2008-01-01
In Drosophila, formation of aversive olfactory long-term memory (LTM) requires multiple training sessions pairing odor and electric shock punishment with rest intervals. In contrast, here we show that a single 2 min training session pairing odor with a more ethologically relevant sugar reinforcement forms long-term appetitive memory that lasts for days. Appetitive LTM has some mechanistic similarity to aversive LTM in that it can be disrupted by cycloheximide, the dCreb2-b transcriptional repressor, and the crammer and tequila LTM-specific mutations. However, appetitive LTM is completely disrupted by the radish mutation that apparently represents a distinct mechanistic phase of consolidated aversive memory. Furthermore, appetitive LTM requires activity in the dorsal paired medial neuron and mushroom body α′ β′ neuron circuit during the first hour after training and mushroom body αβ neuron output during retrieval, suggesting that appetitive middle-term memory and LTM are mechanistically linked. Last, experiments feeding and/or starving flies after training reveals a critical motivational drive that enables appetitive LTM retrieval. PMID:18354013
Hyperchaotic system with unstable oscillators
DEFF Research Database (Denmark)
Murali, K.; Tamasevicius, A.; Mykolaitis, G.
2000-01-01
A simple electronic system exhibiting hyperchaotic behaviour is described. The system includes two nonlinearly coupled 2nd order unstable oscillators, each composed of an LC resonance loop and an amplifier. The system is investigated by means of numerical integration of appropriate differential...... equations, PSPICE simulations and hardware experiments. The Lyapunov exponents are presented to confirm hyperchaotic mode of the oscillations....
The Wien Bridge Oscillator Family
DEFF Research Database (Denmark)
Lindberg, Erik
2006-01-01
A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...
Energy Conservative Limit Cycle Oscillations
Stramigioli, Stefano; van Dijk, Michel
This paper shows how globally attractive limit cycle oscillations can be induced in a system with a nonlinear feedback element. Based on the same principle as the Van der Pol oscillator, the feedback behaves as a negative damping for low velocities but as an ordinary damper for high velocities. This
Mechanical Parametric Oscillations and Waves
Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.
2013-01-01
Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…
Augmenting cognition by neuronal oscillations
Horschig, J.M.; Zumer, J.; Bahramisharif, A.
2014-01-01
Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g., communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both
Dudinets, I. V.; Man’ko, V. I.; Marmo, G.; Zaccaria, F.
2017-11-01
Symplectic tomographies of classical and quantum states are shortly reviewed. The concept of nonlinear f-oscillators and their properties are recalled. The tomographic probability representations of oscillator coherent states and the problem of entanglement are then discussed. The entanglement of even and odd f-coherent states is evaluated by the linear entropy.
Quasi Periodic Oscillations in Blazars
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 35; Issue 3. Quasi Periodic Oscillations in Blazars ... Here we report our recent discoveries of Quasi-Periodic Oscillations (QPOs) in blazars time series data in X-ray and optical electromagnetic bands. Any such detection can give important ...
Energy Technology Data Exchange (ETDEWEB)
Kiselev, Alexey A.; Krylov, Alexey L.; Bogatov, Sergey A. [Nuclear Safety Institute (IBRAE), Bolshaya Tulskaya st. 52, 115191, Moscow (Russian Federation)
2014-07-01
In case of nuclear and radiation accidents emergency response authorities require a tool for rapid assessments of possible consequences. One of the most significant problems is lack of data on initial state of an accident. The lack can be especially critical in case the accident occurred in a location that was not thoroughly studied beforehand (during transportation of radioactive materials for example). One of possible solutions is the hybrid method when a model that enables rapid assessments with the use of reasonable minimum of input data is used conjointly with an observed data that can be collected shortly after accidents. The model is used to estimate parameters of the source and uncertain meteorological parameters on the base of some observed data. For example, field of fallout density can be observed and measured within hours after an accident. After that the same model with the use of estimated parameters is used to assess doses and necessity of recommended and mandatory countermeasures. The computer system PROLOG was designed to solve the problem. It is based on the widely used Gaussian model. The standard Gaussian model is supplemented with several sub-models that allow to take into account: polydisperse aerosols, aerodynamic shade from buildings in the vicinity of the place of accident, terrain orography, initial size of the radioactive cloud, effective height of the release, influence of countermeasures on the doses of radioactive exposure of humans. It uses modern GIS technologies and can use web map services. To verify ability of PROLOG to solve the problem it is necessary to test its ability to assess necessary parameters of real accidents in the past. Verification of the computer system on the data of Chazhma Bay accident (Russian Far East, 1985) was published previously. In this work verification was implemented on the base of observed contamination from the Kyshtym disaster (PA Mayak, 1957) and the Tomsk accident (1993). Observations of Sr-90
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....
Guan, Zhichao; Jia, Shasha; Zhu, Zhi; Zhang, Mingxia; Yang, Chaoyong James
2014-03-04
Microfabricated devices are suitable for single-cell analysis due to their high throughput, compatible dimensions and controllable microenvironment. However, existing devices for single-cell culture and analysis encounter some limitations, such as nutrient depletion, random cell migration and complicated fluid shear influence. Moreover, most of the single-cell culture and analysis devices are based on 2D cell culture conditions, even though 3D cell culture methods have been demonstrated to better mimic the real cell microenvironment in vivo. To solve these problems, herein we develop a microcollagen gel array (μCGA) based approach for high-throughput long-term single-cell culture and single-cell analysis under 3D culture conditions. Type-I collagen, a well-established 3D cell culture medium, was used as the scaffold for 3D cell growth. A 2 × 2 cm PDMS chip with 10 000 μCGA units was fabricated to encapsulate thousands of single cells in less than 15 min. Single cells were able to be confined and survive in μCGA units for more than 1 month. The capability of large-scale and long-term single-cell 3D culture under open culture conditions allows us to study cellular proliferation heterogeneity and drug cytotoxicity at the single-cell level. Compared with existing devices for single-cell analysis, μCGA solves the problems of nutrient depletion and random cellular migration, avoids the influence of complicated fluid shear, and mimics the real 3D growth environment in vivo, thereby providing a feasible 3D long-term single-cell culture method for single-cell analysis and drug screening.
Sawada, Masataka; Nishimoto, Soshi; Okada, Tetsuji
2017-01-01
In high-level radioactive waste disposal repositories, there are long-term complex thermal, hydraulic, and mechanical (T-H-M) phenomena that involve the generation of heat from the waste, the infiltration of ground water, and swelling of the bentonite buffer. The ability to model such coupled phenomena is of particular importance to the repository design and assessments of its safety. We have developed a T-H-M-coupled analysis program that evaluates the long-term behavior around the repository (called "near-field"). We have also conducted centrifugal model tests that model the long-term T-H-M-coupled behavior in the near-field. In this study, we conduct H-M-coupled numerical simulations of the centrifugal near-field model tests. We compare numerical results with each other and with results obtained from the centrifugal model tests. From the comparison, we deduce that: (1) in the numerical simulation, water infiltration in the rock mass was in agreement with the experimental observation. (2) The constant-stress boundary condition in the centrifugal model tests may cause a larger expansion of the rock mass than in the in situ condition, but the mechanical boundary condition did not affect the buffer behavior in the deposition hole. (3) The numerical simulation broadly reproduced the measured bentonite pressure and the overpack displacement, but did not reproduce the decreasing trend of the bentonite pressure after 100 equivalent years. This indicates the effect of the time-dependent characteristics of the surrounding rock mass. Further investigations are needed to determine the effect of initial heterogeneity in the deposition hole and the time-dependent behavior of the surrounding rock mass.
DEFF Research Database (Denmark)
Jørgensen, Karin Meinike; Wassermann, Tina; Jensen, Peter Østrup
2013-01-01
lineages after 240 generations. The genetic basis of resistance was mutations in gyrA (C248T and G259T) and gyrB (C1397A). Cross-resistance to beta-lactam antibiotics was observed in the bacterial populations that evolved during exposure to sublethal concentrations of ciprofloxacin. Our study shows...... that mutants with high-level ciprofloxacin resistance are selected in P. aeruginosa bacterial populations exposed to sub-MICs of ciprofloxacin. This can have implications for the long-term persistence of resistant bacteria and spread of antibiotic resistance by exposure of commensal bacterial flora to low...
Golden quantum oscillator and Binet-Fibonacci calculus
Energy Technology Data Exchange (ETDEWEB)
Pashaev, Oktay K; Nalci, Sengul, E-mail: oktaypashaev@iyte.edu.tr [Department of Mathematics, Izmir Institute of Technology, Urla-Izmir 35430 (Turkey)
2012-01-13
The Binet formula for Fibonacci numbers is treated as a q-number and a q-operator with Golden ratio bases q = {phi} and Q = -1/{phi}, and the corresponding Fibonacci or Golden calculus is developed. A quantum harmonic oscillator for this Golden calculus is derived so that its spectrum is given only by Fibonacci numbers. The ratio of successive energy levels is found to be the Golden sequence, and for asymptotic states in the limit n {yields} {infinity} it appears as the Golden ratio. We call this oscillator the Golden oscillator. Using double Golden bosons, the Golden angular momentum and its representation in terms of Fibonacci numbers and the Golden ratio are derived. Relations of Fibonacci calculus with a q-deformed fermion oscillator and entangled N-qubit states are indicated. (paper)
Directory of Open Access Journals (Sweden)
Xingjia Xiang
2016-07-01
Full Text Available Background: The Qinghai-Tibet Plateau (QTP is home to the vast grassland in China. The QTP grassland ecosystem has been seriously degraded by human land use practices and climate change. Fertilization is used in this region to increase vegetation yields for grazers. The impact of long-term fertilization on plant and microbial communities has been studied extensively. However, the influence of short-term fertilization on arbuscular mycorrhizal fungal (AMF communities in the QTP is largely unknown, despite their important functional role in grassland ecosystems. Methods: We investigated AMF community responses to three years of N and/or P addition at an experimental field site on the QTP, using the Illumina MiSeq platform (PE 300. Results: Fertilization resulted in a dramatic shift in AMF community composition and NP addition significantly increased AMF species richness and phylogenetic diversity. Aboveground biomass, available phosphorus, and NO3− were significantly correlated with changes in AMF community structure. Changes in these factors were driven by fertilization treatments. Thus, fertilization had a large impact on AMF communities, mediated by changes in aboveground productivity and soil chemistry. Discussion: Prior work has shown how plants often lower their reliance on AMF symbioses following fertilization, leading to decrease AMF abundance and diversity. However, our study reports a rise in AMF diversity with fertilization treatment. Because AMF can provide stress tolerance to their hosts, we suggest that extreme weather on the QTP may help drive a positive relationship between fertilizer amendment and AMF diversity.
Oscillating instanton solutions in curved space
Lee, Bum-Hoon; Lee, Chul H.; Lee, Wonwoo; Oh, Changheon
2012-01-01
We investigate oscillating instanton solutions of a self-gravitating scalar field between degenerate vacua. We show that there exist O(4)-symmetric oscillating solutions in a de Sitter background. The geometry of this solution is finite and preserves the Z2 symmetry. The nontrivial solution corresponding to tunneling is possible only if the effect of gravity is taken into account. We present numerical solutions of this instanton, including the phase diagram of solutions in terms of the parameters of the present work and the variation of energy densities. Our solutions can be interpreted as solutions describing an instanton-induced domain wall or braneworld-like object rather than a kink-induced domain wall or braneworld. The oscillating instanton solutions have a thick wall and the solutions can be interpreted as a mechanism providing nucleation of the thick wall for topological inflation. We remark that Z2 invariant solutions also exist in a flat and anti-de Sitter background, though the physical significance is not clear.
Roskin, Joel; Katra, Itzhak; Agha, Nuha; Goring-Morris, A. Nigel; Porat, Naomi; Barzilai, Omry
2014-09-01
Archaeological investigations along Nahal Sekher on the eastern edge of Israel's northwestern Negev Desert dunefield revealed concentrations of Epipalaeolithic campsites associated respectively with ancient water bodies. This study, aimed at better understanding the connections between these camps and the water bodies, is concerned with a cluster of Natufian sites. A comprehensive geomorphological study integrating field mapping, stratigraphic sections, sedimentological analysis and optically stimulated luminescence (OSL) ages was conducted in the vicinity of a recently excavated Natufian campsite of Nahal Sekher VI whose artifacts directly overlay aeolian sand dated by OSL to 12.4 ± 0.7 and 11.7 ± 0.5 ka. Residual sequences of diagnostic silty sediments, defined here as low-energy fluvial fine-grained deposits (LFFDs), were identified within the drainage system of central Nahal Sekher around the Nahal Sekher VI site. LFFD sections were found to represent both shoreline and mid-water deposits. The thicker mid-water LFFD deposits (15.7 ± 0.7-10.7 ± 0.5 ka) date within the range of the Epipalaeolithic campsites, while the upper and shoreline LFFD units that thin out into the sands adjacent to the Nahal Sekher VI site display slightly younger ages (10.8 ± 0.4 ka-7.6 ± 0.4 ka). LFFD sedimentation by low-energy concentrated flow and standing-water developed as a result of proximal downstream dune-damming. These water bodies developed as a result of encroaching sand that initially crossed central Nahal Sekher by 15.7 ± 0.7 ka and probably intermittently blocked the course of the wadi. LFFD deposition was therefore a response to a unique combination of regional sand supply due to frequent powerful winds and does not represent climate change in the form of increased precipitation or temperature change. The chronostratigraphies affiliate the Natufian sites to the adjacent ancient water bodies. These relations reflect a rapid, but temporary anthropogenic response to a
Live Cell Imaging Reveals pH Oscillations in Saccharomyces cerevisiae During Metabolic Transitions.
Dodd, Benjamin J T; Kralj, Joel M
2017-10-24
Addition of glucose to starved Saccharomyces cerevisiae initiates collective NADH dynamics termed glycolytic oscillations. Numerous questions remain about the extent to which single cells can oscillate, if oscillations occur in natural conditions, and potential physiological consequences of oscillations. In this paper, we report sustained glycolytic oscillations in single cells without the need for cyanide. Glucose addition to immobilized cells induced pH oscillations that could be imaged with fluorescent sensors. A population of cells had oscillations that were heterogeneous in frequency, start time, stop time, duration and amplitude. These changes in cytoplasmic pH were necessary and sufficient to drive changes in NADH. Oscillators had lower mitochondrial membrane potentials and budded more slowly than non-oscillators. We also uncovered a new type of oscillation during recovery from H2O2 challenge. Our data show that pH in S. cerevisiae changes over several time scales, and that imaging pH offers a new way to measure glycolytic oscillations on individual cells.
Oberbichler, S; Hackl, W O; Hörbst, A
2017-10-18
Long-term data collection is a challenging task in the domain of medical research. Many effects in medicine require long periods of time to become traceable e.g. the development of secondary malignancies based on a given radiotherapeutic treatment of the primary disease. Nevertheless, long-term studies often suffer from an initial lack of available information, thus disallowing a standardized approach for their approval by the ethics committee. This is due to several factors, such as the lack of existing case report forms or an explorative research approach in which data elements may change over time. In connection with current medical research and the ongoing digitalization in medicine, Long Term Medical Data Registries (MDR-LT) have become an important means of collecting and analyzing study data. As with any clinical study, ethical aspects must be taken into account when setting up such registries. This work addresses the problem of creating a valid, high-quality ethics committee proposal for medical registries by suggesting groups of tasks (building blocks), information sources and appropriate methods for collecting and analyzing the information, as well as a process model to compile an ethics committee proposal (EsPRit). To derive the building blocks and associated methods software and requirements engineering approaches were utilized. Furthermore, a process-oriented approach was chosen, as information required in the creating process of ethics committee proposals remain unknown in the beginning of planning an MDR-LT. Here, we derived the needed steps from medical product certification. This was done as the medical product certification itself also communicates a process-oriented approach rather than merely focusing on content. A proposal was created for validation and inspection of applicability by using the proposed building blocks. The proposed best practice was tested and refined within SEMPER (Secondary Malignoma - Prospective Evaluation of the
Bimodal oscillations in nephron autoregulation
DEFF Research Database (Denmark)
Sosnovtseva, Olga; Pavlov, A N; Mosekilde, E
2002-01-01
The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular...... feedback. We investigate the intra- and internephron entrainment of the two time scales. In addition to full synchronization, both wavelet analyses of experimental data and numerical simulations reveal a partial entrainment in which neighboring nephrons attain a state of chaotic synchronization...
Collective oscillations in a plasma
Akhiezer, A I; Polovin, R V; ter Haar, D
2013-01-01
International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of
Oscillations of a Turbulent Jet Incident Upon an Edge
Energy Technology Data Exchange (ETDEWEB)
J.C. Lin; D. Rockwell
2000-09-19
For the case of a jet originating from a fully turbulent channel flow and impinging upon a sharp edge, the possible onset and nature of coherent oscillations has remained unexplored. In this investigation, high-image-density particle image velocimetry and surface pressure measurements are employed to determine the instantaneous, whole-field characteristics of the turbulent jet-edge interaction in relation to the loading of the edge. It is demonstrated that even in absence of acoustic resonant or fluid-elastic effects, highly coherent, self-sustained oscillations rapidly emerge above the turbulent background. Two clearly identifiable modes of instability are evident. These modes involve large-scale vortices that are phase-locked to the gross undulations of the jet and its interaction with the edge, and small-scale vortices, which are not phase-locked. Time-resolved imaging of instantaneous vorticity and velocity reveals the form, orientation, and strength of the large-scale concentrations of vorticity approaching the edge in relation to rapid agglomeration of small-scale vorticity concentrations. Such vorticity field-edge interactions exhibit rich complexity, relative to the simplified pattern of vortex-edge interaction traditionally employed for the quasi-laminar edgetone. Furthermore, these interactions yield highly nonlinear surface pressure signatures. The origin of this nonlinearity, involving coexistence of multiple frequency components, is interpreted in terms of large- and small-scale vortices embedded in distributed vorticity layers at the edge. Eruption of the surface boundary layer on the edge due to passage of the large-scale vortex does not occur; rather apparent secondary vorticity concentrations are simply due to distension of the oppositely-signed vorticity layer at the tip of the edge. The ensemble-averaged turbulent statistics of the jet quickly take on an identity that is distinct from the statistics of the turbulent boundary layer in the channel
Streaming Velocities and the Baryon Acoustic Oscillation Scale.
Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M
2016-03-25
At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.
Model of stochastic self-oscillation in Gunn diode oscillators
Energy Technology Data Exchange (ETDEWEB)
Bocharov, E.P.; Korostelev, G.N.; Khripunov, M.V.
1987-07-01
The applicability of the two-mode nonlinear model of decay stochasticity for explanation of the transition from monochromatic self-oscillation to developed stochasticity in the Gunn diode oscillator is demonstrated. Numerical realizations of the basic regimes corresponding to various cases of consideration of the weak nonlinearity of the falling portion of the current-voltage characteristic are presented. A comparative analysis of calculation results of time realizations and experimentally observed oscillograms of stochastic regimes is performed.
Oscillations in Mathematical Biology
1983-01-01
The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...
Energy Technology Data Exchange (ETDEWEB)
Ke, Xiang; Zhou, Xiang, E-mail: zhouxiang@njust.edu.cn; Hao, Gaozi; Xiao, Lei; Liu, Jie; Jiang, Wei, E-mail: superfine_jw@126.com
2017-06-15
Highlights: • Superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film is prepared by combining electrophoretic deposition and surface modification technologies. • The deposition system and kinetics of electrophoretic deposition process are investigated to optimize parameters to obtain smooth films. • Energy-release characteristics of superhydrophobic films are significantly improved for both fresh and aged samples. • Superhydrophobic films exhibit excellent long-time storage stability both in natural and accelerated aging test. • A preignition reaction is found to enhance the energy-release characteristics of superhydrophobic nanothermite film. - Abstract: One of the challenges for the application of energetic materials is their energy-retaining capabilities after long-term storage. In this study, we report a facile method to fabricate superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film by combining electrophoretic deposition and surface modification technologies. Different concentrations of dispersion solvents and additives are investigated to optimize the deposition parameters. Meanwhile, the dependence of deposition rates on nanoparticle concentrations is also studied. The surface morphology and chemical composition are characterized by field-emission scanning electron microscopy, X-ray diffraction, X-ray energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. A static contact angles as high as 156° shows the superhydrophobicity of the nanothermite film. Natural and accelerated aging tests are performed and the thermal behavior is analyzed. Thermal analysis shows that the surface modification contributes to significantly improved energy-release characteristics for both fresh and aged samples, which is supposed to be attributed to the preignition reaction between Al{sub 2}O{sub 3} shell and FAS-17. Superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film exhibits excellent long-time storage stability with 83.4% of energy left in
Hydrogen in an oscillating porous vycor glass
Energy Technology Data Exchange (ETDEWEB)
Kondo, Y.; Schindler, M.; Pobell, F. [Universitaet Bayreuth (Germany)
1995-10-01
The authors investigate hydrogen in porous Vycor glass with a torsional oscillator technique. Although our primary purpose is searching for a superfluid transition of hydrogen supercooled in Vycor, we find that hydrogen molecules which are adsorbed and liquefied in Vycor at T > T{sub 3} (triple point of bulk H{sub 2}) leave the Vycor when decreasing the temperature to below a characteristic value T{sub c} < T{sub 3}. We discuss this phenomenon in terms of a free enregy balance between solid/liquid hydrogen inside and outside the Vycor.
Damping time of transverse kink oscillations in active region coronal loops observed by AIA/SDO
Directory of Open Access Journals (Sweden)
Abbas Abedini
2017-05-01
Full Text Available A coronal loop can be oscillated in various directions. A basic type of coronal loop oscillation is called transverse oscillation that can be caused by different factors, such as nearby active regions and flares. The damping of transverse oscillation may be produced by the dissipation mechanism or the wake of the traveling disturbance. The aim of this paper is to estimate the damping time of transverse (kink coronal loop oscillations and the quantitative dependence of these oscillations on their frequencies in the solar corona loops that are situated near an active region with the Atmospheric Imaging Assembly (AIA onboard Solar Dynamic Observatory (SDO. The observed data on 2014-Oct-17, consisting of 130 images with an interval of 24 seconds in the 171 A0 pass band is analyzed for evidence of transvers kink oscillations along the coronal loops and for estimate of physical parameters by fast Fourier transform (FFT of data times series. In this analyzed signatures of transvers oscillations that are damped rapidly were found, with oscillation periods in the range of P=2-9.5 minutes. Also, damping times and damping qualities of filtered intensities centered on the dominant frequencies are measured in the range of minutes and , respectively. The observational results of this study indicate that the damping times increase with increasing the oscillation periods, and are highly sensitive function of oscillation period, but damping qualities are not very sensitive to the oscillations period. The order of magnitude of the damping times and damping qualities that obtained from this analysis are in good agreement with previous findings by authors and the theoretical prediction for damping of fast kink mode oscillations.
Strong nonlinear oscillators analytical solutions
Cveticanin, Livija
2017-01-01
This book outlines an analytical solution procedure of the pure nonlinear oscillator system, offering a solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter. Includes exercises.
Building a Synthetic Transcriptional Oscillator.
Schwarz-Schilling, Matthaeus; Kim, Jongmin; Cuba, Christian; Weitz, Maximilian; Franco, Elisa; Simmel, Friedrich C
2016-01-01
Reaction circuits mimicking genetic oscillators can be realized with synthetic, switchable DNA genes (so-called genelets), and two enzymes only, an RNA polymerase and a ribonuclease. The oscillatory behavior of the genelets is driven by the periodic production and degradation of RNA effector molecules. Here, we describe the preparation, assembly, and testing of a synthetic, transcriptional two-node negative-feedback oscillator, whose dynamics can be followed in real-time by fluorescence read-out.
An Oscillating Magnet Watt Balance
Ahmedov, H.
2015-01-01
We establish the principles for a new generation of simplified and accurate watt balances in which an oscillating magnet generates Faraday's voltage in a stationary coil. A force measuring system and a mechanism providing vertical movements of the magnet are completely independent in an oscillating magnet watt balance. This remarkable feature allows to establish the link between the Planck constant and a macroscopic mass by a one single experiment. Weak dependence on variations of environment...
Directory of Open Access Journals (Sweden)
Christoph Schmal
Full Text Available The circadian clock controls many physiological processes in higher plants and causes a large fraction of the genome to be expressed with a 24h rhythm. The transcripts encoding the RNA-binding proteins AtGRP7 (Arabidopsis thaliana Glycine Rich Protein 7 and AtGRP8 oscillate with evening peaks. The circadian clock components CCA1 and LHY negatively affect AtGRP7 expression at the level of transcription. AtGRP7 and AtGRP8, in turn, negatively auto-regulate and reciprocally cross-regulate post-transcriptionally: high protein levels promote the generation of an alternative splice form that is rapidly degraded. This clock-regulated feedback loop has been proposed to act as a molecular slave oscillator in clock output. While mathematical models describing the circadian core oscillator in Arabidopsis thaliana were introduced recently, we propose here the first model of a circadian slave oscillator. We define the slave oscillator in terms of ordinary differential equations and identify the model's parameters by an optimization procedure based on experimental results. The model successfully reproduces the pertinent experimental findings such as waveforms, phases, and half-lives of the time-dependent concentrations. Furthermore, we obtain insights into possible mechanisms underlying the observed experimental dynamics: the negative auto-regulation and reciprocal cross-regulation via alternative splicing could be responsible for the sharply peaking waveforms of the AtGRP7 and AtGRP8 mRNA. Moreover, our results suggest that the AtGRP8 transcript oscillations are subordinated to those of AtGRP7 due to a higher impact of AtGRP7 protein on alternative splicing of its own and of the AtGRP8 pre-mRNA compared to the impact of AtGRP8 protein. Importantly, a bifurcation analysis provides theoretical evidence that the slave oscillator could be a toggle switch, arising from the reciprocal cross-regulation at the post-transcriptional level. In view of this
Schmal, Christoph; Reimann, Peter; Staiger, Dorothee
2013-01-01
The circadian clock controls many physiological processes in higher plants and causes a large fraction of the genome to be expressed with a 24h rhythm. The transcripts encoding the RNA-binding proteins AtGRP7 (Arabidopsis thaliana Glycine Rich Protein 7) and AtGRP8 oscillate with evening peaks. The circadian clock components CCA1 and LHY negatively affect AtGRP7 expression at the level of transcription. AtGRP7 and AtGRP8, in turn, negatively auto-regulate and reciprocally cross-regulate post-transcriptionally: high protein levels promote the generation of an alternative splice form that is rapidly degraded. This clock-regulated feedback loop has been proposed to act as a molecular slave oscillator in clock output. While mathematical models describing the circadian core oscillator in Arabidopsis thaliana were introduced recently, we propose here the first model of a circadian slave oscillator. We define the slave oscillator in terms of ordinary differential equations and identify the model's parameters by an optimization procedure based on experimental results. The model successfully reproduces the pertinent experimental findings such as waveforms, phases, and half-lives of the time-dependent concentrations. Furthermore, we obtain insights into possible mechanisms underlying the observed experimental dynamics: the negative auto-regulation and reciprocal cross-regulation via alternative splicing could be responsible for the sharply peaking waveforms of the AtGRP7 and AtGRP8 mRNA. Moreover, our results suggest that the AtGRP8 transcript oscillations are subordinated to those of AtGRP7 due to a higher impact of AtGRP7 protein on alternative splicing of its own and of the AtGRP8 pre-mRNA compared to the impact of AtGRP8 protein. Importantly, a bifurcation analysis provides theoretical evidence that the slave oscillator could be a toggle switch, arising from the reciprocal cross-regulation at the post-transcriptional level. In view of this, transcriptional repression of
A survey of oscillating flow in Stirling engine heat exchangers
Simon, Terrence W.; Seume, Jorge R.
1988-01-01
Similarity parameters for characterizing the effect of flow oscillation on wall shear stress, viscous dissipation, pressure drop and heat transfer rates are proposed. They are based on physical agruments and are derived by normalizing the governing equations. The literature on oscillating duct flows, regenerator and porous media flows is surveyed. The operating characteristics of the heat exchanger of eleven Stirling engines are discribed in terms of the similarity parameters. Previous experimental and analytical results are discussed in terms of these parameters and used to estimate the nature of the oscillating flow under engine operating conditions. The operating points for many of the modern Stirling engines are in or near the laminar to turbulent transition region. In several engines, working fluid does not pass entirely through heat exchangers during a cycle. Questions that need to be addressed by further research are identified.
Modeling nonlinearities in MEMS oscillators.
Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A
2013-08-01
We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.
On the nonlinear modeling of ring oscillators
Elwakil, Ahmed S.
2009-06-01
We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.
Optical, UV, and EUV Oscillations of SS Cygni in Outburst
Energy Technology Data Exchange (ETDEWEB)
Mauche, C W
2003-12-19
I provide a review of observations in the optical, UV (HST), and EUV (EUVE and Chandra LETG) of the rapid periodic oscillations of nonmagnetic, disk-accreting, high mass-accretion rate cataclysmic variables (CVs), with particular emphasis on the dwarf nova SS Cyg in outburst. In addition, I drawn attention to a correlation, valid over nearly six orders of magnitude in frequency, between the frequencies of the quasi-periodic oscillations (QPOs) of white dwarf, neutron star, and black hole binaries. This correlation identifies the high frequency quasi-coherent oscillations (so-called ''dwarf nova oscillations'') of CVs with the kilohertz QPOs of low mass X-ray binaries (LMXBs), and the low frequency and low coherence QPOs of CVs with the horizontal branch oscillations (or the broad noise component identified as such) of LMXBs. Assuming that the same mechanisms produce the QPOs of white dwarf, neutron star, and black hole binaries, this correlation has important implications for QPO models.
Anharmonic Oscillations of a Spring-Magnet System inside a Magnetic Coil
Ladera, Celso L.; Donoso, Guillermo
2012-01-01
We consider the nonlinear oscillations of a simple spring-magnet system that oscillates in the magnetic field of an inductive coil excited with a dc current. Using the relations for the interaction of a coil and a magnet we obtain the motion equation of the system. The relative strengths of the terms of this equation can be adjusted easily by…
A theory of generalized Bloch oscillations
DEFF Research Database (Denmark)
Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny
2016-01-01
Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact cal...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics.......Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch...
On the mechanism of oscillations in neutrophils
DEFF Research Database (Denmark)
Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke
2010-01-01
of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical......We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...
Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise.
Viñales, A D; Wang, K G; Despósito, M A
2009-07-01
The diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise is studied. Using the Laplace analysis we derive exact expressions for the relaxation functions of the particle in terms of generalized Mittag-Leffler functions and its derivatives from a generalized Langevin equation. Our results show that the oscillator displays an anomalous diffusive behavior. In the strictly asymptotic limit, the dynamics of the harmonic oscillator corresponds to an oscillator driven by a noise with a pure power-law autocorrelation function. However, at short and intermediate times the dynamics has qualitative difference due to the presence of the characteristic time of the noise.
Directory of Open Access Journals (Sweden)
Najeeb Alam Khan
2011-01-01
Full Text Available We applied a new approach to obtain natural frequency of the nonlinear oscillator with discontinuity. He's Hamiltonian approach is modified for nonlinear oscillator with discontinuity for which the elastic force term is proportional to sgn(u. We employed this method for higher-order approximate solution of the nonlinear oscillator equation. This property is used to obtain approximate frequency-amplitude relationship of a nonlinear oscillator with high accuracy. Many numerical results are given to prove the efficiency of the suggested technique.
Comparison of Virtual Oscillator and Droop Control
Energy Technology Data Exchange (ETDEWEB)
Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sinha, Mohit [University of Minnesota; Dhople, Sairaj [University of Minnesota
2017-08-21
Virtual oscillator control (VOC) and droop control are distinct methods to ensure synchronization and power sharing of parallel inverters in islanded systems. VOC is a control strategy where the dynamics of a nonlinear oscillator are used to derive control states to modulate the switch terminals of an inverter. Since VOC is a time-domain controller that reacts to instantaneous measurements with no additional filters or computations, it provides a rapid response during transients and stabilizes volatile dynamics. In contrast, droop control regulates the inverter voltage in response to the measured average real and reactive power output. Given that real and reactive power are phasor quantities that are not well-defined in real time, droop controllers typically use multiplicative operations in conjunction with low-pass filters on the current and voltage measurements to calculate such quantities. Since these filters must suppress low frequency ac harmonics, they typically have low cutoff frequencies that ultimately impede droop controller bandwidth. Although VOC and droop control can be engineered to produce similar steady-state characteristics, their dynamic performance can differ markedly. This paper presents an analytical framework to characterize and compare the dynamic response of VOC and droop control. The analysis is experimentally validated with three 120 V inverters rated at 1kW, demonstrating that for the same design specifications VOC is roughly 8 times faster and presents almost no overshoot after a transient.
Parzen, Benjamin
1992-01-01
The theory of oscillator analysis in the immittance domain should be read in conjunction with the additional theory presented here. The combined theory enables the computer simulation of the steady state oscillator. The simulation makes the calculation of the oscillator total steady state performance practical, including noise at all oscillator locations. Some specific precision oscillators are analyzed.
MEMS-BASED OSCILLATORS: A REVIEW
Directory of Open Access Journals (Sweden)
Jamilah Karim
2014-05-01
Full Text Available ABSTRACT: This paper presents an overview of microelectromechanical (MEMS based oscillators. The accuracy and stability of the reference frequency will normally limit the performance of most wireless communication systems. MEMS technology is the technology of choice due to its compatibility to silicon, leading to integration with circuits and lowering power consumption. MEMS based oscillators also provide the potential of a fully integrated transceiver. The most commonly used topology for MEMS based oscillators are pierce oscillator circuit topology and TIA circuit topology. Both topologies result in very competitive output in terms of phase noise and power consumption. They can be used for either higher or lower Rx. The major difference between both topologies is the number of transistors used. TIA circuit used more number of transistor compare to pierce circuit. Thus design complexity of the TIA is higher. Pierce circuit is simpler, provide straightforward biasing and easier to design. The highly integratable of MEMS-based oscillators have made them much needed in future multiband wireless system. So that future wireless systems are able to function globally without any problem. ABSTRAK: Kertas kerja ini membentangkan gambaran keseluruhan mikroelektromekanikal (MEMS berdasarkan pengayun. Ketepatan dan kestabilan frekuensi rujukan sering membataskan perlaksanaan kebanyakan sistem komunikasi tanpa wayar. Teknologi MEMS merupakan teknologi pilihan memandangkan ia serasi dengan silikon; membolehkan integrasi dengan litar dan penggunaan tenaga yang rendah. Pengayun berdasarkan MEMS juga berpotensi sebagai integrasi penuh penghantar-terima. Topologi yang sering digunakan untuk pengayun berdasarkan MEMS adalah topologi litar pengayun pencantas dan topologi litar TIA. Keputusan bagi kedua-dua topologi adalah amat kompetitif dari segi fasa bunyi dan penggunaan tenaga. Ia boleh digunakan untuk meninggikan atau merendahkan Rx. Perbezaan utama
Maximal Regularity of the Discrete Harmonic Oscillator Equation
Directory of Open Access Journals (Sweden)
Airton Castro
2009-01-01
Full Text Available We give a representation of the solution for the best approximation of the harmonic oscillator equation formulated in a general Banach space setting, and a characterization of lp-maximal regularity—or well posedness—solely in terms of R-boundedness properties of the resolvent operator involved in the equation.
The harmonic oscillator in a space with a screw dislocation
Amore, Paolo; Fernández, Francisco M.
2018-01-01
We obtain the eigenvalues of the harmonic oscillator in a space with a screw dislocation. By means of a suitable nonorthogonal basis set with variational parameters we obtain sufficiently accurate eigenvalues for an arbitrary range of values of the space-deformation parameter. The energies exhibit a rich structure of avoided crossings in terms of such model parameter.
Chimera states in a population of identical oscillators under planar ...
Indian Academy of Sciences (India)
2015-01-30
Jan 30, 2015 ... We report the existence of chimera states in an assembly of identical nonlinear oscillators that are globally linked to each other in a simple planar cross-coupled form. The rotational symmetry breaking of the coupling term appears to be responsible for the emergence of these collective states that display a ...
Phase-space treatment of the driven quantum harmonic oscillator
Indian Academy of Sciences (India)
A recent phase-space formulation of quantum mechanics in terms of the Glauber coherent states is applied to study the interaction of a one-dimensional harmonic oscillator with an arbitrary time-dependent force. Wave functions of the simultaneous values of position q and momentum p are deduced, which in turn give the ...
Leiser, Randolph J.; Rotstein, Horacio G.
2017-08-01
Oscillations in far-from-equilibrium systems (e.g., chemical, biochemical, biological) are generated by the nonlinear interplay of positive and negative feedback effects operating at different time scales. Relaxation oscillations emerge when the time scales between the activators and the inhibitors are well separated. In addition to the large-amplitude oscillations (LAOs) or relaxation type, these systems exhibit small-amplitude oscillations (SAOs) as well as abrupt transitions between them (canard phenomenon). Localized cluster patterns in networks of relaxation oscillators consist of one cluster oscillating in the LAO regime or exhibiting mixed-mode oscillations (LAOs interspersed with SAOs), while the other oscillates in the SAO regime. Because the individual oscillators are monostable, localized patterns are a network phenomenon that involves the interplay of the connectivity and the intrinsic dynamic properties of the individual nodes. Motivated by experimental and theoretical results on the Belousov-Zhabotinsky reaction, we investigate the mechanisms underlying the generation of localized patterns in globally coupled networks of piecewise-linear relaxation oscillators where the global feedback term affects the rate of change of the activator (fast variable) and depends on the weighted sum of the inhibitor (slow variable) at any given time. We also investigate whether these patterns are affected by the presence of a diffusive type of coupling whose synchronizing effects compete with the symmetry-breaking global feedback effects.
Phase Noise Effect on MIMO-OFDM Systems with Common and Independent Oscillators
Directory of Open Access Journals (Sweden)
Xiaoming Chen
2017-01-01
Full Text Available The effects of oscillator phase noises (PNs on multiple-input multiple-output (MIMO orthogonal frequency division multiplexing (OFDM systems are studied. It is shown that PNs of common oscillators at the transmitter and at the receiver have the same influence on the performance of (single-stream beamforming MIMO-OFDM systems, yet different influences on spatial multiplexing MIMO-OFDM systems with singular value decomposition (SVD based precoding/decoding. When each antenna is equipped with an independent oscillator, the PNs at the transmitter and at the receiver have different influences on beamforming MIMO-OFDM systems as well as spatial multiplexing MIMO-OFDM systems. Specifically, the PN effect on the transmitter (receiver can be alleviated by having more transmit (receive antennas for the case of independent oscillators. It is found that the independent oscillator case outperforms the common oscillator case in terms of error vector magnitude (EVM.
DEFF Research Database (Denmark)
Rickhag, Karl Mattias; Teilum, Maria; Wieloch, Tadeusz
2007-01-01
The genomic response following brain ischemia is very complex and involves activation of both protective and detrimental signaling pathways. Immediate early genes (IEGs) represent the first wave of gene expression following ischemia and are induced in extensive regions of the ischemic brain...... including cerebral cortex and hippocampus. Brain-derived neurotrophic factor (BDNF), Neuritin and Activity-regulated cytoskeleton-associated protein (Arc) belong to a subgroup of immediate early genes implicated in synaptic plasticity known as effector immediate early genes. Here, we investigated...... at 0-6 h of reperfusion for Neuritin and 0-12 h of reperfusion for Arc while BDNF was induced 0-9 h of reperfusion. Our study demonstrates a rapid and long-term activation of effector immediate early genes in distinct brain areas following ischemic injury in rat. Effector gene activation may be part...
Burst Oscillation Studies with NICER
Mahmoodifar, Simin; Strohmayer, Tod E.
2017-08-01
Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars in Low Mass X-ray Binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. Here we present the results of our computations of the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. For the cooling phase of the burst we use two simple phenomenological models. The first considers asymmetric cooling that can achieve high amplitudes in the tail. The second considers a sustained temperature pattern on the stellar surface that is produced by r-modes propagating in the surface fluid ocean of the star. We will present some simulated burst light curves/spectra using these models and NICER response files, and will show the capabilities of NICER to detect and study burst oscillations. NICER will enable us to study burst oscillations in the energy band below ~3 keV, where there has been no previous measurements of these phenomena.
ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations
DEFF Research Database (Denmark)
la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner
2007-01-01
discovered that the subcellular distribution of a tagged version of ALG-2 could be directed by physiological external stimuli (including ATP, EGF, prostaglandin, histamine), which provoke intracellular Ca2+ oscillations. Cellular stimulation led to a redistribution of ALG-2 from the cytosol to a punctate...... localization in an oscillatory fashion unitemporally with Ca2+ oscillations, whereas a Ca2+-binding deficient mutant of ALG-2 did not redistribute. Using tagged ALG-2 as bait we identified its novel target protein Sec31A and based on the partial colocalization of endogenous ALG-2 and Sec31A we propose that ALG...
Restoration of oscillation in network of oscillators in presence of direct and indirect interactions
Energy Technology Data Exchange (ETDEWEB)
Majhi, Soumen; Bera, Bidesh K. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India); Bhowmick, Sourav K. [Department of Electronics, Asutosh College, Kolkata-700026 (India); Ghosh, Dibakar, E-mail: diba.ghosh@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)
2016-10-23
The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau–Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators. - Highlights: • Amplitude death is observed using direct and indirect coupling. • Revival of oscillation using feedback parameter is discussed. • Restoration of oscillation is observed in limit cycle and chaotic systems.
Damping of prominence longitudinal oscillations due to mass accretion
Ruderman, Michael S.; Luna, Manuel
2016-06-01
thread at the moment when it is perturbed. First we consider small amplitude oscillations and use the linear description. Then we consider nonlinear oscillations and assume that the damping is slow, meaning that the damping time is much larger that the characteristic oscillation time. The thread oscillations are described by the solution of the nonlinear pendulum problem with slowly varying amplitude. The nonlinearity reduces the damping time, however this reduction is small. Again the damping time is inversely proportional to the accretion rate. We also obtain that the oscillation periods decrease with time. However even for the largest initial oscillation amplitude considered in our article the period reduction does not exceed 20%. We conclude that the mass accretion can damp the motion of the threads rapidly. Thus, this mechanism can explain the observed strong damping of large-amplitude longitudinal oscillations. In addition, the damping time can be used to determine the mass accretion rate and indirectly the coronal heating.
Multiple Coexisting Attractors and Hysteresis in the Generalized Ueda Oscillator
Directory of Open Access Journals (Sweden)
Kehui Sun
2013-01-01
Full Text Available A periodically forced nonlinear oscillator called the generalized Ueda oscillator is proposed. The restoring force term of this equation consists of a nonlinear function sgn(x and an absolute function with a variant power. Dynamics is investigated by detailed numerical analysis as well as dynamic simulation, including the largest Lyapunov exponent, phase diagrams, and bifurcation diagrams. Multiple coexisting attractors and complex hysteresis phenomenon are observed. The results show that this system has rich dynamical behaviors, and it has a promising application in the fields of science and engineering.
Investigation of Transverse Oscillation Method
DEFF Research Database (Denmark)
Udesen, Jesper; Jensen, Jørgen Arendt
2006-01-01
oscillation and an axial oscillation in the pulse echo field. The theory behind the creation of the double oscillation pulse echo field is explained as well as the theory behind the estimation of the vector velocity. A parameter study of the method is performed, using the ultrasound simulation program Field...... II. A virtual linear array transducer with center frequency 7 MHz and 128 active elements is created, and a virtual blood vessel of radius 6.4 mm is simulated. The performance of the TO method is found around an initial point in the parameter space. The parameters varied are: flow angle, transmit...... focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal to noise ratio, and type of echo canceling filter used. Using the experimental scanner RASMUS, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic...
Prediction of pilot induced oscillations
Directory of Open Access Journals (Sweden)
Valentin PANĂ
2011-03-01
Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.
1999-01-01
Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.
Hidden symmetries of deformed oscillators
Directory of Open Access Journals (Sweden)
Sergey Krivonos
2017-11-01
Full Text Available We associate with each simple Lie algebra a system of second-order differential equations invariant under a non-compact real form of the corresponding Lie group. In the limit of a contraction to a Schrödinger algebra, these equations reduce to a system of ordinary harmonic oscillators. We provide two clarifying examples of such deformed oscillators: one system invariant under SO(2,3 transformations, and another system featuring G2(2 symmetry. The construction of invariant actions requires adding semi-dynamical degrees of freedom; we illustrate the algorithm with the two examples mentioned.
Oscillating-Coolant Heat Exchanger
Scotti, Stephen J.; Blosser, Max L.; Camarda, Charles J.
1992-01-01
Devices useful in situations in which heat pipes inadequate. Conceptual oscillating-coolant heat exchanger (OCHEX) transports heat from its hotter portions to cooler portions. Heat transported by oscillation of single-phase fluid, called primary coolant, in coolant passages. No time-averaged flow in tubes, so either heat removed from end reservoirs on every cycle or heat removed indirectly by cooling sides of channels with another coolant. Devices include leading-edge cooling devices in hypersonic aircraft and "frost-free" heat exchangers. Also used in any situation in which heat pipe used and in other situations in which heat pipes not usable.
Energy Technology Data Exchange (ETDEWEB)
Ates, Sule, E-mail: suleates@selcuk.edu.tr; Oezarslan, Selma; Celik, Gueltekin; Taser, Mehmet
2012-07-15
The electric dipole oscillator strengths for lines between some singlet and triplet levels have been calculated using the weakest bound electron potential model theory and the quantum defect orbital theory for Be I. In the calculations both multiplet and fine structure transitions are studied. We employed both the numerical Coulomb approximation method and numerical non-relativistic Hartree-Fock wavefunctions for expectation values of radii. The necessary energy values have been taken from experimental energy data in the literature. The calculated oscillator strengths have been compared with available theoretical results. A good agreement with the results in the literature has been obtained.
Energy Technology Data Exchange (ETDEWEB)
Maccari, A. [Istituto Tecnico `G. Cardano`, Monterotondo, Rome (Italy)
1996-08-01
The most important characteristics of the non-local oscillator, an oscillator subjected to an additional non-local force, are extensively studied by means of a new asymptotic perturbation method that is able to furnish an approximate solution of weakly non-linear differential equations. The resulting motion is doubly periodic, because a second little frequency appears, in addition to the fundamental harmonic frequency. Comparison with the numerical solution obtained by the Runge-Kitta method confirms the validity of the asymptotic perturbation method and its importance for the study of non-linear dynamical systems.
Optimal Phase-Control Strategy for Damped-Driven Duffing Oscillators.
Meucci, R; Euzzor, S; Pugliese, E; Zambrano, S; Gallas, M R; Gallas, J A C
2016-01-29
Phase-control techniques of chaos aim to extract periodic behaviors from chaotic systems by applying weak harmonic perturbations with a suitably chosen phase. However, little is known about the best strategy for selecting adequate perturbations to reach desired states. Here we use experimental measures and numerical simulations to assess the benefits of controlling individually the three terms of a Duffing oscillator. Using a real-time analog indicator able to discriminate on-the-fly periodic behaviors from chaos, we reconstruct experimentally the phase versus perturbation strength stability areas when periodic perturbations are applied to different terms governing the oscillator. We verify the system to be more sensitive to perturbations applied to the quadratic term of the double-well Duffing oscillator and to the quartic term of the single-well Duffing oscillator.
TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR
DEFF Research Database (Denmark)
Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis
2007-01-01
A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...
Energy Technology Data Exchange (ETDEWEB)
Guo, Peng; Feng, Jiafeng, E-mail: hxwei@iphy.ac.cn, E-mail: jiafengfeng@iphy.ac.cn; Wei, Hongxiang, E-mail: hxwei@iphy.ac.cn, E-mail: jiafengfeng@iphy.ac.cn; Han, Xiufeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fang, Bin; Zhang, Baoshun; Zeng, Zhongming [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, Suzhou 215123 (China)
2015-01-05
We experimentally study the temperature dependence of the spin-transfer-torque-induced microwave oscillations in MgO-based magnetic tunnel junction nanopillars with a perpendicularly magnetized free layer. We demonstrate that the oscillation frequency increases rapidly with decreasing temperature, which is mainly ascribed to the temperature dependence of both the saturation magnetization and the perpendicular magnetic anisotropy. We also find that a strong temperature dependence of the output power while a nonmonotonic temperature dependence of spectral linewidth are maintained for a constant dc bias in measured temperature range. Possible mechanisms leading to the different dependences of oscillation frequency, output power, and linewidth are discussed.
Fractional magnetohydrodynamics Oldroyd-B fluid over an oscillating plate
Directory of Open Access Journals (Sweden)
Jamil Muhammad
2013-01-01
Full Text Available This paper presents some new exact solutions corresponding to the oscillating flows of a MHD Oldroyd-B fluid with fractional derivatives. The fractional calculus approach in the governing equations is used. The exact solutions for the oscillating motions of a fractional MHD Oldroyd-B fluid due to sine and cosine oscillations of an infinite plate are established with the help of discrete Laplace transform. The expressions for velocity field and the associated shear stress that have been obtained, presented in series form in terms of Fox H functions, satisfy all imposed initial and boundary conditions. Similar solutions for ordinary MHD Oldroyd-B, fractional and ordinary MHD Maxwell, fractional and ordinary MHD Second grade and MHD Newtonian fluid as well as those for hydrodynamic fluids are obtained as special cases of general solutions. Finally, the obtained solutions are graphically analyzed through various parameters of interest.
Willocq, S
2002-01-01
We review new studies of the time dependence of B0s - B0s-bar mixing by the ALEPH, DELPHI and SLD Collaborations, with an emphasis on the different analysis methods used. Combining all available results yields a preliminary lower limit on the oscillation frequency of dms > 14.4 ps-1 at the 95% C.L.
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
Abstract. Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable- coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota's bilinear method. The bilinear forms and analytic soliton solutions are derived, and the ...
Chemical Oscillations-Mathematical Modelling
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 7. Chemical Oscillations - Mathematical Modelling ... Protein Science and Engineering Unit Institute of Microbial Technology Sector 39A Chandigarh 160 036; Department of Chemistry and Centre for Advanced Studies in Chemistry Punjab ...
Cubication of Conservative Nonlinear Oscillators
Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada
2009-01-01
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…
Linearization of Conservative Nonlinear Oscillators
Belendez, A.; Alvarez, M. L.; Fernandez, E.; Pascual, I.
2009-01-01
A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for…
Sum rules for neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Kobzarev, I.Yu.; Nartem' yanov, B.V.; Okun, L.B.; Shchepkin, M.G. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental' noj Fiziki)
1982-05-01
Sum rules for neutrino oscillations have been obtained. The effects due to the neutrino masses are taken into account, msub(..nu..) being not assumed to be a small parameter. Study of the ''binary'' lsub(i)sup(-) ..-->.. ..nu.. ..-->.. lsub(k)sup(+-) process permits to accurately take into account neutrino masses and to obtain expressions for the cross sections oscillating as functions of distance L between the points of neutrino production and absorption. In the case of Dirac or left Majoran masses obtained is the sum rule according to which the cross section sigma(lsub(i)sup(-) ..-->.. lsub(k)sup(-)) summarized with the weight 1/vsub(k) by aromas of final lepton remains constant (exactly, decrease as 1/L/sup 2/) and it does not oscillate. In the case of left Majoran masses there is admixture of antineutrino due to which the lsub(i)sup(-) ..-->.. lsub(k)sup(+) process is possible. In this case both components (neutrino with antineutrino admixture) oscillates independently and there exists analogous sum rule for the sigma(lsub(i)sup(-) ..-->.. lsub(k)sup(+)) cross section.
Discovery of atmospheric neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Kajita, Takaaki [Tokyo Univ., Inst. for Cosmic Ray Research, Kashiwa, Chiba (Japan)
2003-05-01
Cosmic ray particles entering the atmosphere interact with the air nuclei produce neutrinos. These neutrinos are called atmospheric neutrinos. The atmospheric neutrino anomaly observed in Kamiokande is now understood as due to neutrino oscillations by high statistics measurements of the atmospheric neutrinos in Super-Kamiokande. The studies of the atmospheric neutrinos have matured into detailed studies of neutrino masses and mixings. (author)
Sustained oscillations in living cells
Danø, Sune; Sørensen, Preben Graae; Hynne, Finn
1999-11-01
Glycolytic oscillations in yeast have been studied for many years simply by adding a glucose pulse to a suspension of cells and measuring the resulting transient oscillations of NADH. Here we show, using a suspension of yeast cells, that living cells can be kept in a well defined oscillating state indefinitely when starved cells, glucose and cyanide are pumped into a cuvette with outflow of surplus liquid. Our results show that the transitions between stationary and oscillatory behaviour are uniquely described mathematically by the Hopf bifurcation. This result characterizes the dynamical properties close to the transition point. Our perturbation experiments show that the cells remain strongly coupled very close to the transition. Therefore, the transition takes place in each of the cells and is not a desynchronization phenomenon. With these two observations, a study of the kinetic details of glycolysis, as it actually takes place in a living cell, is possible using experiments designed in the framework of nonlinear dynamics. Acetaldehyde is known to synchronize the oscillations. Our results show that glucose is another messenger substance, as long as the glucose transporter is not saturated.
Sound oscillation of dropwise cluster
Energy Technology Data Exchange (ETDEWEB)
Shavlov, A.V., E-mail: shavlov@ikz.ru [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation); Dzhumandzhi, V.A.; Romanyuk, S.N. [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation)
2012-06-04
There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 10{sup 2}–10{sup 3} units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.
Directory of Open Access Journals (Sweden)
Mamiko Suzuki
Full Text Available Squid can rapidly change the chromatic patterns on their body. The patterns are created by the expansion and retraction of chromatophores. The chromatophore consists of a central pigment-containing cell surrounded by radial muscles that are controlled by motor neurons located in the central nervous system (CNS. In this study we used semi-intact squid (Sepioteuthis lessoniana displaying centrally controlled natural patterns to analyze spatial and temporal activities of chromatophores located on the dorsal mantle skin. We found that chromatophores oscillated with miniature expansions/retractions at various frequencies, even when the chromatic patterns appear macroscopically stable. The frequencies of this miniature oscillation differed between "feature" and "background" areas of chromatic patterns. Higher frequencies occurred in feature areas, whereas lower frequencies were detected in background areas. We also observed synchronization of the oscillation during chromatic pattern expression. The expansion size of chromatophores oscillating at high frequency correlated with the number of synchronized chromatophores but not the oscillation frequency. Miniature oscillations were not observed in denervated chromatophores. These results suggest that miniature oscillations of chromatophores are driven by motor neuronal activities in the CNS and that frequency and synchrony of this oscillation determine the chromatic pattern and the expansion size, respectively.
A benevolent nonlinear system: The dynamically shifted oscillator
Thomsen, John. S.
1988-02-01
Hartmann has given an analysis of the dynamically shifted oscillator; this system is characterized by a restoring force k[x+x0 sign(x)], where sign(x)=x/‖x‖. He obtained an exact solution for free oscillations in terms of a Fourier series. This problem is reexamined and an alternative exact (piecewise) solution is given. The analysis is then extended to include a cosinusoidal forcing term. Exact solutions are given for three cases: (a) ω>ω0; (b) ω<ω0; (c) ω=ω0, where ω0 is the linear resonant frequency. Response curves are plotted and compared with those for the ``hard spring'' Duffing equation. While the system is simple enough to permit exact solutions in terms of elementary functions, it exhibits a number of characteristically nonlinear features; these include multiple-valued solutions, hysteresis effects, and amplitude jumps.
Analytic Neutrino Oscillation Probabilities in Matter: Revisited
Energy Technology Data Exchange (ETDEWEB)
Parke, Stephen J. [Fermilab; Denton, Peter B. [Copenhagen U.; Minakata, Hisakazu [Madrid, IFT
2018-01-02
We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.
Gehan, Charlotte; Mosser, Benoît; Michel, Eric
2017-10-01
Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, wich behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the identification of mode crossings is precise and efficient. The determination of the mean core rotation directly derives from the precise measurement of the asymptotic period spacing ΔΠ1 and of the frequency at which the crossing of the rotational components is observed.
Neutrino Oscillation Parameter Sensitivity in Future Long-Baseline Experiments
Energy Technology Data Exchange (ETDEWEB)
Bass, Matthew [Colorado State Univ., Fort Collins, CO (United States)
2014-01-01
The study of neutrino interactions and propagation has produced evidence for physics beyond the standard model and promises to continue to shed light on rare phenomena. Since the discovery of neutrino oscillations in the late 1990s there have been rapid advances in establishing the three flavor paradigm of neutrino oscillations. The 2012 discovery of a large value for the last unmeasured missing angle has opened the way for future experiments to search for charge-parity symmetry violation in the lepton sector. This thesis presents an analysis of the future sensitivity to neutrino oscillations in the three flavor paradigm for the T2K, NO A, LBNE, and T2HK experiments. The theory of the three flavor paradigm is explained and the methods to use these theoretical predictions to design long baseline neutrino experiments are described. The sensitivity to the oscillation parameters for each experiment is presented with a particular focus on the search for CP violation and the measurement of the neutrino mass hierarchy. The variations of these sensitivities with statistical considerations and experimental design optimizations taken into account are explored. The effects of systematic uncertainties in the neutrino flux, interaction, and detection predictions are also considered by incorporating more advanced simulations inputs from the LBNE experiment.
Determination of 1-naphthylamine by using oscillating chemical reaction.
Gao, Jinzhang; Wei, Xiaoxia; Yang, Wu; Lv, Dongyu; Qu, Jie; Chen, Hua; Dai, Hongxia
2007-06-01
A simple and rapid analytical method for determining 1-naphthylamine was proposed by perturbation with different amounts of 1-naphthylamine on the classical Belousov-Zhabotinskii (B-Z) oscillating chemical system. The results show that the changes both in oscillating period and amplitude were linearly proportional to the logarithm of the concentration of 1-naphthylamine (logC) very well ranging from 7.08x10(-5) to 7.08x10(-6) molL(-1) and 7.08x10(-5) to 1.0x10(-6) molL(-1), with the corresponding regression coefficient are 0.9957 and 0.9922, respectively. For the later, a lower detection limit of 5.64x10(-9) molL(-1) was obtained. Influence of injection point, temperature and reactant variables on this oscillating system was also investigated in detailed. The results obtained were compared with other determination methods. A possible reaction mechanism was interpreted by using bromide ion selective electrode to inspect the concentration change of Br(-) ion in the oscillating process.
Quantum oscillations in the chiral magnetic conductivity
Kaushik, Sahal; Kharzeev, Dmitri E.
2017-06-01
In strong magnetic field, the longitudinal magnetoconductivity in three-dimensional chiral materials is shown to exhibit a new type of quantum oscillations arising from the chiral magnetic effect (CME). These quantum CME oscillations are predicted to dominate over the Shubnikov-de Haas (SdH) ones in chiral materials with an approximately conserved chirality of quasiparticles at strong magnetic fields. The phase of quantum CME oscillations differs from the phase of the conventional SdH oscillations by π /2 .
Nonlinear analysis of ring oscillator circuits
Ge, Xiaoqing
2010-06-01
Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.
Assessing the quality of stochastic oscillations
Indian Academy of Sciences (India)
Population dynamics; stochastic oscillations. ... We propose a quantification of the oscillatory appearance of the fluctuating populations, and show that good stochastic oscillations are present if a parameter of the macroscopic model is small, and that no microscopic model will show oscillations if that parameter is large.
Internal dynamics of long Josephson junction oscillators
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Lomdahl, P. S.; Scott, Alwyn C.
1981-01-01
Numerical computations on a sine-Gordon model of the Josephson junction fluxon oscillator are compared with experimental measurements. Good agreement is found for the voltage current characteristic, oscillator power output, and range of current bias over which oscillation is observed. Our numerical...
Comparison of Methods for Oscillation Detection
DEFF Research Database (Denmark)
Odgaard, Peter Fogh; Trangbæk, Klaus
2006-01-01
This paper compares a selection of methods for detecting oscillations in control loops. The methods are tested on measurement data from a coal-fired power plant, where some oscillations are occurring. Emphasis is put on being able to detect oscillations without having a system model and without...
Scleronomic Holonomic Constraints and Conservative Nonlinear Oscillators
Munoz, R.; Gonzalez-Garcia, G.; Izquierdo-De La Cruz, E.; Fernandez-Anaya, G.
2011-01-01
A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present…
Coherent states for the Legendre oscillator
Borzov, V. V.; Damaskinsky, E. V.
2003-01-01
A new oscillator-like system called by the Legendre oscillator is introduced in this note. The two families of coherent states (coherent states as eigenvectors of the annihilation operator and the Klauder-Gazeau temporally stable coherent states) are defined and investigated for this oscillator.
Synchronization in Complex Oscillator Networks and Smart Grids
Energy Technology Data Exchange (ETDEWEB)
Dorfler, Florian [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory; Bullo, Francesco [Center for Control, Dynamical Systems and Computation, University of California at Santa Babara, Santa Barbara CA
2012-07-24
The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A coupled oscillator network is characterized by a population of heterogeneous oscillators and a graph describing the interaction among them. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here we present a novel, concise, and closed-form condition for synchronization of the fully nonlinear, non-equilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters, or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters, they are statistically correct for almost all networks, and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks such as electric power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex networks scenarios and in smart grid applications.
An analytical perturbation treatment of the rotating Morse oscillator
Energy Technology Data Exchange (ETDEWEB)
Zuniga, Jose; Bastida, Adolfo; Requena, Alberto [Departamento de Quimica Fisica, Universidad de Murcia, 30100 Murcia (Spain)], E-mail: zuniga@um.es
2008-05-28
An analytical perturbation treatment to determine the energy levels of the rotating Morse oscillator is proposed. The method is based on making an exponential expansion of the rotational term about a suitably chosen internuclear distance r{sub b}, and on solving the equations obtained in this way using analytic perturbation theory. The value of the parameter r{sub b} is chosen as the minimum of the Morse-Pekeris oscillator or as the minimum of the third-order Morse-Pekeris expansion, both of which can be evaluated analytically. The resulting zero-order system is then a modified version of the original Morse-Pekeris oscillator model. The perturbation treatment is carried out using the hypervirial perturbation method and by rearranging the energy corrections in terms of inverse powers of dissociation energy of the zero-order system. The accuracy of the analytical expression derived for the energy levels of the rotating Morse oscillator is checked by making a numerical application to the H{sub 2} molecule.
Synchronization in complex oscillator networks and smart grids.
Dörfler, Florian; Chertkov, Michael; Bullo, Francesco
2013-02-05
The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A widely adopted model of a coupled oscillator network is characterized by a population of heterogeneous phase oscillators, a graph describing the interaction among them, and diffusive and sinusoidal coupling. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here, we present a unique, concise, and closed-form condition for synchronization of the fully nonlinear, nonequilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters; they are statistically correct for almost all networks; and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks, such as electrical power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex network scenarios and in smart grid applications.
Deng, Weiwei; Clausen, Jenni; Boden, Scott; Oliver, Sandra N; Casao, M Cristina; Ford, Brett; Anderssen, Robert S; Trevaskis, Ben
2015-01-01
The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare), a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in barley seedlings grown in darkness or constant light but were observed with day-night cycles. A dark-to-light transition influenced transcript levels of some clock genes but triggered only weak oscillations of gene expression, whereas a light-to-dark transition triggered robust oscillations. Single light pulses of 6, 12 or 18 hours induced robust oscillations. The light-to-dark transition was the primary determinant of the timing of subsequent peaks of clock gene expression. After the light-to-dark transition the timing of peak transcript levels of clock gene also varied depending on the length of the preceding light pulse. Thus, a single photoperiod can trigger initiation of photoperiod-dependent circadian rhythms in barley seedlings. Photoperiod-specific rhythms of clock gene expression were observed in two week old barley plants. Changing the timing of dusk altered clock gene expression patterns within a single day, showing that alteration of circadian oscillator behaviour is amongst the most rapid molecular responses to changing photoperiod in barley. A barley EARLY FLOWERING3 mutant, which exhibits rapid photoperiod-insensitive flowering behaviour, does not establish clock rhythms in response to a single photoperiod. The data presented show that dawn and dusk cues are important signals for setting the state of the circadian oscillator during early development of barley and that the circadian oscillator of barley exhibits photoperiod-dependent oscillation states.
Near shore floating oscillating wave column
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-07-01
Three different types of floating buoys, using oscillating wave columns, have been considered for generating electric power in an Atlantic environment. The study considered the situation close to the shore, but in the ultimate it was hoped to deploy units offshore. Although other designs would have greater power capture efficiency, the Spar Buoy was studied in greatest depth as it was expected to have the edge in terms of building cost and operating economics. A risk assessment was carried out for both concrete and steel buoys. The report covers (1) history of the project development; (2) project definition; (3) power generation and sensitivities and (4) lessons learned. The study was sponsored by Great Britain's DTI.
Photochemically induced oscillations of aromatic pentazadienes
Energy Technology Data Exchange (ETDEWEB)
Kunz, T.; Hahn, C.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
Aromatic pentazadienes are used to enhance the laser induced ablation of standard polymers with low absorption in the UV. Therefore the photochemistry of substituted 1,5-diaryl-3-alkyl-1,4-pentazadiene monomers was studied with a pulsed excimer laser as irradiation source. The net photochemical reaction proceeds in an overall one-step pathway A{yields}B. Quantum yields for the laser decomposition were determined to be up to 10%. An oscillating behaviour of the absorption was found during the dark period following the irradiation. The temperature dependence of this dark reaction has been studied. An attempt to model this behaviour in terms of a non-linear coupling between heat released, heat transfer, and reaction kinetics will be described. (author) 4 figs., 4 refs.
Measuring neutrino oscillation parameters using $\
Energy Technology Data Exchange (ETDEWEB)
Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)
2011-01-01
MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δm_{atm}^{2} and sin^{2} 2θ_{atm}). The oscillation signal consists of an energy-dependent deficit of v_{μ} interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the v_{μ}-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the v_{μ}-disappearance analysis, incorporating this new estimator were: Δm^{2} = 2.32_{-0.08}^{+0.12} x 10^{-3} eV^{2}, sin ^{2} 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$_{μ} beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36_{-0.40}^{+0.46}(stat.) ± 0.06(syst.)) x 10^{-3}eV^{2}, sin^{2} 2$\\bar{θ}$ = 0.86_{-0.12}^{_0}
Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators
Talukdar, Abdul Hafiz Ibne
2012-07-28
Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.
Petri, B; Stengl, M
2001-04-01
Increasing evidence indicates that the accessory medulla is the circadian pacemaker controlling locomotor activity rhythms in insects. A prominent group of neurons of this neuropil shows immunoreactivity to the peptide pigment-dispersing hormone (PDH). In Drosophila melanogaster, the PDH-immunoreactive (PDH-ir) lateral neurons, which also express the clock genes period and timeless, are assumed to be circadian pacemaker cells themselves. In other insects, such as Leucophaea maderae, a subset of apparently homologue PDH-ir cells is a candidate for the circadian coupling pathway of the bilaterally symmetric clocks. Although knowledge about molecular mechanisms of the circadian clockwork is increasing rapidly, very little is known about mechanisms of circadian coupling. The authors used a computer model, based on the molecular feedback loop of the clock genes in D. melanogaster, to test the hypothesis that release of PDH is involved in the coupling between bilaterally paired oscillators. They can show that a combination of all-delay- and all-advance-type interactions between two model oscillators matches best the experimental findings on mutual pacemaker coupling in L. maderae. The model predicts that PDH affects the phosphorylation rate of clock genes and that in addition to PDH, another neuroactive substance is involved in the coupling pathway, via an all-advance type of interaction. The model suggests that PDH and light pulses, represented by two distinct classes of phase response curves, have different targets in the oscillatory feedback loop and are, therefore, likely to act in separate input pathways to the clock.
Multifrequency Oscillator-Type Active Printed Antenna Using Chaotic Colpitts Oscillator
Bibha Kumari; Nisha Gupta
2014-01-01
This paper presents a new concept to realize a multifrequency Oscillator-type active printed monopole antenna. The concept of period doubling route to chaos is exploited to generate the multiple frequencies. The chaotic Colpitts oscillator is integrated with the printed monopole antenna (PMA) on the same side of the substrate to realize an Oscillator-type active antenna where the PMA acts as a load and radiator to the chaotic oscillator. By changing the bias voltage of the oscillator, the ant...
Experimental studies of neutrino oscillations
Kajita, Takaaki
2016-01-01
The 2015 Nobel Prize in physics has been awarded to Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Takaaki Kajita of Tokyo University is a Japanese physicist, known for neutrino experiments at the Kamiokande and its successor, Super-Kamiokande. This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into as well as a record of the rise and the role of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the 3 families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible foot-print in the history of big and better science.
Quantum transduction with mechanical oscillators
Lehnert, Konrad
In modern information technology, micromechanical oscillators are ubiquitous signal processing elements. Because the speed of sound is so slow compared to the speed of light, mechanical structures create superb compact filters and clocks. Moreover they convert force and acceleration signals into more easily processed electrical signals. Although these humble devices appear manifestly classical, they can exhibit quantum behavior when their vibrations are strongly coupled to optical light or to microwave electricity. I will describe our progress in using this recent result to develop quantum information processing elements. First, we are developing a device that uses a mechanical oscillator to transfer information noiselessly between electrical and optical domains. Second, we prepare propagating microwave fields in superpositions of 0 and 1 photon, and use an electromechanical device to store and amplify these fragile quantum bits. Work supported by AFOSR MURI:FA9550-15-1-0015, NSF under Grant Number 1125844, and the Gordon and Betty Moore Foundation.
Memristor-based reactance-less oscillator
Zidan, Mohammed A.
2012-10-02
The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.
Cyanohydrin reactions enhance glycolytic oscillations in yeast
DEFF Research Database (Denmark)
Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian
2015-01-01
Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here...... for ~66% of total cyanide removal. Simulations of our updated computational model show that intracellular cyanide reactions increase the amplitude of oscillations and that cyanide addition lowers [ACA] instantaneously. We conclude that cyanide provides the following means of inducing global oscillations......: a) by reducing [ACAx] relative to oscillation amplitude, b) by targeting multiple intracellular carbonyl compounds during fermentation, and c) by acting as a phase resetting stimulus....
Phase-conjugated mirror-induced oscillations outside the rotating-wave approximation
Energy Technology Data Exchange (ETDEWEB)
Hassan, S S [Ain Shams University, Faculty of Science, Mathematics Department, Cairo (Egypt); Frege, O [Ain Shams University, Faculty of Education, Mathematics Department, Cairo (Egypt)
2002-06-01
Dynamical behaviour of a single harmonic oscillator (HO) and of a single and two cooperative atoms in front of a phase-conjugated mirror is investigated without using the rotating-wave approximation. The mean photon number of the HO shows transient oscillation of frequency (2{omega}{sub 0}) and O({gamma}/{omega}{sub 0}), the ratio of the free-space decay rate to the oscillation frequency, and the fluorescent spectrum becomes asymmetric due to additional resonant and non-resonant dispersive terms. In the single-two-level-atom case, the mean atomic inversion and the fluorescent intensity show steady oscillation O({gamma}{sub 0}/{omega}{sub 0}), the ratio of the A-coefficient to the atomic transition frequency. The amplitude of this steady oscillation at frequency (2{omega}{sub 0}) is larger in the case of two cooperative atoms.
Narahara, Koichi; Misono, Masatoshi; Miyakawa, Kenji
2013-01-01
We investigate the external synchronization of the oscillating pulse edges developed in a transmission line periodically loaded with tunnel diodes (TDs), termed a TD line. It is observed that the pulse edge oscillates on a TD line when supplied by an appropriate voltage at the end of the line. We discuss how the pulse edge oscillates on a TD line and the properties of the external synchronization of the edge oscillation driven by a sinusoidal perturbation. By applying a phase-reduction scheme to the transmission equation of a TD line, we obtain the phase sensitivity, which satisfactory explains the measured spatial dependence of the locking range on the frequency. Moreover, we successfully detect the spatiotemporal behaviors of the edge oscillation by establishing synchronization with the sampling trigger of an oscilloscope.
DEFF Research Database (Denmark)
Isaeva, Olga B.; Kuznetsov, Sergey P.; Mosekilde, Erik
2011-01-01
model corresponds to the situation of equality of natural frequencies of the partial oscillators, and another to a nonresonant ratio of the oscillation frequencies relating to each of the two pairs. Dynamics of all models are illustrated with diagrams indicating the transformation of the angular......The paper proposes an approach to constructing feasible examples of dynamical systems with hyperbolic chaotic attractors based on the successive transfer of excitation between two pairs of self-oscillators that are alternately active. An angular variable that measures the relations of the current...... amplitudes for the two oscillators of each pair undergoes a transformation in accordance with the expanding circle map during each cycle of the process. We start with equations describing the dynamics in terms of complex or real amplitudes and then examine two models based on van der Pol oscillators. One...
Multipartite entanglement in neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2009-06-01
Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.
Oscillations and Waves in Sunspots
Directory of Open Access Journals (Sweden)
Elena Khomenko
2015-11-01
Full Text Available A magnetic field modifies the properties of waves in a complex way. Significant advances have been made recently in our understanding of the physics of sunspot waves with the help of high-resolution observations, analytical theories, as well as numerical simulations. We review the current ideas in the field, providing the most coherent picture of sunspot oscillations as by present understanding.
Renormalization for free harmonic oscillators
Sonoda, H.
2013-01-01
We introduce a model of free harmonic oscillators that requires renormalization. The model is similar to but simpler than the soluble Lee model. We introduce two concrete examples: the first, resembling the three dimensional $\\phi^4$ theory, needs only mass renormalization, and the second, resembling the four dimensional $\\phi^4$ theory and the Lee model, needs additional renormalization of a coupling and a wave function.
Oscillations of a polarizable vacuum
Directory of Open Access Journals (Sweden)
James G. Gilson
1991-01-01
Full Text Available A classical basis for one-dimensional Schrödinger quantum theory is constructed from simple vacuum polarization harmonic oscillators within standard stochastic theory. The model is constructed on a two-dimensional phase configuration surface with phase velocity vectors that have a speed of light zitterbewegung behaviour character. The system supplies a natural Hermitian scalar product describing probability density which is derived from angular momentum considerations. The generality of the model which is extensive is discussed.
Antiferromagnetic nano-oscillator in external magnetic fields
Checiński, Jakub; Frankowski, Marek; Stobiecki, Tomasz
2017-11-01
We describe the dynamics of an antiferromagnetic nano-oscillator in an external magnetic field of any given time distribution. The oscillator is powered by a spin current originating from spin-orbit effects in a neighboring heavy metal layer and is capable of emitting a THz signal in the presence of an additional easy-plane anisotropy. We derive an analytical formula describing the interaction between such a system and an external field, which can affect the output signal character. Interactions with magnetic pulses of different shapes, with a sinusoidal magnetic field and with a sequence of rapidly changing magnetic fields are discussed. We also perform numerical simulations based on the Landau-Lifshitz-Gilbert equation with spin-transfer torque effects to verify the obtained results and find a very good quantitative agreement between analytical and numerical predictions.
Oscillators and relaxation phenomena in Pleistocene climate theory
Crucifix, Michel
2011-01-01
Ice sheets appeared in the northern hemisphere around 3 million years ago and glacial-interglacial cycles have paced Earth's climate since then. Superimposed on these long glacial cycles comes an intricate pattern of millennial and sub-millennial variability, including Dansgaard-Oeschger and Heinrich events. There are numerous theories about theses oscillations. Here, we review a number of them in order draw a parallel between climatic concepts and dynamical system concepts, including, in particular, the relaxation oscillator, excitability, slow-fast dynamics and homoclinic orbits. Namely, almost all theories of ice ages reviewed here feature a phenomenon of synchronisation between internal climate dynamics and the astronomical forcing. However, these theories differ in their bifurcation structure and this has an effect on the way the ice age phenomenon could grow 3 million years ago. All theories on rapid events reviewed here rely on the concept of a limit cycle in the ocean circulation, which may be excited...
Mölle, Matthias; Marshall, Lisa; Gais, Steffen; Born, Jan
2004-09-21
Learning is assumed to induce specific changes in neuronal activity during sleep that serve the consolidation of newly acquired memories. To specify such changes, we measured electroencephalographic (EEG) coherence during performance on a declarative learning task (word pair associations) and subsequent sleep. Compared with a nonlearning control condition, learning performance was accompanied with a strong increase in coherence in several EEG frequency bands. During subsequent non-rapid eye movement sleep, coherence only marginally increased in a global analysis of EEG recordings. However, a striking and robust increase in learning-dependent coherence was found when analyses were performed time-locked to the occurrence of slow oscillations (learning in the slow-oscillatory, delta, slow-spindle, and gamma bands. The findings identify the depolarizing phase of the slow oscillations in humans as a time period particularly relevant for a reprocessing of memories in sleep.
Automatic oscillator frequency control system
Smith, S. F. (Inventor)
1985-01-01
A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.
Neutrino Oscillation Experiment at JHF
2002-01-01
T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...
Capacitive coupling synchronizes autonomous microfluidic oscillators.
Lesher-Perez, Sasha Cai; Zhang, Chao; Takayama, Shuichi
2018-01-31
Even identically-designed autonomous microfluidic oscillators have device-to-device oscillation variability that arises due to inconsistencies in fabrication, materials, and operation conditions. This work demonstrates, experimentally and theoretically, that with appropriate capacitive coupling these microfluidic oscillators can be synchronized. The size and characteristics of the capacitive coupling needed and the range of input flow rate differences that can be synchronized are also characterized. In addition to device-to-device variability, there is also within-device oscillation noise that arises. An additional advantage of coupling multiple fluidic oscillators together is that the oscillation noise decreases. The ability to synchronize multiple autonomous oscillators is also a first step towards enhancing their usefulness as tools for biochemical research applications where multiplicate experiments with identical temporal-stimulation conditions are required. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Microwave balanced oscillators and frequency doublers
Siripon, N
2002-01-01
The research presented in this thesis is on the application of the injection-locked oscillator technique to microwave balanced oscillators. The balanced oscillator design is primarily analysed using the extended resonance technique. A transmission line is connected between the two active devices, so that the active device resonate each other. The electrical length of the transmission line is also analysed for the balanced oscillation condition. The balanced oscillator can be viewed with the negative resistance model and the feedback model. The former model is characterised at a circuit plane where the feedback network is cut. By using both the negative-resistance oscillator model and the feedback model, the locking range of the oscillator is analysed by extending Kurokawa's theory. This analysis demonstrates the locking range of the injection phenomenon, where the injection frequency is either close to the free-running frequency, close to (1/n) x free-running frequency or close to n x the free-running frequen...
Controlling Working Memory Operations by Selective Gating: The Roles of Oscillations and Synchrony
Dipoppa, Mario; Szwed, Marcin; Gutkin, Boris S.
2016-01-01
Working memory (WM) is a primary cognitive function that corresponds to the ability to update, stably maintain, and manipulate short-term memory (ST M) rapidly to perform ongoing cognitive tasks. A prevalent neural substrate of WM coding is persistent neural activity, the property of neurons to remain active after having been activated by a transient sensory stimulus. This persistent activity allows for online maintenance of memory as well as its active manipulation necessary for task performance. WM is tightly capacity limited. Therefore, selective gating of sensory and internally generated information is crucial for WM function. While the exact neural substrate of selective gating remains unclear, increasing evidence suggests that it might be controlled by modulating ongoing oscillatory brain activity. Here, we review experiments and models that linked selective gating, persistent activity, and brain oscillations, putting them in the more general mechanistic context of WM. We do so by defining several operations necessary for successful WM function and then discussing how such operations may be carried out by mechanisms suggested by computational models. We specifically show how oscillatory mechanisms may provide a rapid and flexible active gating mechanism for WM operations. PMID:28154616
DEFF Research Database (Denmark)
Garrido, Jesús A.; Luque, Niceto R.; Tolu, Silvia
2016-01-01
The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly...... understood. Here, we have used a simple model of afferent excitatory neurons and interneurons with lateral inhibition, reproducing a network topology found in many brain areas from the cerebellum to cortical columns. When endowed with spike-timing dependent plasticity (STDP) at the excitatory input synapses...... and at the inhibitory interneuron-interneuron synapses, the interneurons rapidly learned complex input patterns. Interestingly, induction of plasticity required that the network be entrained into theta-frequency band oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity...
From steady-state to synchronized yeast glycolytic oscillations II: model validation.
du Preez, Franco B; van Niekerk, David D; Snoep, Jacky L
2012-08-01
In an accompanying paper [du Preez et al., (2012) FEBS J279, 2810-2822], we adapt an existing kinetic model for steady-state yeast glycolysis to simulate limit-cycle oscillations. Here we validate the model by testing its capacity to simulate a wide range of experiments on dynamics of yeast glycolysis. In addition to its description of the oscillations of glycolytic intermediates in intact cells and the rapid synchronization observed when mixing out-of-phase oscillatory cell populations (see accompanying paper), the model was able to predict the Hopf bifurcation diagram with glucose as the bifurcation parameter (and one of the bifurcation points with cyanide as the bifurcation parameter), the glucose- and acetaldehyde-driven forced oscillations, glucose and acetaldehyde quenching, and cell-free extract oscillations (including complex oscillations and mixed-mode oscillations). Thus, the model was compliant, at least qualitatively, with the majority of available experimental data for glycolytic oscillations in yeast. To our knowledge, this is the first time that a model for yeast glycolysis has been tested against such a wide variety of independent data sets. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html. © 2012 The Authors Journal compilation © 2012 FEBS.
Effect of idler absorption in pulsed optical parametric oscillators.
Rustad, Gunnar; Arisholm, Gunnar; Farsund, Øystein
2011-01-31
Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.
Comment on ``Iterative Bogoliubov transformations and anharmonic oscillators''
Fernández, Francisco M.; Castro, Eduardo A.
1993-10-01
We discuss a recently proposed method [R. Jáuregui and J. Récamier, Phys. Rev. A 46, 2240 (1992)] based on the application of iterative Bogoliubov transformations to anharmonic oscillators and show that, if the algorithm converges, one easily obtains the final result directly in one step. We prove that the Bogoliubov transformation can be written in terms of scaling and translation parameters and present exact results for the coefficients of the Bogoliubov transformation for some selected examples.
Chaotic gas bubble oscillations in a viscoelastic fluid
Jiménez-Fernández, Javier
2008-05-01
Regular and chaotic radial oscillations of an acoustically driven gas bubble in a viscoelastic fluid have been theoretically analyzed. For parameter values usually found in diagnostic ultrasound period-doubling routes to chaos have been identified. Thresholds values of the external pressure amplitude for a first bifurcation in terms of the elasticity and the shear viscosity of the host fluid have also been evaluated. To cite this article: J. Jiménez-Fernández, C. R. Mecanique 336 (2008).
Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding
Lin, Po-Cheng; I, Lin
2016-02-01
We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.
On-chip microfluid induced by oscillation of microrobot for noncontact cell transportation
Feng, Lin; Liang, Shuzhang; Zhou, Xiangcong; Yang, Jianlei; Jiang, Yonggang; Zhang, Deyuan; Arai, Fumihito
2017-11-01
The importance of cell manipulation and cultivation is increasing rapidly in various fields, such as drug discovery, regenerative medicine, and investigation of new energy sources. This paper presents a method to transport cells in a microfluidic chip without contact. A local vortex was generated when high-frequency oscillation of a microtool was induced in a microfluidic chip. The vortex was controlled by tuning the tool's oscillation parameters, such as the oscillation amplitude and frequency. The cells were then transported in the chip based on the direction of the tool's movement, and their position, posture, and trajectories were controlled. Bovine oocyte manipulations, that is, transportation and rotation, were conducted to demonstrate the capability of the proposed method, without any contact by the microrobot with high-frequency oscillation.
On the 18-day quasi-periodic oscillation in the ionosphere
Directory of Open Access Journals (Sweden)
D. Altadill
1996-07-01
Full Text Available The presence and persistence of an 18-day quasi-periodic oscillation in the ionospheric electron density variations were studied. The data of lower ionosphere (radio-wave absorption at equivalent frequency near 1 MHz, middle and upper ionosphere (critical frequencies f0E and f0F2 for the period 1970–1990 have been used in the analysis. Also, solar and geomagnetic activity data (the sunspot numbers Rz and solar radio flux F10.7 cm, and aN index respectively were used to compare the time variations of the ionospheric with the solar and geomagnetic activity data. Periodogram, complex demodulation, auto- and cross-correlation analysis have been used. It was found that 18-day quasi-periodic oscillation exists and persists in the temporal variations of the ionospheric parameters under study with high level of correlation and mean period of 18–19 days. The time variation of the amplitude of the 18-day quasi-periodic oscillation in the ionosphere seems to be modulated by the long-term solar cycle variations. Such oscillations exist in some solar and geomagnetic parameters and in the planetary wave activity of the middle atmosphere. The high similarities in the amplitude modulation, long-term amplitude variation, period range between the oscillation of investigated parameters and the global activity of oscillation suggests a possible solar influence on the 18-day quasi-periodic oscillation in the ionosphere.
Separation control with fluidic oscillators in water
Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.
2017-08-01
The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.
Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation.
Lipphardt, Burghard; Gerginov, Vladislav; Weyers, Stefan
2017-04-01
We describe an optical frequency stabilization scheme of a microwave oscillator that is used for the interrogation of primary cesium fountain clocks. Because of its superior phase noise properties, this scheme, which is based on an ultrastable laser and a femtosecond laser frequency comb, overcomes the frequency instability limitations of fountain clocks given by the previously utilized quartz-oscillator-based frequency synthesis. The presented scheme combines the transfer of the short-term frequency instability of an optical cavity and the long-term frequency instability of a hydrogen maser to the microwave oscillator and is designed to provide continuous long-term operation for extended measurement periods of several weeks. The utilization of the twofold stabilization scheme on the one hand ensures the referencing of the fountain frequency to the hydrogen maser frequency and on the other hand results in a phase noise level of the fountain interrogation signal, which enables fountain frequency instabilities at the 2.5 ×10-14 (τ/s)-1/2 level that are quantum projection noise limited.
Impurity induced current oscillations in one-dimensional conductors
Energy Technology Data Exchange (ETDEWEB)
Artemenko, S N; Shapiro, D S; Vakhitov, R R; Remizov, S V, E-mail: art@cplire.r [V.A. Kotelnikov Institute for Radioengineering and Electronics of the RAS, 125009 Moscow (Russian Federation)
2009-11-15
We study theoretically electronic transport through an isolated local defect in a 1D conductor described in terms of the Luttinger liquid, and show that the well-known tunneling regime of electronic transport leading to power-law I-V curves takes place only in the limit of small voltage. At voltages exceeding a threshold value a new dynamic regime of transport starts in which the DC current I-bar induces AC oscillations of frequency f = I-bar /e. In gated quantum wires where interaction between electrons is short-ranged, generation linewidth is small provided the inter-electronic repulsion is strong enough, otherwise a wide-band noise is generated. In case of long-range Coulomb interaction generation is coherent at any interaction strength. The effect is related to interaction of the current with Friedel oscillations of the electronic density around the impurity. Manifestations of the effect resemble the Coulomb blockade and the Josephson effect. Oscillations of the electric current are accompanied by spin current oscillations. The results are related to semiconducting quantum wires, metallic atomic chains, carbon nanotubes, graphene nanoribbons and others.
Period persistence of long period oscillations in sunspots
Chorley, N.; Foullon, C.; Hnat, B.; Nakariakov, V. M.; Shibasaki, K.
2011-05-01
Long period oscillations in the microwave radiation intensity generated over the sunspot of NOAA AR 10330 are studied with the Nobeyama Radioheliograph as the sunspot passes over the solar disk, over the course of 9 days (06-15 April 2003). Periodogram, Fourier and global wavelet analyses reveal the presence of a significant oscillatory component in the range P ≈ 50-120 min over the course of the observations. The spectral amplitudes of five significant Fourier components in the range P = 50-150 min are also seen to be stable over the observations, when the data are not affected by changes in magnetic configuration in the region. The ground-based nature of the instrument naturally introduces long data gaps in such long duration observations and the presence of the gaps does not allow any conclusion as to the stability of the phases of the oscillations. As a model to explain the persistence of the dominant long periods, a simple oscillator with a nonlinear driving term is proposed. The spectral difference between distinct peaks within, e.g. the 3 min spectral band, is expected to be able to resonate with the long period one hour oscillations.
Wideband energy harvesting based on mixed connection of piezoelectric oscillators
Wu, P. H.; Chen, Y. J.; Li, B. Y.; Shu, Y. C.
2017-09-01
An approach for wideband energy harvesting together with power enhancement is proposed by integrating multiple piezoelectric oscillators with mixed parallel-series connection. This gives rise to the feasibility of shifting the operation frequency band to the dominant frequency domain of ambient excitations. There are two types of connection patterns discussed here: the p-type (s-type) is the parallel (series) connection of all sets of oscillators where some of them may be connected in series (parallel). In addition, the standard interface circuit used for electric rectification is adopted here. The analytic estimates of output power are derived and explicitly expressed in terms of different matrix formulations for these two connection patterns. They are subsequently validated and are found in good agreement with numerical simulations and experimental observations. Finally, the experimental results from the mixed connection of 4 piezoelectric oscillators show that the peak power of each array is about 3.4 times higher than that generated by a single piezoelectric oscillator. In addition, the bandwidth of the array capable of switching connection patterns is around 2.8 times wider than that based on a single array configuration. Hence, the effective bandwidth is enlarged without the loss of peak power.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.
Goto, Hayato
2016-02-22
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions
Bick, Christian; Sebek, Michael; Kiss, István Z.
2017-10-01
We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.
PLATO: PLAnetary Transits and Oscillations of stars
Energy Technology Data Exchange (ETDEWEB)
Catala, Claude [LESIA, Observatoire de Paris, CNRS, UPMC, Universite Paris Diderot, Place Jules Janssen 92190 Meudon (France)], E-mail: Claude.Catala@obspm.fr
2008-10-15
The PLAnetary Transits and Oscillations of stars Mission (PLATO), presented to ESA in the framework of its 'Cosmic Vision' programme, will detect and characterize exoplanets by means of their transit signature in front of a very large sample of bright stars, and measure the seismic oscillations of the parent stars orbited by these planets in order to understand the properties of the exoplanetary systems. PLATO is the next-generation planet finder, building on the accomplishments of CoRoT and Kepler. i) it will observe significantly more stars, ii) its targets will be 2 to 3 magnitudes brighter (hence the precision of the measurements will be correspondingly greater as will be those of post-detection investigations, e.g. spectroscopy, asteroseismology, and eventually imaging), iii) it will be capable of observing significantly smaller exoplanets. The space-based observations will be complemented by ground- and space-based follow-up observations. These goals will be achieved by a long-term (5 years), high-precision, high-time-resolution, high-duty-cycle monitoring in visible photometry of a sample of more than 100,000 relatively bright (my {<=} 12) stars and another 400,000 down to my = 14. Two different mission concepts are proposed for PLATO: i) a 'staring' concept with 100 small, very wide-field telescopes, assembled on a single platform and all looking at the same 26 deg. diameter field, and ii) a 'spinning' concept with three moderate-size telescopes covering more than 1400 deg.{sup 2}.
Waves and Oscillations in Plasmas
Pecseli, Hans L
2012-01-01
The result of more than 15 years of lectures in plasma sciences presented at universities in Denmark, Norway, and the United States, Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences. The book covers fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping. Offering a clear separation of linear and nonlinear models, the book can be tailored for readers of varying levels of expertise.Designed to provide basic training in linear as well as nonlinear plasma dynamics, and practical in areas as d
Wave Physics Oscillations - Solitons - Chaos
Nettel, Stephen
2009-01-01
This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.
Neutrino Oscillation Studies with Reactors
Vogel, Petr; Zhang, Chao
2015-01-01
Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.
Phase noise and frequency stability in oscillators
Rubiola, Enrico
2009-01-01
Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...
Modes of nanosatellite aerodynamic oscillations in atmosphere
Gerasimov, Yu V.; Ivanov, E. A.; Karetnikov, G. K.; Konstantinova, I. A.; Selivanov, A. B.
2017-11-01
The paper is devoted to the results of investigating the dependencies of nanosatellite aerodynamic oscillations frequency on attack angle at different altitudes up to 70 km are defined. The oscillations bandwidths are determined with respect to the geometric parameters for a nanosatellite with 10 kg mass and 6000 kg/m3 average density. The model allows estimating the bandwidth aerodynamic oscillations in the suborbital nanosatellite trajectory based on the given geometry and mass-dimensional parameters.
Characterizing correlations of flow oscillations at bottlenecks
Kretz, Tobias; Woelki, Marko; Schreckenberg, Michael
2006-01-01
"Oscillations" occur in quite different kinds of many-particle-systems when two groups of particles with different directions of motion meet or intersect at a certain spot. We present a model of pedestrian motion that is able to reproduce oscillations with different characteristics. The Wald-Wolfowitz test and Gillis' correlated random walk are shown to hold observables that can be used to characterize different kinds of oscillations.
Characterizing correlations of flow oscillations at bottlenecks
Kretz, Tobias; Wölki, Marko; Schreckenberg, Michael
2006-02-01
'Oscillations' occur in quite different kinds of many-particle systems when two groups of particles with different directions of motion meet or intersect at a certain spot. In this work a model of pedestrian motion is presented that is able to reproduce oscillations with different characteristics. The Wald-Wolfowitz test and Gillis' correlated random walk are shown to include observables that can be used to characterize different kinds of oscillations.
Oscillations of neutral B mesons systems
Boucrot, J
1999-01-01
The oscillation phenomenon in the neutral B mesons systems is now well established. The motivations and principles of the measurements are given; then the most recent results from the LEP experiments, the CDF collaboration at Fermilab and the SLD collaboration at SLAC are reviewed. The present world average of the $\\bd$ meson oscillation frequency is $\\dmd = 0.471 \\pm 0.016 \\ps$ and the lower limit on the $\\bs$ oscillation frequency is
Phase-locked Josephson soliton oscillators
DEFF Research Database (Denmark)
Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.
1991-01-01
Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...
On Rabi oscillations between Bloch bands
Plötz, Patrick
2010-01-01
We study Rabi oscillations between the bands of an arbitrary biased superlattice in a tight-binding model. We reduce the problem to an equation of Whittaker--Hill type and, in absence of any known solutions in closed form, discuss different approximations to describe the oscillations between the Bloch bands. We identify regimes of weak and strong inter-band coupling and compare predictions for these Rabi oscillations to numerical results.
SPIRAL, FUNCTIONS AND OSCILLATING SYSTEMS BESSEL
Gil Benitez, W.; Universidad Nacional Mayor de San Marcos, Facultad de Química e Ingeniería Química Departamento de Analisis y Diseño de Procesos Av. Venezuela sin - Ciudad Universitaria UNMSM - Lima - Peru
2014-01-01
lt is shown a mathematics analysis that link spirals, differential equations of second order of the Bessel function type and the oscillant systems with constant and variable frequency. lt is found that the oscillant systems are consecuents to a spiral mathematical functions and Bessel is only some of its varieties. Consequently is shown an exact solution of the Bessel equations which does l'lot require tables. The math model it is a tool which will be used to simulate oscillant phenomena with...
Small oscillations via conservation of energy
Troy, Tia; Reiner, Megan; Haugen, Andrew J.; Moore, Nathan T.
2017-11-01
The work describes an analogy-based small oscillations analysis of a standard static equilibrium lab problem. In addition to force analysis, a potential energy function for the system is developed, and by drawing out mathematical similarities to the simple harmonic oscillator, we are able to describe (and experimentally verify) the period of small oscillations about the static equilibrium state. The problem was developed and implemented in a standard University Physics course at Winona State University.
Toward precision study of atmospheric neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Kajita, Takaaki [Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, Univ. of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8582 (Japan)
2006-09-15
Atmospheric neutrinos have been playing a major role in studying neutrino oscillations. Because of the unique feature of atmospheric neutrinos, future atmospheric neutrino experiments are likely to contribute to precision studies of neutrino oscillations. Possible contribution of future atmospheric neutrino experiments to the neutrino oscillation physics are discussed, including the measurements of {theta}{sub 13}, the sign of {delta}m{sub 23}{sup 2}, the determination of octant of {theta}{sub 23} and possibly the CP phase.
Lighthouses with two lights: Burst oscillations from the accretion-powered millisecond pulsars
Watts, A.L.
2008-01-01
The key contribution of the discovery of nuclear-powered pulsations from the accretion-powered millisecond pulsars (AMPs) has been the establishment of burst oscillation frequency as a reliable proxy for stellar spin rate. This has doubled the sample of rapidly-rotating accreting neutron stars and
Spinning Photons and Twisting Oscillators
Shi, Hao
2014-05-01
Optomechanics is the study of the interaction between optical radiation and mechanical motion. Typically, an optomechanical system is composed of an optical resonator coupled to a mechanical degree of freedom. Some of the most striking experimental achievements include the quantum ground state preparation for a macroscopic oscillator, the detection of optomechanical quantum back-action, and generation of optomechanically induced transparency and slow light. Most optomechanical systems depend on linear coupling between the optical field and the displacement of the mechanical oscillator. In this talk, I will start instead by discussing the basic quantum mechanics of a generic quadratically coupled optomechanical system, followed by our efforts towards extending optomechanics to torsional and rotational systems. Specifically, I will describe our theoretical proposal to couple a windmill-shaped dielectric to cavity Laguerre Gaussian modes. In addition, I will present an optoacoustic system, composed of a LG mode coupled t surface acoustic waves of a spherical mirror, as a new platform for storage of photons carrying orbital angular momentum. Finally, I will discuss our most recent investigation of the prospects of cooling full rotational motion to the quantum regime.
Cardiogenic oscillation induced ventilator autotriggering
Directory of Open Access Journals (Sweden)
Narender Kaloria
2015-01-01
Full Text Available Cardiogenic oscillation during mechanical ventilation can auto-trigger the ventilator resembling patient initiated breadth. This gives a false sense of intact respiratory drive and determination brain death, even if other tests are positive, is not appropriate in such a situation. It will prolong the ICU stay and confound the brain-death determination. In this case report, we describe a 35 year old man who was brought to the hospital after many hours of critical delay following multiple gun shot injuries. The patient suffered a cardiac arrest while on the way from another hospital. After an emergency laparotomy, patient was shifted to Intensive Care Unit (ICU with Glasgow Coma Scale (GCS score of E1VTM1 and was mechanically ventilated. Despite absence of brainstem reflexes, the ventilator continued to be triggered on continuous positive airway pressure (CPAP mode and the patient maintained normal oxygen saturation and acceptable levels of carbon dioxide. An apnoea test confirmed absent respiratory drive. Ventilatory waveform graph analysis, revealed cardiogenic oscillation as the cause for autotrigerring.
Microdroplet oscillations during optical pulling
Ellingsen, Simen A.˚.
2012-02-01
It was recently shown theoretically that it is possible to pull a spherical dielectric body towards the source of a laser beam [J. Chen, J. Ng, Z. Lin, and C. T. Chan, "Optical pulling force," Nat. Photonics 5, 531 (2011)], a result with immediate consequences to optical manipulation of small droplets. Optical pulling can be realized, e.g., using a diffraction-free Bessel beam, and is expected to be of great importance in manipulation of microscopic droplets in micro- and nanofluidics. Compared to conventional optical pushing, however, the ratio of optical net force to stress acting on a droplet is much smaller, increasing the importance of oscillations. We describe the time-dependent surface deformations of a water microdroplet under optical pulling to linear order in the deformation. Shape oscillations have a lifetime in the order of microseconds for droplet radii of a few micrometers. The force density acting on the initially spherical droplet is strongly peaked near the poles on the beam axis, causing the deformations to take the form of jet-like protrusions.
Nonlinear nanomechanical oscillators for ultrasensitive inertial detection
Datskos, Panagiotis George; Lavrik, Nickolay V
2013-08-13
A system for ultrasensitive mass and/or force detection of this invention includes a mechanical oscillator driven to oscillate in a nonlinear regime. The mechanical oscillator includes a piezoelectric base with at least one cantilever resonator etched into the piezoelectric base. The cantilever resonator is preferably a nonlinear resonator which is driven to oscillate with a frequency and an amplitude. The system of this invention detects an amplitude collapse of the cantilever resonator at a bifurcation frequency as the cantilever resonator stimulated over a frequency range. As mass and/or force is introduced to the cantilever resonator, the bifurcation frequency shifts along a frequency axis in proportion to the added mass.
Introduction to classical and quantum harmonic oscillators
Bloch, Sylvan C
2013-01-01
From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con
High Reliability Oscillators for Terahertz Systems Project
National Aeronautics and Space Administration — Terahertz sources based on lower frequency oscillators and amplifiers plus a chain of frequency multipliers are the workhorse technology for NASA's terahertz...
Waves and oscillations in nature an introduction
Narayanan, A Satya
2015-01-01
Waves and oscillations are found in large scales (galactic) and microscopic scales (neutrino) in nature. Their dynamics and behavior heavily depend on the type of medium through which they propagate.Waves and Oscillations in Nature: An Introduction clearly elucidates the dynamics and behavior of waves and oscillations in various mediums. It presents different types of waves and oscillations that can be observed and studied from macroscopic to microscopic scales. The book provides a thorough introduction for researchers and graduate students in assorted areas of physics, such as fluid dynamics,
Stochastic Kuramoto oscillators with discrete phase states
Jörg, David J.
2017-09-01
We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.
Scleronomic holonomic constraints and conservative nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Munoz, R; Gonzalez-Garcia, G; Izquierdo-De La Cruz, E Izquierdo-De La [Universidad Autonoma de la Ciudad de Mexico, Centro Historico, Fray Servando Teresa de Mier 92, Col Centro, Del Cuauhtemoc, Mexico DF, CP 06080 (Mexico); Fernandez-Anaya, G, E-mail: rodrigo.munoz@uacm.edu.mx, E-mail: gggharper@gmail.com, E-mail: erickidc@gmail.com, E-mail: guillermo.fernandez@uia.mx [Universidad Iberoamericana, Departamento de Fisica y Matematicas, Prolongacon Paseo de de la Reforma 880, Col Lomas de Santa Fe, Del Alvaro Obregn, Mexico DF, CP 01219 (Mexico)
2011-05-15
A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present cases in which the effective potential acting on the bead is not analytical around a minimum. The small oscillation approximation cannot be applied to such pathological cases. Nonetheless, these latter instances are studied with other standard techniques.
Infinite invariant densities due to intermittency in a nonlinear oscillator
Meyer, Philipp; Kantz, Holger
2017-08-01
Dynamical intermittency is known to generate anomalous statistical behavior of dynamical systems, a prominent example being the Pomeau-Manneville map. We present a nonlinear oscillator, i.e., a physical model in continuous time, whose properties in terms of weak ergodity breaking and aging have a one-to-one correspondence to the properties of the Pomeau-Manneville map. So for both systems in a wide range of parameters no physical invariant density exists. We show how this regime can be characterized quantitatively using the techniques of infinite invariant densities and the Thaler-Dynkin limit theorem. We see how expectation values exhibit aging in terms of scaling in time.
Infinite invariant densities due to intermittency in a nonlinear oscillator.
Meyer, Philipp; Kantz, Holger
2017-08-01
Dynamical intermittency is known to generate anomalous statistical behavior of dynamical systems, a prominent example being the Pomeau-Manneville map. We present a nonlinear oscillator, i.e., a physical model in continuous time, whose properties in terms of weak ergodity breaking and aging have a one-to-one correspondence to the properties of the Pomeau-Manneville map. So for both systems in a wide range of parameters no physical invariant density exists. We show how this regime can be characterized quantitatively using the techniques of infinite invariant densities and the Thaler-Dynkin limit theorem. We see how expectation values exhibit aging in terms of scaling in time.
Dynamic surface tension of natural surfactant extract under superimposed oscillations.
Reddy, Prasika I; Al-Jumaily, Ahmed M; Bold, Geoff T
2011-01-04
Surfactant dysfunction plays a major role in respiratory distress syndrome (RDS). This research seeks to determine whether the use of natural surfactant, Curosurf™ (Cheisi Farmaceutici, Parma, Italy), accompanied with pressure oscillations at the level of the alveoli can reduce the surface tension in the lung, thereby making it easier for infants with RDS to maintain the required level of functional residual capacity (FRC) without collapse. To simulate the alveolar environment, dynamic surface tension measurements were performed on a modified pulsating bubble surfactometer (PBS) type device and showed that introducing superimposed oscillations about the tidal volume excursion between 10 and 70 Hz in a surfactant bubble lowers interfacial surface tension below values observed using tidal volume excursion alone. The specific mechanisms responsible for this improvement are yet to be established; however it is believed that one mechanism may be the rapid transient changes in the interfacial area increase the number of interfacial binding sites for surfactant molecules, increasing adsorption and diffusion to the interface, thereby decreasing interfacial surface tension. Existing mathematical models in the literature reproduce trends noticed in experiments in the range of breathing frequencies only. Thus, a modification is introduced to an existing model to both incorporate superimposed pressure oscillations and demonstrate that these may improve the dynamic surface tension in the alveoli. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ravassard, Pascal; Pachoud, Bastien; Comte, Jean-Christophe; Mejia-Perez, Camila; Scoté-Blachon, Céline; Gay, Nadine; Claustrat, Bruno; Touret, Monique; Luppi, Pierre-Hervé; Salin, Paul Antoine
2009-01-01
Study Objectives: It has been shown that wake (W) and slow wave sleep (SWS) modulate synaptic transmission in neocortical projections. However the impact of paradoxical sleep (PS) quantities on synaptic transmission remains unknown. We examined whether PS modulated the excitatory transmission and expression of glutamate receptor subtypes and phosphorylated extracellular signal-regulated kinases (p-ERK1/2). Design: PS deprivation (PSD) was carried out with the multiple platforms method on adult male Sprague-Dawley rats. LTP, late-LTP, and synaptic transmission were studied in the dorsal and ventral hippocampus of controls, 75-h PSD and 150-min PS rebound (PSR). GluR1 and NR1 protein and mRNA expression were evaluated by western blot and real-time PCR. P-ERK1/2 level was quantified by western blot and immunohistochemistry. Measurement and Results: PSD decreased synaptic transmission and LTP selectively in dorsal CA1 and PSR rescued these deficits. PSD-induced synaptic modifications in CA1 were associated with a decrease in GluR1, NR1, and p-ERK1/2 levels in dorsal CA1 without change in GluR1 and NR1 mRNA expression. Regression analysis shows that LTP is positively correlated with both PS quantities and SWS episodes duration, whereas synaptic transmission and late-LTP are positively correlated with PS quantities and negatively correlated with SWS quantities. Conclusions: These findings unveil previously unrecognized roles of PSD on synaptic transmission and LTP in the dorsal, but not in the ventral, hippocampus. The fact that the decrease in protein expression of GluR1 and NR1 was not associated with a change in mRNA expression of these receptors suggests that a sleep-induced modulation of translational mechanisms occurs in dorsal CA1. Citation: Ravassard P; Pachoud B; Comte JC; Mejia-Perez C; Scoté-Blachon C; Gay N; Claustrat B; Touret M; Luppi PH; Salin PA. Paradoxical (REM) sleep deprivation causes a large and rapidly reversible decrease in long-term potentiation
How Rapid is Rapid Prototyping? Analysis of ESPADON Programme Results
Directory of Open Access Journals (Sweden)
Ian D. Alston
2003-05-01
Full Text Available New methodologies, engineering processes, and support environments are beginning to emerge for embedded signal processing systems. The main objectives are to enable defence industry to field state-of-the-art products in less time and with lower costs, including retrofits and upgrades, based predominately on commercial off the shelf (COTS components and the model-year concept. One of the cornerstones of the new methodologies is the concept of rapid prototyping. This is the ability to rapidly and seamlessly move from functional design to the architectural design to the implementation, through automatic code generation tools, onto real-time COTS test beds. In this paper, we try to quantify the term Ã¢Â€ÂœrapidÃ¢Â€Â and provide results, the metrics, from two independent benchmarks, a radar and sonar beamforming application subset. The metrics show that the rapid prototyping process may be sixteen times faster than a conventional process.
A coupled-oscillator model of olfactory bulb gamma oscillations.
Directory of Open Access Journals (Sweden)
Guoshi Li
2017-11-01
Full Text Available The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING, best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity.
Advising caution in studying seasonal oscillations in crime rates.
Dong, Kun; Cao, Yunbai; Siercke, Beatrice; Wilber, Matthew; McCalla, Scott G
2017-01-01
Most types of crime are known to exhibit seasonal oscillations, yet the annual variations in the amplitude of this seasonality and their causes are still uncertain. Using a large collection of data from the Houston and Los Angeles Metropolitan areas, we extract and study the seasonal variations in aggravated assault, break in and theft from vehicles, burglary, grand theft auto, rape, robbery, theft, and vandalism for many years from the raw daily data. Our approach allows us to see various long term and seasonal trends and aberrations in crime rates that have not been reported before. We then apply an ecologically motivated stochastic differential equation to reproduce the data. Our model relies only on social interaction terms, and not on any exigent factors, to reproduce both the seasonality, and the seasonal aberrations observed in our data set. Furthermore, the stochasticity in the system is sufficient to reproduce the variations seen in the seasonal oscillations from year to year. Researchers should be very careful about trying to correlate these oscillations with external factors.
Lifetimes and Oscillator Strengths for Ultraviolet Transitions in Ge II
Heidarian, Negar; Irving, Richard E.; Federman, Steven R.; Ellis, David G.; Cheng, Song; Curtis, Larry J.
2017-04-01
Better understanding of the atomic structure for atomic ions requires experimental measurements for lifetimes and oscillator strengths which also serve as a test for theoretical calculations. Furthermore, interpreting astronomical observations of atomic ions requires knowledge of their oscillator strengths and transition probabilities. We present the results of lifetime measurements with beam-foil techniques performed with the Toledo Heavy-Ion Accelerator on levels of interest in Ge II producing transitions to the ground term at 1237.1 Å and 1261.9 Å (4s2 4 d 2D3 / 2 and 4s2 4 d 2D5 / 2 , respectively). Oscillator strengths are derived from the lifetimes, and our experimental results are compared with our MCDHF calculations using the development version of the GRASP2K package as well as the latest calculations done by others. We also provide an overall comparison of our studies on the ns2 nd 2 D and nsnp2 2 D terms in three elements of group IV of the periodic table, namely Pb II, Sn II and Ge II. This work was supported in part by Grant HST-AR-12123.001-A, from the Space Telescope Science Institute.
Cutting-Edge High-Power Ultrafast Thin Disk Oscillators
Directory of Open Access Journals (Sweden)
Thomas Südmeyer
2013-04-01
Full Text Available A growing number of applications in science and industry are currently pushing the development of ultrafast laser technologies that enable high average powers. SESAM modelocked thin disk lasers (TDLs currently achieve higher pulse energies and average powers than any other ultrafast oscillator technology, making them excellent candidates in this goal. Recently, 275 W of average power with a pulse duration of 583 fs were demonstrated, which represents the highest average power so far demonstrated from an ultrafast oscillator. In terms of pulse energy, TDLs reach more than 40 μJ pulses directly from the oscillator. In addition, another major milestone was recently achieved, with the demonstration of a TDL with nearly bandwidth-limited 96-fs long pulses. The progress achieved in terms of pulse duration of such sources enabled the first measurement of the carrier-envelope offset frequency of a modelocked TDL, which is the first key step towards full stabilization of such a source. We will present the key elements that enabled these latest results, as well as an outlook towards the next scaling steps in average power, pulse energy and pulse duration of such sources. These cutting-edge sources will enable exciting new applications, and open the door to further extending the current performance milestones.
Hippocampal network oscillations in APP/APLP2-deficient mice.
Directory of Open Access Journals (Sweden)
Xiaomin Zhang
Full Text Available The physiological function of amyloid precursor protein (APP and its two homologues APP-like protein 1 (APLP1 and 2 (APLP2 is largely unknown. Previous work suggests that lack of APP or APLP2 impairs synaptic plasticity and spatial learning. There is, however, almost no data on the role of APP or APLP at the network level which forms a critical interface between cellular functions and behavior. We have therefore investigated memory-related synaptic and network functions in hippocampal slices from three lines of transgenic mice: APPsα-KI (mice expressing extracellular fragment of APP, corresponding to the secreted APPsα ectodomain, APLP2-KO, and combined APPsα-KI/APLP2-KO (APPsα-DM for "double mutants". We analyzed two prominent patterns of network activity, gamma oscillations and sharp-wave ripple complexes (SPW-R. Both patterns were generally preserved in all strains. We find, however, a significantly reduced frequency of gamma oscillations in CA3 of APLP2-KO mice in comparison to APPsα-KI and WT mice. Network activity, basic synaptic transmission and short-term plasticity were unaltered in the combined mutants (APPsα-DM which showed, however, reduced long-term potentiation (LTP. Together, our data indicate that APLP2 and the intracellular domain of APP are not essential for coherent activity patterns in the hippocampus, but have subtle effects on synaptic plasticity and fine-tuning of network oscillations.
Oscillation and non-oscillation criterion for Riemann–Weber type half-linear differential equations
Directory of Open Access Journals (Sweden)
Petr Hasil
2016-08-01
Full Text Available By the combination of the modified half-linear Prüfer method and the Riccati technique, we study oscillatory properties of half-linear differential equations. Taking into account the transformation theory of half-linear equations and using some known results, we show that the analysed equations in the Riemann–Weber form with perturbations in both terms are conditionally oscillatory. Within the process, we identify the critical oscillation values of their coefficients and, consequently, we decide when the considered equations are oscillatory and when they are non-oscillatory. As a direct corollary of our main result, we solve the so-called critical case for a certain type of half-linear non-perturbed equations.
Sekhar, Aswin; Asher, David; Morbidelli, Alessandro; Werner, Stephanie; Vaubaillon, Jeremie; Li, Gongjie
2017-06-01
Two well known phenomena in orbital dynamics associated with low perihelion distance bodies are general relativistic (GR) precession and Lidov-Kozai (LK) oscillations.In this work, we are interested to identify bodies evolving in the near future (i.e. thousands of years in this case) into rapid sungrazing and sun colliding phases and undergoing inclination flips, due to LK like oscillations and being GR active at the same time. We find that LK mechanism leads to secular lowering of perihelion distance which in turn leads to a huge increase in GR precession of the argument of pericentre depending on the initial orbital elements. This in turn gives feedback to the LK mechanism as the eccentricity, inclination and argument of pericentre in Kozai cycles are closely correlated. In this work, we find real examples of solar system bodies which show rapid enhancement in GR precession rates due to LK like oscillations and there are cases where GR precession rate peaks to about 60 times that of the GR precession of Mercury thus showing the strength and complementary nature between these two dynamical phenomena.An analytical treatment is done on few bodies to understand the difference in their orbital evolution in the context of LK mechanism with and without GR precession term by incorporating suitable Hamiltonian dynamics. This result is subsequently matched using numerical integrations to find direct correlations. Real solar system bodies showing both GR precession and LK like oscillations are identified using compiled observational records from IAU-Minor Planet Center, Cometary Catalogue, IAU-Meteor Data Center and performing analytical plus numerical tests on them. This intermediate state (where GR and LK effects are comparable and co-exist) brings up the interesting possibility of drastic changes in GR precession rates during orbital evolution due to sungrazing and sun colliding phases induced by the LK like mechanism, thus combining both these important effects in a
CULLIN-3 controls TIMELESS oscillations in the Drosophila circadian clock.
Directory of Open Access Journals (Sweden)
Brigitte Grima
Full Text Available Eukaryotic circadian clocks rely on transcriptional feedback loops. In Drosophila, the PERIOD (PER and TIMELESS (TIM proteins accumulate during the night, inhibit the activity of the CLOCK (CLK/CYCLE (CYC transcriptional complex, and are degraded in the early morning. The control of PER and TIM oscillations largely depends on post-translational mechanisms. They involve both light-dependent and light-independent pathways that rely on the phosphorylation, ubiquitination, and proteasomal degradation of the clock proteins. SLMB, which is part of a CULLIN-1-based E3 ubiquitin ligase complex, is required for the circadian degradation of phosphorylated PER. We show here that CULLIN-3 (CUL-3 is required for the circadian control of PER and TIM oscillations. Expression of either Cul-3 RNAi or dominant negative forms of CUL-3 in the clock neurons alters locomotor behavior and dampens PER and TIM oscillations in light-dark cycles. In constant conditions, CUL-3 deregulation induces behavioral arrhythmicity and rapidly abolishes TIM cycling, with slower effects on PER. CUL-3 affects TIM accumulation more strongly in the absence of PER and forms protein complexes with hypo-phosphorylated TIM. In contrast, SLMB affects TIM more strongly in the presence of PER and preferentially associates with phosphorylated TIM. CUL-3 and SLMB show additive effects on TIM and PER, suggesting different roles for the two ubiquitination complexes on PER and TIM cycling. This work thus shows that CUL-3 is a new component of the Drosophila clock, which plays an important role in the control of TIM oscillations.
Minimal size of cell assemblies coordinated by gamma oscillations.
Directory of Open Access Journals (Sweden)
Christoph Börgers
2012-02-01
Full Text Available In networks of excitatory and inhibitory neurons with mutual synaptic coupling, specific drive to sub-ensembles of cells often leads to gamma-frequency (25-100 Hz oscillations. When the number of driven cells is too small, however, the synaptic interactions may not be strong or homogeneous enough to support the mechanism underlying the rhythm. Using a combination of computational simulation and mathematical analysis, we study the breakdown of gamma rhythms as the driven ensembles become too small, or the synaptic interactions become too weak and heterogeneous. Heterogeneities in drives or synaptic strengths play an important role in the breakdown of the rhythms; nonetheless, we find that the analysis of homogeneous networks yields insight into the breakdown of rhythms in heterogeneous networks. In particular, if parameter values are such that in a homogeneous network, it takes several gamma cycles to converge to synchrony, then in a similar, but realistically heterogeneous network, synchrony breaks down altogether. This leads to the surprising conclusion that in a network with realistic heterogeneity, gamma rhythms based on the interaction of excitatory and inhibitory cell populations must arise either rapidly, or not at all. For given synaptic strengths and heterogeneities, there is a (soft lower bound on the possible number of cells in an ensemble oscillating at gamma frequency, based simply on the requirement that synaptic interactions between the two cell populations be strong enough. This observation suggests explanations for recent experimental results concerning the modulation of gamma oscillations in macaque primary visual cortex by varying spatial stimulus size or attention level, and for our own experimental results, reported here, concerning the optogenetic modulation of gamma oscillations in kainate-activated hippocampal slices. We make specific predictions about the behavior of pyramidal cells and fast-spiking interneurons in these
Dirac bound states of anharmonic oscillator in external fields
Energy Technology Data Exchange (ETDEWEB)
Hamzavi, Majid, E-mail: majid.hamzavi@gmail.com [Department of Physics, University of Zanjan, Zanjan (Iran, Islamic Republic of); Ikhdair, Sameer M., E-mail: sikhdair@gmail.com [Department of Physics, Faculty of Science, an-Najah National University, Nablus, West Bank, Palestine (Country Unknown); Department of Electrical and Electronic Engineering, Near East University, 922022 Nicosia, Northern Cyprus, Mersin 10 (Turkey); Falaye, Babatunde J., E-mail: fbjames11@physicist.net [Theoretical Physics Section, Department of Physics, University of Ilorin, P. M. B. 1515, Ilorin (Nigeria)
2014-02-15
We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method.
Exact semiclassical expansions for one-dimensional quantum oscillators
Energy Technology Data Exchange (ETDEWEB)
Delabaere, E. [UMR CNRS J. A. Dieudonne No. 6621, University of Nice, 06108 Nice Cedex 2 (France); Dillinger, H.; Pham, F. [University of Nice, Department of Maths, UMR CNRS J.A. Dieudonne No. 6621, 06108 Nice Cedex 2 (France)
1997-12-01
A set of rules is given for dealing with WKB expansions in the one-dimensional analytic case, whereby such expansions are not considered as approximations but as exact encodings of wave functions, thus allowing for analytic continuation with respect to whichever parameters the potential function depends on, with an exact control of small exponential effects. These rules, which include also the case when there are double turning points, are illustrated on various examples, and applied to the study of bound state or resonance spectra. In the case of simple oscillators, it is thus shown that the Rayleigh{endash}Schr{umlt o}dinger series is Borel resummable, yielding the exact energy levels. In the case of the symmetrical anharmonic oscillator, one gets a simple and rigorous justification of the Zinn-Justin quantization condition, and of its solution in terms of {open_quotes}multi-instanton expansions.{close_quotes} {copyright} {ital 1997 American Institute of Physics.}
Bifurcations and Crises in a Shape Memory Oscillator
Directory of Open Access Journals (Sweden)
Luciano G. Machado
2004-01-01
Full Text Available The remarkable properties of shape memory alloys have been motivating the interest in applications in different areas varying from biomedical to aerospace hardware. The dynamical response of systems composed by shape memory actuators presents nonlinear characteristics and a very rich behavior, showing periodic, quasi-periodic and chaotic responses. This contribution analyses some aspects related to bifurcation phenomenon in a shape memory oscillator where the restitution force is described by a polynomial constitutive model. The term bifurcation is used to describe qualitative changes that occur in the orbit structure of a system, as a consequence of parameter changes, being related to chaos. Numerical simulations show that the response of the shape memory oscillator presents period doubling cascades, direct and reverse, and crises.
Parity-doublet representation of Majorana fermions and neutron oscillation
Fujikawa, Kazuo; Tureanu, Anca
2016-12-01
We present a parity-doublet theorem for the representation of the intrinsic parity of Majorana fermions, which is expected to be useful also in condensed matter physics, and it is illustrated to provide a criterion of neutron-antineutron oscillation in a Bardeen-Cooper-Schrieffer type of effective theory with Δ B =2 baryon number-violating terms. The C P violation in the present effective theory causes no direct C P -violating effects in the oscillation itself, which is demonstrated by the exact solution, although it influences the neutron electric dipole moment in the leading order of small Δ B =2 parameters. An analog of Bogoliubov transformation, which preserves P and C P , is crucial in the analysis.
Fractional dynamics of coupled oscillators with long-range interaction.
Tarasov, Vasily E; Zaslavsky, George M
2006-06-01
We consider a one-dimensional chain of coupled linear and nonlinear oscillators with long-range powerwise interaction. The corresponding term in dynamical equations is proportional to 1//n-m/alpha+1. It is shown that the equation of motion in the infrared limit can be transformed into the medium equation with the Riesz fractional derivative of order alpha, when 0coupled oscillators and show how their synchronization can appear as a result of bifurcation, and how the corresponding solutions depend on alpha. The presence of a fractional derivative also leads to the occurrence of localized structures. Particular solutions for fractional time-dependent complex Ginzburg-Landau (or nonlinear Schrodinger) equation are derived. These solutions are interpreted as synchronized states and localized structures of the oscillatory medium.
Modelling vertical human walking forces using self-sustained oscillator
Kumar, Prakash; Kumar, Anil; Racic, Vitomir; Erlicher, Silvano
2018-01-01
This paper proposes a model of a self-sustained oscillator which can generate reliably the vertical contact force between the feet of a healthy pedestrian and the supporting flat rigid surface. The model is motivated by the self-sustained nature of the walking process, i.e. a pedestrian generates the required inner energy to sustain its repetitive body motion. The derived model is a fusion of the well-known Rayleigh, Van der Pol and Duffing oscillators. Some additional nonlinear terms are added to produce both the odd and even harmonics observed in the experimentally measured force data. The model parameters were derived from force records due to twelve pedestrians walking on an instrumented treadmill at ten speeds using a linear least square technique. The stability analysis was performed using the energy balance method and perturbation method. The results obtained from the model show a good agreement with the experimental results.
Phase Locking a Clock Oscillator to a Coherent Atomic Ensemble
Directory of Open Access Journals (Sweden)
R. Kohlhaas
2015-04-01
Full Text Available The sensitivity of an atomic interferometer increases when the phase evolution of its quantum superposition state is measured over a longer interrogation interval. In practice, a limit is set by the measurement process, which returns not the phase but its projection in terms of population difference on two energetic levels. The phase interval over which the relation can be inverted is thus limited to the interval [-π/2,π/2]; going beyond it introduces an ambiguity in the readout, hence a sensitivity loss. Here, we extend the unambiguous interval to probe the phase evolution of an atomic ensemble using coherence-preserving measurements and phase corrections, and demonstrate the phase lock of the clock oscillator to an atomic superposition state. We propose a protocol based on the phase lock to improve atomic clocks limited by local oscillator noise, and foresee the application to other atomic interferometers such as inertial sensors.
Nonlinear oscillations in a muscle pacemaker cell model
González-Miranda, J. M.
2017-02-01
This article presents a numerical simulation study of the nonlinear oscillations displayed by the Morris-Lecar model [Biophys. J. 35 (1981) 193] for the oscillations experimentally observed in the transmembrane potential of a muscle fiber subject to an external electrical stimulus. We consider the model in the case when there is no external stimulation, aiming to establish the ability of the model to display biophysically reasonable pacemaker dynamics. We obtain 2D bifurcation diagrams showing that indeed the model presents oscillatory dynamics, displaying the two main types of action potentials that are observed in muscle fibers. The results obtained are shown to be structurally stable; that is, robust against changes in the values of system parameters. Moreover, it is demonstrated how the model is appropriate to analyze the action potentials observed in terms of the transmembrane currents creating them.
First Integrals for Two Linearly Coupled Nonlinear Duffing Oscillators
Directory of Open Access Journals (Sweden)
R. Naz
2011-01-01
Full Text Available We investigate Noether and partial Noether operators of point type corresponding to a Lagrangian and a partial Lagrangian for a system of two linearly coupled nonlinear Duffing oscillators. Then, the first integrals with respect to Noether and partial Noether operators of point type are obtained explicitly by utilizing Noether and partial Noether theorems for the system under consideration. Moreover, if the partial Euler-Lagrange equations are independent of derivatives, then the partial Noether operators become Noether point symmetry generators for such equations. The difference arises in the gauge terms due to Lagrangians being different for respective approaches. This study points to new ways of constructing first integrals for nonlinear equations without regard to a Lagrangian. We have illustrated it here for nonlinear Duffing oscillators.
Active-active and active-sterile neutrino oscillation solutions to the atmospheric neutrino anomaly
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Garcia, M.C. E-mail: concha@evalvx.ific.uv.es; Nunokawa, H. E-mail: nunokawa@ifi.unicamp.br; Peres, O.L.G. E-mail: operes@flamenco.ific.uv.es; Valle, J.W.F. E-mail: valle@flamenco.ific.uv.es
1999-03-22
We perform a fit to the full data set corresponding to 33.0 kt-yr of data of the Super-Kamiokande experiment as well as to all other experiments in order to compare the two most likely solutions to the atmospheric neutrino anomaly in terms of oscillations in the {nu}{sub {mu}} {yields} {nu}{sub {tau}} and {nu}{sub {mu}} {yields} {nu}{sub s} channels. Using state-of-the-art atmospheric neutrino fluxes we have determined the allowed regions of oscillation parameters for both channels. We find that the {delta}m{sup 2} values for the active-sterile oscillations (both for positive and negative {delta}m{sup 2}) are higher than for the {nu}{sub {mu}} {yields} {nu}{sub {tau}} case, and that the increased Super-Kamiokande sample slightly favours {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillations over oscillations into a sterile species {nu}{sub s}, {nu}{sub {mu}} {yields} {nu}{sub s}, and disfavours {nu}{sub {mu}} {yields} {nu}{sub e}. We also give the zenith angle distributions predicted for the best fit points in each of the possible oscillation channels. Finally we compare our determinations of the atmospheric neutrino oscillation parameters with the expected sensitivities of future long-baseline experiments K2K, MINOS, ICARUS, OPERA and NOE.
Oscillating water column structural model
Energy Technology Data Exchange (ETDEWEB)
Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.
Signal velocity in oscillator arrays
Cantos, C. E.; Veerman, J. J. P.; Hammond, D. K.
2016-09-01
We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. After describing necessary and sufficient conditions for asymptotic stability, we derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocitiesc+ > 0 and c- < 0 such that low frequency disturbances travel through the flock as f+(x - c+t) in the direction of increasing agent numbers and f-(x - c-t) in the other.
Oscillating spin-2 dark matter
Marzola, Luca; Raidal, Martti; Urban, Federico R.
2018-01-01
The negative outcomes of laboratory searches, juxtaposed with cosmological observations, may indicate that dark matter has a gravitational origin. We show that coherent oscillations of a massive spin-2 field emerging from bimetric theory can easily account for the observed dark matter abundance. The framework, based on the only known consistent extension of general relativity to interacting spin-2 fields, is testable in precision measurements of the electric charge variation by means of atomic clocks, molecular systems, dedicated resonant mass detectors, as well as gravity interferometers and axionlike-particle experiments. These searches, therefore, provide a new window into the phenomenology of gravity which complements the results of dedicated tests of gravitation. We also present a multimetric extension of the scenario that straightforwardly implements the clockwork mechanism for gravity, explaining the apparent weakness of this force.
Analysing Biochemical Oscillations through Probabilistic Model Checking
DEFF Research Database (Denmark)
Ballarini, Paolo; Mardare, Radu Iulian; Mura, Ivan
2009-01-01
Analysing Biochemical Oscillations through Probabilistic Model Checking. In Proc. of the Second International Workshop "From Biology To Concurrency" (FBTC 2008), Electronic Notes in Theoretical Computer Science......Analysing Biochemical Oscillations through Probabilistic Model Checking. In Proc. of the Second International Workshop "From Biology To Concurrency" (FBTC 2008), Electronic Notes in Theoretical Computer Science...
Electromagnetic Radiation Originating from Unstable Electron Oscillations
DEFF Research Database (Denmark)
Juul Rasmussen, Jens; Pécseli, Hans
1975-01-01
Electromagnetic oscillations in the range 300 – 700 MHz were observed from an unmagnetized argon discharge with an unstable electron velocity distribution function.......Electromagnetic oscillations in the range 300 – 700 MHz were observed from an unmagnetized argon discharge with an unstable electron velocity distribution function....
Stabilizing oscillating universes against quantum decay
Mithani, Audrey T.; Vilenkin, Alexander
2015-07-01
We investigate the effect of vacuum corrections, due to the trace anomaly and Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. However, stability may be achieved for some specially fine-tuned non-vacuum states.
Neutrino mass and oscillation: An introductory review
Indian Academy of Sciences (India)
tion to the atmospheric and solar neutrino oscillation data requires only two right handed singlet neutrinos. 2. Neutrino mixing and oscillation (vacuum). If the neutrinos have nonzero mass, there will in general be mixing between the neutrino species as in the case of quarks. For most practical applications it is adequate to ...
Chaos in nonlinear oscillations controlling and synchronization
Lakshamanan, M
1996-01-01
This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.
Stabilizing oscillating universes against quantum decay
Energy Technology Data Exchange (ETDEWEB)
Mithani, Audrey T.; Vilenkin, Alexander [Institute of Cosmology, Department of Physics and Astronomy,Tufts University, Medford, MA 02155 (United States)
2015-07-07
We investigate the effect of vacuum corrections, due to the trace anomaly and Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. However, stability may be achieved for some specially fine-tuned non-vacuum states.
Vibrational resonance in the Morse oscillator
Indian Academy of Sciences (India)
Abstract. The occurrence of vibrational resonance is investigated in both classical and quantum mechanical Morse oscillators driven by a biharmonic force. The biharmonic force consists of two forces of widely different frequencies ω and with. ≫ ω. In the damped and biharmoni- cally driven classical Morse oscillator, ...
Effective harmonic oscillator description of anharmonic molecular ...
Indian Academy of Sciences (India)
... a harmonic oscillator eigenfunction with the centroid and width parameter as variational paraeters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar to the vibrational self consistent field results. Coriolis coupling is also included in these studies.
Effective harmonic oscillator description of anharmonic molecular ...
Indian Academy of Sciences (India)
Administrator
Abstract. The validity of an effective harmonic oscillator approximation for anharmonic molecular vibrations is tested and compared with vibrational self consistent field and vibrational configurational interaction results. The effective harmonic oscillator is constructed variationally, by taking the trial wave function as a harmonic ...
Discontinuous Spirals of Stable Periodic Oscillations
DEFF Research Database (Denmark)
Sack, Achim; Freire, Joana G.; Lindberg, Erik
2013-01-01
We report the experimental discovery of a remarkable organization of the set of self-generated periodic oscillations in the parameter space of a nonlinear electronic circuit. When control parameters are suitably tuned, the wave pattern complexity of the periodic oscillations is found to increase...
Energy Technology Data Exchange (ETDEWEB)
Andrade, Fabiano M., E-mail: fmandrade@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa-PR (Brazil); Silva, Edilberto O., E-mail: edilbertoo@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís-MA (Brazil)
2014-11-10
In this Letter, 2D Dirac oscillator in the quantum deformed framework generated by the κ-Poincaré–Hopf algebra is considered. The problem is formulated using the κ-deformed Dirac equation. The resulting theory reveals that the energies and wave functions of the oscillator are modified by the deformation parameter.
In plane oscillation of a bifilar pendulum
Hinrichsen, Peter F.
2016-11-01
The line tensions, the horizontal and vertical accelerations as well as the period of large angle oscillations parallel to the plane of a bifilar suspension are presented and have been experimentally investigated using strain gauges and a smart phone. This system has a number of advantages over the simple pendulum for studying large angle oscillations, and for measuring the acceleration due to gravity.
Oscillating systems with cointegrated phase processes
DEFF Research Database (Denmark)
Østergaard, Jacob; Rahbek, Anders; Ditlevsen, Susanne
2017-01-01
We present cointegration analysis as a method to infer the network structure of a linearly phase coupled oscillating system. By defining a class of oscillating systems with interacting phases, we derive a data generating process where we can specify the coupling structure of a network that resemb...
Small Oscillations via Conservation of Energy
Troy, Tia; Reiner, Megan; Haugen, Andrew J.; Moore, Nathan T.
2017-01-01
The work describes an analogy-based small oscillations analysis of a standard static equilibrium lab problem. In addition to force analysis, a potential energy function for the system is developed, and by drawing out mathematical similarities to the simple harmonic oscillator, we are able to describe (and experimentally verify) the period of small…
Oscillations of first order difference equations
Indian Academy of Sciences (India)
Oscillations of first order difference equations. N PARHI. Department of Mathematics, Berhampur University, Berhampur 760 007, India. MS received 10 June 1999; revised 28 December 1999. Abstract. The oscillatory and asymptotic behaviour of solutions of first order diff- erence equations is studied. Keywords. Oscillation ...
Teaching Oscillations by a Model of Nanoresonator
Lindell, A.; Viiri, J.
2009-01-01
Nanoscience offers fascinating opportunities for science education as it links the achievements of modern technology to traditional models of science. In this article we present a nanotechnology orientated lesson on oscillations, suitable for physics courses at high schools and universities. The focus of the lesson is in forced oscillations on a…
Oscillator clustering in a resource distribution chain
DEFF Research Database (Denmark)
Postnov, D.; Sosnovtseva, Olga; Mosekilde, Erik
2005-01-01
separate the inherent dynamics of the individual oscillator from the properties of the coupling network. Illustrated by examples from microbiological population dynamics, renal physiology, and electronic oscillator theory, we show how competition for primary resources in a resource distribution chain leads...
Modeling diauxic glycolytic oscillations in yeast
DEFF Research Database (Denmark)
Hald, Bjørn Olav; Sørensen, Preben Graae
2010-01-01
Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can be characteri...
Experimental observation of shear thickening oscillation
DEFF Research Database (Denmark)
Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko
2013-01-01
We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...
The effect of density ratio on the near field of a naturally occurring oscillating jet
Energy Technology Data Exchange (ETDEWEB)
England, Grant; Kalt, Peter A.M.; Nathan, Graham J.; Kelso, Richard M. [University of Adelaide, School of Mechanical Engineering, Adelaide (Australia)
2010-01-15
The triangular oscillating jet nozzle generates a triangular jet partially confined within an axi-symmetric chamber to produce a large scale flow oscillation that has application in thermal processes. Particle image velocimetry and oscillation frequency measurements were conducted to investigate the influence of the jet fluid to ambient fluid density ratio on the resulting oscillating flow. The investigation was conducted with a jet momentum flux of 0.06 kg m s{sup -2} (Re=7.3-47.2 x 10{sup 3}) and density ratios ranging from 0.2 to 5.0. The initial spread and decay of the emerging jet was found to depend upon the density ratio but in a more complex way than does an unconfined jet. Both the spread and decay are strongly influenced by the instantaneous angle of jet deflection, with greater deflection leading to increased spreading and decay of the jet. Decreasing the density ratio below unity results in a rapid decrease in the deflection angle, while increasing the density ratio above unity results in an increase in the deflection angle, albeit with less sensitivity. The frequency of oscillation was also shown to depend on the density ratio with an increase in the density ratio causing a decrease in the dominant oscillation frequency. (orig.)
The effect of density ratio on the near field of a naturally occurring oscillating jet
England, Grant; Kalt, Peter A. M.; Nathan, Graham J.; Kelso, Richard M.
2010-01-01
The triangular oscillating jet nozzle generates a triangular jet partially confined within an axi-symmetric chamber to produce a large scale flow oscillation that has application in thermal processes. Particle image velocimetry and oscillation frequency measurements were conducted to investigate the influence of the jet fluid to ambient fluid density ratio on the resulting oscillating flow. The investigation was conducted with a jet momentum flux of 0.06 kg m s-2 ( Re = 7.3-47.2 × 103) and density ratios ranging from 0.2 to 5.0. The initial spread and decay of the emerging jet was found to depend upon the density ratio but in a more complex way than does an unconfined jet. Both the spread and decay are strongly influenced by the instantaneous angle of jet deflection, with greater deflection leading to increased spreading and decay of the jet. Decreasing the density ratio below unity results in a rapid decrease in the deflection angle, while increasing the density ratio above unity results in an increase in the deflection angle, albeit with less sensitivity. The frequency of oscillation was also shown to depend on the density ratio with an increase in the density ratio causing a decrease in the dominant oscillation frequency.
Chemical sensor with oscillating cantilevered probe
Adams, Jesse D
2013-02-05
The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.
New neutrino oscillation results from NOVA
CERN. Geneva
2018-01-01
Neutrinos oscillate among flavors as they travel because a neutrino of a particular flavor is also a superposition of multiple neutrinos with slightly different masses. The interferometric nature of oscillations allows these tiny mass differences to be measured, along with the parameters of the PMNS matrix which governs the mixing. However, since neutrinos only interact weakly, a powerful neutrino source and massive detectors are required to measure them. In this talk I will show recently updated results from NOvA, a long-baseline neutrino oscillation experiment at Fermilab with two functionally identical scintillator detectors. I will present measurements of muon neutrino disappearance and electron neutrino appearance, and what constraints those measurements put on the remaining open questions in neutrino oscillations: Is the neutrino mass hierarchy "normal" or "inverted?" Do neutrino oscillations violate CP symmetry? Is the mixing in the atmospheric sector maximal? The recent update includes 50%...
Is the quadrature oscillator a multivibrator?
DEFF Research Database (Denmark)
Lindberg, Erik
2004-01-01
The aim of this article is to give insight into the mechanisms behind the behavior of oscillators from a new angle, introducing the idea of "frozen eigenvalues". This approach is based on piecewise-linear modelling and a study of the eigenvalues of the time varying linearized Jacobian of the nonl......The aim of this article is to give insight into the mechanisms behind the behavior of oscillators from a new angle, introducing the idea of "frozen eigenvalues". This approach is based on piecewise-linear modelling and a study of the eigenvalues of the time varying linearized Jacobian...... of the nonlinear differential equations describing the oscillator. A multivibrator and a quadrature oscillator are used as test examples. The mechanisms behind the oscillations of the two circuits are compared....
Improved memristor-based relaxation oscillator
Mosad, Ahmed G.
2013-09-01
This paper presents an improved memristor-based relaxation oscillator which offers higher frequency and wider tunning range than the existing reactance-less oscillators. It also has the capability of operating on two positive supplies or alternatively a positive and negative supply. Furthermore, it has the advantage that it can be fully integrated on-chip providing an area-efficient solution. On the other hand, The oscillation concept is discussed then a complete mathematical analysis of the proposed oscillator is introduced. Furthermore, the power consumption of the new relaxation circuit is discussed and validated by the PSPICE circuit simulations showing an excellent agreement. MATLAB results are also introduced to demonstrate the resistance range and the corresponding frequency range which can be obtained from the proposed relaxation oscillator. © 2013 Elsevier Ltd.
Atmospheric neutrino oscillations for earth tomography
Energy Technology Data Exchange (ETDEWEB)
Winter, Walter
2016-04-05
Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.
Atmospheric neutrino oscillations for Earth tomography
Energy Technology Data Exchange (ETDEWEB)
Winter, Walter, E-mail: walter.winter@desy.de
2016-07-15
Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.
Atmospheric neutrino oscillations for Earth tomography
Winter, Walter
2016-07-01
Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.
Geometric phase shifts in biological oscillators.
Tourigny, David S
2014-08-21
Many intracellular processes continue to oscillate during the cell cycle. Although it is not well-understood how they are affected by discontinuities in the cellular environment, the general assumption is that oscillations remain robust provided the period of cell divisions is much larger than the period of the oscillator. Here, I will show that under these conditions a cell will in fact have to correct for an additional quantity added to the phase of oscillation upon every repetition of the cell cycle. The resulting phase shift is an analogue of the geometric phase, a curious entity first discovered in quantum mechanics. In this letter, I will discuss the theory of the geometric phase shift and demonstrate its relevance to biological oscillations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Yuanzhao; Motter, Adilson E.
2018-01-01
An outstanding problem in the study of networks of heterogeneous dynamical units concerns the development of rigorous methods to probe the stability of synchronous states when the differences between the units are not small. Here, we address this problem by presenting a generalization of the master stability formalism that can be applied to heterogeneous oscillators with large mismatches. Our approach is based on the simultaneous block diagonalization of the matrix terms in the variational equation, and it leads to dimension reduction that simplifies the original equation significantly. This new formalism allows the systematic investigation of scenarios in which the oscillators need to be nonidentical in order to reach an identical state, where all oscillators are completely synchronized. In the case of networks of identically coupled oscillators, this corresponds to breaking the symmetry of the system as a means to preserve the symmetry of the dynamical state— a recently discovered effect termed asymmetry-induced synchronization (AISync). Our framework enables us to identify communication delay as a new and potentially common mechanism giving rise to AISync, which we demonstrate using networks of delay-coupled Stuart–Landau oscillators. The results also have potential implications for control, as they reveal oscillator heterogeneity as an attribute that may be manipulated to enhance the stability of synchronous states.
Global dynamics of a stochastic neuronal oscillator
Yamanobe, Takanobu
2013-11-01
Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.
DEFF Research Database (Denmark)
Ekhtiari, Marzieh; Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.
2017-01-01
A new method is implemented in designing of self-oscillating loop for driving piezoelectric transformers. The implemented method is based on combining both analog and digital control systems. Digitally controlled time delay through the self-oscillating loop results in very precise frequency control...... and ensures optimum operation of the piezoelectric transformer in terms of gain and efficiency. Time delay is implemented digitally for the first time through a 16 bit digital-to-analog converter in the self-oscillating loop. The new design of the delay circuit provides 45 ps time resolution, enabling fine......-grained control of phase in the self-oscillating loop. This allows the control loop to dynamically follow frequency changes of the transformer in each resonant cycle. Ultimately, by selecting the optimum phase shift, maximum efficiency under the load and temperature condition is achievable....
Digitized self-oscillating loop for piezoelectric transformer-based power converters
DEFF Research Database (Denmark)
Ekhtiari, Marzieh; Andersen, Thomas; Zhang, Zhe
2016-01-01
A new method is implemented in designing of self-oscillating loop for driving piezoelectric transformers. The implemented method is based on combining both analog and digital control systems. Digitized delay, or digitized phase shift through the self-oscillating loop results in a very precise...... frequency control and ensures an optimum operation of the piezoelectric transformer in terms of voltage gain and efficiency. In this work, additional time delay is implemented digitally for the first time through 16 bit digital-to-analog converter to the self-oscillating loop. Delay control setpoints...... updates at a rate of 417 kHz. This allows the control loop to dynamically follow frequency changes of the transformer in each resonant cycle. The operation principle behind self-oscillating is discussed in this paper. Moreover, experimental results are reported....
Energy Technology Data Exchange (ETDEWEB)
Bagchi, Bijan, E-mail: bbagchi123@gmail.com [Department of Applied Mathematics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Marquette, Ian, E-mail: i.marquette@uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072 (Australia)
2015-08-14
We derive a one-step extension of the well known Swanson oscillator that describes a specific type of pseudo-Hermitian quadratic Hamiltonian connected to an extended harmonic oscillator model. Our analysis is based on the use of the techniques of supersymmetric quantum mechanics and addresses various representations of the ladder operators starting from a seed solution of the harmonic oscillator expressed in terms of a pseudo-Hermite polynomial. The role of the resulting chain of Hamiltonians related to similarity transformation is then exploited. In the second part we write down a two dimensional generalization of the Swanson Hamiltonian and establish superintegrability of such a system. - Highlights: • We show that the Swanson system admits a 1-step rational extension. • We provide a flow-chart linking the Swanson model to its generalized counterpart. • We examine superintegrability of the Hermitian equivalence of the Swanson oscillator.
An Analysis of States in the Phase Space: the Anharmonic Oscillator
Directory of Open Access Journals (Sweden)
Tosto S.
2011-10-01
Full Text Available The paper introduces a simple quantum model to calculate in a general way allowed frequencies and energy levels of the anharmonic oscillator. The theoretical basis of the approach has been introduced in two early papers aimed to infer the properties of quantum systems exploiting the uncertainty principle only. Although for clarity the anharmonic oscillator is described having in mind the lattice oscillations of atoms / ions, the quantum formalism of the model and approach have general character and can be extended to any oscillating system. The results show that the harmonic energy levels split into a complex system of anharmonic energy levels dependent upon the number of terms of the Hamiltonian that describes the anharmonicity.
Lai, Yi Ming
2013-07-09
We study ensembles of globally coupled, nonidentical phase oscillators subject to correlated noise, and we identify several important factors that cause noise and coupling to synchronize or desynchronize a system. By introducing noise in various ways, we find an estimate for the onset of synchrony of a system in terms of the coupling strength, noise strength, and width of the frequency distribution of its natural oscillations. We also demonstrate that noise alone can be sufficient to synchronize nonidentical oscillators. However, this synchrony depends on the first Fourier mode of a phase-sensitivity function, through which we introduce common noise into the system. We show that higher Fourier modes can cause desynchronization due to clustering effects, and that this can reinforce clustering caused by different forms of coupling. Finally, we discuss the effects of noise on an ensemble in which antiferromagnetic coupling causes oscillators to form two clusters in the absence of noise. © 2013 American Physical Society.
Circuit simulation and physical implementation for a memristor-based colpitts oscillator
Directory of Open Access Journals (Sweden)
Hongmin Deng
2017-03-01
Full Text Available This paper implements two kinds of memristor-based colpitts oscillators, namely, the circuit where the memristor is added into the feedback network of the oscillator in parallel and series, respectively. First, a MULTISIM simulation circuit for the memristive colpitts oscillator is built, where an emulator constructed by some off-the-shelf components is utilized to replace the memristor. Then the physical system is implemented in terms of the MULTISIM simulation circuit. Circuit simulation and experimental study show that this memristive colpitts oscillator can exhibit periodic, quasi-periodic, and chaotic behaviors with certain parameter’s variances. Besides, in a sense, the circuit is robust with circuit parameters and device types.
Aging transition in systems of oscillators with global distributed-delay coupling
Rahman, B.; Blyuss, K. B.; Kyrychko, Y. N.
2017-09-01
We consider a globally coupled network of active (oscillatory) and inactive (nonoscillatory) oscillators with distributed-delay coupling. Conditions for aging transition, associated with suppression of oscillations, are derived for uniform and gamma delay distributions in terms of coupling parameters and the proportion of inactive oscillators. The results suggest that for the uniform distribution increasing the width of distribution for the same mean delay allows aging transition to happen for a smaller coupling strength and a smaller proportion of inactive elements. For gamma distribution with sufficiently large mean time delay, it may be possible to achieve aging transition for an arbitrary proportion of inactive oscillators, as long as the coupling strength lies in a certain range.
Magnetisation oscillations, boundary conditions and the Hofstadter butterfly in graphene flakes
Energy Technology Data Exchange (ETDEWEB)
Liu, Yang; Brada, Matej; Kusmartsev, Feodor V. [Department of Physics, Loughborough University (United Kingdom); Mele, Eugene J. [Department of Physics, Loughborough University (United Kingdom); Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States)
2014-10-15
New quantum oscillations in the magnetization of graphene flakes induced by magnetic fields, which depend on the shape of the flake, are described. At small values of the field they are due to the Aharonov-Bohm effect and with increasing field they are transformed into dHvA oscillations. The specific form of the dHvA oscillations is analyzed in terms of their energy spectrum, which has a form of Hofstadter's butterfly. Numerical results using a lattice tight-binding model and a continuum Dirac equation are presented and compared. Possible experiments to investigate the quantum oscillations in Moire and graphene anti-dot superlattices are discussed. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Parallel-Plate Electrostatic Dual Mass Oscillator
Energy Technology Data Exchange (ETDEWEB)
Allen, James J.; Dyck, Christopher W.; Huber, Robert J.
1999-07-22
A surface-micromachined two-degree-of-freedom system that was driven by parallel-plate actuation at antiresonance was demonstrated. The system consisted of an absorbing mass connected by folded springs to a drive mass. The system demonstrated substantial motion amplification at antiresonance. The absorber mass amplitudes were 0.8-0.85 pm at atmospheric pressure while the drive mass amplitudes were below 0.1 pm. Larger absorber mass amplitudes were not possible because of spring softening in the drive mass springs. Simple theory of the dual-mass oscillator has indicated that the absorber mass may be insensitive to limited variations in strain and damping. This needs experimental verification. Resonant and antiresonant frequencies were measured and compared to the designed values. Resonant frequency measurements were difficult to compare to the design calculations because of time-varying spring softening terms that were caused by the drive configuration. Antiresonant frequency measurements were close to the design value of 5.1 kHz. The antiresonant frequency was not dependent on spring softening. The measured absorber mass displacement at antiresonance was compared to computer simulated results. The measured value was significantly greater, possibly due to neglecting fringe fields in the force expression used in the simulation.
Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number
Smith, W. R.; Wang, Q. X.
2017-08-01
The long-time viscous decay of large-amplitude bubble oscillations is considered in an incompressible Newtonian fluid, based on the Rayleigh-Plesset equation. At large Reynolds numbers, this is a multi-scaled problem with a short time scale associated with inertial oscillation and a long time scale associated with viscous damping. A multi-scaled perturbation method is thus employed to solve the problem. The leading-order analytical solution of the bubble radius history is obtained to the Rayleigh-Plesset equation in a closed form including both viscous and surface tension effects. Some important formulae are derived including the following: the average energy loss rate of the bubble system during each cycle of oscillation, an explicit formula for the dependence of the oscillation frequency on the energy, and an implicit formula for the amplitude envelope of the bubble radius as a function of the energy. Our theory shows that the energy of the bubble system and the frequency of oscillation do not change on the inertial time scale at leading order, the energy loss rate on the long viscous time scale being inversely proportional to the Reynolds number. These asymptotic predictions remain valid during each cycle of oscillation whether or not compressibility effects are significant. A systematic parametric analysis is carried out using the above formula for the energy of the bubble system, frequency of oscillation, and minimum/maximum bubble radii in terms of the Reynolds number, the dimensionless initial pressure of the bubble gases, and the Weber number. Our results show that the frequency and the decay rate have substantial variations over the lifetime of a decaying oscillation. The results also reveal that large-amplitude bubble oscillations are very sensitive to small changes in the initial conditions through large changes in the phase shift.
Energy Technology Data Exchange (ETDEWEB)
Sun, Jiajia [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Shi, Zongqian, E-mail: zqshi@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Zhang, Pengbo [Department of Anesthesiology, Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, No.157 West 5 Road, Xi’an, Shaanxi Province 710004 (China)
2017-04-01
Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system. - Highlights: • We compare the results of the ECS method and FEA method with the commercial software, Ansys. • We analyze the physic mechanism of the oscillating motion of the particles in the presence of an oscillating magnet. • We discuss the influence of the oscillating amplitude of the magnet on the behavior of the particle.
Time dependent quantum harmonic oscillator subject to a sudden change of mass: continuous solution
Energy Technology Data Exchange (ETDEWEB)
Moya C, H. [INAOE, Coordinacion de Optica, AP 51 y 216, 72000 Puebla (Mexico); Fernandez G, M. [Depto. de Fisica, CBI, Universidad Autonoma Metropolitana - Iztapalapa, 09340, Mexico, D.F. AP 55-534 (Mexico)
2007-07-01
We show that a harmonic oscillator subject to a sudden change of mass produces squeezed states. Our study is based on an approximate analytic solution to the time-dependent harmonic oscillator equation with a sub period function parameter. This continuous treatment differs from former studies that involve the matching of two time-independent solutions at the discontinuity. This formalism requires an ad hoc transformation of the original differential equation and is also applicable for rapid, although not necessarily instantaneous, mass variations. (Author)
The geodynamo as a bistable oscillator
Hoyng, P.; Ossendrijver, M. A. J. H.; Schmitt, D.
2001-07-01
Our intent is to provide a simple and quantitative understanding of the variability of the axial dipole component of the geomagnetic field on both short and long time scales. To this end we study the statistical properties of a prototype nonlinear mean field model. An azimuthal average is employed, so that (1) we address only the axisymmetric component of the field, and (2) the dynamo parameters have a random component that fluctuates on the (fast) eddy turnover time scale. Numerical solutions with a rapidly fluctuating alpha reproduce several features of the geomagnetic field: (1) a variable, dominantly dipolar field with additional fine structure due to excited overtones, and sudden reversals during which the field becomes almost quadrupolar, (2) aborted reversals and excursions, (3) intervals between reversals having a Poisson distribution. These properties are robust, and appear regardless of the type of nonlinearity and the model parameters. A technique is presented for analysing the statistical properties of dynamo models of this type. The Fokker-Planck equation for the amplitude a of the fundamental dipole mode shows that a behaves as the position of a heavily damped particle in a bistable potential ~(1-a^2)^2, subject to random forcing. The dipole amplitude oscillates near the bottom of one well and makes occasional jumps to the other. These reversals are induced solely by the overtones. Theoretical expressions are derived for the statistical distribution of the dipole amplitude, the variance of the dipole amplitude between reversals, and the mean reversal rate. The model explains why the reversal rate increases with increasing secular variation, as observed. Moreover, the present reversal rate of the geodynamo, once per (2-3)x10^5years, is shown to imply a secular variation of the dipole moment of ~15% (about the current value). The theoretical dipole amplitude distribution agrees well with the Sint-800 data.
Nucleation of superconductivity under rapid cycling of an electric field
Bandyopadhyay, Malay
2008-10-01
The effect of an externally applied high-frequency oscillating electric field on the critical nucleation field of superconductivity in the bulk as well as at the surface of a superconductor is investigated in detail in this work. Starting from the linearized time-dependent Ginzburg-Landau (TDLG) theory, and using the variational principle, I have shown the analogy between a quantum harmonic oscillator with that of the nucleation of superconductivity in the bulk and a quantum double oscillator with that of the nucleation at the surface of a finite sample. The effective Hamiltonian approach of Cook et al (1985 Phys. Rev. A 31 564) is employed to incorporate the effect of an externally applied highly oscillating electric field. The critical nucleation field ratio is also calculated from the ground state energy method. The results obtained from these two approximate theories agree very well with the exact results for the case of an undriven system, which establishes the validity of these two approximate theories. It is observed that the highly oscillating electric field actually increases the bulk critical nucleation field (Hc2) as well as the surface critical nucleation field (Hc3) of superconductivity as compared to the case of absent electric field (ɛ0 = 0). But the externally applied rapidly oscillating electric field accentuates the surface critical nucleation field more than the bulk critical nucleation field, i.e. the increase of Hc3 is 1.6592 times larger than that of Hc2.
National Research Council Canada - National Science Library
Park, Jae-Hun; Watts, D. R; Wimbush, Mark; Book, Jeffrey W; Tracey, Karen L; Xu, Youngsheng
2006-01-01
... (pressure- guage-equipped inverted echo sounder) experiment in the Ulleung Basin of the southwestern JES was originally designed to investigate the dynamics of meandering currents and eddies in the upper and deep ocean...
Periodic motions and resonances of impact oscillators
Dyskin, Arcady V.; Pasternak, Elena; Pelinovsky, Efim
2012-06-01
Bilinear oscillators - the oscillators whose springs have different stiffnesses in compression and tension - model a wide range of phenomena. A limiting case of bilinear oscillator with infinite stiffness in compression - the impact oscillator - is studied here. We investigate a special set of impact times - the eigenset, which corresponds to the solution of the homogeneous equation, i.e. the oscillator without the driving force. We found that this set and its subsets are stable with respect to variation of initial conditions. Furthermore, amongst all periodic sets of impact times with the period commensurate with the period of driving force, the eigenset is the only one which can support resonances, in particular the multi-'harmonic' resonances. Other resonances should produce non-periodic sets of impact times. This funding indicates that the usual simplifying assumption [e.g., S.W. Shaw, P.J. Holmes, A periodically forced piecewise linear oscillator, Journal of Sound and Vibration 90 (1983) 129-155] that the times between impacts are commensurate with the period of the driving force does not always hold. We showed that for the first sub-'harmonic resonance' - the resonance achieved on a half frequency of the main resonance - the set of impact times is asymptotically close to the eigenset. The envelope of the oscillations in this resonance increases as a square root of time, opposite to the linear increase characteristic of multi-'harmonic' resonances.
Patterns of interval correlations in neural oscillators with adaptation.
Schwalger, Tilo; Lindner, Benjamin
2013-01-01
Neural firing is often subject to negative feedback by adaptation currents. These currents can induce strong correlations among the time intervals between spikes. Here we study analytically the interval correlations of a broad class of noisy neural oscillators with spike-triggered adaptation of arbitrary strength and time scale. Our weak-noise theory provides a general relation between the correlations and the phase-response curve (PRC) of the oscillator, proves anti-correlations between neighboring intervals for adapting neurons with type I PRC and identifies a single order parameter that determines the qualitative pattern of correlations. Monotonically decaying or oscillating correlation structures can be related to qualitatively different voltage traces after spiking, which can be explained by the phase plane geometry. At high firing rates, the long-term variability of the spike train associated with the cumulative interval correlations becomes small, independent of model details. Our results are verified by comparison with stochastic simulations of the exponential, leaky, and generalized integrate-and-fire models with adaptation.
The Effect of Systematic Error in Forced Oscillation Testing
Williams, Brianne Y.; Landman, Drew; Flory, Isaac L., IV; Murphy, Patrick C.
2012-01-01
One of the fundamental problems in flight dynamics is the formulation of aerodynamic forces and moments acting on an aircraft in arbitrary motion. Classically, conventional stability derivatives are used for the representation of aerodynamic loads in the aircraft equations of motion. However, for modern aircraft with highly nonlinear and unsteady aerodynamic characteristics undergoing maneuvers at high angle of attack and/or angular rates the conventional stability derivative model is no longer valid. Attempts to formulate aerodynamic model equations with unsteady terms are based on several different wind tunnel techniques: for example, captive, wind tunnel single degree-of-freedom, and wind tunnel free-flying techniques. One of the most common techniques is forced oscillation testing. However, the forced oscillation testing method does not address the systematic and systematic correlation errors from the test apparatus that cause inconsistencies in the measured oscillatory stability derivatives. The primary objective of this study is to identify the possible sources and magnitude of systematic error in representative dynamic test apparatuses. Sensitivities of the longitudinal stability derivatives to systematic errors are computed, using a high fidelity simulation of a forced oscillation test rig, and assessed using both Design of Experiments and Monte Carlo methods.
Simulating Nonlinear Oscillations of Viscoelastically Damped Mechanical Systems
Directory of Open Access Journals (Sweden)
M. D. Monsia
2014-12-01
Full Text Available The aim of this work is to propose a mathematical model in terms of an exact analytical solution that may be used in numerical simulation and prediction of oscillatory dynamics of a one-dimensional viscoelastic system experiencing large deformations response. The model is represented with the use of a mechanical oscillator consisting of an inertial body attached to a nonlinear viscoelastic spring. As a result, a second-order first-degree Painlevé equation has been obtained as a law, governing the nonlinear oscillatory dynamics of the viscoelastic system. Analytical resolution of the evolution equation predicts the existence of three solutions and hence three damping modes of free vibration well known in dynamics of viscoelastically damped oscillating systems. Following the specific values of damping strength, over-damped, critically-damped and under-damped solutions have been obtained. It is observed that the rate of decay is not only governed by the damping degree but, also by the magnitude of the stiffness nonlinearity controlling parameter. Computational simulations demonstrated that numerical solutions match analytical results very well. It is found that the developed mathematical model includes a nonlinear extension of the classical damped linear harmonic oscillator and incorporates the Lambert nonlinear oscillatory equation with well-known solutions as special case. Finally, the three damped responses of the current mathematical model devoted for representing mechanical systems undergoing large deformations and viscoelastic behavior are found to be asymptotically stable.
Bai, Li; Huang, Xiaoying; Yang, Qian; Wu, Jian-young
2015-01-01
We have discovered an evoked network oscillation in rat neocortical slices and have examined its spatiotemporal patterns with voltage sensitive dye imaging. The slices (visual and auditory cortices) were prepared in a medium of low calcium, high magnesium and with sodium replaced by choline in order to reduce the excito-toxicity and sodium loading. After slicing, the choline was washed out while normal calcium, magnesium and sodium concentrations were restored. The oscillation was evoked by a single electrical shock to slices bathed in normal artificial cerebral spinal fluid (ACSF). The oscillation was organized as an all-or-none epoch containing 4 to 13 cycles at a central frequency around 25 Hz. The activity can be reversibly blocked by CNQX, APV and atropine, but not by bicuculline, indicating poly-synaptic excitatory mechanisms. Voltage sensitive dye imaging showed high amplitude oscillation signals in superficial and middle cortical layers. Spatiotemporally, the oscillations were organized as waves, propagating horizontally along cortical laminar. Each oscillation cycle was associated with one wave propagating in space. The waveforms were often different at different locations (e.g., extra cycles), suggesting the co-existence of multiple local oscillators. For different cycles, the waves often initiated at different locations, suggesting that local oscillators are competing to initiate each oscillation cycle. Overall our results suggest that this cortical network oscillation is organized at two levels: locally, oscillating neurons are tightly coupled to form local oscillators, and globally the coupling between local oscillators is weak, allowing abrupt spatial phase lags and propagating waves with multiple initiation sites. PMID:16870836
Oscillating and rotating sine-Gordon system
DEFF Research Database (Denmark)
Olsen, O. H.; Samuelsen, Mogens Rugholm
1986-01-01
The interaction between a 2π kink and the background or vacuum is investigated in the pure sine-Gordon system. For an oscillating background (i.e., the k=0 part of the phonon spectrum) the 2π kink oscillates, while for increasing or decreasing vacuum two phenomena have been observed, depending...... on the rate of change of the vacuum. For small rates a parametric excitation of standing waves is found, and for larger rates the system linearizes. In the case of oscillating vacuum a perturbation approach explains the behavior perfectly, while for small rates of increasing vacuum the system reduces...
Oscillators - an approach for a better understanding
DEFF Research Database (Denmark)
Lindberg, Erik
2003-01-01
The aim of this tutorial is to provide an electronic engineer knowledge and insight for a better understanding of the mechanisms behind the behaviour of electronic oscillators. A linear oscillator is a mathematical fiction which can only be used as a starting point for the design of a real...... oscillator based on the Barkhausen criteria. Statements in textbooks and papers saying that the nonlinearities are bringing back the poles to the imaginary axis are wrong. The concept of "frozen eigenvalues" is introduced by means of piece-wise-linear modelling of the nonlinear components which are necessary...
Phase Multistability in Coupled Oscillator Systems
DEFF Research Database (Denmark)
Mosekilde, Erik; Postnov, D.E.; Sosnovtseva, Olga
2003-01-01
The phenomenon of phase multistability arises in connection with the synchronization of coupled oscillator systems when the systems individually display complex wave forms associated, for instance, with the presence of subharmonic components or with significant variations of the phase velocity...... along the orbit of the individual oscillator. Focusing on the mechanisms underlying the appearance of phase multistability, the paper examines a variety of phase-locked patterns. In particular we demonstrate the nested structure of synchronization regions for oscillations with multicrest wave forms...... and investigate how the number of spikes per train and the proximity of a neighboring equilibrium point can influence the formation of coexisting regimes in coupled bursters....
Possible solar modulation of pacific decadal oscillation
Ma, Lihua; Yin, Zhiqiang
2017-09-01
The Pacific Decadal Oscillation (PDO) is an El Niño-like pattern of Pacific climate variability, oscillating between its warm and cool phase about every 20-30 years as defined by oceanic temperature anomalies in the northeast and tropical Pacific Ocean. In this work, the authors investigate the possible connection between the PDO and solar activity by means of wavelet technique. The study shows obvious fluctuation characteristics in the PDO series. The modulation action from solar activity plays an important role in the oscillation of the Pacific, and there is a possible association existing in the PDO and solar activity on decade time scales.
Damping of Crank–Nicolson error oscillations
DEFF Research Database (Denmark)
Britz, Dieter; Østerby, Ole; Strutwolf, J.
2003-01-01
The Crank–Nicolson (CN) simulation method has an oscillatory response to sharp initial transients. The technique is convenient but the oscillations make it less popular. Several ways of damping the oscillations in two types of electrochemical computations are investigated. For a simple one...... be computationally more expensive with some systems. The simple device of starting with one backward implicit (BI, or Laasonen) step does damp the oscillations, but not always sufficiently. For electrochemical microdisk simulations which are two-dimensional in space and using CN, the use of a first BI step is much...
Oscillating magnetocaloric effect of a multilayer graphene
Energy Technology Data Exchange (ETDEWEB)
Alisultanov, Z. Z., E-mail: zaur0102@gmail.com [Amirkhanov Institute of Physics, Russian Academy of Sciences, Dagestan Science Centre, Makhachkala (Russian Federation); Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Dagestan State University, Makhachkala (Russian Federation); Paixão, L. S.; Reis, M. S. [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346 Niterói, RJ (Brazil)
2014-12-08
The oscillating magnetocaloric effect of a multilayer graphene in Bernal and rhombohedral stacking is investigated to extend the previous knowledge of the effect on a single layer graphene. We started from results of a tight-binding model and obtained analytical expressions for the thermodynamic potential and for the entropy change. The last exhibits the same dependence on field and temperature observed for other diamagnetic systems; it oscillates with the inverse magnetic field and presents a maximum value at a given temperature. The amplitude of the oscillating entropy change decreases with the number of layers and the stacking sequence rules the magnetocaloric properties of the system.
Oscillating magnetocaloric effect of a multilayer graphene
Alisultanov, Z. Z.; Paixão, L. S.; Reis, M. S.
2014-12-01
The oscillating magnetocaloric effect of a multilayer graphene in Bernal and rhombohedral stacking is investigated to extend the previous knowledge of the effect on a single layer graphene. We started from results of a tight-binding model and obtained analytical expressions for the thermodynamic potential and for the entropy change. The last exhibits the same dependence on field and temperature observed for other diamagnetic systems; it oscillates with the inverse magnetic field and presents a maximum value at a given temperature. The amplitude of the oscillating entropy change decreases with the number of layers and the stacking sequence rules the magnetocaloric properties of the system.
Compact heterodyne NEMS oscillator for sensing applications
Sansa, Marc; Gourlat, Guillaume; Jourdan, Guillaume; Gely, Marc; Villard, Patrick; Sicard, Gilles; Hentz, Sébastien
2016-11-01
We present a novel topology of heterodyne nanoelectromechanical self-oscillator, aimed at the dense integration of resonator arrays for sensing applications. This oscillator is based on an original measurement method, suitable for both open loop and closed loop operations, which simplifies current down-mixing set-ups. When implemented on-chip, it will allow the reduction of the size and power consumption of readout CMOS circuitry. This is today the limiting factor for the integration density of NEMS oscillators for real-life applications. Here we characterize this method in both open-loop and closed-loop, and evaluate its frequency stability.
Oscillations in glycolysis in Saccharomyces cerevisiae
DEFF Research Database (Denmark)
Kloster, Antonina; Olsen, Lars Folke
2012-01-01
also decreases by stimulating the ATPase activity, e.g. by FCCP or Amphotericin B. Thus, ATPase activity strongly affects the glycolytic oscillations. We discuss these data in relation to a simple autocatalytic model of glycolysis which can reproduce the experimental data and explain the role...... of membrane-bound ATPases . In addition we also studied a recent detailed model of glycolysis and found that, although thismodel faithfully reproduces the oscillations of glycolytic intermediates observed experimentally, it is not able to explain the role of ATPase activity on the oscillations....
EEG oscillations during sleep and dream recall: state- or trait-like individual differences?
Scarpelli, Serena; D’Atri, Aurora; Gorgoni, Maurizio; Ferrara, Michele; De Gennaro, Luigi
2015-01-01
Dreaming represents a peculiar form of cognitive activity during sleep. On the basis of the well-known relationship between sleep and memory, there has been a growing interest in the predictive role of human brain activity during sleep on dream recall. Neuroimaging studies indicate that rapid eye movement (REM) sleep is characterized by limbic activation and prefrontal cortex deactivation. This pattern could explain the presence of emotional contents in dream reports. Furthermore, the morphoanatomical measures of amygdala and hippocampus predict some features of dream contents (bizarreness, vividness, and emotional load). More relevant for a general view of dreaming mechanisms, empirical data from neuropsychological and electroencephalographic (EEG) studies support the hypothesis that there is a sort of continuity between the neurophysiological mechanisms of encoding and retrieval of episodic memories across sleep and wakefulness. A notable overlap between the electrophysiological mechanisms underlying emotional memory formation and some peculiar EEG features of REM sleep has been suggested. In particular, theta (5–8 Hz) EEG oscillations on frontal regions in the pre-awakening sleep are predictive of dream recall, which parallels the predictive relation during wakefulness between theta activity and successful retrieval of episodic memory. Although some observations support an interpretation more in terms of an intraindividual than interindividual mechanism, the existing empirical evidence still precludes from definitely disentangling if this relation is explained by state- or trait-like differences. PMID:25999908
Polaritonic Rabi and Josephson Oscillations.
Rahmani, Amir; Laussy, Fabrice P
2016-07-25
The dynamics of coupled condensates is a wide-encompassing problem with relevance to superconductors, BECs in traps, superfluids, etc. Here, we provide a unified picture of this fundamental problem that includes i) detuning of the free energies, ii) different self-interaction strengths and iii) finite lifetime of the modes. At such, this is particularly relevant for the dynamics of polaritons, both for their internal dynamics between their light and matter constituents, as well as for the more conventional dynamics of two spatially separated condensates. Polaritons are short-lived, interact only through their material fraction and are easily detuned. At such, they bring several variations to their atomic counterpart. We show that the combination of these parameters results in important twists to the phenomenology of the Josephson effect, such as the behaviour of the relative phase (running or oscillating) or the occurence of self-trapping. We undertake a comprehensive stability analysis of the fixed points on a normalized Bloch sphere, that allows us to provide a generalized criterion to identify the Rabi and Josephson regimes in presence of detuning and decay.
Torsional oscillations of strange stars
Directory of Open Access Journals (Sweden)
Mannarelli Massimo
2014-01-01
Full Text Available Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.
Recherche des oscillations de Neutrinos $\
Gangler, E
1997-01-01
Le detecteur nomad, place sur le faisceau de neutrinos wide-band-beam du sps, de contamination en neutrino tau marginale, permet de rechercher des oscillations neutrino muon - tau dans la region de pertinence cosmologique et de distinguer statistiquement les courants charges des neutrinos tau essentiellement par leur mesure cinematique. Une large part du travail de these a donc ete consacree a la reconstruction des evenements dans les chambres a derive, cible instrumentee et cur de l'experience, dont la physique de detection est decrite. Une methode de recherche de traces fut developpee, utilisant certaines informations d'un autre sous-detecteur de nomad, le trd. Pour combler une perte d'efficacite de reconstruction, une methode de recherche de traces courtes s'appuyant sur des vertex deja constitues fut developpee en exploitant les potentialites du filtre de kalman, algorithme iteratif d'ajustement de traces. Ces methodes sont utilisees en production par la collaboration. Cette these porte sur la recherche d...
Kumar, Prakash; Kumar, Anil; Erlicher, Silvano
2017-11-01
The paper proposes a single degree of freedom oscillator in order to accurately represent the lateral force acting on a rigid floor due to human walking. As a pedestrian produces itself the energy required to maintain its motion, it can be modelled as a self-sustained oscillator that is able to produce: (i) self-sustained motion; (ii) a lateral periodic force signal; and (iii) a stable limit cycle. The proposed oscillator is a modification of hybrid Van der Pol-Duffing-Rayleigh oscillator, by introducing an additional nonlinear hardening term. Stability analysis of the proposed oscillator has been performed by using the energy balance method and the Lindstedt-Poincare perturbation technique. Model parameters were identified from the experimental force signals of ten pedestrians using the least squares identification technique. The experimental and the model generated lateral forces show a good agreement.
Oscillating devices for airway clearance in people with cystic fibrosis.
Morrison, Lisa; Innes, Stephanie
2017-05-04
published in sufficient detail in most of these studies, so meta-analysis was limited. Few studies were considered to have a low risk of bias in any domain. It is not possible to blind participants and clinicians to physiotherapy interventions, but 11 studies did blind the outcome assessors.Forced expiratory volume in one second was the most frequently measured outcome. One long-term study (seven months) compared oscillatory devices with either conventional physiotherapy or breathing techniques and found statistically significant differences in some lung function parameters in favour of oscillating devices. One study identified an increase in frequency of exacerbations requiring antibiotics whilst using high frequency chest wall oscillation when compared to positive expiratory pressure. There were some small but significant changes in secondary outcome variables such as sputum volume or weight, but not wholly in favour of oscillating devices. Participant satisfaction was reported in 15 studies but this was not specifically in favour of an oscillating device, as some participants preferred breathing techniques or techniques used prior to the study interventions. The results for the remaining outcome measures were not examined or reported in sufficient detail to provide any high level evidence. There was no clear evidence that oscillation was a more or less effective intervention overall than other forms of physiotherapy; furthermore there was no evidence that one device is superior to another. The findings from one study showing an increase in frequency of exacerbations requiring antibiotics whilst using an oscillating device compared to positive expiratory pressure may have significant resource implications. More adequately-powered long-term randomised controlled trials are necessary and outcomes measured should include frequency of exacerbations, individual preference, adherence to therapy and general satisfaction with treatment. Increased adherence to therapy may then
Directory of Open Access Journals (Sweden)
D.V.N. Ananth
2017-12-01
Full Text Available During grid fault, transmission lines reach its thermal limit and lose its capability to transfer. If this fault current enters generator terminals, it will lead to dip in stator voltage and consequently produces torque and real power oscillations. This further affects in the form of internal heat in rotor windings and finally damages the generator. A new control strategy is proposed to limit fault current using dual STATCOM, which will damp power oscillations and mitigate the voltage dip due to a severe symmetrical fault. It is achieved by diverting the fault current to the capacitor using the dual-STATCOM controller. It is best suitable to maintain power system stability with uninterrupted power supply, effective power transfer capability and rapid reactive power support and to damp inter-area oscillations. The effectiveness of SG and DFIG due to the transmission line short circuit symmetrical fault was studied.
Electronic contribution to the oscillations of a gravitational antenna
Branchina, Vincenzo; Rissone, Anna
2004-01-01
We carefully analyse the contribution to the oscillations of a metallic gravitational antenna due to the interaction between the electrons of the bar and the incoming gravitational wave. To this end, we first derive the total microscopic Hamiltonian of the wave-antenna system and then compute the contribution to the attenuation factor due to the electron-graviton interaction. As compared to the ordinary damping factor, which is due to the electron viscosity, this term turns out to be totally negligible. This result confirms that the only relevant mechanism for the interaction of a gravitational wave with a metallic antenna is its direct coupling with the bar normal modes.
Rayleigh-type parametric chemical oscillation.
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Searching for Global oscillations of Jupiter
Murphy, N.; Smith, E. J.; Rogers, W.; Gillam, S.; Rosner, R.; Baliunas, S.
2000-12-01
The detection of global oscillations of Jupiter would lead to significant advances in our understanding of giant planet internal structure, analogous to the enormous increase in knowledge of the sun's interior facilitated by helioseismology. In particular, the frequencies of p-mode oscillations will be strongly affected by the presence of density discontinuities and the planet's core size and structure. While it is clear from previous observations that such oscillations probably only exist with very small amplitudes, current instrumentation may still be able to detect them. We will describe a proposed experiment to detect (or place a firm upper amplitude limit on) global p-mode oscillations of Jupiter, using a magneto-optical filter on the Mt Wilson 100" telescope. We will describe the operation of the instrument, present preliminary data and describe models of instrument response which show that with 7 nights of data we can expect to detect signals with amplitudes less than 20 cm/s.
Star-shaped oscillations of Leidenfrost drops
Ma, Xiaolei; Liétor-Santos, Juan-José; Burton, Justin C.
2017-03-01
We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with n =2 -13 lobes around the drop periphery. We find that the wavelength of the oscillations depends only on the capillary length of the liquid and is independent of the drop radius and substrate temperature. However, the number of observed modes depends sensitively on the liquid viscosity. The dominant frequency of pressure variations in the vapor layer is approximately twice the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results show that the star-shaped oscillations are driven by capillary waves of a characteristic wavelength beneath the drop and that the waves are generated by a large shear stress at the liquid-vapor interface.
Dynamical evolution of quantum oscillators toward equilibrium.
Usha Devi, A R; Rajagopal, A K
2009-07-01
A pure quantum state of large number N of oscillators, interacting via harmonic coupling, evolves such that any small subsystem n