WorldWideScience

Sample records for rapidly oscillating electric

  1. Oscillating electrical motors, application and theory

    Energy Technology Data Exchange (ETDEWEB)

    Kudarauskas, S. [Klaipeda University, Department of Electrical Engineering, Klaipeda (Lithuania)

    2000-08-01

    The article analyses classification of electrical machines by the temporal and spatial properties of mechanical movement. It is purposive to group the machines by movement temporal properties thus marking out an independent class of oscillating machines. The article demonstrates operation principles, design diversity and practical utilisation of these machines. Principles of theoretical analysis of main regime (i.e. steady oscillations) are presented. The appendix presents rationale of analogy between electrical circuit and magnetic circuit from energy standpoint. (orig.)

  2. Nucleation of superconductivity under rapid cycling of an electric field

    Science.gov (United States)

    Bandyopadhyay, Malay

    2008-10-01

    The effect of an externally applied high-frequency oscillating electric field on the critical nucleation field of superconductivity in the bulk as well as at the surface of a superconductor is investigated in detail in this work. Starting from the linearized time-dependent Ginzburg-Landau (TDLG) theory, and using the variational principle, I have shown the analogy between a quantum harmonic oscillator with that of the nucleation of superconductivity in the bulk and a quantum double oscillator with that of the nucleation at the surface of a finite sample. The effective Hamiltonian approach of Cook et al (1985 Phys. Rev. A 31 564) is employed to incorporate the effect of an externally applied highly oscillating electric field. The critical nucleation field ratio is also calculated from the ground state energy method. The results obtained from these two approximate theories agree very well with the exact results for the case of an undriven system, which establishes the validity of these two approximate theories. It is observed that the highly oscillating electric field actually increases the bulk critical nucleation field (Hc2) as well as the surface critical nucleation field (Hc3) of superconductivity as compared to the case of absent electric field (ɛ0 = 0). But the externally applied rapidly oscillating electric field accentuates the surface critical nucleation field more than the bulk critical nucleation field, i.e. the increase of Hc3 is 1.6592 times larger than that of Hc2.

  3. Rapidly curable electrically conductive clear coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Mark P.; Anderson, Lawrence G.; Post, Gordon L.

    2018-01-16

    Rapidly curable electrically conductive clear coatings are applied to substrates. The electrically conductive clear coating includes to clear layer having a resinous binder with ultrafine non-stoichiometric tungsten oxide particles dispersed therein. The clear coating may be rapidly cured by subjecting the coating to infrared radiation that heats the tungsten oxide particles and surrounding resinous binder. Localized heating increases the temperature of the coating to thereby thermally cure the coating, while avoiding unwanted heating of the underlying substrate.

  4. Magnetic resonance imaging of oscillating electrical currents.

    Science.gov (United States)

    Halpern-Manners, Nicholas W; Bajaj, Vikram S; Teisseyre, Thomas Z; Pines, Alexander

    2010-05-11

    Functional MRI has become an important tool of researchers and clinicians who seek to understand patterns of neuronal activation that accompany sensory and cognitive processes. However, the interpretation of fMRI images rests on assumptions about the relationship between neuronal firing and hemodynamic response that are not firmly grounded in rigorous theory or experimental evidence. Further, the blood-oxygen-level-dependent effect, which correlates an MRI observable to neuronal firing, evolves over a period that is 2 orders of magnitude longer than the underlying processes that are thought to cause it. Here, we instead demonstrate experiments to directly image oscillating currents by MRI. The approach rests on a resonant interaction between an applied rf field and an oscillating magnetic field in the sample and, as such, permits quantitative, frequency-selective measurements of current density without spatial or temporal cancellation. We apply this method in a current loop phantom, mapping its magnetic field and achieving a detection sensitivity near the threshold required for the detection of neuronal currents. Because the contrast mechanism is under spectroscopic control, we are able to demonstrate how ramped and phase-modulated spin-lock radiation can enhance the sensitivity and robustness of the experiment. We further demonstrate the combination of these methods with remote detection, a technique in which the encoding and detection of an MRI experiment are separated by sample flow or translation. We illustrate that remotely detected MRI permits the measurement of currents in small volumes of flowing water with high sensitivity and spatial resolution.

  5. Dynamic electrophoresis of charged colloids in an oscillating electric field.

    Science.gov (United States)

    Shih, Chunyu; Yamamoto, Ryoichi

    2014-06-01

    The dynamics of charged colloids in an electrolyte solution is studied using direct numerical simulations via the smoothed profile method. We calculated the complex electrophoretic mobility μ(ω) of the charged colloids under an oscillating electric field of frequency ω. We show the existence of three dynamically distinct regimes, determined by the momentum diffusion and ionic diffusion time scales. The present results agree well with approximate theories based on the cell model in dilute suspensions; however, systematic deviations between the simulation results and theoretical predictions are observed as the volume fraction of colloids is increased, similar to the case of constant electric fields.

  6. Synchronization of Lienard-Type Oscillators in Uniform Electrical Networks

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Mohit; Dorfler, Florian; Johnson, Brian B.; Dhople, Sairaj V.

    2016-08-01

    This paper presents a condition for global asymptotic synchronization of Lienard-type nonlinear oscillators in uniform LTI electrical networks with series R-L circuits modeling interconnections. By uniform electrical networks, we mean that the per-unit-length impedances are identical for the interconnecting lines. We derive conditions for global asymptotic synchronization for a particular feedback architecture where the derivative of the oscillator output current supplements the innate current feedback induced by simply interconnecting the oscillator to the network. Our proof leverages a coordinate transformation to a set of differential coordinates that emphasizes signal differences and the particular form of feedback permits the formulation of a quadratic Lyapunov function for this class of networks. This approach is particularly interesting since synchronization conditions are difficult to obtain by means of quadratic Lyapunov functions when only current feedback is used and for networks composed of series R-L circuits. Our synchronization condition depends on the algebraic connectivity of the underlying network, and reiterates the conventional wisdom from Lyapunov- and passivity-based arguments that strong coupling is required to ensure synchronization.

  7. Electrical control of calcium oscillations in mesenchymal stem cells using microsecond pulsed electric fields.

    Science.gov (United States)

    Hanna, Hanna; Andre, Franck M; Mir, Lluis M

    2017-04-20

    Human mesenchymal stem cells are promising tools for regenerative medicine due to their ability to differentiate into many cellular types such as osteocytes, chondrocytes and adipocytes amongst many other cell types. These cells present spontaneous calcium oscillations implicating calcium channels and pumps of the plasma membrane and the endoplasmic reticulum. These oscillations regulate many basic functions in the cell such as proliferation and differentiation. Therefore, the possibility to mimic or regulate these oscillations might be useful to regulate mesenchymal stem cells biological functions. One or several electric pulses of 100 μs were used to induce Ca 2+ spikes caused by the penetration of Ca 2+ from the extracellular medium, through the transiently electropermeabilized plasma membrane, in human adipose mesenchymal stem cells from several donors. Attached cells were preloaded with Fluo-4 AM and exposed to the electric pulse(s) under the fluorescence microscope. Viability was also checked. According to the pulse(s) electric field amplitude, it is possible to generate a supplementary calcium spike with properties close to those of calcium spontaneous oscillations, or, on the contrary, to inhibit the spontaneous calcium oscillations for a very long time compared to the pulse duration. Through that inhibition of the oscillations, Ca 2+ oscillations of desired amplitude and frequency could then be imposed on the cells using subsequent electric pulses. None of the pulses used here, even those with the highest amplitude, caused a loss of cell viability. An easy way to control Ca 2+ oscillations in mesenchymal stem cells, through their cancellation or the addition of supplementary Ca 2+ spikes, is reported here. Indeed, the direct link between the microsecond electric pulse(s) delivery and the occurrence/cancellation of cytosolic Ca 2+ spikes allowed us to mimic and regulate the Ca 2+ oscillations in these cells. Since microsecond electric pulse delivery

  8. Electric Generator in the System for Damping Oscillations of Vehicles

    Directory of Open Access Journals (Sweden)

    Serebryakov A.

    2017-04-01

    Full Text Available The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.

  9. Electric Generator in the System for Damping Oscillations of Vehicles

    Science.gov (United States)

    Serebryakov, A.; Kamolins, E.; Levin, N.

    2017-04-01

    The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.

  10. Rapid and Sustained Nuclear-Cytoplasmic ERK Oscillations Induced by Epidermal Growth Factor

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Ippolito, Danielle L.; Chrisler, William B.; Resat, Haluk; Bollinger, Nikki; Opresko, Lee K.; Wiley, H. S.

    2009-12-01

    Mathematical modeling has predicted that ERK activity should oscillate in response to cell stimulation, but this has never been observed. To explore this inconsistency, we expressed an ERK1-GFP fusion protein in mammary epithelial cells. Following EGF stimulation, we observed rapid and continuous ERK oscillations between the nucleus and cytoplasm with a periodicity of approximately 15 minutes. These oscillations were remarkably persistent (>45 cycles), displayed an asymmetric waveform, and were highly dependent on cell density, essentially disappearing at confluency. We conclude that the ERK pathway is an intrinsic oscillator. Although the functional implications of the observed oscillations are uncertain, this property can be used to continuously monitor ERK activity in single cells.

  11. Asteroseismic Theory of Rapidly Oscillating Ap Stars Margarida S ...

    Indian Academy of Sciences (India)

    roAp) stars depends strongly on our ability to understand their oscillation spectra. Questions like: which modes are excited and why, what is the expected spacing between eigenfrequencies, how many components are expected to be found in ...

  12. Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies

    DEFF Research Database (Denmark)

    Keiser, G. R.; Seren, H. R.; Strikwerda, Andrew C.

    2014-01-01

    The design of artificial nonlinear materials requires control over internal resonant charge densities and local electric field distributions. We present a MM design with a structurally controllable oscillator strength and local electric field enhancement at terahertz frequencies. The MM consists ...

  13. On the quantum magnetic oscillations of electrical and thermal conductivities of graphene

    Science.gov (United States)

    Alisultanov, Z. Z.; Reis, M. S.

    2016-05-01

    Oscillating thermodynamic quantities of diamagnetic materials, specially graphene, have been attracting attention of the scientific community due to the possibility to experimentally map the Fermi surface of the material. These have been the case of the de Haas-van Alphen and Shubnikov-de Haas effects, found on the magnetization and electrical conductivity, respectively. In this direction, managing the thermodynamic oscillations is of practical purpose, since from the reconstructed Fermi surface it is possible to access, for instance, the electronic density. The present work theoretically explores the quantum oscillations of electrical and thermal conductivities of a monolayer graphene under a crossed magnetic and electric fields. We found that the longitudinal electric field can increase the amplitude of the oscillations and this result is of practical and broad interest for both, experimental and device physics.

  14. In vivo assessment of human brain oscillations during application of transcranial electric currents

    NARCIS (Netherlands)

    Soekadar, S.R.; Witkowski, M.; Garcia Cossio, E.; Birbaumer, N.; Robinson, S.E.; Cohen, L.G.

    2013-01-01

    Brain oscillations reflect pattern formation of cell assemblies’ activity, which is often disturbed in neurological and psychiatric diseases like depression, schizophrenia and stroke. In the neurobiological analysis and treatment of these conditions, transcranial electric currents applied to the

  15. Controlling the Spectral Characteristics of a Spin-Current Auto-Oscillator with an Electric Field

    Science.gov (United States)

    Liu, R. H.; Chen, Lina; Urazhdin, S.; Du, Y. W.

    2017-08-01

    We study the effects of electrostatic gating on the magnetization auto-oscillations induced by the local injection of electric current into a ferromagnet-heavy-metal bilayer. We find that the characteristic currents required for the excitation, the intensity, and the spectral characteristics of the generated dynamical states can be tuned by the voltage applied to the metallic gate separated from the bilayer by a thin insulating layer. We show that the effect of electrostatic gating becomes enhanced in the strongly nonlinear oscillation regime at sufficiently large driving currents. Analysis shows that the observed effects are caused by a combination of electric-field-dependent surface anisotropy and electric-field-dependent contribution to the current-induced spin-orbit torques. The demonstrated ability to control the microwave emission and spectral characteristics provides an efficient approach to the development of electrically tunable microwave nano-oscillators.

  16. Applying the Averaging Principle to a Logistic Equation with Rapidly Oscillating Delay

    Directory of Open Access Journals (Sweden)

    N. D. Bykova

    2014-01-01

    Full Text Available The problem about the local dynamics of the logistic equation with rapidly oscillating time-periodic piecewise constant coefficient of delay was considered. It was shown that the averaged equation is a logistic equation with two delays. The criterion of equilibrium point stability was obtained. Dynamical properties of the original equation was considered provided that the critical case of equilibrium point stability problem was implemented. It was found that an increase of delay coefficient oscillation frequency may lead to an unlimited process of “birth” and “death” steady mode.

  17. Radio frequency surface plasma oscillations: electrical excitation and detection by Ar/Ag(111).

    Science.gov (United States)

    Serrano, Giulia; Tebi, Stefano; Wiespointner-Baumgarthuber, Stefan; Müllegger, Stefan; Koch, Reinhold

    2017-08-29

    We electrically excite surface plasma oscillations on a Ag(111) single crystal by alternating electric charging at radio frequency. The radio frequency signal energy of 2.2 μeV, used to induce surface plasma oscillations, is about 5 to 6 orders of magnitude lower than the plasmon energies reachable by optical excitation or electron impact. The detection of the surface plasma oscillations is achieved by nano-fabricated 2D single-crystal sensor-islands of Ar atoms, which are shown by imaging with a scanning tunneling microscope to restructure in response to the radio frequency surface plasma oscillations, providing nanometer spatial resolution and a characteristic decay time of ≈150 ns.

  18. Rapidly oscillating scatteringless non-Hermitian potentials and the absence of Kapitza stabilization

    Science.gov (United States)

    Longhi, S.

    2017-04-01

    In the framework of the ordinary non-relativistic quantum mechanics, it is known that a quantum particle in a rapidly oscillating bound potential with vanishing time average can be scattered off or even trapped owing to the phenomenon of dynamical (Kapitza) stabilization. A similar phenomenon occurs for scattering and trapping of optical waves. Such a remarkable result stems from the fact that, even though the particle is not able to follow the rapid external oscillations of the potential, these are still able to affect the average dynamics by means of an effective —albeit small— nonvanishing potential contribution. Here we consider the scattering and dynamical stabilization problem for matter or classical waves by a bound potential with oscillating ac amplitude f(t) in the framework of a non-Hermitian extension of the Schrödinger equation, and predict that for a wide class of imaginary amplitude modulations f(t) possessing a one-sided Fourier spectrum, the oscillating potential is effectively canceled, i.e., it does not have any effect on the particle dynamics, contrary to what happens in the Hermitian case.

  19. Reply to “Comment on ‘Axion induced oscillating electric dipole moments’”

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T.

    2017-03-28

    A recent paper of Flambaum, Roberts and Stadnik, [1], claims there is no induced oscillating electric dipole moment (OEDM), eg, for the electron, arising from the oscillating cosmic axion background via the anomaly. This claim is based upon the assumption that electric dipoles always be defined by their coupling to static (constant in time) electric fields. The relevant Feynman diagram, as computed by [1], then becomes a total divergence, and vanishes in momentum space. However, an OEDM does arise from the anomaly, coupled to time dependent electric fields. It shares the decoupling properties with the anomaly. The full action, in an arbitrary gauge, was computed in [2], [3]. It is nonvanishing with a time dependent outgoing photon, and yields physics, eg, electric dipole radiation of an electron immersed in a cosmic axion field.

  20. Effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration after spinal cord injury in rats.

    Science.gov (United States)

    Tian, Da-Sheng; Jing, Jue-Hua; Qian, Jun; Chen, Lei; Zhu, Bin

    2016-05-01

    [Purpose] The aim of this study was to evaluate the effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration in rats with spinal cord injury. [Subjects and Methods] A rat model of spinal cord injury was constructed by using the Allen weight-drop method. These rats were randomly divided into normal, spinal cord injury, and spinal cord injury + oscillating electrical field stimulation groups. The experimental group received the intervention with oscillating electrical field stimulation, and the control group received the intervention with an electrical field stimulator without oscillating electrical field stimulation. Each group was then randomly divided into seven subgroups according to observation time (1, 2, 4, 6, 8, 10, and 12 weeks). Basso-Beattie-Bresnahan score and inclined plate test score evaluation, motor evoked potential detection, and histological observation were performed. [Results] In the first 2 weeks of oscillating electrical field stimulation, the oscillating electrical field stimulation and inclined plate test scores of spinal cord injury group and spinal cord injury + oscillating electrical field stimulation group were not significantly different. In the fourth week, the scores of the spinal cord injury group were significantly lower than those of the spinal cord injury + oscillating electrical field stimulation group. The motor evoked potential incubation period in the spinal cord injury + oscillating electrical field stimulation group at the various time points was shorter than that in the spinal cord injury group. In the sixth week, the relative area of myelin in the spinal cord injury + oscillating electrical field stimulation group was evidently larger than that in the spinal cord injury group. [Conclusion] Oscillating electrical field stimulation could effectively improve spinal cord conduction function and promote motor function recovery in rats with spinal cord injury, as well as promote myelin

  1. Mood Oscillations and Coupling Between Mood and Weather in Patients with Rapid Cycling Bipolar Disorder

    OpenAIRE

    Boker, Steven M.; Leibenluft, Ellen; Deboeck, Pascal R.; Virk, Gagan; Postolache, Teodor T.

    2008-01-01

    Rapid Cycling Bipolar Disorder (RCBD) outpatients completed twice-daily mood self-ratings for 3 consecutive months. These ratings were matched with local measurements of atmospheric pressure, cloud cover, and temperature. Several alternative second order differential equation models were fit to the data in which mood oscillations in RCBD were allowed to be linearly coupled with daily weather patterns. The modeling results were consistent with an account of mood regulation that included intrin...

  2. Shielding of an oscillating electric field by a hollow conductor

    Science.gov (United States)

    Aguirregabiria, J. M.; Hernández, A.; Rivas, M.

    1996-08-01

    The electric and magnetic fields for a hollow conducting sphere located in a slowly varying uniform electric field background are computed to first-order in a power series expansion in the field frequency. These results are used to define an equivalent RC circuit and to test the circuit approach which is often used in electromagnetic compatibility (EMC). The case of an infinite cylindrical conducting tube under the influence of the same external field is also analyzed.

  3. Influence of oscillating and rotary cutting instruments with electric and turbine handpieces on tooth preparation surfaces.

    Science.gov (United States)

    Geminiani, Alessandro; Abdel-Azim, Tamer; Ercoli, Carlo; Feng, Changyong; Meirelles, Luiz; Massironi, Domenico

    2014-07-01

    Rotary and nonrotary cutting instruments are used to produce specific characteristics on the axial and marginal surfaces of teeth being prepared for fixed restorations. Oscillating instruments have been suggested for tooth preparation, but no comparative surface roughness data are available. To compare the surface roughness of simulated tooth preparations produced by oscillating instruments versus rotary cutting instruments with turbine and electric handpieces. Different grit rotary cutting instruments were used to prepare Macor specimens (n=36) with 2 handpieces. The surface roughness obtained with rotary cutting instruments was compared with that produced by oscillating cutting instruments. The instruments used were as follows: coarse, then fine-grit rotary cutting instruments with a turbine (group CFT) or an electric handpiece (group CFE); coarse, then medium-grit rotary cutting instruments with a turbine (group CMT) or an electric handpiece (group CME); coarse-grit rotary cutting instruments with a turbine handpiece and oscillating instruments at a low-power (group CSL) or high-power setting (group CSH). A custom testing apparatus was used to test all instruments. The average roughness was measured for each specimen with a 3-dimensional optical surface profiler and compared with 1-way ANOVA and the Tukey honestly significant difference post hoc test for multiple comparisons (α=.05). Oscillating cutting instruments produced surface roughness values similar to those produced by similar grit rotary cutting instruments with a turbine handpiece. The electric handpiece produced smoother surfaces than the turbine regardless of rotary cutting instrument grit. Rotary cutting instruments with electric handpieces produced the smoothest surface, whereas the same instruments used with a turbine and oscillating instruments achieved similar surface roughness. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights

  4. Inter-subband resistance oscillations in crossed electric and magnetic fields

    Science.gov (United States)

    Vitkalov, Sergey; Dietrich, Scott; Byrnes, Sean; Goran, A. V.; Bykov, A. A.

    2013-03-01

    Quantum oscillations of nonlinear resistance are investigated in response to electric current and magnetic field applied perpendicular to single GaAs quantum wells with two populated sub-bands. At small magnetic fields current-induced oscillations appear as Landau-Zener transitions between Landau levels inside the lowest sub-band. The period of these oscillations is proportional to the magnetic field. At high magnetic fields, a different kind of quantum oscillations emerges with a period that is independent of the magnetic field. At a fixed current the oscillations are periodic in inverse magnetic field with a period that is independent of the dc bias. The proposed model considers these oscillations as a result of spatial variations of the energy separation between two sub-bands induced by the electric current (Scott Dietrich, Sean Byrnes, Sergey Vitkalov, A. V. Goran, and A. A. Bykov Phys. Rev. B 86, 075471). Work was supported by National Science Foundation (DMR 1104503) and the Russian Foundation for Basic Research, project no. 11-02-00925.

  5. Rapid Prototyping of Electrically Small Spherical Wire Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2014-01-01

    It is shown how modern rapid prototyping technologies can be applied for quick and inexpensive, but still accurate, fabrication of electrically small wire antennas. A well known folded spherical helix antenna and a novel spherical zigzag antenna have been fabricated and tested, exhibiting the imp...

  6. [Geomagnetic storm decreases coherence of electric oscillations of human brain while working at the computer].

    Science.gov (United States)

    Novik, O B; Smirnov, F A

    2013-01-01

    The effect of geomagnetic storms at the latitude of Moscow on the electric oscillations of the human brain cerebral cortex was studied. In course of electroencephalogram measurements it was shown that when the voluntary persons at the age of 18-23 years old were performing tasks using a computer during moderate magnetic storm or no later than 24 hrs after it, the value of the coherence function of electric oscillations of the human brain in the frontal and occipital areas in a range of 4.0-7.9 Hz (so-called the theta rhythm oscillations of the human brain) decreased by a factor of two or more, sometimes reaching zero, although arterial blood pressure, respiratory rate and the electrocardiogram registered during electroencephalogram measurements remained within the standard values.

  7. Oscillation modes of rapidly rotating neutron stars in scalar-tensor theories of gravity

    Science.gov (United States)

    Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Kokkotas, Kostas D.

    2017-09-01

    We perform the first study of the oscillation frequencies of rapidly rotating neutron stars in alternative theories of gravity, focusing mainly on the fundamental f modes. We concentrated on a particular class of alternative theories—the (massive) scalar-tensor theories. The generalization to rapid rotation is important because on one hand the rapid rotation can magnify the deviations from general relativity compared to the static case and on the other hand some of the most efficient emitters of gravitational radiation, such as the binary neutron star merger remnants, are supposed to be rotating close to their Kepler (mass-shedding) limits shortly after their formation. We have constructed several sequences of models starting from the nonrotating case and reaching up to the Kepler limit, with different values of the scalar-tensor theory coupling constant and the scalar field mass. The results show that the deviations from pure Einstein's theory can be significant, especially in the case of nonzero scalar field mass. An important property of the oscillation modes of rapidly rotating stars is that they can become secularly unstable due to the emission of gravitational radiation, the so-called Chandrasekhar-Friedman-Schutz instability. Such unstable modes are efficient emitters of gravitational radiation. Our studies show that the inclusion of a nonzero scalar field would decrease the threshold value of the normalized angular momentum where this instability starts to operate, but the growth time of the instability seems to be increased compared to pure general relativity.

  8. Observations of Pc5 micropulsation-related electric field oscillations in the equatorial ionosphere

    Directory of Open Access Journals (Sweden)

    C. A. Reddy

    1994-05-01

    Full Text Available A 54.95-MHz coherent backscatter radar, an ionosonde and the magnetometer located at Trivandrum in India (8.5°N, 77°E, 0.5°N dip angle recorded large-amplitude ionospheric fluctuations and magnetic field fluctuations associated with a Pc5 micropulsation event, which occurred during an intense magnetic storm on 24 March 1991 (Ap=161. Simultaneous 100-nT-level fluctuations are also observed in the H-component at Brorfelde, Denmark (55.6°N gm and at Narsarsuaq, Greenland (70.6°N gm. Our study of the above observations shows that the E-W electric field fluctuations in the E- and F-regions and the magnetic field fluctuations at Thumba are dominated by a near-sinusoidal oscillation of 10 min during 1730-1900 IST (1200-1330 UT, the amplitude of the electric field oscillation in the equatorial electrojet (EEJ is 0.1-0.25 mV m-1 and it increases with height, while it is about 1.0 mV m-1 in the F-region, the ground-level H-component oscillation can be accounted for by the ionospheric current oscillation generated by the observed electric field oscillation in the EEJ and the H-component oscillations at Trivandrum and Brorfelde are in phase with each other. The observations are interpreted in terms of a compressional cavity mode resonance in the inner magnetosphere and the associated ionospheric electric field penetrating from high latitudes to the magnetic equator.

  9. Variety of alternative stable phase-locking in networks of electrically coupled relaxation oscillators.

    Directory of Open Access Journals (Sweden)

    Pierre Meyrand

    Full Text Available We studied the dynamics of a large-scale model network comprised of oscillating electrically coupled neurons. Cells are modeled as relaxation oscillators with short duty cycle, so they can be considered either as models of pacemaker cells, spiking cells with fast regenerative and slow recovery variables or firing rate models of excitatory cells with synaptic depression or cellular adaptation. It was already shown that electrically coupled relaxation oscillators exhibit not only synchrony but also anti-phase behavior if electrical coupling is weak. We show that a much wider spectrum of spatiotemporal patterns of activity can emerge in a network of electrically coupled cells as a result of switching from synchrony, produced by short external signals of different spatial profiles. The variety of patterns increases with decreasing rate of neuronal firing (or duty cycle and with decreasing strength of electrical coupling. We study also the effect of network topology--from all-to-all--to pure ring connectivity, where only the closest neighbors are coupled. We show that the ring topology promotes anti-phase behavior as compared to all-to-all coupling. It also gives rise to a hierarchical organization of activity: during each of the main phases of a given pattern cells fire in a particular sequence determined by the local connectivity. We have analyzed the behavior of the network using geometric phase plane methods and we give heuristic explanations of our findings. Our results show that complex spatiotemporal activity patterns can emerge due to the action of stochastic or sensory stimuli in neural networks without chemical synapses, where each cell is equally coupled to others via gap junctions. This suggests that in developing nervous systems where only electrical coupling is present such a mechanism can lead to the establishment of proto-networks generating premature multiphase oscillations whereas the subsequent emergence of chemical synapses would

  10. Off-Line Optimization Based Active Control of Torsional Oscillation for Electric Vehicle Drivetrain

    Directory of Open Access Journals (Sweden)

    Cheng Lin

    2017-12-01

    Full Text Available As there is no clutch or hydraulic torque converter in electric vehicles to buffer and absorb torsional vibrations. Oscillation will occur in electric vehicle drivetrains when drivers tip in/out or are shifting. In order to improve vehicle response to transients, reduce vehicle jerk and reduce wear of drivetrain parts, torque step changes should be avoided. This article mainly focuses on drivetrain oscillations caused by torque interruption for shifting in a Motor-Transmission Integrated System. It takes advantage of the motor responsiveness, an optimal active control method is presented to reduce oscillations by adjusting motor torque output dynamically. A rear-wheel-drive electric vehicle with a two gear automated manual transmission is considered to set up dynamic differential equations based on Newton’s law of motion. By linearization of the affine system, a joint genetic algorithm and linear quadratic regulator method is applied to calculate the real optimal motor torque. In order to improve immediacy of the control system, time consuming optimization process of parameters is completed off-line. The active control system is tested in AMEsim® and limitation of motor external characteristics are considered. The results demonstrate that, compared with the open-loop system, the proposed algorithm can reduce motion oscillation to a satisfied extent when unloading torque for shifting.

  11. Electric-Field-Induced Nuclear Spin Resonance Mediated by Oscillating Electron Spin Domains in GaAs-Based Semiconductors

    OpenAIRE

    Kumada, N.; Kamada, T.; Miyashita, S.; Hirayama, Y.; Fujisawa, T.

    2008-01-01

    We demonstrate an alternative nuclear spin resonance using radio frequency (RF) electric field (nuclear electric resonance: NER) instead of magnetic field. The NER is based on the electronic control of electron spins forming a domain structure. The RF electric field applied to a gate excites spatial oscillations of the domain walls and thus temporal oscillations of the hyperfine field to nuclear spins. The RF power and burst duration dependence of the NER spectrum provides insight into the in...

  12. Study on Active Suppression Control of Drivetrain Oscillations in an Electric Vehicle

    Science.gov (United States)

    Huang, Lei; Cui, Ying

    2017-07-01

    Due to the low damping in a central driven electric vehicle and lack of passive damping mechanisms as compared with a conventional vehicle, the vehicle may endure torsional vibrations which may deteriorates the vehicle’s drivability. Thus active damping control strategy is required to reduce the undesirable oscillations in an EV. In this paper, the origin of the vibration and the design of a damping control method to suppress such oscillations to improve the drivability of an EV are studied. The traction motor torque that is given by the vehicle controller is adjusted according to the acceleration rate of the motor speed to attenuate the resonant frequency. Simulations and experiments are performed to validate the system. The results show that the proposed control system can effectively suppress oscillations and hence improve drivability.

  13. Electric field induced nuclear spin resonance mediated by oscillating electron spin domains in GaAs-based semiconductors.

    Science.gov (United States)

    Kumada, N; Kamada, T; Miyashita, S; Hirayama, Y; Fujisawa, T

    2008-09-26

    We demonstrate an alternative nuclear spin resonance using a radio frequency (rf) electric field [nuclear electric resonance (NER)] instead of a magnetic field. The NER is based on the electronic control of electron spins forming a domain structure. The rf electric field applied to a gate excites spatial oscillations of the domain walls and thus temporal oscillations of the hyperfine field to nuclear spins. The rf power and burst duration dependence of the NER spectrum provides insight into the interplay between nuclear spins and the oscillating domain walls.

  14. The contribution of electrical synapses to field potential oscillations in the hippocampal formation

    Directory of Open Access Journals (Sweden)

    Anna ePosłuszny

    2014-04-01

    Full Text Available Electrical synapses are a type of cellular membrane junction referred to as gap junctions (GJs. GJs have been regarded as an important component within the neuronal networks that underlie synchronous neuronal activity and field potential oscillations. Initially, GJs appeared to play a particularly key role in the generation of high frequency oscillatory patterns in field potentials. In order to assess the scale of neuronal GJs contribution to field potential oscillations in the hippocampal formation, in vivo and in vitro studies are reviewed here. These investigations have shown that blocking the main neuronal GJs, those containing connexin 36 (Cx36-GJs, or knocking out the Cx36 gene affect field potential oscillatory patterns related to awake active behavior (gamma and theta rhythm but have no effect on high frequency oscillations occurring during silent wake and sleep. Precisely how Cx36-GJs influence population activity of neurons is more complex than previously thought. Analysis of studies on the properties of transmission through GJ channels as well as Cx36-GJs functioning in pairs of coupled neurons provides some explanations of the specific influence of Cx36-GJs on field potential oscillations. It is proposed here that GJ transmission is strongly modulated by the level of neuronal network activity and changing behavioral states. Therefore, contribution of GJs to field potential oscillatory patterns depends on the behavioral state. I propose here a model, based on large body of experimental data gathered in this field by several authors, in which Cx36-GJ transmission especially contributes to oscillations related to active behavior, where it plays a role in filtering and enhancing coherent signals in the network under high-noise conditions. In contrast, oscillations related to silent wake or sleep, especially high frequency oscillations, do not require transmission by neuronal GJs.

  15. An electrical analogy relating the Atlantic multidecadal oscillation to the Atlantic meridional overturning circulation.

    Directory of Open Access Journals (Sweden)

    Bruce E Kurtz

    Full Text Available The Atlantic meridional overturning circulation (AMOC is the northward flow of surface water to subpolar latitudes where deepwater is formed, balanced by southward abyssal flow and upwelling in the vicinity of the Southern Ocean. It is generally accepted that AMOC flow oscillates with a period of 60-80 years, creating a regular variation in North Atlantic sea surface temperature known as the Atlantic multidecadal oscillation (AMO. This article attempts to answer two questions: how is the AMOC driven and why does it oscillate? Using methods commonly employed by chemical engineers for analyzing processes involving flowing liquids, apparently not previously applied to trying to understand the AMOC, an equation is developed for AMOC flow as a function of the meridional density gradient or the corresponding temperature gradient. The equation is based on the similarity between the AMOC and an industrial thermosyphon loop cooler, which circulates a heat transfer liquid without using a mechanical pump. Extending this equation with an analogy between the flow of heat and electricity explains why the AMOC flow oscillates and what determines its period. Calculated values for AMOC flow and AMO oscillation period are in good agreement with measured values.

  16. Assessing regional lung mechanics by combining electrical impedance tomography and forced oscillation technique.

    Science.gov (United States)

    Ngo, Chuong; Spagnesi, Sarah; Munoz, Carlos; Lehmann, Sylvia; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen

    2017-08-29

    There is a lack of noninvasive pulmonary function tests which can assess regional information of the lungs. Electrical impedance tomography (EIT) is a radiation-free, non-invasive real-time imaging that provides regional information of ventilation volume regarding the measurement of electrical impedance distribution. Forced oscillation technique (FOT) is a pulmonary function test which is based on the measurement of respiratory mechanical impedance over a frequency range. In this article, we introduce a new measurement approach by combining FOT and EIT, named the oscillatory electrical impedance tomography (oEIT). Our oEIT measurement system consists of a valve-based FOT device, an EIT device, pressure and flow sensors, and a computer fusing the data streams. Measurements were performed on five healthy volunteers at the frequencies 3, 4, 5, 6, 7, 8, 10, 15, and 20 Hz. The measurements suggest that the combination of FOT and EIT is a promising approach. High frequency responses are visible in the derivative of the global impedance index ΔZeit(t,fos). $\\Delta {Z_{{\\text{eit}}}}(t,{f_{{\\text{os}}}}).$ The oEIT signals consist of three main components: forced oscillation, spontaneous breathing, and heart activity. The amplitude of the oscillation component decreases with increasing frequency. The band-pass filtered oEIT signal might be a new tool in regional lung function diagnostics, since local responses to high frequency perturbation could be distinguished between different lung regions.

  17. Fibrillar disruption by AC electric field induced oscillation: A case study with human serum albumin.

    Science.gov (United States)

    Sen, Shubhatam; Chakraborty, Monojit; Goley, Snigdha; Dasgupta, Swagata; DasGupta, Sunando

    2017-07-01

    The effect of oscillation induced by a frequency-dependent alternating current (AC) electric field to dissociate preformed amyloid fibrils has been investigated. An electrowetting-on-dielectric type setup has been used to apply the AC field of varying frequencies on preformed fibrils of human serum albumin (HSA). The disintegration potency has been monitored by a combination of spectroscopic and microscopic techniques. The experimental results suggest that the frequency of the applied AC field plays a crucial role in the disruption of preformed HSA fibrils. The extent of stress generated inside the droplet due to the application of the AC field at different frequencies has been monitored as a function of the input frequency of the applied AC voltage. This has been accomplished by assessing the morphology deformation of the oscillating HSA fibril droplets. The shape deformation of the oscillating droplets is characterized using image analysis by measuring the dynamic changes in the shape dependent parameters such as contact angle and droplet footprint radius and the amplitude. It is suggested that the cumulative effects of the stress generated inside the HSA fibril droplets due to the shape deformation induced hydrodynamic flows and the torque induced by the intrinsic electric dipoles of protein due to their continuous periodic realignment in presence of the AC electric field results in the destruction of the fibrillar species. Copyright © 2017. Published by Elsevier B.V.

  18. Influence of electric field on the quantum oscillations in the Weyl semimetals

    Science.gov (United States)

    Alisultanov, Zaur Z.; Demirov, N. A.; Musaev, G. M.; Khabibulaeva, A. M.

    2017-12-01

    Investigation of Weyl semimetals (WSMs) is one of the most important and hot topics of modern condensed matter physics. In this paper, we investigated the Landau band and quantum oscillations in the WSMs under crossed magnetic and electric fields (CMEFs). We obtained an expression for the energy spectrum of such system using an algebraic and quasi-classical approaches. We have shown that the electric field leads to a cardinal change the Landau bands. When an electric field is equal to υFH/c, the collapse of the Landau levels occurs, and the motion becomes completely linear. It will lead to fundamental change of the character of the surface states, called the Fermi arcs. The electric field influences on the character of the quantum oscillations. The density of states has a singularity at E = υFH/c. We have shown that such a result is due to the continuous model. In the lattice model this singularity disappears. Finally, we investigated the density of states of tilted WSMs. We shown that the phase transition between I and II phases of WSM can be induced by electric field.

  19. The contribution of electrical synapses to field potential oscillations in the hippocampal formation.

    Science.gov (United States)

    Posłuszny, Anna

    2014-01-01

    Electrical synapses are a type of cellular membrane junction referred to as gap junctions (GJs). They provide a direct way to exchange ions between coupled cells and have been proposed as a structural basis for fast transmission of electrical potentials between neurons in the brain. For this reason GJs have been regarded as an important component within the neuronal networks that underlie synchronous neuronal activity and field potential oscillations. Initially, GJs appeared to play a particularly key role in the generation of high frequency oscillatory patterns in field potentials. In order to assess the scale of neuronal GJs contribution to field potential oscillations in the hippocampal formation, in vivo and in vitro studies are reviewed here. These investigations have shown that blocking the main neuronal GJs, those containing connexin 36 (Cx36-GJs), or knocking out the Cx36 gene affect field potential oscillatory patterns related to awake active behavior (gamma and theta rhythm) but have no effect on high frequency oscillations occurring during silent wake and sleep. Precisely how Cx36-GJs influence population activity of neurons is more complex than previously thought. Analysis of studies on the properties of transmission through GJ channels as well as Cx36-GJs functioning in pairs of coupled neurons provides some explanations of the specific influence of Cx36-GJs on field potential oscillations. It is proposed here that GJ transmission is strongly modulated by the level of neuronal network activity and changing behavioral states. Therefore, contribution of GJs to field potential oscillatory patterns depends on the behavioral state. I propose here a model, based on large body of experimental data gathered in this field by several authors, in which Cx36-GJ transmission especially contributes to oscillations related to active behavior, where it plays a role in filtering and enhancing coherent signals in the network under high-noise conditions. In contrast

  20. Detecting rapid mass movements using electrical self-potential measurements

    Science.gov (United States)

    Heinze, Thomas; Limbrock, Jonas; Pudasaini, Shiva P.; Kemna, Andreas

    2017-04-01

    Rapid mass movements are a latent danger for lives and infrastructure in almost any part of the world. Often such mass movements are caused by increasing pore pressure, for example, landslides after heavy rainfall or dam breaking after intrusion of water in the dam. Among several other geophysical methods used to observe water movement, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing and for earthquake prediction. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than the pressure diffusion. We will present results of laboratory experiments under drained and undrained conditions with fluid triggered as well as manually triggered mass movements, monitored with self-potential measurements. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. We will discuss results of numerical simulations reproducing the observed effect. Our

  1. Rapid, Long-Distance Electrical and Calcium Signaling in Plants.

    Science.gov (United States)

    Choi, Won-Gyu; Hilleary, Richard; Swanson, Sarah J; Kim, Su-Hwa; Gilroy, Simon

    2016-04-29

    Plants integrate activities throughout their bodies using long-range signaling systems in which stimuli sensed by just a few cells are translated into mobile signals that can influence the activities in distant tissues. Such signaling can travel at speeds well in excess of millimeters per second and can trigger responses as diverse as changes in transcription and translation levels, posttranslational regulation, alterations in metabolite levels, and even wholesale reprogramming of development. In addition to the use of mobile small molecules and hormones, electrical signals have long been known to propagate throughout the plant. This electrical signaling network has now been linked to waves of Ca(2+) and reactive oxygen species that traverse the plant and trigger systemic responses. Analysis of cell type specificity in signal propagation has revealed the movement of systemic signals through specific cell types, suggesting that a rapid signaling network may be hardwired into the architecture of the plant.

  2. ON THE RELATIVISTIC PRECESSION AND OSCILLATION FREQUENCIES OF TEST PARTICLES AROUND RAPIDLY ROTATING COMPACT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Pachon, Leonardo A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Rueda, Jorge A. [Dipartimento di Fisica and ICRA, Sapienza Universita di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); Valenzuela-Toledo, Cesar A., E-mail: leonardo.pachon@fisica.udea.edu.co, E-mail: jorge.rueda@icra.it, E-mail: cesar.valenzuela@correounivalle.edu.co [Departamento de Fisica, Universidad del Valle, A.A. 25360, Santiago de Cali (Colombia)

    2012-09-01

    Whether or not analytic exact vacuum (electrovacuum) solutions of the Einstein (Einstein-Maxwell) field equations can accurately describe the exterior space-time of compact stars still remains an interesting open question in relativistic astrophysics. As an attempt to establish their level of accuracy, the radii of the innermost stable circular orbits (ISCOs) of test particles given by analytic exterior space-time geometries have been compared with those given by numerical solutions for neutron stars (NSs) obeying a realistic equation of state (EOS). It has been so shown that the six-parametric solution of Pachon et al. (PRS) more accurately describes the NS ISCO radii than other analytic models do. We propose here an additional test of accuracy for analytic exterior geometries based on the comparison of orbital frequencies of neutral test particles. We compute the Keplerian, frame-dragging, and precession and oscillation frequencies of the radial and vertical motions of neutral test particles for the Kerr and PRS geometries and then compare them with the numerical values obtained by Morsink and Stella for realistic NSs. We identify the role of high-order multipole moments such as the mass quadrupole and current octupole in the determination of the orbital frequencies, especially in the rapid rotation regime. The results of this work are relevant to cast a separatrix between black hole and NS signatures and to probe the nuclear-matter EOS and NS parameters from the quasi-periodic oscillations observed in low-mass X-ray binaries.

  3. Robust ion current oscillations under a steady electric field: An ion channel analog

    Science.gov (United States)

    Yan, Yu; Wang, Yunshan; Senapati, Satyajyoti; Schiffbauer, Jarrod; Yossifon, Gilad; Chang, Hsueh-Chia

    2016-08-01

    We demonstrate a nonlinear, nonequilibrium field-driven ion flux phenomenon, which unlike Teorell's nonlinear multiple field theory, requires only the application of one field: robust autonomous current-mass flux oscillations across a porous monolith coupled to a capillary with a long air bubble, which mimics a hydrophobic protein in an ion channel. The oscillations are driven by the hysteretic wetting dynamics of the meniscus when electro-osmotic flow and pressure driven backflow, due to bubble expansion, compete to approach zero mass flux within the monolith. Delayed rupture of the film around the advancing bubble cuts off the electric field and switches the monolith mass flow from the former to the latter. The meniscus then recedes and repairs the rupture to sustain an oscillation for a range of applied fields. This generic mechanism shares many analogs with current oscillations in cell membrane ion channel. At sufficiently high voltage, the system undergoes a state transition characterized by appearance of the ubiquitous 1 /f power spectrum.

  4. Rapidly tunable optical parametric oscillator based on aperiodic quasi-phase matching.

    Science.gov (United States)

    Descloux, Delphine; Dherbecourt, Jean-Baptiste; Melkonian, Jean-Michel; Raybaut, Myriam; Lai, Jui-Yu; Drag, Cyril; Godard, Antoine

    2016-05-16

    A new optical parametric oscillator (OPO) architecture with high tuning speed capability is demonstrated. This device exploits the versatility offered by aperiodic quasi-phase matching (QPM) to provide a broad parametric gain spectrum without changing the temperature, angle, or position of the nonlinear crystal. Rapid tuning is then straightforwardly achieved using a fast intracavity spectral filter. This concept is demonstrated here for a picosecond synchronously pumped OPO containing an aperiodically poled MgO-doped LiNbO3 crystal and a rapidly tunable spectral filter based on a diffraction grating. Tuning over 160 nm around 3.86 μm is achieved at fixed temperature and a fast tuning over 30 nm in 40 μs is demonstrated. Different configurations are tested and compared. The cavity length detuning is analyzed and discussed. This device is successfully used to detect N2O by absorption. This approach could be generalized to other spectral ranges (e.g., visible) and temporal regimes (e.g., continuous-wave or nanosecond).

  5. Short time effect of Delta oscillation under microcurrent transcutaneous electrical nerve stimulation at ST36.

    Science.gov (United States)

    Li, Shunan; Li, Donghui; Li, Huiyan; Wang, Jiang

    2014-01-01

    This paper was to study the short time effect of Delta brain oscillation under microcurrent transcutaneous electrical nerve stimulation (MTENS) at ST36 (Zusanli). The 64-channal electroencephalograph (EEG) signals from 12 healthy volunteers were recorded including baseline stage, during stimulation and after stimulation. Autoregressive (AR) Burg method was used to estimate the power spectrum. Then power variation rate (PVR) was calculated to quantify the effects compared with the baseline in Delta band. The results showed that MTENS at ST36 on right side led to increased Delta band power in left frontal.

  6. Interaction of a magnetic island chain in a tokamak plasma with a resonant magnetic perturbation of rapidly oscillating phase

    Science.gov (United States)

    Fitzpatrick, Richard

    2017-12-01

    An investigation is made into the interaction of a magnetic island chain, embedded in a tokamak plasma, with an externally generated magnetic perturbation of the same helicity whose helical phase is rapidly oscillating. The analysis is similar in form to the classic analysis used by Kapitza [Sov. Phys. JETP 21, 588 (1951)] to examine the angular motion of a rigid pendulum whose pivot point undergoes rapid vertical oscillations. The phase oscillations are found to modify the existing terms, and also to give rise to new terms, in the equations governing the secular evolution of the island chain's radial width and helical phase. An examination of the properties of the new secular evolution equation reveals that it is possible to phase-lock an island chain to an external magnetic perturbation with an oscillating helical phase in a stabilizing phase relation provided that the amplitude, ɛ, of the phase oscillations (in radians) is such that |J0(ɛ )|≪1 , and the mean angular frequency of the perturbation closely matches the natural angular frequency of the island chain.

  7. Kepler observations of rapidly oscillating Ap, δ Scuti and γ Doradus pulsations in Ap stars

    DEFF Research Database (Denmark)

    Balona, Luis A.; Cunha, Margarida S.; Kurtz, Donald W.

    2011-01-01

    Observations of the A5p star KIC 8677585 obtained during the Kepler 10-d commissioning run with 1-min time resolution show that it is a rapidly oscillating Ap (roAp) star with several frequencies with periods near 10 min. In addition, a low frequency at 3.142 d−1 is also clearly present....... Multiperiodic γ Doradus (γ Dor) and δ Scuti (δ Sct) pulsations, never before seen in any Ap star, are present in Kepler observations of at least three other Ap stars. Since γ Dor pulsations are seen in Ap stars, it is likely that the low frequency in KIC 8677585 is also a γ Dor pulsation. The simultaneous...... presence of both γ Dor and roAp pulsations and the unexpected detection of δ Sct and γ Dor pulsations in Ap stars present new opportunities and challenges for the interpretation of these stars. Since it is easy to confuse Am and Ap stars at classification dispersions, the nature of these Ap stars...

  8. Rapid morphological oscillation of mitochondrion-rich cell in estuarine mudskipper following salinity changes.

    Science.gov (United States)

    Sakamoto, T; Yokota, S; Ando, M

    2000-05-01

    Morphological changes in the chloride cells or mitochondrion-rich (MR) cells in the skin under the pectoral fin of the estuarine mudskipper (Periophthalmus modestus) were examined in relation to intertidal salinity oscillation in river mouth. MR cells were distinguished between those in contact with the water (cells labeled with both mitochondrial probe DASPEI and Concanavalin-A, an apical surface marker of MR cells) and those that are not (DASPEI-positive only). After transfer of the fish from seawater to freshwater, no difference in the total MR cell density was observed, but the subpopulation of MR cells that are Concanavalin-A-positive decreased dramatically within 30 min. After 6 hr in freshwater, the fish were returned to seawater; the number of Con-A-positive MR cells increased to the initial levels rapidly. Thus, in seawater, mudskippers seem to open the apical crypts of the MR cells to secrete salt; in freshwater, they close the crypt of the MR cells tentatively, and tolerate hypotonicity until the rising tide. This unique response of chloride cells may also be seen in gills of other estuarine species.

  9. Rapid hardening induced by electric pulse annealing in nanostructured pure aluminum

    DEFF Research Database (Denmark)

    Zeng, Wei; Shen, Yao; Zhang, Ning

    2012-01-01

    source-limited hardening” mechanism. However, the hardening kinetics was substantially faster for the electric pulse annealed material. Detailed microstructural characterization suggested that the rapid hardening during electric pulse annealing is related to an enhanced rate of recovery of dislocation...

  10. Averaging of the Equations of the Standard Cosmological Model over Rapid Oscillations

    Science.gov (United States)

    Ignat'ev, Yu. G.; Samigullina, A. R.

    2017-11-01

    An averaging of the equations of the standard cosmological model (SCM) is carried out. It is shown that the main contribution to the macroscopic energy density of the scalar field comes from its microscopic oscillations with the Compton period. The effective macroscopic equation of state of the oscillations of the scalar field corresponds to the nonrelativistic limit.

  11. Localized NMR Mediated by Electrical-Field-Induced Domain Wall Oscillation in Quantum-Hall-Ferromagnet Nanowire.

    Science.gov (United States)

    Miyamoto, S; Miura, T; Watanabe, S; Nagase, K; Hirayama, Y

    2016-03-09

    We present fractional quantum Hall domain walls confined in a gate-defined wire structure. Our experiments utilize spatial oscillation of domain walls driven by radio frequency electric fields to cause nuclear magnetic resonance. The resulting spectra are discussed in terms of both large quadrupole fields created around the wire and hyperfine fields associated with the oscillating domain walls. This provides the experimental fact that the domain walls survive near the confined geometry despite of potential deformation, by which a localized magnetic resonance is allowed in electrical means.

  12. Mood Oscillations and Coupling Between Mood and Weather in Patients with Rapid Cycling Bipolar Disorder.

    Science.gov (United States)

    Boker, Steven M; Leibenluft, Ellen; Deboeck, Pascal R; Virk, Gagan; Postolache, Teodor T

    2008-01-01

    Rapid Cycling Bipolar Disorder (RCBD) outpatients completed twice-daily mood self-ratings for 3 consecutive months. These ratings were matched with local measurements of atmospheric pressure, cloud cover, and temperature. Several alternative second order differential equation models were fit to the data in which mood oscillations in RCBD were allowed to be linearly coupled with daily weather patterns. The modeling results were consistent with an account of mood regulation that included intrinsic homeostatic regulation as well as coupling between weather and mood. Models were tested first in a nomothetic method where models were fit over all individuals and fit statistics of each model compared to one another. Since substantial individual differences in intrinsic dynamics were observed, the models were next fit using an ideographic method where each individual's data were fit separately and best-fitting models identified. The best-fitting within-individual model for the largest number of individuals was also the best-fitting nomothetic model: temperature and the first derivative of temperature coupled to mood and no effect of barometric pressure or cloud cover. But this model was not the best-fitting model for all individuals, suggesting that there may be substantial individual differences in the dynamic association between weather and mood in RCBD patients. Heterogeneity in the parameters of the differential equation model of homeostatic equilibrium as well as the coupling of mood to an inherently unpredictable (i.e., nonstationary) process such as weather provide an alternative account for reported broadband frequency spectra of daily mood in RCBD.

  13. Mood Oscillations and Coupling Between Mood and Weather in Patients with Rapid Cycling Bipolar Disorder

    Science.gov (United States)

    Boker, Steven M.; Leibenluft, Ellen; Deboeck, Pascal R.; Virk, Gagan; Postolache, Teodor T.

    2008-01-01

    Rapid Cycling Bipolar Disorder (RCBD) outpatients completed twice-daily mood self-ratings for 3 consecutive months. These ratings were matched with local measurements of atmospheric pressure, cloud cover, and temperature. Several alternative second order differential equation models were fit to the data in which mood oscillations in RCBD were allowed to be linearly coupled with daily weather patterns. The modeling results were consistent with an account of mood regulation that included intrinsic homeostatic regulation as well as coupling between weather and mood. Models were tested first in a nomothetic method where models were fit over all individuals and fit statistics of each model compared to one another. Since substantial individual differences in intrinsic dynamics were observed, the models were next fit using an ideographic method where each individual’s data were fit separately and best-fitting models identified. The best-fitting within-individual model for the largest number of individuals was also the best-fitting nomothetic model: temperature and the first derivative of temperature coupled to mood and no effect of barometric pressure or cloud cover. But this model was not the best-fitting model for all individuals, suggesting that there may be substantial individual differences in the dynamic association between weather and mood in RCBD patients. Heterogeneity in the parameters of the differential equation model of homeostatic equilibrium as well as the coupling of mood to an inherently unpredictable (i.e., nonstationary) process such as weather provide an alternative account for reported broadband frequency spectra of daily mood in RCBD. PMID:19266057

  14. Oscillating Electric Field Measures the Rotation Rate in a Native Rotary Enzyme.

    Science.gov (United States)

    Ferencz, Csilla-Maria; Petrovszki, Pál; Dér, András; Sebők-Nagy, Krisztina; Kóta, Zoltán; Páli, Tibor

    2017-03-27

    Rotary enzymes are complex, highly challenging biomolecular machines whose biochemical working mechanism involves intersubunit rotation. The true intrinsic rate of rotation of any rotary enzyme is not known in a native, unmodified state. Here we use the effect of an oscillating electric (AC) field on the biochemical activity of a rotary enzyme, the vacuolar proton-ATPase (V-ATPase), to directly measure its mean rate of rotation in its native membrane environment, without any genetic, chemical or mechanical modification of the enzyme, for the first time. The results suggest that a transmembrane AC field is able to synchronise the steps of ion-pumping in individual enzymes via a hold-and-release mechanism, which opens up the possibility of biotechnological exploitation. Our approach is likely to work for other transmembrane ion-transporting assemblies, not only rotary enzymes, to determine intrinsic in situ rates of ion pumping.

  15. Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis

    Directory of Open Access Journals (Sweden)

    Zhao Yue

    2012-07-01

    Full Text Available Abstract Super-macromolecular complexes play many important roles in eukaryotic cells. Classical structural biological studies focus on their complicated molecular structures, physical interactions and biochemical modifications. Recent advances concerning intracellular electric fields generated by cell organelles and super-macromolecular complexes shed new light on the mechanisms that govern the dynamics of mitosis and meiosis. In this review we synthesize this knowledge to provide an integrated theoretical model of these cellular events. We suggest that the electric fields generated by synchronized oscillation of microtubules, centrosomes, and chromatin fibers facilitate several events during mitosis and meiosis, including centrosome trafficking, chromosome congression in mitosis and synapsis between homologous chromosomes in meiosis. These intracellular electric fields are generated under energy excitation through the synchronized electric oscillations of the dipolar structures of microtubules, centrosomes and chromosomes, three of the super-macromolecular complexes within an animal cell.

  16. Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es; Fernandez, E. [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Rodes, J.J. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fuentes, R.; Pascual, I. [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2009-02-16

    The harmonic balance method is used to construct approximate frequency-amplitude relations and periodic solutions to an oscillating charge in the electric field of a ring. By combining linearization of the governing equation with the harmonic balance method, we construct analytical approximations to the oscillation frequencies and periodic solutions for the oscillator. To solve the nonlinear differential equation, firstly we make a change of variable and secondly the differential equation is rewritten in a form that does not contain the square-root expression. The approximate frequencies obtained are valid for the complete range of oscillation amplitudes and excellent agreement of the approximate frequencies and periodic solutions with the exact ones are demonstrated and discussed.

  17. Theorem: A Static Magnetic N-pole Becomes an Oscillating Electric N-pole in a Cosmic Axion Field

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T. [Fermilab

    2016-06-15

    We show for the classical Maxwell equations, including the axion electromagnetic anomaly source term, that a cosmic axion field induces an oscillating electric N-moment for any static magnetic N-moment. This is a straightforward result, accessible to anyone who has taken a first year graduate course in electrodynamics.

  18. Driving Sodium/Potassium Pumps with an Oscillating Electric field: Effects on Muscle Fatigue

    Science.gov (United States)

    Lanes, Olivia; Bovyn, Matthew; Chen, Wei

    2013-03-01

    Dr. Chen has developed a technique called Synchronization Modulation, which has already been proven to be an effective tool in synchronizing and speeding up the sodium/potassium pumps in cell membranes. When synchronized, it is thought that these pumps are more efficient because they require less ATP. We hypothesized that if this was correct, this technique may be used to reduce muscle fatigue. To test our hypothesis, we had multiple test subjects hold a 15 lb weight for as long as they could while isolating the bicep muscle and applying an oscillating electric field. We compared the EMG data we took during these trials to the control, which was done the same way but without applying the electric field. To compare how fatigued subjects were, we did a Fast Fourier Transform on the first and last 10 seconds of each trial to measure the Fatigue Index. Our preliminary results suggest that the Fatigue Index decreased at a slower rate in the trials where the subject held the weight with Synchronization Modulation.

  19. Non-radial oscillations of the rapidly rotating Be star HD 163868

    NARCIS (Netherlands)

    Savonije, G.J.

    2007-01-01

    Context: Oscillations in rotating stars with frequency barsigma of the same order or smaller than the rotation rate Omega cannot be described by a single spherical harmonic due to the effect of the Coriolis force. This is a serious complication which is usually treated by writing the eigenfunctions

  20. Endogenous oscillations of electric potential difference in the cambial region of the pine stem. II. Possible involvement of the oscillations in xylogenesis

    Directory of Open Access Journals (Sweden)

    Wojciech Kurek

    2014-01-01

    Full Text Available Direct and indirect interrelations between xylogenic processes and the endogenous electric potential difference (PD oscillations generated in the cambial region of isolated tissue blocks from pine trunks were investigated. The frequency of transient PD changes varied during the season and displayed three minima which were concurrent with periods of initiation and termination of cambial activity and with the time of transition from early- to late-wood production. The oscillations were damped by TIBA - an inhibitor of polar auxin transport and stimulated by IAA, but only when the hormone was supplied to the apical end of the tissue block. This suggests that the polar transport of auxin may be involved in generation of the transient PD changes. Results of 2-channel recordings in one tissue block suggest that a part of the recorded oscillations (10-25 % exhibit coordination in space and time: a wave-like pattern along the trunk axis is created by PD changes. The pattern might be a physical carrier of information coordinating processes of growth and differentiation in distant parts of the tree.

  1. APPROXIMATE SOLUTION OF ONE PROBLEM ON ELECTRICAL OSCILLATIONS IN WIRES WITH THE USE OF POLYLOGARITHMS

    Directory of Open Access Journals (Sweden)

    P. G. Lasy

    2017-01-01

    Full Text Available The article considers a mixed problem with homogeneous boundary conditions for onedimensional homogeneous wave equation. Such a problem can arise, for example, when studying oscillations of current and voltage in the conductor through which electric current flows, while the line is free from distortion. The solution can be found with the use of the Fourier method in the form of trigonometric series. This representation is of purely theoretical interest, because the real calculation should be, first, to find a large number of coefficients of the integrals, which in itself is not a trivial task and, second, it is almost impossible to assess the error of the calculations. An alternative way of solving this problem based on the use of transcendental functions i. e. polylogarithms that represent complex power series of a special kind. The exact solution of the problem is expressed through the imaginary part of a polylogarithm of the first order on the single circle and the approximate one – via the real part of the dilogarithm. In addition, if the initial conditions in the problem are elementary functions, then the solution is also computed using elementary functions. A simple and effective error estimate of the approximate solution has been found. It does not depend on time and it has the first-order of accuracy regarding the step of a partitioning segment of the numerical axis on which the problem is considered. This valuation is uniform with respect to the variables of the problem – both spatial and temporal. 

  2. Instability and electrical response of small laminar coflow diffusion flames under AC electric fields: Toroidal vortex formation and oscillating and spinning flames

    KAUST Repository

    Xiong, Yuan

    2016-06-24

    Dynamical and electrical responses of a small coflow diffusion flame were investigated by applying a high-voltage alternating current (AC), to a fuel jet nozzle. High-speed imaging and electrical diagnostics were adopted to capture flame dynamics and electrical signals, such as voltage (V ), frequency (f ) and current (I ). In the V -f domain of 0-5kV and 0-5kHz, AC-driven instabilities, resulting in various flame modes such as an oscillation, pinch-off and spinning of flames were identified. Characteristic frequency of each mode was determined and a visualization of near-nozzle flow structures suggested a close causality of initial counter-rotating vortices (inner and outer toroidal vortices - ITV and OTV), to the other observed flame. An axisymmetric ITV shedding was identified within oscillating and pinch-off modes, while asymmetric ITV shedding was identified with the spinning mode. Integrated electric power over several AC periods correlated well with variation in the flame surface area for these instabilities, demonstrating that measured electric power is a potential indicator of combustion instabilities in electric-field-assisted combustion.

  3. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...... signal in response to the oscillation indicating signal, by processing the oscillation damping control signal in a signal processing chain. The signal processing chain includes a filter configured for passing only signals within a predetermined frequency range....

  4. Dynamic changes in single unit activity and γ oscillations in a thalamocortical circuit during rapid instrumental learning.

    Directory of Open Access Journals (Sweden)

    Chunxiu Yu

    Full Text Available The medial prefrontal cortex (mPFC and mediodorsal thalamus (MD together form a thalamocortical circuit that has been implicated in the learning and production of goal-directed actions. In this study we measured neural activity in both regions simultaneously, as rats learned to press a lever to earn food rewards. In both MD and mPFC, instrumental learning was accompanied by dramatic changes in the firing patterns of the neurons, in particular the rapid emergence of single-unit neural activity reflecting the completion of the action and reward delivery. In addition, we observed distinct patterns of changes in the oscillatory LFP response in MD and mPFC. With learning, there was a significant increase in theta band oscillations (6-10 Hz in the MD, but not in the mPFC. By contrast, gamma band oscillations (40-55 Hz increased in the mPFC, but not in the MD. Coherence between these two regions also changed with learning: gamma coherence in relation to reward delivery increased, whereas theta coherence did not. Together these results suggest that, as rats learned the instrumental contingency between action and outcome, the emergence of task related neural activity is accompanied by enhanced functional interaction between MD and mPFC in response to the reward feedback.

  5. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    Energy Technology Data Exchange (ETDEWEB)

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by {approximately}0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation.

  6. Rapidly falling costs of battery packs for electric vehicles

    Science.gov (United States)

    Nykvist, Björn; Nilsson, Måns

    2015-04-01

    To properly evaluate the prospects for commercially competitive battery electric vehicles (BEV) one must have accurate information on current and predicted cost of battery packs. The literature reveals that costs are coming down, but with large uncertainties on past, current and future costs of the dominating Li-ion technology. This paper presents an original systematic review, analysing over 80 different estimates reported 2007-2014 to systematically trace the costs of Li-ion battery packs for BEV manufacturers. We show that industry-wide cost estimates declined by approximately 14% annually between 2007 and 2014, from above US$1,000 per kWh to around US$410 per kWh, and that the cost of battery packs used by market-leading BEV manufacturers are even lower, at US$300 per kWh, and has declined by 8% annually. Learning rate, the cost reduction following a cumulative doubling of production, is found to be between 6 and 9%, in line with earlier studies on vehicle battery technology. We reveal that the costs of Li-ion battery packs continue to decline and that the costs among market leaders are much lower than previously reported. This has significant implications for the assumptions used when modelling future energy and transport systems and permits an optimistic outlook for BEVs contributing to low-carbon transport.

  7. The first evidence for multiple pulsation axes: a new rapidly oscillating Ap star in the Kepler field, KIC 10195926

    DEFF Research Database (Denmark)

    Kurtz, Donald W.; Cunha, Margarida S.; Saio, H.

    2011-01-01

    We have discovered a new rapidly oscillating Ap (roAp) star among the Kepler mission target stars, KIC 10195926. This star shows two pulsation modes with periods that are amongst the longest known for roAp stars at 17.1 and 18.1 min, indicating that the star is near the terminal-age main sequence...... of νrot/2. We propose that this and other subharmonics are the first observed manifestation of torsional modes in an roAp star. From high-resolution spectra, we determine Teff= 7400 K, log g= 3.6 and v sin i= 21 km s−1. We have found a magnetic pulsation model with fundamental parameters close...

  8. Rapid-Fire” Spectroscopy of Kepler Solar-Like Oscillators

    Science.gov (United States)

    Thygesen, Anders O.; Bruntt, Hans; Chaplin, William J.; Basu, Sarbani

    The NASA Kepler mission has been continuously monitoring the same field of the sky since the successful launch in March 2009, providing high-quality stellar lightcurves that are excellent data for asteroseismology, far superior to any other observations available at the present. In order to make a meaningful analysis and interpretation of the asteroseismic data, accurate fundamental parameters for the observed stars are needed. The currently available parameters are quite uncertain as illustrated by e.g. Thygesen et al. (A&A 543:A160, 2012), who found deviations as extreme as 2 dex in [Fe/H] and logg, compared to catalogue values. Thus, additional follow-up observations for these targets are needed in order to put firm limits on the parameter space investigated by the asteroseismic modellers. Here, we propose a method for deriving accurate metallicities of main sequence and subgiant solar-like oscillators from medium resolution spectra with a moderate S/N. The method takes advantage of the additional constraints on the fundamental parameters, available from asteroseismology and multi-color photometry. The approach enables us to reduce the analysis overhead significantly when doing spectral synthesis, which in turn will increases the efficiency of follow-up observations.

  9. Neurodynamic oscillators

    Science.gov (United States)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  10. Electroporation of Mammalian Cells by Nanosecond Electric Field Oscillations and its Inhibition by the Electric Field Reversal

    Science.gov (United States)

    2015-09-08

    A., Blackmore, P. F., Schoenbach, K. H. & Beebe , S. J. Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields...duration electric pulses in mammalian cells. Biochim Biophys Acta 1800, 1210–9 (2010). 31. Ren, W. & Beebe , S. J. An apoptosis targeted stimulus with

  11. Modal analysis of electromechanical oscillations in electrical power systems; Analisis modal de oscilaciones electromecanicas en sistemas electricos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Calderon-Guizar, J.G [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: jgcg@iie.org.mx

    2008-10-15

    The presence of electromechanical oscillations in any electrical power system is a typical characteristic of this kind of systems. Provided the damping associated with these oscillations lies above of a minimum specified value, the occurrence of these oscillations is not considered as a threat to the system operation. This paper focuses the attention on the application of modal analysis for assessing the dynamical behavior of a power system subjected to small disturbances for different operating conditions and transmission system topologies, as well. The reported results indicate, that modal analysis enables a straight identification of the causes that contribute negatively to the damping of the electromechanical modes. [Spanish] La presencia de oscilaciones electromecanicas en cualquier Sistema Electrico de Potencia (SEP) es una caracteristica propia de estos sistemas. Mientras el amortiguamiento asociado con este tipo de oscilaciones se encuentre dentro de los limites considerados como aceptables para la operacion continua de este tipo de sistemas, el surgimiento de estas no se considera una amenaza para la operacion segura del SEP. El presente articulo, centra su atencion en la aplicacion del analisis modal para evaluar el comportamiento dinamico de un SEP ante la ocurrencia de disturbios de magnitud pequena para diferentes topologias y condiciones de operacion. Los resultados reportados indican, que la aplicacion del analisis modal permite la identificacion directa de las causas que contribuyen en forma negativa al amortiguamiento asociado con los modos electromecanicos, asi como la ubicacion mas adecuada de controles que contribuyan a mejorar el amortiguamiento de los mismos.

  12. Rapid Concentration of Nanoparticles with DC Dielectrophoresis in Focused Electric Fields

    Directory of Open Access Journals (Sweden)

    Chen Dafeng

    2009-01-01

    Full Text Available Abstract We report a microfluidic device for rapid and efficient concentration of micro/nanoparticles with direct current dielectrophoresis (DC DEP. The concentrator is composed of a series of microchannels constructed with PDMS-insulating microstructures for efficiently focusing the electric field in the flow direction to provide high field strength and gradient. The location of the trapped and concentrated particles depends on the strength of the electric field applied. Both ‘streaming DEP’ and ‘trapping DEP’ simultaneously take place within the concentrator at different regions. The former occurs upstream and is responsible for continuous transport of the particles, whereas the latter occurs downstream and rapidly traps the particles delivered from upstream. The performance of the device is demonstrated by successfully concentrating fluorescent nanoparticles. The described microfluidic concentrator can be implemented in applications where rapid concentration of targets is needed such as concentrating cells for sample preparation and concentrating molecular biomarkers for detection.

  13. Controlled X-ray pumping in a wide range of piezo-electric oscillation frequencies

    CERN Document Server

    Navasardyan, M A; Galoyan, K G

    1986-01-01

    In case of Laue diffraction the transmitted X-ray reflection in shown to be effectively controllable in the perfect quartz single crystal when it generates ultrasonic oscillations at the resonance frequency or in its vicinity. The maximum effective amplitude of applied sinusoidal oscillations is equal to 70 V. The pumping degree depends on the voltage amplitude. In this work monochromatic K subalpha sub 1 and K subalpha sub 2 molybdenum lines satisfying the thin crystal condition, mu t<=1, are used (mu is the linear absorption coefficient of the sample for the given wavelength and t is its thickness). The radiation was reflected from different planes such as (1011), (1011), (2022) etc. The complete pumping strongly restricts the structural factor possibilities in estimating the intensity of diffracted X-rays in case of considerable deformations in the bulk of perfect single crystal.

  14. Leakage current and induced electrical energy dissipation in nonlinear oscillation of dielectric elastomer actuators

    Science.gov (United States)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2017-09-01

    Subject to a high voltage, leakage current and induced electrical energy dissipation inevitably occur during the actuation of dielectric elastomers (DEs). In this article, a theoretical model is developed to investigate the dissipative performance of DEs in dynamic actuation. Effects of three different actuation conditions, including DE materials’ viscoelasticity intensity, amplitude of applied voltage, and mechanical tensile force, are considered. Numerical calculations are employed to detect the dynamic dissipative performance of DEs including leakage current, electrical power density, and electrical energy density in certain vibrational periods. Leakage current and induced electrical energy dissipation are enhanced with the enlargement of amplitude of applied voltage and mechanical force, and are suppressed as the intensity of DEs’ viscoelastic creep increases. The electrical energy for dissipation and actuation is also analyzed and compared.

  15. Evaluation of surgically assisted rapid maxillary expansion with piezosurgery versus oscillating saw and chisel osteotomy - a randomized prospective trial

    Science.gov (United States)

    2013-01-01

    Background Ultrasonic bone-cutting surgery has been introduced as a feasible alternative to the conventional sharp instruments used in craniomaxillofacial surgery because of its precision and safety. The piezosurgery medical device allows the efficient cutting of mineralized tissues with minimal trauma to soft tissues. Piezoelectric osteotome has found its role in surgically assisted rapid maxillary expansion (SARME), a procedure well established to correct transverse maxillary discrepancies. The advantages include minimal risk to critical anatomic structures. The purpose of this clinical comparative study (CIS 2007-237-M) was to present the advantages of the piezoelectric cut as a minimally invasive device in surgically assisted, rapid maxillary expansion by protecting the maxillary sinus mucosal lining. Methods Thirty patients (18 females and 12 males) at the age of 18 to 54 underwent a surgically assisted palatal expansion of the maxilla with a combined orthodontic and surgical approach. The patients were randomly divided into two separate treatment groups. While Group 1 received conventional surgery using an oscillating saw, Group 2 was treated with piezosurgery. The following parameters were examined: blood pressure, blood values, required medication, bleeding level in the maxillary sinus, duration of inpatient stay, duration of surgery and height of body temperature. Results The results displayed no statistically significant differences between the two groups regarding laboratory blood values and inpatient stay. The duration of surgery revealed a significant discrepancy. Deploying piezosurgery took the surgeon an average of 10 minutes longer than working with a conventional-saw technique. However, the observation of the bleeding level in the paranasal sinus presented a major and statistically significant advantage of piezosurgery: on average the bleeding level was one category above the one of the remaining patients. Conclusion This method of piezoelectric

  16. Whole Earth Telescope discovery of a strongly distorted quadrupole pulsation in the largest amplitude rapidly oscillating Ap star

    Science.gov (United States)

    Holdsworth, Daniel L.; Kurtz, D. W.; Saio, H.; Provencal, J. L.; Letarte, B.; Sefako, R. R.; Petit, V.; Smalley, B.; Thomsen, H.; Fletcher, C. L.

    2018-01-01

    We present a new analysis of the rapidly oscillating Ap (roAp) star, 2MASS J19400781 - 4420093 (J1940; V = 13.1). The star was discovered using SuperWASP broad-band photometry to have a frequency of 176.39 d-1 (2041.55 μHz; P = 8.2 min; Holdsworth et al. 2014a) and is shown here to have a peak-to-peak amplitude of 34 mmag. J1940 has been observed during three seasons at the South African Astronomical Observatory, and has been the target of a Whole Earth Telescope campaign. The observations reveal that J1940 pulsates in a distorted quadrupole mode with unusual pulsational phase variations. A higher signal-to-noise ratio spectrum has been obtained since J1940's first announcement, which allows us to classify the star as A7 Vp Eu(Cr). The observing campaigns presented here reveal no pulsations other than the initially detected frequency. We model the pulsation in J1940 and conclude that the pulsation is distorted by a magnetic field of strength 1.5 kG. A difference in the times of rotational maximum light and pulsation maximum suggests a significant offset between the spots and pulsation axis, as can be seen in roAp stars.

  17. The electric and magnetic fields research and public information dissemination (EMF-RAPID) program.

    Science.gov (United States)

    Moulder, J E

    2000-05-01

    In the United States, public concern that exposure to power-line fields was linked to cancer led to the establishment of a Congressionally mandated program, the Electric and Magnetic Fields Research and Public Information Dissemination (EMF-RAPID) Program. A major goal of the program was to "determine whether or not exposures to electric and magnetic fields produced by the generation, transmission, and use of electrical energy affect human health". Between 1994 and 1998, the EMF-RAPID program spent approximately $41 million on biological research. Much of the work funded by the EMF-RAPID program has not yet been published in the peer-reviewed literature. The U.S. National Institute of Environmental Health Sciences (NIEHS) asked that Radiation Research publish this special issue in an attempt to remedy this publication gap. The issue includes reviews of studies that were done to assess the biological plausibility of claims that power-frequency fields caused leukemia and breast cancer. The issue continues with two teratology studies and one immunology study. The section of the issue covering in vitro studies begins with an overview of the efforts NIEHS made to replicate a wide range of reported effects of power-frequency fields and continues with four papers reporting the absence of effects of power-frequency fields on the expression of stress-response genes and oncogenes. Other reports of in vitro studies and studies of mechanisms cover cytotoxicity, gap junction intracellular communication, calcium ion transport across the plasma membrane, and intracellular electric fields.

  18. Electric Field Measurements During the Genesis and Rapid Intensification Processes (GRIP) Field Program

    Science.gov (United States)

    Bateman, Monte G.; Blakeslee, Richard J.; Mach, Douglas M.

    2010-01-01

    During the Genesis and Rapid Intensification Processes (GRIP) field program, a system of 6 electric field mills was flown on one of NASA's Global Hawk aircraft. We placed several mills on the aircraft to enable us to measure the vector electric field. We created a distributed, ethernet-connected system so that each sensor has its own embedded Linux system, complete with web server. This makes our current generation system fully "sensor web enabled." The Global Hawk has several unique qualities, but relevant to quality storm electric field measurements are high altitude (20 km) and long duration (20-30 hours) flights. There are several aircraft participating in the GRIP program, and coordinated measurements are happening. Lightning and electric field measurements will be used to study the relationships between lightning and other storm characteristics. It has been long understood that lightning can be used as a marker for strong convective activity. Past research and field programs suggest that lightning flash rate may serve as an indicator and precursor for rapid intensification change in tropical cyclones and hurricanes. We have the opportunity to sample hurricanes for many hours at a time and observe intensification (or de-intensification) periods. The electrical properties of hurricanes during such periods are not well known. American

  19. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding

    DEFF Research Database (Denmark)

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R

    2009-01-01

    The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation...... in a marked and widespread increase in EEG theta (4-8 Hz) activity. During wake, tSOS did not enhance consolidation of memories when applied after learning, but improved encoding of hippocampus-dependent memories when applied during learning. We conclude that the EEG frequency and related memory processes...

  20. Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields

    KAUST Repository

    Ryu, Seol

    2010-01-01

    The oscillation behavior of laminar lifted flames under the influence of low-frequency AC has been investigated experimentally in coflow jets. Various oscillation modes were existed depending on jet velocity and the voltage and frequency of AC, especially when the AC frequency was typically smaller than 30 Hz. Three different oscillation modes were observed: (1) large-scale oscillation with the oscillation frequency of about 0.1 Hz, which was independent of the applied AC frequency, (2) small-scale oscillation synchronized to the applied AC frequency, and (3) doubly-periodic oscillation with small-scale oscillation embedded in large-scale oscillation. As the AC frequency decreased from 30 Hz, the oscillation modes were in the order of the large-scale oscillation, doubly-periodic oscillation, and small-scale oscillation. The onset of the oscillation for the AC frequency smaller than 30 Hz was in close agreement with the delay time scale for the ionic wind effect to occur, that is, the collision response time. Frequency-doubling behavior for the small-scale oscillation has also been observed. Possible mechanisms for the large-scale oscillation and the frequency-doubling behavior have been discussed, although the detailed understanding of the underlying mechanisms will be a future study. © 2009 The Combustion Institute.

  1. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J [ORNL

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  2. Conductivity oscillations in 2D superlattice with non-harmonical dispersion law under non-quantizing electric and magnetic fields (in Russian)

    OpenAIRE

    Shmelev, Gennady

    2012-01-01

    We calculate the current density in a semiconductor superlattice with parabolic miniband under crossed non-quantizing electric and magnetic fields. The Corbino disk geometry is considered. The current-voltage curve contains oscillations with period proportional to the magnetic field. The possibility is shown of the negative absolute conductivity. The Ampere-Gauss characteristics also contain overshoots under high enough electric fields. In all cases, the peaks smear with temperature rising.

  3. Reciprocal Regulation of Epileptiform Neuronal Oscillations and Electrical Synapses in the Rat Hippocampus

    Science.gov (United States)

    Kinjo, Erika R.; Higa, Guilherme S. V.; Morya, Edgard; Valle, Angela C.; Kihara, Alexandre H.; Britto, Luiz R. G.

    2014-01-01

    Gap junction (GJ) channels have been recognized as an important mechanism for synchronizing neuronal networks. Herein, we investigated the participation of GJ channels in the pilocarpine-induced status epilepticus (SE) by analyzing electrophysiological activity following the blockade of connexins (Cx)-mediated communication. In addition, we examined the regulation of gene expression, protein levels, phosphorylation profile and distribution of neuronal Cx36, Cx45 and glial Cx43 in the rat hippocampus during the acute and latent periods. Electrophysiological recordings revealed that the GJ blockade anticipates the occurrence of low voltage oscillations and promotes a marked reduction of power in all analyzed frequencies.Cx36 gene expression and protein levels remained stable in acute and latent periods, whereas upregulation of Cx45 gene expression and protein redistribution were detected in the latent period. We also observed upregulation of Cx43 mRNA levels followed by changes in the phosphorylation profile and protein accumulation. Taken together, our results indisputably revealed that GJ communication participates in the epileptiform activity induced by pilocarpine. Moreover, considering that specific Cxs undergo alterations through acute and latent periods, this study indicates that the control of GJ communication may represent a focus in reliable anti-epileptogenic strategies. PMID:25299405

  4. Structural and Functional Effect of an Oscillating Electric Field on the Dopamine-D3 Receptor: A Molecular Dynamics Simulation Study.

    Science.gov (United States)

    Fallah, Zohreh; Jamali, Yousef; Rafii-Tabar, Hashem

    2016-01-01

    Dopamine as a neurotransmitter plays a critical role in the functioning of the central nervous system. The structure of D3 receptor as a member of class A G-protein coupled receptors (GPCRs) has been reported. We used MD simulation to investigate the effect of an oscillating electric field, with frequencies in the range 0.6-800 GHz applied along the z-direction, on the dopamine-D3R complex. The simulations showed that at some frequencies, the application of an external oscillating electric field along the z-direction has a considerable effect on the dopamine-D3R. However, there is no enough evidence for prediction of changes in specific frequency, implying that there is no order in changes. Computing the correlation coefficient parameter showed that increasing the field frequency can weaken the interaction between dopamine and D3R and may decrease the Arg128{3.50}-Glu324{6.30} distance. Because of high stability of α helices along the z-direction, applying an oscillating electric field in this direction with an amplitude 10-time higher did not have a considerable effect. However, applying the oscillating field at the frequency of 0.6 GHz along other directions, such as X-Y and Y-Z planes, could change the energy between the dopamine and the D3R, and the number of internal hydrogen bonds of the protein. This can be due to the effect of the direction of the electric field vis-à-vis the ligands orientation and the interaction of the oscillating electric field with the dipole moment of the protein.

  5. Automated electrical impedance technique for rapid enumeration of fecal coliforms in effluents from sewage treatment plants.

    Science.gov (United States)

    Silverman, M P; Munoz, E F

    1979-01-01

    Fecal coliforms growing in a selective lactose-based broth medium at 44.5 degrees C generate a change in the electrical impedance of the culture relative to a sterile control when populations reach 10(6) to 10(7) per ml. The ratio of these changes was measured automatically, and the data were processed by computer. A linear relation was found between the log10 of the number of fecal coliforms in an inoculum and the time required for an electrical impedance ratio signal to be detected. Pure culture inocula consisting of 100 fecal coliforms in log phase or stationary phase were detected in 6.5 and 7.7 h, respectively. Standard curves of log10 fecal coliforms in wastewater inocula versus detection time, based on samples collected at a sewage treatment plant over a 4-month period, were found to vary from one another with time. Nevertheless, detection times were rapid and ranged from 5.8 to 7.9 h for 200 fecal coliforms to 8.7 to 11.4 h for 1 fecal coliform. Variations in detection times for a given number of fecal coliforms were also found among sewage treatment plants. A strategy is proposed which takes these variations into account and allows for rapid, automated enumeration of fecal coliforms in wastewater by the electrical impedance ratio technique. PMID:378128

  6. 110 GHz rapid, continous tuning from an optical parametric oscillator pumped by a fiber-amplified DBR diode laser

    NARCIS (Netherlands)

    Lindsay, I.D.; Adhimoolam, B.; Gross, P.; Klein, M.E.; Boller, Klaus J.

    2005-01-01

    A singly-resonant continuous-wave optical parametric oscillator (cw-OPO) pumped by a fiber-amplified diode laser is described. Tuning of the pump source allowed the OPO output to be tuned continuously, without mode-hops, over 110 GHz in 29 ms. Discontinuous pump tuning over 20 nm in the region of

  7. Value of electrical stimulation and high frequency oscillations (80–500 Hz) in identifying epileptogenic areas during intracranial EEG recordings

    Science.gov (United States)

    Jacobs, Julia; Zijlmans, Maeike; Zelmann, Rina; Olivier, André; Hall, Jeffery; Gotman, Jean; Dubeau, François

    2013-01-01

    Summary Purpose Electrical stimulation (ES) is used during intracranial electroencephalography (EEG) investigations to delineate epileptogenic areas and seizure-onset zones (SOZs) by provoking afterdischarges (ADs) or patients’ typical seizure. High frequency oscillations (HFOs—ripples, 80–250 Hz; fast ripples, 250–500 Hz) are linked to seizure onset. This study investigates whether interictal HFOs are more frequent in areas with a low threshold to provoke ADs or seizures. Methods Intracranial EEG studies were filtered at 500 Hz and sampled at 2,000 Hz. HFOs were visually identified. Twenty patients underwent ES, with gradually increasing currents. Results were interpreted as agreeing or disagreeing with the intracranial study (clinical-EEG seizure onset defined the SOZ). Current thresholds provoking an AD or seizure were correlated with the rate of HFOs of each channel. Results ES provoked a seizure in 12 and ADs in 19 patients. Sixteen patients showed an ES response inside the SOZ, and 10 had additional areas with ADs. The response was more specific for mesiotemporal than for neocortical channels. HFO rates were negatively correlated with thresholds for ES responses; especially in neo-cortical regions; areas with low threshold and high HFO rate were colocalized even outside the SOZ. Discussion Areas showing epileptic HFOs colocalize with those reacting to ES. HFOs may represent a pathologic correlate of regions showing an ES response; both phenomena suggest a more widespread epileptogenicity. PMID:19845730

  8. Driving Sodium-Potassium Pumps With An Oscillating Electric Field: Effects On Muscle Recovery In The Human Biceps Brachii

    Science.gov (United States)

    Bovyn, Matt; Chen, Wei; Lanes, Olivia; Mast, Jason

    2013-03-01

    Dr. Chen has developed a technique called synchronization modulation, which uses an oscillating electric field to increase the rate at which the sodium-potassium pumps in the cell membrane work. Because the sodium-potassium pump is integral in the recovery of skeletal muscle fibers after an action potential, we investigated the effects of applying synchronization modulation to muscles which had already undergone fatigue due to repeated action potentials during exercise. Fatigue was induced in human subjects' biceps brachii through isometric contraction. Surface electromyography measurements of fatigue index were used to quantify how the muscle recovered over the minutes following fatigue, both when synchronization modulation was applied and when it was absent. The preliminary results were inconclusive, but it is hoped that in later work it will be shown that applying synchronization modulation is effective in increasing the rate at which the muscle recovers to its initial state. This would demonstrate not only that synchronization modulation can be successfully applied to human muscle, but also that it has many potential applications in sports medicine and novel disease treatments. Work done as part of an REU program at the University of South Florida

  9. Noise and Electrical Oscillations Generation during the Investigation of the Resistive Switching in the Yttria Stabilized Zirconia Films by Conductive Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Oleg Gorshkov

    2015-01-01

    Full Text Available The effect of resistive switching in the yttria stabilized zirconia (YSZ thin films on Si substrates has been studied by Conductive Atomic Force Microscopy (CAFM. The resistive switching of the YSZ films from the low conductive state to the highly conductive one has been found to be associated with the increasing of the noise with broad frequency spectrum related to the redistribution of the oxygen vacancies in YSZ. The electrical oscillations in oscillation loop connected in series to the CAFM probe, the sample, and the bias source related to the excitation of the oscillation loop by the noise in the probe-to-sample contact film have been observed. The effect discovered is promising for application in the memristor devices of new generation.

  10. Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation

    Science.gov (United States)

    Davies, E.; Vian, A.; Vian, C.; Stankovic, B.

    1997-01-01

    When one leaf of a tomato plant is electrically-stimulated or heat-wounded, proteinase inhibitor genes are rapidly up-regulated in distant leaves. The identity of the systemic wound signal(s) is not yet known, but major candidates include hormones transmitted via the phloem or the xylem, the electrically-stimulated self-propagating electrical signal in the phloem (the action potential, AP), or the heat-wound-induced surge in hydraulic pressure in the xylem evoking a local change in membrane potential in adjacent living cells (the variation potential, VP). In order to discriminate between these signals we have adopted two approaches. The first approach involves applying stimuli that evoke known signals and determining whether these signals have similar effects on the "model" transcripts for proteinase inhibitors (pin) and calmodulin (cal). Here we show that a heat wound almost invariably evokes a VP, while an electrical stimulation occasionally evokes an AP, and both of these signals induce accumulation of transcripts encoding proteinase inhibitors. The second approach involves identifying the array of genes turned on by heat-wounding. To this end, we have constructed a subtractive library for heat-wounded tissue, isolated over 800 putatively up-regulated clones, and shown that all but two of the fifty that we have analyzed by Northern hybridization are, indeed, up-regulated. Here we show the early kinetics of up-regulation of three of these transcripts in the terminal (4th) leaf in response to heat-wounding the 3rd leaf, about 5 cm away. Even though these transcripts show somewhat different time courses of induction, with one peaking at 30 min, another at 15 min, and another at 5 min after flaming of a distant leaf, they all exhibit a similar pattern, i.e., a transient period of transcript accumulation preceding a period of transcript decrease, followed by a second period of transcript accumulation.

  11. Considerations for an appropriate representation of non attenuated oscillations in electrical systems; Consideraciones para una adequada representacion de oscilaciones no amortiguadas en sistemas electricos

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, Antonio E. [Universidad Nacional de San Juan (Argentina). Inst. de Energia Electrica]. E-mail: sarasua@iee.unsj.edu.ar; Handschin, Edmund [Dortmund Univesitaet (Germany); Mercado, Pedro E. [Consejo Nacional de Investigaciones Cientficas y Tecnicas (CONICET), Buenos Aires (Argentina)]|[Universidad Nacional de San Juan (Argentina). Inst. de Energia Electrica; Rehtanz, Christian [ABB (Switzerland)

    2001-07-01

    This article analyses and proposes the most important considerations to be taken into account regarding the models development which suitably represent not amortized oscillations observed in electric power transmission systems, which are not susceptible of being detected by the current calculation tools. Among others considerations, it has been discussed the technique applications of non-lineal analysis, such as the Bifurcation theory, and it is proposed necessary calculation tools in relation to their representation.

  12. Inhomogenic effect of bepridil on atrial electrical remodeling in a canine rapid atrial stimulation model.

    Science.gov (United States)

    Fukaya, Hidehira; Niwano, Shinichi; Satoh, Daisuke; Masaki, Yoshihiko; Niwano, Hiroe; Kojima, Jisho; Moriguchi, Masahiko; Izumi, Tohru

    2008-02-01

    The antiarrhythmic or reverse remodeling effects of bepridil, a multi-ion channel blocker, have been recently reported, but inhomogeneity of the electrical remodeling and effects of bepridil have been observed in previous reports. In this study, the effect of long-term administration of bepridil on atrial electrical remodeling was evaluated in a comparison of the right and left atrium (RA and LA) in a canine rapid atrial stimulation model. In 10 beagle dogs, rapid atrial pacing (400 beats/min) was delivered for 6 weeks and the atrial effective refractory period (AERP), conduction velocity (CV) and inducibility of atrial fibrillation (AF) were evaluated every week. In 5 of the pacing dogs, bepridil (10 mg . kg(-1) . day(-1)) was administered orally, starting 2 weeks after the initiation of the rapid pacing. At the end of the protocol, the hemodynamic parameters and extent of tissue fibrosis were evaluated and the mRNA of SCN5A, Kv4.3, the L-type Ca2+ channel (LCC) and connexin (Cx) 40, 43, and 45 in both atria were examined by quantitative real-time reverse transcriptase-polymerase chain reaction. In the pacing control group, AERP shortening, decreased CV, increased AF inducibility and downregulation of the expression of SCN5A and LCC were observed. In the bepridil group, the AERP exhibited a relatively quick recovery after bepridil was started in the first week and continued to recover gradually until the end of the protocol, but that recovery was smaller in the LA than in the RA. The CV was not affected by bepridil administration. AF inducibility was well suppressed in the RA in the bepridil group, but the induction of short-duration AF could not be suppressed in the LA. The mRNA downregulation of the LCC and SCN5A was negated by bepridil administration in the RA; but not in the LA; however, the data showed similar tendencies. There were no significant differences in the hemodynamic parameters or tissue fibrosis and the mRNA expression of Kv4.3, Cx40, 43, and 45

  13. Rapid analysis of time series data to identify changes in electricity consumption patterns in UK secondary schools

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Graeme; Fleming, Paul; Ferreira, Vasco [Institute of Energy and Sustainable Development, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Harris, Peter [Cheriton Technology Management Ltd., Cambridge (United Kingdom)

    2007-04-15

    This paper presents a methodology for energy professionals to identify potential electricity saving opportunities in buildings from the analysis of half-hourly electricity consumption data. The technique recommended in UK government good practice guidance for use with monthly gas data has been applied to half-hourly electricity data from 37 secondary schools. The technique monitors consumption over time, identifying any changes in patterns and quantifying their effects. It has the advantage of being both high resolution and quick to employ. The analysis produces results that allow energy professionals to rapidly detect changes in electricity consumption. (author)

  14. Learned EEG-based regulation of motor-related brain oscillations during application of transcranial electric currents: feasibility and limitations

    Directory of Open Access Journals (Sweden)

    Surjo R Soekadar

    2014-03-01

    Full Text Available Objective: Transcranial direct current stimulation (tDCS improves motor learning and can influence emotional processing or attention. However, it remained unclear whether learned electroencephalography (EEG-based brain-machine interface (BMI control during tDCS is feasible and how application of transcranial electric currents during BMI control would interfere with feature-extraction of physiological brain signals. Here we tested this combination and evaluated stimulation-dependent artifacts across different EEG frequencies and stability of motor imagery-based BMI control. Approach: Ten healthy volunteers were invited to two BMI-sessions, each comprising two 60-trial blocks. During the trials, modulation of mu-rhythms (8-15Hz associated with motor imagery recorded over C4 was translated into online cursor movements on a computer screen. During block 2, either sham (session A or anodal tDCS (session B was applied at 1mA with the stimulation electrode placed 1cm anterior of C4. Main results: tDCS was associated with a significant signal power increase in the lower frequencies most evident in the signal spectrum of the EEG channel closest to the stimulation electrode. Stimulation-dependent signal power increase exhibited a decay of 12dB per decade, leaving frequencies above 9Hz unaffected. Analysis of BMI control performance did not indicate a difference between blocks and tDCS conditions. Conclusion: Application of tDCS during learned EEG-based self-regulation of brain oscillations above 9Hz is feasible and safe, and might improve applicability of BMI systems in patient populations.

  15. Rapid, efficient charging of lead-acid and nickel-zinc traction cells. [for electric vehicles

    Science.gov (United States)

    Smithrick, J. J.

    1978-01-01

    Lead-acid and nickel-zinc traction cells were rapidly and efficiently charged using a high rate taped dc charge (HRTDC) method which could possibly be used for on-the-road service recharge of electric vehicles. The HRTDC method takes advantage of initial high cell charge acceptance and uses cell gassing rate and temperature as an indicator of charging efficiency. On the average, 300 amp-hour nickel-zinc traction cells were given a HRTDC to 78% of rated amp-hour capacity within 53 minutes at an amp-hour efficiency of 92% and an energy efficiency of 52%. Three-hundred amp-hour lead-acid traction cells were charged to 69% of rated amp-hour capacity within 46 minutes at an amp-hour efficiency of 91% with an energy efficiency of 64%.

  16. Effects of low-voltage electrical stimulation and rapid chilling on meat quality characteristics of Chinese Yellow crossbred bulls.

    Science.gov (United States)

    Li, C B; Chen, Y J; Xu, X L; Huang, M; Hu, T J; Zhou, G H

    2010-04-22

    In this study, the effects of low-voltage electrical stimulation (LVES) and rapid chilling (RC) treatments on the quality characteristics of beef carcasses were evaluated, including the rate of pH and temperature decline, evaporative loss of carcasses, purge loss, cooking loss, and shear force values of m. longissimus steaks. Each carcass of 28 Chinese Yellow crossbred (SimmentalxYanbian) bulls was subjected to one of the four treatments, i.e., electrical stimulation and conventional chilling (ES/NR), electrical stimulation and rapid chilling (ES/RC), no electrical stimulation and rapid chilling (NE/RC), or no electrical stimulation and conventional chilling (NE/NR). Carcass pH and temperature were measured at 1, 3, 5, 7, 9, 11, and 24h post-mortem. After that, a 2.5-cm-thick m. longissimus steak was taken from the right side of each carcass and used for analyses of purge loss, cooking loss and Warner-Bratzler shear force (WBSF). The results showed that LVES accelerated the rate of carcass pH decline (Pchilling increased the rate of carcass temperature decline (P0.05). Mean purge losses for m. longissimus steaks from rapidly chilled carcasses were lower (Pchilled carcasses. Electrical stimulation had no impact on m. longissimus steak purge losses (P>0.05). Rapid chilling significantly decreased (Pchilled carcasses, but had no effect under the procedure of pre-rigor rapid chilling (P>0.05). The lowest mean shear force value was found for the ES/NR-treated m. longissimus steaks, whilst the highest one for the NE/RC-treated carcasses (Pchilling. Copyright © 2005. Published by Elsevier Ltd.

  17. Electrical tuning of the oscillator strength in type II InAs/GaInSb quantum wells for active region of passively mode-locked interband cascade lasers

    Science.gov (United States)

    Dyksik, Mateusz; Motyka, Marcin; Kurka, Marcin; Ryczko, Krzysztof; Misiewicz, Jan; Schade, Anne; Kamp, Martin; Höfling, Sven; Sęk, Grzegorz

    2017-11-01

    Two designs of active region for an interband cascade laser, based on double or triple GaInSb/InAs type II quantum wells (QWs), were compared with respect to passive mode-locked operation in the mid-infrared range around 4 µm. The layer structure and electron and hole wavefunctions under external electric field were engineered to allow controlling the optical transition oscillator strength and the resulting lifetimes. As a result, the investigated structures can mimic absorber-like and gain-like sections of a mode-locked device when properly polarized with opposite bias. A significantly larger oscillator strength tuning range for triple QWs was experimentally verified by Fourier-transform photoreflectance.

  18. Considerations on 'Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring'

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A., E-mail: a.belendez@ua.e [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)] [Instituto Universitario de Fisica Aplicada a las Ciencias y las Tecnologias, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E. [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Rodes, J.J. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fuentes, R.; Pascual, I. [Instituto Universitario de Fisica Aplicada a las Ciencias y las Tecnologias, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)] [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2009-11-09

    In a previous short communication [A. Belendez, E. Fernandez, J.J. Rodes, R. Fuentes, I. Pascual, Phys. Lett. A 373 (2009) 735] the nonlinear oscillations of a punctual charge in the electric field of a charged ring were analyzed. Approximate frequency-amplitude relations and periodic solutions were obtained using the harmonic balance method. Now we clarify an important aspect about of this oscillation charge. Taking into account Earnshaw's theorem, this punctual charge cannot be a free charge and so it must be confined, for example, on a finite conducting wire placed along the axis of the ring. Then, the oscillatory system may consist of a punctual charge on a conducting wire placed along the axis of the uniformly charged ring.

  19. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/ hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Manuel Tobias Munz

    2015-08-01

    Full Text Available Background: Behavioral inhibition, which is a later-developing executive function (EF and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD. While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM slow-wave sleep. Recently, slow oscillations (SO during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective: By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: 14 boys (10-14 yrs diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.

  20. A microcontroller platform for the rapid prototyping of functional electrical stimulation-based gait neuroprostheses.

    Science.gov (United States)

    Luzio de Melo, Paulo; da Silva, Miguel Tavares; Martins, Jorge; Newman, Dava

    2015-05-01

    Functional electrical stimulation (FES) has been used over the last decades as a method to rehabilitate lost motor functions of individuals with spinal cord injury, multiple sclerosis, and post-stroke hemiparesis. Within this field, researchers in need of developing FES-based control solutions for specific disabilities often have to choose between either the acquisition and integration of high-performance industry-level systems, which are rather expensive and hardly portable, or develop custom-made portable solutions, which despite their lower cost, usually require expert-level electronic skills. Here, a flexible low-cost microcontroller-based platform for rapid prototyping of FES neuroprostheses is presented, designed for reduced execution complexity, development time, and production cost. For this reason, the Arduino open-source microcontroller platform was used, together with off-the-shelf components whenever possible. The developed system enables the rapid deployment of portable FES-based gait neuroprostheses, being flexible enough to allow simple open-loop strategies but also more complex closed-loop solutions. The system is based on a modular architecture that allows the development of optimized solutions depending on the desired FES applications, even though the design and testing of the platform were focused toward drop foot correction. The flexibility of the system was demonstrated using two algorithms targeting drop foot condition within different experimental setups. Successful bench testing of the device in healthy subjects demonstrated these neuroprosthesis platform capabilities to correct drop foot. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Rapid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization

    NARCIS (Netherlands)

    Mazza, G. (Giuseppe); Al-Akkad, W. (Walid); Telese, A. (Andrea); Longato, L. (Lisa); Urbani, L. (Luca); Robinson, B. (Benjamin); Hall, A. (Andrew); Kong, K. (Kenny); Frenguelli, L. (Luca); Marrone, G. (Giusi); Willacy, O. (Oliver); Shaeri, M. (Mohsen); A.J. Burns (Alan); Malago, M. (Massimo); Gilbertson, J. (Janet); Rendell, N. (Nigel); Moore, K. (Kevin); Hughes, D. (David); Notingher, I. (Ioan); Jell, G. (Gavin); Del Rio Hernandez, A. (Armando); P. de Coppi (Paolo); Rombouts, K. (Krista); Pinzani, M. (Massimo)

    2017-01-01

    textabstractThe development of human liver scaffolds retaining their 3-dimensional structure and extra-cellular matrix (ECM) composition is essential for the advancement of liver tissue engineering. We report the design and validation of a new methodology for the rapid and accurate production of

  2. β oscillation during slow wave sleep and rapid eye movement sleep in the electroencephalogram of a transgenic mouse model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Yannick Jeantet

    Full Text Available STUDY OBJECTIVES: To search for early abnormalities in electroencephalogram (EEG during sleep which may precede motor symptoms in a transgenic mouse model of hereditary neurodegenerative Huntington's disease (HD. DESIGN: In the R6/1 transgenic mouse model of HD, rhythmic brain activity in EEG recordings was monitored longitudinally and across vigilance states through the onset and progression of disease. MEASUREMENTS AND RESULTS: Mice with chronic electrode implants were recorded monthly over wake-sleep cycles (4 hours, beginning at 9-11 weeks (presymptomatic period through 6-7 months (symptomatic period. Recording data revealed a unique β rhythm (20-35 Hz, present only in R6/1 transgenic mice, which evolves in close parallel with the disease. In addition, there was an unusual relationship between this β oscillation and vigilance states: while nearly absent during the active waking state, the β oscillation appeared with drowsiness and during slow wave sleep (SWS and, interestingly, strengthened rather than dissipating when the brain returned to an activated state during rapid eye movement (REM sleep. CONCLUSIONS: In addition to providing a new in vivo biomarker and insight into Huntington's disease pathophysiology, this serendipitous observation opens a window onto the rarely explored neurophysiology of the cortico-basal ganglia circuit during SWS and REM sleep.

  3. β oscillation during slow wave sleep and rapid eye movement sleep in the electroencephalogram of a transgenic mouse model of Huntington's disease.

    Science.gov (United States)

    Jeantet, Yannick; Cayzac, Sebastien; Cho, Yoon H

    2013-01-01

    To search for early abnormalities in electroencephalogram (EEG) during sleep which may precede motor symptoms in a transgenic mouse model of hereditary neurodegenerative Huntington's disease (HD). In the R6/1 transgenic mouse model of HD, rhythmic brain activity in EEG recordings was monitored longitudinally and across vigilance states through the onset and progression of disease. Mice with chronic electrode implants were recorded monthly over wake-sleep cycles (4 hours), beginning at 9-11 weeks (presymptomatic period) through 6-7 months (symptomatic period). Recording data revealed a unique β rhythm (20-35 Hz), present only in R6/1 transgenic mice, which evolves in close parallel with the disease. In addition, there was an unusual relationship between this β oscillation and vigilance states: while nearly absent during the active waking state, the β oscillation appeared with drowsiness and during slow wave sleep (SWS) and, interestingly, strengthened rather than dissipating when the brain returned to an activated state during rapid eye movement (REM) sleep. In addition to providing a new in vivo biomarker and insight into Huntington's disease pathophysiology, this serendipitous observation opens a window onto the rarely explored neurophysiology of the cortico-basal ganglia circuit during SWS and REM sleep.

  4. Spatial Pattern of Rapid Climatic Oscillations and Vegetation Response During the Last Deglaciation in Northeastern North America

    Science.gov (United States)

    Yu, Z.

    2003-12-01

    Large and abrupt climatic oscillations occurred during the last deglaciation evident from ice, lacustrine and marine records in different regions. Stable isotopes retrieved from these records could provide a common proxy in correlating the records and detecting temporal and spatial patterns. The emerging pattern is critical in understanding the nature and forcing mechanisms of climate changes. Here I provide new isotopic and pollen results from the Mid-Atlantic region of USA to expand the existing late-glacial records from the Great Lakes region to the Atlantic Seaboard. White Lake, a marl lake in NW New Jersey, provides high-resolution sedimentary records since ca. 15,000 cal yr BP (15 ka). The chronology of late-glacial and early Holocene period was controlled by 6 AMS 14C dates on terrestrial macrofossils. Oxygen isotopes of marl samples (contain >90% carbonates) from this period vary between -8 and -4 permil (VPDB) and show multiple oscillations at millennial and centennial scales, including the Younger Dryas (YD) with ca. 3 permil shifts in δ 18O at 12.6-11.3 ka and three cold events of 1-2 permil shifts during the Bølling-Allerød (B-A) period at 14.3-12.6 ka. Pollen diagram from this site shows strong similarity with previously published pollen records from this region, with the YD event having high boreal taxa (Alnus, Abies, Betula) after establishment of a mixed deciduous-coniferous forest containing Quercus, Fraxinus and Ostrya/Carpinus. A plateau-like B-A period is similar to some (Ammersee, Germany; Cariaco Basin, Caribbean) but not other records (ice cores form Greenland Summit; Crawford Lake, Ontario) around the Atlantic Ocean, suggesting that a strong climate gradient might have existed then. Vegetation shows different sensitivity in responding to the YD at sites along a transect from New Jersey, through western New York, to southern Ontario, which was probably caused by a combination of species migration/availability, location of then ecotones

  5. Determining the masses and radii of rapidly rotating, oblate neutron stars using energy-resolved waveforms of their X-ray burst oscillations

    Science.gov (United States)

    Lamb, Frederick K.; Miller, M. Coleman

    2014-08-01

    We have developed new, more sophisticated, and much faster Bayesian analysis methods that enable us to estimate the masses and radii of rapidly rotating, oblate neutron stars using the energy-resolved waveforms of their X-ray burst oscillations and to determine the uncertainties in these mass and radius estimates. We first generate the energy-resolved burst oscillation waveforms that would be produced by a hot spot on various rapidly rotating, oblate stars, using the oblate-star Schwarzschild-spacetime (OS) approximation. In generating these synthetic data, we assume that 1 million counts have been collected from the hot spot and that the background is 9 million counts. This produces a realistic modulation amplitude and a total number of counts comparable to the number that could be obtained by a future space mission such as the proposed LOFT or AXTAR missions or the accepted NICER mission by combining data from many bursts from a given star. We then compute the joint posterior distribution of the mass M and radius R in standard models, for each synthetic waveform, and use these posterior distributions to determine the 1-, 2-, and 3-sigma confidence regions in the M-R plane for each synthetic waveform and model. We report here the confidence regions obtained when Schwarzschild+Doppler (S+D) and OS waveform models are used, including results obtained when the properties of the star used to generate the synthetic waveform data differ from the properties of the star used in modeling the waveform. These results are based on research supported by NSF grant AST0709015 at the University of Illinois and NSF grant AST0708424 at the University of Maryland.

  6. Rapid restoration of electric vehicle battery performance while driving at cold temperatures

    Science.gov (United States)

    Zhang, Guangsheng; Ge, Shanhai; Yang, Xiao-Guang; Leng, Yongjun; Marple, Dan; Wang, Chao-Yang

    2017-12-01

    Electric vehicles (EVs) driven in cold weather experience two major drawbacks of Li-ion batteries: drastic power loss (up to 10-fold at -30 °C) and restriction of regenerative braking at temperatures below 5-10 °C. Both factors greatly reduce cruise range, exacerbating drivers' range anxiety in winter. While preheating the battery before driving is a practice widely adopted to maintain battery power and EV drivability, it is time-consuming (on the order of 40 min) and prohibits instantaneous mobility. Here we reveal a control strategy that can rapidly restore EV battery power and permit full regeneration while driving at temperatures as low as -40 °C. The strategy involves heating the battery internally during regenerative braking and rest periods of driving. We show that this technique fully restores room-temperature battery power and regeneration in 13, 33, 46, 56 and 112 s into uninterrupted driving in 0, -10, -20, -30 and -40 °C environments, respectively. Correspondingly, the strategy significantly increases cruise range of a vehicle operated at cold temperatures, e.g. 49% at -40 °C in simulated US06 driving cycle tests. The present work suggests that smart batteries with embedded sensing/actuation can leapfrog in performance.

  7. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Song, Hai-Ying; Liu, H.Y.; Liu, Shi-Bing, E-mail: sbliu@bjut.edu.cn

    2017-07-12

    Highlights: • Proposed a valid mechanism of high harmonic generation by laser grating target interaction: oscillation of equivalent electric dipole (OEED). • Found that there also exist harmonic emission at large emission angle but not just near-surface direction as the former researches had pointed out. • Show the process of the formation and motion of electron bunches at the grating-target surface irradiating with femtosecond laser pulse. - Abstract: We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  8. Rapid growth of zinc oxide nanobars in presence of electric field by physical vapor deposition

    Science.gov (United States)

    Jouya, Mehraban; Taromian, Fahime; Siami, Simin

    2018-01-01

    In this contribution, electric field has some effects to increase growth for specific time duration on zinc oxide (ZnO) nanobars. First, the zinc (Zn) thin film has been prepared by 235,000 V/m electric field assisted physical vapor deposition (PVD) at vacuum of 1.33 × 10-5 mbar. Second, strong electric field of 134,000 V/m has been used in ambient for growing ZnO nanobars in term of the time include 2.5 and 10 h. The performances of the ZnO nanostructure in absence and presence of electric field have been determined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of XRD analysis showed that ZnO has a hexagonal bars structure and a strongly preferred (101) orientation which is strongest than without applying electric field. SEM analysis revealed that physical vapored ZnO thin film in presence of electric field are densely packed with uniform morphological, thinner and denser in distribution. Electric field effect for ZnO growth in 2.5 h is better than it in the 2.5 h without electric field but by passing the time the media influence has good power almost as same as electric field. Through this electric field in PVD, the compact and uniform Zn film has been achieved which is less diameter than ordinary PVD method. Finally, we carry out a series of experiments to grow different-orientation ZnO nanobars with less than 100 nm in diameter, which are the time saving process in base of PVD ever reported. Therefore, the significant conclusion in usage electric field is reducing time of growth.

  9. Early gamma oscillations during rapid auditory processing in children with a language-learning impairment: changes in neural mass activity after training.

    Science.gov (United States)

    Heim, Sabine; Keil, Andreas; Choudhury, Naseem; Thomas Friedman, Jennifer; Benasich, April A

    2013-04-01

    Children with language-learning impairment (LLI) have consistently shown difficulty with tasks requiring precise, rapid auditory processing. Remediation based on neural plasticity assumes that the temporal precision of neural coding can be improved by intensive training protocols. Here, we examined the extent to which early oscillatory responses in auditory cortex change after audio-visual training, using combined source modeling and time-frequency analysis of the human electroencephalogram (EEG). Twenty-one elementary school students diagnosed with LLI underwent the intervention for an average of 32 days. Pre- and post-training assessments included standardized language/literacy tests and EEG recordings in response to fast-rate tone doublets. Twelve children with typical language development were also tested twice, with no intervention given. Behaviorally, improvements on measures of language were observed in the LLI group following completion of training. During the first EEG assessment, we found reduced amplitude and phase-locking of early (45-75 ms) oscillations in the gamma-band range (29-52 Hz), specifically in the LLI group, for the second stimulus of the tone doublet. Amplitude reduction for the second tone was no longer evident for the LLI children post-intervention, although these children still exhibited attenuated phase-locking. Our findings suggest that specific aspects of inefficient sensory cortical processing in LLI are ameliorated after training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Bond length and electric current oscillation of long linear carbon chains: density functional theory, MpB model, and quantum spin transport studies.

    Science.gov (United States)

    Oeiras, R Y; da Silva, E Z

    2014-04-07

    Carbon linear atomic chains attached to graphene have experimentally been produced. Motivated by these results, we study the nature of the carbon bonds in these nanowires and how it affects their electrical properties. In the present study we investigate chains with different numbers of atoms and we observe that nanowires with odd number of atoms present a distinct behavior than the ones with even numbers. Using graphene nanoribbons as leads, we identify differences in the quantum transport of the chains with the consequence that even and odd numbered chains have low and high electrical conduction, respectively. We also noted a dependence of current with the wire size. We study this unexpected behavior using a combination of first principles calculations and simple models based on chemical bond theory. From our studies, the electrons of carbon nanowires present a quasi-free electron behavior and this explains qualitatively the high electrical conduction and the bond lengths with unexpected values for the case of odd nanowires. Our study also allows the understanding of the electric conduction dependence with the number of atoms and their parity in the chain. In the case of odd number chains a proposed π-bond (MpB) model describes unsaturated carbons that introduce a mobile π-bond that changes dramatically the structure and transport properties of these wires. Our results indicate that the nature of bonds plays the main role in the oscillation of quantum electrical conduction for chains with even and odd number of atoms and also that nanowires bonded to graphene nanoribbons behave as a quasi-free electron system, suggesting that this behavior is general and it could also remain if the chains are bonded to other materials.

  11. Turbulent Fluctuations in G-band and K-line Intensities Observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) Instrument

    Science.gov (United States)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J.; Jess, D. B.; Mathioudakis, M.

    2012-12-01

    Using the Rapid Oscillation in the Solar Atmosphere (ROSA) instrument at the Dunn Solar Telescope we have found that the spectra of fluctuations of the G-band (cadence 1.05 s) and Ca II K-line (cadence 4.2 s) intensities show correlated fluctuations above white noise out to frequencies beyond 300 mHz and up to 70 mHz, respectively. The noise-corrected G-band spectrum presents a scaling range (Ultra High Frequency “UHF”) for f = 25-100 mHz, with an exponent consistent with the presence of turbulent motions. The UHF power, is concentrated at the locations of magnetic bright points in the intergranular lanes, it is highly intermittent in time and characterized by a positive kurtosis κ. Combining values of G-band and K-line intensities, the UHF power, and κ, reveals two distinct “states” of the internetwork solar atmosphere. State 1, with κ ≍ 6, which includes almost all the data, is characterized by low intensities and low UHF power. State 2, with κ ≍ 3, including a very small fraction of the data, is characterized by high intensities and high UHF power. Superposed epoch analysis shows that for State 1, the K-line intensity presents 3.5 min chromospheric oscillations with maxima occurring 21 s after G-band intensity maxima implying a 150-210 km effective height difference. For State 2, the G-band and K-line intensity maxima are simultaneous, suggesting that in the highly magnetized environment sites of G-band and K-line emission may be spatially close together. Analysis of observations obtained with Hinode/SOT confirm a scaling range in the G-band spectrum up to 53 mHz also consistent with turbulent motions as well as the identification of two distinct states in terms of the H-line intensity and G-band power as functions of G-band intensity.

  12. Effects of Bepridil on Atrial Electrical Remodeling in Short-Term Rapid Pacing

    Directory of Open Access Journals (Sweden)

    Hiroto Tsuchiya, MD

    2009-01-01

    Conclusions: Bepridil prevented the shortening of the ERP and MAPD90 induced by rapid atrial pacing in the acute phase. The results of this study might explain the efficacy of bepridil for preventing the recurrence of paroxysmal AF.

  13. Rapid immunocytochemistry based on alternating current electric field using squash smear preparation of central nervous system tumors.

    Science.gov (United States)

    Moriya, Jun; Tanino, Mishie Ann; Takenami, Tomoko; Endoh, Tomoko; Urushido, Masana; Kato, Yasutaka; Wang, Lei; Kimura, Taichi; Tsuda, Masumi; Nishihara, Hiroshi; Tanaka, Shinya

    2016-01-01

    The role of intraoperative pathological diagnosis for central nervous system (CNS) tumors is crucial for neurosurgery when determining the surgical procedure. Especially, treatment of carmustine (BCNU) wafers requires a conclusive diagnosis of high-grade glioma proven by intraoperative diagnosis. Recently, we demonstrated the usefulness of rapid immunohistochemistry (R-IHC) that facilitates antigen-antibody reaction under alternative current (AC) electric field in the intraoperative diagnosis of CNS tumors; however, a higher proportion of water and lipid in the brain parenchyma sometimes leads to freezing artifacts, resulting in poor quality of frozen sections. On the other hand, squash smear preparation of CNS tumors for cytology does not affect the frozen artifacts, and the importance of smear preparation is now being re-recognized as being better than that of the tissue sections. In this study, we established the rapid immunocytochemistry (R-ICC) protocol for squash smears of CNS tumors using AC electric field that takes only 22 min, and demonstrated its usefulness for semi-quantitative Ki-67/MIB-1 labeling index and CD 20 by R-ICC for intraoperative diagnosis. R-ICC by AC electric field may become a substantial tool for compensating R-IHC and will be applied for broad antibodies in the future.

  14. Rapid Prototyping of an Electrically-Small Antenna for Binaural-Hearing Instruments

    DEFF Research Database (Denmark)

    Ruaro, Andrea; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2015-01-01

    ). This study analyzes the main RF parameters (dielectric constant, loss tangent, surface roughness) and applies the results to the modeling of the prototype of an electrically small (ESA) antenna for binaural hearing instruments applications. After discussing the specific technology choices...... and their relevancies, it is shown how the analyzed parameters can be used to obtain good correlation between simulations and measurements....

  15. Behavioral responses of deafened guinea pigs to intracochlear electrical stimulation: a new rapid psychophysical procedure.

    Science.gov (United States)

    Agterberg, Martijn J H; Versnel, Huib

    2014-07-01

    In auditory research the guinea pig is often preferred above rats and mice because of the easily accessible cochlea and because the frequency range of its hearing is more comparable to that of humans. Studies of the guinea-pig auditory system primarily apply histological and electrophysiological measures. Behavioral animal paradigms, in particular in combination with these histological and electrophysiological methods, are necessary in the development of new therapeutic interventions. However, the guinea pig is not considered an attractive animal for behavioral experiments. Therefore, the purpose of this study was to develop a behavioral task suitable for guinea pigs, that can be utilized in cochlear-implant related research. Guinea pigs were trained in a modified shuttle-box in which a stream of air was used as unconditioned stimulus (UCS). A stream of air was preferred over conventionally used methods as electric foot-shocks since it produces less stress, which is a confounding factor in behavioral experiments. Hearing guinea pigs were trained to respond to acoustic stimuli. They responded correctly within only five sessions of ten minutes. The animals maintained their performance four weeks after the right cochlea was implanted with an electrode array. After systemic deafening, the animals responded in the first session immediately to intracochlear electrical stimulation. These responses were not affected by daily chronic electrical stimulation (CES). In conclusion, the present study demonstrates that guinea pigs can be trained relatively fast to respond to acoustic stimuli, and that the training has a lasting effect, which generalizes to intracochlear electrical stimulation after deafening. Furthermore, it demonstrates that bilaterally deafened guinea pigs with substantial (∼50%) loss of spiral ganglion cells (SGCs), detect intracochlear electrical stimulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A theory of generalized Bloch oscillations

    DEFF Research Database (Denmark)

    Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact cal...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics.......Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch...

  17. Rapid and Checkable Electrical Post-Treatment Method for Organic Photovoltaic Devices

    Science.gov (United States)

    Park, Sangheon; Seo, Yu-Seong; Shin, Won Suk; Moon, Sang-Jin; Hwang, Jungseek

    2016-01-01

    Post-treatment processes improve the performance of organic photovoltaic devices by changing the microscopic morphology and configuration of the vertical phase separation in the active layer. Thermal annealing and solvent vapor (or chemical) treatment processes have been extensively used to improve the performance of bulk-heterojunction (BHJ) organic photovoltaic (OPV) devices. In this work we introduce a new post-treatment process which we apply only electrical voltage to the BHJ-OPV devices. We used the commercially available P3HT [Poly(3-hexylthiophene)] and PC61BM (Phenyl-C61-Butyric acid Methyl ester) photovoltaic materials as donor and acceptor, respectively. We monitored the voltage and current applied to the device to check for when the post-treatment process had been completed. This electrical treatment process is simpler and faster than other post-treatment methods, and the performance of the electrically treated solar cell is comparable to that of a reference (thermally annealed) device. Our results indicate that the proposed treatment process can be used efficiently to fabricate high-performance BHJ-OPV devices. PMID:26932767

  18. [Rapid measurement of trace mercury in aqueous solutions with optical-electrical dual pulse LIBS technique].

    Science.gov (United States)

    Zhang, Qian; Xiong, Wei; Chen, Yu-Qi; Li, Run-Hua

    2011-02-01

    A wood slice was used as absorber to transfer liquid sample to solid sample in order to solve the problems existing in directly analyzing aqueous solutions with laser-induced breakdown spectroscopy (LIBS). An optical-electrical dual pulse LIBS (OEDP-LIBS) technique was first used to enhance atomic emission of mercury in laser-induced plasma. The calibration curves of mercury were obtained by typical single pulse LIBS and OEDP-LIBS techniques. The limit of detection (LOD) of mercury in these two techniques reaches 2.4 and 0.3 mg x L(-1), respectively. Under current experimental conditions, the time-integrated a tomic emission of mercury at 253.65 nm was enhanced 50 times and the LOD of mercury was improved by one order, if comparing OEDP-LIBS to single pulse LIBS. The required time for a whole analysis process is less than 5 minutes. As the atomic emission of mercury decays slowly while increasing the delay time between electrical pulse and laser pulse, increasing the electrical pulse width can further enhance the time integrated intensity of mercury emission and improve the detection sensitivity of mercury by OEDP-LIBS technique.

  19. Next Generation of Renewable Electricity Policy: How Rapid Change is Breaking Down Conventional Policy Categories

    Energy Technology Data Exchange (ETDEWEB)

    Couture, T. D. [E3 Analytics, Berlin (Germany); Jacobs, D. [International Energy Transition (IET), Boston, MA (United States); Rickerson, W. [Meister Consultants Group, Boston, MA (United States); Healey, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    A number of policies have been used historically in order to stimulate the growth of the renewable electricity sector. This paper examines four of these policy instruments: competitive tendering, sometimes called renewable electricity auctions, feed-in tariffs, net metering and net billing, and tradable renewable energy certificates. In recent years, however, a number of changes to both market circumstances and to policy priorities have resulted in numerous policy innovations, including the emergence of policy hybrids. With no common language for these evolving policy mechanisms, policymakers have generally continued to use the same traditional policy labels, occasionally generating confusion as many of these new policies no longer look, or act, like their traditional predecessors. In reviewing these changes, this paper makes two separate but related claims: first, policy labels themselves are breaking down and evolving. As a result, policy comparisons that rely on the conventional labels may no longer be appropriate, or advisable. Second, as policymakers continue to adapt, we are in effect witnessing the emergence of the next generation of renewable electricity policies, a change that could have significant impacts on investment, as well as on market growth in both developed and developing countries.

  20. Effect of rapid quenching on the magnetic state, electrical resistivity and thermomagnetic properties of Gd{sub 3}Co

    Energy Technology Data Exchange (ETDEWEB)

    Shishkin, D.A., E-mail: shishkin@imp.uran.ru [Institute of Metal Physics, Russian Academy of Sciences, 620137 Ekaterinburg (Russian Federation); Institute of Natural Sciences, Ural Federal University, 620083 Ekaterinburg (Russian Federation); Proshkin, A.V. [Institute of Metal Physics, Russian Academy of Sciences, 620137 Ekaterinburg (Russian Federation); Selezneva, N.V. [Institute of Natural Sciences, Ural Federal University, 620083 Ekaterinburg (Russian Federation); Gerasimov, E.G.; Terentev, P.B. [Institute of Metal Physics, Russian Academy of Sciences, 620137 Ekaterinburg (Russian Federation); Chirkova, A.M. [IFW Dresden, PO Box 270118, 01171 Dresden (Germany); Institute of Metal Physics, Russian Academy of Sciences, 620137 Ekaterinburg (Russian Federation); Institute of Natural Sciences, Ural Federal University, 620083 Ekaterinburg (Russian Federation); Nenkov, K.; Schultz, L. [IFW Dresden, PO Box 270118, 01171 Dresden (Germany); Baranov, N.V. [Institute of Metal Physics, Russian Academy of Sciences, 620137 Ekaterinburg (Russian Federation); Institute of Natural Sciences, Ural Federal University, 620083 Ekaterinburg (Russian Federation)

    2015-10-25

    The ac-susceptibility, magnetization, electrical resistivity and specific heat measurements have been performed to study the changes in the magnetic state and physical properties of the antiferromagnetic Gd{sub 3}Co compound after rapid quenching from the liquid melt. It has been observed that the amorphization of Gd{sub 3}Co modifies the magnetic state from antiferromagnetic to a soft-ferromagnetic like behavior, increases the magnetic ordering temperature (by about 30%) and leads to substantial changes in the specific heat and electrical resistivity. A considerable enhancement of the exchange interactions in the rapidly solidified Gd{sub 3}Co is ascribed to the appearance of a magnetic moment on Co atoms up to 1.6 μ{sub B}. - Highlights: • The compound Gd{sub 3}Co has been amorphized by the melt-spinning technique. • Amorphization of Gd{sub 3}Co increases the magnetic ordering temperature by 30%. • Gd{sub 3}Co is supposed to exhibit a ferrimagnetic order after amorphization. • A magnetic moment on Co atoms is suggested to appear after amorphization of Gd{sub 3}Co. • Amorphization substantially modifies the resistivity and specific heat of Gd{sub 3}Co.

  1. A paper-based microbial fuel cell array for rapid and high-throughput screening of electricity-producing bacteria.

    Science.gov (United States)

    Choi, Gihoon; Hassett, Daniel J; Choi, Seokheun

    2015-06-21

    There is a large global effort to improve microbial fuel cell (MFC) techniques and advance their translational potential toward practical, real-world applications. Significant boosts in MFC performance can be achieved with the development of new techniques in synthetic biology that can regulate microbial metabolic pathways or control their gene expression. For these new directions, a high-throughput and rapid screening tool for microbial biopower production is needed. In this work, a 48-well, paper-based sensing platform was developed for the high-throughput and rapid characterization of the electricity-producing capability of microbes. 48 spatially distinct wells of a sensor array were prepared by patterning 48 hydrophilic reservoirs on paper with hydrophobic wax boundaries. This paper-based platform exploited the ability of paper to quickly wick fluid and promoted bacterial attachment to the anode pads, resulting in instant current generation upon loading of the bacterial inoculum. We validated the utility of our MFC array by studying how strategic genetic modifications impacted the electrochemical activity of various Pseudomonas aeruginosa mutant strains. Within just 20 minutes, we successfully determined the electricity generation capacity of eight isogenic mutants of P. aeruginosa. These efforts demonstrate that our MFC array displays highly comparable performance characteristics and identifies genes in P. aeruginosa that can trigger a higher power density.

  2. AC electric field for rapid assembly of nanostructured polyaniline onto microsized gap for sensor devices.

    Science.gov (United States)

    La Ferrara, Vera; Rametta, Gabriella; De Maria, Antonella

    2015-07-01

    Interconnected network of nanostructured polyaniline (PANI) is giving strong potential for enhancing device performances than bulk PANI counterparts. For nanostructured device processing, the main challenge is to get prototypes on large area by requiring precision, low cost and high rate assembly. Among processes meeting these requests, the alternate current electric fields are often used for nanostructure assembling. For the first time, we show the assembly of nanostructured PANI onto large electrode gaps (30-60 μm width) by applying alternate current electric fields, at low frequencies, to PANI particles dispersed in acetonitrile (ACN). An important advantage is the short assembly time, limited to 5-10 s, although electrode gaps are microsized. That encouraging result is due to a combination of forces, such as dielectrophoresis (DEP), induced-charge electrokinetic (ICEK) flow and alternate current electroosmotic (ACEO) flow, which speed up the assembly process when low frequencies and large electrode gaps are used. The main achievement of the present study is the development of ammonia sensors created by direct assembling of nanostructured PANI onto electrodes. Sensors exhibit high sensitivity to low gas concentrations as well as excellent reversibility at room temperature, even after storage in air. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High frequency nanotube oscillator

    Science.gov (United States)

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  4. Efficacy of an electrically active sonic toothbrush and an oscillating/rotating powered toothbrush in the reduction of plaque and gingivitis: A comparative clinical trial

    Directory of Open Access Journals (Sweden)

    Himanshu Dadlani

    2010-01-01

    Full Text Available Objectives: The purpose of the present study was to clinically evaluate and compare the efficacy of an electrically active sonic toothbrush and an oscillating/rotating powered toothbrush in the reduction of plaque and gingivitis. Material and Methods: For this study, 40 healthy student volunteers (20 males, 20 females were selected. The subjects were randomly assigned into two groups by a second examiner; one group used a current producing sonic toothbrush and the other group used a battery powered toothbrush. Plaque Index, Modified Gingival Index and Gingival Bleeding Index were assessed at baseline, 15 th day, 30 th day, 45 th day and 60 th day. Results: All the baseline indices appeared to be well balanced. At the end of the study, reduction in plaque index, modified gingival index and gingival bleeding index were statistically highly significant during each interval for both the toothbrushes. The difference in reduction of clinical parameters between the two toothbrushes was statistically non significant. Conclusion: Both the toothbrushes used in this study were clinically effective in removing plaque and improving gingival health.

  5. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm.

    Directory of Open Access Journals (Sweden)

    Md Mainul Islam

    Full Text Available The electric vehicle (EV is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS planning. A novel optimization technique, called binary lightning search algorithm (BLSA, is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.

  6. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm.

    Science.gov (United States)

    Islam, Md Mainul; Shareef, Hussain; Mohamed, Azah

    2017-01-01

    The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.

  7. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm

    Science.gov (United States)

    Shareef, Hussain; Mohamed, Azah

    2017-01-01

    The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method. PMID:29220396

  8. Rapid culture-based detection of living mycobacteria using microchannel electrical impedance spectroscopy (m-EIS).

    Science.gov (United States)

    Kargupta, Roli; Puttaswamy, Sachidevi; Lee, Aiden J; Butler, Timothy E; Li, Zhongyu; Chakraborty, Sounak; Sengupta, Shramik

    2017-06-10

    Multiple techniques exist for detecting Mycobacteria, each having its own advantages and drawbacks. Among them, automated culture-based systems like the BACTEC-MGIT™ are popular because they are inexpensive, reliable and highly accurate. However, they have a relatively long "time-to-detection" (TTD). Hence, a method that retains the reliability and low-cost of the MGIT system, while reducing TTD would be highly desirable. Living bacterial cells possess a membrane potential, on account of which they store charge when subjected to an AC-field. This charge storage (bulk capacitance) can be estimated using impedance measurements at multiple frequencies. An increase in the number of living cells during culture is reflected in an increase in bulk capacitance, and this forms the basis of our detection. M. bovis BCG and M. smegmatis suspensions with differing initial loads are cultured in MGIT media supplemented with OADC and Middlebrook 7H9 media respectively, electrical "scans" taken at regular intervals and the bulk capacitance estimated from the scans. Bulk capacitance estimates at later time-points are statistically compared to the suspension's baseline value. A statistically significant increase is assumed to indicate the presence of proliferating mycobacteria. Our TTDs were 60 and 36 h for M. bovis BCG and 20 and 9 h for M. smegmatis with initial loads of 1000 CFU/ml and 100,000 CFU/ml respectively. The corresponding TTDs for the commercial BACTEC MGIT 960 system were 131 and 84.6 h for M. bovis BCG and 41.7 and 12 h for M smegmatis, respectively. Our culture-based detection method using multi-frequency impedance measurements is capable of detecting mycobacteria faster than current commercial systems.

  9. Glucose Oscillations Can Activate an Endogenous Oscillator in Pancreatic Islets.

    Directory of Open Access Journals (Sweden)

    Joseph P McKenna

    2016-10-01

    Full Text Available Pancreatic islets manage elevations in blood glucose level by secreting insulin into the bloodstream in a pulsatile manner. Pulsatile insulin secretion is governed by islet oscillations such as bursting electrical activity and periodic Ca2+ entry in β-cells. In this report, we demonstrate that although islet oscillations are lost by fixing a glucose stimulus at a high concentration, they may be recovered by subsequently converting the glucose stimulus to a sinusoidal wave. We predict with mathematical modeling that the sinusoidal glucose signal's ability to recover islet oscillations depends on its amplitude and period, and we confirm our predictions by conducting experiments with islets using a microfluidics platform. Our results suggest a mechanism whereby oscillatory blood glucose levels recruit non-oscillating islets to enhance pulsatile insulin output from the pancreas. Our results also provide support for the main hypothesis of the Dual Oscillator Model, that a glycolytic oscillator endogenous to islet β-cells drives pulsatile insulin secretion.

  10. Quantum Oscillators

    CERN Document Server

    Blaise, Paul

    2011-01-01

    An invaluable reference for an overall but simple approach to the complexity of quantum mechanics viewed through quantum oscillators Quantum oscillators play a fundamental role in many areas of physics; for instance, in chemical physics with molecular normal modes, in solid state physics with phonons, and in quantum theory of light with photons. Quantum Oscillators is a timely and visionary book which presents these intricate topics, broadly covering the properties of quantum oscillators which are usually dispersed in the literature at varying levels of detail and often combined with other p

  11. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  12. A self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals

    DEFF Research Database (Denmark)

    Lasri, J.; Bilenca, A.; Dahan, D.

    2002-01-01

    In this letter, we describe a self-starting optical pulse source generating ultra low noise 15-ps-wide pulses at 10 GHz. It is based on a hybrid optoelectronic oscillator comprising a fiber extended cavity mode-locked diode laser which injection locks a self-oscillating heterojunction bipolar...

  13. Chemical Oscillations

    Indian Academy of Sciences (India)

    processes at the cellular level like the glycolytic pathway, peroxi- dase-catalysed reaction or the biosynthesis of certain proteins. A systematic study of oscillating chemical reactions is of consider- able interest, since these oscillating reactions can be used as prototype examples of the behaviours possible in reactions gov-.

  14. Application of electrical capacitance tomography and artificial neural networks to rapid estimation of cylindrical shape parameters of industrial flow structure

    Directory of Open Access Journals (Sweden)

    Garbaa Hela

    2016-12-01

    Full Text Available A new approach to solve the inverse problem in electrical capacitance tomography is presented. The proposed method is based on an artificial neural network to estimate three different parameters of a circular object present inside a pipeline, i.e. radius and 2D position coordinates. This information allows the estimation of the distribution of material inside a pipe and determination of the characteristic parameters of a range of flows, which are characterised by a circular objects emerging within a cross section such as funnel flow in a silo gravitational discharging process. The main advantages of the proposed approach are explicitly: the desired characteristic flow parameters are estimated directly from the measured capacitances and rapidity, which in turn is crucial for online flow monitoring. In a classic approach in order to obtain these parameters in the first step the image is reconstructed and then the parameters are estimated with the use of image processing methods. The obtained results showed significant reduction of computations time in comparison to the iterative LBP or Levenberg-Marquard algorithms.

  15. Liquid Phase Separation and the Aging Effect on Mechanical and Electrical Properties of Laser Rapidly Solidified Cu100−xCrx Alloys

    Directory of Open Access Journals (Sweden)

    Song-Hua Si

    2015-11-01

    Full Text Available Duplex structure Cu-Cr alloys are widely used as contact materials. They are generally designed by increasing the Cr content for the hardness improvement, which, however, leads to the unfavorable rapid increase of the electrical resistivity. The solidification behavior of Cu100−xCrx (x = 4.2, 25 and 50 in wt.% alloys prepared by laser rapid solidification is studied here, and their hardness and electrical conductivity after aging are measured. The results show that the Cu-4.2%Cr alloy has the most desirable combination of hardness and conductive properties after aging in comparison with Cu-25%Cr and Cu-50%Cr alloys. Very importantly, a 50% improvement in hardness is achieved with a simultaneous 70% reduction in electrical resistivity. The reason is mainly attributed to the liquid phase separation occurring in the Cu-4.2%Cr alloy, which introduces a large a

  16. Electric response in superfluid helium

    Science.gov (United States)

    Chagovets, Tymofiy V.

    2016-05-01

    We report an experimental investigation of the electric response of superfluid helium that arises in the presence of a second sound standing wave. It was found that the signal of the electric response is observed in a narrow range of second sound excitation power. The linear dependence of the signal amplitude has been derived at low excitation power, however, above some critical power, the amplitude of the signal is considerably decreased. It was established that the rapid change of the electric response is not associated with a turbulent regime generated by the second sound wave. A model of the appearance of the electric response as a result of the oscillation of electron bubbles in the normal fluid velocity field in the second sound wave is presented. Possible explanation for the decrease of the electric response are presented.

  17. Fibonacci oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Arik, M. (Istanbul Technical Univ. (Turkey). Dept. of Mathematics Bogazici Univ., Istanbul (Turkey). Dept. of Physics); Demircan, E.; Turgut, T. (Texas Univ., Austin, TX (United States). Dept. of Physics); Ekinci, L.; Mungan, M. (Bogazici Univ., Istanbul (Turkey). Dept. of Physics)

    1992-07-01

    We discuss the properties of oscillators whose spectrum is given by a generalized Fibonacci sequence. The properties include: Invariance under the unitary quantum group, generalized angular momentum, coherent states and difference calculus, relativistic interpretation. (orig.).

  18. Influence of the location and setting of UPFC FACTS devices / POD in damping of electric power system oscillations; Influencia da localizacao e do ajuste de dispositivos FACTS UPFC/POD no amortecimento de oscilacoes do sistema eletrico de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Moura, R.F. de; Furini, M.A.; Araujo, P.B. de; Moura, R.F. de; Araujo, Percival Bueno de [Universidade Estadual Paulista (FEIS/UNESP), Ilha Solteira, SP (Brazil). Fac. de Engenharia. Dept. de Engenharia Eletrica], Emails: moura@dee.feis.unesp.br; mafurini@aluno.feis.unesp.br, percival@dee.feis.unesp.br

    2009-07-01

    It is analyzed the ability of the Unified Power Flow Controller - FACTS UPFC, when equipped to Power Oscillation Damping - (POD) - a additional controller - to cushion low frequency oscillations in the electric power system (EPS). For this purpose, the MPS - Model of the Power Sensibility, which has as the main concept the application of the power nodal balance in each bar of the system, is used to represent the EPS. The analysis of sensibility, through the method of residues - that gives information about the control and observation of an input and output set to the controller - will provide the best place to install the UPFC/POD set and the procedures to adjust the parameters of the controller.

  19. Rapid reduction of MDCK cell cholesterol by methyl-beta-cyclodextrin alters steady state transepithelial electrical resistance.

    Science.gov (United States)

    Francis, S A; Kelly, J M; McCormack, J; Rogers, R A; Lai, J; Schneeberger, E E; Lynch, R D

    1999-07-01

    The role of plasma membrane lipids in regulating the passage of ions and other solutes through the paracellular pathway remains controversial. In this study we explore the contribution of cholesterol (CH) in maintaining the barrier function of an epithelial cell line using the CH-solubilizing agent methyl beta-cyclodextrin (MBCD) to stimulate CH efflux. Inclusion of 20 mM MBCD in both apical and basolateral media reduced CH levels by 70-80% with no significant effect on cell viability. Most of that decrease occurred during the first 30 min of incubation. Recovery of CH content to initial values was nearly complete 22 h after removal of MBCD. Within 30 min of adding MBCD to the culture medium, transepithelial electrical resistance (TER) increased, reaching maximum values 30-40% above controls. This early rise in TER occurred when MBCD was added to either side of the monolayer. The later rapid decline in TER was observed only when MBCD bathed the basolateral surface from which, coincidentally, CH efflux was most rapid. Freeze fracture replicas and transmission electron microscopy of monolayers exposed to MBCD for only 30 min revealed no increase in either the average tight junction (TJ) strand number or the dimensions of the lateral intercellular space. There was a statistically significant increase in the number of TJ particles associated with the E fracture face at this time. This raises the interesting possibility that during CH efflux there is a change in the interaction between TJ particles and underlying cytoskeletal elements. There was no change in staining for occludin and ZO-1. After exposing the basolateral surface to MBCD for 2 h, TER fell below control levels. The accompanying increase in mannitol flux suggests strongly that the decrease in TER resulted from an increase in the permeability of the paracellular and not the transcellular pathway. A decrease in immuno-staining for occludin and ZO-1 at TJs, a striking accumulation of actin at tri

  20. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  1. The impact research of control modes in steam turbine control system (digital electric hydraulic to the low-frequency oscillation of grid

    Directory of Open Access Journals (Sweden)

    Yanghai Li

    2016-01-01

    Full Text Available Through the analysis of the control theory for steam turbine, the transfer function of the steam turbine control modes in the parallel operation was obtained. The frequency domain analysis indicated that different control modes of turbine control system have different influence on the damping characteristics of the power system. The comparative analysis shows the direction and the degree of the influence under the different oscillation frequency range. This can provide the theory for the suppression of the low-frequency oscillation from turbine side and has a guiding significance for the stability of power system. The results of simulation tests are consistent with the theoretic analysis.

  2. Prominence Oscillations

    Directory of Open Access Journals (Sweden)

    Iñigo Arregui

    2012-04-01

    Full Text Available Prominences are intriguing, but poorly understood, magnetic structures of the solar corona. The dynamics of solar prominences has been the subject of a large number of studies, and of particular interest is the study of prominence oscillations. Ground- and space-based observations have confirmed the presence of oscillatory motions in prominences and they have been interpreted in terms of magnetohydrodynamic (MHD waves. This interpretation opens the door to perform prominence seismology, whose main aim is to determine physical parameters in magnetic and plasma structures (prominences that are difficult to measure by direct means. Here, we review the observational information gathered about prominence oscillations as well as the theoretical models developed to interpret small amplitude oscillations and their temporal and spatial attenuation. Finally, several prominence seismology applications are presented.

  3. Chromosperic oscillations

    NARCIS (Netherlands)

    Rutten, R.J.

    1999-01-01

    This review concentrates on the quiet-Sun chromosphere. Its internetwork areas are dynamically dominated by the so-called chromospheric three-minute oscillation. They are interpretationally dominated by the so-called Ca II K 2V and H 2V grains. The main points of this review are that the one

  4. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...... contralateral to stimulus side and additionally an unexpected 20 Hz activity was observed slightly lateralized in the frontal central region. The gamma phase locking may be a manifestation of early somatosensory feature integration. The analyses suggest that the high frequency activity consists of two distinct...

  5. Photonic local oscillator development

    Science.gov (United States)

    Kimberk, Robert; Tong, Edward; Hunter, Todd R.; Christensen, Robert; Blundell, Ray

    2006-12-01

    In the receiver lab, we have developed a 200 GHz to 230 GHz local oscillator constructed from mostly commercially available 1550 nm laser communication components. Theoretical and experimental work show that the laser adds negligible phase noise to this photonic local oscillator system and that spectral purity and phase stability are similar to Gunn oscillator based local oscillator output. The optical path consists of a single 1550 nm diode laser, a lithium niobate optical phase modulator, a Mach Zehnder interferometer (MZI) with a free spectral range of 75 GHz, and a 160 GHz to 260 GHz photomixer whose output is connected to a horn antenna. All of the optical devices and connections are polarization maintaining, and the photomixer was designed and fabricated at the CCLRC Rutherford Appleton Laboratory. The electrical path consists of a YIG synthesizer, operating in the frequency range 14-20 GHz, a frequency doubler, and a power amplifier connected to the RF port of the phase modulator. At the SMA on Mauna Kea, we incorporated the photonic LO into one element (Antenna 6) of a five antenna array for test observations of CO J=2-1 made towards the ultracompact HII region G138.295+1.555. Spectral features of comparable width occur on baselines with and without antenna 6, and noise increases with baseline length independent of antenna number. Continuum observations were also made toward the quasar 3c454.3 for a period of about one hour. In summary, the SMA has proven that the photonic local oscillator operates with adequate phase and frequency stability for radio-interferometry.

  6. Microwave balanced oscillators and frequency doublers

    CERN Document Server

    Siripon, N

    2002-01-01

    The research presented in this thesis is on the application of the injection-locked oscillator technique to microwave balanced oscillators. The balanced oscillator design is primarily analysed using the extended resonance technique. A transmission line is connected between the two active devices, so that the active device resonate each other. The electrical length of the transmission line is also analysed for the balanced oscillation condition. The balanced oscillator can be viewed with the negative resistance model and the feedback model. The former model is characterised at a circuit plane where the feedback network is cut. By using both the negative-resistance oscillator model and the feedback model, the locking range of the oscillator is analysed by extending Kurokawa's theory. This analysis demonstrates the locking range of the injection phenomenon, where the injection frequency is either close to the free-running frequency, close to (1/n) x free-running frequency or close to n x the free-running frequen...

  7. FEL Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2003-05-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. More than 30 FEL oscillators are presently operating around the world spanning a wavelength range from the mm region to the ultraviolet using DC and rf linear accelerators and storage rings as electron sources. The characteristics that have driven the development of these sources are the desire for high peak and average power, high micropulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. Substantial user programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few.

  8. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos.......In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear...

  9. An Analytic Solution of the Cable Equation Predicts Frequency Preference of a Passive Shunt-End Cylindrical Cable in Response to Extracellular Oscillating Electric Fields

    OpenAIRE

    Monai, Hiromu; Omori, Toshiaki; Okada, Masato; Inoue, Masashi; Miyakawa, Hiroyoshi; Aonishi, Toru

    2010-01-01

    Under physiological and artificial conditions, the dendrites of neurons can be exposed to electric fields. Recent experimental studies suggested that the membrane resistivity of the distal apical dendrites of cortical and hippocampal pyramidal neurons may be significantly lower than that of the proximal dendrites and the soma. To understand the behavior of dendrites in time-varying extracellular electric fields, we analytically solved cable equations for finite cylindrical cables with and wit...

  10. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  11. Quantum transduction with mechanical oscillators

    Science.gov (United States)

    Lehnert, Konrad

    In modern information technology, micromechanical oscillators are ubiquitous signal processing elements. Because the speed of sound is so slow compared to the speed of light, mechanical structures create superb compact filters and clocks. Moreover they convert force and acceleration signals into more easily processed electrical signals. Although these humble devices appear manifestly classical, they can exhibit quantum behavior when their vibrations are strongly coupled to optical light or to microwave electricity. I will describe our progress in using this recent result to develop quantum information processing elements. First, we are developing a device that uses a mechanical oscillator to transfer information noiselessly between electrical and optical domains. Second, we prepare propagating microwave fields in superpositions of 0 and 1 photon, and use an electromechanical device to store and amplify these fragile quantum bits. Work supported by AFOSR MURI:FA9550-15-1-0015, NSF under Grant Number 1125844, and the Gordon and Betty Moore Foundation.

  12. Shortest loops are pacemakers in random networks of electrically coupled axons

    Directory of Open Access Journals (Sweden)

    Nikita eVladimirov

    2012-04-01

    Full Text Available High-frequency oscillations (HFOs are an important part of brain activity in health and disease. However, their origins remain obscure and controversial. One possible mechanism depends on the presence of sparsely distributed gap junctions that electrically couple the axons of principal cells. A plexus of electrically coupled axons is modeled as a random network with bidirectional connections between its nodes. Under certain conditions the network can demonstrate one of two types of oscillatory activity. Type I oscillations (100-200 Hz are predicted to be caused by spontaneously spiking axons in a network with strong (high-conductance gap junctions. Type II oscillations (200-300 Hz require no spontaneous spiking and relatively weak (low-conductance gap junctions, across which spike propagation failures occur. The type II oscillations are reentrant and self-sustained. Here we examine what determines the frequency of type II oscillations. Using simulations we show that the distribution of loop lengths is the key factor for determining frequency in type II network oscillations. We first analyze spike failure between two electrically coupled cells using a model of anatomically reconstructed CA1 pyramidal neuron. Then network oscillations are studied by a cellular automaton model with random network connectivity, in which we control loop statistics. We show that oscillation periods can be predicted from the network's loop statistics. The shortest loop, around which a spike can travel, is the most likely pacemaker candidate.The principle of one loop as a pacemaker is remarkable, because random networks contain a large number of loops juxtaposed and superimposed, and their number rapidly grows with network size. This principle allows us to predict the frequency of oscillations from network connectivity and visa versa. We finally propose that type I oscillations may correspond to ripples, while type II oscillations correspond to so-called fast ripples.

  13. Oscillator strengths for Be I

    Energy Technology Data Exchange (ETDEWEB)

    Ates, Sule, E-mail: suleates@selcuk.edu.tr; Oezarslan, Selma; Celik, Gueltekin; Taser, Mehmet

    2012-07-15

    The electric dipole oscillator strengths for lines between some singlet and triplet levels have been calculated using the weakest bound electron potential model theory and the quantum defect orbital theory for Be I. In the calculations both multiplet and fine structure transitions are studied. We employed both the numerical Coulomb approximation method and numerical non-relativistic Hartree-Fock wavefunctions for expectation values of radii. The necessary energy values have been taken from experimental energy data in the literature. The calculated oscillator strengths have been compared with available theoretical results. A good agreement with the results in the literature has been obtained.

  14. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Jingjin Wu

    2016-08-01

    Full Text Available The 4 at. % zirconium-doped zinc oxide (ZnO:Zr films grown by atomic layer deposition (ALD were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV–vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350–550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition.

  15. Electrical conductivity of the deep mantle: Joint inversion approach based on EM induction by external sources and rapid changes of secular variation

    Science.gov (United States)

    Velímský, Jakub

    2010-05-01

    The basic idea of this study is to combine two different, previously established techniques to study the electrical conductivity of the Earth's deep mantle, into one joint inversion scheme. Both methods are based on time-domain integration of electromagnetic induction equation in the Earth's mantle with one-dimensional, depth-dependent electrical conductivity. In the first forward problem, external excitation by intense geomagnetic storms is assumed, while in the second forward problem, induction by rapid changes of secular variation of the main field at the core-mantle boundary (the geomagnetic jerks) is studied. Different time scales of both approaches lead to use of two distinct datasets. Seven years of CHAMP satellite data is processed into time series of spherical harmonic coefficients with 1 hr sampling rate and used in the external induction problem. Annual means provided by Intermagnet observatories for selected 20th century jerks, are used in the modelling of secular variation. The joint inversion aims to recover both the radial profile of mantle conductivity, and the unknown spatial structure of the secular acceleration at the CMB for each jerk. Limited-memory quasi-Newton technique is used to minimize the misfit, complemented by effective evaluation of data sensitivities based on solutions of adjoint problems. First results of the inversion suggest only small increase of electrical conductivity to values about 10 S/m in D".

  16. Power oscillation damping by a converter-based power generation device

    DEFF Research Database (Denmark)

    2012-01-01

    output power to the power output. The power generation park further comprises a controller being configured for receiving an oscillation indicating signal indicative of a power oscillation in the electricity network, the controller being further configured for providing a damping control signal...... in response to the oscillation indicating signal; the converter device being configured for modulating the electrical output power in response to the damping control signal so as to damp the power oscillation in the electricity network....

  17. Asteroseismic Theory of Rapidly Oscillating Ap Stars

    Indian Academy of Sciences (India)

    Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately.

  18. Sound oscillation of dropwise cluster

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A.V., E-mail: shavlov@ikz.ru [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation); Dzhumandzhi, V.A.; Romanyuk, S.N. [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation)

    2012-06-04

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 10{sup 2}–10{sup 3} units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.

  19. Diffusion and Electrical Activation After a Rapid Thermal Annealing of an As and B-Co-Implanted Polysilicon Layer

    Science.gov (United States)

    Gontrand, C.; Sellitto, P.; Tabikh, S.; Latreche, S.; Kaminski, A.

    1997-01-01

    This work provides an experimental insight into the physical mechanisms involved in the co-diffusion of arsenic and boron in polysilicon/monocrystalline Si bilayers, during the formation of shallow N^+ emitters for the BiCMOS technology. The RTA-induced redistribution of As and B successively implanted in a 380 nm LPCVD polysilicon layer is studied by SIMS measurements. Hall effect, as well as sheet resistance measurements, show that the electrical activation of dopants in the co-implanted structures is satisfactory from a RTA temperature of 1100 °C. Nous présentons ici un travail expérimental mettant en évidence les mécanismes physiques intervenant dans la co-diffusion de l'arsenic et du bore dans une bicouche polysilicium sur silicium polycrystallin, durant la formation des émetteurs étroits N^+ destinés à la technologie BiCMOS. La redistribution de As et B induite par un RTA, successivement implantés dans une couche de polysilicium de 380 nm, est appréhendée par des mesures SIMS. Des mesures par effet Hall et par résistances par carrés mettent en évidence que l'activité électrique des dopants dans les structures implantées est satisfaisante à partir d'une température de 1100 °C.

  20. Electrical characteristics and interfacial reactions of rapidly annealed Pt/Ru Schottky contacts on n-type GaN

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N.N.K.; Rajagopal Reddy, V. [Department of Physics, Sri Venkateswara University, Tirupati (India); Choi, C.J. [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju (Korea, Republic of)

    2011-07-15

    The electrical properties and interfacial reactions of Pt/Ru Schottky contacts on n-type gallium nitride (GaN) have been investigated as a function of annealing temperature. The calculated Schottky barrier height (SBH) of the as-deposited Pt/Ru Schottky contact is found to be 0.69 eV current-voltage (I-V) and 0.76 eV capacitance-voltage (C-V). Experimental results showed that the SBHs are increased on increasing the annealing temperature. When the contact is annealed at 600 C, a maximum barrier height is obtained and the corresponding values are 0.87 eV (I-V) and 0.99 eV (C-V). The Norde method was also employed to extract the barrier height of Pt/Ru Schottky contacts and the values are 0.70 and 0.86 eV for the samples as-deposited and annealed at 600 C, which are in good agreement with those obtained from the I-V measurement. Shifts of the surface Fermi level are measured with the change in position of the Ga 2p core level peak. Based on the X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) studies, the formation of gallide phases at the Ru/Pt/n-GaN interface could be the reason for the increase in SBH at elevated temperatures. Atomic force microscopy (AFM) results showed that the surface morphology of the Pt/Ru Schottky contact did not change significantly even after annealing at 600 C. These results point out that a Pt/Ru Schottky contact may be a suitable candidate for the fabrication of GaN-based high-temperature device applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. The Heliopause Electrostatic Rapid Transit System (HERTS) - Design, Trades, and Analyses Performed in a Two Year NASA Investigation of Electric Sail Propulsion Systems

    Science.gov (United States)

    Wiegmann, Bruce M.; Scheider, Todd; Heaton, Andrew; Vaughn, Jason; Stone, Nobie; Wright, Ken

    2017-01-01

    Personnel from NASA's MSFC have been investigating the feasibility of an advanced propulsion system known as the Electric Sail (E-Sail) for future scientific exploration missions. This team initially won a NASA Space Technology Mission Directorate (STMD) Phase I NASA Innovative Advanced Concept (NIAC) award and then a two-year follow-on Phase II NIAC award in October 2015. This paper documents the findings from this three-year investigation. An Electric sail, a propellant-less propulsion system, uses solar wind ions to rapidly travel either to deep space or the inner solar system. Scientific spacecraft could reach Pluto in 5 years, or the boundary of the solar system in ten to twelve years compared to the thirty-five plus years the Voyager spacecraft took. The team's recent focuses have been: 1) Developing a Particle in Cell (PIC) numeric engineering model from MSFC's experimental data on the interaction between simulated solar wind and a charged bare wire that can be applied to a variety of missions, 2) Determining what missions could benefit from this revolutionary propulsion system, 3) Conceptualizing spacecraft designs for various tasks: to reach the solar system's edge, to orbit the sun as Heliophysics sentinels, or to examine a multitude of asteroids.

  2. Rapid-onset/offset, variably scheduled 60 Hz electric and magnetic field exposure reduces nocturnal serum melatonin concentration in nonhuman primates

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, W.R.; Smith, H.D. [Southwest Research Inst., San Antonio, TX (United States). Dept. of Biosciences and Bioengineering; Reiter, R.J.; Barlow-Walden, L. [Univ. of Texas Health Science Center, San Antonio, TX (United States). Dept. of Cellular and Structural Biology

    1995-12-31

    Experiments with rodents indicate that power-frequency electric field (EF) or magnetic field (MF) exposure can suppress the normal nocturnal increase in melatonin concentration in pineal gland and blood. In a separate set of three experiments conducted with nonhuman primates, the authors did not observe melatonin suppression as a result of 6 weeks of day-time exposure to combined 60 Hz electric and magnetic fields (E/MF) with regularly schedule ``slow`` E/MF onsets/offsets. The study described here used a different exposure paradigm in which two baboons were exposed to E/MF with ``rapid`` E/MF onsets/offsets accompanied by EF transients not found with slowly ramped E/MF onset/offset; profound reductions in nocturnal serum melatonin concentration were observed in this experiment. If replicated in a more extensive experiment, the observation of melatonin suppression only in the presence of E/MF transients would suggest that very specific exposure parameters determine the effects of 60 Hz E/MF on melatonin.

  3. Frequency Dependent Non- Thermal Effects of Oscillating Electric Fields in the Microwave Region on the Properties of a Solvated Lysozyme System: A Molecular Dynamics Study.

    Directory of Open Access Journals (Sweden)

    Stelios Floros

    Full Text Available The use of microwaves in every day's applications raises issues regarding the non thermal biological effects of microwaves. In this work we employ molecular dynamics simulations to advance further the dielectric studies of protein solutions in the case of lysozyme, taking into consideration possible frequency dependent changes in the structural and dynamic properties of the system upon application of electric field in the microwave region. The obtained dielectric spectra are identical with those derived in our previous work using the Fröhlich-Kirkwood approach in the framework of the linear response theory. Noticeable structural changes in the protein have been observed only at frequencies near its absorption maximum. Concerning Cα position fluctuations, different frequencies affected different regions of the protein sequence. Furthermore, the influence of the field on the kinetics of protein-water as well as on the water-water hydrogen bonds in the first hydration shell has been studied; an extension of the Luzar-Chandler kinetic model was deemed necessary for a better fit of the applied field results and for the estimation of more accurate hydrogen bond lifetime values.

  4. Synchronized oscillations of dimers in biphasic charged fd-virus suspensions

    Science.gov (United States)

    Kang, K.; Piao, S. H.; Choi, H. J.

    2016-08-01

    Micron-sized colloidal spheres that are dispersed in an isotropic-nematic biphasic host suspension of charged rods (fd-virus particles) are shown to spontaneously form dimers, which exhibit a synchronized oscillatory motion. Dimer formation is not observed in the monophase of isotropic and nematic suspensions. The synchronized oscillations of dimers are connected to the inhomogeneous state of the host suspension of charged rods (fd viruses) where nematic domains are in coexistence with isotropic regions. The synchronization of oscillations occurs in bulk states, in the absence of an external field. With a low field strength of an applied electric field, the synchronization is rather reduced, but it recovers again when the field is turned off. In this Rapid Communication, we report this observation as an example of the strange attractor, occurring in the mixture of PS (polystyrene) dimers in an isotropic-nematic coexistence biphasic fd-virus network. Furthermore, we highlight that the synchronization of PS-dimer oscillations is the result of a global bifurcation diagram, driven by a delicate balance between the short-attractive "twisted" interaction of PS dimers and long-ranged electrostatic repulsive interactions of charged fd rods. The interest is then in the local enhancement of "twist-nematic" elasticity in reorientation of the dimer oscillations. An analysis of image-time correlations is provided with the data movies and Fourier transforms of averaged orientations for the synchronized oscillations of dimers in the biphasic I -N coexistence concentration of charged fd-virus suspensions.

  5. Synchronized oscillations of dimers in biphasic charged fd-virus suspensions.

    Science.gov (United States)

    Kang, K; Piao, S H; Choi, H J

    2016-08-01

    Micron-sized colloidal spheres that are dispersed in an isotropic-nematic biphasic host suspension of charged rods (fd-virus particles) are shown to spontaneously form dimers, which exhibit a synchronized oscillatory motion. Dimer formation is not observed in the monophase of isotropic and nematic suspensions. The synchronized oscillations of dimers are connected to the inhomogeneous state of the host suspension of charged rods (fd viruses) where nematic domains are in coexistence with isotropic regions. The synchronization of oscillations occurs in bulk states, in the absence of an external field. With a low field strength of an applied electric field, the synchronization is rather reduced, but it recovers again when the field is turned off. In this Rapid Communication, we report this observation as an example of the strange attractor, occurring in the mixture of PS (polystyrene) dimers in an isotropic-nematic coexistence biphasic fd-virus network. Furthermore, we highlight that the synchronization of PS-dimer oscillations is the result of a global bifurcation diagram, driven by a delicate balance between the short-attractive "twisted" interaction of PS dimers and long-ranged electrostatic repulsive interactions of charged fd rods. The interest is then in the local enhancement of "twist-nematic" elasticity in reorientation of the dimer oscillations. An analysis of image-time correlations is provided with the data movies and Fourier transforms of averaged orientations for the synchronized oscillations of dimers in the biphasic I-N coexistence concentration of charged fd-virus suspensions.

  6. OnWien Bridge Oscillators as Modified Multi-vibrators

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2014-01-01

    A tutorial introduction to electrical oscilla- tors. Investigating Wien bridge oscillators as modified multi-vibrators. Introducing chaotic behavior into a Wien bridge oscillator by means of adding a simple nonlinear cir- cuit as a load of one of the amplifier input terminals......A tutorial introduction to electrical oscilla- tors. Investigating Wien bridge oscillators as modified multi-vibrators. Introducing chaotic behavior into a Wien bridge oscillator by means of adding a simple nonlinear cir- cuit as a load of one of the amplifier input terminals...

  7. Volcanoes drive climate variability by emitting ozone weeks before eruptions, by forming lower stratospheric aerosols, by causing sustained ozone depletion, and by causing rapid changes in regional ozone concentrations affecting temperature and pressure differences driving atmospheric oscillations

    Science.gov (United States)

    Ward, P. L.

    2016-12-01

    Total column ozone observed by satellite on February 19, 2010, increased 75% in a plume from Eyjafjallajökull volcano in southern Iceland eastward past Novaya Zemlya, extending laterally from northern Greenland to southern Norway (http://youtu.be/wJFZcPEfoR4). Contemporaneous ground deformation and rapidly increasing numbers of earthquakes imply magma began rising from a sill 4-6 km below the volcano, erupting a month later. Whether the ozone formed from the magma or from very hot gases rising through cracks in the ground is unclear. On February 20-22, 1991, similar increases in ozone were observed north of Pinatubo volcano before its initial eruption on April 2 (http://youtu.be/5y1PU2Qu3ag). Annual average total column ozone during the year of most moderate to large explosive volcanic eruptions since routine observations of ozone began in 1927 has been substantially higher than normal. Increased total column ozone absorbs more solar ultraviolet-B radiation, warming the ozone layer and cooling Earth. Most major volcanic eruptions form sulfuric-acid aerosols in the lower part of the ozone layer providing aqueous surfaces on which heterogeneous chemical reactions enhance ozone depletion. Within a year, aerosol droplets grew large enough to reflect and scatter high-frequency solar radiation, cooling Earth 0.5oC for 2-3 years. Temperature anomalies in the northern hemisphere rose 0.7oC in 28 years from 1970 to 1998 (HadCRUT4), while annual average ozone at Arosa dropped 27 DU because of manufactured CFC gases. Beginning in August 2014, temperature anomalies in the northern hemisphere rose another 0.6oC in less than two years apparently because of the 6-month eruption of Bárðarbunga volcano in central Iceland, the highest rate of basaltic lava extrusion since 1783. Large extrusions of basaltic lava are typically contemporaneous with the greatest periods of warming throughout Earth history. Ozone concentrations at Arosa change by season typically from 370 DU during

  8. Electric drives

    CERN Document Server

    Boldea, Ion

    2005-01-01

    ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The

  9. Spatiotemporal Patterns of an Evoked Network Oscillation in Neocortical Slices: Coupled Local Oscillators

    Science.gov (United States)

    Bai, Li; Huang, Xiaoying; Yang, Qian; Wu, Jian-young

    2015-01-01

    We have discovered an evoked network oscillation in rat neocortical slices and have examined its spatiotemporal patterns with voltage sensitive dye imaging. The slices (visual and auditory cortices) were prepared in a medium of low calcium, high magnesium and with sodium replaced by choline in order to reduce the excito-toxicity and sodium loading. After slicing, the choline was washed out while normal calcium, magnesium and sodium concentrations were restored. The oscillation was evoked by a single electrical shock to slices bathed in normal artificial cerebral spinal fluid (ACSF). The oscillation was organized as an all-or-none epoch containing 4 to 13 cycles at a central frequency around 25 Hz. The activity can be reversibly blocked by CNQX, APV and atropine, but not by bicuculline, indicating poly-synaptic excitatory mechanisms. Voltage sensitive dye imaging showed high amplitude oscillation signals in superficial and middle cortical layers. Spatiotemporally, the oscillations were organized as waves, propagating horizontally along cortical laminar. Each oscillation cycle was associated with one wave propagating in space. The waveforms were often different at different locations (e.g., extra cycles), suggesting the co-existence of multiple local oscillators. For different cycles, the waves often initiated at different locations, suggesting that local oscillators are competing to initiate each oscillation cycle. Overall our results suggest that this cortical network oscillation is organized at two levels: locally, oscillating neurons are tightly coupled to form local oscillators, and globally the coupling between local oscillators is weak, allowing abrupt spatial phase lags and propagating waves with multiple initiation sites. PMID:16870836

  10. Microelectronic oscillator, 2

    Science.gov (United States)

    Kleinberg, L. L.

    1969-01-01

    Microelectronic oscillator uses a bipolar transistor to circumvent the problem of developing suitable inductors for lower frequencies. The oscillator is fabricated by hybrid thin film techniques or by monolithic construction. Discrete microminiature components may also be employed.

  11. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  12. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    Abstract. The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

  13. The Heliopause Electrostatic Rapid Transit System (HERTS) Design, Trades, and Analyses Performed in a Two Year NASA Investigation of Electric Sail Propulsion Systems

    Science.gov (United States)

    Wiegmann, Bruce M.

    2017-01-01

    The Heliopause Electrostatic Rapid Transit System (HERTS) was one of the seven total Phase II NASA Innovative Advanced Concepts (NIAC) that was down-selected in 2015 for continued funding and research. In Phase I our team learned that a spacecraft propelled by an Electric Sail (E-Sail) can travel great astronomical distances, such as to the Heliopause region of the solar system (approx. 100 to 120 AU) in approximately one quarter of the time (10 years) versus the time it took the Voyager spacecraft launched in 1977 (36 years). The completed work within the Phase II NIAC funded effort builds upon the work that was done in the Phase I NIAC and is focused on: 1) Testing of plasma interaction with a charged wire in a MSFC simulated solar environment vacuum test chamber. 2) Development of a Particle-in-Cell (PIC) models that are validated in the plasma testing and used to extrapolate to the E-Sail propulsion system design. 3) Conceptual design of a Technology Demonstration Mission (TDM) spacecraft developed to showcase E-Sail propulsion systems. 4) Down selection of both: a) Materials for a multi km length conductor and, b) Best configuration of the proposed conductor deployment subsystem. This paper will document the findings to date (June, 2017) of the above focused areas.

  14. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  15. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  16. Pair creation and plasma oscillations.

    Energy Technology Data Exchange (ETDEWEB)

    Prozorkevich, A. V.; Vinnik, D. V.; Schmidt, S. M.; Hecht, M. B.; Roberts, C. D.

    2000-12-15

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses.

  17. Oscillation theory for second order dynamic equations

    CERN Document Server

    Agarwal, Ravi P; O''Regan, Donal

    2003-01-01

    The qualitative theory of dynamic equations is a rapidly developing area of research. In the last 50 years, the Oscillation Theory of ordinary, functional, neutral, partial and impulsive differential equations, and their discrete versions, has inspired many scholars. Hundreds of research papers have been published in every major mathematical journal. Many books deal exclusively with the oscillation of solutions of differential equations, but most of these books appeal only to researchers who already know the subject. In an effort to bring Oscillation Theory to a new and broader audience, the authors present a compact, but thorough, understanding of Oscillation Theory for second order differential equations. They include several examples throughout the text not only to illustrate the theory, but also to provide new direction.

  18. A memristor-based third-order oscillator: beyond oscillation

    Science.gov (United States)

    Talukdar, A.; Radwan, A. G.; Salama, K. N.

    2011-09-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  19. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  20. Primer on coupling collective electronic oscillations to nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Solem, J.C.; Biedenharn, L.C. Jr.

    1987-07-01

    On the basis of simple heuristic models, we show that atomic electrons can amplify fields observed at the nucleus, generate harmonics, and drive higher multipolarities. Considered is a model with the nucleus at the focus of a uniformly charged ellipsoid. It amplifies an oscillating external electric field and produces an oscillating electric-field gradient but no higher derivatives. The electric field has only odd harmonics and the electric-field gradient has only even harmonics. There is an optimum intensity for driving each harmonic. Commented on is the relevance of these results to the U/sup 235/ experiment and to the gamma-ray laser.

  1. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  2. Pattern recognition with simple oscillating circuits

    Science.gov (United States)

    Hölzel, R. W.; Krischer, K.

    2011-07-01

    Neural network devices that inherently possess parallel computing capabilities are generally difficult to construct because of the large number of neuron-neuron connections. However, there exists a theoretical approach (Hoppensteadt and Izhikevich 1999 Phys. Rev. Lett. 82 2983) that forgoes the individual connections and uses only a global coupling: systems of weakly coupled oscillators with a time-dependent global coupling are capable of performing pattern recognition in an associative manner similar to Hopfield networks. The information is stored in the phase shifts of the individual oscillators. However, to date, even the feasibility of controlling phase shifts with this kind of coupling has not yet been established experimentally. We present an experimental realization of this neural network device. It consists of eight sinusoidal electrical van der Pol oscillators that are globally coupled through a variable resistor with the electric potential as the coupling variable. We estimate an effective value of the phase coupling strength in our experiment. For that, we derive a general approach that allows one to compare different experimental realizations with each other as well as with phase equation models. We demonstrate that individual phase shifts of oscillators can be experimentally controlled by a weak global coupling. Furthermore, supplied with a distorted input image, the oscillating network can indeed recognize the correct image out of a set of predefined patterns. It can therefore be used as the processing unit of an associative memory device.

  3. Closed-loop transcranial alternating current stimulation of slow oscillations

    Directory of Open Access Journals (Sweden)

    Wilde Christian

    2015-09-01

    Full Text Available Transcranial alternating current stimulation (tACS is an emerging non-invasive tool for modulating brain oscillations. There is evidence that weak oscillatory electrical stimulation during sleep can entrain cortical slow oscillations to improve the memory consolidation in rodents and humans. Using a novel method and a custom built stimulation device, automatic stimulation of slow oscillations in-phase with the endogenous activity in a real-time closed-loop setup is possible. Preliminary data from neuroplasticity experiments show a high detection performance of the proposed method, electrical measurements demonstrate the outstanding quality of the presented stimulation device.

  4. Review of the Dynamics of Coalescence and Demulsification by High-Voltage Pulsed Electric Fields

    Directory of Open Access Journals (Sweden)

    Ye Peng

    2016-01-01

    Full Text Available The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric field promoting the coalescence of emulsified droplets is studied by researchers domestically and abroad. By review, the progress of high-voltage pulse electric field demulsification technology can get a better understanding, which has an effect of throwing a sprat to catch a whale on promoting the industrial application.

  5. Stabilization of a linear nanomechanical oscillator to its thermodynamic limit

    National Research Council Canada - National Science Library

    Gavartin, Emanuel; Verlot, Pierre; Kippenberg, Tobias J

    2013-01-01

    The rapid development of micro- and nanomechanical oscillators in the past decade has led to the emergence of novel devices and sensors that are opening new frontiers in both applied and fundamental science...

  6. The effect of thermal fluctuations on Holstein polaron dynamics in electric field

    Science.gov (United States)

    Voulgarakis, Nikolaos K.

    2017-08-01

    In this work, we have studied the effects of thermal fluctuations on the stability of polaron motion under the influence of an external electric field. Zero temperature calculations have been reported previously showing the existence of critical electric field, Ecr, where the system transitions from a stable polaron motion to a Bloch-like oscillation. In this study, we further report that for intermediate polaron sizes the lifetime of such Bloch-like oscillations decay with time due to excessive phonon emission. Our numerical simulations show that the value of Ecr is finite for small temperatures. However, Ecr rapidly decreases with increasing T and becomes practically zero for T > Tcr. In this small but finite temperature window, we report how temperature affects (a) the electric current density, and (b) the Bloch-like frequencies.

  7. The Oscillator Principle of Nature

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2012-01-01

    Oscillators are found on all levels in Nature. The general oscillator concept is defined and investigated. Oscillators may synchronize into fractal patterns. Apparently oscillators are the basic principle in Nature. The concepts of zero and infinite are discussed. Electronic manmade oscillators...

  8. Power system distributed oscilation detection based on Synchrophasor data

    Science.gov (United States)

    Ning, Jiawei

    Along with increasing demand for electricity, integration of renewable energy and deregulation of power market, power industry is facing unprecedented challenges nowadays. Within the last couple of decades, several serious blackouts have been taking place in United States. As an effective approach to prevent that, power system small signal stability monitoring has been drawing more interests and attentions from researchers. With wide-spread implementation of Synchrophasors around the world in the last decade, power systems real-time online monitoring becomes much more feasible. Comparing with planning study analysis, real-time online monitoring would benefit control room operators immediately and directly. Among all online monitoring methods, Oscillation Modal Analysis (OMA), a modal identification method based on routine measurement data where the input is unmeasured ambient excitation, is a great tool to evaluate and monitor power system small signal stability. Indeed, high sampling Synchrophasor data around power system is fitted perfectly as inputs to OMA. Existing methods in OMA for power systems are all based on centralized algorithms applying at control centers only; however, with rapid growing number of online Synchrophasors the computation burden at control centers is and will be continually exponentially expanded. The increasing computation time at control center compromises the real-time feature of online monitoring. The communication efforts between substation and control center will also be out of reach. Meanwhile, it is difficult or even impossible for centralized algorithms to detect some poorly damped local modes. In order to avert previous shortcomings of centralized OMA methods and embrace the new changes in the power systems, two new distributed oscillation detection methods with two new decentralized structures are presented in this dissertation. Since the new schemes brought substations into the big oscillation detection picture, the proposed

  9. A Conspiracy of Oscillators

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2008-01-01

    We discuss nonlinear mechanical systems containing several oscillators whose frequecies are all much higher than frequencies associated with the remaining degrees of freedom. In this situation a near constant of the motion, an adiabatic invariant, exists which is the sum of all the oscillator...

  10. Hyperchaotic Oscillator with Gyrators

    DEFF Research Database (Denmark)

    Tamasevicius, A; Cenys, A; Mykolaitis, G.

    1997-01-01

    A fourth-order hyperchaotic oscillator is described. It contains a negative impedance converter, two gyratots, two capacitors and a diode. The dynamics of the oscillator is shown to be characterised by two positive Lyapunov exponents. The performance of the circuit is investigated by means...

  11. Grazing Impact Oscillations

    NARCIS (Netherlands)

    Weger, J.G.; Water, van de W.; Molenaar, J.

    2000-01-01

    An impact oscillator is a periodically driven system that hits a wall when its amplitude exceeds a critical value. We study impact oscillations where collisions with the wall are with near-zero velocity (grazing impacts). A characteristic feature of grazing impact dynamics is a geometrically

  12. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  13. Prediction of resonant oscillation

    DEFF Research Database (Denmark)

    2010-01-01

    oscillations and compare the measured oscillations using FFT analysis of signal correlations, variance analysis of signals and other comparisons. As an example, the presence of a growing peak around a frequency that doubles the roll natural frequency indicates the possibility that parametric roll is going...

  14. Magnetostatic wave oscillator frequencies

    Science.gov (United States)

    Sethares, J. C.; Stiglitz, M. R.; Weinberg, I. J.

    1981-03-01

    The frequencies of magnetostatic wave (MSW) oscillators employing three principal modes of propagation, surface (MSSW), forward (MSFVW), and backward (MSBVW) volume waves, have been investigated. Previous (MSW) oscillator papers dealt with MSSW. Oscillators were fabricated using LPE-YIG MSW delay lines in a feedback loop of a 2-4 GHz amplifier. Wide and narrow band transducers were employed. Oscillator frequency as a function of biasing field is in agreement with a theoretical analysis. The analysis predicts frequency in terms of material parameters, biasing field, and transducer geometry. With wide band transducers a comb of frequencies is generated. Narrow band transducers for MSSW and MSFVW select a single mode; and MSBVW selects two modes. Spurious modes, attributed to instrumentation, are more than 20 dB below the main response, and bandwidths are less than 0.005 percent. No other spurious modes are observed. MSW oscillators produce clean electronically tunable signals and appear attractive in frequency agile systems.

  15. Terahertz Photovoltaic Detection of Cyclotron Resonance in the Regime of Radiation-Induced Magnetoresistance Oscillations

    Science.gov (United States)

    2013-06-17

    these radiation-induced oscillations do overlap the more-rapidly- varying-with-B Shubnikov–de Haas ( SdH ) oscillations; see also Refs. 17, 21, and 22. A... SdH Oscillations RIMRO FIG. 2. (Color online) Microwave (f < 300 GHz) and terahertz (f 300 GHz) radiation-induced magnetoresistance oscillations in...Shubnikov–de Haas ( SdH ) oscillations. A subset of oscillations of each type are marked on the figure. The solid vertical lines below 0.1 T marks the

  16. Vertical-probe-induced asymmetric dust oscillation in complex plasma.

    Science.gov (United States)

    Harris, B J; Matthews, L S; Hyde, T W

    2013-05-01

    A complex plasma vertical oscillation experiment which modifies the bulk is presented. Spherical, micron-sized particles within a Coulomb crystal levitated in the sheath above the powered lower electrode in a GEC reference cell are perturbed using a probe attached to a Zyvex S100 Nanomanipulator. By oscillating the probe potential sinusoidally, particle motion is found to be asymmetric, exhibiting superharmonic response in one case. Using a simple electric field model for the plasma sheath, including a nonzero electric field at the sheath edge, dust particle charges are found by employing a balance of relevant forces and emission analysis. Adjusting the parameters of the electric field model allowed the change predicted in the levitation height to be compared with experiment. A discrete oscillator Green's function is applied using the derived force, which accurately predicts the particle's motion and allows the determination of the electric field at the sheath edge.

  17. Neutrino Oscillation Physics

    CERN Document Server

    Kayser, Boris

    2014-04-10

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  18. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  19. Classical oscillator driven by an oscillating chirped force

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2006-01-01

    The motion of a classical (harmonic) oscillator is studied in the case where the oscillator is driven by a pulsed oscillating force with a frequency varying in time (frequency chirp). The amplitude and phase of the oscillations left after the pulsed force in dependence on the profile and strength of

  20. Neutrino anomalies without oscillations

    Indian Academy of Sciences (India)

    conventional' neutrino oscillations induced by mass-mixing. Several of these require non-zero neutrino masses as well. Author Affiliations. Sandip Pakvasa1. Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA ...

  1. Neural Oscillators Programming Simplified

    Directory of Open Access Journals (Sweden)

    Patrick McDowell

    2012-01-01

    Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.

  2. solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    The sMA region and a large part of the vacuum oscillation region are seen to have been washed away with the inclusion of the sK spectrum data. In the left panel of figure 4 we show the dependence of the probabilities on energy. In the sMA and the VO oscillation regions the probability has a non- monotonic dependence ...

  3. Self-oscillation

    CERN Document Server

    Jenkins, Alejandro

    2011-01-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain linear systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy from the environment into the vibration: no external rate needs to be tuned to the resonant frequency. A paper from 1830 by G. B. Airy gives us the opening to introduce self-oscillation as a sort of "perpetual motion" responsible for the human voice. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the more recent swaying of the London Millenium Footbridge. Clocks are self-oscillators, as are bowed and wind musical instruments, and the heartbeat. We review the criterion that determines whether an arbitrary line...

  4. Oscillating spin-2 dark matter

    Science.gov (United States)

    Marzola, Luca; Raidal, Martti; Urban, Federico R.

    2018-01-01

    The negative outcomes of laboratory searches, juxtaposed with cosmological observations, may indicate that dark matter has a gravitational origin. We show that coherent oscillations of a massive spin-2 field emerging from bimetric theory can easily account for the observed dark matter abundance. The framework, based on the only known consistent extension of general relativity to interacting spin-2 fields, is testable in precision measurements of the electric charge variation by means of atomic clocks, molecular systems, dedicated resonant mass detectors, as well as gravity interferometers and axionlike-particle experiments. These searches, therefore, provide a new window into the phenomenology of gravity which complements the results of dedicated tests of gravitation. We also present a multimetric extension of the scenario that straightforwardly implements the clockwork mechanism for gravity, explaining the apparent weakness of this force.

  5. Study of plasma oscillations in photoelectric semiconductor detectors

    Science.gov (United States)

    Luo, Bing-feng; Lu, Long-zhao; Cheng, Xiang-ai; Yu, Xiang-yang

    2016-10-01

    In this paper, the phenomena of plasma oscillations in silicon-based p-n junction photoelectric detector are researched. Starting from the classic Drift-Diffusion Model, the basic equations of photodetector with reverse bias under the radiation of femtosecond optical pulse were deduced. In our physical model, the carrier mobility in low electric field was introduced, and basic parameters including diffusion coefficients and damping coefficients were modified according to the nonlinear relation between carrier drift velocity and high electric field. A numerical algorithm base d on the finite difference method is proposed to solve the model. By solving the equations numerically, we obtained the transient dynamic behaviors of this kind of photoelectric detector, the current responses of the plasma oscillations phenomena, and the frequency of plasma oscillations, etc. By comparing the numerical solutions of plasma oscillations with approximate analytical solutions, we explored the reason for the difference between them.

  6. Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factors released from wounds. I. variation potentials and putative action potentials in intact plants

    Science.gov (United States)

    S.J. Barres; T.J.Sambeek Perry; Barbara G. Pickard

    1976-01-01

    Damaging representative plants from five angiosperm families by heating or crushing a small portion of a single leaf results in an electrical change which may spread throughout the shoot. In Mimosa similar changes have previously been identified as variation potentials.Except in one of the five plants, a variation...

  7. Doppler Shift Oscillations from a Hot Line Observed by IRIS

    Science.gov (United States)

    Li, D.; Ning, Z. J.; Huang, Y.; Chen, N.-H.; Zhang, Q. M.; Su, Y. N.; Su, W.

    2017-11-01

    We present a detailed investigation of the Doppler shift oscillations in a hot loop during an M7.1 flare on 2014 October 27 observed by the Interface Region Imaging Spectrograph. The periodic oscillations are observed in the Doppler shift of Fe xxi 1354.09 Å (log T˜ 7.05), and the dominant period is about 3.1 minutes. However, such 3.1 minute oscillations are not found in the line-integrated intensity of Fe xxi 1354.09 Å, AIA EUV fluxes, or microwave emissions. Solar Dynamics Observatory/AIA and Hinode/XRT imaging observations indicate that the Doppler shift oscillations locate at the hot loop-top region (≥11 MK). Moreover, the differential emission measure results show that the temperature is increasing rapidly when the Doppler shift oscillates, but the number density does not exhibit the corresponding increases nor oscillations, implying that the flare loop is likely to oscillate in an incompressible mode. All of these facts suggest that the Doppler shift oscillations at the shorter period are most likely the standing kink oscillations in a flare loop. Meanwhile, a longer period of about 10 minutes is identified in the time series of Doppler shift and line-integrated intensity, GOES SXR fluxes, and AIA EUV light curves, indicating the periodic energy release in this flare, which may be caused by a slow mode wave.

  8. Electromagnetic emission of a strongly charged oscillating droplet

    Science.gov (United States)

    Grigor'ev, A. I.; Kolbneva, N. Yu.; Shiryaeva, S. O.

    2016-08-01

    Analytical expressions for electric field in the vicinity of an oscillating strongly charged droplet of nonviscous conducting liquid and intensity of electromagnetic radiation are derived in the linear approximation with respect to perturbation amplitude of the droplet surface. Order-of-magnitude estimations of the radiation intensity are presented. The intensity of electromagnetic radiation of a ball lightning that can be simulated using a charged droplet is not related to the surface oscillations.

  9. The electronic system for mechanical oscillation parameters registration

    Directory of Open Access Journals (Sweden)

    Bulavin L. A.

    2008-08-01

    Full Text Available On the basis of the 8-bit microcontroller Microchip PIC16F630 the digital electronic device for harmonic oscillation parameters registration was developed. The device features are simple electric circuit and high operating speed (response time is less than 10 microseconds. The relevant software for the computer-controlled recording of harmonic oscillation parameters was designed. The device can be used as a part of the experimental setup for consistent fluids rheological parameters measurements.

  10. Spin-transfer oscillators in the effective planar approximation

    Science.gov (United States)

    Bazaliy, Ya. B.

    2011-03-01

    Spintronic devices with dominating easy plane anisotropy can be described in an effective planar approximation of the LLG equation. In particular, the effective equation can be used to study the spin-transfer oscillators. We use this approach to study the transitions of the oscillator excited by a combination of an AC and a DC electric currents between the small and large amplitude regimes. Supported by NSF DMR-0847159.

  11. Electrical and structural properties of (Pd/Au) Schottky contact to as grown and rapid thermally annealed GaN grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Nirwal, Varun Singh, E-mail: varun.nirwal30@gmail.com; Singh, Joginder; Gautam, Khyati; Peta, Koteswara Rao [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India)

    2016-05-06

    We studied effect of thermally annealed GaN surface on the electrical and structural properties of (Pd/Au) Schottky contact to Ga-polar GaN grown by molecular beam epitaxy on Si substrate. Current voltage (I-V) measurement was used to study electrical properties while X-ray diffraction (XRD) measurement was used to study structural properties. The Schottky barrier height calculated using I-V characteristics was 0.59 eV for (Pd/Au) Schottky contact on as grown GaN, which increased to 0.73 eV for the Schottky contact fabricated on 700 °C annealed GaN film. The reverse bias leakage current at -1 V was also significantly reduced from 6.42×10{sup −5} A to 7.31×10{sup −7} A after annealing. The value of series resistance (Rs) was extracted from Cheung method and the value of R{sub s} decreased from 373 Ω to 172 Ω after annealing. XRD results revealed the formation of gallide phases at the interface of (Pd/Au) and GaN for annealed sample, which could be the reason for improvement in the electrical properties of Schottky contact after annealing.

  12. Optical, UV, and EUV Oscillations of SS Cygni in Outburst

    Science.gov (United States)

    Mauche, Christopher W.

    2004-07-01

    I provide a review of observations in the optical, UV (HST), and EUV (EUVE and Chandra LETG) of the rapid periodic oscillations of nonmagnetic, disk-accreting, high mass-accretion rate cataclysmic variables (CVs), with particular emphasis on the dwarf nova SS Cyg in outburst. In addition, I drawn attention to a correlation, valid over nearly six orders of magnitude in frequency, between the frequencies of the quasi-periodic oscillations (QPOs) of white dwarf, neutron star, and black hole binaries. This correlation identifies the high frequency quasi-coherent oscillations (so-called ``dwarf nova oscillations'') of CVs with the kilohertz QPOs of low mass X-ray binaries (LMXBs), and the low frequency and low coherence QPOs of CVs with the horizontal branch oscillations (or the broad noise component identified as such) of LMXBs. Assuming that the same mechanisms produce the QPOs of white dwarf, neutron star, and black hole binaries, this correlation has important implications for QPO models.

  13. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  14. Torsional oscillations of strange stars

    Directory of Open Access Journals (Sweden)

    Mannarelli Massimo

    2014-01-01

    Full Text Available Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.

  15. Non-linear oscillations

    CERN Document Server

    Hagedorn, Peter

    1982-01-01

    Thoroughly revised and updated, the second edition of this concise text provides an engineer's view of non-linear oscillations, explaining the most important phenomena and solution methods. Non-linear descriptions are important because under certain conditions there occur large deviations from the behaviors predicted by linear differential equations. In some cases, completely new phenomena arise that are not possible in purely linear systems. The theory of non-linear oscillations thus has important applications in classical mechanics, electronics, communications, biology, and many other branches of science. In addition to many other changes, this edition has a new section on bifurcation theory, including Hopf's theorem.

  16. Brownian parametric oscillators

    Science.gov (United States)

    Zerbe, Christine; Jung, Peter; Hänggi, Peter

    1994-05-01

    We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).

  17. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  18. High frequency pressure oscillator for microcryocoolers

    Science.gov (United States)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  19. A simple violin oscillator

    Science.gov (United States)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  20. Oscillators and operational amplifiers

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation...

  1. Phenomenology of neutrino oscillations

    CERN Document Server

    Kobzarev, I Yu; Okun, Lev Borisovich; Shchepkin, M G

    1980-01-01

    A complete phenomenological description of neutrino oscillations is given. The most general form of the mass matrix of N types of neutrino and of the matrix of neutrino mixing in the left charged current is analyzed. Measuring the parameters of the charged current matrix in oscillatory experiments and in the experimental studies of the beta -decay electron spectra, is discussed. (20 refs).

  2. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  3. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, Sidse M; Hansen, Lars Kai; Parnas, Josef

    2007-01-01

    to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  4. Identifying neuronal oscillations using rhythmicity

    NARCIS (Netherlands)

    Fransen, A.M.M.; Ede, F.L. van; Maris, E.G.G.

    2015-01-01

    Neuronal oscillations are a characteristic feature of neuronal activity and are typically investigated through measures of power and coherence. However, neither of these measures directly reflects the distinctive feature of oscillations: their rhythmicity. Rhythmicity is the extent to which future

  5. Feasibility study on production of Metal Matrix Composite (MMC material for Electrical Discharge Machining (EDM tools using Rapid Prototyping (RP technique

    Directory of Open Access Journals (Sweden)

    Shamsudin S.

    2017-01-01

    Full Text Available In common practice, tools for EDM have traditionally been made by machining copper or graphite to the required profile using CNC machines. Increasing the degree of complexity of any tooling design for any operations results in a corresponding increase in time and cost required. With the advent of rapid prototyping techniques, the problem of making tools with complex shapes becomes much simpler and easy. The main aim of this research was to develop new EDM electrode material through a novel approach by rapid prototyping (RP technique. In this study, the potential application of copper (Cu reinforced alumina (Al2O3 fabricated with various compositions as an EDM electrode was investigated. The electrodes were fabricated by Canon PIXMA IP 1800 printer and underwent sintering temperature at 85 % and 95 % melting point of copper. The EDMed workpiece was aluminium and the electrodes surface was analyzed through scanning electron microscope (SEM. Findings showed that the electrode with Cu - 0 vol. %Al2O3 composite and sintered at temperature 977 °C resulted in highest metal removal rate (MRR and lowest electrode wear rate (EWR while Cu – 10 vol. %Al2O3 composite and sintered at temperature 977 °C revealed a better surface finish than other electrodes. An increase in Al2O3 content in general will increase the hardness of tool, as a trade-off, the conductivity was reduced.

  6. Ultrafast nano-oscillators based on interlayer-bridged carbon nanoscrolls

    Directory of Open Access Journals (Sweden)

    Zhang Zhao

    2011-01-01

    Full Text Available Abstract We demonstrate a viable approach to fabricating ultrafast axial nano-oscillators based on carbon nanoscrolls (CNSs using molecular dynamics simulations. Initiated by a single-walled carbon nanotube (CNT, a monolayer graphene can continuously scroll into a CNS with the CNT housed inside. The CNT inside the CNS can oscillate along axial direction at a natural frequency of tens of gigahertz. We demonstrate an effective strategy to reduce the dissipation of the CNS-based nano-oscillator by covalently bridging the carbon layers in the CNS. We further demonstrate that such a CNS-based nano-oscillator can be excited and driven by an external AC electric field, and oscillate at more than 100 GHz. The CNS-based nano-oscillators not only offer a feasible pathway toward ultrafast nano-devices but also hold promise to enable nanoscale energy transduction, harnessing, and storage (e.g., from electric to mechanical.

  7. Rapid and Effective Electrical Conductivity Improvement of the Ag NW-Based Conductor by Using the Laser-Induced Nano-Welding Process

    Directory of Open Access Journals (Sweden)

    Phillip Lee

    2017-05-01

    Full Text Available To date, the silver nanowire-based conductor has been widely used for flexible/stretchable electronics due to its several advantages. The optical nanowire annealing process has also received interest as an alternative annealing process to the Ag nanowire (NW-based conductor. In this study, we present an analytical investigation on the phenomena of the Ag NWs’ junction and welding properties under laser exposure. The two different laser-induced welding processes (nanosecond (ns pulse laser-induced nano-welding (LINW and continuous wave (cw scanning LINW are applied to the Ag NW percolation networks. The Ag NWs are selectively melted and merged at the junction of Ag NWs under very short laser exposure; these results are confirmed by scanning electron microscope (SEM, focused-ion beam (FIB, electrical measurement, and finite difference time domain (FDTD simulation.

  8. Solar Dynamo Driven by Periodic Flow Oscillation

    Science.gov (United States)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  9. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular...

  10. Spectral linewidths of Josephson oscillators

    DEFF Research Database (Denmark)

    Salerno, M; Samuelsen, Mogens Rugholm; Yulin, AV

    2001-01-01

    We show that the linewidth of a Josephson flux-flow oscillator has the same functional dependence on temperature, static, and dynamic resistances as the ones of Josephson single-fluxon oscillators and small Josephson junctions. This suggests a universal formula for the linewidth of Josephson...... oscillators....

  11. Pharmacological analysis of intrinsic neuronal oscillations in rd10 retina.

    Directory of Open Access Journals (Sweden)

    Sonia Biswas

    Full Text Available In the widely used mouse model of retinal degeneration, rd1, the loss of photoreceptors leads to rhythmic electrical activity of around 10-16 Hz in the remaining retinal network. Recent studies suggest that this oscillation is formed within the electrically coupled network of AII amacrine cells and ON-bipolar cells. A second mouse model, rd10, displays a delayed onset and slower progression of degeneration, making this mouse strain a better model for human retinitis pigmentosa. In rd10, oscillations occur at a frequency of 3-7 Hz, raising the question whether oscillations have the same origin in the two mouse models. As rd10 is increasingly being used as a model to develop experimental therapies, it is important to understand the mechanisms underlying the spontaneous rhythmic activity. To study the properties of oscillations in rd10 retina we combined multi electrode recordings with pharmacological manipulation of the retinal network. Oscillations were abolished by blockers for ionotropic glutamate receptors and gap junctions. Frequency and amplitude of oscillations were modulated strongly by blockers of inhibitory receptors and to a lesser extent by blockers of HCN channels. In summary, although we found certain differences in the pharmacological modulation of rhythmic activity in rd10 compared to rd1, the overall pattern looked similar. This suggests that the generation of rhythmic activity may underlie similar mechanisms in rd1 and rd10 retina.

  12. Two-electron Rabi oscillations in real-time time-dependent density-functional theory.

    Science.gov (United States)

    Habenicht, Bradley F; Tani, Noriyuki P; Provorse, Makenzie R; Isborn, Christine M

    2014-11-14

    We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S0 state and the doubly-excited S2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation.

  13. Mechanism behind self-sustained oscillations in direct current glow discharges and in dusty plasmas

    CERN Document Server

    Cho, Sung Nae

    2013-01-01

    An alternative explanation to the mechanism behind self-sustained oscillations of ions in direct current (DC) glow discharges is provided. Such description is distinguished from the one provided by fluid models, where oscillations are attributed to positive feedback mechanism associated with photoionization of particles and photoemission of electrons from the cathode. Here, oscillations arise as consequence of interaction between an ion and surface charges induced by it at the bounding electrodes. Such mechanism provides an elegant explanation to why self-sustained oscillations occur only in the negative resistance region of the voltage-current characteristic curve in DC glow discharges. It is found that oscillation frequencies increase with ion's surface charge density, but at the rate which is significantly slower than it does with electric field. The presented mechanism also describes the self-sustained oscillations of ions in dusty plasmas, demonstrating that oscillations in dusty plasmas and DC glow disc...

  14. Surface morphological, electrical and transport properties of rapidly annealed double layers Ru/Cr Schottky structure on n-type InP

    Science.gov (United States)

    Shanthi Latha, K.; Rajagopal Reddy, V.

    2017-07-01

    The electrical and transport properties of a fabricated bilayer Ru/Cr/ n-InP Schottky diode (SD) have been investigated at different annealing temperatures. Atomic force microscopy results have showed that the overall surface morphology of the Ru/Cr/ n-InP SD is fairly smooth at elevated temperatures. High barrier height is achieved for the diode annealed at 300 °C compared to the as-deposited, annealed at 200 and 400 °C diodes. The series resistance and shunt resistance of the Ru/Cr/ n-InP SD are estimated by current-voltage method at different annealing temperatures. The barrier heights and series resistance are also determined by Cheung's and modified Norde functions. The interface state density of the Ru/Cr/ n-InP SD is found to be decreased after annealing at 300 °C and then slightly increased upon annealing at 400 °C. The difference between barrier heights obtained from current-voltage and capacitance-voltage is also discussed. Experimental results have showed that the Poole-Frenkel emission is found to be dominant in the lower bias region whereas Schottky emission is dominant in the higher bias region for the Ru/Cr/ n-InP SDs irrespective of annealing temperatures.

  15. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  16. Entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)

    2009-03-15

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  17. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  18. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    of stars. For stars like the sun, energy transport in the outer layers occurs mainly through turbulent convection. Here, pressure mode oscillations are essentially propagating sound waves, whose properties can be altered by interaction with the turbulent motion of the gas. This has always been a problem...... for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...

  19. Nanomechanical electric and electromagnetic field sensor

    Science.gov (United States)

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  20. Neutrino Masses and Oscillations

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  1. Decay of oscillating universes

    Science.gov (United States)

    Mithani, Audrey Todhunter

    2016-08-01

    It has been suggested by Ellis et al that the universe could be eternal in the past, without beginning. In their model, the "emergent universe'' exists forever in the past, in an "eternal'' phase before inflation begins. We will show that in general, such an "eternal'' phase is not possible, because of an instability due to quantum tunneling. One candidate model, the "simple harmonic universe'' has been shown by Graham et al to be perturbatively stable; we find that it is unstable with respect to quantum tunneling. We also investigate the stability of a distinct oscillating model in loop quantum cosmology with respect to small perturbations and to quantum collapse. We find that the model has perturbatively stable and unstable solutions, with both types of solutions occupying significant regions of the parameter space. All solutions are unstable with respect to collapse by quantum tunneling to zero size. In addition, we investigate the effect of vacuum corrections, due to the trace anomaly and the Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. Finally, we determine the decay rate of the oscillating universe. Although the wave function of the universe lacks explicit time dependence in canonical quantum cosmology, time evolution may be present implicitly through the semiclassical superspace variables, which themselves depend on time in classical dynamics. Here, we apply this approach to the simple harmonic universe, by extending the model to include a massless, minimally coupled scalar field φ which has little effect on the dynamics but can play the role of a "clock''.

  2. Oscillating stagnation point flow

    Science.gov (United States)

    Grosch, C. E.; Salwen, H.

    1982-01-01

    A solution of the Navier-Stokes equations is given for an incompressible stagnation point flow whose magnitude oscillates in time about a constant, non-zero, value (an unsteady Hiemenz flow). Analytic approximations to the solution in the low and high frequency limits are given and compared with the results of numerical integrations. The application of these results to one aspect of the boundary layer receptivity problem is also discussed.

  3. Self-oscillating resonant power converter

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to resonant power converters and inverters comprising a self-oscillating feedback loop coupled from a switch output to a control input of a switching network comprising one or more semiconductor switches. The self-oscillating feedback loop sets a switching frequency...... of the power converter and comprises a first intrinsic switch capacitance coupled between a switch output and a control input of the switching network and a first inductor. The first inductor is coupled in-between a first bias voltage source and the control input of the switching network and has...... a substantially fixed inductance. The first bias voltage source is configured to generate an adjustable bias voltage applied to the first inductor. The output voltage of the power converter is controlled in a flexible and rapid manner by controlling the adjustable bias voltage....

  4. Emergence of a negative resistance in noisy coupled linear oscillators

    Science.gov (United States)

    Quiroz-Juárez, M. A.; Aragón, J. L.; León-Montiel, R. de J.; Vázquez-Medina, R.; Domínguez-Juárez, J. L.; Quintero-Torres, R.

    2016-12-01

    We report on the experimental observation of an emerging negative resistance in a system of coupled linear electronic RLC harmonic oscillators under the influence of multiplicative noise with long correlation time. When two oscillators are coupled by a noisy inductor, an analysis in the Fourier space of the electrical variables unveils the presence of an effective negative resistance, which acts as an energy transport facilitator. This might constitute a simple explanation of the now fashionable problem of energy transport assisted by noise in classical systems. The experimental setup is based on the working principle of an analog computer and by itself constitutes a versatile platform for studying energy transport in noisy systems by means of coupled electrical oscillator systems.

  5. Oscillations in the Umbral Atmosphere

    Science.gov (United States)

    Brynildsen, N.; Maltby, P.; Foley, C. R.; Fredvik, T.; Kjeldseth-Moe, O.

    2004-06-01

    The results of simultaneous observations of oscillations in the chromosphere, transition region, and corona above nine sunspots are presented. The data are obtained through coordinated observing with the Solar and Heliospheric Observatory — SOHO and the Transition Region And Coronal Explorer — TRACE. Oscillations are detected above each umbra. The power spectra show one dominant frequency corresponding to a period close to 3 min. We show that the oscillations in the sunspot transition region can be modeled by upwardly propagating acoustic waves. In the corona the oscillations are limited to small regions that often coincide with the endpoints of sunspot coronal loops. Spectral observations show that oscillations in the corona contribute to the observed oscillations in the TRACE 171 Å channel observations. We show that a recent suggestion regarding a connection between sunspot plumes and 3-min oscillations conflicts with the observations.

  6. Relaxation damping in oscillating contacts.

    Science.gov (United States)

    Popov, M; Popov, V L; Pohrt, R

    2015-11-09

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect "relaxation damping". The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed.

  7. Structural, electrical, and surface morphological characteristics of rapidly annealed Pt/Ti Schottky contacts to n-type InP

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, V. Rajagopal; Reddy, D. Subba; Naik, S. Sankar [Department of Physics, Sri Venkateswara University, Tirupati (India); Choi, C.J. [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju (Korea, Republic of)

    2011-10-15

    We have investigated the electrical and structural properties of Pt/Ti metallization scheme on n-type InP as a function of annealing temperature using current-voltage (I-V), capacitance-voltage (C-V), Auger electron spectroscopy (AES), and X-ray diffraction (XRD) measurements. Measurements showed that barrier height of as-deposited Pt/Ti Schottky contact is 0.62 eV (I-V) and 0.76 eV (C-V). Experimental results indicate that high-quality Schottky contact with barrier height and ideality factor of 0.66 eV (I-V), 0.80 eV (C-V), and 1.14 can be achieved after annealing at 400 C for 1 min in N{sub 2} atmosphere. Further, it is observed that the barrier height slightly decreases to 0.55 eV (I-V) and 0.71 eV (C-V) after annealing at 500 C. Norde method is also employed to calculate the barrier height of Pt/Ti Schottky contacts. The obtained values are in good agreement with those obtained by I-V measurements. These results indicate that the optimum annealing temperature for the Pt/Ti Schottky contact is 400 C. According to AES and XRD analysis, the formation of indium phases at the Pt/Ti/n-InP interface could be the reason for the increase of Schottky barrier height (SBH) after annealing at 400 C. Results also showed the formation of phosphide phases at the interface. This may be the reason for the decrease in the barrier height after annealing at 500 C. The AFM results showed that the overall surface morphology of Pt/Ti Schottky contact is reasonably smooth. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Wireless Damage Monitoring of Laminated CFRP Composites using Electrical Resistance Change

    National Research Council Canada - National Science Library

    Todoroki, Akira

    2007-01-01

    .... In this system, a tiny oscillation circuit is attached to the composite component. When delimitation of the component occurs, electrical resistance changes, which causes a change in the oscillating frequency of the circuit...

  9. Short-period pulsar oscillations following a glitch

    Energy Technology Data Exchange (ETDEWEB)

    Van Eysden, C. A. [NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2014-07-10

    Following a glitch, the crust and magnetized plasma in the outer core of a neutron star are believed to rapidly establish a state of co-rotation within a few seconds by process analogous to classical Ekman pumping. However, in ideal magnetohydrodynamics, a final state of co-rotation is inconsistent with conservation of energy of the system. We demonstrate that, after the Ekman-like spin up is completed, magneto-inertial waves continue to propagate throughout the star, exciting torsional oscillations in the crust and plasma. The crust oscillation is irregular and quasi-periodic, with a dominant frequency of the order of seconds. Crust oscillations commence after an Alfvén crossing time, approximately half a minute at the magnetic pole, and are subsequently damped by the electron viscosity over approximately an hour. In rapidly rotating stars, the magneto-inertial spectrum in the core approaches a continuum, and crust oscillations are damped by resonant absorption analogous to quasi-periodic oscillations in magnetars. The oscillations predicted are unlikely to be observed in timing data from existing radio telescopes, but may be visible to next generation telescope arrays.

  10. Effects of electromagnetic forcing on self-sustained jet oscillations

    NARCIS (Netherlands)

    Kalter, R.; Tummers, M.J.; Kenjeres, S.; Righolt, B.W.; Kleijn, C.R.

    2014-01-01

    The influence of electromagnetic forcing on self-sustained oscillations of a jet issuing from a submerged nozzle into a thin vertical cavity (width W much larger than thickness T) has been studied using particle image velocimetry. A permanent Lorentz force is produced by applying an electrical

  11. Self-oscillating loop based piezoelectric power converter

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output......- oscillation loop within a zero-voltage-switching (ZVS) operation range of the piezoelectric transformer....

  12. Developmental Changes in Sleep Oscillations during Early Childhood

    Directory of Open Access Journals (Sweden)

    Eckehard Olbrich

    2017-01-01

    Full Text Available Although quantitative analysis of the sleep electroencephalogram (EEG has uncovered important aspects of brain activity during sleep in adolescents and adults, similar findings from preschool-age children remain scarce. This study utilized our time-frequency method to examine sleep oscillations as characteristic features of human sleep EEG. Data were collected from a longitudinal sample of young children (n=8; 3 males at ages 2, 3, and 5 years. Following sleep stage scoring, we detected and characterized oscillatory events across age and examined how their features corresponded to spectral changes in the sleep EEG. Results indicated a developmental decrease in the incidence of delta and theta oscillations. Spindle oscillations, however, were almost absent at 2 years but pronounced at 5 years. All oscillatory event changes were stronger during light sleep than slow-wave sleep. Large interindividual differences in sleep oscillations and their characteristics (e.g., “ultrafast” spindle-like oscillations, theta oscillation incidence/frequency also existed. Changes in delta and spindle oscillations across early childhood may indicate early maturation of the thalamocortical system. Our analytic approach holds promise for revealing novel types of sleep oscillatory events that are specific to periods of rapid normal development across the lifespan and during other times of aberrant changes in neurobehavioral function.

  13. Developmental Changes in Sleep Oscillations during Early Childhood.

    Science.gov (United States)

    Olbrich, Eckehard; Rusterholz, Thomas; LeBourgeois, Monique K; Achermann, Peter

    2017-01-01

    Although quantitative analysis of the sleep electroencephalogram (EEG) has uncovered important aspects of brain activity during sleep in adolescents and adults, similar findings from preschool-age children remain scarce. This study utilized our time-frequency method to examine sleep oscillations as characteristic features of human sleep EEG. Data were collected from a longitudinal sample of young children (n = 8; 3 males) at ages 2, 3, and 5 years. Following sleep stage scoring, we detected and characterized oscillatory events across age and examined how their features corresponded to spectral changes in the sleep EEG. Results indicated a developmental decrease in the incidence of delta and theta oscillations. Spindle oscillations, however, were almost absent at 2 years but pronounced at 5 years. All oscillatory event changes were stronger during light sleep than slow-wave sleep. Large interindividual differences in sleep oscillations and their characteristics (e.g., "ultrafast" spindle-like oscillations, theta oscillation incidence/frequency) also existed. Changes in delta and spindle oscillations across early childhood may indicate early maturation of the thalamocortical system. Our analytic approach holds promise for revealing novel types of sleep oscillatory events that are specific to periods of rapid normal development across the lifespan and during other times of aberrant changes in neurobehavioral function.

  14. Skyrmion motion driven by oscillating magnetic field.

    Science.gov (United States)

    Moon, Kyoung-Woong; Kim, Duck-Ho; Je, Soong-Geun; Chun, Byong Sun; Kim, Wondong; Qiu, Z Q; Choe, Sug-Bong; Hwang, Chanyong

    2016-02-05

    The one-dimensional magnetic skyrmion motion induced by an electric current has attracted much interest because of its application potential in next-generation magnetic memory devices. Recently, the unidirectional motion of large (20 μm in diameter) magnetic bubbles with two-dimensional skyrmion topology, driven by an oscillating magnetic field, has also been demonstrated. For application in high-density memory devices, it is preferable to reduce the size of skyrmion. Here we show by numerical simulation that a skyrmion of a few tens of nanometres can also be driven by high-frequency field oscillations, but with a different direction of motion from the in-plane component of the tilted oscillating field. We found that a high-frequency field for small skyrmions can excite skyrmion resonant modes and that a combination of different modes results in a final skyrmion motion with a helical trajectory. Because this helical motion depends on the frequency of the field, we can control both the speed and the direction of the skyrmion motion, which is a distinguishable characteristic compared with other methods.

  15. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....

  16. From excitability to oscillations

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.

    2013-01-01

    One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow...... diffusive coupling that gives rise to wave dynamics and via fast changes in membrane potential that propagate almost instantly over significant distances. The model reproduces the basic calcium dynamics of the vascular smooth muscle cell: calcium waves which upon increased activity of cGMP-sensitive calcium...

  17. Oscillations in nonlinear systems

    CERN Document Server

    Hale, Jack K

    2015-01-01

    By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Pa

  18. Hyperchaos in coupled Colpitts oscillators

    DEFF Research Database (Denmark)

    Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas

    2003-01-01

    The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individu...... oscillators. The spectrum of the Lyapunov exponents (LE) have been calculated versus the coefficient k. For weakly coupled oscillators there are two positive LE indicating hyperchaotic behaviour of the overall system.......The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...

  19. An Energetic Approach to Homogenization Problems with Rapidly Oscillating Potentials

    Science.gov (United States)

    1979-08-01

    34 (studied by Benssoussan, Lions, and Papanicolau ) pus A + . W(’ Nu;; f on Q; u 0, as e goes n to zero. W is a periodic function (in each variable) from 3R...obe conjectured by Lionoussan, ian a d Papanicolau 12), Re ark 17.7, We are going to prove that unfortunately it Is not correct in the general caseo in

  20. Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Höpfner, Henning; Lindemann, Markus; Gerhardt, Nils C.; Hofmann, Martin R.

    2014-01-01

    We demonstrate a scheme for controlled switching of polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers (spin-VCSEL). Under hybrid electrical and optical pumping conditions, our VCSEL devices show polarization oscillations with frequencies far above the VCSEL's electrical modulation bandwidth. Using multiple optical pulses, we are able to excite and amplify these polarization oscillations. When specific phase and amplitude conditions for the optical excitation pulses are met, destructive interference leads to switch-off of the polarization oscillation, enabling the generation of controlled short polarization bursts.

  1. Linearization of conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E; Pascual, I [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2009-03-11

    A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for the complete range of oscillation amplitudes. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of the technique.

  2. Detailed structure of pipe flow with water hammer oscillations | Kioni ...

    African Journals Online (AJOL)

    Herein, the evolution and detailed structure of velocity and pressure fields of an oscillating axi-symmetric pipe flow arising from a rapid closure of a valve has been determined through the solution, by the Finite Volume technique, of the full Navier Stokes equations. The method correctly predicts the distortion of the pressure ...

  3. A Matterwave Transistor Oscillator

    CERN Document Server

    Caliga, Seth C; Zozulya, Alex A; Anderson, Dana Z

    2012-01-01

    A triple-well atomtronic transistor combined with forced RF evaporation is used to realize a driven matterwave oscillator circuit. The transistor is implemented using a metalized compound glass and silicon substrate. On-chip and external currents produce a cigar-shaped magnetic trap, which is divided into transistor source, gate, and drain regions by a pair of blue-detuned optical barriers projected onto the magnetic trap through a chip window. A resonant laser beam illuminating the drain portion of the atomtronic transistor couples atoms emitted by the gate to the vacuum. The circuit operates by loading the source with cold atoms and utilizing forced evaporation as a power supply that produces a positive chemical potential in the source, which subsequently drives oscillation. High-resolution in-trap absorption imagery reveals gate atoms that have tunneled from the source and establishes that the circuit emits a nominally mono-energetic matterwave with a frequency of 23.5(1.0) kHz by tunneling from the gate, ...

  4. Heat exchanger with oscillating flow

    Science.gov (United States)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  5. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  6. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  7. Effects of rapid thermal annealing on structural, chemical, and electrical characteristics of atomic-layer deposited lanthanum doped zirconium dioxide thin film on 4H-SiC substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Way Foong, E-mail: wayfoong317@yahoo.com.sg [Institute of Nano Optoelectronics Research and Technology, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Centre for Research Initiatives (CRI) Natural Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia); Quah, Hock Jin, E-mail: jinquah1st@hotmail.com [Institute of Nano Optoelectronics Research and Technology, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Centre for Research Initiatives (CRI) Natural Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia); Lu, Qifeng, E-mail: Qifeng@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Mu, Yifei, E-mail: Y.mu@student.liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Ismail, Wan Azli Wan, E-mail: azli.ismail@mimos.my [Advance Analytical Services Lab, MIMOS Wafer Fab, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur (Malaysia); Rahim, Bazura Abdul, E-mail: bazura@mimos.my [Advance Analytical Services Lab, MIMOS Wafer Fab, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur (Malaysia); Esa, Siti Rahmah, E-mail: rahmah.esa@mimos.my [Advance Analytical Services Lab, MIMOS Wafer Fab, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur (Malaysia); Kee, Yeh Yee, E-mail: yy.kee@mimos.my [Advance Analytical Services Lab, MIMOS Wafer Fab, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur (Malaysia); Zhao, Ce Zhou, E-mail: cezhou.zhao@xjtlu.edu.cn [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123 (China); and others

    2016-03-01

    Graphical abstract: - Highlights: • Studies of RTA temperatures on La doped ZrO2 atomic layer deposited on 4HSiC. • Oxygen vacancies improved insulating and catalytic properties of La doped ZrO2. • 700 °C annealed sample showed the highest EB, k value, and sensitivity on O2. • La doped ZrO2 was proposed as a potential metal reactive oxide on 4H-SiC. - Abstract: Effects of rapid thermal annealing at different temperatures (700–900 °C) on structural, chemical, and electrical characteristics of lanthanum (La) doped zirconium oxide (ZrO{sub 2}) atomic layer deposited on 4H-SiC substrates have been investigated. Chemical composition depth profiling analysis using X-ray photoelectron spectroscopy (XPS) and cross-sectional studies using high resolution transmission electron microscopy equipped with energy dispersive X-ray spectroscopy line scan analysis were insufficient to justify the presence of La in the investigated samples. The minute amount of La present in the bulk oxide was confirmed by chemical depth profiles of time-of-flight secondary ion mass spectrometry. The presence of La in the ZrO{sub 2} lattice led to the formation of oxygen vacancies, which was revealed through binding energy shift for XPS O 1s core level spectra of Zr−O. The highest amount of oxygen vacancies in the sample annealed at 700 °C has yielded the acquisition of the highest electric breakdown field (∼ 6.3 MV/cm) and dielectric constant value (k = 23) as well as the highest current–time (I–t) sensor response towards oxygen gas. The attainment of both the insulating and catalytic properties in the La doped ZrO{sub 2} signified the potential of the doped ZrO{sub 2} as a metal reactive oxide on 4H-SiC substrate.

  8. Force oscillations simulating breathing maneuvers do not prevent force adaptation.

    Science.gov (United States)

    Pascoe, Chris; Jiao, Yuekan; Seow, Chun Y; Paré, Peter D; Bossé, Ynuk

    2012-07-01

    Airway inflammation in patients with asthma exposes the airway smooth muscle (ASM) to a variety of spasmogens. These spasmogens increase ASM tone, which can lead to force adaptation. Length oscillations of ASM, which occur in vivo due to breathing maneuvers, can attenuate force adaptation. However, in the presence of tone, the force oscillations required to achieve these length oscillations may be unphysiologic (i.e., magnitude greater than the ones achieved due to the swings in transpulmonary pressure required for breathing). In the present study, we applied force oscillations simulating the tension oscillations experienced by the wall of a fourth-generation airway during tidal breathing with or without deep inspirations (DI) to ASM. The goal was to investigate whether force adaptation occurs in conditions mimicking breathing maneuvers. Tone was induced by carbachol (average, 20 nM), and the force-generating capacity of the ASM was assessed at 5-minute intervals before and after carbachol administration using electrical field stimulations (EFS). The results show that force oscillations applied before the introduction of tone had a small effect on the force produced by EFS (declined to 96.8% [P > 0.05] and 92.3% [P breathing oscillations (25%). These force oscillations did not prevent force adaptation (gain of force of 11.2 ± 2.2 versus 13.5 ± 2.7 and 11.2 ± 3.0% in static versus dynamic conditions with or without DI, respectively). The lack of effect of simulated breathing maneuvers on force adaptation suggests that this gain in ASM force may occur in vivo and could contribute to the development of airway hyperresponsiveness.

  9. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  10. Hyperchaotic system with unstable oscillators

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; Mykolaitis, G.

    2000-01-01

    A simple electronic system exhibiting hyperchaotic behaviour is described. The system includes two nonlinearly coupled 2nd order unstable oscillators, each composed of an LC resonance loop and an amplifier. The system is investigated by means of numerical integration of appropriate differential...... equations, PSPICE simulations and hardware experiments. The Lyapunov exponents are presented to confirm hyperchaotic mode of the oscillations....

  11. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2006-01-01

    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  12. Energy Conservative Limit Cycle Oscillations

    NARCIS (Netherlands)

    Stramigioli, Stefano; van Dijk, Michel

    This paper shows how globally attractive limit cycle oscillations can be induced in a system with a nonlinear feedback element. Based on the same principle as the Van der Pol oscillator, the feedback behaves as a negative damping for low velocities but as an ordinary damper for high velocities. This

  13. Mechanical Parametric Oscillations and Waves

    Science.gov (United States)

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2013-01-01

    Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…

  14. Augmenting cognition by neuronal oscillations

    NARCIS (Netherlands)

    Horschig, J.M.; Zumer, J.; Bahramisharif, A.

    2014-01-01

    Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g., communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both

  15. Tomography on f-oscillators

    Science.gov (United States)

    Dudinets, I. V.; Man’ko, V. I.; Marmo, G.; Zaccaria, F.

    2017-11-01

    Symplectic tomographies of classical and quantum states are shortly reviewed. The concept of nonlinear f-oscillators and their properties are recalled. The tomographic probability representations of oscillator coherent states and the problem of entanglement are then discussed. The entanglement of even and odd f-coherent states is evaluated by the linear entropy.

  16. Quasi Periodic Oscillations in Blazars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 35; Issue 3. Quasi Periodic Oscillations in Blazars ... Here we report our recent discoveries of Quasi-Periodic Oscillations (QPOs) in blazars time series data in X-ray and optical electromagnetic bands. Any such detection can give important ...

  17. Oscillating scalar fields in extended quintessence

    Science.gov (United States)

    Li, Dan; Pi, Shi; Scherrer, Robert J.

    2018-01-01

    We study a rapidly oscillating scalar field with potential V (ϕ )=k |ϕ |n nonminimally coupled to the Ricci scalar R via a term of the form (1 -8 π G0ξ ϕ2)R in the action. In the weak coupling limit, we calculate the effect of the nonminimal coupling on the time-averaged equation of state parameter γ =(p +ρ )/ρ . The change in ⟨γ ⟩ is always negative for n ≥2 and always positive for n values of n . Constraints on the time variation of G force this change to be infinitesimally small at the present time whenever the scalar field dominates the expansion, but constraints in the early universe are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show that, under reasonable assumptions, this effective energy density is always smaller than the density of the scalar field itself.

  18. Prospects for Neutrino Oscillation Physics

    Directory of Open Access Journals (Sweden)

    Silvia Pascoli

    2013-01-01

    Full Text Available Recently the last unknown lepton mixing angle θ 13 has been determined to be relatively large, not too far from its previous upper bound. This opens exciting possibilities for upcoming neutrino oscillation experiments towards addressing fundamental questions, among them the type of the neutrino mass hierarchy and the search for CP violation in the lepton sector. In this paper we review the phenomenology of neutrino oscillations, focusing on subleading effects, which will be the key towards these goals. Starting from a discussion of the present determination of three-flavour oscillation parameters, we give an outlook on the potential of near-term oscillation physics as well as on the long-term program towards possible future precision oscillation facilities. We discuss accelerator-driven long-baseline experiments as well as nonaccelerator possibilities from atmospheric and reactor neutrinos.

  19. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  20. Electric vehicle - near or far

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, Y.

    1997-11-01

    Traffic is rapidly becoming the number one environmental problem, especially in metropolitan areas. Electric vehicles have many important advantages to offer. Air quality would be improved, since electric vehicles do not pollute the environment. The improvement obtained might be equated with that resulting from the introduction of district heat for the heating of residential buildings. Electric vehicles also present considerable potential for energy conservation

  1. Time resolved optical Bloch oscillations in porous silicon superlattice structures

    Energy Technology Data Exchange (ETDEWEB)

    Ghulinyan, Mher; Gaburro, Zeno; Pavesi, Lorenzo [Department of Physics, University of Trento and INFM, 38050 Povo (Trento) (Italy); Oton, Claudio J. [Department of Physics, University of Trento and INFM, 38050 Povo (Trento) (Italy); Department of Fundamental Physics, University of La Laguna, La Laguna 38204 Tenerife (Spain); Sapienza, Riccardo; Costantino, Paola; Wiersma, Diederik S. [European Laboratory for Nonlinear Spectroscopy and INFM, 50019 Sesto Fiorentino (Florence) (Italy)

    2005-06-01

    We report on the observation of time resolved Bloch oscillations of light waves in optical superlattice structures. The structures are series of coupled microcavities, which are grown in porous silicon with high control of optical parameters. A controlled linear gradient of refractive index along the growth direction was maintained to tilt the photonic band gap of the superlattice. This is in perfect analogy to the tilted electronic miniband structure of a semiconductor in an electric field. In this way an optical Wannier-Stark ladder of equidistant optical modes was formed. Their frequency separation defines the period of the photon Bloch oscillations. The experimental results are in excellent agreement with transfer matrix calculations. The observed phenomenon is the optical counterpart of the well known electronic Bloch oscillations. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A N; Mosekilde, E

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular...... feedback. We investigate the intra- and internephron entrainment of the two time scales. In addition to full synchronization, both wavelet analyses of experimental data and numerical simulations reveal a partial entrainment in which neighboring nephrons attain a state of chaotic synchronization...

  3. Collective oscillations in a plasma

    CERN Document Server

    Akhiezer, A I; Polovin, R V; ter Haar, D

    2013-01-01

    International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of

  4. Model of stochastic self-oscillation in Gunn diode oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Bocharov, E.P.; Korostelev, G.N.; Khripunov, M.V.

    1987-07-01

    The applicability of the two-mode nonlinear model of decay stochasticity for explanation of the transition from monochromatic self-oscillation to developed stochasticity in the Gunn diode oscillator is demonstrated. Numerical realizations of the basic regimes corresponding to various cases of consideration of the weak nonlinearity of the falling portion of the current-voltage characteristic are presented. A comparative analysis of calculation results of time realizations and experimentally observed oscillograms of stochastic regimes is performed.

  5. Oscillations in Mathematical Biology

    CERN Document Server

    1983-01-01

    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  6. Damping time of transverse kink oscillations in active region coronal loops observed by AIA/SDO

    Directory of Open Access Journals (Sweden)

    Abbas Abedini

    2017-05-01

    Full Text Available A coronal loop can be oscillated in various directions. A basic type of coronal loop oscillation is called transverse oscillation that can be caused by different factors, such as nearby active regions and flares. The damping of transverse oscillation may be produced by the dissipation mechanism or the wake of the traveling disturbance. The aim of this paper is to estimate the damping time of transverse (kink coronal loop oscillations and the quantitative dependence of these oscillations on their frequencies in the solar corona loops that are situated near an active region with the Atmospheric Imaging Assembly (AIA onboard Solar Dynamic Observatory (SDO. The observed data on 2014-Oct-17, consisting of 130 images with an interval of 24 seconds in the 171 A0 pass band is analyzed for evidence of transvers kink oscillations along the coronal loops and for estimate of physical parameters by fast Fourier transform (FFT of data times series. In this analyzed signatures of transvers oscillations that are damped rapidly were found, with oscillation periods in the range of P=2-9.5 minutes. Also, damping times and damping qualities of filtered intensities centered on the dominant frequencies are measured in the range of minutes and , respectively. The observational results of this study indicate that the damping times increase with increasing the oscillation periods, and are highly sensitive function of oscillation period, but damping qualities are not very sensitive to the oscillations period. The order of magnitude of the damping times and damping qualities that obtained from this analysis are in good agreement with previous findings by authors and the theoretical prediction for damping of fast kink mode oscillations.

  7. Strong nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2017-01-01

    This book outlines an analytical solution procedure of the pure nonlinear oscillator system, offering a solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter. Includes exercises.

  8. Long period oscillations in sunspots

    Science.gov (United States)

    Chorley, N.; Hnat, B.; Nakariakov, V. M.; Inglis, A. R.; Bakunina, I. A.

    2010-04-01

    Long period oscillations of the gyroresonant emission from sunspot atmospheres are studied. Time series data generated from the sequences of images obtained by the Nobeyama Radioheliograph operating at a frequency of 17 GHz for three sunspots have been analysed and are found to contain significant periods in the range of several tens of minutes. Wavelet analysis shows that these periods are persistent throughout the observation periods. The presence of the oscillations is confirmed by several methods (periodogram, wavelets, Fisher randomisation and empirical mode decomposition). Spatial analysis using the techniques of period, power, correlation and time lag mapping reveals regions of enhanced oscillatory power in the umbral regions. Also seen are two regions of coherent oscillation of about 25 pixels in size, that oscillate in anti-phase with each other. Possible interpretation of the observed periodicities is discussed, in terms of the shallow sunspot model and the leakage of the solar g-modes.

  9. Building a Synthetic Transcriptional Oscillator.

    Science.gov (United States)

    Schwarz-Schilling, Matthaeus; Kim, Jongmin; Cuba, Christian; Weitz, Maximilian; Franco, Elisa; Simmel, Friedrich C

    2016-01-01

    Reaction circuits mimicking genetic oscillators can be realized with synthetic, switchable DNA genes (so-called genelets), and two enzymes only, an RNA polymerase and a ribonuclease. The oscillatory behavior of the genelets is driven by the periodic production and degradation of RNA effector molecules. Here, we describe the preparation, assembly, and testing of a synthetic, transcriptional two-node negative-feedback oscillator, whose dynamics can be followed in real-time by fluorescence read-out.

  10. An Oscillating Magnet Watt Balance

    OpenAIRE

    Ahmedov, H.

    2015-01-01

    We establish the principles for a new generation of simplified and accurate watt balances in which an oscillating magnet generates Faraday's voltage in a stationary coil. A force measuring system and a mechanism providing vertical movements of the magnet are completely independent in an oscillating magnet watt balance. This remarkable feature allows to establish the link between the Planck constant and a macroscopic mass by a one single experiment. Weak dependence on variations of environment...

  11. Role of Frontal Alpha Oscillations in Creativity

    Science.gov (United States)

    Lustenberger, Caroline; Boyle, Michael R.; Foulser, A. Alban; Mellin, Juliann M.; Fröhlich, Flavio

    2015-01-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent EEG data suggests that cortical oscillations in the alpha frequency band (8 – 12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a fundamental role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking, a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40Hz-tACS was used in instead of 10Hz-tACS to rule out a general “electrical stimulation” effect. No significant change in the Creativity Index was found for such frontal gamma stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. PMID:25913062

  12. Relaxation oscillations in real laser cavity

    Science.gov (United States)

    Szczepanski, Pawel; Malinowski, Michal; Wolski, Radoslaw

    1990-07-01

    An approximate analysis of the relaxation oscillations in Fabry Perot laser cavities is presented. A linear smallsignal perturbation solution of the coupled laser rate equations is generalized by including transverse1 as well longitudinal field dependence2. By the threshold field approximation3 we obtain an expression relating the frequency 0 and damping rate X of the relaxation oscillations to the laser parameters such as steadystate output power P0/Pq normaliezed to the saturation power P distributed losses a L'' poin losses at the mirrors a1 and a arbitrary relectivities o the mirrors r1 and r2 spontaneous liftime ''r of the active medium and geometry o the resonator. 2. THEORY The couppled laser rate equations for single mode can be written in the following form dN I(r) N N dQ I(r) N Q --- ---- (1) dt I ''r #r dt I -r 5 S Q where N denotes the inversion density I (r) describes the total intensity of the nmth laser mode in the cavity I is the saturation in tensity p is the exatation rate Q denotes the number of the photons in the nmth laser mode and ''r is the cavity lifetime. An approximate expressions for the spatial dependence of the electric fields for the forward and backward amplitudes of the nmth laser mode in our approach can be written as R AUR(t) f(x e''TZ S A(r) f(x

  13. Nonlinear oscillations of TM-mode gyrotrons

    Science.gov (United States)

    Chang, Tsun-Hsu; Yao, Hsin-Yu; Su, Bo-Yuan; Huang, Wei-Chen; Wei, Bo-Yuan

    2017-12-01

    This study investigates the interaction between the relativistic electrons and the waves in cavities with fixed field profiles. Both the transverse electric (TE) and the transverse magnetic (TM) cavity modes are examined, including three first-axial modes, TE011, TM011, and TM111, and two zero-axial modes, TM010 and TM110. The first-axial modes have the same resonant frequency, so a direct comparison can be made. By sweeping the electron pitch factor (α) and the electron transit angle (Θ), the optimal converting efficiency of TM modes occurs at α = 1.5 and Θ = 1.5π, unlike the TE mode of α = 2.0 and Θ = 1.0π. The converting efficiencies of both the first-axial TM modes are much lower than that of TE011 mode. The starting currents of TM011 and TM111 modes are four times higher than that of TE011 mode, indicating that these two TM modes are very difficult to oscillate. This evidences that under the traditional operating conditions, the TM-mode gyrotrons are insignificant. However, the two unique, zero-axial TM modes have relatively high converting efficiency. The highest converting efficiency of TM110 is 27.4%, the same value as that of TE011 mode. The starting currents of TM110 mode and TE011 mode are at the same level. The results suggest that some TM-mode gyrotron oscillators are feasible and deserve further theoretical and experimental studies.

  14. 2D numerical analysis of energy harvesting in oscillating heat pipe using piezoelectric transducers

    Science.gov (United States)

    Vaidya, Sajiree; Myers, Oliver; Thompson, Scott; Shamsaei, Nima; Monroe, John G.

    2017-04-01

    Energy Harvesting is a powerful process that deals with exploring different possible ways of converting energy dispersed in the environment into more useful form of energy, essentially electrical energy. Piezoelectric materials are known for their ability of transferring mechanical energy into electrical energy or vice versa. Our work takes advantage of piezoelectric material's properties to covert thermal energy into electrical energy in an oscillating heat pipe. Specific interest in an oscillating heat pipe has relevance to energy harvesting for low power generation suitable for remote electronics operation as well as low-power heat reclamation for electronic packaging. The aim of this paper is develop a 2D multi-physics design analysis model that aids in predicting electrical power generation inherent to an oscillating heat pipe. The experimental design shows a piezoelectric patch with fixed configuration, attached inside an oscillating heat pipe and its behavior when subjected to the oscillating fluid pressure was observed. Numerical analysis of the model depicting the similar behavior was done using a multiphysics FEA software. The numerical model consists of a threeway physics interaction that takes into account fluid flow, solid mechanics, and electrical response of the harvester circuit.

  15. Near shore floating oscillating wave column

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Three different types of floating buoys, using oscillating wave columns, have been considered for generating electric power in an Atlantic environment. The study considered the situation close to the shore, but in the ultimate it was hoped to deploy units offshore. Although other designs would have greater power capture efficiency, the Spar Buoy was studied in greatest depth as it was expected to have the edge in terms of building cost and operating economics. A risk assessment was carried out for both concrete and steel buoys. The report covers (1) history of the project development; (2) project definition; (3) power generation and sensitivities and (4) lessons learned. The study was sponsored by Great Britain's DTI.

  16. Bipolaron assisted Bloch-like oscillations in organic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Luiz Antonio, E-mail: ribeirojr@unb.br [International Center for Condensed Matter Physics, University of Brasília, P.O. Box 04531, 70.919-970, Brasília, DF (Brazil); University of Brasília, UnB Faculty of Planaltina, 73.345-010, Planaltina, DF (Brazil); Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo [Institute of Physics, University of Brasília, 70.919-970, Brasília (Brazil)

    2017-06-15

    The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.

  17. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  18. Magnetization oscillations and waves driven by pure spin currents

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, V.E. [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, Corrensstrasse 2-4, 48149 Muenster (Germany); Urazhdin, S. [Department of Physics, Emory University, Atlanta, GA 30322 (United States); Loubens, G. de [SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Klein, O. [INAC-SPINTEC, CEA/CNRS and Univ. Grenoble Alpes, 38000 Grenoble (France); Cros, V.; Anane, A. [Unité Mixte de Physique CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, 91767 Palaiseau (France); Demokritov, S.O., E-mail: demokrit@uni-muenster.de [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, Corrensstrasse 2-4, 48149 Muenster (Germany); Institute of Metal Physics, Ural Division of RAS, Yekaterinburg 620041 (Russian Federation)

    2017-02-23

    Recent advances in the studies of pure spin currents–flows of angular momentum (spin) not accompanied by the electric currents–have opened new horizons for the emerging technologies based on the electron’s spin degree of freedom, such as spintronics and magnonics. The main advantage of pure spin current, as compared to the spin-polarized electric current, is the possibility to exert spin transfer torque on the magnetization in thin magnetic films without the electrical current flow through the material. In addition to minimizing Joule heating and electromigration effects, this enables the implementation of spin torque devices based on the low-loss insulating magnetic materials, and offers an unprecedented geometric flexibility. Here we review the recent experimental achievements in investigations of magnetization oscillations excited by pure spin currents in different nanomagnetic systems based on metallic and insulating magnetic materials. We discuss the spectral properties of spin-current nano-oscillators, and relate them to the spatial characteristics of the excited dynamic magnetic modes determined by the spatially-resolved measurements. We also show that these systems support locking of the oscillations to external microwave signals, as well as their mutual synchronization, and can be used as efficient nanoscale sources of propagating spin waves.

  19. Optical, UV, and EUV Oscillations of SS Cygni in Outburst

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C W

    2003-12-19

    I provide a review of observations in the optical, UV (HST), and EUV (EUVE and Chandra LETG) of the rapid periodic oscillations of nonmagnetic, disk-accreting, high mass-accretion rate cataclysmic variables (CVs), with particular emphasis on the dwarf nova SS Cyg in outburst. In addition, I drawn attention to a correlation, valid over nearly six orders of magnitude in frequency, between the frequencies of the quasi-periodic oscillations (QPOs) of white dwarf, neutron star, and black hole binaries. This correlation identifies the high frequency quasi-coherent oscillations (so-called ''dwarf nova oscillations'') of CVs with the kilohertz QPOs of low mass X-ray binaries (LMXBs), and the low frequency and low coherence QPOs of CVs with the horizontal branch oscillations (or the broad noise component identified as such) of LMXBs. Assuming that the same mechanisms produce the QPOs of white dwarf, neutron star, and black hole binaries, this correlation has important implications for QPO models.

  20. Quantum interface between Rydberg ensembles and mechanical oscillators in free space

    Science.gov (United States)

    Bariani, Francesco; Otterbach, Johannes; Tan, Huatang; Buchmann, L. F.; Meystre, Pierre

    2013-05-01

    We analyze theoretically an electro-mechanical interface between a charged mechanical oscillator and an ensemble of Rydberg atoms. The charged mechanical oscillator acting as an oscillating electric dipole is coupled to the large electric dipole of the Rydberg transition. The Rydberg blockade effect guarantees that only a single collective spin wave is excited in the atomic ensemble. This hybrid system allows for quantum control of the state of one or more mechanical oscillators. The rich atomic Rydberg spectrum and high level of control of atomic transitions allow to build feedback protocols that maximize its fidelity. We also comment on the use of this interface for phononic state tomography. We ackowledge financial support from NSF, ARO and the DARPA QuaSAR and ORCHID programs.

  1. Analogue Electrical Circuit for Simulation of the Duffing-Holmes Equation

    DEFF Research Database (Denmark)

    Tamaseviciute, E.; Tamasevicius, A.; Mykolaitis, G.

    2008-01-01

    An extremely simple second order analogue electrical circuit for simulating the two-well Duffing-Holmes mathematical oscillator is described. Numerical results and analogue electrical simulations are illustrated with the snapshots of chaotic waveforms, phase portraits (Lissajous figures) and stro......An extremely simple second order analogue electrical circuit for simulating the two-well Duffing-Holmes mathematical oscillator is described. Numerical results and analogue electrical simulations are illustrated with the snapshots of chaotic waveforms, phase portraits (Lissajous figures...

  2. Rapid Polymer Sequencer

    Science.gov (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  3. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical......We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...

  4. Decoupling light and matter: permanent dipole moment induced collapse of Rabi oscillations

    CERN Document Server

    Baranov, Denis G; Krasnok, Alexander E

    2016-01-01

    Rabi oscillations is a key phenomenon among the variety of quantum optical effects that manifests itself in the periodic oscillations of a two-level system between the ground and excited states when interacting with electromagnetic field. Commonly, the rate of these oscillations scales proportionally with the magnitude of the electric field probed by the two-level system. Here, we investigate the interaction of light with a two-level quantum emitter possessing permanent dipole moments. The semi-classical approach to this problem predicts slowing down and even full suppression of Rabi oscillations due to asymmetry in diagonal components of the dipole moment operator of the two-level system. We consider behavior of the system in the fully quantized picture and establish the analytical condition of Rabi oscillations collapse. These results for the first time emphasize the behavior of two-level systems with permanent dipole moments in the few photon regime, and suggest observation of novel quantum optical effects...

  5. A New Method for Suppressing Periodic Narrowband Interference Based on the Chaotic van der Pol Oscillator

    Science.gov (United States)

    Lu, Jia; Zhang, Xiaoxing; Xiong, Hao

    The chaotic van der Pol oscillator is a powerful tool for detecting defects in electric systems by using online partial discharge (PD) monitoring. This paper focuses on realizing weak PD signal detection in the strong periodic narrowband interference by using high sensitivity to the periodic narrowband interference signals and immunity to white noise and PD signals of chaotic systems. A new approach to removing the periodic narrowband interference by using a van der Pol chaotic oscillator is described by analyzing the motion characteristic of the chaotic oscillator on the basis of the van der Pol equation. Furthermore, the Floquet index for measuring the amplitude of periodic narrowband signals is redefined. The denoising signal processed by the chaotic van der Pol oscillators is further processed by wavelet analysis. Finally, the denoising results verify that the periodic narrowband and white noise interference can be removed efficiently by combining the theory of the chaotic van der Pol oscillator and wavelet analysis.

  6. Oscillation mode analysis considering the interaction between a DFIG-based wind turbine and the grid

    Science.gov (United States)

    Wu, Wangping; Xie, Da; Lu, Yupu; Zhao, Zuyi; Yu, Songtao

    2017-01-01

    Sub-synchronous interactions between wind farms and transmission networks with series compensation have drawn great attention. As most large wind farms in Europe and Asia employ doubly fed induction generator turbines, there has recently been a growing interest in studying this phenomenon. To study the stability of wind turbine with doubly fed induction generator after a small disturbance, a complete small signal system is built in this paper. By using eigenvalue and participation factor analysis, the relation between the modes and state variables can be discovered. Thereafter, the oscillation modes are classified into electrical resonance, sub-synchronous resonance, sub-synchronous oscillation, sub-synchronous control interaction, and low frequency oscillation. To verify the oscillation frequency of each oscillation mode, time-domain simulation based on MATLAB/Simulink is presented. The simulation results justify the effectiveness of the small-signal models.

  7. Comparison of Virtual Oscillator and Droop Control

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sinha, Mohit [University of Minnesota; Dhople, Sairaj [University of Minnesota

    2017-08-21

    Virtual oscillator control (VOC) and droop control are distinct methods to ensure synchronization and power sharing of parallel inverters in islanded systems. VOC is a control strategy where the dynamics of a nonlinear oscillator are used to derive control states to modulate the switch terminals of an inverter. Since VOC is a time-domain controller that reacts to instantaneous measurements with no additional filters or computations, it provides a rapid response during transients and stabilizes volatile dynamics. In contrast, droop control regulates the inverter voltage in response to the measured average real and reactive power output. Given that real and reactive power are phasor quantities that are not well-defined in real time, droop controllers typically use multiplicative operations in conjunction with low-pass filters on the current and voltage measurements to calculate such quantities. Since these filters must suppress low frequency ac harmonics, they typically have low cutoff frequencies that ultimately impede droop controller bandwidth. Although VOC and droop control can be engineered to produce similar steady-state characteristics, their dynamic performance can differ markedly. This paper presents an analytical framework to characterize and compare the dynamic response of VOC and droop control. The analysis is experimentally validated with three 120 V inverters rated at 1kW, demonstrating that for the same design specifications VOC is roughly 8 times faster and presents almost no overshoot after a transient.

  8. Universal, computer facilitated, steady state oscillator, closed loop analysis theory and some applications to precision oscillators

    Science.gov (United States)

    Parzen, Benjamin

    1992-01-01

    The theory of oscillator analysis in the immittance domain should be read in conjunction with the additional theory presented here. The combined theory enables the computer simulation of the steady state oscillator. The simulation makes the calculation of the oscillator total steady state performance practical, including noise at all oscillator locations. Some specific precision oscillators are analyzed.

  9. Current-induced magnetoresistance oscillations in two-dimensional electron systems

    OpenAIRE

    Lei, X. L.

    2006-01-01

    Electric current-induced magnetoresistance oscillations recently discovered in two-dimensional electron systems are analyzed using a microscopic scheme for nonlinear magnetotransport direct controlled by the current. The magnetoresistance oscillations are shown to result from drift-motion assisted electron scatterings between Landau levels. The theoretical predictions not only reproduce all the main features observed in the experiments but also disclose other details of the phenomenon.

  10. The study, design and testing of a linear oscillating generator with moving permanent magnets

    Directory of Open Access Journals (Sweden)

    Teodora Susana Oros (Pop

    2015-12-01

    Full Text Available This paper presents a study, design and testing of a Linear Oscillating Generator. There are presented the main steps of the magnetic and electric calculations for a permanent magnet linear alternator of fixed coil and moving magnets type. Finally it has been shown the comparative analysis between the linear oscillating generator with moving permanent magnets in no load operation and load operation.

  11. Diagnostics of Electric Equipment Windings

    Directory of Open Access Journals (Sweden)

    I. I. Branovitsky

    2007-01-01

    Full Text Available The paper presents methodology and results of the investigations pertaining to study of influence of short-circuited turns on transient electrical processes in electric motor windings. Dependence of their damped speed and value of the difference signal, obtained at reciprocal subtraction of damped oscillation curves in absence and in presence of short-circuited turns, on number of turns in the tested windings. It has been determined that damped oscillation curves, immediately attributed to short-circuited turns, have peak values along temporary axis which are areas of the largest transient process sensitivity to КЗ turns.Methodology for diagnostics of single- and three-phase electric motor windings and also other electric equipment, being realized in DO-1 device, has been developed in the paper. The men­tioned device makes it possible to carry out visual comparison and quantitative analysis of damped oscillation curves in the tested windings with standard ones which are set in the device memory and their difference signals.

  12. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Univ. of Tennessee, Knoxville, TN (United States); Gracia, Jose R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  13. Burst Oscillation Studies with NICER

    Science.gov (United States)

    Mahmoodifar, Simin; Strohmayer, Tod E.

    2017-08-01

    Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars in Low Mass X-ray Binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. Here we present the results of our computations of the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. For the cooling phase of the burst we use two simple phenomenological models. The first considers asymmetric cooling that can achieve high amplitudes in the tail. The second considers a sustained temperature pattern on the stellar surface that is produced by r-modes propagating in the surface fluid ocean of the star. We will present some simulated burst light curves/spectra using these models and NICER response files, and will show the capabilities of NICER to detect and study burst oscillations. NICER will enable us to study burst oscillations in the energy band below ~3 keV, where there has been no previous measurements of these phenomena.

  14. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2007-01-01

    discovered that the subcellular distribution of a tagged version of ALG-2 could be directed by physiological external stimuli (including ATP, EGF, prostaglandin, histamine), which provoke intracellular Ca2+ oscillations. Cellular stimulation led to a redistribution of ALG-2 from the cytosol to a punctate...... localization in an oscillatory fashion unitemporally with Ca2+ oscillations, whereas a Ca2+-binding deficient mutant of ALG-2 did not redistribute. Using tagged ALG-2 as bait we identified its novel target protein Sec31A and based on the partial colocalization of endogenous ALG-2 and Sec31A we propose that ALG...

  15. Electricity Customers

    Science.gov (United States)

    This page discusses key sectors and how they use electricity. Residential, commercial, and industrial customers each account for roughly one-third of the nation’s electricity use. The transportation sector also accounts for a small fraction of electricity.

  16. Restoration of oscillation in network of oscillators in presence of direct and indirect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Soumen; Bera, Bidesh K. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India); Bhowmick, Sourav K. [Department of Electronics, Asutosh College, Kolkata-700026 (India); Ghosh, Dibakar, E-mail: diba.ghosh@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)

    2016-10-23

    The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau–Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators. - Highlights: • Amplitude death is observed using direct and indirect coupling. • Revival of oscillation using feedback parameter is discussed. • Restoration of oscillation is observed in limit cycle and chaotic systems.

  17. Damping of prominence longitudinal oscillations due to mass accretion

    Science.gov (United States)

    Ruderman, Michael S.; Luna, Manuel

    2016-06-01

    thread at the moment when it is perturbed. First we consider small amplitude oscillations and use the linear description. Then we consider nonlinear oscillations and assume that the damping is slow, meaning that the damping time is much larger that the characteristic oscillation time. The thread oscillations are described by the solution of the nonlinear pendulum problem with slowly varying amplitude. The nonlinearity reduces the damping time, however this reduction is small. Again the damping time is inversely proportional to the accretion rate. We also obtain that the oscillation periods decrease with time. However even for the largest initial oscillation amplitude considered in our article the period reduction does not exceed 20%. We conclude that the mass accretion can damp the motion of the threads rapidly. Thus, this mechanism can explain the observed strong damping of large-amplitude longitudinal oscillations. In addition, the damping time can be used to determine the mass accretion rate and indirectly the coronal heating.

  18. Rapid prediction of electric fields associated with geomagnetically induced currents in the presence of three-dimensional ground structure: Projection of remote magnetic observatory data through magnetotelluric impedance tensors

    Science.gov (United States)

    Bonner, L. R.; Schultz, Adam

    2017-01-01

    Ground level electric fields arising from geomagnetic disturbances (GMDs) are used by the electric power industry to calculate geomagnetically induced currents (GICs) in the power grid. Current industry practice is limited to electric fields associated with 1-D ground electrical conductivity structure, yet at any given depth in the crust and mantle lateral (3-D) variations in conductivity can span at least 3 orders of magnitude, resulting in large deviations in electric fields relative to 1-D models. Solving Maxwell's equations for electric fields associated with GMDs above a 3-D Earth is computationally burdensome and currently impractical for industrial applications. A computationally light algorithm is proposed as an alternative. Real-time data from magnetic observatories are projected through multivariate transfer functions to locations of previously occupied magnetotelluric (MT) stations. MT time series and impedance tensors, such as those publically available from the NSF EarthScope Program, are used to scale the projected magnetic observatory data into local electric field predictions that can then be interpolated onto points along power grid transmission lines to actively improve resilience through GIC modeling. Preliminary electric field predictions are tested against previously recorded time series, idealized transfer function cases, and existing industry methods to assess the validity of the algorithm for potential adoption by the power industry. Some limitations such as long-period diurnal drift are addressed, and solutions are suggested to further improve the method before direct comparisons with actual GIC measurements are made.

  19. Investigation of Transverse Oscillation Method

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2006-01-01

    oscillation and an axial oscillation in the pulse echo field. The theory behind the creation of the double oscillation pulse echo field is explained as well as the theory behind the estimation of the vector velocity. A parameter study of the method is performed, using the ultrasound simulation program Field...... II. A virtual linear array transducer with center frequency 7 MHz and 128 active elements is created, and a virtual blood vessel of radius 6.4 mm is simulated. The performance of the TO method is found around an initial point in the parameter space. The parameters varied are: flow angle, transmit...... focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal to noise ratio, and type of echo canceling filter used. Using the experimental scanner RASMUS, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic...

  20. Prediction of pilot induced oscillations

    Directory of Open Access Journals (Sweden)

    Valentin PANĂ

    2011-03-01

    Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.

  1. Complex oscillations in an electrically stimulated membrane model

    Directory of Open Access Journals (Sweden)

    Delgado E.J.

    1999-01-01

    Full Text Available Este artigo investiga, teoricamente, a dinâmica de um modelo de membrana sob estimulação elétrica externa. Este sistema mostra vários tipos de respostas oscilatórias no potencial da membrana, quando uma corrente sinoidal AC é superposta à corrente DC aplicada através da membrana. À medida que a frequência da corrente AC varia, este comportamento varia de oscilações periódicas, P1, até oscilações do tipo explosivas, através de regiões de quase-periodicidade. As séries temporais que apresentam estes comportamentos são caracterizadas usando métodos de Teoria de Sistemas Dinâmicos, a saber: mapas de retorno, expoentes de Lyapunov, espectro de potências e dimensão de capacidade. Os resultados são discutidos em relação a membranas biológicas sob condições similares.

  2. Rapid Prototyping

    Science.gov (United States)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  3. Hidden symmetries of deformed oscillators

    Directory of Open Access Journals (Sweden)

    Sergey Krivonos

    2017-11-01

    Full Text Available We associate with each simple Lie algebra a system of second-order differential equations invariant under a non-compact real form of the corresponding Lie group. In the limit of a contraction to a Schrödinger algebra, these equations reduce to a system of ordinary harmonic oscillators. We provide two clarifying examples of such deformed oscillators: one system invariant under SO(2,3 transformations, and another system featuring G2(2 symmetry. The construction of invariant actions requires adding semi-dynamical degrees of freedom; we illustrate the algorithm with the two examples mentioned.

  4. Oscillating-Coolant Heat Exchanger

    Science.gov (United States)

    Scotti, Stephen J.; Blosser, Max L.; Camarda, Charles J.

    1992-01-01

    Devices useful in situations in which heat pipes inadequate. Conceptual oscillating-coolant heat exchanger (OCHEX) transports heat from its hotter portions to cooler portions. Heat transported by oscillation of single-phase fluid, called primary coolant, in coolant passages. No time-averaged flow in tubes, so either heat removed from end reservoirs on every cycle or heat removed indirectly by cooling sides of channels with another coolant. Devices include leading-edge cooling devices in hypersonic aircraft and "frost-free" heat exchangers. Also used in any situation in which heat pipe used and in other situations in which heat pipes not usable.

  5. Ladder operators for isospectral oscillators

    Science.gov (United States)

    Seshadri, S.; Balakrishnan, V.; Lakshmibala, S.

    1998-02-01

    We present, for the isospectral family of oscillator Hamiltonians, a systematic procedure for constructing raising and lowering operators satisfying any prescribed "distorted" Heisenberg algebra (including the q-generalization). This is done by means of an operator transformation implemented by a shift operator. The latter is obtained by solving an appropriate partial isometry condition in the Hilbert space. Formal representations of the nonlocal operators concerned are given in terms of pseudo-differential operators. Using the new annihilation operators, new classes of coherent states are constructed for isospectral oscillator Hamiltonians. The corresponding Fock-Bargmann representations are also considered, with specific reference to the order of the entire function family in each case.

  6. The non-local oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, A. [Istituto Tecnico `G. Cardano`, Monterotondo, Rome (Italy)

    1996-08-01

    The most important characteristics of the non-local oscillator, an oscillator subjected to an additional non-local force, are extensively studied by means of a new asymptotic perturbation method that is able to furnish an approximate solution of weakly non-linear differential equations. The resulting motion is doubly periodic, because a second little frequency appears, in addition to the fundamental harmonic frequency. Comparison with the numerical solution obtained by the Runge-Kitta method confirms the validity of the asymptotic perturbation method and its importance for the study of non-linear dynamical systems.

  7. TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis

    2007-01-01

    A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...

  8. Temperature dependence of microwave oscillations in magnetic tunnel junctions with a perpendicularly magnetized free layer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Feng, Jiafeng, E-mail: hxwei@iphy.ac.cn, E-mail: jiafengfeng@iphy.ac.cn; Wei, Hongxiang, E-mail: hxwei@iphy.ac.cn, E-mail: jiafengfeng@iphy.ac.cn; Han, Xiufeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fang, Bin; Zhang, Baoshun; Zeng, Zhongming [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, Suzhou 215123 (China)

    2015-01-05

    We experimentally study the temperature dependence of the spin-transfer-torque-induced microwave oscillations in MgO-based magnetic tunnel junction nanopillars with a perpendicularly magnetized free layer. We demonstrate that the oscillation frequency increases rapidly with decreasing temperature, which is mainly ascribed to the temperature dependence of both the saturation magnetization and the perpendicular magnetic anisotropy. We also find that a strong temperature dependence of the output power while a nonmonotonic temperature dependence of spectral linewidth are maintained for a constant dc bias in measured temperature range. Possible mechanisms leading to the different dependences of oscillation frequency, output power, and linewidth are discussed.

  9. 3D Printing for the Rapid Prototyping of Structural Electronics

    National Research Council Canada - National Science Library

    Macdonald, Eric; Salas, Rudy; Espalin, David; Perez, Mireya; Aguilera, Efrain; Muse, Dan; Wicker, Ryan B

    2014-01-01

    .... The use of advanced 3D printing technology enhanced with component placement and electrical interconnect deposition can provide electronic prototypes that now can be rapidly fabricated in comparable...

  10. Invariant manifolds and the parameterization method in coupled energy harvesting piezoelectric oscillators

    DEFF Research Database (Denmark)

    Granados, Albert

    2017-01-01

    Energy harvesting systems based on oscillators aim to capture energy from mechanical oscillations and convert it into electrical energy. Widely extended are those based on piezoelectric materials, whose dynamics are Hamiltonian submitted to different sources of dissipation: damping and coupling...... in Hamiltonian systems and hence could be very useful in energy harvesting applications. This article is a first step towards this goal. We consider two piezoelectric beams submitted to a small forcing and coupled through an electric circuit. By considering the coupling, damping and forcing as perturbations, we...

  11. Development of a single-axis ultrasonic levitator and the study of the radial particle oscillations

    Science.gov (United States)

    Baer, Sebastian; Andrade, Marco A. B.; Esen, Cemal; Adamowski, Julio Cezar; Ostendorf, Andreas

    2012-05-01

    This work describes the development and analysis of a new single-axis acoustic levitator, which consists of a 38 kHz Langevin-type piezoelectric transducer with a concave radiating surface and a concave reflector. The new levitator design allows to significantly reducing the electric power necessary to levitate particles and to stabilize the levitated sample in both radial and axial directions. In this investigation the lateral oscillations of a levitated particle were measured with a single point Laser Doppler Vibrometer (LDV) and an image evaluation technique. The lateral oscillations were measured for different values of particle diameter, particle density and applied electrical power.

  12. Synchronization in Complex Oscillator Networks and Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Dorfler, Florian [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory; Bullo, Francesco [Center for Control, Dynamical Systems and Computation, University of California at Santa Babara, Santa Barbara CA

    2012-07-24

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A coupled oscillator network is characterized by a population of heterogeneous oscillators and a graph describing the interaction among them. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here we present a novel, concise, and closed-form condition for synchronization of the fully nonlinear, non-equilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters, or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters, they are statistically correct for almost all networks, and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks such as electric power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex networks scenarios and in smart grid applications.

  13. Impurity induced current oscillations in one-dimensional conductors

    Energy Technology Data Exchange (ETDEWEB)

    Artemenko, S N; Shapiro, D S; Vakhitov, R R; Remizov, S V, E-mail: art@cplire.r [V.A. Kotelnikov Institute for Radioengineering and Electronics of the RAS, 125009 Moscow (Russian Federation)

    2009-11-15

    We study theoretically electronic transport through an isolated local defect in a 1D conductor described in terms of the Luttinger liquid, and show that the well-known tunneling regime of electronic transport leading to power-law I-V curves takes place only in the limit of small voltage. At voltages exceeding a threshold value a new dynamic regime of transport starts in which the DC current I-bar induces AC oscillations of frequency f = I-bar /e. In gated quantum wires where interaction between electrons is short-ranged, generation linewidth is small provided the inter-electronic repulsion is strong enough, otherwise a wide-band noise is generated. In case of long-range Coulomb interaction generation is coherent at any interaction strength. The effect is related to interaction of the current with Friedel oscillations of the electronic density around the impurity. Manifestations of the effect resemble the Coulomb blockade and the Josephson effect. Oscillations of the electric current are accompanied by spin current oscillations. The results are related to semiconducting quantum wires, metallic atomic chains, carbon nanotubes, graphene nanoribbons and others.

  14. Synchronization in complex oscillator networks and smart grids.

    Science.gov (United States)

    Dörfler, Florian; Chertkov, Michael; Bullo, Francesco

    2013-02-05

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A widely adopted model of a coupled oscillator network is characterized by a population of heterogeneous phase oscillators, a graph describing the interaction among them, and diffusive and sinusoidal coupling. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here, we present a unique, concise, and closed-form condition for synchronization of the fully nonlinear, nonequilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters; they are statistically correct for almost all networks; and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks, such as electrical power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex network scenarios and in smart grid applications.

  15. Wideband energy harvesting based on mixed connection of piezoelectric oscillators

    Science.gov (United States)

    Wu, P. H.; Chen, Y. J.; Li, B. Y.; Shu, Y. C.

    2017-09-01

    An approach for wideband energy harvesting together with power enhancement is proposed by integrating multiple piezoelectric oscillators with mixed parallel-series connection. This gives rise to the feasibility of shifting the operation frequency band to the dominant frequency domain of ambient excitations. There are two types of connection patterns discussed here: the p-type (s-type) is the parallel (series) connection of all sets of oscillators where some of them may be connected in series (parallel). In addition, the standard interface circuit used for electric rectification is adopted here. The analytic estimates of output power are derived and explicitly expressed in terms of different matrix formulations for these two connection patterns. They are subsequently validated and are found in good agreement with numerical simulations and experimental observations. Finally, the experimental results from the mixed connection of 4 piezoelectric oscillators show that the peak power of each array is about 3.4 times higher than that generated by a single piezoelectric oscillator. In addition, the bandwidth of the array capable of switching connection patterns is around 2.8 times wider than that based on a single array configuration. Hence, the effective bandwidth is enlarged without the loss of peak power.

  16. Trapped Ion Oscillation Frequencies as Sensors for Spectroscopy

    Directory of Open Access Journals (Sweden)

    Wilfried Nörtershäuser

    2010-03-01

    Full Text Available The oscillation frequencies of charged particles in a Penning trap can serve as sensors for spectroscopy when additional field components are introduced to the magnetic and electric fields used for confinement. The presence of so-called “magnetic bottles” and specific electric anharmonicities creates calculable energy-dependences of the oscillation frequencies in the radiofrequency domain which may be used to detect the absorption or emission of photons both in the microwave and optical frequency domains. The precise electronic measurement of these oscillation frequencies therefore represents an optical sensor for spectroscopy. We discuss possible applications for precision laser and microwave spectroscopy and their role in the determination of magnetic moments and excited state lifetimes. Also, the trap-assisted measurement of radiative nuclear de-excitations in the X-ray domain is discussed. This way, the different applications range over more than 12 orders of magnitude in the detectable photon energies, from below μeV in the microwave domain to beyond MeV in the X-ray domain.

  17. Chemotaxis of Dictyostelium discoideum: Collective Oscillation of Cellular Contacts

    Science.gov (United States)

    Schäfer, Edith; Tarantola, Marco; Polo, Elena; Westendorf, Christian; Oikawa, Noriko; Bodenschatz, Eberhard; Geil, Burkhard; Janshoff, Andreas

    2013-01-01

    Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells. PMID:23349816

  18. Super Bloch oscillations in the Peyrard–Bishop–Holstein model

    Energy Technology Data Exchange (ETDEWEB)

    Herrero-Gómez, C. [GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid (Spain); Díaz, E., E-mail: elenadg@fis.ucm.es [GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid (Spain); Domínguez-Adame, F. [GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid (Spain)

    2012-01-09

    Recently, polarons in the Peyrard–Bishop–Holstein model under DC electric fields were established to perform Bloch oscillations, provided the charge–lattice coupling is not large. In this work, we study this model when the charge is subjected to an applied field with both DC and AC components. Similarly to what happens in the rigid lattice, we find that the carrier undergoes a directed motion or coherent oscillations when the AC field is resonant or detuned with respect to the Bloch frequency, respectively. The electric density current and its Fourier spectrum are also studied to reveal the frequencies involved in the polaron dynamics. -- Highlights: ► We study the Peyrard–Bishop–Holstein model under superimposed DC and AC fields. ► The detuning between the driven and the Bloch frequency sets the polaron dynamics. ► The carrier displays super Bloch oscillations for the non-resonant cases. ► The Morse potential sets the lattice motion which is decoupled of the carrier one. ► The nonlinear coupling leads to a distortion of the wave packet at long times.

  19. B0s Oscillation Results

    CERN Document Server

    Willocq, S

    2002-01-01

    We review new studies of the time dependence of B0s - B0s-bar mixing by the ALEPH, DELPHI and SLD Collaborations, with an emphasis on the different analysis methods used. Combining all available results yields a preliminary lower limit on the oscillation frequency of dms > 14.4 ps-1 at the 95% C.L.

  20. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    Abstract. Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable- coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota's bilinear method. The bilinear forms and analytic soliton solutions are derived, and the ...

  1. Chemical Oscillations-Mathematical Modelling

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 7. Chemical Oscillations - Mathematical Modelling ... Protein Science and Engineering Unit Institute of Microbial Technology Sector 39A Chandigarh 160 036; Department of Chemistry and Centre for Advanced Studies in Chemistry Punjab ...

  2. Cubication of Conservative Nonlinear Oscillators

    Science.gov (United States)

    Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…

  3. Linearization of Conservative Nonlinear Oscillators

    Science.gov (United States)

    Belendez, A.; Alvarez, M. L.; Fernandez, E.; Pascual, I.

    2009-01-01

    A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for…

  4. Sum rules for neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Kobzarev, I.Yu.; Nartem' yanov, B.V.; Okun, L.B.; Shchepkin, M.G. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental' noj Fiziki)

    1982-05-01

    Sum rules for neutrino oscillations have been obtained. The effects due to the neutrino masses are taken into account, msub(..nu..) being not assumed to be a small parameter. Study of the ''binary'' lsub(i)sup(-) ..-->.. ..nu.. ..-->.. lsub(k)sup(+-) process permits to accurately take into account neutrino masses and to obtain expressions for the cross sections oscillating as functions of distance L between the points of neutrino production and absorption. In the case of Dirac or left Majoran masses obtained is the sum rule according to which the cross section sigma(lsub(i)sup(-) ..-->.. lsub(k)sup(-)) summarized with the weight 1/vsub(k) by aromas of final lepton remains constant (exactly, decrease as 1/L/sup 2/) and it does not oscillate. In the case of left Majoran masses there is admixture of antineutrino due to which the lsub(i)sup(-) ..-->.. lsub(k)sup(+) process is possible. In this case both components (neutrino with antineutrino admixture) oscillates independently and there exists analogous sum rule for the sigma(lsub(i)sup(-) ..-->.. lsub(k)sup(+)) cross section.

  5. Discovery of atmospheric neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Tokyo Univ., Inst. for Cosmic Ray Research, Kashiwa, Chiba (Japan)

    2003-05-01

    Cosmic ray particles entering the atmosphere interact with the air nuclei produce neutrinos. These neutrinos are called atmospheric neutrinos. The atmospheric neutrino anomaly observed in Kamiokande is now understood as due to neutrino oscillations by high statistics measurements of the atmospheric neutrinos in Super-Kamiokande. The studies of the atmospheric neutrinos have matured into detailed studies of neutrino masses and mixings. (author)

  6. Sustained oscillations in living cells

    Science.gov (United States)

    Danø, Sune; Sørensen, Preben Graae; Hynne, Finn

    1999-11-01

    Glycolytic oscillations in yeast have been studied for many years simply by adding a glucose pulse to a suspension of cells and measuring the resulting transient oscillations of NADH. Here we show, using a suspension of yeast cells, that living cells can be kept in a well defined oscillating state indefinitely when starved cells, glucose and cyanide are pumped into a cuvette with outflow of surplus liquid. Our results show that the transitions between stationary and oscillatory behaviour are uniquely described mathematically by the Hopf bifurcation. This result characterizes the dynamical properties close to the transition point. Our perturbation experiments show that the cells remain strongly coupled very close to the transition. Therefore, the transition takes place in each of the cells and is not a desynchronization phenomenon. With these two observations, a study of the kinetic details of glycolysis, as it actually takes place in a living cell, is possible using experiments designed in the framework of nonlinear dynamics. Acetaldehyde is known to synchronize the oscillations. Our results show that glucose is another messenger substance, as long as the glucose transporter is not saturated.

  7. Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: contributions of miniature oscillation.

    Directory of Open Access Journals (Sweden)

    Mamiko Suzuki

    Full Text Available Squid can rapidly change the chromatic patterns on their body. The patterns are created by the expansion and retraction of chromatophores. The chromatophore consists of a central pigment-containing cell surrounded by radial muscles that are controlled by motor neurons located in the central nervous system (CNS. In this study we used semi-intact squid (Sepioteuthis lessoniana displaying centrally controlled natural patterns to analyze spatial and temporal activities of chromatophores located on the dorsal mantle skin. We found that chromatophores oscillated with miniature expansions/retractions at various frequencies, even when the chromatic patterns appear macroscopically stable. The frequencies of this miniature oscillation differed between "feature" and "background" areas of chromatic patterns. Higher frequencies occurred in feature areas, whereas lower frequencies were detected in background areas. We also observed synchronization of the oscillation during chromatic pattern expression. The expansion size of chromatophores oscillating at high frequency correlated with the number of synchronized chromatophores but not the oscillation frequency. Miniature oscillations were not observed in denervated chromatophores. These results suggest that miniature oscillations of chromatophores are driven by motor neuronal activities in the CNS and that frequency and synchrony of this oscillation determine the chromatic pattern and the expansion size, respectively.

  8. The mechanical transduction of physiological strength electric fields.

    Science.gov (United States)

    Hart, Francis X

    2008-09-01

    In this article it is proposed that electric fields of physiological strength (approximately 100 V/m) are transduced by the mechanical torque they exert on glycoproteins. The resulting mechanical signal is then transmitted to the cytoskeleton and propagated throughout the cell interior. This mechanical coupling is analyzed for transmembrane glycoproteins, such as integrins and the glycocalyx, and for glycoproteins in the extracellular matrix of cartilage. The applied torque is opposed by viscous fluid drag and restoring forces exerted by adjacent molecules in the membrane or cartilage. The resulting system represents a damped, driven harmonic oscillator. The amplitude of oscillation is constant at low frequencies, but falls off rapidly in the range 1-1000 Hz. The transition frequency depends on parameters such as the viscosity of the surrounding fluid and the restoring force exerted by the surrounding structure. The amplitude increases as the fourth power of the length of the transmembrane glycoproteins and as the square of the applied field. This process may operate in concert with other transduction mechanisms, such as the opening of voltage-gated channels and electrodiffusion/osmosis for DC fields. Copyright 2008 Wiley-Liss, Inc.

  9. Analytic Neutrino Oscillation Probabilities in Matter: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J. [Fermilab; Denton, Peter B. [Copenhagen U.; Minakata, Hisakazu [Madrid, IFT

    2018-01-02

    We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.

  10. Rapidly rotating red giants

    Science.gov (United States)

    Gehan, Charlotte; Mosser, Benoît; Michel, Eric

    2017-10-01

    Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, wich behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the identification of mode crossings is precise and efficient. The determination of the mean core rotation directly derives from the precise measurement of the asymptotic period spacing ΔΠ1 and of the frequency at which the crossing of the rotational components is observed.

  11. Neutrino Oscillation Parameter Sensitivity in Future Long-Baseline Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Matthew [Colorado State Univ., Fort Collins, CO (United States)

    2014-01-01

    The study of neutrino interactions and propagation has produced evidence for physics beyond the standard model and promises to continue to shed light on rare phenomena. Since the discovery of neutrino oscillations in the late 1990s there have been rapid advances in establishing the three flavor paradigm of neutrino oscillations. The 2012 discovery of a large value for the last unmeasured missing angle has opened the way for future experiments to search for charge-parity symmetry violation in the lepton sector. This thesis presents an analysis of the future sensitivity to neutrino oscillations in the three flavor paradigm for the T2K, NO A, LBNE, and T2HK experiments. The theory of the three flavor paradigm is explained and the methods to use these theoretical predictions to design long baseline neutrino experiments are described. The sensitivity to the oscillation parameters for each experiment is presented with a particular focus on the search for CP violation and the measurement of the neutrino mass hierarchy. The variations of these sensitivities with statistical considerations and experimental design optimizations taken into account are explored. The effects of systematic uncertainties in the neutrino flux, interaction, and detection predictions are also considered by incorporating more advanced simulations inputs from the LBNE experiment.

  12. Determination of 1-naphthylamine by using oscillating chemical reaction.

    Science.gov (United States)

    Gao, Jinzhang; Wei, Xiaoxia; Yang, Wu; Lv, Dongyu; Qu, Jie; Chen, Hua; Dai, Hongxia

    2007-06-01

    A simple and rapid analytical method for determining 1-naphthylamine was proposed by perturbation with different amounts of 1-naphthylamine on the classical Belousov-Zhabotinskii (B-Z) oscillating chemical system. The results show that the changes both in oscillating period and amplitude were linearly proportional to the logarithm of the concentration of 1-naphthylamine (logC) very well ranging from 7.08x10(-5) to 7.08x10(-6) molL(-1) and 7.08x10(-5) to 1.0x10(-6) molL(-1), with the corresponding regression coefficient are 0.9957 and 0.9922, respectively. For the later, a lower detection limit of 5.64x10(-9) molL(-1) was obtained. Influence of injection point, temperature and reactant variables on this oscillating system was also investigated in detailed. The results obtained were compared with other determination methods. A possible reaction mechanism was interpreted by using bromide ion selective electrode to inspect the concentration change of Br(-) ion in the oscillating process.

  13. Quantum oscillations in the chiral magnetic conductivity

    Science.gov (United States)

    Kaushik, Sahal; Kharzeev, Dmitri E.

    2017-06-01

    In strong magnetic field, the longitudinal magnetoconductivity in three-dimensional chiral materials is shown to exhibit a new type of quantum oscillations arising from the chiral magnetic effect (CME). These quantum CME oscillations are predicted to dominate over the Shubnikov-de Haas (SdH) ones in chiral materials with an approximately conserved chirality of quasiparticles at strong magnetic fields. The phase of quantum CME oscillations differs from the phase of the conventional SdH oscillations by π /2 .

  14. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-06-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  15. Review of Aircraft Electric Power Systems and Architectures

    DEFF Research Database (Denmark)

    Zhao, Xin; Guerrero, Josep M.; Wu, Xiaohao

    2014-01-01

    In recent years, the electrical power capacity is increasing rapidly in more electric aircraft (MEA), since the conventional mechanical, hydraulic and pneumatic energy systems are partly replaced by electrical power system. As a consequence, capacity and complexity of aircraft electric power...... System, More Electric Aircraft, Constant Frequency, Variable Frequency, High Voltage....

  16. Parity-doublet representation of Majorana fermions and neutron oscillation

    Science.gov (United States)

    Fujikawa, Kazuo; Tureanu, Anca

    2016-12-01

    We present a parity-doublet theorem for the representation of the intrinsic parity of Majorana fermions, which is expected to be useful also in condensed matter physics, and it is illustrated to provide a criterion of neutron-antineutron oscillation in a Bardeen-Cooper-Schrieffer type of effective theory with Δ B =2 baryon number-violating terms. The C P violation in the present effective theory causes no direct C P -violating effects in the oscillation itself, which is demonstrated by the exact solution, although it influences the neutron electric dipole moment in the leading order of small Δ B =2 parameters. An analog of Bogoliubov transformation, which preserves P and C P , is crucial in the analysis.

  17. Nonlinear oscillations in a muscle pacemaker cell model

    Science.gov (United States)

    González-Miranda, J. M.

    2017-02-01

    This article presents a numerical simulation study of the nonlinear oscillations displayed by the Morris-Lecar model [Biophys. J. 35 (1981) 193] for the oscillations experimentally observed in the transmembrane potential of a muscle fiber subject to an external electrical stimulus. We consider the model in the case when there is no external stimulation, aiming to establish the ability of the model to display biophysically reasonable pacemaker dynamics. We obtain 2D bifurcation diagrams showing that indeed the model presents oscillatory dynamics, displaying the two main types of action potentials that are observed in muscle fibers. The results obtained are shown to be structurally stable; that is, robust against changes in the values of system parameters. Moreover, it is demonstrated how the model is appropriate to analyze the action potentials observed in terms of the transmembrane currents creating them.

  18. Assessing the quality of stochastic oscillations

    Indian Academy of Sciences (India)

    Population dynamics; stochastic oscillations. ... We propose a quantification of the oscillatory appearance of the fluctuating populations, and show that good stochastic oscillations are present if a parameter of the macroscopic model is small, and that no microscopic model will show oscillations if that parameter is large.

  19. Internal dynamics of long Josephson junction oscillators

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Lomdahl, P. S.; Scott, Alwyn C.

    1981-01-01

    Numerical computations on a sine-Gordon model of the Josephson junction fluxon oscillator are compared with experimental measurements. Good agreement is found for the voltage current characteristic, oscillator power output, and range of current bias over which oscillation is observed. Our numerical...

  20. Comparison of Methods for Oscillation Detection

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Trangbæk, Klaus

    2006-01-01

    This paper compares a selection of methods for detecting oscillations in control loops. The methods are tested on measurement data from a coal-fired power plant, where some oscillations are occurring. Emphasis is put on being able to detect oscillations without having a system model and without...

  1. Scleronomic Holonomic Constraints and Conservative Nonlinear Oscillators

    Science.gov (United States)

    Munoz, R.; Gonzalez-Garcia, G.; Izquierdo-De La Cruz, E.; Fernandez-Anaya, G.

    2011-01-01

    A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present…

  2. Coherent states for the Legendre oscillator

    OpenAIRE

    Borzov, V. V.; Damaskinsky, E. V.

    2003-01-01

    A new oscillator-like system called by the Legendre oscillator is introduced in this note. The two families of coherent states (coherent states as eigenvectors of the annihilation operator and the Klauder-Gazeau temporally stable coherent states) are defined and investigated for this oscillator.

  3. Oscillation and noise determine signal transduction in shark multimodal sensory cells.

    Science.gov (United States)

    Braun, H A; Wissing, H; Schäfer, K; Hirsch, M C

    1994-01-20

    Oscillating membrane potentials that generate rhythmic impulse patterns are considered to be of particular significance for neuronal information processing. In contrast, noise is usually seen as a disturbance which limits the accuracy of information transfer. We show here, however, that noise in combination with intrinsic oscillations can provide neurons with particular encoding properties, a discovery we made when recording from single electro-sensory afferents of a fish. The temporal sequence of the impulse trains indicates oscillations that operate near the spike-triggering threshold. The oscillation frequency determines the basic rhythm of impulse generation, but whether or not an impulse is actually triggered essentially depends on superimposed noise. The probability of impulse generation can be altered considerably by minor modifications of oscillation baseline and amplitude, which may underlie the exquisite sensitivity of these receptors to thermal and electrical stimuli. Additionally, thermal, but not electrical, stimuli alter the oscillation frequency, allowing dual sensory messages to be conveyed in a single spike train. These findings demonstrate novel properties of sensory transduction which may be relevant for neuronal signalling in general.

  4. Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare) Seedlings.

    Science.gov (United States)

    Deng, Weiwei; Clausen, Jenni; Boden, Scott; Oliver, Sandra N; Casao, M Cristina; Ford, Brett; Anderssen, Robert S; Trevaskis, Ben

    2015-01-01

    The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare), a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in barley seedlings grown in darkness or constant light but were observed with day-night cycles. A dark-to-light transition influenced transcript levels of some clock genes but triggered only weak oscillations of gene expression, whereas a light-to-dark transition triggered robust oscillations. Single light pulses of 6, 12 or 18 hours induced robust oscillations. The light-to-dark transition was the primary determinant of the timing of subsequent peaks of clock gene expression. After the light-to-dark transition the timing of peak transcript levels of clock gene also varied depending on the length of the preceding light pulse. Thus, a single photoperiod can trigger initiation of photoperiod-dependent circadian rhythms in barley seedlings. Photoperiod-specific rhythms of clock gene expression were observed in two week old barley plants. Changing the timing of dusk altered clock gene expression patterns within a single day, showing that alteration of circadian oscillator behaviour is amongst the most rapid molecular responses to changing photoperiod in barley. A barley EARLY FLOWERING3 mutant, which exhibits rapid photoperiod-insensitive flowering behaviour, does not establish clock rhythms in response to a single photoperiod. The data presented show that dawn and dusk cues are important signals for setting the state of the circadian oscillator during early development of barley and that the circadian oscillator of barley exhibits photoperiod-dependent oscillation states.

  5. Slow oscillations orchestrating fast oscillations and memory consolidation.

    Science.gov (United States)

    Mölle, Matthias; Born, Jan

    2011-01-01

    Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Measuring neutrino oscillation parameters using $\

    Energy Technology Data Exchange (ETDEWEB)

    Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0

  7. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-28

    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.

  8. Study of oscillating electroosmotic flows with high temporal and spatial resolution

    Science.gov (United States)

    Wang, Guiren; Liu, Xin; Yang, Fang; Wang, Kaige; Bai, Jintao; Qiao, Rui; Zhao, Wei

    2017-11-01

    In AC electrokinetic (EK) flow where solid-fluid interface exists, oscillating electroosmotic flow (OEOF) is an inevitable flow phenomenon. However, few experimental investigations have been reported on instantaneous velocity of OEOF driven by AC electric field. Here, we studied the near-wall velocity of OEOF by Laser-induced Fluorescence Photobleaching Anemometer (LIFPA). For the first time, an up to 3 kHz velocity response of OEOF had been successfully measured experimentally, even though the oscillating velocity was as low as 600 nm/s. It was found that the oscillating velocity decays with forcing frequency ff, as ff- 0.66 . This had never been predicted by any known theoretical investigations. In the investigated range of electric field intensity (EA) , when ff is below 1 kHz, the linear relation between oscillating velocity and EA was observed. Besides, we also found the bulk flow velocity can significantly affect the oscillating velocity of OEOF. This was also newly observed and implied the bulk flow can affect the formation process of electric double layer. This investigation could be crucial for understanding all OEOF-related phenomena and designing OEOF-based micro/nanofluidics systems. The work was supported by NSF (CAREER CBET-0954977, MRI CBET-1040227, CBET-1336004) and NSFC (11672229).

  9. Evaluation of Residue Based Power Oscillation Damping Control of Inter-area Oscillations for Static Power Sources

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Iov, Florin

    2012-01-01

    Low frequency inter-area oscillations are known stability issue of large interconnected electrical grids. It was demonstrated that additional control loop can be applied for static power sources, like FACTS, HVDC or modern Wind Power Plants, to modulate their power output and successfully attenuate...... these oscillations. Variety of control design methods were proposed for this service. In this paper focus is given to the most popular technique based on residues. Authors demonstrate on a small 4-machine 12-bus grid that residues may not provide sufficient information for effective damping control design. Hence......, it is proposed to give more attention to additional indices like transfer function zero location and interactions between mode of interest and other system dynamics. Consequently, additional rules are proposed for residue based damping control design....

  10. Phase response curves of a molecular model oscillator: implications for mutual coupling of paired oscillators.

    Science.gov (United States)

    Petri, B; Stengl, M

    2001-04-01

    Increasing evidence indicates that the accessory medulla is the circadian pacemaker controlling locomotor activity rhythms in insects. A prominent group of neurons of this neuropil shows immunoreactivity to the peptide pigment-dispersing hormone (PDH). In Drosophila melanogaster, the PDH-immunoreactive (PDH-ir) lateral neurons, which also express the clock genes period and timeless, are assumed to be circadian pacemaker cells themselves. In other insects, such as Leucophaea maderae, a subset of apparently homologue PDH-ir cells is a candidate for the circadian coupling pathway of the bilaterally symmetric clocks. Although knowledge about molecular mechanisms of the circadian clockwork is increasing rapidly, very little is known about mechanisms of circadian coupling. The authors used a computer model, based on the molecular feedback loop of the clock genes in D. melanogaster, to test the hypothesis that release of PDH is involved in the coupling between bilaterally paired oscillators. They can show that a combination of all-delay- and all-advance-type interactions between two model oscillators matches best the experimental findings on mutual pacemaker coupling in L. maderae. The model predicts that PDH affects the phosphorylation rate of clock genes and that in addition to PDH, another neuroactive substance is involved in the coupling pathway, via an all-advance type of interaction. The model suggests that PDH and light pulses, represented by two distinct classes of phase response curves, have different targets in the oscillatory feedback loop and are, therefore, likely to act in separate input pathways to the clock.

  11. Multifrequency Oscillator-Type Active Printed Antenna Using Chaotic Colpitts Oscillator

    OpenAIRE

    Bibha Kumari; Nisha Gupta

    2014-01-01

    This paper presents a new concept to realize a multifrequency Oscillator-type active printed monopole antenna. The concept of period doubling route to chaos is exploited to generate the multiple frequencies. The chaotic Colpitts oscillator is integrated with the printed monopole antenna (PMA) on the same side of the substrate to realize an Oscillator-type active antenna where the PMA acts as a load and radiator to the chaotic oscillator. By changing the bias voltage of the oscillator, the ant...

  12. Experimental studies of neutrino oscillations

    CERN Document Server

    Kajita, Takaaki

    2016-01-01

    The 2015 Nobel Prize in physics has been awarded to Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Takaaki Kajita of Tokyo University is a Japanese physicist, known for neutrino experiments at the Kamiokande and its successor, Super-Kamiokande. This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into as well as a record of the rise and the role of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the 3 families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible foot-print in the history of big and better science.

  13. Cubication of conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, Augusto; Alvarez, Mariela L [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, Elena; Pascual, Inmaculada [Departamento de Optica, FarmacologIa y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2009-09-15

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  14. Memristor-based reactance-less oscillator

    KAUST Repository

    Zidan, Mohammed A.

    2012-10-02

    The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.

  15. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian

    2015-01-01

    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here...... for ~66% of total cyanide removal. Simulations of our updated computational model show that intracellular cyanide reactions increase the amplitude of oscillations and that cyanide addition lowers [ACA] instantaneously. We conclude that cyanide provides the following means of inducing global oscillations......: a) by reducing [ACAx] relative to oscillation amplitude, b) by targeting multiple intracellular carbonyl compounds during fermentation, and c) by acting as a phase resetting stimulus....

  16. Weiss oscillations and particle-hole symmetry at the half-filled Landau level

    CERN Document Server

    Cheung, Alfred K C; Mulligan, Michael

    2016-01-01

    Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal $\\pm e^2/2h$ at half-filling. We study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half-filling in the presence of an applied periodic one-dimensional electrostatic potential. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field, the oscillations occur symmetrically as the electron density is varied about half-filling. We find an approximate "sum rule" obeyed for all pairs of oscillation minima that can be tested in experiment. We discuss the implications of our results and approximations for the description of the half-filled Landau level.

  17. Low-power crystal and MEMS oscillators the experience of watch developments

    CERN Document Server

    Eric Vittoz

    2010-01-01

    Electronic oscillators using an electromechanical device as a frequency reference are irreplaceable components of systems-on-chip for time-keeping, carrier frequency generation and digital clock generation. With their excellent frequency stability and very large quality factor Q, quartz crystal resonators have been the dominant solution for more than 70 years. But new possibilities are now offered by micro-electro-mechanical (MEM) resonators, that have a qualitatively identical equivalent electrical circuit. Low-Power Crystal and MEMS Oscillators concentrates on the analysis and design of the most important schemes of integrated oscillator circuits. It explains how these circuits can be optimized by best exploiting the very high Q of the resonator to achieve the minimum power consumption compatible with the requirements on frequency stability and phase noise. The author has 40 years of experience in designing very low-power, high-performance quartz oscillators for watches and other battery operated systems an...

  18. Theoretical investigation of magnetoresistivity oscillations modulated by a terahertz field in quantum wells with parabolic potential

    Science.gov (United States)

    Hoi, Bui Dinh

    2017-12-01

    The magnetoresistivity (MR) in a parabolic quantum well (PQW), subjected to a crossed dc electric field and magnetic field, modulated by a terahertz field (TF), is theoretically calculated. The electron - acoustic phonon interaction is taken into account at low temperatures. In the case of absence of the TF, the Shubnikov - de Haas oscillations are observed. The temperature dependence of the relative amplitude of these oscillations is in good agreement with previous theories and experiments in some two-dimensional electron systems. In the presence of the TF, there exist the oscillations in the MR which are similar to those observed experimentally in some two-dimensional electron systems. The amplitude of these oscillations increases with increasing the TF amplitude (intensity).

  19. Achieving synchronization with active hybrid materials: Coupling self-oscillating gels and piezoelectric films

    Science.gov (United States)

    Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.

    Our goal is to develop materials that compute by using non-linear oscillating chemical reactions to perform spatio-temporal recognition tasks. The material of choice is a polymer gel undergoing the oscillatory Belousov-Zhabotinsky reaction. The novelty of our approach is in employing hybrid gel-piezoelectric micro-electro-mechanical systems (MEMS) to couple local chemo-mechanical oscillations over long distances by electrical connection. Our modeling revealed that (1) interaction between the MEMS units is sufficiently strong for synchronization; (2) the mode of synchronization depends on the number of units, type of circuit connection (serial of parallel), and polarity of the units; (3) each mode has a distinctive pattern in phase of oscillations and generated voltage. The results indicate feasibility of using the hybrid gel-piezoelectric MEMS for oscillator based unconventional computing.

  20. Suspended conductive plate oscillations in the magnetic field of the conductor with alternating current

    Directory of Open Access Journals (Sweden)

    Popov Ivan

    2014-01-01

    Full Text Available The problem of cooling the conductor with an alternating high-ampere electric current is offered to be solved by using oscillations of suspended conductive plate. System basic parameters are estimated from analysing the system of differential equations describing the motions in coupled electrical-mechanical system. The parameters must satisfy the conditions of system’s resonance. Examination of equilibrium position causes a researching of the differential equation with periodic coefficients.

  1. Suspended conductive plate oscillations in the magnetic field of the conductor with alternating current

    OpenAIRE

    Popov Ivan; Lukin Alexey; Skubov Dmitry; Shtukin Lev

    2014-01-01

    The problem of cooling the conductor with an alternating high-ampere electric current is offered to be solved by using oscillations of suspended conductive plate. System basic parameters are estimated from analysing the system of differential equations describing the motions in coupled electrical-mechanical system. The parameters must satisfy the conditions of system’s resonance. Examination of equilibrium position causes a researching of the differential equation with periodic coefficients.

  2. Multipartite entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.

  3. Oscillations and Waves in Sunspots

    Directory of Open Access Journals (Sweden)

    Elena Khomenko

    2015-11-01

    Full Text Available A magnetic field modifies the properties of waves in a complex way. Significant advances have been made recently in our understanding of the physics of sunspot waves with the help of high-resolution observations, analytical theories, as well as numerical simulations. We review the current ideas in the field, providing the most coherent picture of sunspot oscillations as by present understanding.

  4. Renormalization for free harmonic oscillators

    OpenAIRE

    Sonoda, H.

    2013-01-01

    We introduce a model of free harmonic oscillators that requires renormalization. The model is similar to but simpler than the soluble Lee model. We introduce two concrete examples: the first, resembling the three dimensional $\\phi^4$ theory, needs only mass renormalization, and the second, resembling the four dimensional $\\phi^4$ theory and the Lee model, needs additional renormalization of a coupling and a wave function.

  5. Oscillations of a polarizable vacuum

    Directory of Open Access Journals (Sweden)

    James G. Gilson

    1991-01-01

    Full Text Available A classical basis for one-dimensional Schrödinger quantum theory is constructed from simple vacuum polarization harmonic oscillators within standard stochastic theory. The model is constructed on a two-dimensional phase configuration surface with phase velocity vectors that have a speed of light zitterbewegung behaviour character. The system supplies a natural Hermitian scalar product describing probability density which is derived from angular momentum considerations. The generality of the model which is extensive is discussed.

  6. Antiferromagnetic nano-oscillator in external magnetic fields

    Science.gov (United States)

    Checiński, Jakub; Frankowski, Marek; Stobiecki, Tomasz

    2017-11-01

    We describe the dynamics of an antiferromagnetic nano-oscillator in an external magnetic field of any given time distribution. The oscillator is powered by a spin current originating from spin-orbit effects in a neighboring heavy metal layer and is capable of emitting a THz signal in the presence of an additional easy-plane anisotropy. We derive an analytical formula describing the interaction between such a system and an external field, which can affect the output signal character. Interactions with magnetic pulses of different shapes, with a sinusoidal magnetic field and with a sequence of rapidly changing magnetic fields are discussed. We also perform numerical simulations based on the Landau-Lifshitz-Gilbert equation with spin-transfer torque effects to verify the obtained results and find a very good quantitative agreement between analytical and numerical predictions.

  7. Oscillators and relaxation phenomena in Pleistocene climate theory

    CERN Document Server

    Crucifix, Michel

    2011-01-01

    Ice sheets appeared in the northern hemisphere around 3 million years ago and glacial-interglacial cycles have paced Earth's climate since then. Superimposed on these long glacial cycles comes an intricate pattern of millennial and sub-millennial variability, including Dansgaard-Oeschger and Heinrich events. There are numerous theories about theses oscillations. Here, we review a number of them in order draw a parallel between climatic concepts and dynamical system concepts, including, in particular, the relaxation oscillator, excitability, slow-fast dynamics and homoclinic orbits. Namely, almost all theories of ice ages reviewed here feature a phenomenon of synchronisation between internal climate dynamics and the astronomical forcing. However, these theories differ in their bifurcation structure and this has an effect on the way the ice age phenomenon could grow 3 million years ago. All theories on rapid events reviewed here rely on the concept of a limit cycle in the ocean circulation, which may be excited...

  8. Learning increases human electroencephalographic coherence during subsequent slow sleep oscillations.

    Science.gov (United States)

    Mölle, Matthias; Marshall, Lisa; Gais, Steffen; Born, Jan

    2004-09-21

    Learning is assumed to induce specific changes in neuronal activity during sleep that serve the consolidation of newly acquired memories. To specify such changes, we measured electroencephalographic (EEG) coherence during performance on a declarative learning task (word pair associations) and subsequent sleep. Compared with a nonlearning control condition, learning performance was accompanied with a strong increase in coherence in several EEG frequency bands. During subsequent non-rapid eye movement sleep, coherence only marginally increased in a global analysis of EEG recordings. However, a striking and robust increase in learning-dependent coherence was found when analyses were performed time-locked to the occurrence of slow oscillations (learning in the slow-oscillatory, delta, slow-spindle, and gamma bands. The findings identify the depolarizing phase of the slow oscillations in humans as a time period particularly relevant for a reprocessing of memories in sleep.

  9. Automatic oscillator frequency control system

    Science.gov (United States)

    Smith, S. F. (Inventor)

    1985-01-01

    A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.

  10. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  11. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Mechanism of Current Oscillations in Gallium Arsenide Photoconductive Semiconductor Switches

    Science.gov (United States)

    Tian, Li-Qiang; Shi, Wei

    2008-07-01

    Semi-insulating photoconductive semiconductor switch with an electrode gap of 4 mm, triggered by a laser pulse with energy of 0.5mJ, and applied bias of 2.5kV, the periodicity current oscillation with a cycle of 12ns is obtained. It is indicated that the current oscillation is one mode of transferred electron effect, namely quenched domain mode. This mode of trans-electron oscillator is obtained when the instantaneous bias electric field drops below the sustaining field (the minimum electric field required to support the domain) before the domain reaches the anode, which leads to the domain disappears somewhere in the bulk of the switch and away from the ohmic contacts. We mainly analyse the time-dependent characteristic of the mode, the theoretical analysis results are in excellent agreement with the experiment.

  12. Capacitive coupling synchronizes autonomous microfluidic oscillators.

    Science.gov (United States)

    Lesher-Perez, Sasha Cai; Zhang, Chao; Takayama, Shuichi

    2018-01-31

    Even identically-designed autonomous microfluidic oscillators have device-to-device oscillation variability that arises due to inconsistencies in fabrication, materials, and operation conditions. This work demonstrates, experimentally and theoretically, that with appropriate capacitive coupling these microfluidic oscillators can be synchronized. The size and characteristics of the capacitive coupling needed and the range of input flow rate differences that can be synchronized are also characterized. In addition to device-to-device variability, there is also within-device oscillation noise that arises. An additional advantage of coupling multiple fluidic oscillators together is that the oscillation noise decreases. The ability to synchronize multiple autonomous oscillators is also a first step towards enhancing their usefulness as tools for biochemical research applications where multiplicate experiments with identical temporal-stimulation conditions are required. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Alternating-Current Motor Drive for Electric Vehicles

    Science.gov (United States)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  14. Teaching the Physics of a String-Coupled Pendulum Oscillator: Not Just for Seniors Anymore

    Science.gov (United States)

    Cho, Young-Ki

    2012-01-01

    Coupled oscillators are an example of resonant energy exchange that is an interesting topic for many students in various majors, such as physics, chemistry, and electrical and mechanical engineering. However, this subject matter is considered too advanced for freshmen and sophomores, usually because of the level of mathematics involved.…

  15. Homoclinic bifurcations in a neutral delay model of a transmission line oscillator

    NARCIS (Netherlands)

    Barton, D.A.W.; Krauskopf, B.; Wilson, R.E.

    2007-01-01

    In a transmission line oscillator (TLO) a linear wave travels along a piece of cable, the transmission line, and interacts with terminating electrical components. A fixed time delay arises due to the transmission time through the transmission line. Recent experiments on a TLO driven by a negative

  16. Modelling of Trapped Plasma Mode Oscillations in a p+ n – n+ ...

    African Journals Online (AJOL)

    This paper proposes an approach for obtaining a relatively simple set of equations which apply to the description of TRAPATT phenomenon and applies it to model trappedplasma mode oscillations in a p+ n – n+ silicon diode. Typical voltage, conduction current, electric field and carrier charge wave-forms are presented for ...

  17. Isochronous Liénard-type nonlinear oscillators of arbitrary dimensions

    Indian Academy of Sciences (India)

    2015-10-13

    Oct 13, 2015 ... In this paper, we briefly present an overview of the recent developments made in identifying/generating systems of Liénard-type nonlinear oscillators ... 097, India; Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, India ...

  18. Controlling particle trajectories using oscillating microbubbles

    Science.gov (United States)

    Jalikop, Shreyas; Wang, Cheng; Hilgenfeldt, Sascha

    2010-11-01

    In many applications of microfluidics and biotechnology, such as cytometry and drug delivery, it is vital to manipulate the trajectories of microparticles such as vesicles or cells. On this small scale, inertial or gravitational effects are often too weak to exploit. We propose a mechanism to selectively trap and direct particles based on their size in creeping transport flows (Re1). We employ Rayleigh-Nyborg-Westervelt (RNW) streaming generated by an oscillating microbubble, which in turn generates a streaming flow component around the mobile particles. The result is an attractive interaction that draws the particle closer to the bubble. The impenetrability of the bubble interface destroys time-reversal symmetry and forces the particles onto either narrow trajectory bundles or well-defined closed trajectories, where they are trapped. The effect is dependent on particle size and thus allows for the passive focusing and sorting of selected sizes, on scales much smaller than the geometry of the microfluidic device. The device could eliminate the need for complicated microchannel designs with external magnetic or electric fields in applications such as particle focusing and size-based sorting.

  19. From steady-state to synchronized yeast glycolytic oscillations II: model validation.

    Science.gov (United States)

    du Preez, Franco B; van Niekerk, David D; Snoep, Jacky L

    2012-08-01

    In an accompanying paper [du Preez et al., (2012) FEBS J279, 2810-2822], we adapt an existing kinetic model for steady-state yeast glycolysis to simulate limit-cycle oscillations. Here we validate the model by testing its capacity to simulate a wide range of experiments on dynamics of yeast glycolysis. In addition to its description of the oscillations of glycolytic intermediates in intact cells and the rapid synchronization observed when mixing out-of-phase oscillatory cell populations (see accompanying paper), the model was able to predict the Hopf bifurcation diagram with glucose as the bifurcation parameter (and one of the bifurcation points with cyanide as the bifurcation parameter), the glucose- and acetaldehyde-driven forced oscillations, glucose and acetaldehyde quenching, and cell-free extract oscillations (including complex oscillations and mixed-mode oscillations). Thus, the model was compliant, at least qualitatively, with the majority of available experimental data for glycolytic oscillations in yeast. To our knowledge, this is the first time that a model for yeast glycolysis has been tested against such a wide variety of independent data sets. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html. © 2012 The Authors Journal compilation © 2012 FEBS.

  20. Investigation of combustion control in a dump combustor using the feedback free fluidic oscillator

    Science.gov (United States)

    Meier, Eric J.

    The feedback free fluidic oscillator uses the unsteady nature of two colliding jets to create a single oscillating outlet jet with a wide sweep angle. These devices have the potential to provide additional combustion control, boundary layer control, thrust vectoring, and industrial flow deflection. Two-dimensional computational fluid dynamics, CFD, was used to analyze the jet oscillation frequency over a range of operating conditions and to determine the effect that geometric changes in the oscillator design have on the frequency. Results presented illustrate the changes in jet oscillation frequency with gas type, gas temperature, operating pressure, pressure ratio across the oscillator, aspect ratio of the oscillator, and the frequency trends with various changes to the oscillator geometry. A fluidic oscillator was designed and integrated into single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the dump plane using 15% of the oxidizer flow. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide at an O/F of 11.66. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics for studying a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared with equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 60% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. The results indicate open loop propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate. Three-dimensional computational fluid dynamics, 3-D CFD, was conducted to determine the

  1. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding

    Science.gov (United States)

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.

  2. On-chip microfluid induced by oscillation of microrobot for noncontact cell transportation

    Science.gov (United States)

    Feng, Lin; Liang, Shuzhang; Zhou, Xiangcong; Yang, Jianlei; Jiang, Yonggang; Zhang, Deyuan; Arai, Fumihito

    2017-11-01

    The importance of cell manipulation and cultivation is increasing rapidly in various fields, such as drug discovery, regenerative medicine, and investigation of new energy sources. This paper presents a method to transport cells in a microfluidic chip without contact. A local vortex was generated when high-frequency oscillation of a microtool was induced in a microfluidic chip. The vortex was controlled by tuning the tool's oscillation parameters, such as the oscillation amplitude and frequency. The cells were then transported in the chip based on the direction of the tool's movement, and their position, posture, and trajectories were controlled. Bovine oocyte manipulations, that is, transportation and rotation, were conducted to demonstrate the capability of the proposed method, without any contact by the microrobot with high-frequency oscillation.

  3. Electrical contracting

    CERN Document Server

    Neidle, Michael

    2013-01-01

    Electrical Contracting, Second Edition is a nine-chapter text guide for the greater efficiency in planning and completing installations for the design, installation and control of electrical contracts. This book starts with a general overview of the efficient cabling and techniques that must be employed for safe wiring design, as well as the cost estimation of the complete electrical contract. The subsequent chapters are devoted to other electrical contracting requirements, including electronic motor control, lighting, and electricity tariffs. A chapter focuses on the IEE Wiring Regulations an

  4. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  5. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    Science.gov (United States)

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  6. Electricity Storage. Technology Brief

    Energy Technology Data Exchange (ETDEWEB)

    Simbolotti, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome (Italy); Kempener, R. [International Renewable Energy Agency IRENA, Bonn (Germany)

    2012-04-15

    Electricity storage is a key technology for electricity systems with a high share of renewables as it allows electricity to be generated when renewable sources (i.e. wind, sunlight) are available and to be consumed on demand. It is expected that the increasing price of fossil fuels and peak-load electricity and the growing share of renewables will result in electricity storage to grow rapidly and become more cost effective. However, electricity storage is technically challenging because electricity can only be stored after conversion into other forms of energy, and this involves expensive equipment and energy losses. At present, the only commercial storage option is pumped hydro power where surplus electricity (e.g. electricity produced overnight by base-load coal or nuclear power) is used to pump water from a lower to an upper reservoir. The stored energy is then used to produce hydropower during daily high-demand periods. Pumped hydro plants are large-scale storage systems with a typical efficiency between 70% and 80%, which means that a quarter of the energy is lost in the process. Other storage technologies with different characteristics (i.e. storage process and capacity, conversion back to electricity and response to power demand, energy losses and costs) are currently in demonstration or pre-commercial stages and discussed in this brief report: Compressed air energy storage (CAES) systems, Flywheels; Electrical batteries; Supercapacitors; Superconducting magnetic storage; and Thermal energy storage. No single electricity storage technology scores high in all dimensions. The technology of choice often depends on the size of the system, the specific service, the electricity sources and the marginal cost of peak electricity. Pumped hydro currently accounts for 95% of the global storage capacity and still offers a considerable expansion potential but does not suit residential or small-size applications. CAES expansion is limited due to the lack of suitable

  7. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    Science.gov (United States)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  8. Waves and Oscillations in Plasmas

    CERN Document Server

    Pecseli, Hans L

    2012-01-01

    The result of more than 15 years of lectures in plasma sciences presented at universities in Denmark, Norway, and the United States, Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences. The book covers fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping. Offering a clear separation of linear and nonlinear models, the book can be tailored for readers of varying levels of expertise.Designed to provide basic training in linear as well as nonlinear plasma dynamics, and practical in areas as d

  9. Wave Physics Oscillations - Solitons - Chaos

    CERN Document Server

    Nettel, Stephen

    2009-01-01

    This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.

  10. Making space for harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, Leo; /Fermilab

    2004-11-01

    If we restrict the number of harmonic oscillator energy eigenstates to some finite value, N, then the discrete spectrum of the corresponding position operator comprise the roots of the Hermite polynomial H{sub N+1}. Its range is just large enough to accommodate classical motion at high energy. A negative energy term must be added to the Hamiltonian which affects only the last eigenstate, |N>, suggesting it is concentrated at the extrema of this finite ''space''. Calculations support a conjecture that, in the limit of large N, the global distribution of points approaches the differential form for classical action.

  11. Neutrino Oscillation Studies with Reactors

    CERN Document Server

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  12. Electric Propulsion Study

    Science.gov (United States)

    1990-08-01

    literature) the implications to nuclear shielding should be reviewed. The presence of high rotational speeds on space vehicles may become important to...levitation by rapidly rotating magnets. There have been claims of antigravity , high electric fields, perpetual motion, inertial loss, gas ionization. All...check of coupling, it may be possible to search existing data for relevant information. Since beta batteries are being used on some spac-.- vehicles , it

  13. Phase noise and frequency stability in oscillators

    CERN Document Server

    Rubiola, Enrico

    2009-01-01

    Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...

  14. Mutual synchronization of spin-torque oscillators consisting of perpendicularly magnetized free layers and in-plane magnetized pinned layers

    Science.gov (United States)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi

    2018-01-01

    A mutual synchronization of spin-torque oscillators coupled through current injection is studied theoretically. Models of electrical coupling in parallel and series circuits are proposed. Solving the Landau–Lifshitz–Gilbert equation, excitation of in-phase or antiphase synchronization, depending on the ways the oscillators are connected, is found. It is also found from both analytical and numerical calculations that the current-frequency relations for both parallel and series circuits are the same as that for a single spin-torque oscillator.

  15. Modes of nanosatellite aerodynamic oscillations in atmosphere

    Science.gov (United States)

    Gerasimov, Yu V.; Ivanov, E. A.; Karetnikov, G. K.; Konstantinova, I. A.; Selivanov, A. B.

    2017-11-01

    The paper is devoted to the results of investigating the dependencies of nanosatellite aerodynamic oscillations frequency on attack angle at different altitudes up to 70 km are defined. The oscillations bandwidths are determined with respect to the geometric parameters for a nanosatellite with 10 kg mass and 6000 kg/m3 average density. The model allows estimating the bandwidth aerodynamic oscillations in the suborbital nanosatellite trajectory based on the given geometry and mass-dimensional parameters.

  16. Characterizing correlations of flow oscillations at bottlenecks

    OpenAIRE

    Kretz, Tobias; Woelki, Marko; Schreckenberg, Michael

    2006-01-01

    "Oscillations" occur in quite different kinds of many-particle-systems when two groups of particles with different directions of motion meet or intersect at a certain spot. We present a model of pedestrian motion that is able to reproduce oscillations with different characteristics. The Wald-Wolfowitz test and Gillis' correlated random walk are shown to hold observables that can be used to characterize different kinds of oscillations.

  17. Characterizing correlations of flow oscillations at bottlenecks

    Science.gov (United States)

    Kretz, Tobias; Wölki, Marko; Schreckenberg, Michael

    2006-02-01

    'Oscillations' occur in quite different kinds of many-particle systems when two groups of particles with different directions of motion meet or intersect at a certain spot. In this work a model of pedestrian motion is presented that is able to reproduce oscillations with different characteristics. The Wald-Wolfowitz test and Gillis' correlated random walk are shown to include observables that can be used to characterize different kinds of oscillations.

  18. Oscillations of neutral B mesons systems

    CERN Document Server

    Boucrot, J

    1999-01-01

    The oscillation phenomenon in the neutral B mesons systems is now well established. The motivations and principles of the measurements are given; then the most recent results from the LEP experiments, the CDF collaboration at Fermilab and the SLD collaboration at SLAC are reviewed. The present world average of the $\\bd$ meson oscillation frequency is $\\dmd = 0.471 \\pm 0.016 \\ps$ and the lower limit on the $\\bs$ oscillation frequency is

  19. Phase-locked Josephson soliton oscillators

    DEFF Research Database (Denmark)

    Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.

    1991-01-01

    Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...

  20. On Rabi oscillations between Bloch bands

    OpenAIRE

    Plötz, Patrick

    2010-01-01

    We study Rabi oscillations between the bands of an arbitrary biased superlattice in a tight-binding model. We reduce the problem to an equation of Whittaker--Hill type and, in absence of any known solutions in closed form, discuss different approximations to describe the oscillations between the Bloch bands. We identify regimes of weak and strong inter-band coupling and compare predictions for these Rabi oscillations to numerical results.

  1. SPIRAL, FUNCTIONS AND OSCILLATING SYSTEMS BESSEL

    OpenAIRE

    Gil Benitez, W.; Universidad Nacional Mayor de San Marcos, Facultad de Química e Ingeniería Química Departamento de Analisis y Diseño de Procesos Av. Venezuela sin - Ciudad Universitaria UNMSM - Lima - Peru

    2014-01-01

    lt is shown a mathematics analysis that link spirals, differential equations of second order of the Bessel function type and the oscillant systems with constant and variable frequency. lt is found that the oscillant systems are consecuents to a spiral mathematical functions and Bessel is only some of its varieties. Consequently is shown an exact solution of the Bessel equations which does l'lot require tables. The math model it is a tool which will be used to simulate oscillant phenomena with...

  2. Small oscillations via conservation of energy

    Science.gov (United States)

    Troy, Tia; Reiner, Megan; Haugen, Andrew J.; Moore, Nathan T.

    2017-11-01

    The work describes an analogy-based small oscillations analysis of a standard static equilibrium lab problem. In addition to force analysis, a potential energy function for the system is developed, and by drawing out mathematical similarities to the simple harmonic oscillator, we are able to describe (and experimentally verify) the period of small oscillations about the static equilibrium state. The problem was developed and implemented in a standard University Physics course at Winona State University.

  3. Q-oscillators and relativistic position operators

    Energy Technology Data Exchange (ETDEWEB)

    Arik, M. (Dept. of Mathematics, Istanbul Technical Univ. (Turkey)); Mungan, M. (Dept. of Physics, Bogazici Univ., Istanbul (Turkey))

    1992-05-21

    We investigate the multi-dimensional q-oscillator whose commutation relations are invariant under the quantum group. The no-interaction limit corresponds to a contraction of the q-oscillator algebra and yields relativistic position operators which can be expressed in terms of the generators of the Poincare group. This leads to the interpretation of the interacting q-oscillator as an relativistic quantum system and results in a hamiltonian whose spectrum is exactly exponential. (orig.).

  4. Toward precision study of atmospheric neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, Univ. of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8582 (Japan)

    2006-09-15

    Atmospheric neutrinos have been playing a major role in studying neutrino oscillations. Because of the unique feature of atmospheric neutrinos, future atmospheric neutrino experiments are likely to contribute to precision studies of neutrino oscillations. Possible contribution of future atmospheric neutrino experiments to the neutrino oscillation physics are discussed, including the measurements of {theta}{sub 13}, the sign of {delta}m{sub 23}{sup 2}, the determination of octant of {theta}{sub 23} and possibly the CP phase.

  5. Lighthouses with two lights: Burst oscillations from the accretion-powered millisecond pulsars

    NARCIS (Netherlands)

    Watts, A.L.

    2008-01-01

    The key contribution of the discovery of nuclear-powered pulsations from the accretion-powered millisecond pulsars (AMPs) has been the establishment of burst oscillation frequency as a reliable proxy for stellar spin rate. This has doubled the sample of rapidly-rotating accreting neutron stars and

  6. Spinning Photons and Twisting Oscillators

    Science.gov (United States)

    Shi, Hao

    2014-05-01

    Optomechanics is the study of the interaction between optical radiation and mechanical motion. Typically, an optomechanical system is composed of an optical resonator coupled to a mechanical degree of freedom. Some of the most striking experimental achievements include the quantum ground state preparation for a macroscopic oscillator, the detection of optomechanical quantum back-action, and generation of optomechanically induced transparency and slow light. Most optomechanical systems depend on linear coupling between the optical field and the displacement of the mechanical oscillator. In this talk, I will start instead by discussing the basic quantum mechanics of a generic quadratically coupled optomechanical system, followed by our efforts towards extending optomechanics to torsional and rotational systems. Specifically, I will describe our theoretical proposal to couple a windmill-shaped dielectric to cavity Laguerre Gaussian modes. In addition, I will present an optoacoustic system, composed of a LG mode coupled t surface acoustic waves of a spherical mirror, as a new platform for storage of photons carrying orbital angular momentum. Finally, I will discuss our most recent investigation of the prospects of cooling full rotational motion to the quantum regime.

  7. Cardiogenic oscillation induced ventilator autotriggering

    Directory of Open Access Journals (Sweden)

    Narender Kaloria

    2015-01-01

    Full Text Available Cardiogenic oscillation during mechanical ventilation can auto-trigger the ventilator resembling patient initiated breadth. This gives a false sense of intact respiratory drive and determination brain death, even if other tests are positive, is not appropriate in such a situation. It will prolong the ICU stay and confound the brain-death determination. In this case report, we describe a 35 year old man who was brought to the hospital after many hours of critical delay following multiple gun shot injuries. The patient suffered a cardiac arrest while on the way from another hospital. After an emergency laparotomy, patient was shifted to Intensive Care Unit (ICU with Glasgow Coma Scale (GCS score of E1VTM1 and was mechanically ventilated. Despite absence of brainstem reflexes, the ventilator continued to be triggered on continuous positive airway pressure (CPAP mode and the patient maintained normal oxygen saturation and acceptable levels of carbon dioxide. An apnoea test confirmed absent respiratory drive. Ventilatory waveform graph analysis, revealed cardiogenic oscillation as the cause for autotrigerring.

  8. Microdroplet oscillations during optical pulling

    Science.gov (United States)

    Ellingsen, Simen A.˚.

    2012-02-01

    It was recently shown theoretically that it is possible to pull a spherical dielectric body towards the source of a laser beam [J. Chen, J. Ng, Z. Lin, and C. T. Chan, "Optical pulling force," Nat. Photonics 5, 531 (2011)], a result with immediate consequences to optical manipulation of small droplets. Optical pulling can be realized, e.g., using a diffraction-free Bessel beam, and is expected to be of great importance in manipulation of microscopic droplets in micro- and nanofluidics. Compared to conventional optical pushing, however, the ratio of optical net force to stress acting on a droplet is much smaller, increasing the importance of oscillations. We describe the time-dependent surface deformations of a water microdroplet under optical pulling to linear order in the deformation. Shape oscillations have a lifetime in the order of microseconds for droplet radii of a few micrometers. The force density acting on the initially spherical droplet is strongly peaked near the poles on the beam axis, causing the deformations to take the form of jet-like protrusions.

  9. Nonlinear nanomechanical oscillators for ultrasensitive inertial detection

    Science.gov (United States)

    Datskos, Panagiotis George; Lavrik, Nickolay V

    2013-08-13

    A system for ultrasensitive mass and/or force detection of this invention includes a mechanical oscillator driven to oscillate in a nonlinear regime. The mechanical oscillator includes a piezoelectric base with at least one cantilever resonator etched into the piezoelectric base. The cantilever resonator is preferably a nonlinear resonator which is driven to oscillate with a frequency and an amplitude. The system of this invention detects an amplitude collapse of the cantilever resonator at a bifurcation frequency as the cantilever resonator stimulated over a frequency range. As mass and/or force is introduced to the cantilever resonator, the bifurcation frequency shifts along a frequency axis in proportion to the added mass.

  10. Introduction to classical and quantum harmonic oscillators

    CERN Document Server

    Bloch, Sylvan C

    2013-01-01

    From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con

  11. High Reliability Oscillators for Terahertz Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Terahertz sources based on lower frequency oscillators and amplifiers plus a chain of frequency multipliers are the workhorse technology for NASA's terahertz...

  12. Waves and oscillations in nature an introduction

    CERN Document Server

    Narayanan, A Satya

    2015-01-01

    Waves and oscillations are found in large scales (galactic) and microscopic scales (neutrino) in nature. Their dynamics and behavior heavily depend on the type of medium through which they propagate.Waves and Oscillations in Nature: An Introduction clearly elucidates the dynamics and behavior of waves and oscillations in various mediums. It presents different types of waves and oscillations that can be observed and studied from macroscopic to microscopic scales. The book provides a thorough introduction for researchers and graduate students in assorted areas of physics, such as fluid dynamics,

  13. Stochastic Kuramoto oscillators with discrete phase states

    Science.gov (United States)

    Jörg, David J.

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  14. Scleronomic holonomic constraints and conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, R; Gonzalez-Garcia, G; Izquierdo-De La Cruz, E Izquierdo-De La [Universidad Autonoma de la Ciudad de Mexico, Centro Historico, Fray Servando Teresa de Mier 92, Col Centro, Del Cuauhtemoc, Mexico DF, CP 06080 (Mexico); Fernandez-Anaya, G, E-mail: rodrigo.munoz@uacm.edu.mx, E-mail: gggharper@gmail.com, E-mail: erickidc@gmail.com, E-mail: guillermo.fernandez@uia.mx [Universidad Iberoamericana, Departamento de Fisica y Matematicas, Prolongacon Paseo de de la Reforma 880, Col Lomas de Santa Fe, Del Alvaro Obregn, Mexico DF, CP 01219 (Mexico)

    2011-05-15

    A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present cases in which the effective potential acting on the bead is not analytical around a minimum. The small oscillation approximation cannot be applied to such pathological cases. Nonetheless, these latter instances are studied with other standard techniques.

  15. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  16. Electric Substations

    Data.gov (United States)

    Department of Homeland Security — Substations. Substations are facilities and equipment that switch, transform, or regulate electric voltage. The Substations feature class includes taps, a location...

  17. Dynamic surface tension of natural surfactant extract under superimposed oscillations.

    Science.gov (United States)

    Reddy, Prasika I; Al-Jumaily, Ahmed M; Bold, Geoff T

    2011-01-04

    Surfactant dysfunction plays a major role in respiratory distress syndrome (RDS). This research seeks to determine whether the use of natural surfactant, Curosurf™ (Cheisi Farmaceutici, Parma, Italy), accompanied with pressure oscillations at the level of the alveoli can reduce the surface tension in the lung, thereby making it easier for infants with RDS to maintain the required level of functional residual capacity (FRC) without collapse. To simulate the alveolar environment, dynamic surface tension measurements were performed on a modified pulsating bubble surfactometer (PBS) type device and showed that introducing superimposed oscillations about the tidal volume excursion between 10 and 70 Hz in a surfactant bubble lowers interfacial surface tension below values observed using tidal volume excursion alone. The specific mechanisms responsible for this improvement are yet to be established; however it is believed that one mechanism may be the rapid transient changes in the interfacial area increase the number of interfacial binding sites for surfactant molecules, increasing adsorption and diffusion to the interface, thereby decreasing interfacial surface tension. Existing mathematical models in the literature reproduce trends noticed in experiments in the range of breathing frequencies only. Thus, a modification is introduced to an existing model to both incorporate superimposed pressure oscillations and demonstrate that these may improve the dynamic surface tension in the alveoli. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Nano-electromechanical oscillators (NEMOs) for RF technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Joel Robert; Czaplewski, David A.; Gibson, John Murray (Argonne National Laboratory, Argonne, IL); Webster, James R.; Carton, Andrew James; Keeler, Bianca Elizabeth Nelson; Carr, Dustin Wade; Friedmann, Thomas Aquinas; Tallant, David Robert; Boyce, Brad Lee; Sullivan, John Patrick; Dyck, Christopher William; Chen, Xidong (Cedarville University, Cedarville, OH)

    2004-12-01

    Nano-electromechanical oscillators (NEMOs), capacitively-coupled radio frequency (RF) MEMS switches incorporating dissipative dielectrics, new processing technologies for tetrahedral amorphous carbon (ta-C) films, and scientific understanding of dissipation mechanisms in small mechanical structures were developed in this project. NEMOs are defined as mechanical oscillators with critical dimensions of 50 nm or less and resonance frequencies approaching 1 GHz. Target applications for these devices include simple, inexpensive clocks in electrical circuits, passive RF electrical filters, or platforms for sensor arrays. Ta-C NEMO arrays were used to demonstrate a novel optomechanical structure that shows remarkable sensitivity to small displacements (better than 160 fm/Hz {sup 1/2}) and suitability as an extremely sensitive accelerometer. The RF MEMS capacitively-coupled switches used ta-C as a dissipative dielectric. The devices showed a unipolar switching response to a unipolar stimulus, indicating the absence of significant dielectric charging, which has historically been the major reliability issue with these switches. This technology is promising for the development of reliable, low-power RF switches. An excimer laser annealing process was developed that permits full in-plane stress relaxation in ta-C films in air under ambient conditions, permitting the application of stress-reduced ta-C films in areas where low thermal budget is required, e.g. MEMS integration with pre-existing CMOS electronics. Studies of mechanical dissipation in micro- and nano-scale ta-C mechanical oscillators at room temperature revealed that mechanical losses are limited by dissipation associated with mechanical relaxation in a broad spectrum of defects with activation energies for mechanical relaxation ranging from 0.35 eV to over 0.55 eV. This work has established a foundation for the creation of devices based on nanomechanical structures, and outstanding critical research areas that need

  19. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    Directory of Open Access Journals (Sweden)

    Jinghao Zhu

    2015-11-01

    Full Text Available A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.

  20. Weiss oscillations and particle-hole symmetry at the half-filled Landau level

    Science.gov (United States)

    Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael

    2017-06-01

    Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ±e2/2 h at half filling. We study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. We find an approximate "sum rule" obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.

  1. The negative-differential-resistance (NDR) mechanism of a hydroelastic microfluidic oscillator

    Science.gov (United States)

    Xia, H. M.; Wu, J. W.; Wang, Z. P.

    2017-07-01

    A microfluidic oscillator is of interest because it converts a stable laminar flow to oscillatory flow, especially in view of the fact that turbulence is typically absent in miniaturized fluidic devices. One important design approach is to utilize hydroelastic effect-induced autonomous oscillations to modify the flow, so to reduce the reliance on external controllers. However, as complex fluid-structure interactions are involved, the prediction of its mechanism is rather challenging. Here, we present a simple equivalent circuit model and investigate the negative-differential-resistance (NDR) mechanism of a hydroelastic microfluidic oscillator. We show that a variety of complex flow behaviors including the onset of oscillation, formation of different oscillation patterns, collapse of the channel, etc can be well explained by this model. It provides a generic approach for construction of microfluidic NDR oscillators, following which a new design is also proposed. Relevant findings give more insights into the hydroelastic instability problems in microfluidics, and enrich the study of microfluidic flow control devices based on the electric circuit theory.

  2. Dynamic analysis of a tunable viscoelastic dielectric elastomer oscillator under external excitation

    Science.gov (United States)

    Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.

    2016-02-01

    As a category of soft electroactive materials, dielectric elastomers (DEs) show great potential for the development of tunable oscillators and resonators for actuating and sensing purposes. However, the dynamic performance of these DE-based vibration devices could be very susceptible to external environment (external loads and excitations) and material viscoelasticity of the DEs. Based on the finite-deformation viscoelasticity theory, this work first investigates the frequency tuning process of a viscoelastic DE membrane oscillator. A comparison of the frequency tuning process and the tunable frequency range between a viscoelastic and a purely elastic DE oscillator is presented. Moreover, particular considerations have been given to the nonlinear response of the oscillator to external harmonic excitation. It is found that the displacement transmissibility of the oscillator can also be actively tuned by changing the static voltage applied to the DE membrane. Under harmonic excitation, various vibration patterns of the oscillator could be actively achieved with the application of both static and alternating electric voltage. Simulation results in this work demonstrate that the material viscoelasticity has a significant effect on the electromechanical coupling and the dynamic performance of the DE-based vibration devices.

  3. Investigation of Combustion Control in a Dump Combustor Using the Feedback Free Fluidic Oscillator

    Science.gov (United States)

    Meier, Eric J.; Casiano, Matthew J.; Anderson, William E.; Heister, Stephen D.

    2015-01-01

    A feedback free fluidic oscillator was designed and integrated into a single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. The fluidic oscillator uses internal fluid dynamics to create an unsteady outlet jet at a specific frequency. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the combustor dump plane. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide with an overall O/F ratio of 11.7. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics enabling the study of a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared against equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 67% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. Additionally, computational fluid dynamics analysis of the combustor gives insight into the flow field interaction of the fluidic oscillators. The results indicate that open loop high frequency propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate.

  4. Signature of tilted Dirac cones in Weiss oscillations of 8 -P m m n borophene

    Science.gov (United States)

    Islam, SK Firoz; Jayannavar, A. M.

    2017-12-01

    Polymorph of 8 -P m m n borophene exhibits anisotropic tilted Dirac cones. In this work, we explore the consequences of the tilted Dirac cones in magnetotransport properties of a periodically modulated borophene. We evaluate modulation-induced diffusive conductivity by using linear response theory in low temperature regime. The application of weak spatial modulation (electric, magnetic or both) gives rise to the magnetic-field-dependent nonzero oscillatory drift velocity which causes Weiss oscillation in the longitudinal conductivity at low magnetic field. The Weiss oscillation is studied in the presence of a weak spatial electric, magnetic, and both modulations individually. The tilting of the Dirac cones gives rise to an additional contribution to the Weiss oscillation in longitudinal conductivity. Moreover, it also enhances the frequency of the Weiss oscillation and modifies its amplitude too. Most remarkably, it is found that the presence of both out-of-phase electric and magnetic modulations can cause a sizable valley polarization in diffusive conductivity. The origin of valley polarization lies in the opposite tilting of the two Dirac cones at two valleys.

  5. A coupled-oscillator model of olfactory bulb gamma oscillations.

    Directory of Open Access Journals (Sweden)

    Guoshi Li

    2017-11-01

    Full Text Available The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING, best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity.

  6. A design approach for integrated CMOS LC-tank oscillators using bifurcation analysis

    Directory of Open Access Journals (Sweden)

    M. Prochaska

    2006-01-01

    Full Text Available Electrical oscillators play a decisive role in integrated transceivers for wired and wireless communication systems. In this context the study of fully integrated differential VCOs has received attention. In this paper formulas for investigations of the stability as well as the amplitude of CMOS LC tank oscillators are derived, where an overall model of nonlinear gain elements is used. By means of these results we are able to present an improved design approach which gives a deeper insight into the functionality of LC tank VCOs.

  7. Mechanism of pulse magneto-oscillation grain refinement on pure Al

    Directory of Open Access Journals (Sweden)

    Pei Ning

    2011-02-01

    Full Text Available Pulse magneto-oscillation (PMO was developed as a novel technique to refine the solidification structure of pure aluminium. Its grain refining mechanism was proposed. The PMO refinement mechanism is that the nucleus falls off from the mould wall and drifts into the melt under the action of PMO. The solidification structure of Al melt depends on the linear electric current density, and also the discharge and oscillation frequencies. The radial pressure of PMO sound wave is the major factor that contributes to the migration of nucleus into the melt.

  8. Development of simple and robust femtosecond optical parametric oscillator for multiphoton imaging

    Science.gov (United States)

    Stasevičius, Ignas; Vengris, Mikas; Danielius, Romualdas

    2017-02-01

    Femtosecond optical parametric oscillator (OPO) was investigated, the chirped mirror based OPO was tunable by rotating intracavity crystal in the wavelength range of 680-810 nm with maximum output power of 600 mW and pulse duration below 150 fs. The experimental results were compared with numerical modelling while solving coupled electric field equations in spatial and time domain to include the effects of resonator dispersion and self-phase modulation. The results pave a way for a compact femtosecond optical parametric oscillator tunable in a spectrum band limited by resonator mirrors' spectral phase characteristics.

  9. Prolongation of the deployment and monitoring of a multiple oscillating water column wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Chudley, J.; Dai, Y.M.

    2003-07-01

    This report summarises the findings of a project to prolong the sea trials of a multiple oscillating water column wave energy converter (MOWC) device for another 12 months to obtain further data. The objectives of the project include the evaluation of the ability of the MOWC to generate reliable energy to produce electricity, the estimation of the conversion efficiency, and the identification of improvements to increase the conversion efficiency, Details are given of the analysis of the sea trials data, and the performance of the broadband oscillating water column prototype.

  10. Heat transfer performance of an oscillating heat pipe under ultrasonic field with dual frequency

    Science.gov (United States)

    Fu, B. W.; Zhao, N. N.; Ma, H. B.; Su, F. M.

    2015-01-01

    The oscillating motion and heat transfer capacity in an oscillating heat pipe (OHP) under the effect of ultrasound was investigated experimentally. Using the electrically- controlled piezoelectric ceramics, the ultrasonic sound was applied to the evaporating section of the OHP. The heat pipe was tested with or without the ultrasonic sound. The effect of ultrasound on the heat transfer performance was conducted with ultrasound of single frequency or dual frequency. The experimental results demonstrate that the OHP under the effect of the ultrasonic sound with dual frequency performs better than that one with single frequency.

  11. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  12. CULLIN-3 controls TIMELESS oscillations in the Drosophila circadian clock.

    Directory of Open Access Journals (Sweden)

    Brigitte Grima

    Full Text Available Eukaryotic circadian clocks rely on transcriptional feedback loops. In Drosophila, the PERIOD (PER and TIMELESS (TIM proteins accumulate during the night, inhibit the activity of the CLOCK (CLK/CYCLE (CYC transcriptional complex, and are degraded in the early morning. The control of PER and TIM oscillations largely depends on post-translational mechanisms. They involve both light-dependent and light-independent pathways that rely on the phosphorylation, ubiquitination, and proteasomal degradation of the clock proteins. SLMB, which is part of a CULLIN-1-based E3 ubiquitin ligase complex, is required for the circadian degradation of phosphorylated PER. We show here that CULLIN-3 (CUL-3 is required for the circadian control of PER and TIM oscillations. Expression of either Cul-3 RNAi or dominant negative forms of CUL-3 in the clock neurons alters locomotor behavior and dampens PER and TIM oscillations in light-dark cycles. In constant conditions, CUL-3 deregulation induces behavioral arrhythmicity and rapidly abolishes TIM cycling, with slower effects on PER. CUL-3 affects TIM accumulation more strongly in the absence of PER and forms protein complexes with hypo-phosphorylated TIM. In contrast, SLMB affects TIM more strongly in the presence of PER and preferentially associates with phosphorylated TIM. CUL-3 and SLMB show additive effects on TIM and PER, suggesting different roles for the two ubiquitination complexes on PER and TIM cycling. This work thus shows that CUL-3 is a new component of the Drosophila clock, which plays an important role in the control of TIM oscillations.

  13. Minimal size of cell assemblies coordinated by gamma oscillations.

    Directory of Open Access Journals (Sweden)

    Christoph Börgers

    2012-02-01

    Full Text Available In networks of excitatory and inhibitory neurons with mutual synaptic coupling, specific drive to sub-ensembles of cells often leads to gamma-frequency (25-100 Hz oscillations. When the number of driven cells is too small, however, the synaptic interactions may not be strong or homogeneous enough to support the mechanism underlying the rhythm. Using a combination of computational simulation and mathematical analysis, we study the breakdown of gamma rhythms as the driven ensembles become too small, or the synaptic interactions become too weak and heterogeneous. Heterogeneities in drives or synaptic strengths play an important role in the breakdown of the rhythms; nonetheless, we find that the analysis of homogeneous networks yields insight into the breakdown of rhythms in heterogeneous networks. In particular, if parameter values are such that in a homogeneous network, it takes several gamma cycles to converge to synchrony, then in a similar, but realistically heterogeneous network, synchrony breaks down altogether. This leads to the surprising conclusion that in a network with realistic heterogeneity, gamma rhythms based on the interaction of excitatory and inhibitory cell populations must arise either rapidly, or not at all. For given synaptic strengths and heterogeneities, there is a (soft lower bound on the possible number of cells in an ensemble oscillating at gamma frequency, based simply on the requirement that synaptic interactions between the two cell populations be strong enough. This observation suggests explanations for recent experimental results concerning the modulation of gamma oscillations in macaque primary visual cortex by varying spatial stimulus size or attention level, and for our own experimental results, reported here, concerning the optogenetic modulation of gamma oscillations in kainate-activated hippocampal slices. We make specific predictions about the behavior of pyramidal cells and fast-spiking interneurons in these

  14. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  15. Signal velocity in oscillator arrays

    Science.gov (United States)

    Cantos, C. E.; Veerman, J. J. P.; Hammond, D. K.

    2016-09-01

    We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. After describing necessary and sufficient conditions for asymptotic stability, we derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocitiesc+ > 0 and c- < 0 such that low frequency disturbances travel through the flock as f+(x - c+t) in the direction of increasing agent numbers and f-(x - c-t) in the other.

  16. Analysing Biochemical Oscillations through Probabilistic Model Checking

    DEFF Research Database (Denmark)

    Ballarini, Paolo; Mardare, Radu Iulian; Mura, Ivan

    2009-01-01

    Analysing Biochemical Oscillations through Probabilistic Model Checking. In Proc. of the Second International Workshop "From Biology To Concurrency" (FBTC 2008), Electronic Notes in Theoretical Computer Science......Analysing Biochemical Oscillations through Probabilistic Model Checking. In Proc. of the Second International Workshop "From Biology To Concurrency" (FBTC 2008), Electronic Notes in Theoretical Computer Science...

  17. Electromagnetic Radiation Originating from Unstable Electron Oscillations

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Pécseli, Hans

    1975-01-01

    Electromagnetic oscillations in the range 300 – 700 MHz were observed from an unmagnetized argon discharge with an unstable electron velocity distribution function.......Electromagnetic oscillations in the range 300 – 700 MHz were observed from an unmagnetized argon discharge with an unstable electron velocity distribution function....

  18. Stabilizing oscillating universes against quantum decay

    Science.gov (United States)

    Mithani, Audrey T.; Vilenkin, Alexander

    2015-07-01

    We investigate the effect of vacuum corrections, due to the trace anomaly and Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. However, stability may be achieved for some specially fine-tuned non-vacuum states.

  19. Neutrino mass and oscillation: An introductory review

    Indian Academy of Sciences (India)

    tion to the atmospheric and solar neutrino oscillation data requires only two right handed singlet neutrinos. 2. Neutrino mixing and oscillation (vacuum). If the neutrinos have nonzero mass, there will in general be mixing between the neutrino species as in the case of quarks. For most practical applications it is adequate to ...

  20. Chaos in nonlinear oscillations controlling and synchronization

    CERN Document Server

    Lakshamanan, M

    1996-01-01

    This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.

  1. Stabilizing oscillating universes against quantum decay

    Energy Technology Data Exchange (ETDEWEB)

    Mithani, Audrey T.; Vilenkin, Alexander [Institute of Cosmology, Department of Physics and Astronomy,Tufts University, Medford, MA 02155 (United States)

    2015-07-07

    We investigate the effect of vacuum corrections, due to the trace anomaly and Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. However, stability may be achieved for some specially fine-tuned non-vacuum states.

  2. Vibrational resonance in the Morse oscillator

    Indian Academy of Sciences (India)

    Abstract. The occurrence of vibrational resonance is investigated in both classical and quantum mechanical Morse oscillators driven by a biharmonic force. The biharmonic force consists of two forces of widely different frequencies ω and with. ≫ ω. In the damped and biharmoni- cally driven classical Morse oscillator, ...

  3. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)

    ... a harmonic oscillator eigenfunction with the centroid and width parameter as variational paraeters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar to the vibrational self consistent field results. Coriolis coupling is also included in these studies.

  4. Neutrino oscillations: Present status and outlook

    Indian Academy of Sciences (India)

    The status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results is also discussed. Further-more, an outlook on the measurement of the mixing angle 13 in the near term future, as well as prospects to discover CP violation in neutrino oscillations and to determine the type ...

  5. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The validity of an effective harmonic oscillator approximation for anharmonic molecular vibrations is tested and compared with vibrational self consistent field and vibrational configurational interaction results. The effective harmonic oscillator is constructed variationally, by taking the trial wave function as a harmonic ...

  6. Discontinuous Spirals of Stable Periodic Oscillations

    DEFF Research Database (Denmark)

    Sack, Achim; Freire, Joana G.; Lindberg, Erik

    2013-01-01

    We report the experimental discovery of a remarkable organization of the set of self-generated periodic oscillations in the parameter space of a nonlinear electronic circuit. When control parameters are suitably tuned, the wave pattern complexity of the periodic oscillations is found to increase...

  7. The 2D κ-Dirac oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Fabiano M., E-mail: fmandrade@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa-PR (Brazil); Silva, Edilberto O., E-mail: edilbertoo@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís-MA (Brazil)

    2014-11-10

    In this Letter, 2D Dirac oscillator in the quantum deformed framework generated by the κ-Poincaré–Hopf algebra is considered. The problem is formulated using the κ-deformed Dirac equation. The resulting theory reveals that the energies and wave functions of the oscillator are modified by the deformation parameter.

  8. In plane oscillation of a bifilar pendulum

    Science.gov (United States)

    Hinrichsen, Peter F.

    2016-11-01

    The line tensions, the horizontal and vertical accelerations as well as the period of large angle oscillations parallel to the plane of a bifilar suspension are presented and have been experimentally investigated using strain gauges and a smart phone. This system has a number of advantages over the simple pendulum for studying large angle oscillations, and for measuring the acceleration due to gravity.

  9. Oscillating systems with cointegrated phase processes

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Rahbek, Anders; Ditlevsen, Susanne

    2017-01-01

    We present cointegration analysis as a method to infer the network structure of a linearly phase coupled oscillating system. By defining a class of oscillating systems with interacting phases, we derive a data generating process where we can specify the coupling structure of a network that resemb...

  10. Neutrino oscillations: Present status and outlook

    Indian Academy of Sciences (India)

    more, an outlook on the measurement of the mixing angle θ13 in the near term future, as well as prospects to discover CP violation in neutrino oscillations and to determine the type of the neutrino mass ordering by long-baseline experiments in the long term future are given. Keyword. Neutrino oscillations. PACS Nos 14.60.

  11. Small Oscillations via Conservation of Energy

    Science.gov (United States)

    Troy, Tia; Reiner, Megan; Haugen, Andrew J.; Moore, Nathan T.

    2017-01-01

    The work describes an analogy-based small oscillations analysis of a standard static equilibrium lab problem. In addition to force analysis, a potential energy function for the system is developed, and by drawing out mathematical similarities to the simple harmonic oscillator, we are able to describe (and experimentally verify) the period of small…

  12. Oscillations of first order difference equations

    Indian Academy of Sciences (India)

    Oscillations of first order difference equations. N PARHI. Department of Mathematics, Berhampur University, Berhampur 760 007, India. MS received 10 June 1999; revised 28 December 1999. Abstract. The oscillatory and asymptotic behaviour of solutions of first order diff- erence equations is studied. Keywords. Oscillation ...

  13. Teaching Oscillations by a Model of Nanoresonator

    Science.gov (United States)

    Lindell, A.; Viiri, J.

    2009-01-01

    Nanoscience offers fascinating opportunities for science education as it links the achievements of modern technology to traditional models of science. In this article we present a nanotechnology orientated lesson on oscillations, suitable for physics courses at high schools and universities. The focus of the lesson is in forced oscillations on a…

  14. Oscillator clustering in a resource distribution chain

    DEFF Research Database (Denmark)

    Postnov, D.; Sosnovtseva, Olga; Mosekilde, Erik

    2005-01-01

    separate the inherent dynamics of the individual oscillator from the properties of the coupling network. Illustrated by examples from microbiological population dynamics, renal physiology, and electronic oscillator theory, we show how competition for primary resources in a resource distribution chain leads...

  15. Modeling diauxic glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Sørensen, Preben Graae

    2010-01-01

    Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can be characteri...

  16. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  17. Surface plasmon excitation by a quantum oscillator

    OpenAIRE

    Lidsky, V. V.

    2009-01-01

    Surface waves in a thin uniform metal film are described in terms of quantum electrodynamics.The interaction of surface waves with a quantum oscillator is discussed in the dipole approximation. The increase in the spontaneous emission rate of the excited quantum oscillator, the so called Purcell factor, is evaluated to be as high as by 10 to the five times.

  18. The effect of density ratio on the near field of a naturally occurring oscillating jet

    Energy Technology Data Exchange (ETDEWEB)

    England, Grant; Kalt, Peter A.M.; Nathan, Graham J.; Kelso, Richard M. [University of Adelaide, School of Mechanical Engineering, Adelaide (Australia)

    2010-01-15

    The triangular oscillating jet nozzle generates a triangular jet partially confined within an axi-symmetric chamber to produce a large scale flow oscillation that has application in thermal processes. Particle image velocimetry and oscillation frequency measurements were conducted to investigate the influence of the jet fluid to ambient fluid density ratio on the resulting oscillating flow. The investigation was conducted with a jet momentum flux of 0.06 kg m s{sup -2} (Re=7.3-47.2 x 10{sup 3}) and density ratios ranging from 0.2 to 5.0. The initial spread and decay of the emerging jet was found to depend upon the density ratio but in a more complex way than does an unconfined jet. Both the spread and decay are strongly influenced by the instantaneous angle of jet deflection, with greater deflection leading to increased spreading and decay of the jet. Decreasing the density ratio below unity results in a rapid decrease in the deflection angle, while increasing the density ratio above unity results in an increase in the deflection angle, albeit with less sensitivity. The frequency of oscillation was also shown to depend on the density ratio with an increase in the density ratio causing a decrease in the dominant oscillation frequency. (orig.)

  19. The effect of density ratio on the near field of a naturally occurring oscillating jet

    Science.gov (United States)

    England, Grant; Kalt, Peter A. M.; Nathan, Graham J.; Kelso, Richard M.

    2010-01-01

    The triangular oscillating jet nozzle generates a triangular jet partially confined within an axi-symmetric chamber to produce a large scale flow oscillation that has application in thermal processes. Particle image velocimetry and oscillation frequency measurements were conducted to investigate the influence of the jet fluid to ambient fluid density ratio on the resulting oscillating flow. The investigation was conducted with a jet momentum flux of 0.06 kg m s-2 ( Re = 7.3-47.2 × 103) and density ratios ranging from 0.2 to 5.0. The initial spread and decay of the emerging jet was found to depend upon the density ratio but in a more complex way than does an unconfined jet. Both the spread and decay are strongly influenced by the instantaneous angle of jet deflection, with greater deflection leading to increased spreading and decay of the jet. Decreasing the density ratio below unity results in a rapid decrease in the deflection angle, while increasing the density ratio above unity results in an increase in the deflection angle, albeit with less sensitivity. The frequency of oscillation was also shown to depend on the density ratio with an increase in the density ratio causing a decrease in the dominant oscillation frequency.

  20. Fast calcium wave propagation mediated by electrically conducted excitation and boosted by CICR

    NARCIS (Netherlands)

    Kusters, J.M.A.M.; Meerwijk, W.P. van; Ypey, D.L.; Theuvenet, A.P.R.; Gielen, C.C.A.M.

    2008-01-01

    We have investigated synchronization and propagation of calcium oscillations, mediated by gap junctional excitation transmission. For that purpose we used an experimentally based model of normal rat kidney (NRK) cells, electrically coupled in a one-dimensional configuration (linear strand).

  1. Chemical sensor with oscillating cantilevered probe

    Science.gov (United States)

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  2. New neutrino oscillation results from NOVA

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Neutrinos oscillate among flavors as they travel because a neutrino of a particular flavor is also a superposition of multiple neutrinos with slightly different masses.  The interferometric nature of oscillations allows these tiny mass differences to be measured, along with the parameters of the PMNS matrix which governs the mixing. However, since neutrinos only interact weakly, a powerful neutrino source and massive detectors are required to measure them. In this talk I will show recently updated results from NOvA, a long-baseline neutrino oscillation experiment at Fermilab with two functionally identical scintillator detectors. I will present measurements of muon neutrino disappearance and electron neutrino appearance, and what constraints those measurements put on the remaining open questions in neutrino oscillations: Is the neutrino mass hierarchy "normal" or "inverted?" Do neutrino oscillations violate CP symmetry? Is the mixing in the atmospheric sector maximal? The recent update includes 50%...

  3. Is the quadrature oscillator a multivibrator?

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2004-01-01

    The aim of this article is to give insight into the mechanisms behind the behavior of oscillators from a new angle, introducing the idea of "frozen eigenvalues". This approach is based on piecewise-linear modelling and a study of the eigenvalues of the time varying linearized Jacobian of the nonl......The aim of this article is to give insight into the mechanisms behind the behavior of oscillators from a new angle, introducing the idea of "frozen eigenvalues". This approach is based on piecewise-linear modelling and a study of the eigenvalues of the time varying linearized Jacobian...... of the nonlinear differential equations describing the oscillator. A multivibrator and a quadrature oscillator are used as test examples. The mechanisms behind the oscillations of the two circuits are compared....

  4. Improved memristor-based relaxation oscillator

    KAUST Repository

    Mosad, Ahmed G.

    2013-09-01

    This paper presents an improved memristor-based relaxation oscillator which offers higher frequency and wider tunning range than the existing reactance-less oscillators. It also has the capability of operating on two positive supplies or alternatively a positive and negative supply. Furthermore, it has the advantage that it can be fully integrated on-chip providing an area-efficient solution. On the other hand, The oscillation concept is discussed then a complete mathematical analysis of the proposed oscillator is introduced. Furthermore, the power consumption of the new relaxation circuit is discussed and validated by the PSPICE circuit simulations showing an excellent agreement. MATLAB results are also introduced to demonstrate the resistance range and the corresponding frequency range which can be obtained from the proposed relaxation oscillator. © 2013 Elsevier Ltd.

  5. Atmospheric neutrino oscillations for earth tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Walter

    2016-04-05

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  6. Atmospheric neutrino oscillations for Earth tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Walter, E-mail: walter.winter@desy.de

    2016-07-15

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  7. Atmospheric neutrino oscillations for Earth tomography

    Science.gov (United States)

    Winter, Walter

    2016-07-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  8. Geometric phase shifts in biological oscillators.

    Science.gov (United States)

    Tourigny, David S

    2014-08-21

    Many intracellular processes continue to oscillate during the cell cycle. Although it is not well-understood how they are affected by discontinuities in the cellular environment, the general assumption is that oscillations remain robust provided the period of cell divisions is much larger than the period of the oscillator. Here, I will show that under these conditions a cell will in fact have to correct for an additional quantity added to the phase of oscillation upon every repetition of the cell cycle. The resulting phase shift is an analogue of the geometric phase, a curious entity first discovered in quantum mechanics. In this letter, I will discuss the theory of the geometric phase shift and demonstrate its relevance to biological oscillations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Virtual Prototyping, Advanced Electric Systems, and Controls for Ships

    National Research Council Canada - National Science Library

    Dougal, Roger A

    2004-01-01

    .... 1) New capabilities for virtual prototyping of advanced electric systems were developed, with emphasis on simulation of uncertain systems, tools for rapid model development, realtime and distributed...

  10. Algorithms for computing efficient, electric-propulsion, spiralling trajectories Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop techniques for rapidly designing many-revolution, electric-propulsion, spiralling trajectories, including the effects of shadowing, gravity harmonics, and...

  11. Mechanical design of electric motors

    CERN Document Server

    Tong, Wei

    2014-01-01

    Rapid increases in energy consumption and emphasis on environmental protection have posed challenges for the motor industry, as has the design and manufacture of highly efficient, reliable, cost-effective, energy-saving, quiet, precisely controlled, and long-lasting electric motors.Suitable for motor designers, engineers, and manufacturers, as well as maintenance personnel, undergraduate and graduate students, and academic researchers, Mechanical Design of Electric Motors provides in-depth knowledge of state-of-the-art design methods and developments of electric motors. From motor classificati

  12. Global dynamics of a stochastic neuronal oscillator

    Science.gov (United States)

    Yamanobe, Takanobu

    2013-11-01

    Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.

  13. High power diode laser Master Oscillator-Power Amplifier (MOPA)

    Science.gov (United States)

    Andrews, John R.; Mouroulis, P.; Wicks, G.

    1994-01-01

    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  14. Time dependent quantum harmonic oscillator subject to a sudden change of mass: continuous solution

    Energy Technology Data Exchange (ETDEWEB)

    Moya C, H. [INAOE, Coordinacion de Optica, AP 51 y 216, 72000 Puebla (Mexico); Fernandez G, M. [Depto. de Fisica, CBI, Universidad Autonoma Metropolitana - Iztapalapa, 09340, Mexico, D.F. AP 55-534 (Mexico)

    2007-07-01

    We show that a harmonic oscillator subject to a sudden change of mass produces squeezed states. Our study is based on an approximate analytic solution to the time-dependent harmonic oscillator equation with a sub period function parameter. This continuous treatment differs from former studies that involve the matching of two time-independent solutions at the discontinuity. This formalism requires an ad hoc transformation of the original differential equation and is also applicable for rapid, although not necessarily instantaneous, mass variations. (Author)

  15. The geodynamo as a bistable oscillator

    Science.gov (United States)

    Hoyng, P.; Ossendrijver, M. A. J. H.; Schmitt, D.

    2001-07-01

    Our intent is to provide a simple and quantitative understanding of the variability of the axial dipole component of the geomagnetic field on both short and long time scales. To this end we study the statistical properties of a prototype nonlinear mean field model. An azimuthal average is employed, so that (1) we address only the axisymmetric component of the field, and (2) the dynamo parameters have a random component that fluctuates on the (fast) eddy turnover time scale. Numerical solutions with a rapidly fluctuating alpha reproduce several features of the geomagnetic field: (1) a variable, dominantly dipolar field with additional fine structure due to excited overtones, and sudden reversals during which the field becomes almost quadrupolar, (2) aborted reversals and excursions, (3) intervals between reversals having a Poisson distribution. These properties are robust, and appear regardless of the type of nonlinearity and the model parameters. A technique is presented for analysing the statistical properties of dynamo models of this type. The Fokker-Planck equation for the amplitude a of the fundamental dipole mode shows that a behaves as the position of a heavily damped particle in a bistable potential ~(1-a^2)^2, subject to random forcing. The dipole amplitude oscillates near the bottom of one well and makes occasional jumps to the other. These reversals are induced solely by the overtones. Theoretical expressions are derived for the statistical distribution of the dipole amplitude, the variance of the dipole amplitude between reversals, and the mean reversal rate. The model explains why the reversal rate increases with increasing secular variation, as observed. Moreover, the present reversal rate of the geodynamo, once per (2-3)x10^5years, is shown to imply a secular variation of the dipole moment of ~15% (about the current value). The theoretical dipole amplitude distribution agrees well with the Sint-800 data.

  16. Rapid Variability in the Japan/East Sea. Basin Oscillations, Internal Tides, and Near-Inertial Oscillations

    National Research Council Canada - National Science Library

    Park, Jae-Hun; Watts, D. R; Wimbush, Mark; Book, Jeffrey W; Tracey, Karen L; Xu, Youngsheng

    2006-01-01

    ... (pressure- guage-equipped inverted echo sounder) experiment in the Ulleung Basin of the southwestern JES was originally designed to investigate the dynamics of meandering currents and eddies in the upper and deep ocean...

  17. Monitoring surface roughness during film growth using modulated RHEED intensity oscillations

    Science.gov (United States)

    Braun, Wolfgang

    2017-11-01

    Separation of the high- and low-frequency components of Reflection High-Energy Electron Diffraction (RHEED) intensity oscillations during pulsed deposition allows the extraction of a signal that is in phase with the cyclic surface morphology evolution during layer-by-layer growth. Similar to a biased impedance measurement in electricity, the periodic modulation of surface roughness induced by the pulsed deposition probes the differential response of the growth front to changes in step density. This signal does not follow the complex variation of the RHEED oscillation phase with diffraction conditions and surface reconstruction and therefore allows a direct detection of monolayer completion. Off-Laue Circle oscillations show promise to probe the surface morphology evolution at sharply defined in-plane spatial frequencies.

  18. Titanium nitride coatings synthesized by IPD method with eliminated current oscillations

    Directory of Open Access Journals (Sweden)

    Chodun Rafał

    2016-09-01

    Full Text Available This paper presents the effects of elimination of current oscillations within the coaxial plasma accelerator during IPD deposition process on the morphology, phase structure and properties of synthesized TiN coatings. Current observations of waveforms have been made by use of an oscilloscope. As a test material for experiments, titanium nitride TiN coatings synthesized on silicon and high-speed steel substrates were used. The coatings morphology, phase composition and wear resistance properties were determined. The character of current waveforms in the plasma accelerator electric circuit plays a crucial role during the coatings synthesis process. Elimination of the current oscillations leads to obtaining an ultrafine grained structure of titanium nitride coatings and to disappearance of the tendency to structure columnarization. The coatings obtained during processes of a non-oscillating character are distinguished by better wear-resistance properties.

  19. Electrical Injuries

    Science.gov (United States)

    ... it can pass through your body and cause injuries. These electrical injuries can be external or internal. You may have one or both types. External injuries are skin burns. Internal injuries include damage to ...

  20. Electricity derivatives

    CERN Document Server

    Aïd, René

    2015-01-01

    Offering a concise but complete survey of the common features of the microstructure of electricity markets, this book describes the state of the art in the different proposed electricity price models for pricing derivatives and in the numerical methods used to price and hedge the most prominent derivatives in electricity markets, namely power plants and swings. The mathematical content of the book has intentionally been made light in order to concentrate on the main subject matter, avoiding fastidious computations. Wherever possible, the models are illustrated by diagrams. The book should allow prospective researchers in the field of electricity derivatives to focus on the actual difficulties associated with the subject. It should also offer a brief but exhaustive overview of the latest techniques used by financial engineers in energy utilities and energy trading desks.