WorldWideScience

Sample records for rapidly moving cells

  1. Rapidly Moving Divertor Plates In A Tokamak

    International Nuclear Information System (INIS)

    Zweben, S.

    2011-01-01

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ∼10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  2. Inspecting rapidly moving surfaces for small defects using CNN cameras

    Science.gov (United States)

    Blug, Andreas; Carl, Daniel; Höfler, Heinrich

    2013-04-01

    A continuous increase in production speed and manufacturing precision raises a demand for the automated detection of small image features on rapidly moving surfaces. An example are wire drawing processes where kilometers of cylindrical metal surfaces moving with 10 m/s have to be inspected for defects such as scratches, dents, grooves, or chatter marks with a lateral size of 100 μm in real time. Up to now, complex eddy current systems are used for quality control instead of line cameras, because the ratio between lateral feature size and surface speed is limited by the data transport between camera and computer. This bottleneck is avoided by "cellular neural network" (CNN) cameras which enable image processing directly on the camera chip. This article reports results achieved with a demonstrator based on this novel analogue camera - computer system. The results show that computational speed and accuracy of the analogue computer system are sufficient to detect and discriminate the different types of defects. Area images with 176 x 144 pixels are acquired and evaluated in real time with frame rates of 4 to 10 kHz - depending on the number of defects to be detected. These frame rates correspond to equivalent line rates on line cameras between 360 and 880 kHz, a number far beyond the available features. Using the relation between lateral feature size and surface speed as a figure of merit, the CNN based system outperforms conventional image processing systems by an order of magnitude.

  3. A new rapid kindling variant for induction of cortical epileptogenesis in freely moving rats

    Directory of Open Access Journals (Sweden)

    Juan Carlos Morales

    2014-07-01

    Full Text Available Kindling, one of the most used models of experimental epilepsy is based on daily electrical stimulation in several brain structures. Unlike the classic or slow kindling protocols (SK, the rapid kindling types (RK described until now require continuous stimulation at suprathreshold intensities applied directly to the same brain structure used for subsequent electrophysiological and inmunohistochemical studies, usually the hippocampus. However, the cellular changes observed in these rapid protocols, such as astrogliosis and neuronal loss, could be due to experimental manipulation more than to epileptogenesis-related alterations. Here, we developed a new RK protocol in order to generate an improved model of temporal lobe epilepsy (TLE which allows gradual progression of the epilepsy as well as obtaining an epileptic hippocampus, thus avoiding direct surgical manipulation and electric stimulation over this structure. This new protocol consists of basolateral amygdala (BLA stimulation with 10 trains of biphasic pulses (10s;50Hz per day with 20 minutes-intervals, during 3 consecutive days, using a subconvulsive and subthreshold intensity, which guarantees tissue integrity. The progression of epileptic activity was evaluated in freely moving rats through EEG recordings from cortex and amygdala, accompanied with synchronized video recordings. Moreover, we assessed the effectiveness of RK protocol and the establishment of epilepsy by evaluating cellular alterations of hippocampal slices from kindled rats. RK protocol induced convulsive states similar to SK protocols but in 3 days, with persistently lowered threshold to seizure induction and epileptogenic-dependent cellular changes in amygdala projection areas. We concluded that this novel RK protocol introduces a new variant of the chronic epileptogenesis models in freely moving rats, which is faster, highly reproducible and causes minimum cell damage with respect to that observed in other experimental

  4. Piezoelectric translator. A simple and inexpensive device to move microelectrodes and micropipettes small distances rapidly.

    Science.gov (United States)

    Lederer, W J

    1983-09-01

    A device is described that is capable of rapidly moving microelectrodes and micropipettes over distances up to 15 mu. This piezoelectric transLator uses the diaphragm from virtually any available piezoelectric buzzer in combination with simple physical support and drive electronics. All of the necessary details for the construction of this small device are presented. Each finished unit is about 2 cm long with a diameter of 2 cm and can be readily adapted to existing manipulators. The translator has been found useful in aiding the independent penetration by one or more microelectrodes of single cells or of more complicated multicellular preparations (including those that lie behind a connective tissue layer). This new device offers fine control of microelectrode motion that cannot be obtained by the other methods used to aid microelectrode and micropipette penetration of cell membranes (e.g. capacitance overcompensation--"ringing in"' or "tickling"--or tapping the manipulator base). Finally, the device described in this paper is extremely simple and inexpensive to build.

  5. Disorder trapping by rapidly moving phase interface in an undercooled liquid

    Science.gov (United States)

    Galenko, Peter; Danilov, Denis; Nizovtseva, Irina; Reuther, Klemens; Rettenmayr, Markus

    2017-08-01

    Non-equilibrium phenomena such as the disappearance of solute drag, the origin of solute trapping and evolution of disorder trapping occur during fast transformations with originating metastable phases [D.M. Herlach, P.K. Galenko, D. Holland-Moritz, Metastable solids from undrercooled melts (Elsevier, Amsterdam, 2007)]. In the present work, a theoretical investigation of disorder trapping by a rapidly moving phase interface is presented. Using a model of fast phase transformations, a system of governing equations for the diffusion of atoms, and the evolution of both long-range order parameter and phase field variable is formulated. First numerical solutions are carried out for a congruently melting binary alloy system.

  6. A parabolic-hyperbolic system modelling a moving cell

    Directory of Open Access Journals (Sweden)

    Fabiana Cardetti

    2009-08-01

    Full Text Available In this article, we study the existence and uniqueness of local solutions for a moving boundary problem governed by a coupled parabolic-hyperbolic system. The results can be applied to cell movement, extending a result obtained by Choi, Groulx, and Lui in 2005.

  7. Moving Difference (MDIFF) Non-adiabatic rapid sweep (NARS) EPR of copper(II)

    Science.gov (United States)

    Hyde, James S.; Bennett, Brian; Kittell, Aaron W.; Kowalski, Jason M.; Sidabras, Jason W.

    2014-01-01

    Non Adiabatic Rapid Sweep (NARS) EPR spectroscopy has been introduced for application to nitroxide-labeled biological samples (AW Kittell et al, (2011)). Displays are pure absorption, and are built up by acquiring data in spectral segments that are concatenated. In this paper we extend the method to frozen solutions of copper-imidazole, a square planar copper complex with four in-plane nitrogen ligands. Pure absorption spectra are created from concatenation of 170 5-gauss segments spanning 850 G at 1.9 GHz. These spectra, however, are not directly useful since nitrogen superhyperfine couplings are barely visible. Application of the moving difference (MDIFF) algorithm to the digitized NARS pure absorption spectrum is used to produce spectra that are analogous to the first harmonic EPR. The signal intensity is about 4 times higher than when using conventional 100 kHz field modulation, depending on line shape. MDIFF not only filters the spectrum, but also the noise, resulting in further improvement of the SNR for the same signal acquisition time. The MDIFF amplitude can be optimized retrospectively, different spectral regions can be examined at different amplitudes, and an amplitude can be used that is substantially greater than the upper limit of the field modulation amplitude of a conventional EPR spectrometer, which improves the signal-to-noise ratio of broad lines. PMID:24036469

  8. Mapping and quantifying sediment transfer between the front of rapidly moving rock glaciers and torrential gullies

    Science.gov (United States)

    Kummert, Mario; Delaloye, Reynald

    2018-05-01

    The sedimentary connection which may occur between the front of active rock glaciers and torrential channels is not well understood, despite its potential impact on the torrential activity characterizing the concerned catchments. In this study, DEMs of difference (DoDs) covering various time intervals between 2013 and 2016 were obtained from LiDAR-derived multitemporal DEMs for three rapidly moving rock glaciers located in the western Swiss Alps. The DoDs were used to map and quantify sediment transfer activity between the front of these rock glaciers and the corresponding underlying torrential gullies. Sediment transfer rates ranging between 1500 m3/y and 7800 m3/y have been calculated, depending on the sites. Sediment eroded from the fronts generally accumulated in the upper sectors of the torrential gullies where they were occasionally mobilized within small to medium sized debris flow events. A clear relation between the motion rates of the rock glaciers and the sediment transfer rates calculated at their fronts could be highlighted. Along with the size of the frontal areas, rock glacier creep rates influence thus directly sediment availability in the headwaters of the studied torrents. The frequency-magnitude of debris flow events varied between sites and was mainly related to the concordance of local factors such as topography, water availability, sediment availability or sediment type.

  9. 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection

    Directory of Open Access Journals (Sweden)

    Romain eGrangeon

    2013-12-01

    Full Text Available To successfully infect plants, viruses replicate in an initially infected cell and then move to neighboring cells through plasmodesmata (PDs. However, the nature of the viral entity that crosses over the cell barrier into non-infected ones is not clear. The membrane-associated 6K2 protein of turnip mosaic virus (TuMV induces the formation of vesicles involved in the replication and intracellular movement of viral RNA. This study shows that 6K2-induced vesicles trafficked towards the plasma membrane and were associated with plasmodesmata (PD. We demonstrated also that 6K2 moved cell-to-cell into adjoining cells when plants were infected with TuMV. 6K2 was then fused to photo-activable GFP (6K2:PAGFP to visualize how 6K2 move intercellularly during TuMV infection. After activation, 6K2:PAGFP-tagged vesicles moved to the cell periphery and across the cell wall into adjacent cells. These vesicles were shown to contain the viral RNA-dependent RNA polymerase and viral RNA. Symplasmic movement of TuMV may thus be achieved in the form of a membrane-associated viral RNA complex induced by 6K2.

  10. Performance Evaluation of Moving Small-Cell Network with Proactive Cache

    Directory of Open Access Journals (Sweden)

    Young Min Kwon

    2016-01-01

    Full Text Available Due to rapid growth in mobile traffic, mobile network operators (MNOs are considering the deployment of moving small-cells (mSCs. mSC is a user-centric network which provides voice and data services during mobility. mSC can receive and forward data traffic via wireless backhaul and sidehaul links. In addition, due to the predictive nature of users demand, mSCs can proactively cache the predicted contents in off-peak-traffic periods. Due to these characteristics, MNOs consider mSCs as a cost-efficient solution to not only enhance the system capacity but also provide guaranteed quality of service (QoS requirements to moving user equipment (UE in peak-traffic periods. In this paper, we conduct extensive system level simulations to analyze the performance of mSCs with varying cache size and content popularity and their effect on wireless backhaul load. The performance evaluation confirms that the QoS of moving small-cell UE (mSUE notably improves by using mSCs together with proactive caching. We also show that the effective use of proactive cache significantly reduces the wireless backhaul load and increases the overall network capacity.

  11. Water fluxes through aquaporin-9 prime epithelial cells for rapid wound healing

    DEFF Research Database (Denmark)

    Karlsson, T.; Lagerholm, B. C.; Vikstrom, E.

    2013-01-01

    Cells move along surfaces both as single cells and multi-cellular units. Recent research points toward pivotal roles for water flux through aquaporins (AQPs) in single cell migration. Their expression is known to facilitate this process by promoting rapid shape changes. However, little is known...... wound healing based on AQP-induced swelling and expansion of the monolayer. (C) 2012 Elsevier Inc. All rights reserved....

  12. Concentration Sensing by the Moving Nucleus in Cell Fate Determination: A Computational Analysis.

    Directory of Open Access Journals (Sweden)

    Varun Aggarwal

    Full Text Available During development of the vertebrate neuroepithelium, the nucleus in neural progenitor cells (NPCs moves from the apex toward the base and returns to the apex (called interkinetic nuclear migration at which point the cell divides. The fate of the resulting daughter cells is thought to depend on the sampling by the moving nucleus of a spatial concentration profile of the cytoplasmic Notch intracellular domain (NICD. However, the nucleus executes complex stochastic motions including random waiting and back and forth motions, which can expose the nucleus to randomly varying levels of cytoplasmic NICD. How nuclear position can determine daughter cell fate despite the stochastic nature of nuclear migration is not clear. Here we derived a mathematical model for reaction, diffusion, and nuclear accumulation of NICD in NPCs during interkinetic nuclear migration (INM. Using experimentally measured trajectory-dependent probabilities of nuclear turning, nuclear waiting times and average nuclear speeds in NPCs in the developing zebrafish retina, we performed stochastic simulations to compute the nuclear trajectory-dependent probabilities of NPC differentiation. Comparison with experimentally measured nuclear NICD concentrations and trajectory-dependent probabilities of differentiation allowed estimation of the NICD cytoplasmic gradient. Spatially polarized production of NICD, rapid NICD cytoplasmic consumption and the time-averaging effect of nuclear import/export kinetics are sufficient to explain the experimentally observed differentiation probabilities. Our computational studies lend quantitative support to the feasibility of the nuclear concentration-sensing mechanism for NPC fate determination in zebrafish retina.

  13. APC senses cell-cell contacts and moves to the nucleus upon their disruption.

    Science.gov (United States)

    Brocardo, M G; Bianchini, M; Radrizzani, M; Reyes, G B; Dugour, A V; Taminelli, G L; Gonzalez Solveyra, C; Santa-Coloma, T A

    2001-06-22

    The adenomatous polyposis coli (APC) tumor suppressor protein is involved in the Wnt/wingless pathway, modulating beta-catenin activity. We report the development of a highly specific, chemically synthesized oligobody (oligonucleotide-based synthetic antibody), directed against the N-terminal region of APC. Using this reagent, we found that within 16 h of disrupting HT-29 cell-cell contacts by harvesting cells with trypsin/EDTA treatment and replating, APC was translocated from the cytoplasm to the nucleus. Five days after plating the cells, when the cells had returned to their normal confluent phenotype and cell-cell contacts were reestablished, APC returned to the cytoplasm. These results suggest that APC functions as part of a "sensor" system, and responds to the loss of cell-cell contacts by moving to the nucleus, and returning to the cytoplasm when the contacts are fully restored. Copyright 2001 Academic Press.

  14. An Enduring Rapidly Moving Storm as a Guide to Saturn's Equatorial Jet's Complex Structure

    Science.gov (United States)

    Sanchez-Lavega, A.; Garcia-Melendo, E.; Perez-Hoyos, S.; Hueso, R.; Wong, M. H.; Simon, A.; Sanz-Requena, J. F.; Antunano, A.; Barrado-Izagirre, N.; Garate-Lopez, I.; hide

    2016-01-01

    Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn's equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450/ms not measured since 1980-1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet (latitudes 10degN to 10degS) suffers intense vertical shears reaching + 2.5/ms/km, two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level.

  15. Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts.

    Science.gov (United States)

    Alali, Sanaz; Gribble, Adam; Vitkin, I Alex

    2016-03-01

    A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second.

  16. Rapid cell separation with minimal manipulation for autologous cell therapies

    Science.gov (United States)

    Smith, Alban J.; O'Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-02-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.

  17. Moving Toward Quantifying Reliability - The Next Step in a Rapidly Maturing PV Industry: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah; Sample, Tony; Wohlgemuth, John; Zhou, Wei; Bosco, Nick; Althaus, Joerg; Phillips, Nancy; Deceglie, Michael; Flueckiger, Chris; Hacke, Peter; Miller, David; Kempe, Michael; Yamamichi, Masaaki; Kondo, Michio

    2015-12-07

    Some may say that PV modules are moving toward being a simple commodity, but most major PV customers ask: 'How can I minimize chances of a module recall?' Or, 'How can I quantify the added value of a 'premium' module?' Or, 'How can I assess the value of an old PV system that I'm thinking of purchasing?' These are all questions that PVQAT (the International PV Quality Assurance Task Force) and partner organizations are working to answer. Defining standard methods for ensuring minimal acceptable quality of PV modules, differentiating modules that provide added value in the toughest of environments, and creating a process (e.g. through IECRE [1]) that can follow a PV system from design through installation and operation are tough tasks, but having standard approaches for these will increase confidence, reduce costs, and be a critical foundation of a mature PV industry. This paper summarizes current needs for new tests, some challenges for defining those tests, and some of the key efforts toward development of international standards, emphasizing that meaningful quantification of reliability (as in defining a service life prediction) must be done in the context of a specific product with design parameters defined through a quality management system.

  18. Rapid multichannel impact-echo scanning of concrete bridge decks from a continuously moving platform

    Science.gov (United States)

    Mazzeo, Brian A.; Larsen, Jacob; McElderry, Joseph; Guthrie, W. Spencer

    2017-02-01

    Impact-echo testing is a non-destructive evaluation technique for determining the presence of defects in reinforced concrete bridge decks based on the acoustic response of the bridge deck when struck by an impactor. In this work, we build on our prior research with a single-channel impactor to demonstrate a seven-channel impact-echo scanning system with independent control of the impactors. This system is towed by a vehicle and integrated with distance measurement for registering the locations of the impacts along a bridge deck. The entire impact and recording system is computer-controlled. Because of a winch system and hinged frame construction of the apparatus, setup, measurement, and take-down of the apparatus can be achieved in a matter of minutes. Signal processing of the impact responses is performed on site and can produce a map of delaminations immediately after data acquisition. This map can then be used to guide other testing and/or can be referenced with the results of other testing techniques to facilitate comprehensive condition assessments of concrete bridge decks. This work demonstrates how impact-echo testing can be performed in a manner that makes complete bridge deck scanning for delaminations rapid and practical.

  19. The rapid moving Capriglio earth flow (Parma Province, North Italy): multi-temporal mapping and GB-InSAR monitoring

    Science.gov (United States)

    Bardi, Federica; Raspini, Federico; Frodella, William; Lombardi, Luca; Nocentini, Massimiliano; Gigli, Giovanni; Morelli, Stefano; Corsini, Alessandro; Casagli, Nicola

    2017-04-01

    This research presents the main findings of the multi-temporal mapping and of the long-term, real-time monitoring of the Capriglio landslide in the Emilian Apennines (Northern Italy). The landslide, triggered by prolonged rainfall and rapid snowmelt, activated of April 6th 2013. It is constituted by two main adjacent enlarging bodies with a roto-translational kinematics. They activated in sequence and subsequently joined into a large fast moving earth flow, channelizing downstream the Bardea Creek, for a total length of about 3600 meters. The landslide completely destroyed a 450 m sector of the provincial roadway S.P. 101, and its retrogression tendency put at high risk the Capriglio and Pianestolla villages, located in the upper watershed area of the Bardea River. Furthermore, the advancing toe seriously threatened the Antria bridge, representing the "Massese" provincial roadway S.P. 665R transect over the Bardea Creek, the only strategic roadway left able to connect the above-mentioned villages. With the final aim of supporting local authorities in the hazard assessment and risk management during the emergency phase, on May 5th 2013 aerial optical surveys were conducted to accurately map the landslide extension and evolution. Moreover, a GB-InSAR monitoring campaign was started in order to assess displacements of the whole landslide area. The versatility and flexibility of the GB-InSAR sensors allowed acquiring data with two different configurations, designed and set up to continuously retrieve information on the landslide movements rates (both in its upper slow-moving sectors and in its fast-moving toe). The first acquisition mode revealed that the Capriglio and Pianestolla villages were affected by minor displacements (order of magnitude of few millimetres per month). The second acquisition mode allowed to acquire data every 28'', reaching very high temporal resolution values by applying GB-InSAR technique (Monserrat et al., 2014; Caduff et al., 2015).

  20. Mechano-chemical signaling maintains the rapid movement of Dictyostelium cells

    International Nuclear Information System (INIS)

    Lombardi, M.L.; Knecht, D.A.; Lee, J.

    2008-01-01

    The survival of Dictyostelium cells depends on their ability to efficiently chemotax, either towards food or to form multicellular aggregates. Although the involvement of Ca 2+ signaling during chemotaxis is well known, it is not clear how this regulates cell movement. Previously, fish epithelial keratocytes have been shown to display transient increases in intracellular calcium ([Ca 2+ ] i ) that are mediated by stretch-activated calcium channels (SACs), which play a role in retraction of the cell body [J. Lee, A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson, Regulation of cell movement is mediated by stretch-activated calcium channels. Nature, 1999. 400(6742): p. 382-6.]. To investigate the involvement of SACs in Dictyostelium movement we performed high resolution calcium imaging in wild-type (NC4A2) Dictyostelium cells to detect changes in [Ca 2+ ] i . We observed small, brief, Ca 2+ transients in randomly moving wild-type cells that were dependent on both intracellular and extracellular sources of calcium. Treatment of cells with the SAC blocker gadolinium (Gd 3+ ) inhibited transients and decreased cell speed, consistent with the involvement of SACs in regulating Dictyostelium motility. Additional support for SAC activity was given by the increase in frequency of Ca 2+ transients when Dictyostelium cells were moving on a more adhesive substratum or when they were mechanically stretched. We conclude that mechano-chemical signaling via SACs plays a major role in maintaining the rapid movement of Dictyostelium cells

  1. What Is Moving in Hybrid Halide Perovskite Solar Cells?

    Science.gov (United States)

    2016-01-01

    Conspectus Organic–inorganic semiconductors, which adopt the perovskite crystal structure, have perturbed the landscape of contemporary photovoltaics research. High-efficiency solar cells can be produced with solution-processed active layers. The materials are earth abundant, and the simple processing required suggests that high-throughput and low-cost manufacture at scale should be possible. While these materials bear considerable similarity to traditional inorganic semiconductors, there are notable differences in their optoelectronic behavior. A key distinction of these materials is that they are physically soft, leading to considerable thermally activated motion. In this Account, we discuss the internal motion of methylammonium lead iodide (CH3NH3PbI3) and formamidinium lead iodide ([CH(NH2)2]PbI3), covering: (i) molecular rotation-libration in the cuboctahedral cavity; (ii) drift and diffusion of large electron and hole polarons; (iii) transport of charged ionic defects. These processes give rise to a range of properties that are unconventional for photovoltaic materials, including frequency-dependent permittivity, low electron–hole recombination rates, and current–voltage hysteresis. Multiscale simulations, drawing from electronic structure, ab initio molecular dynamic and Monte Carlo computational techniques, have been combined with neutron diffraction measurements, quasi-elastic neutron scattering, and ultrafast vibrational spectroscopy to qualify the nature and time scales of the motions. Electron and hole motion occurs on a femtosecond time scale. Molecular libration is a sub-picosecond process. Molecular rotations occur with a time constant of several picoseconds depending on the cation. Recent experimental evidence and theoretical models for simultaneous electron and ion transport in these materials has been presented, suggesting they are mixed-mode conductors with similarities to fast-ion conducting metal oxide perovskites developed for battery

  2. Rapid and label-free separation of Burkitt's lymphoma cells from red blood cells by optically-induced electrokinetics.

    Directory of Open Access Journals (Sweden)

    Wenfeng Liang

    Full Text Available Early stage detection of lymphoma cells is invaluable for providing reliable prognosis to patients. However, the purity of lymphoma cells in extracted samples from human patients' marrow is typically low. To address this issue, we report here our work on using optically-induced dielectrophoresis (ODEP force to rapidly purify Raji cells' (a type of Burkitt's lymphoma cell sample from red blood cells (RBCs with a label-free process. This method utilizes dynamically moving virtual electrodes to induce negative ODEP force of varying magnitudes on the Raji cells and RBCs in an optically-induced electrokinetics (OEK chip. Polarization models for the two types of cells that reflect their discriminate electrical properties were established. Then, the cells' differential velocities caused by a specific ODEP force field were obtained by a finite element simulation model, thereby established the theoretical basis that the two types of cells could be separated using an ODEP force field. To ensure that the ODEP force dominated the separation process, a comparison of the ODEP force with other significant electrokinetics forces was conducted using numerical results. Furthermore, the performance of the ODEP-based approach for separating Raji cells from RBCs was experimentally investigated. The results showed that these two types of cells, with different concentration ratios, could be separated rapidly using externally-applied electrical field at a driven frequency of 50 kHz at 20 Vpp. In addition, we have found that in order to facilitate ODEP-based cell separation, Raji cells' adhesion to the OEK chip's substrate should be minimized. This paper also presents our experimental results of finding the appropriate bovine serum albumin concentration in an isotonic solution to reduce cell adhesion, while maintaining suitable medium conductivity for electrokinetics-based cell separation. In short, we have demonstrated that OEK technology could be a promising tool for

  3. Proton Exchange Membrane Fuel Cell Modelling Using Moving Least Squares Technique

    Directory of Open Access Journals (Sweden)

    Radu Tirnovan

    2009-07-01

    Full Text Available Proton exchange membrane fuel cell, with low polluting emissions, is a great alternative to replace the traditional electrical power sources for automotive applications or for small stationary consumers. This paper presents a numerical method, for the fuel cell modelling, based on moving least squares (MLS. Experimental data have been used for developing an approximated model of the PEMFC function of the current density, air inlet pressure and operating temperature of the fuel cell. The method can be applied for modelling others fuel cell sub-systems, such as the compressor. The method can be used for off-line or on-line identification of the PEMFC stack.

  4. Interacting active elastic dimers: Two cells moving on a rigid track

    Science.gov (United States)

    Das, Moumita; Mayett, David; Schwarz, J. M.

    2015-03-01

    Cell migration in morphogenesis and cancer metastasis typically involves an interplay between different cell types. The rules governing such interplay remain largely unknown, however, a recent experiment studying the interaction between neural crest (NC) cells and placodal cells reveals an example of such rules. The study found that NC cells chase the placodal cells by chemotaxis, while placodal cells run away from NC cells when contacted by them. Motivated by this observation, we construct and study a minimal one-dimensional cell-cell model comprised of two cells with each cell represented by two-beads-connected-by-an-active spring. The active spring for each moving cell models the stress fibers with their myosin-driven contractility (and alpha-actinin extendability), while the friction coefficients of the beads describe the catch/slip bond behavior of the integrins in focal adhesions. We also include a dynamic contact interaction between the two cells, as well as a chemotactic potential, to decipher the chase-and-run dynamics observed in the experiment. We then use our modeling to further generalize the rules governing the interplay between different cell types during collective cell migration.

  5. High-speed video capillaroscopy method for imaging and evaluation of moving red blood cells

    Science.gov (United States)

    Gurov, Igor; Volkov, Mikhail; Margaryants, Nikita; Pimenov, Aleksei; Potemkin, Andrey

    2018-05-01

    The video capillaroscopy system with high image recording rate to resolve moving red blood cells with velocity up to 5 mm/s into a capillary is considered. Proposed procedures of the recorded video sequence processing allow evaluating spatial capillary area, capillary diameter and central line with high accuracy and reliability independently on properties of individual capillary. Two-dimensional inter frame procedure is applied to find lateral shift of neighbor images in the blood flow area with moving red blood cells and to measure directly the blood flow velocity along a capillary central line. The developed method opens new opportunities for biomedical diagnostics, particularly, due to long-time continuous monitoring of red blood cells velocity into capillary. Spatio-temporal representation of capillary blood flow is considered. Experimental results of direct measurement of blood flow velocity into separate capillary as well as capillary net are presented and discussed.

  6. Moving-bed: a stable and rapidly recovering process; El sistema de biomasa fija sobre lecho movil: un proceso estable y de rapida recuperacion

    Energy Technology Data Exchange (ETDEWEB)

    Velasco Munguira, A.; Jorda Llona, J. R.; Farre Solsona, C.; Cortacans Torre, J. A.

    2005-07-01

    A moving-bed biofilm process is presented for the treatment of soft drink factory outlet. Once the system has been stabilized regarding oxygen, nutrient addition and pH control, the process goes on up to a 95% and over 98% reduction of COD and BOD, respectively, rapidly recovering from toxic shacks. Sludge production is larger than expected due to a higher yield of bacteria growing on a sugar-rich influent. (Author) 4 refs.

  7. Avoidance of a moving threat in the common chameleon (Chamaeleo chamaeleon): rapid tracking by body motion and eye use.

    Science.gov (United States)

    Lev-Ari, Tidhar; Lustig, Avichai; Ketter-Katz, Hadas; Baydach, Yossi; Katzir, Gadi

    2016-08-01

    A chameleon (Chamaeleo chamaeleon) on a perch responds to a nearby threat by moving to the side of the perch opposite the threat, while bilaterally compressing its abdomen, thus minimizing its exposure to the threat. If the threat moves, the chameleon pivots around the perch to maintain its hidden position. How precise is the body rotation and what are the patterns of eye movement during avoidance? Just-hatched chameleons, placed on a vertical perch, on the side roughly opposite to a visual threat, adjusted their position to precisely opposite the threat. If the threat were moved on a horizontal arc at angular velocities of up to 85°/s, the chameleons co-rotated smoothly so that (1) the angle of the sagittal plane of the head relative to the threat and (2) the direction of monocular gaze, were positively and significantly correlated with threat angular position. Eye movements were role-dependent: the eye toward which the threat moved maintained a stable gaze on it, while the contralateral eye scanned the surroundings. This is the first description, to our knowledge, of such a response in a non-flying terrestrial vertebrate, and it is discussed in terms of possible underlying control systems.

  8. Live-cell super-resolution imaging of intrinsically fast moving flagellates

    International Nuclear Information System (INIS)

    Glogger, M; Subota, I; Spindler, M-C; Engstler, M; Fenz, S F; Stichler, S; Bertlein, S; Teßmar, J; Groll, J

    2017-01-01

    Recent developments in super-resolution microscopy make it possible to resolve structures in biological cells at a spatial resolution of a few nm and observe dynamical processes with a temporal resolution of ms to μ s. However, the optimal structural resolution requires repeated illumination cycles and is thus limited to chemically fixed cells. For live cell applications substantial improvement over classical Abbe-limited imaging can already be obtained in adherent or slow moving cells. Nonetheless, a large group of cells are fast moving and thus could not yet be addressed with live cell super-resolution microscopy. These include flagellate pathogens like African trypanosomes, the causative agents of sleeping sickness in humans and nagana in livestock. Here, we present an embedding method based on a in situ forming cytocompatible UV-crosslinked hydrogel. The fast cross-linking hydrogel immobilizes trypanosomes efficiently to allow microscopy on the nanoscale. We characterized both the trypanosomes and the hydrogel with respect to their autofluorescence properties and found them suitable for single-molecule fluorescence microscopy (SMFM). As a proof of principle, SMFM was applied to super-resolve a structure inside the living trypanosome. We present an image of a flagellar axoneme component recorded by using the intrinsic blinking behavior of eYFP. (paper)

  9. Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves

    International Nuclear Information System (INIS)

    Howard, Amanda R.; Heppler, Marty L.; Ju, Ho-Jong; Krishnamurthy, Konduru; Payton, Mark E.; Verchot-Lubicz, Jeanmarie

    2004-01-01

    Experiments were conducted to compare the plasmodesmal transport activities of Potato virus X (PVX) TGBp1 and coat protein (CP) in several plant species. Microinjection experiments indicated that TGBp1 gates plasmodesmata in Nicotiana tabacum leaves. These results support previous microinjection studies indicating that TGBp1 gates plasmodesmata in Nicotiana benthamiana and Nicotiana clevelandii leaves. To study protein movement, plasmids expressing the green fluorescent protein (GFP) gene fused to the PVX TGBp1 or CP genes were biolistically bombarded to leaves taken from four different PVX host species. GFP/TGBp1 moved between adjacent cells in N. tabacum, N. clevelandii, N. benthamiana, and Lycopersicon esculentum, whereas GFP/CP moved only in N. benthamiana leaves. Mutations m12 and m13 were introduced into the TGBp1 gene and both mutations eliminated TGBp1 ATPase active site motifs, inhibited PVX movement, reduced GFP/TGBp1 cell-to-cell movement in N. benthamiana leaves, and eliminated GFP/TGBp1 movement in N. tabacum, N. clevelandii, and L. esculentum leaves. GFP/TGBp1m13 formed aggregates in tobacco cells. The ability of GFP/CP and mutant GFP/TGBp1 fusion proteins to move in N. benthamiana and not in the other PVX host species suggests that N. benthamiana plants have a unique ability to promote protein intercellular movement

  10. Rapid internalization of the insulin receptor in rat hepatoma cells

    International Nuclear Information System (INIS)

    Backer, J.M.; White, M.F.; Kahn, C.R.

    1987-01-01

    The authors have studied the internalization of the insulin receptor (IR) in rat hepatoma cells (Fao). The cells were surface-iodinated at 4 0 C, stimulated with insulin at 37 0 C, and then cooled rapidly, trypsinized at 4 0 C and solubilized. The IR was immunoprecipitated with a specific antibody, and internalization of the IR was assessed by the appearance of trypsin-resistant bands on SDS-PAGE. Insulin induced the internalization of surface receptors with a t 1/2 of 9-10 mins; cells not exposed to insulin internalized less than 20% of the IR during 1 h at 37 0 C. Further experiments demonstrated that the accumulation of trypsin-resistant IR paralleled a loss of receptor from the cell surface. Insulin-stimulated cells were chilled and iodinated at 4 0 C, followed by solubilization, immunoprecipitation and SDS-PAGE; alternatively, insulin-stimulated cells were chilled, surface-bound ligand removed by washing the cells at pH 4.2, and specific [ 125 I]insulin binding measured at 4 0 C. Both techniques confirmed the disappearance of IR from the cell surface at rates comparable to the insulin-stimulated internalization described above. The total amount of phosphotyrosine-containing IR, as assessed by immunoprecipitation with an anti-phosphotyrosine antibody, remained constant during this time interval, suggesting that active kinase is translocated into the cell. In summary, the authors data indicate that insulin binding increases the rate of IR internalization of Fao cells. This relocation may facilitate the interaction of the activated tyrosine kinase in the IR with intracellular substrates, thus transmitting the insulin signal to metabolic pathways

  11. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen

    2015-01-01

    The presence of AT2 receptors in mitochondria and their role in NO generation and cell aging were recently demonstrated in various human and mouse non-tumour cells. We investigated the intracellular distribution of AT2 receptors including their presence in mitochondria and the role in the induction...... agonist, Compound 21 (C21) penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped from the cell death, displayed activation of the mitochondrial apoptotic pathway, i...

  12. Diclofenac in Arabidopsis cells: Rapid formation of conjugates.

    Science.gov (United States)

    Fu, Qiuguo; Ye, Qingfu; Zhang, Jianbo; Richards, Jaben; Borchardt, Dan; Gan, Jay

    2017-03-01

    Pharmaceutical and personal care products (PPCPs) are continuously introduced into the soil-plant system, through practices such as agronomic use of reclaimed water and biosolids containing these trace contaminants. Plants may accumulate PPCPs from soil, serving as a conduit for human exposure. Metabolism likely controls the final accumulation of PPCPs in plants, but is in general poorly understood for emerging contaminants. In this study, we used diclofenac as a model compound, and employed 14 C tracing, and time-of-flight (TOF) and triple quadruple (QqQ) mass spectrometers to unravel its metabolism pathways in Arabidopsis thaliana cells. We further validated the primary metabolites in Arabidopsis seedlings. Diclofenac was quickly taken up into A. thaliana cells. Phase I metabolism involved hydroxylation and successive oxidation and cyclization reactions. However, Phase I metabolites did not accumulate appreciably; they were instead rapidly conjugated with sulfate, glucose, and glutamic acid through Phase II metabolism. In particular, diclofenac parent was directly conjugated with glutamic acid, with acyl-glutamatyl-diclofenac accounting for >70% of the extractable metabolites after 120-h incubation. In addition, at the end of incubation, >40% of the spiked diclofenac was in the non-extractable form, suggesting extensive sequestration into cell matter. The rapid formation of non-extractable residue and dominance of diclofenac-glutamate conjugate uncover previously unknown metabolism pathways for diclofenac. In particular, the rapid conjugation of parent highlights the need to consider conjugates of emerging contaminants in higher plants, and their biological activity and human health implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Live-cell super-resolution imaging of intrinsically fast moving flagellates

    Science.gov (United States)

    Glogger, M.; Stichler, S.; Subota, I.; Bertlein, S.; Spindler, M.-C.; Teßmar, J.; Groll, J.; Engstler, M.; Fenz, S. F.

    2017-02-01

    Recent developments in super-resolution microscopy make it possible to resolve structures in biological cells at a spatial resolution of a few nm and observe dynamical processes with a temporal resolution of ms to μs. However, the optimal structural resolution requires repeated illumination cycles and is thus limited to chemically fixed cells. For live cell applications substantial improvement over classical Abbe-limited imaging can already be obtained in adherent or slow moving cells. Nonetheless, a large group of cells are fast moving and thus could not yet be addressed with live cell super-resolution microscopy. These include flagellate pathogens like African trypanosomes, the causative agents of sleeping sickness in humans and nagana in livestock. Here, we present an embedding method based on a in situ forming cytocompatible UV-crosslinked hydrogel. The fast cross-linking hydrogel immobilizes trypanosomes efficiently to allow microscopy on the nanoscale. We characterized both the trypanosomes and the hydrogel with respect to their autofluorescence properties and found them suitable for single-molecule fluorescence microscopy (SMFM). As a proof of principle, SMFM was applied to super-resolve a structure inside the living trypanosome. We present an image of a flagellar axoneme component recorded by using the intrinsic blinking behavior of eYFP. , which features invited work from the best early-career researchers working within the scope of J Phys D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Susanne Fenz was selected by the Editorial Board of J Phys D as an Emerging Talent/Leader.

  14. A microfluidic chip for direct and rapid trapping of white blood cells from whole blood

    Science.gov (United States)

    Chen, Jingdong; Chen, Di; Yuan, Tao; Xie, Yao; Chen, Xiang

    2013-01-01

    Blood analysis plays a major role in medical and science applications and white blood cells (WBCs) are an important target of analysis. We proposed an integrated microfluidic chip for direct and rapid trapping WBCs from whole blood. The microfluidic chip consists of two basic functional units: a winding channel to mix and arrays of two-layer trapping structures to trap WBCs. Red blood cells (RBCs) were eliminated through moving the winding channel and then WBCs were trapped by the arrays of trapping structures. We fabricated the PDMS (polydimethylsiloxane) chip using soft lithography and determined the critical flow velocities of tartrazine and brilliant blue water mixing and whole blood and red blood cell lysis buffer mixing in the winding channel. They are 0.25 μl/min and 0.05 μl/min, respectively. The critical flow velocity of the whole blood and red blood cell lysis buffer is lower due to larger volume of the RBCs and higher kinematic viscosity of the whole blood. The time taken for complete lysis of whole blood was about 85 s under the flow velocity 0.05 μl/min. The RBCs were lysed completely by mixing and the WBCs were trapped by the trapping structures. The chip trapped about 2.0 × 103 from 3.3 × 103 WBCs. PMID:24404026

  15. A Rapid Cell Expansion Process for Production of Engineered Autologous CAR-T Cell Therapies.

    Science.gov (United States)

    Lu, Tangying Lily; Pugach, Omar; Somerville, Robert; Rosenberg, Steven A; Kochenderfer, James N; Better, Marc; Feldman, Steven A

    2016-12-01

    The treatment of B-cell malignancies by adoptive cell transfer (ACT) of anti-CD19 chimeric antigen receptor T cells (CD19 CAR-T) has proven to be a highly successful therapeutic modality in several clinical trials. 1-6 The anti-CD19 CAR-T cell production method used to support initial trials relied on numerous manual, open process steps, human serum, and 10 days of cell culture to achieve a clinical dose. 7 This approach limited the ability to support large multicenter clinical trials, as well as scale up for commercial cell production. Therefore, studies were completed to streamline and optimize the original National Cancer Institute production process by removing human serum from the process in order to minimize the risk of viral contamination, moving process steps from an open system to functionally closed system operations in order to minimize the risk of microbial contamination, and standardizing additional process steps in order to maximize process consistency. This study reports a procedure for generating CD19 CAR-T cells in 6 days, using a functionally closed manufacturing process and defined, serum-free medium. This method is able to produce CD19 CAR-T cells that are phenotypically and functionally indistinguishable from cells produced for clinical trials by the previously described production process.

  16. Catching moving targets: cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention.

    LENUS (Irish Health Repository)

    Gasch, Claudia

    2017-01-01

    It is widely believed that targeting the tumour-initiating cancer stem cell (CSC) component of malignancy has great therapeutic potential, particularly in therapy-resistant disease. However, despite concerted efforts, CSC-targeting strategies have not been efficiently translated to the clinic. This is partly due to our incomplete understanding of the mechanisms underlying CSC therapy-resistance. In particular, the relationship between therapy-resistance and the organisation of CSCs as Stem-Progenitor-Differentiated cell hierarchies has not been widely studied. In this review we argue that modern clinical strategies should appreciate that the CSC hierarchy is a dynamic target that contains sensitive and resistant components and expresses a collection of therapy-resisting mechanisms. We propose that the CSC hierarchy at primary presentation changes in response to clinical intervention, resulting in a recurrent malignancy that should be targeted differently. As such, addressing the hierarchical organisation of CSCs into our bench-side theory should expedite translation of CSC-targeting to bed-side practice. In conclusion, we discuss strategies through which we can catch these moving clinical targets to specifically compromise therapy-resistant disease.

  17. Copper electrowinning in a moving-bed cell based on reactive electrodialysis

    Directory of Open Access Journals (Sweden)

    Cifuentes, L.

    2008-04-01

    Full Text Available A two-compartment lab-scale reactive electrodialysis (RED cell with a moving particulate cathode has been used for copper electrowinning. The cathodic reaction was copper electrodeposition on a bed of copper particles forced to circulate inside a fixed cylindrical enclosure by the action of rotating paddles; the anodic reaction was ferrous to ferric ion oxidation on an anode made of static graphite bars. The anolyte (aqueous FeSO4 + H2SO4 and catholyte (aqueous CuSO4 + H2SO4 are kept separate by an anion membrane which prevents cation transport between the electrolytes. Experiments were carried out in order to characterize cell performance under various conditions. When operating with 40 g/L Cu (II, I = 6 A, T = 50°C, 40 rpm paddle rotation and 990 mL/min electrolyte recirculation flowrate, the specific energy consumption (SEC for copper electrowinning was 2.25 kWh/kg. An optimization of cell dimensions gave an improved SEC of 1.55 kWh/kg whereas a temperature increase from 50 to 56°C (without changing cell dimensions produced a SEC of 1.50 kWh/kg, which is 25% lower than normal values for conventional copper electrowinning cells. A comparison was drawn between the performance of this cell and a squirrel-cage cell previously developed by the authors.

    Una celda a escala laboratorio de electrodiálisis reactiva (EDR, de dos compartimientos con cátodo particulado móvil, se ha utilizado para electroobtener cobre. La reacción catódica fue la electrodeposición de cobre sobre un lecho de partículas de cobre que circulan dentro de un cilindro fijo por la acción de paletas rotatorias; la reacción anódica fue la oxidación de ión ferroso a ión férrico sobre un ánodo hecho de barras de grafito estáticas. El anolito (FeSO4 + H2SO4 acuoso y el catolito (CuSO4 + H2SO4 acuoso se mantienen separados por una

  18. Rapid classification of turmeric based on DNA fingerprint by near-infrared spectroscopy combined with moving window partial least squares-discrimination analysis

    International Nuclear Information System (INIS)

    Kasemsumran, Sumaporn; Suttiwijitpukdee, Nattaporn; Keeratinijakal, Vichein

    2017-01-01

    In this research, near-infrared (NIR) spectroscopy in combination with moving window partial least squares-discrimination analysis (MWPLS-DA) was utilized to discriminate the variety of turmeric based on DNA markers, which correlated to the quantity of curcuminoid. Curcuminoid was used as a marker compound in variety identification due to the most pharmacological properties of turmeric possessed from it. MWPLS-DA optimized informative NIR spectral regions for the fitting and prediction to {-1/1}-coded turmeric varieties, indicating variables in the development of latent variables in discrimination analysis. Consequently, MWPLS-DA benefited in the selection of combined informative NIR spectral regions of 1100 – 1260, 1300 – 1500 and 1880 – 2500 nm for classification modeling of turmeric variety with 148 calibration samples, and yielded the results better than that obtained from a partial least squares-discrimination analysis (PLS-DA) model built by using the whole NIR spectral region. An effective and rapid strategy of using NIR in combination with MWPLS-DA provided the best variety identification results of 100% in both specificity and total accuracy for 48 test samples. (author)

  19. Simulation of moving boundaries interacting with compressible reacting flows using a second-order adaptive Cartesian cut-cell method

    Science.gov (United States)

    Muralidharan, Balaji; Menon, Suresh

    2018-03-01

    A high-order adaptive Cartesian cut-cell method, developed in the past by the authors [1] for simulation of compressible viscous flow over static embedded boundaries, is now extended for reacting flow simulations over moving interfaces. The main difficulty related to simulation of moving boundary problems using immersed boundary techniques is the loss of conservation of mass, momentum and energy during the transition of numerical grid cells from solid to fluid and vice versa. Gas phase reactions near solid boundaries can produce huge source terms to the governing equations, which if not properly treated for moving boundaries, can result in inaccuracies in numerical predictions. The small cell clustering algorithm proposed in our previous work is now extended to handle moving boundaries enforcing strict conservation. In addition, the cell clustering algorithm also preserves the smoothness of solution near moving surfaces. A second order Runge-Kutta scheme where the boundaries are allowed to change during the sub-time steps is employed. This scheme improves the time accuracy of the calculations when the body motion is driven by hydrodynamic forces. Simple one dimensional reacting and non-reacting studies of moving piston are first performed in order to demonstrate the accuracy of the proposed method. Results are then reported for flow past moving cylinders at subsonic and supersonic velocities in a viscous compressible flow and are compared with theoretical and previously available experimental data. The ability of the scheme to handle deforming boundaries and interaction of hydrodynamic forces with rigid body motion is demonstrated using different test cases. Finally, the method is applied to investigate the detonation initiation and stabilization mechanisms on a cylinder and a sphere, when they are launched into a detonable mixture. The effect of the filling pressure on the detonation stabilization mechanisms over a hyper-velocity sphere launched into a hydrogen

  20. Spatiotemporal Compression Techniques for Moving Point Objects

    NARCIS (Netherlands)

    Meratnia, Nirvana; de By, R.A.; de By, R.A.; Bertino, E.

    Moving object data handling has received a fair share of attention over recent years in the spatial database community. This is understandable as positioning technology is rapidly making its way into the consumer market, not only through the already ubiquitous cell phone but soon also through small,

  1. Use of the parameterised finite element method to robustly and efficiently evolve the edge of a moving cell.

    Science.gov (United States)

    Neilson, Matthew P; Mackenzie, John A; Webb, Steven D; Insall, Robert H

    2010-11-01

    In this paper we present a computational tool that enables the simulation of mathematical models of cell migration and chemotaxis on an evolving cell membrane. Recent models require the numerical solution of systems of reaction-diffusion equations on the evolving cell membrane and then the solution state is used to drive the evolution of the cell edge. Previous work involved moving the cell edge using a level set method (LSM). However, the LSM is computationally very expensive, which severely limits the practical usefulness of the algorithm. To address this issue, we have employed the parameterised finite element method (PFEM) as an alternative method for evolving a cell boundary. We show that the PFEM is far more efficient and robust than the LSM. We therefore suggest that the PFEM potentially has an essential role to play in computational modelling efforts towards the understanding of many of the complex issues related to chemotaxis.

  2. Evaluation of the interplay effect when using RapidArc to treat targets moving in the craniocaudal or right-left direction

    International Nuclear Information System (INIS)

    Court, Laurence; Wagar, Matthew; Berbeco, Ross; Reisner, Adam; Winey, Brian; Schofield, Debbie; Ionascu, Dan; Allen, Aaron M.; Popple, Richard; Lingos, Tania

    2010-01-01

    Purpose: We have investigated the dosimetric errors caused by the interplay between the motions of the LINAC and the tumor during the delivery of a volume modulated arc therapy treatment. This includes the development of an IMRT QA technique, applied here to evaluate RapidArc plans of varying complexity. Methods: An IMRT QA technique was developed, which involves taking a movie of the delivered dose (0.2 s frames) using a 2D ion chamber array. Each frame of the movie is then moved according to a respiratory trace and the cumulative dose calculated. The advantage of this approach is that the impact of turning the beam on at different points in the respiratory trace, and of different types of motion, can be evaluated using data from a single irradiation. We evaluated this technique by comparing with the results when we actually moved the phantom during irradiation. RapidArc plans were created to treat a 62 cc spherical tumor in a lung phantom (16 plans) and a 454 cc irregular tumor in an actual patient (five plans). The complexity of each field was controlled by adjusting the MU (312-966 MU). Each plan was delivered to a phantom, and a movie of the delivered dose taken using a 2D ion chamber array. Patient motion was modeled by shifting each dose frame according to a respiratory trace, starting the motion at different phases. The expected dose distribution was calculated by blurring the static dose distribution with the target motion. The dose error due to the interplay effect was then calculated by comparing the delivered dose with the expected dose distribution. Peak-to-peak motion of 0.5, 1.0, and 2.0 cm in the craniocaudal and right-left directions, with target periods of 3 and 5 s, were evaluated for each plan (252 different target motion/plan combinations). Results: The daily dose error due to the interplay effect was less than 10% for 98.4% of all pixels in the target for all plans investigated. The percentage of pixels for which the daily dose error could be

  3. Automated Tracking of Cell Migration with Rapid Data Analysis.

    Science.gov (United States)

    DuChez, Brian J

    2017-09-01

    Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  4. Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell.

    Science.gov (United States)

    Nikmaneshi, M R; Firoozabadi, B; Saidi, M S

    2018-01-23

    Interaction between intracellular dynamics and extracellular matrix (ECM) generally occurred into very thin fragment of moving cell, namely lamellipodia, enables all movable cells to crawl on ECM. In fast-moving cells such as fish Keratocytes, Lamellipodia including most cell area finds a fan-like shape during migration, with a variety of aspect ratio function of fish type. In this work, our purpose is to present a novel and more complete two-dimensional continuum mathematical model of actomyosin-cytosolic two-phase flow of a self-deforming Keratocyte with circular spreaded to steady fan-like shape. In the new approach, in addition to the two-phase flow of the F-actin and cytosol, the G-actin transport was spatiotemporally modeled. We also for the first time modeled the effect of variable volume fraction of the moving F-actin porous network on solute transport in the cytosolic fluid. Our novel fully-coupled mathematical model provides a better understanding of intracellular dynamics of fast-migrating Keratocytes; such as the F-actin centripetal and cytosolic fountain-like flows, free-active myosin distribution, distribution sequence of the G-actin, F-actin, and myosin, and myosin-induced pressure flied of cytoplasm as well as the map of intracellular forces like myosin contraction and adhesion traction. All these results are qualitatively and quantitatively in good agreement with experimental observations. According to a range of value of parameters used in this model, our steady state of moving Keratocyte finds fan-like shape with the same aspect ratio as wide category of fish Keratocytes. This new model can predict shape of Keratocytes in other range of parameter values. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Rapid white blood cell detection for peritonitis diagnosis

    Science.gov (United States)

    Wu, Tsung-Feng; Mei, Zhe; Chiu, Yu-Jui; Cho, Sung Hwan; Lo, Yu-Hwa

    2013-03-01

    A point-of-care and home-care lab-on-a-chip (LoC) system that integrates a microfluidic spiral device as a concentrator with an optical-coding device as a cell enumerator is demonstrated. The LoC system enumerates white blood cells from dialysis effluent of patients receiving peritoneal dialysis. The preliminary results show that the white blood cell counts from our system agree well with the results from commercial flow cytometers. The LoC system can potentially bring significant benefits to end stage renal disease (ESRD) patients that are on peritoneal dialysis (PD).

  6. The location of splenic NKT cells favours their rapid activation by blood-borne antigen.

    Science.gov (United States)

    Barral, Patricia; Sánchez-Niño, María Dolores; van Rooijen, Nico; Cerundolo, Vincenzo; Batista, Facundo D

    2012-05-16

    Natural killer T (NKT) cells play an important role in mounting protective responses to blood-borne infections. However, though the spleen is the largest blood filter in the body, the distribution and dynamics of NKT cells within this organ are not well characterized. Here we show that the majority of NKT cells patrol around the marginal zone (MZ) and red pulp (RP) of the spleen. In response to lipid antigen, these NKT cells become arrested and rapidly produce cytokines, while the small proportion of NKT cells located in the white pulp (WP) exhibit limited activation. Importantly, disruption of the splenic MZ by chemical or genetic approaches results in a severe reduction in NKT cell activation indicating the need of cooperation between both MZ macrophages and dendritic cells for efficient NKT cell responses. Thus, the location of splenic NKT cells in the MZ and RP facilitates their access to blood-borne antigen and enables the rapid initiation of protective immune responses.

  7. Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ

    Science.gov (United States)

    Guix, Maria; Meyer, Anne K.; Koch, Britta; Schmidt, Oliver G.

    2016-02-01

    Novel approaches to develop naturally-induced drug delivery in tumor environments in a deterministic and controlled manner have become of growing interest in recent years. Different polymeric-based microstructures and other biocompatible substances have been studied taking advantage of lactic acidosis phenomena in tumor cells, which decrease the tumor extracellular pH down to 6.8. Micromotors have recently demonstrated a high performance in living systems, revealing autonomous movement in the acidic environment of the stomach or moving inside living cells by using acoustic waves, opening the doors for implementation of such smart microengines into living entities. The need to develop biocompatible motors which are driven by natural fuel sources inherently created in biological systems has thus become of crucial importance. As a proof of principle, we here demonstrate calcium carbonate Janus particles moving in extremely light acidic environments (pH 6.5), whose motion is induced in conditioned acidic medium generated by HeLa cells in situ. Our system not only obviates the need for an external fuel, but also presents a selective activation of the micromotors which promotes their motion and consequent dissolution in presence of a quickly propagating cell source (i.e. tumor cells), therefore inspiring new micromotor configurations for potential drug delivery systems.

  8. Rapid desensitization of adrenaline- and neuropeptide Y-stimulated Ca2+ mobilization in HEL-cells

    NARCIS (Netherlands)

    Michel, M. C.

    1994-01-01

    1. Desensitization of Gs-coupled receptors, the beta 2-adrenoceptor for example, involves rapid and slower components but little is known regarding the existence of rapid desensitization of Gi-coupled receptors and its possible mechanisms. In HEL-cells stimulation of alpha 2A-adrenoceptors by

  9. IL-6 trans-Signaling-Dependent Rapid Development of Cytotoxic CD8+ T Cell Function

    Directory of Open Access Journals (Sweden)

    Jan P. Böttcher

    2014-09-01

    Full Text Available Immune control of infections with viruses or intracellular bacteria relies on cytotoxic CD8+ T cells that use granzyme B (GzmB for elimination of infected cells. During inflammation, mature antigen-presenting dendritic cells instruct naive T cells within lymphoid organs to develop into effector T cells. Here, we report a mechanistically distinct and more rapid process of effector T cell development occurring within 18 hr. Such rapid acquisition of effector T cell function occurred through cross-presenting liver sinusoidal endothelial cells (LSECs in the absence of innate immune stimulation and known costimulatory signaling. Rather, interleukin-6 (IL-6 trans-signaling was required and sufficient for rapid induction of GzmB expression in CD8+ T cells. Such LSEC-stimulated GzmB-expressing CD8+ T cells further responded to inflammatory cytokines, eliciting increased and protracted effector functions. Our findings identify a role for IL-6 trans-signaling in rapid generation of effector function in CD8+ T cells that may be beneficial for vaccination strategies.

  10. Theoretical Analysis of Moving Reference Planes Associated with Unit Cells of Nonreciprocal Lossy Periodic Transmission-Line Structures

    Directory of Open Access Journals (Sweden)

    S. Lamultree

    2017-04-01

    Full Text Available This paper presents a theoretical analysis of moving reference planes associated with unit cells of nonreciprocal lossy periodic transmission-line structures (NRLSPTLSs by the equivalent bi-characteristic-impedance transmission line (BCITL model. Applying the BCITL theory, only the equivalent BCITL parameters (characteristic impedances for waves propagating in forward and reverse directions and associated complex propagation constants are of interest. An infinite NRLSPTLS is considered first by shifting a reference position of unit cells along TLs of interest. Then, a semi-infinite terminated NRLSPTLS is investigated in terms of associated load reflection coefficients. It is found that the equivalent BCITL characteristic impedances of the original and shifted unit cells are mathematically related by the bilinear transformation. In addition, the associated load reflection coefficients of both unit cells are mathematically related by the bilinear transformation. However, the equivalent BCITL complex propagation constants remain unchanged. Numerical results are provided to show the validity of the proposed theoretical analysis.

  11. Rapid method for culturing embryonic neuron-glial cell cocultures

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Shan, Wei-Song; Colman, David R

    2003-01-01

    neurons is seen after 3 weeks (2 weeks in ascorbic acid), suggesting that basal lamina production is important even for glial ensheathment in the enteric nervous system. No overgrowth of fibroblasts or other nonneuronal cells was noted in any cultures, and myelination of the peripheral nervous system...

  12. Rapid prototyping methods for the manufacture of fuel cells

    Directory of Open Access Journals (Sweden)

    Dudek Piotr

    2016-01-01

    The potential for the application of this method for the manufacture of metallic bipolar plates (BPP for use in proton exchange membrane fuel cells (PEMFCs is presented and discussed. Special attention is paid to the fabrication of light elements for the construction of PEMFC stacks designed for mobile applications such as aviation technology and unmanned aerial vehicles (UAVs.

  13. Rapid kinetics of lysis in human natural cell-mediated cytotoxicity: some implications

    International Nuclear Information System (INIS)

    Bloom, E.T.; Babbitt, J.T.

    1983-01-01

    The entire lytic process of natural cell-mediated cytotoxicity against sensitive target cells can occur rapidly, within minutes. This was demonstrated by 51 chromium release and in single-cell assays. At the cellular level, most of the target cell lysis occurred within 15-30 min after binding to effector cells. The enriched natural killer cell subpopulation of lymphocytes obtained by Percoll density gradient centrifugation (containing greater than 70% large granular lymphocytes (LGL)) was the most rapidly lytic population by 51 chromium release. However, in the single-cell assay, the rate of lysis of bound target cells was quite similar for the LGL-enriched effector subpopulation and the higher density subpopulation of effector cells recognized previously. Both the light and dense effector cells contained similar numbers of target binding cells. Therefore, that the light subpopulation effected lysis more rapidly and to a greater extent than the dense subpopulation suggested that the low-density effector cells probably recycled more rapidly than those of higher density. This was corroborated by the finding that when conjugates were formed at 29 degrees C for the single-cell assay, a significant number of dead unconjugated targets could be observed only on the slides made with the LGL-enriched effector cells but not on those made with dense effector cell. Lysis continued to increase in the chromium-release assay probably because of recycling, recruitment, and/or heterogeneity of the effector cells, and/or because of heterogeneity or delayed death of the target cells

  14. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity.

    Science.gov (United States)

    Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R

    2018-02-27

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.

  15. Clinical Grade Regulatory CD4+ T Cells (Tregs: Moving Toward Cellular-Based Immunomodulatory Therapies

    Directory of Open Access Journals (Sweden)

    Richard Duggleby

    2018-02-01

    Full Text Available Regulatory T cells (Tregs are CD4+ T cells that are key players of immune tolerance. They are powerful suppressor cells, able to impact the function of numerous immune cells, including key effectors of inflammation such as effector T cells. For this reason, Tregs are an ideal candidate for the development of cell therapy approaches to modulate immune responses. Treg therapy has shown promising results so far, providing key knowledge on the conditions in which these cells can provide protection and demonstrating that they could be an alternative to current pharmacological immunosuppressive therapies. However, a more comprehensive understanding of their characteristics, isolation, activation, and expansion is needed to be able design cost effective therapies. Here, we review the practicalities of making Tregs a viable cell therapy, in particular, discussing the challenges faced in isolating and manufacturing Tregs and defining what are the most appropriate applications for this new therapy.

  16. Observation of reversible, rapid changes in drug susceptibility of hypoxic tumor cells in a microfluidic device

    Energy Technology Data Exchange (ETDEWEB)

    Germain, Todd; Ansari, Megan; Pappas, Dimitri, E-mail: d.pappas@ttu.edu

    2016-09-14

    Hypoxia is a major stimulus for increased drug resistance and for survival of tumor cells. Work from our group and others has shown that hypoxia increases resistance to anti-cancer compounds, radiation, and other damage-pathway cytotoxic agents. In this work we utilize a microfluidic culture system capable of rapid switching of local oxygen concentrations to determine changes in drug resistance in prostate cancer cells. We observed rapid adaptation to hypoxia, with drug resistance to 2 μM staurosporine established within 30 min of hypoxia. Annexin-V/Sytox Green apoptosis assays over 9 h showed 78.0% viability, compared to 84.5% viability in control cells (normoxic cells with no staurosporine). Normoxic cells exposed to the same staurosporine concentration had a viability of 48.6% after 9 h. Hypoxia adaptation was rapid and reversible, with Hypoxic cells treated with 20% oxygen for 30 min responding to staurosporine with 51.6% viability after drug treatment for 9 h. Induction of apoptosis through the receptor-mediated pathway, which bypasses anti-apoptosis mechanisms induced by hypoxia, resulted in 39.4 ± 7% cell viability. The rapid reversibility indicates co-treatment of oxygen with anti-cancer compounds may be a potential therapeutic target. - Highlights: • Microfluidic system switches rapidly between normoxia and hypoxia (5 min). • Observation of rapid adaptation of PC3 cells to hypoxia and normoxia (30 min). • Drug susceptibility in tumor cells restored after chip switched to normoxia for 30 min.

  17. A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows

    Science.gov (United States)

    Cheng, Jun-Bo; Huang, Weizhang; Jiang, Song; Tian, Baolin

    2017-11-01

    A third-order moving mesh cell-centered scheme without the remapping of physical variables is developed for the numerical solution of one-dimensional elastic-plastic flows with the Mie-Grüneisen equation of state, the Wilkins constitutive model, and the von Mises yielding criterion. The scheme combines the Lagrangian method with the MMPDE moving mesh method and adaptively moves the mesh to better resolve shock and other types of waves while preventing the mesh from crossing and tangling. It can be viewed as a direct arbitrarily Lagrangian-Eulerian method but can also be degenerated to a purely Lagrangian scheme. It treats the relative velocity of the fluid with respect to the mesh as constant in time between time steps, which allows high-order approximation of free boundaries. A time dependent scaling is used in the monitor function to avoid possible sudden movement of the mesh points due to the creation or diminishing of shock and rarefaction waves or the steepening of those waves. A two-rarefaction Riemann solver with elastic waves is employed to compute the Godunov values of the density, pressure, velocity, and deviatoric stress at cell interfaces. Numerical results are presented for three examples. The third-order convergence of the scheme and its ability to concentrate mesh points around shock and elastic rarefaction waves are demonstrated. The obtained numerical results are in good agreement with those in literature. The new scheme is also shown to be more accurate in resolving shock and rarefaction waves than an existing third-order cell-centered Lagrangian scheme.

  18. Development of a qPCR method to rapidly assess the function of NKT cells.

    Science.gov (United States)

    Sohn, Silke; Tiper, Irina; Japp, Emily; Sun, Wenji; Tkaczuk, Katherine; Webb, Tonya J

    2014-05-01

    NKT cells comprise a rare, but important subset of T cells which account for ~0.2% of the total circulating T cell population. NKT cells are known to have anti-tumor functions and rapidly produce high levels of cytokines following activation. Several clinical trials have sought to exploit the effector functions of NKT cells. While some studies have shown promise, NKT cells are approximately 50% lower in cancer patients compared to healthy donors of the same age and gender, thus limiting their therapeutic efficacy. These studies indicate that baseline levels of activation should be assessed before initiating an NKT cell based immunotherapeutic strategy. The goal of this study was to develop a sensitive method to rapidly assess NKT cell function. We utilized artificial antigen presenting cells in combination with qPCR in order to determine NKT cell function in peripheral blood mononuclear cells from healthy donors and breast cancer patients. We found that NKT cell activation can be detected by qPCR, but not by ELISA, in healthy donors as well as in breast cancer patients following four hour stimulation. This method utilizing CD1d-expressing aAPCs will enhance our knowledge of NKT cell biology and could potentially be used as a novel tool in adoptive immunotherapeutic strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Observation of reversible, rapid changes in drug susceptibility of hypoxic tumor cells in a microfluidic device.

    Science.gov (United States)

    Germain, Todd; Ansari, Megan; Pappas, Dimitri

    2016-09-14

    Hypoxia is a major stimulus for increased drug resistance and for survival of tumor cells. Work from our group and others has shown that hypoxia increases resistance to anti-cancer compounds, radiation, and other damage-pathway cytotoxic agents. In this work we utilize a microfluidic culture system capable of rapid switching of local oxygen concentrations to determine changes in drug resistance in prostate cancer cells. We observed rapid adaptation to hypoxia, with drug resistance to 2 μM staurosporine established within 30 min of hypoxia. Annexin-V/Sytox Green apoptosis assays over 9 h showed 78.0% viability, compared to 84.5% viability in control cells (normoxic cells with no staurosporine). Normoxic cells exposed to the same staurosporine concentration had a viability of 48.6% after 9 h. Hypoxia adaptation was rapid and reversible, with Hypoxic cells treated with 20% oxygen for 30 min responding to staurosporine with 51.6% viability after drug treatment for 9 h. Induction of apoptosis through the receptor-mediated pathway, which bypasses anti-apoptosis mechanisms induced by hypoxia, resulted in 39.4 ± 7% cell viability. The rapid reversibility indicates co-treatment of oxygen with anti-cancer compounds may be a potential therapeutic target. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Documentation and localization of force-mediated filamin A domain perturbations in moving cells

    Science.gov (United States)

    Nakamura, Fumihiko; Song, Mia; Hartwig, John H.; Stossel, Thomas P.

    2014-08-01

    Endogenously and externally generated mechanical forces influence diverse cellular activities, a phenomenon defined as mechanotransduction. Deformation of protein domains by application of stress, previously documented to alter macromolecular interactions in vitro, could mediate these effects. We engineered a photon-emitting system responsive to unfolding of two repeat domains of the actin filament (F-actin) crosslinker protein filamin A (FLNA) that binds multiple partners involved in cell signalling reactions and validated the system using F-actin networks subjected to myosin-based contraction. Expressed in cultured cells, the sensor-containing FLNA construct reproducibly reported FLNA domain unfolding strikingly localized to dynamic, actively protruding, leading cell edges. The unfolding signal depends upon coherence of F-actin-FLNA networks and is enhanced by stimulating cell contractility. The results establish protein domain distortion as a bona fide mechanism for mechanotransduction in vivo.

  1. Rapid transcriptional pulsing dynamics of high expressing retroviral transgenes in embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Mandy Y M Lo

    Full Text Available Single cell imaging studies suggest that transcription is not continuous and occurs as discrete pulses of gene activity. To study mechanisms by which retroviral transgenes can transcribe to high levels, we used the MS2 system to visualize transcriptional dynamics of high expressing proviral integration sites in embryonic stem (ES cells. We established two ES cell lines each bearing a single copy, self-inactivating retroviral vector with a strong ubiquitous human EF1α gene promoter directing expression of mRFP fused to an MS2-stem-loop array. Transfection of MS2-EGFP generated EGFP focal dots bound to the mRFP-MS2 stem loop mRNA. These transcription foci colocalized with the transgene integration site detected by immunoFISH. Live tracking of single cells for 20 minutes detected EGFP focal dots that displayed frequent and rapid fluctuations in transcription over periods as short as 25 seconds. Similarly rapid fluctuations were detected from focal doublet signals that colocalized with replicated proviral integration sites by immunoFISH, consistent with transcriptional pulses from sister chromatids. We concluded that retroviral transgenes experience rapid transcriptional pulses in clonal ES cell lines that exhibit high level expression. These events are directed by a constitutive housekeeping gene promoter and may provide precedence for rapid transcriptional pulsing at endogenous genes in mammalian stem cells.

  2. Hyperkalemia caused by rapid red cell transfusion and the potassium absorption filter

    Directory of Open Access Journals (Sweden)

    Yasuhiko Imashuku

    2017-01-01

    Full Text Available We report a case of transient hyperkalemia during hysterectomy after cesarean section, due to preoperatively undiagnosed placenta accreta that caused unforeseen massive hemorrhage and required rapid red cell transfusion. Hyperkalemia-induced by rapid red cell transfusion is a well-known severe complication of transfusion; however, in patients with sudden massive hemorrhage, rapid red cell transfusion is necessary to save their life. In such cases, it is extremely important to monitor serum potassium levels. For an emergency situation, a system should be developed to ensure sufficient preparation for immediate transfusion and laboratory tests. Furthermore, sufficient stock of preparations to treat hyperkalemia, such as calcium preparations, diuretics, glucose, and insulin is required. Moreover, a transfusion filter that absorbs potassium has been developed and is now available for clinical use in Japan. The filter is easy to use and beneficial, and should be prepared when it is available.

  3. Hyperkalemia caused by rapid red cell transfusion and the potassium absorption filter

    Science.gov (United States)

    Imashuku, Yasuhiko; Kitagawa, Hirotoshi; Mizuno, Takayoshi; Fukushima, Yutaka

    2017-01-01

    We report a case of transient hyperkalemia during hysterectomy after cesarean section, due to preoperatively undiagnosed placenta accreta that caused unforeseen massive hemorrhage and required rapid red cell transfusion. Hyperkalemia-induced by rapid red cell transfusion is a well-known severe complication of transfusion; however, in patients with sudden massive hemorrhage, rapid red cell transfusion is necessary to save their life. In such cases, it is extremely important to monitor serum potassium levels. For an emergency situation, a system should be developed to ensure sufficient preparation for immediate transfusion and laboratory tests. Furthermore, sufficient stock of preparations to treat hyperkalemia, such as calcium preparations, diuretics, glucose, and insulin is required. Moreover, a transfusion filter that absorbs potassium has been developed and is now available for clinical use in Japan. The filter is easy to use and beneficial, and should be prepared when it is available. PMID:28217070

  4. Quantitative analysis of topoisomerase IIα to rapidly evaluate cell proliferation in brain tumors

    International Nuclear Information System (INIS)

    Oda, Masashi; Arakawa, Yoshiki; Kano, Hideyuki; Kawabata, Yasuhiro; Katsuki, Takahisa; Shirahata, Mitsuaki; Ono, Makoto; Yamana, Norikazu; Hashimoto, Nobuo; Takahashi, Jun A.

    2005-01-01

    Immunohistochemical cell proliferation analyses have come into wide use for evaluation of tumor malignancy. Topoisomerase IIα (topo IIα), an essential nuclear enzyme, has been known to have cell cycle coupled expression. We here show the usefulness of quantitative analysis of topo IIα mRNA to rapidly evaluate cell proliferation in brain tumors. A protocol to quantify topo IIα mRNA was developed with a real-time RT-PCR. It took only 3 h to quantify from a specimen. A total of 28 brain tumors were analyzed, and the level of topo IIα mRNA was significantly correlated with its immuno-staining index (p < 0.0001, r = 0.9077). Furthermore, it sharply detected that topo IIα mRNA decreased in growth-inhibited glioma cell. These results support that topo IIα mRNA may be a good and rapid indicator to evaluate cell proliferate potential in brain tumors

  5. Rapid and non-enzymatic in vitro retrieval of tumour cells from surgical specimens.

    Directory of Open Access Journals (Sweden)

    Brigitte Mack

    Full Text Available The study of tumourigenesis commonly involves the use of established cell lines or single cell suspensions of primary tumours. Standard methods for the generation of short-term tumour cell cultures include the disintegration of tissue based on enzymatic and mechanical stress. Here, we describe a simple and rapid method for the preparation of single cells from primary carcinomas, which is independent of enzymatic treatment and feeder cells. Tumour biopsies are processed to 1 mm(3 cubes termed explants, which are cultured 1-3 days on agarose-coated well plates in specified medium. Through incisions generated in the explants, single cells are retrieved and collected from the culture supernatant and can be used for further analysis including in vitro and in vivo studies. Collected cells retain tumour-forming capacity in xenotransplantation assays, mimic the phenotype of the primary tumour, and facilitate the generation of cell lines.

  6. Imaging circulating tumor cells in freely moving awake small animals using a miniaturized intravital microscope.

    Directory of Open Access Journals (Sweden)

    Laura Sarah Sasportas

    Full Text Available Metastasis, the cause for 90% of cancer mortality, is a complex and poorly understood process involving the invasion of circulating tumor cells (CTCs into blood vessels. These cells have potential prognostic value as biomarkers for early metastatic risk. But their rarity and the lack of specificity and sensitivity in measuring them render their interrogation by current techniques very challenging. How and when these cells are circulating in the blood, on their way to potentially give rise to metastasis, is a question that remains largely unanswered. In order to provide an insight into this "black box" using non-invasive imaging, we developed a novel miniature intravital microscopy (mIVM strategy capable of real-time long-term monitoring of CTCs in awake small animals. We established an experimental 4T1-GL mouse model of metastatic breast cancer, in which tumor cells express both fluorescent and bioluminescent reporter genes to enable both single cell and whole body tumor imaging. Using mIVM, we monitored blood vessels of different diameters in awake mice in an experimental model of metastasis. Using an in-house software algorithm we developed, we demonstrated in vivo CTC enumeration and computation of CTC trajectory and speed. These data represent the first reported use we know of for a miniature mountable intravital microscopy setup for in vivo imaging of CTCs in awake animals.

  7. Imaging circulating tumor cells in freely moving awake small animals using a miniaturized intravital microscope.

    Science.gov (United States)

    Sasportas, Laura Sarah; Gambhir, Sanjiv Sam

    2014-01-01

    Metastasis, the cause for 90% of cancer mortality, is a complex and poorly understood process involving the invasion of circulating tumor cells (CTCs) into blood vessels. These cells have potential prognostic value as biomarkers for early metastatic risk. But their rarity and the lack of specificity and sensitivity in measuring them render their interrogation by current techniques very challenging. How and when these cells are circulating in the blood, on their way to potentially give rise to metastasis, is a question that remains largely unanswered. In order to provide an insight into this "black box" using non-invasive imaging, we developed a novel miniature intravital microscopy (mIVM) strategy capable of real-time long-term monitoring of CTCs in awake small animals. We established an experimental 4T1-GL mouse model of metastatic breast cancer, in which tumor cells express both fluorescent and bioluminescent reporter genes to enable both single cell and whole body tumor imaging. Using mIVM, we monitored blood vessels of different diameters in awake mice in an experimental model of metastasis. Using an in-house software algorithm we developed, we demonstrated in vivo CTC enumeration and computation of CTC trajectory and speed. These data represent the first reported use we know of for a miniature mountable intravital microscopy setup for in vivo imaging of CTCs in awake animals.

  8. Studies on Rapidly Frozen Suspensions of Yeast Cells by Differential Thermal Analysis and Conductometry

    Science.gov (United States)

    Mazur, Peter

    1963-01-01

    Few, if any, yeast cells survived rapid cooling to -196°C and subsequent slow warming. After rapid freezing, the suspensions absorbed latent heat of fusion between -15° and 0°C during warming, and the relation between the amount of heat absorbed and the concentration of cells was the same as that in equivalent KCl solutions, indicating that frozen suspensions behave thermally like frozen solutions. The amount of heat absorbed was such that more than 80 per cent of the intracellular solution had to be frozen. The conductometric behavior of frozen suspensions showed that cell solutes were still inside the cells and surrounded by an intact cell membrane at the time heat was being absorbed. Two models are consistent with these findings. The first assumes that intracellular freezing has taken place; the second that all freezable water has left the cells and frozen externally. The latter model is ruled out because rapidly cooled cells do not shrink by an amount equal to the volume of water that would have to be withdrawn to prevent internal freezing. PMID:13934216

  9. Moving Away from Dogmatic Knowledge Dissemination in a Cell Biology Module: Examples from Singapore

    Science.gov (United States)

    Yeong, Foong May

    2012-01-01

    A surge in the amount of information in the discipline of Cell Biology presents a problem to the teaching of undergraduates under time constraints. In most textbooks and during lectures, students in Singapore are often taught in a dogmatic manner where concepts and ideas are expounded to them. The students in turn passively receive the materials…

  10. Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells.

    Science.gov (United States)

    Di Girolamo, Nick

    2015-09-01

    Lineage tracing allows the destiny of a stem cell (SC) and its progeny to be followed through time. In order to track their long-term fate, SC must be permanently marked to discern their distribution, division, displacement and differentiation. This information is essential for unravelling the mysteries that govern their replenishing activity while they remain anchored within their niche microenvironment. Modern-day lineage tracing uses inducible genetic recombination to illuminate cells within embryonic, newborn and adult tissues, and the advent of powerful high-resolution microscopy has enabled the behaviour of labelled cells to be monitored in real-time in a living organism. The simple structural organization of the mammalian cornea, including its accessibility and transparency, renders it the ideal tissue to study SC fate using lineage tracing assisted by non-invasive intravital microscopy. Despite more than a century of research devoted to understanding how this tissue is maintained and repaired, many limitations and controversies continue to plague the field, including uncertainties about the specificity of current SC markers, the number of SC within the cornea, their mode of division, their location, and importantly the signals that dictate cell migration. This communication will highlight historical discoveries as well as recent developments in the corneal SC field; more specifically how the progeny of these cells are mobilised to replenish this dynamic tissue during steady-state, disease and transplantation. Also discussed is how insights gleaned from animal studies can be used to advance our knowledge of the fundamental mechanisms that govern modelling and remodelling of the human cornea in health and disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Rapid characterization of the biomechanical properties of drug-treated cells in a microfluidic device

    International Nuclear Information System (INIS)

    Zhang, Xiaofei; Zhang, Yang; Bai, Guohua; Tan, Qiulin; Sun, Dong; Chu, Henry K; Wang, Kaiqun

    2015-01-01

    Cell mechanics is closely related to many cell functions. Recent studies have suggested that the deformability of cells can be an effective biomarker to indicate the onset and progression of diseases. In this paper, a microfluidic chip is designed for rapid characterization of the mechanics of drug-treated cells through stretching with dielectrophoresis (DEP) force. This chip was fabricated using PDMS and micro-electrodes were integrated and patterned on the ITO layer of the chip. Leukemia NB4 cells were considered and the effect of all-trans retinoic acid (ATRA) drug on NB4 cells were examined via the microfluidic chip. To induce a DEP force onto the cell, a relatively weak ac voltage was utilized to immobilize a cell at one side of the electrodes. The applied voltage was then increased to 3.5 V pp and the cell started to be stretched along the applied electric field lines. The elongation of the cell was observed using an optical microscope and the results showed that both types of cells were deformed by the induced DEP force. The strain of the NB4 cell without the drug treatment was recorded to be about 0.08 (time t = 180 s) and the drug-treated NB4 cell was about 0.21 (time t = 180 s), indicating a decrease in the stiffness after drug treatment. The elastic modulus of the cell was also evaluated and the modulus changed from 140 Pa to 41 Pa after drug treatment. This microfluidic chip can provide a simple and rapid platform for measuring the change in the biomechanical properties of cells and can potentially be used as the tool to determine the biomechanical effects of different drug treatments for drug discovery and development applications. (paper)

  12. A rapid and sensitive method for measuring N-acetylglucosaminidase activity in cultured cells.

    Directory of Open Access Journals (Sweden)

    Victor Mauri

    Full Text Available A rapid and sensitive method to quantitatively assess N-acetylglucosaminidase (NAG activity in cultured cells is highly desirable for both basic research and clinical studies. NAG activity is deficient in cells from patients with Mucopolysaccharidosis type IIIB (MPS IIIB due to mutations in NAGLU, the gene that encodes NAG. Currently available techniques for measuring NAG activity in patient-derived cell lines include chromogenic and fluorogenic assays and provide a biochemical method for the diagnosis of MPS IIIB. However, standard protocols require large amounts of cells, cell disruption by sonication or freeze-thawing, and normalization to the cellular protein content, resulting in an error-prone procedure that is material- and time-consuming and that produces highly variable results. Here we report a new procedure for measuring NAG activity in cultured cells. This procedure is based on the use of the fluorogenic NAG substrate, 4-Methylumbelliferyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (MUG, in a one-step cell assay that does not require cell disruption or post-assay normalization and that employs a low number of cells in 96-well plate format. We show that the NAG one-step cell assay greatly discriminates between wild-type and MPS IIIB patient-derived fibroblasts, thus providing a rapid method for the detection of deficiencies in NAG activity. We also show that the assay is sensitive to changes in NAG activity due to increases in NAGLU expression achieved by either overexpressing the transcription factor EB (TFEB, a master regulator of lysosomal function, or by inducing TFEB activation chemically. Because of its small format, rapidity, sensitivity and reproducibility, the NAG one-step cell assay is suitable for multiple procedures, including the high-throughput screening of chemical libraries to identify modulators of NAG expression, folding and activity, and the investigation of candidate molecules and constructs for applications in

  13. Rapid Evaluation of Power Degradation in Series Connection of Single Feeding Microsized Microbial Fuel Cells

    KAUST Repository

    Rojas, Jhonathan Prieto; Alqarni, Wejdan Mohammed Mofleh; Hussain, Muhammad Mustafa

    2014-01-01

    We have developed a sustainable, single feeding, microsized, air-cathode and membrane-free microbial fuel cells with a volume of 40 mu L each, which we have used for rapid evaluation of power generation and viability of a series array of three cells seeking higher voltage levels. Contrary to expectations, the achieved power density was modest (45 mWm(-3)), limited due to non-uniformities in assembly and the single-channel feeding system.

  14. Rapid Column-Free Enrichment of Mononuclear Cells from Solid Tissues

    Science.gov (United States)

    Scoville, Steven D.; Keller, Karen A.; Cheng, Stephanie; Zhang, Michael; Zhang, Xiaoli; Caligiuri, Michael A.; Freud, Aharon G.

    2015-01-01

    We have developed a rapid negative selection method to enrich rare mononuclear cells from human tissues. Unwanted and antibody-tethered cells are selectively depleted during a Ficoll separation step, and there is no need for magnetic-based reagents and equipment. The new method is fast, customizable, inexpensive, remarkably efficient, and easy to perform, and per sample the overall cost is less than one-tenth the cost associated with a magnetic column-based method. PMID:26223896

  15. Prion strain discrimination based on rapid in vivo amplification and analysis by the cell panel assay.

    Directory of Open Access Journals (Sweden)

    Yervand Eduard Karapetyan

    Full Text Available Prion strain identification has been hitherto achieved using time-consuming incubation time determinations in one or more mouse lines and elaborate neuropathological assessment. In the present work, we make a detailed study of the properties of PrP-overproducing Tga20 mice. We show that in these mice the four prion strains examined are rapidly and faithfully amplified and can subsequently be discriminated by a cell-based procedure, the Cell Panel Assay.

  16. Rapid Evaluation of Power Degradation in Series Connection of Single Feeding Microsized Microbial Fuel Cells

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-07-08

    We have developed a sustainable, single feeding, microsized, air-cathode and membrane-free microbial fuel cells with a volume of 40 mu L each, which we have used for rapid evaluation of power generation and viability of a series array of three cells seeking higher voltage levels. Contrary to expectations, the achieved power density was modest (45 mWm(-3)), limited due to non-uniformities in assembly and the single-channel feeding system.

  17. The location of splenic NKT cells favours their rapid activation by blood-borne antigen

    Science.gov (United States)

    Barral, Patricia; Sánchez-Niño, María Dolores; van Rooijen, Nico; Cerundolo, Vincenzo; Batista, Facundo D

    2012-01-01

    Natural killer T (NKT) cells play an important role in mounting protective responses to blood-borne infections. However, though the spleen is the largest blood filter in the body, the distribution and dynamics of NKT cells within this organ are not well characterized. Here we show that the majority of NKT cells patrol around the marginal zone (MZ) and red pulp (RP) of the spleen. In response to lipid antigen, these NKT cells become arrested and rapidly produce cytokines, while the small proportion of NKT cells located in the white pulp (WP) exhibit limited activation. Importantly, disruption of the splenic MZ by chemical or genetic approaches results in a severe reduction in NKT cell activation indicating the need of cooperation between both MZ macrophages and dendritic cells for efficient NKT cell responses. Thus, the location of splenic NKT cells in the MZ and RP facilitates their access to blood-borne antigen and enables the rapid initiation of protective immune responses. PMID:22505026

  18. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Mumps viruses show diverse cytopathic effects (CPEs of infected cells and viral plaque formation (no CPE or no plaque formation in some cases depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac, was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study, even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  19. Rapid lentiviral transduction preserves the engraftment potential of Fanca(-/-) hematopoietic stem cells.

    Science.gov (United States)

    Müller, Lars U W; Milsom, Michael D; Kim, Mi-Ok; Schambach, Axel; Schuesler, Todd; Williams, David A

    2008-06-01

    Fanconi anemia (FA) is a rare recessive syndrome, characterized by congenital anomalies, bone marrow failure, and predisposition to cancer. Two earlier clinical trials utilizing gamma-retroviral vectors for the transduction of autologous FA hematopoietic stem cells (HSCs) required extensive in vitro manipulation and failed to achieve detectable long-term engraftment of transduced HSCs. As a strategy for minimizing ex vivo manipulation, we investigated the use of a "rapid" lentiviral transduction protocol in a murine Fanca(-/-) model. Importantly, while this and most murine models of FA fail to completely mimic the human hematopoietic phenotype, we observed a high incidence of HSC transplant engraftment failure and low donor chimerism after conventional transduction (CT) of Fanca(-/-) donor cells. In contrast, rapid transduction (RT) of Fanca(-/-) HSCs preserved engraftment to the level achieved in wild-type cells, resulting in long-term multilineage engraftment of gene-modified cells. We also demonstrate the correction of the characteristic hypersensitivity of FA cells against the cross-linking agent mitomycin C (MMC), and provide evidence for the advantage of using pharmacoselection as a means of further increasing gene-modified cells after RT. Collectively, these data support the use of rapid lentiviral transduction for gene therapy in FA.

  20. Haemolysis following rapid experimental red blood cell transfusion--an evaluation of two infusion pumps

    DEFF Research Database (Denmark)

    Hansen, Tom Giedsing; Sprogøe-Jakobsen, U; Pedersen, C M

    1998-01-01

    The vast majority of infusion pumps used for rapid transfusion of large amounts of blood have never been properly examined regarding their influence on the quality of the red blood cells (RBCs) infused. In this study, we evaluated the effect of two different infusion pumps on the degree of RBC...

  1. A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.

    Science.gov (United States)

    Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A

    2018-01-23

    A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.

  2. Rapid and coordinated processing of global motion images by local clusters of retinal ganglion cells.

    Science.gov (United States)

    Matsumoto, Akihiro; Tachibana, Masao

    2017-01-01

    Even when the body is stationary, the whole retinal image is always in motion by fixational eye movements and saccades that move the eye between fixation points. Accumulating evidence indicates that the brain is equipped with specific mechanisms for compensating for the global motion induced by these eye movements. However, it is not yet fully understood how the retina processes global motion images during eye movements. Here we show that global motion images evoke novel coordinated firing in retinal ganglion cells (GCs). We simultaneously recorded the firing of GCs in the goldfish isolated retina using a multi-electrode array, and classified each GC based on the temporal profile of its receptive field (RF). A moving target that accompanied the global motion (simulating a saccade following a period of fixational eye movements) modulated the RF properties and evoked synchronized and correlated firing among local clusters of the specific GCs. Our findings provide a novel concept for retinal information processing during eye movements.

  3. Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding

    NARCIS (Netherlands)

    Goeij, de J.M.; Kluijver, de A.; Duyl, van F.C.; Vacelet, J.; Wijffels, R.H.; Goeij, de A.F.P.M.; Cleutjens, J.P.M.; Schutte, B.

    2009-01-01

    This study reveals the peculiar in vivo cell kinetics and cell turnover of the marine sponge Halisarca caerulea under steady-state conditions. The tropical coral reef sponge shows an extremely high proliferation activity, a short cell cycle duration and massive cell shedding. Cell turnover is

  4. Thermally coupled moving boundary model for charge-discharge of LiFePO4/C cells

    Science.gov (United States)

    Khandelwal, Ashish; Hariharan, Krishnan S.; Gambhire, Priya; Kolake, Subramanya Mayya; Yeo, Taejung; Doo, Seokgwang

    2015-04-01

    Optimal thermal management is a key requirement in commercial utilization of lithium ion battery comprising of phase change electrodes. In order to facilitate design of battery packs, thermal management systems and fast charging profiles, a thermally coupled electrochemical model that takes into account the phase change phenomenon is required. In the present work, an electrochemical thermal model is proposed which includes the biphasic nature of phase change electrodes, such as lithium iron phosphate (LFP), via a generalized moving boundary model. The contribution of phase change to the heat released during the cell operation is modeled using an equivalent enthalpy approach. The heat released due to phase transformation is analyzed in comparison with other sources of heat such as reversible, irreversible and ohmic. Detailed study of the thermal behavior of the individual cell components with changing ambient temperature, rate of operation and heat transfer coefficient is carried out. Analysis of heat generation in the various regimes is used to develop cell design and operating guidelines. Further, different charging protocols are analyzed and a model based methodology is suggested to design an efficient quick charging protocol.

  5. Cost-effective and rapid blood analysis on a cell-phone.

    Science.gov (United States)

    Zhu, Hongying; Sencan, Ikbal; Wong, Justin; Dimitrov, Stoyan; Tseng, Derek; Nagashima, Keita; Ozcan, Aydogan

    2013-04-07

    We demonstrate a compact and cost-effective imaging cytometry platform installed on a cell-phone for the measurement of the density of red and white blood cells as well as hemoglobin concentration in human blood samples. Fluorescent and bright-field images of blood samples are captured using separate optical attachments to the cell-phone and are rapidly processed through a custom-developed smart application running on the phone for counting of blood cells and determining hemoglobin density. We evaluated the performance of this cell-phone based blood analysis platform using anonymous human blood samples and achieved comparable results to a standard bench-top hematology analyser. Test results can either be stored on the cell-phone memory or be transmitted to a central server, providing remote diagnosis opportunities even in field settings.

  6. A Strategy for Rapid Construction of Blood Vessel-Like Structures with Complex Cell Alignments.

    Science.gov (United States)

    Wang, Nuoxin; Peng, Yunhu; Zheng, Wenfu; Tang, Lixue; Cheng, Shiyu; Yang, Junchuan; Liu, Shaoqin; Zhang, Wei; Jiang, Xingyu

    2018-04-17

    A method is developed that can rapidly produce blood vessel-like structures by bonding cell-laden electrospinning (ES) films layer by layer using fibrin glue within 90 min. This strategy allows control of cell type, cell orientation, and material composition in separate layers. Furthermore, ES films with thicker fibers (polylactic-co-glycolic acid, fiber diameter: ≈3.7 µm) are used as cell-seeding layers to facilitate the cell in-growth; those with thinner fibers (polylactic acid, fiber diameter: ≈1.8 µm) are used as outer reinforcing layers to improve the mechanical strength and reduce the liquid leakage of the scaffold. Cells grow, proliferate, and migrate well in the multilayered structure. This design aims at a new type of blood vessel substitute with flexible control of parameters and implementation of functions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Rapid Culture Technique Produces Functional Dendritic-Like Cells from Human Acute Myeloid Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Jian Ning

    2011-01-01

    Full Text Available Most anti-cancer immunotherapeutic strategies involving dendritic cells (DC as vaccines rely upon the adoptive transfer of DC loaded with exogenous tumour-peptides. This study utilized human acute myeloid leukemia (AML cells as progenitors from which functional dendritic-like antigen presenting cells (DLC were generated, that constitutively express tumour antigens for recognition by CD8+ T cells. DLC were generated from AML cell lines KG-1 and MUTZ-3 using rapid culture techniques and appropriate cytokines. DLC were evaluated for their cell-surface phenotype, antigen uptake and ability to stimulate allogeneic responder cell proliferation, and production of IFN-γ; compared with DC derived from normal human PBMC donors. KG-1 and MUTZ-3 DLC increased expression of CD80, CD83, CD86, and HLA-DR, and MUTZ-3 DLC downregulated CD14 and expressed CD1a. Importantly, both KG-1 and MUTZ-3-derived DLC promoted proliferation of allogeneic responder cells more efficiently than unmodified cells; neither cells incorporated FITC-labeled dextran, but both stimulated IFN-γ production from responding allogeneic CD8+ T cells. Control DC produced from PBMC using the FastDC culture also expressed high levels of critical cell surface ligands and demonstrated good APC function. This paper indicates that functional DLC can be cultured from the AML cell lines KG-1 and MUTZ-3, and FastDC culture generates functional KG-1 DLC.

  8. Early depletion of proliferating B cells of germinal center in rapidly progressive simian immunodeficiency virus infection

    International Nuclear Information System (INIS)

    Zhang Zhiqiang; Casimiro, Danilo R.; Schleif, William A.; Chen, Minchun; Citron, Michael; Davies, Mary-Ellen; Burns, Janine; Liang, Xiaoping; Fu, Tong-Ming; Handt, Larry; Emini, Emilio A.; Shiver, John W.

    2007-01-01

    Lack of virus specific antibody response is commonly observed in both HIV-1-infected humans and SIV-infected monkeys with rapid disease progression. However, the mechanisms underlying this important observation still remain unclear. In a titration study of a SIVmac239 viral stock, three out of six animals with viral inoculation rapidly progressed to AIDS within 5 months. Unexpectedly, there was no obvious depletion of CD4 + T cells in both peripheral and lymph node (LN) compartments in these animals. Instead, progressive depletion of proliferating B cells and disruption of the follicular dendritic cell (FDC) network in germinal centers (GC) was evident in the samples collected at as early as 20 days after viral challenge. This coincided with undetectable, or weak and transient, virus-specific antibody responses over the course of infection. In situ hybridization of SIV RNA in the LN samples revealed a high frequency of SIV productively infected cells and large amounts of accumulated viral RNA in the GCs in these animals. Early severe depletion of GC proliferating B cells and disruption of the FDC network may thus result in an inability to mount a virus-specific antibody response in rapid progressors, which has been shown to contribute to accelerated disease progression of SIV infection

  9. Rapid desensitization induces internalization of antigen-specific IgE on mouse mast cells.

    Science.gov (United States)

    Oka, Tatsuya; Rios, Eon J; Tsai, Mindy; Kalesnikoff, Janet; Galli, Stephen J

    2013-10-01

    Rapid desensitization transiently prevents severe allergic reactions, allowing administration of life-saving therapies in previously sensitized patients. However, the mechanisms underlying successful rapid desensitization are not fully understood. We sought to investigate whether the mast cell (MC) is an important target of rapid desensitization in mice sensitized to exhibit IgE-dependent passive systemic anaphylaxis in vivo and to investigate the antigen specificity and underlying mechanisms of rapid desensitization in our mouse model. C57BL/6 mice (in vivo) or primary isolated C57BL/6 mouse peritoneal mast cells (PMCs; in vitro) were passively sensitized with antigen-specific anti-2,4-dinitrophenyl IgE, anti-ovalbumin IgE, or both. MCs were exposed over a short period of time to increasing amounts of antigen (2,4-dinitrophenyl-human serum albumin or ovalbumin) in the presence of extracellular calcium in vitro or by means of intravenous administration to sensitized mice in vivo before challenging the mice with or exposing the PMCs to optimal amounts of specific or irrelevant antigen. Rapidly exposing mice or PMCs to progressively increasing amounts of specific antigen inhibited the development of antigen-induced hypothermia in sensitized mice in vivo and inhibited antigen-induced PMC degranulation and prostaglandin D2 synthesis in vitro. Such MC hyporesponsiveness was induced antigen-specifically and was associated with a significant reduction in antigen-specific IgE levels on MC surfaces. Rapidly exposing MCs to progressively increasing amounts of antigen can both enhance the internalization of antigen-specific IgE on the MC surface and also desensitize these cells in an antigen-specific manner in vivo and in vitro. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  10. An improved out-cell to in-cell rapid transfer system at the HFEF/South

    International Nuclear Information System (INIS)

    Bacca, J.P.; Sherman, E.K.

    1991-01-01

    This paper reports on Argonne National Laboratory's Fuel Cycle Facility (FCF) (formerly named Hot Fuel Examination Facility-South) (HFEF/South) which is currently being refurbished and upgraded in preparation for demonstrating remote, fast reactor metal-fuel reprocessing and refabrication, as part of the Integral Fast Reactor (IFR) Program. Among the FCF hot-cell system upgrades being provided is a newly fabricated, direct, out-of-cell to in-cell, small-item transfer system for the FCF argon cell. This system will enable the rapid transfer of selected small items from the hot cell exterior into the argon cell (argon-gas atmosphere) of the facility, without necessitating the use of formerly employed, very time-consuming, and quite laborious procedures. The new system will be especially valuable for the rapid insertion of IFR fuel processing makeup materials and small tools into the argon cell, and for use in argon cell and overall FCF radioactive contamination-control activities

  11. Rapid Elimination of the Persistent Synergid through a Cell Fusion Mechanism

    KAUST Repository

    Maruyama, Daisuke

    2015-05-01

    In flowering plants, fertilization-dependent degeneration of the persistent synergid cell ensures one-on-one pairings of male and female gametes. Here, we report that the fusion of the persistent synergid cell and the endosperm selectively inactivates the persistent synergid cell in Arabidopsis thaliana. The synergid-endosperm fusion causes rapid dilution of pre-secreted pollen tube attractant in the persistent synergid cell and selective disorganization of the synergid nucleus during the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling, an inducer of the synergid nuclear disorganization. Therefore, two female gametes (the egg and the central cell) control independent pathways yet coordinately accomplish the elimination of the persistent synergid cell by double fertilization. Two female gametes (the egg cell and the central cell) in flowering plants coordinately prevent attractions of excess number of pollen tubes via two mechanisms to inactivate persistent synergid cell. © 2015 Elsevier Inc.

  12. Rapid assay for cell age response to radiation by electronic volume flow cell sorting

    International Nuclear Information System (INIS)

    Freyer, J.P.; Wilder, M.E.; Raju, M.R.

    1987-01-01

    A new technique is described for measuring cell survival as a function of cell cycle position using flow cytometric cell sorting on the basis of electronic volume signals. Sorting of cells into different cell age compartments is demonstrated for three different cell lines commonly used in radiobiological research. Using flow cytometric DNA content analysis and [ 3 H]thymidine autoradiography of the sorted cell populations, it is demonstrated that resolution of the age compartment separation is as good as or better than that reported for other cell synchronizing techniques. Variation in cell survival as a function of position in the cell cycle after a single dose of radiation as measured by volume cell sorting is similar to that determined by other cell synchrony techniques. Advantages of this method include: (1) no treatment of the cells is required, thus, this method is noncytotoxic; (2) no cell cycle progression is needed to obtain different cell age compartments; (3) the cell population can be held in complete growth medium at any desired temperature during sorting; (4) a complete radiation age - response assay can be plated in 2 h. Applications of this method are discussed, along with some technical limitations. (author)

  13. An optimized rapid bisulfite conversion method with high recovery of cell-free DNA.

    Science.gov (United States)

    Yi, Shaohua; Long, Fei; Cheng, Juanbo; Huang, Daixin

    2017-12-19

    Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA. We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods. The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.

  14. The rapid evolution of CT findings in pulmonary langerhans cell histiocytosis: a case report

    International Nuclear Information System (INIS)

    Kang, Tae Wook; Lee, Kyung Soo; Cho, Eun Yoon

    2007-01-01

    Imaging findings of pulmonary Langerhans cell histiocytosis (PLCH) demonstrate evolving changes over time, and the radiological transitions shown by imaging tools may allow a prediction of histopathological activity in PLCH. However, there are no reports describing how rapidly CT findings change with time. We describe a case of PLCH that showed a rapid evolutional change of the pulmonary lesions in a 48-year-old man, in which the nodular lesions showed cystic changes within two-month follow-up periods on chest CT scans

  15. Successful autologous hematopoietic stem cell transplantation for a patient with rapidly progressive localized scleroderma.

    Science.gov (United States)

    Nair, Velu; Sharma, Ajay; Sharma, Sanjeevan; Das, Satyaranjan; Bhakuni, Darshan S; Narayanan, Krishnan; Nair, Vivek; Shankar, Subramanian

    2015-03-01

    Autologous hematopoietic stem cell transplant (HSCT) for rapidly progressive disease has not been reported in localized scleroderma. Our patient, a 16-year-old girl had an aggressive variant of localized scleroderma, mixed subtype (linear-generalized) with Parry Romberg syndrome, with no internal organ involvement, that was unresponsive to immunosuppressive therapy and was causing rapid disfigurement. She was administered autologous HSCT in June 2011 and has maintained drug-free remission with excellent functional status at almost 3.5 years of follow-up. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  16. ER Alpha Rapid Signaling Is Required for Estrogen Induced Proliferation and Migration of Vascular Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Qing Lu

    Full Text Available Estrogen promotes the proliferation and migration of vascular endothelial cells (ECs, which likely underlies its ability to accelerate re-endothelialization and reduce adverse remodeling after vascular injury. In previous studies, we have shown that the protective effects of E2 (the active endogenous form of estrogen in vascular injury require the estrogen receptor alpha (ERα. ERα transduces the effects of estrogen via a classical DNA binding, "genomic" signaling pathway and via a more recently-described "rapid" signaling pathway that is mediated by a subset of ERα localized to the cell membrane. However, which of these pathways mediates the effects of estrogen on endothelial cells is poorly understood. Here we identify a triple point mutant version of ERα (KRR ERα that is specifically defective in rapid signaling, but is competent to regulate transcription through the "genomic" pathway. We find that in ECs expressing wild type ERα, E2 regulates many genes involved in cell migration and proliferation, promotes EC migration and proliferation, and also blocks the adhesion of monocytes to ECs. ECs expressing KRR mutant ERα, however, lack all of these responses. These observations establish KRR ERα as a novel tool that could greatly facilitate future studies into the vascular and non-vascular functions of ERα rapid signaling. Further, they support that rapid signaling through ERα is essential for many of the transcriptional and physiological responses of ECs to E2, and that ERα rapid signaling in ECs, in vivo, may be critical for the vasculoprotective and anti-inflammatory effects of estrogen.

  17. An improved out-cell to in-cell rapid transfer system at the HFEF-south

    International Nuclear Information System (INIS)

    Bacca, J.P.; Sherman, E.K.

    1990-01-01

    The Argonne National Laboratory (ANL) Hot Fuel Examination Facility-South (HFEF-S), located at the ANL-West site of the Idaho National Engineering Laboratory, is currently undergoing extensive refurbishment and modifications in preparation for its use, beginning in 1991, in demonstrating remote recycling of fast reactor, metal-alloy fuel as part of the US Department of Energy liquid-metal reactor, Integral Fast Reactor (IFR) program. Included in these improvements to HFEF-S is a new, small-item, rapid transfer system (RTS). When installed, this system will enable the rapid transfer of small items from the hot-cell exterior into the argon cell (argon-gas atmosphere) of the facility without necessitating the use of time-consuming and laborious procedures. The new RTS will also provide another important function associated with HFEF-S hot-cell operation in the IFR Fuel Recycle Program; namely, the rapid insertion of clean, radioactive contamination-measuring smear paper specimens into the hot cells for area surveys, and the expedited removal of these contaminated (including alpha as well as beta/gamma contamination) smears from the argon cell for transfer to an adjacent health physics field laboratory in the facility for nuclear contamination/radiation counting

  18. Monitoring the Rapid-Moving Reactivation of Earth Flows by Means of GB-InSAR: The April 2013 Capriglio Landslide (Northern Appennines, Italy

    Directory of Open Access Journals (Sweden)

    Federica Bardi

    2017-02-01

    Full Text Available This paper presents the main results of the GB-InSAR (ground based interferometric synthetic aperture radar monitoring of the Capriglio landslide (Northern Apennines, Emilia Romagna Region, Italy, activated on 6 April 2013. The landslide, triggered by prolonged rainfall, is constituted by two main adjacent enlarging bodies with a roto-translational kinematics. They activated in sequence and subsequently joined into a large earth flow, channelizing downstream of the Bardea Creek, for a total length of about 3600 m. The displacement rate of this combined mass was quite high, so that the landslide toe evolved with velocities of several tens of meters per day (with peaks of 70–80 m/day in the first month, and of several meters per day (with peaks of 13–14 m/day from early May to mid-July 2013. In the crown area, the landslide completely destroyed a 450 m sector of provincial roadway S.P. 101, and its retrogression tendency exposed the villages of Capriglio and Pianestolla, located in the upper watershed area of the Bardea Creek, to great danger. Furthermore, the advancing toe seriously threatened the Antria bridge, representing the “Massese” provincial roadway S.P. 665R transect over the Bardea Creek, the only strategic roadway left able to connect the above-mentioned villages. With the final aim of supporting local authorities in the hazard assessment and risk management during the emergency phase, on 4 May 2013 aerial optical surveys were conducted to accurately map the landslide extension and evolution. Moreover, a GB-InSAR monitoring campaign was started in order to assess displacements of the whole landslide area. The versatility and flexibility of the GB-InSAR sensors allowed acquiring data with two different configurations, designed and set up to continuously retrieve information on the landslide movement rates (both in its upper slow-moving sectors and in its fast-moving toe. The first acquisition mode revealed that the Capriglio and

  19. Generation of human induced pluripotent stem cells from a Bombay individual: Moving towards 'universal-donor' red blood cells

    International Nuclear Information System (INIS)

    Seifinejad, Ali; Taei, Adeleh; Totonchi, Mehdi; Vazirinasab, Hamed; Hassani, Seideh Nafiseh; Aghdami, Nasser; Shahbazi, Ebrahim; Yazdi, Reza Salman; Salekdeh, Ghasem Hosseini; Baharvand, Hossein

    2010-01-01

    Bombay phenotype is one of the rare phenotypes in the ABO blood group system that fails to express ABH antigens on red blood cells. Nonsense or missense mutations in fucosyltransfrase1 (FUT1) and fucosyltransfrase2 (FUT2) genes are known to create this phenotype. This blood group is compatible with all other blood groups as a donor, as it does not express the H antigen on the red blood cells. In this study, we describe the establishment of human induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of a Bombay blood-type individual by the ectopic expression of established transcription factors Klf4, Oct4, Sox2, and c-Myc. Sequence analyses of fibroblasts and iPSCs revealed a nonsense mutation 826C to T (276 Gln to Ter) in the FUT1 gene and a missense mutation 739G to A (247 Gly to Ser) in the FUT2 gene in the Bombay phenotype under study. The established iPSCs resemble human embryonic stem cells in morphology, passaging, surface and pluripotency markers, normal karyotype, gene expression, DNA methylation of critical pluripotency genes, and in-vitro differentiation. The directed differentiation of the iPSCs into hematopoietic lineage cells displayed increased expression of the hematopoietic lineage markers such as CD34, CD133, RUNX1, KDR, α-globulin, and γ-globulin. Such specific stem cells provide an unprecedented opportunity to produce a universal blood group donor, in-vitro, thus enabling cellular replacement therapies, once the safety issue is resolved.

  20. Rapid fabrication of detachable three-dimensional tissues by layering of cell sheets with heating centrifuge.

    Science.gov (United States)

    Haraguchi, Yuji; Kagawa, Yuki; Hasegawa, Akiyuki; Kubo, Hirotsugu; Shimizu, Tatsuya

    2018-01-18

    Confluent cultured cells on a temperature-responsive culture dish can be harvested as an intact cell sheet by decreasing temperature below 32°C. A three-dimensional (3-D) tissue can be fabricated by the layering of cell sheets. A resulting 3-D multilayered cell sheet-tissue on a temperature-responsive culture dish can be also harvested without any damage by only temperature decreasing. For shortening the fabrication time of the 3-D multilayered constructs, we attempted to layer cell sheets on a temperature-responsive culture dish with centrifugation. However, when a cell sheet was attached to the culture surface with a conventional centrifuge at 22-23°C, the cell sheet hardly adhere to the surface due to its noncell adhesiveness. Therefore, in this study, we have developed a heating centrifuge. In centrifugation (55g) at 36-37°C, the cell sheet adhered tightly within 5 min to the dish without significant cell damage. Additionally, centrifugation accelerated the cell sheet-layering process. The heating centrifugation shortened the fabrication time by one-fifth compared to a multilayer tissue fabrication without centrifugation. Furthermore, the multilayered constructs were finally detached from the dishes by decreasing temperature. This rapid tissue-fabrication method will be used as a valuable tool in the field of tissue engineering and regenerative therapy. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  1. Rapid and serial quantification of adhesion forces of yeast and Mammalian cells.

    Directory of Open Access Journals (Sweden)

    Eva Potthoff

    Full Text Available Cell adhesion to surfaces represents the basis for niche colonization and survival. Here we establish serial quantification of adhesion forces of different cell types using a single probe. The pace of single-cell force-spectroscopy was accelerated to up to 200 yeast and 20 mammalian cells per probe when replacing the conventional cell trapping cantilever chemistry of atomic force microscopy by underpressure immobilization with fluidic force microscopy (FluidFM. In consequence, statistically relevant data could be recorded in a rapid manner, the spectrum of examinable cells was enlarged, and the cell physiology preserved until approached for force spectroscopy. Adhesion forces of Candida albicans increased from below 4 up to 16 nN at 37°C on hydrophobic surfaces, whereas a Δhgc1-mutant showed forces consistently below 4 nN. Monitoring adhesion of mammalian cells revealed mean adhesion forces of 600 nN of HeLa cells on fibronectin and were one order of magnitude higher than those observed for HEK cells.

  2. A microfluidics-based technique for automated and rapid labeling of cells for flow cytometry

    International Nuclear Information System (INIS)

    Patibandla, Phani K; Estrada, Rosendo; Kannan, Manasaa; Sethu, Palaniappan

    2014-01-01

    Flow cytometry is a powerful technique capable of simultaneous multi-parametric analysis of heterogeneous cell populations for research and clinical applications. In recent years, the flow cytometer has been miniaturized and made portable for application in clinical- and resource-limited settings. The sample preparation procedure, i.e. labeling of cells with antibodies conjugated to fluorescent labels, is a time consuming (∼45 min) and labor-intensive procedure. Microfluidics provides enabling technologies to accomplish rapid and automated sample preparation. Using an integrated microfluidic device consisting of a labeling and washing module, we demonstrate a new protocol that can eliminate sample handling and accomplish sample and reagent metering, high-efficiency mixing, labeling and washing in rapid automated fashion. The labeling module consists of a long microfluidic channel with an integrated chaotic mixer. Samples and reagents are precisely metered into this device to accomplish rapid and high-efficiency mixing. The mixed sample and reagents are collected in a holding syringe and held for up to 8 min following which the mixture is introduced into an inertial washing module to obtain ‘analysis-ready’ samples. The washing module consists of a high aspect ratio channel capable of focusing cells to equilibrium positions close to the channel walls. By introducing the cells and labeling reagents in a narrow stream at the center of the channel flanked on both sides by a wash buffer, the elution of cells into the wash buffer away from the free unbound antibodies is accomplished. After initial calibration experiments to determine appropriate ‘holding time’ to allow antibody binding, both modules were used in conjunction to label MOLT-3 cells (T lymphoblast cell line) with three different antibodies simultaneously. Results confirm no significant difference in mean fluorescence intensity values for all three antibodies labels (p < 0.01) between the

  3. Moving toward rapid and low-cost point-of-care molecular diagnostics with a repurposed 3D printer and RPA.

    Science.gov (United States)

    Chan, Kamfai; Wong, Pui-Yan; Parikh, Chaitanya; Wong, Season

    2018-03-15

    Traditionally, the majority of nucleic acid amplification-based molecular diagnostic tests are done in centralized settings. In recent years, point-of-care tests have been developed for use in low-resource settings away from central laboratories. While most experts agree that point-of-care molecular tests are greatly needed, their availability as cost-effective and easy-to-operate tests remains an unmet goal. In this article, we discuss our efforts to develop a recombinase polymerase amplification reaction-based test that will meet these criteria. First, we describe our efforts in repurposing a low-cost 3D printer as a platform that can carry out medium-throughput, rapid, and high-performing nucleic acid extraction. Next, we address how these purified templates can be rapidly amplified and analyzed using the 3D printer's heated bed or the deconstructed, low-cost thermal cycler we have developed. In both approaches, real-time isothermal amplification and detection of template DNA or RNA can be accomplished using a low-cost portable detector or smartphone camera. Last, we demonstrate the capability of our technologies using foodborne pathogens and the Zika virus. Our low-cost approach does not employ complicated and high-cost components, making it suitable for resource-limited settings. When integrated and commercialized, it will offer simple sample-to-answer molecular diagnostics. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Move up,Move out

    Institute of Scientific and Technical Information of China (English)

    Guo Yan

    2007-01-01

    @@ China has already become the world's largest manufacturer of cement,copper and steel.Chinese producers have moved onto the world stage and dominated the global consumer market from textiles to electronics with amazing speed and efficiency.

  5. Rapid expansion of T cells: Effects of culture and cryopreservation and importance of short-term cell recovery.

    Science.gov (United States)

    Sadeghi, Arian; Ullenhag, Gustav; Wagenius, Gunnar; Tötterman, Thomas H; Eriksson, Fredrik

    2013-06-01

    Successful cell therapy relies on the identification and mass expansion of functional cells for infusion. Cryopreservation of cells is an inevitable step in most cell therapies which also entails consequences for the frozen cells. This study assessed the impact of cryopreservation and the widely used protocol for rapid expansion of T lymphocytes. The effects on cell viability, immunocompetence and the impact on apoptotic and immunosuppressive marker expression were analyzed using validated assays. Cryopreservation of lymphocytes during the rapid expansion protocol did not affect cell viability. Lymphocytes that underwent mass expansion or culture in high dose IL-2 were unable to respond to PHA stimulation by intracellular ATP production immediately after thawing (ATP = 16 ± 11 ng/ml). However, their reactivity to PHA was regained within 48 hours of recovery (ATP = 356 ± 61 ng/ml). Analysis of mRNA levels revealed downregulation of TGF-β and IL-10 at all time points. Culture in high dose IL-2 led to upregulation of p73 and BCL-2 mRNA levels while FoxP3 expression was elevated after culture in IL-2 and artificial TCR stimuli. FoxP3 levels decreased after short-term recovery without IL-2 or stimulation. Antigen specificity, as determined by IFNγ secretion, was unaffected by cryopreservation but was completely lost after addition of high dose IL-2 and artificial TCR stimuli. In conclusion, allowing short-time recovery of mass expanded and cryopreserved cells before reinfusion could enhance the outcome of adoptive cell therapy as the cells regain immune competence and specificity.

  6. Rapid metabolism of exogenous angiotensin II by catecholaminergic neuronal cells in culture media.

    Science.gov (United States)

    Basu, Urmi; Seravalli, Javier; Madayiputhiya, Nandakumar; Adamec, Jiri; Case, Adam J; Zimmerman, Matthew C

    2015-02-01

    Angiotensin II (AngII) acts on central neurons to increase neuronal firing and induce sympathoexcitation, which contribute to the pathogenesis of cardiovascular diseases including hypertension and heart failure. Numerous studies have examined the precise AngII-induced intraneuronal signaling mechanism in an attempt to identify new therapeutic targets for these diseases. Considering the technical challenges in studying specific intraneuronal signaling pathways in vivo, especially in the cardiovascular control brain regions, most studies have relied on neuronal cell culture models. However, there are numerous limitations in using cell culture models to study AngII intraneuronal signaling, including the lack of evidence indicating the stability of AngII in culture media. Herein, we tested the hypothesis that exogenous AngII is rapidly metabolized in neuronal cell culture media. Using liquid chromatography-tandem mass spectrometry, we measured levels of AngII and its metabolites, Ang III, Ang IV, and Ang-1-7, in neuronal cell culture media after administration of exogenous AngII (100 nmol/L) to a neuronal cell culture model (CATH.a neurons). AngII levels rapidly declined in the media, returning to near baseline levels within 3 h of administration. Additionally, levels of Ang III and Ang-1-7 acutely increased, while levels of Ang IV remained unchanged. Replenishing the media with exogenous AngII every 3 h for 24 h resulted in a consistent and significant increase in AngII levels for the duration of the treatment period. These data indicate that AngII is rapidly metabolized in neuronal cell culture media, and replenishing the media at least every 3 h is needed to sustain chronically elevated levels. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    OpenAIRE

    Lee, Youngseok; Oh, Woongkyo; Dao, Vinh Ai; Hussain, Shahzada Qamar; Yi, Junsin

    2012-01-01

    It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT) solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO) process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0) which improves the efficie...

  8. Rapid degradation of abnormal proteins in vacuoles from Acer pseudoplatanus L. cells

    International Nuclear Information System (INIS)

    Canut, H.; Alibert, G.; Carrasco, A.; Boudet, A.M.

    1986-01-01

    In Acer pseudoplatanus cells, the proteins synthesized in the presence of an amino acid analog ([ 14 C]p-fluorophenylalanine), were degraded more rapidly than normal ones ([ 14 C]phenylalanine as precursor). The degradation of an important part of these abnormal proteins occurred inside the vacuoles. The degradation process was not apparently associated to a specific proteolytic system but was related to a preferential transfer of these aberrant proteins from the cytoplasm to the vacuole

  9. Advanced diffusion system for low contamination in-line rapid thermal processing of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Biro, D.; Preu, R.; Schultz, O.; Peters, S.; Huljic, D.M.; Zickermann, D.; Schindler, R.; Luedemann, R.; Willeke, G. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    2002-10-01

    A novel diffusion system for in-line rapid thermal diffusion is presented. The lamp-heated furnace has a low thermal mass and a metal free transport system based on the walking beam principle. The furnace has been used to process first solar cells with lightly and highly doped emitters respectively. Solar cells with shallow lightly doped emitters show that the emitters processed in the new device can be well passivated. Shallow emitters with sheet resistances of up to 40/sq. have been contacted successfully by means of screen printing and firing through a SiN{sub x} antireflection coating. (author)

  10. Rapid-mixing studies on the time-scale of radiation damage in cells

    International Nuclear Information System (INIS)

    Adams, G.E.; Michael, B.D.; Asquith, J.C.; Shenoy, M.A.; Watts, M.E.; Whillans, D.W.

    1975-01-01

    Rapid mixing studies were performed to determine the time scale of radiation damage in cells. There is evidence that the sensitizing effects of oxygen and other chemical dose-modifying agents on the response of cells to ionizing radiation involve fast free-radical processes. Fast response technique studies in bacterial systems have shown that extremely fast processes occur when the bacteria are exposed to oxygen or other dose-modifying agents during irradiation. The time scales observed were consistent with the involvement of fast free-radical reactions in the expression of these effects

  11. Rapid Fatal Outcome from Pulmonary Arteries Compression in Transitional Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ioannis A. Voutsadakis

    2009-01-01

    Full Text Available Transitional cell carcinoma of the urinary bladder is a malignancy that metastasizes frequently to lymph nodes including the mediastinal lymph nodes. This occurrence may produce symptoms due to compression of adjacent structures such as the superior vena cava syndrome or dysphagia from esophageal compression. We report the case of a 59-year-old man with metastatic transitional cell carcinoma for whom mediastinal lymphadenopathy led to pulmonary artery compression and a rapidly fatal outcome. This rare occurrence has to be distinguished from pulmonary embolism, a much more frequent event in cancer patients, in order that proper and prompt treatment be initiated.

  12. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology.

    Science.gov (United States)

    Sundaram, S K; Sacksteder, Colette A; Weber, Thomas J; Riley, Brian J; Addleman, R Shane; Harrer, Bruce J; Peterman, John W

    2013-01-01

    A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live cells interact with an external stimulus, such as a nanosized particle, and the toxicity and broad risk associated with these stimuli. It is difficult to capture the complexity and dynamics of these interactions by following omics-based approaches exclusively, which can be expensive and time-consuming. Attenuated total reflectance-Fourier transform infrared spectroscopy is well suited to provide noninvasive live-cell monitoring of cellular responses to potentially toxic nanosized particles or other stimuli. This alternative approach provides the ability to carry out rapid toxicity screenings and nondisruptive monitoring of live-cell cultures. We review the technical basis of the approach, the instrument configuration and interface with the biological media, the various effects that impact the data, subsequent data analysis and toxicity, and present some preliminary results on live-cell monitoring.

  13. Application of rapid thermal processing on SiNx thin film to solar cells

    Institute of Scientific and Technical Information of China (English)

    Youjie LI; Peiqing LUO; Zhibin ZHOU; Rongqiang CUI; Jianhua HUANG; Jingxiao WANG

    2008-01-01

    Rapid thermal processing (RTP) of SiNx thin films from PECVD with low temperature was investigated. A special processing condition of this technique which could greatly increase the minority lifetime was found in the experiments. The processing mechanism and the application of the technique to silicon solar cells fabrication were dis-cussed. A main achievement is an increase of the minority lifetime in silicon wafer with SiNx thin film by about 200% after the RTP was reached. PC-1D simulation results exhibit an enhancement of the efficiency of the solar cell by 0.42% coming from the minority lifetime improvement. The same experiment was also conducted with P-diffusion silicon wafers, but the increment of minority lifetime is just about 55%. It could be expected to improve the solar cell efficiency if it would be used in silicon solar cells fabrication with the combination of laser firing contact technique.

  14. Rapid detection of bacterial contamination in cell or tissue cultures based on Raman spectroscopy

    Science.gov (United States)

    Bolwien, Carsten; Sulz, Gerd; Becker, Sebastian; Thielecke, Hagen; Mertsching, Heike; Koch, Steffen

    2008-02-01

    Monitoring the sterility of cell or tissue cultures is an essential task, particularly in the fields of regenerative medicine and tissue engineering when implanting cells into the human body. We present a system based on a commercially available microscope equipped with a microfluidic cell that prepares the particles found in the solution for analysis, a Raman-spectrometer attachment optimized for non-destructive, rapid recording of Raman spectra, and a data acquisition and analysis tool for identification of the particles. In contrast to conventional sterility testing in which samples are incubated over weeks, our system is able to analyze milliliters of supernatant or cell suspension within hours by filtering relevant particles and placing them on a Raman-friendly substrate in the microfluidic cell. Identification of critical particles via microscopic imaging and subsequent image analysis is carried out before micro-Raman analysis of those particles is then carried out with an excitation wavelength of 785 nm. The potential of this setup is demonstrated by results of artificial contamination of samples with a pool of bacteria, fungi, and spores: single-channel spectra of the critical particles are automatically baseline-corrected without using background data and classified via hierarchical cluster analysis, showing great promise for accurate and rapid detection and identification of contaminants.

  15. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity

    Directory of Open Access Journals (Sweden)

    Thiel Cora S

    2012-01-01

    Full Text Available Abstract In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.

  16. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications.

    Directory of Open Access Journals (Sweden)

    Sarah E Kelly

    2010-04-01

    Full Text Available Cancer stem cells (CSCs are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133+] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB (Celdyne, Houston, TX. For comparison, another bioreactor, the rotary cell culture system (RCCS manufactured by Synthecon (Houston, TX was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133+ cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a +15-fold proliferation of the CD133+ cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (-4.8-fold decrease in the CD133+cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133+ cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.

  17. Rapid, Directed Differentiation of Retinal Pigment Epithelial Cells from Human Embryonic or Induced Pluripotent Stem Cells

    OpenAIRE

    Foltz, LP; Clegg, DO

    2017-01-01

    We describe a robust method to direct the differentiation of pluripotent stem cells into retinal pigment epithelial cells (RPE). The purpose of providing a detailed and thorough protocol is to clearly demonstrate each step and to make this readily available to researchers in the field. This protocol results in a homogenous layer of RPE with minimal or no manual dissection needed. The method presented here has been shown to be effective for induced pluripotent stem cells (iPSC) and human embry...

  18. Structural violence and marginalisation. The sexual and reproductive health experiences of separated young people on the move. A rapid review with relevance to the European humanitarian crisis.

    Science.gov (United States)

    Mason-Jones, A J; Nicholson, P

    2018-05-01

    To explore the main sexual and reproductive health (SRH) issues for separated young migrants. We conducted a rapid review. The search for articles published between 2000 and June 2017 including peer-reviewed and 'grey' published literature from a range of databases including MEDLINE, AMED, Embase, ASSIA, Scopus, Web of Science and websites of international organisations (Missing Children Alliance, United Nations Population Fund (UNFPA), World Health Organization (WHO), United Nations Human Rights Council (UNHRC), Human Rights Watch, United Nations Children's Fund (UNICEF) and FBX Centre for Health and Human Rights) took place over 4 months. Themes emerging from the included studies and articles were synthesised. We found 44 articles from a range of countries of which 64% were peer-reviewed and 36% were from 'grey' literature. Structural violence and marginalisation were the key analytical themes that emerged and included young people's vulnerability to violence, unmet knowledge and service needs, barriers and stigma and poor SRH outcomes. This is the first known review to summarise the key SRH issues for separated young migrants. As Europe hosts the greatest number of separated young people in recent history, their unique SRH concerns risk being overlooked. Public health practitioners and policy makers are encouraged to challenge the gaps that exist in their services. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  19. Cell cultures in uterine leiomyomas: rapid disappearance of cells carrying MED12 mutations.

    Science.gov (United States)

    Nadine Markowski, Dominique; Tadayyon, Mahboobeh; Bartnitzke, Sabine; Belge, Gazanfer; Maria Helmke, Burkhard; Bullerdiek, Jörn

    2014-04-01

    Uterine leiomyomas (UL) are the most frequent symptomatic human tumors. Nevertheless, their molecular pathogenesis is not yet fully understood. To learn more about the biology of these common neoplasms and their response to treatment, cell cultures derived from UL are a frequently used model system, but until recently appropriate genetic markers confirming their origin from the tumor cell population were lacking for most UL, i.e., those not displaying karyotypic abnormalities. The identification of MED12 mutations in the majority of UL makes it possible to trace the tumor cell population during in vitro passaging in the absence of cytogenetic abnormalities. The present study is addressing the in vitro survival of cells carrying MED12 mutations and its association with karyotypic alterations. The results challenge numerous in vitro studies into the biology and behavior of leiomyomas. Cells of one genetic subtype of UL, i.e., those with rearrangements of the high mobility AT-hook 2 protein gene (HMGA2), seem to be able to proliferate in vitro for many passages whereas tumor cells from the much more frequent MED12-mutated lesions barely survive even the first passages. Apparently, for the most frequent type of human UL no good in vitro model seems to exist because cells do not survive culturing. On the other hand, this inability may point to an Achilles' heel of this type of UL. Copyright © 2014 Wiley Periodicals, Inc.

  20. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology

    Directory of Open Access Journals (Sweden)

    Lihong Jiang

    2018-06-01

    Full Text Available Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade. However, due to complexity of cellular metabolism, the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering. Recently, cell-free protein synthesis system (CFPS has been emerging as an enabling alternative to address challenges in biomanufacturing. This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits (biosensors to speed up design-build-test (DBT cycles of metabolic engineering and synthetic biology. Keywords: Cell-free protein synthesis, Metabolic pathway optimization, Genetic circuits, Metabolic engineering, Synthetic biology

  1. Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium

    International Nuclear Information System (INIS)

    Liu Zhiwei; Yu Xinyuan; Shaikh, Zahir A.

    2008-01-01

    Cadmium (Cd), an endocrine disruptor, can induce a variety of signaling events including the activation of ERK1/2 and AKT. In this study, the involvement of estrogen receptors (ER) in these events was evaluated in three human breast caner cell lines, MCF-7, MDA-MB-231, and SK-BR-3. The Cd-induced signal activation patterns in the three cell lines mimicked those exhibited in response to 17β-estradiol. Specifically, treatment of MCF-7 cells, that express ERα, ERβ and GPR30, to 0.5-10 μM Cd for only 2.5 min resulted in transient phosphorylation of ERK1/2. Cd also triggered a gradual increase and sustained activation of AKT during the 60 min treatment period. In SK-BR-3 cells, that express only GPR30, Cd also caused a transient activation of ERK1/2, but not of AKT. In contrast, in MDA-MB-231 cells, that express only ERβ, Cd was unable to cause rapid activation of either ERK1/2 or AKT. A transient phosphorylation of ERα was also observed within 2.5 min of Cd exposure in the MCF-7 cells. While the estrogen receptor antagonist, ICI 182,780, did not prevent the effect of Cd on these signals, specific siRNA against hERα significantly reduced Cd-induced activation of ERK1/2 and completely blocked the activation of AKT. It is concluded that Cd, like estradiol, can cause rapid activation of ERK1/2 and AKT and that these signaling events are mediated by possible interaction with membrane ERα and GPR30, but not ERβ

  2. Rapid hydrogen charging on metal hydride negative electrode of Fuel Cell/Battery (FCB) systems

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bokkyu; Lee, Sunmook; Kawai, Hiroyuki; Fushimi, Chihiro; Tsutsumi, Atsushi [Collaborative Research Center for Energy Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2009-02-15

    The characteristics of rapid gaseous H{sub 2} charging/electrochemical discharging of the metal hydride negative electrode were investigated for the application in Fuel Cell/Battery (FCB) systems. They were evaluated with the H{sub 2} gas absorption, followed by the subsequent electrochemical discharging in the electrolyte solution (6M KOH). Then, the cyclability of charge-discharge was also examined. It was observed that more than 70% of the theoretical capacity was charged within 10 min with 0.3 MPa and 0.5 MPa of the initial H{sub 2} pressures. The electrochemical discharge curve showed that more than 86% of the absorbed H{sub 2} was discharged. Furthermore, the cycled charge-discharge process indicated that the H{sub 2} gas charge and electrochemical discharge process is an effective way to rapidly charge and activate the metal hydride without degeneration. (author)

  3. A distinct hematopoietic stem cell population for rapid multilineage engraftment in nonhuman primates.

    Science.gov (United States)

    Radtke, Stefan; Adair, Jennifer E; Giese, Morgan A; Chan, Yan-Yi; Norgaard, Zachary K; Enstrom, Mark; Haworth, Kevin G; Schefter, Lauren E; Kiem, Hans-Peter

    2017-11-01

    Hematopoietic reconstitution after bone marrow transplantation is thought to be driven by committed multipotent progenitor cells followed by long-term engrafting hematopoietic stem cells (HSCs). We observed a population of early-engrafting cells displaying HSC-like behavior, which persisted long-term in vivo in an autologous myeloablative transplant model in nonhuman primates. To identify this population, we characterized the phenotype and function of defined nonhuman primate hematopoietic stem and progenitor cell (HSPC) subsets and compared these to human HSPCs. We demonstrated that the CD34 + CD45RA - CD90 + cell phenotype is highly enriched for HSCs. This population fully supported rapid short-term recovery and robust multilineage hematopoiesis in the nonhuman primate transplant model and quantitatively predicted transplant success and time to neutrophil and platelet recovery. Application of this cell population has potential in the setting of HSC transplantation and gene therapy/editing approaches. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    Science.gov (United States)

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment.

  5. Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury.

    Science.gov (United States)

    Kim, Dae-Sung; Jung, Se Jung; Lee, Jae Souk; Lim, Bo Young; Kim, Hyun Ah; Yoo, Jeong-Eun; Kim, Dong-Wook; Leem, Joong Woo

    2017-07-28

    Remyelination via the transplantation of oligodendrocyte precursor cells (OPCs) has been considered as a strategy to improve the locomotor deficits caused by traumatic spinal cord injury (SCI). To date, enormous efforts have been made to derive OPCs from human pluripotent stem cells (hPSCs), and significant progress in the transplantation of such cells in SCI animal models has been reported. The current methods generally require a long period of time (>2 months) to obtain transplantable OPCs, which hampers their clinical utility for patients with SCI. Here we demonstrate a rapid and efficient method to differentiate hPSCs into neural progenitors that retain the features of OPCs (referred to as OPC-like cells). We used cell sorting to select A2B5-positive cells from hPSC-derived neural rosettes and cultured the selected cells in the presence of signaling cues, including sonic hedgehog, PDGF and insulin-like growth factor-1. This method robustly generated neural cells positive for platelet-derived growth factor receptor-α (PDGFRα) and NG2 (~90%) after 4 weeks of differentiation. Behavioral tests revealed that the transplantation of the OPC-like cells into the spinal cords of rats with contusive SCI at the thoracic level significantly improved hindlimb locomotor function. Electrophysiological assessment revealed enhanced neural conduction through the injury site. Histological examination showed increased numbers of axon with myelination at the injury site and graft-derived myelin formation with no evidence of tumor formation. Our method provides a cell source from hPSCs that has the potential to recover motor function following SCI.

  6. Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor

    OpenAIRE

    Obata, Fumiaki; Tanaka, Shiho; Kashio, Soshiro; Tsujimura, Hidenobu; Sato, Ryoichi; Miura, Masayuki

    2015-01-01

    Background Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Results Herein, we established a method for inducing rapid and selective cell necrosis by...

  7. Electromechanical transducer for rapid detection, discrimination and quantification of lung cancer cells

    International Nuclear Information System (INIS)

    Ali, Waqas; Raza, Muhammad Usman; Iqbal, Samir M; Moghaddam, Fatemeh Jalvhei; Bui, Loan; Sayles, Bailey; Kim, Young-Tae

    2016-01-01

    Tumor cells are malignant derivatives of normal cells. There are characteristic differences in the mechanophysical properties of normal and tumor cells, and these differences stem from the changes that occur in the cell cytoskeleton during cancer progression. There is a need for viable whole blood processing techniques for rapid and reliable tumor cell detection that do not require tagging. Micropore biosensors have previously been used to differentiate tumor cells from normal cells and we have used a micropore-based electromechanical transducer to differentiate one type of tumor cells from the other types. This device generated electrical signals that were characteristic of the cell properties. Three non-small cell lung cancer (NSCLC) cell lines, NCl-H1155, A549 and NCI-H460, were successfully differentiated. NCI-H1155, due to their comparatively smaller size, were found to be the quickest in translocating through the micropore. Their translocation through a 15 μm micropore caused electrical pulses with an average translocation time of 101 ± 9.4 μs and an average peak amplitude of 3.71 ± 0.42 μA, whereas translocation of A549 and NCI-H460 caused pulses with average translocation times of 126 ± 17.9 μs and 148 ± 13.7 μs and average peak amplitudes of 4.58 ± 0.61 μA and 5.27 ± 0.66 μA, respectively. This transformation of the differences in cell properties into differences in the electrical profiles (i.e. the differences in peak amplitudes and translocation times) with this electromechanical transducer is a quantitative way to differentiate these lung cancer cells. The solid-state micropore device processed whole biological samples without any pre-processing requirements and is thus ideal for point-of-care applications. (paper)

  8. Design and implementation of a rapid-mixer flow cell for time-resolved infrared microspectroscopy

    International Nuclear Information System (INIS)

    Marinkovic, Nebojsa S.; Adzic, Aleksandar R.; Sullivan, Michael; Kovacs, Kevin; Miller, Lisa M.; Rousseau, Denis L.; Yeh, Syun-Ru; Chance, Mark R.

    2000-01-01

    A rapid mixer for the analysis of reactions in the millisecond and submillisecond time domains by Fourier-transform infrared microspectroscopy has been constructed. The cell was tested by examination of cytochrome-c folding kinetics. The device allows collection of full infrared spectral data on millisecond and faster time scales subsequent to chemical jump reaction initiation. The data quality is sufficiently good such that spectral fitting techniques could be applied to analysis of the data. Thus, this method provides an advantage over kinetic measurements at single wavelengths using infrared laser or diode sources, particularly where band overlap exists

  9. Rapid preparation of a noncultured skin cell suspension that promotes wound healing.

    Science.gov (United States)

    Yoon, Cheonjae; Lee, Jungsuk; Jeong, Hyosun; Lee, Sungjun; Sohn, Taesik; Chung, Sungphil

    2017-06-01

    Autologous skin cell suspensions have been used for wound healing in patients with burns and against normal pigmentation in vitiligo. To separate cells and the extracellular matrix from skin tissue, most researchers use enzymatic digestion. Therefore, this process is difficult to perform during a routine surgical procedure. We aimed to prepare a suspension of noncultured autologous skin cells (NCSCs) using a tissue homogenizer as a new method instead of harsh biochemical reagents. The potential clinical applicability of NCSCs was analyzed using a nude-rat model of burn healing. After optimization of the homogenizer settings, cell viability ranged from 52 to 89%. Scanning electron microscopy showed evidence of keratinocyte-like cell morphology, and several growth factors, including epidermal growth factor and basic fibroblast growth factor, were present in the NCSCs. The rat model revealed that NCSCs accelerated skin regeneration. NCSCs could be generated using a tissue homogenizer for enhancement of wound healing in vivo. In the NCSC group of wounds, on day 7 of epithelialization, granulation was observed, whereas on day 14, there was a significant increase in skin adnexa regeneration as compared to the control group (PBS treatment; p study suggests that the proposed process is rapid and does not require the use of biochemical agents. Thus, we recommend a combination of surgical treatment with the new therapy for a burn as an effective method.

  10. Rapid Sequential in Situ Multiplexing with DNA Exchange Imaging in Neuronal Cells and Tissues.

    Science.gov (United States)

    Wang, Yu; Woehrstein, Johannes B; Donoghue, Noah; Dai, Mingjie; Avendaño, Maier S; Schackmann, Ron C J; Zoeller, Jason J; Wang, Shan Shan H; Tillberg, Paul W; Park, Demian; Lapan, Sylvain W; Boyden, Edward S; Brugge, Joan S; Kaeser, Pascal S; Church, George M; Agasti, Sarit S; Jungmann, Ralf; Yin, Peng

    2017-10-11

    To decipher the molecular mechanisms of biological function, it is critical to map the molecular composition of individual cells or even more importantly tissue samples in the context of their biological environment in situ. Immunofluorescence (IF) provides specific labeling for molecular profiling. However, conventional IF methods have finite multiplexing capabilities due to spectral overlap of the fluorophores. Various sequential imaging methods have been developed to circumvent this spectral limit but are not widely adopted due to the common limitation of requiring multirounds of slow (typically over 2 h at room temperature to overnight at 4 °C in practice) immunostaining. We present here a practical and robust method, which we call DNA Exchange Imaging (DEI), for rapid in situ spectrally unlimited multiplexing. This technique overcomes speed restrictions by allowing for single-round immunostaining with DNA-barcoded antibodies, followed by rapid (less than 10 min) buffer exchange of fluorophore-bearing DNA imager strands. The programmability of DEI allows us to apply it to diverse microscopy platforms (with Exchange Confocal, Exchange-SIM, Exchange-STED, and Exchange-PAINT demonstrated here) at multiple desired resolution scales (from ∼300 nm down to sub-20 nm). We optimized and validated the use of DEI in complex biological samples, including primary neuron cultures and tissue sections. These results collectively suggest DNA exchange as a versatile, practical platform for rapid, highly multiplexed in situ imaging, potentially enabling new applications ranging from basic science, to drug discovery, and to clinical pathology.

  11. Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.

    Science.gov (United States)

    Erickson, John J; Lu, Pengcheng; Wen, Sherry; Hastings, Andrew K; Gilchuk, Pavlo; Joyce, Sebastian; Shyr, Yu; Williams, John V

    2015-11-01

    Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors. Copyright © 2015 by The American Association of Immunologists, Inc.

  12. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases.

    Science.gov (United States)

    Barrett, P Noel; Terpening, Sara J; Snow, Doris; Cobb, Ronald R; Kistner, Otfried

    2017-09-01

    Rapid development and production of vaccines against emerging diseases requires well established, validated, robust technologies to allow industrial scale production and accelerated licensure of products. Areas covered: A versatile Vero cell platform has been developed and utilized to deliver a wide range of candidate and licensed vaccines against emerging viral diseases. This platform builds on the 35 years' experience and safety record with inactivated whole virus vaccines such as polio vaccine. The current platform has been optimized to include a novel double inactivation procedure in order to ensure a highly robust inactivation procedure for novel emerging viruses. The utility of this platform in rapidly developing inactivated whole virus vaccines against pandemic (-like) influenza viruses and other emerging viruses such as West Nile, Chikungunya, Ross River and SARS is reviewed. The potential of the platform for development of vaccines against other emerging viruses such as Zika virus is described. Expert commentary: Use of this platform can substantially accelerate process development and facilitate licensure because of the substantial existing data set available for the cell matrix. However, programs to provide vaccines against emerging diseases must allow alternative clinical development paths to licensure, without the requirement to carry out large scale field efficacy studies.

  13. Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells.

    Science.gov (United States)

    Babica, Pavel; Zurabian, Rimma; Kumar, Esha R; Chopra, Rajus; Mianecki, Maxwell J; Park, Joon-Suk; Jaša, Libor; Trosko, James E; Upham, Brad L

    2016-09-01

    Methoxychlor (MXC) and vinclozolin (VIN) are well-recognized endocrine disrupting chemicals known to alter epigenetic regulations and transgenerational inheritance; however, non-endocrine disruption endpoints are also important. Thus, we determined the effects of MXC and VIN on the dysregulation of gap junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) in WB-F344 rat liver epithelial cells. Both chemicals induced a rapid dysregulation of GJIC at non-cytotoxic doses, with 30 min EC50 values for GJIC inhibition being 10 µM for MXC and 126 µM for VIN. MXC inhibited GJIC for at least 24 h, while VIN effects were transient and GJIC recovered after 4 h. VIN induced rapid hyperphosphorylation and internalization of gap junction protein connexin43, and both chemicals also activated MAPK ERK1/2 and p38. Effects on GJIC were not prevented by MEK1/2 inhibitor, but by an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), resveratrol, and in the case of VIN, also, by a p38 inhibitor. Estrogen (ER) and androgen receptor (AR) modulators (estradiol, ICI 182,780, HPTE, testosterone, flutamide, VIN M2) did not attenuate MXC or VIN effects on GJIC. Our data also indicate that the effects were elicited by the parental compounds of MXC and VIN. Our study provides new evidence that MXC and VIN dysregulate GJIC via mechanisms involving rapid activation of PC-PLC occurring independently of ER- or AR-dependent genomic signaling. Such alterations of rapid intercellular and intracellular signaling events involved in regulations of gene expression, tissue development, function and homeostasis, could also contribute to transgenerational epigenetic effects of endocrine disruptors. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection.

    Science.gov (United States)

    Almeida, F F; Belz, G T

    2016-09-01

    Innate lymphoid cells (ILCs) have stormed onto the immune landscape as "newly discovered" cell types. These tissue-resident sentinels are enriched at mucosal surfaces and engage in complex cross talk with elements of the adaptive immune system and microenvironment to orchestrate immune homeostasis. Many parallels exist between innate cells and T cells leading to the initial partitioning of ILCs into rather rigid subsets that reflect their "adaptive-like" effector cytokines profiles. ILCs themselves, however, have unique attributes that are only just beginning to be elucidated. These features result in complementarity with, rather than complete duplication of, functions of the adaptive immune system. Key transcription factors determine the pathway of differentiation of progenitors towards an ILC1, ILC2, or ILC3 subset. Once formed, flexibility in the responses of these subsets to stimuli unexpectedly allows transdifferentation between the different subsets and the acquisition of altered phenotypes and function. This provides a mechanism for rapid innate immune responsiveness. Here, we discuss the models of differentiation for maintenance and activation of tissue-resident ILCs in maintaining immune homeostasis and protection.

  15. Integration of nanoparticle cell lysis and microchip PCR for one-step rapid detection of bacteria.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2012-04-01

    This paper describes an integrated microchip system as an efficient and cost-effective solution involving Nanotechnology and Lab-on-a-Chip technology for the rapid detection of bacteria. The system is based on using surface-modified gold nanoparticles for efficient cell lysis followed by microchip PCR without having to remove the nanoparticles from the PCR solution. Poly(quaternary ammonium) modified gold nanoparticles are used to provide a novel and efficient cell lysis method without the need to go through time-consuming, expensive and complicated microfabrication processes as most of current cell lysis methods for Lab-on-a-Chip applications do. It also facilitates the integration of cell lysis and PCR by sharing the same reaction chamber as PCR uses. It is integrated with a prototype microchip PCR system consisting of a physical microchip PCR device and an automated temperature control mechanism. The research work explores solutions for the problem of PCR inhibition caused by gold nanoparticles as well as for the problem of non-specific PCR amplification in the integrated microchip system. It also explores the possibility of greatly reducing PCR cycling time to achieve the same result compared to the protocol for a regular PCR machine. The simplicity of the setup makes it easy to be integrated with other Lab-on-a-Chip functional modules to create customized solutions for target applications.

  16. A rapid chemical method for lysing Arabidopsis cells for protein analysis

    Directory of Open Access Journals (Sweden)

    Takano Tetsuo

    2011-07-01

    Full Text Available Abstract Background Protein extraction is a frequent procedure in biological research. For preparation of plant cell extracts, plant materials usually have to be ground and homogenized to physically break the robust cell wall, but this step is laborious and time-consuming when a large number of samples are handled at once. Results We developed a chemical method for lysing Arabidopsis cells without grinding. In this method, plants are boiled for just 10 minutes in a solution containing a Ca2+ chelator and detergent. Cell extracts prepared by this method were suitable for SDS-PAGE and immunoblot analysis. This method was also applicable to genomic DNA extraction for PCR analysis. Our method was applied to many other plant species, and worked well for some of them. Conclusions Our method is rapid and economical, and allows many samples to be prepared simultaneously for protein analysis. Our method is useful not only for Arabidopsis research but also research on certain other species.

  17. [Effects of allitridum on rapidly delayed rectifier potassium current in HEK293 cell line].

    Science.gov (United States)

    Zhang, Jiancheng; Lin, Kun; Wei, Zhixiong; Chen, Qian; Liu, Li; Zhao, Xiaojing; Zhao, Ying; Xu, Bin; Chen, Xi; Li, Yang

    2015-08-01

    To study the effect of allitridum on rapidly delayed rectifier potassium current (IKr) in HEK293 cell line. HEK293 cells were transiently transfected with HERG channel cDNA plasmid pcDNA3.1 via Lipofectamine. Allitridum was added to the extracellular solution by partial perfusion after giga seal at the final concentration of 30 µmol/L. Whole-cell patch clamp technique was used to record the HERG currents and gating kinetics before and after allitridum exposure at room temperature. The amplitude and density of IHERG were both suppressed by allitridum in a voltage-dependent manner. In the presence of allitridum, the peak current of IHERG was reduced from 73.5∓4.3 pA/pF to 42.1∓3.6 pA/pF at the test potential of +50 mV (P<0.01). Allitridum also concentration-dependently decreased the density of the IHERG. The IC50 of allitridum was 34.74 µmol/L with a Hill coefficient of 1.01. Allitridum at 30 µmol/L caused a significant positive shift of the steady-state activation curve of IHERG and a markedly negative shift of the steady-state inactivation of IHERG, and significantly shortened the slow time constants of IHERG deactivation. Allitridum can potently block IHERG in HEK293 cells, which might be the electrophysiological basis for its anti-arrhythmic action.

  18. Rapid onset of squamous cell carcinoma in a thin skin graft donor site.

    Science.gov (United States)

    Herard, C; Arnaud, D; Goga, D; Rousseau, P; Potier, B

    2016-01-01

    Squamous cell carcinomas are malignant tumours of epithelial origin that can appear on sites subjected to chronic inflammation after a period of several years. The rapid development of squamous cell carcinoma at the donor site for a thin skin graft is a rare and poorly understood situation. We report the case of a patient undergoing thin skin grafting to cover the area of removal of a vertex squamous cell carcinoma and in whom squamous cell carcinoma appeared at the donor site within 9 weeks. In our case, we ruled out intraoperative contamination because two sets of surgical instruments were used. Given the number of cases reported in the literature, a chance event seems unlikely. The hypothesis of an acute inflammatory process caused by scarring of the thin skin graft site appears to us the most convincing. Development of cancer at the graft donor site may thus be added to the list of complications of thin skin grafting. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Rapid bioelectric reaction of elodea leaf cells to the UV radiation

    International Nuclear Information System (INIS)

    Aliev, D.A.; Mamedov, T.G.; Akhmedov, I.S.; Khalilov, R.I.

    1984-01-01

    It has been established that changes of membrane potential (MP) of elodea leaf cells in the UV radiation are manifested in a form of rapid response reaction, which is similar to an action potential. At present a lot of new data confirming the existence of electrogenic proton pump on plasmalemma plant cells is making their appearance. The plant cell membrane potential consists of two components: equilibrium( passive) potential and potential created by an electrogenic proton pump. A contribution of the second component to the elodea leaf cell MP is considerable and constitutes more than a half of the total MP. Constant values of membrane conductivity and intracell electric bonds in the process of depolarization development and after MP recovery testify to the fact, that UV radiation does not effect upon the MP passive component. High degree of depolarization and its strong dependence on medium pH and also the observed effect independence on potassium and sodium ions presence in the external medium testify to the fact that UV radiation ingenuously inactivates electrogenic proton pumps

  20. Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion.

    Science.gov (United States)

    Che, Nanying; Yang, Xinting; Liu, Zichen; Li, Kun; Chen, Xiaoyou

    2017-05-01

    Tuberculous pleurisy is one of the most common types of extrapulmonary tuberculosis, but its diagnosis remains difficult. In this study, we report for the first time on the detection of cell-free Mycobacterium tuberculosis DNA in pleural effusion and an evaluation of a newly developed molecular assay for the detection of cell-free Mycobacterium tuberculosis DNA. A total of 78 patients with pleural effusion, 60 patients with tuberculous pleurisy, and 18 patients with alternative diseases were included in this study. Mycobacterial culture, the Xpert MTB/RIF assay, the adenosine deaminase assay, the T-SPOT.TB assay, and the cell-free Mycobacterium tuberculosis DNA assay were performed on all the pleural effusion samples. The cell-free Mycobacterium tuberculosis DNA assay and adenosine deaminase assay showed significantly higher sensitivities of 75.0% and 68.3%, respectively, than mycobacterial culture and the Xpert MTB/RIF assay, which had sensitivities of 26.7% and 20.0%, respectively ( P pleural effusion showed the highest sensitivity of 95.0% but the lowest specificity of 38.9%. The cell-free Mycobacterium tuberculosis DNA assay detected as few as 1.25 copies of IS 6110 per ml of pleural effusion and showed good accordance of the results between repeated tests ( r = 0.978, P = 2.84 × 10 -10 ). These data suggest that the cell-free Mycobacterium tuberculosis DNA assay is a rapid and accurate molecular test which provides direct evidence of Mycobacterium tuberculosis etiology. Copyright © 2017 American Society for Microbiology.

  1. Memory phenotype CD4 T cells undergoing rapid, nonburst-like, cytokine-driven proliferation can be distinguished from antigen-experienced memory cells.

    Directory of Open Access Journals (Sweden)

    Souheil-Antoine Younes

    2011-10-01

    Full Text Available Memory phenotype (CD44(bright, CD25(negative CD4 spleen and lymph node T cells (MP cells proliferate rapidly in normal or germ-free donors, with BrdU uptake rates of 6% to 10% per day and Ki-67 positivity of 18% to 35%. The rapid proliferation of MP cells stands in contrast to the much slower proliferation of lymphocytic choriomeningitis virus (LCMV-specific memory cells that divide at rates ranging from <1% to 2% per day over the period from 15 to 60 days after LCMV infection. Anti-MHC class II antibodies fail to inhibit the in situ proliferation of MP cells, implying a non-T-cell receptor (TCR-driven proliferation. Such proliferation is partially inhibited by anti-IL-7Rα antibody. The sequence diversity of TCRβ CDR3 gene segments is comparable among the proliferating and quiescent MP cells from conventional and germ-free mice, implying that the majority of proliferating MP cells have not recently derived from a small cohort of cells that expand through multiple continuous rounds of cell division. We propose that MP cells constitute a diverse cell population, containing a subpopulation of slowly dividing authentic antigen-primed memory cells and a majority population of rapidly proliferating cells that did not arise from naïve cells through conventional antigen-driven clonal expansion.

  2. Rapid Treatment of Leukostasis in Leukemic Mantle Cell Lymphoma Using Therapeutic Leukapheresis: A Case Report

    Directory of Open Access Journals (Sweden)

    Xuan Duc Nguyen

    2011-01-01

    Full Text Available We describe a case of severe leukocytosis caused by leukemic mantle cell lymphoma (MCL, complicated by leukostasis with myocardial infarction in which leukapheresis was used in the initial management. A 73-year-old male presented to the emergency department because of fatigue and thoracic pain. Blood count revealed 630 × 109/L WBC (white blood cells. The electrocardiogram showed ST-elevation with an increase of troponin and creatinine kinase. The diagnosis was ST-elevation myocardial infarction (STEMI induced and complicated by leukostasis. Immunophenotyping, morphology, cytogenetic and fluorescence-in-situ-hybridization analysis revealed the diagnosis of a blastoid variant of MCL. To remove leukocytes rapidly, leukapheresis was performed in the intensive care unit. Based on the differential blood count with 95% blasts, which were assigned to the lymphocyte population by the automatic hematology analyzer, leukapheresis procedures were then performed with the mononuclear cell standard program on the Spectra cell separator. The patient was treated with daily leukapheresis for 3 days. The WBC count decreased to 174 × 109/L after the third leukapheresis, with a 72% reduction. After the second apheresis, treatment with vincristine, cyclophosphamide, and prednisolone was started. The patient fully recovered in the further course of the treatment. To the best of our knowledge, this is the first report on blastoid MCL with leukostasis associated with a STEMI that was successfully treated by leukapheresis. Effective harvest of circulating lymphoma cells by leukapheresis requires adaptation of instrument settings based on the results of the differential blood count prior to apheresis.

  3. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Youngseok Lee

    2012-01-01

    Full Text Available It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0 which improves the efficiency of HIT solar cell. The ultrathin thermal passivation silicon oxide (SiO2 layer was deposited by RTO system in the temperature range 500–950°C for 2 to 6 minutes. The thickness of the silicon oxide layer was affected by RTO annealing temperature and treatment time. The best value of surface recombination velocity was recorded for the sample treated at a temperature of 850°C for 6 minutes at O2 flow rate of 3 Lpm. A surface recombination velocity below 25 cm/s was obtained for the silicon oxide layer of 4 nm thickness. This ultrathin SiO2 layer was employed for the fabrication of HIT solar cell structure instead of a-Si:H, (i layer and the passivation and tunneling effects of the silicon oxide layer were exploited. The photocurrent was decreased with the increase of illumination intensity and SiO2 thickness.

  4. A platform for rapid prototyping of synthetic gene networks in mammalian cells

    Science.gov (United States)

    Duportet, Xavier; Wroblewska, Liliana; Guye, Patrick; Li, Yinqing; Eyquem, Justin; Rieders, Julianne; Rimchala, Tharathorn; Batt, Gregory; Weiss, Ron

    2014-01-01

    Mammalian synthetic biology may provide novel therapeutic strategies, help decipher new paths for drug discovery and facilitate synthesis of valuable molecules. Yet, our capacity to genetically program cells is currently hampered by the lack of efficient approaches to streamline the design, construction and screening of synthetic gene networks. To address this problem, here we present a framework for modular and combinatorial assembly of functional (multi)gene expression vectors and their efficient and specific targeted integration into a well-defined chromosomal context in mammalian cells. We demonstrate the potential of this framework by assembling and integrating different functional mammalian regulatory networks including the largest gene circuit built and chromosomally integrated to date (6 transcription units, 27kb) encoding an inducible memory device. Using a library of 18 different circuits as a proof of concept, we also demonstrate that our method enables one-pot/single-flask chromosomal integration and screening of circuit libraries. This rapid and powerful prototyping platform is well suited for comparative studies of genetic regulatory elements, genes and multi-gene circuits as well as facile development of libraries of isogenic engineered cell lines. PMID:25378321

  5. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis.

    Directory of Open Access Journals (Sweden)

    Nitzan Krinsky

    Full Text Available Cell-free protein synthesis (CFPS systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3 and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa. This system was able to produce 40-150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins.

  6. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis

    Science.gov (United States)

    Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40–150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins. PMID:27768741

  7. Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay

    Energy Technology Data Exchange (ETDEWEB)

    Hondroulis, Evangelia; Liu Chang; Li Chenzhong, E-mail: licz@fiu.edu [Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 (United States)

    2010-08-06

    A whole cell based biosensor for rapid real-time testing of human and environmental toxicity of nanoscale materials is reported. Recent studies measuring nanoparticle cytotoxicity in vitro provide a final measurement of toxicity to a cell culture overlooking the ongoing cytotoxic effects of the nanoparticles over the desired timeframe. An array biosensor capable of performing multiple cytotoxicity assays simultaneously was designed to address the need for a consistent method to measure real-time assessments of toxicity. The impedimetric response of human lung fibroblasts (CCL-153) and rainbow trout gill epithelial cells (RTgill-W1) when exposed to gold and silver nanoparticles (AuNPs, AgNPs), single walled carbon nanotubes (SWCNTs) and cadmium oxide (CdO) was tested. Exposure to CdO particles exhibited the fastest rate of cytotoxicity and demonstrated the biosensor's ability to monitor toxicity instantaneously in real time. Advantages of the present method include shorter run times, easier usage, and multi-sample analysis leading to a method that can monitor the kinetic effects of nanoparticle toxicity continuously over a desired timeframe.

  8. Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay

    Science.gov (United States)

    Hondroulis, Evangelia; Liu, Chang; Li, Chen-Zhong

    2010-08-01

    A whole cell based biosensor for rapid real-time testing of human and environmental toxicity of nanoscale materials is reported. Recent studies measuring nanoparticle cytotoxicity in vitro provide a final measurement of toxicity to a cell culture overlooking the ongoing cytotoxic effects of the nanoparticles over the desired timeframe. An array biosensor capable of performing multiple cytotoxicity assays simultaneously was designed to address the need for a consistent method to measure real-time assessments of toxicity. The impedimetric response of human lung fibroblasts (CCL-153) and rainbow trout gill epithelial cells (RTgill-W1) when exposed to gold and silver nanoparticles (AuNPs, AgNPs), single walled carbon nanotubes (SWCNTs) and cadmium oxide (CdO) was tested. Exposure to CdO particles exhibited the fastest rate of cytotoxicity and demonstrated the biosensor's ability to monitor toxicity instantaneously in real time. Advantages of the present method include shorter run times, easier usage, and multi-sample analysis leading to a method that can monitor the kinetic effects of nanoparticle toxicity continuously over a desired timeframe.

  9. Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay

    International Nuclear Information System (INIS)

    Hondroulis, Evangelia; Liu Chang; Li Chenzhong

    2010-01-01

    A whole cell based biosensor for rapid real-time testing of human and environmental toxicity of nanoscale materials is reported. Recent studies measuring nanoparticle cytotoxicity in vitro provide a final measurement of toxicity to a cell culture overlooking the ongoing cytotoxic effects of the nanoparticles over the desired timeframe. An array biosensor capable of performing multiple cytotoxicity assays simultaneously was designed to address the need for a consistent method to measure real-time assessments of toxicity. The impedimetric response of human lung fibroblasts (CCL-153) and rainbow trout gill epithelial cells (RTgill-W1) when exposed to gold and silver nanoparticles (AuNPs, AgNPs), single walled carbon nanotubes (SWCNTs) and cadmium oxide (CdO) was tested. Exposure to CdO particles exhibited the fastest rate of cytotoxicity and demonstrated the biosensor's ability to monitor toxicity instantaneously in real time. Advantages of the present method include shorter run times, easier usage, and multi-sample analysis leading to a method that can monitor the kinetic effects of nanoparticle toxicity continuously over a desired timeframe.

  10. Semi-automated, occupationally safe immunofluorescence microtip sensor for rapid detection of Mycobacterium cells in sputum.

    Directory of Open Access Journals (Sweden)

    Shinnosuke Inoue

    Full Text Available An occupationally safe (biosafe sputum liquefaction protocol was developed for use with a semi-automated antibody-based microtip immunofluorescence sensor. The protocol effectively liquefied sputum and inactivated microorganisms including Mycobacterium tuberculosis, while preserving the antibody-binding activity of Mycobacterium cell surface antigens. Sputum was treated with a synergistic chemical-thermal protocol that included moderate concentrations of NaOH and detergent at 60°C for 5 to 10 min. Samples spiked with M. tuberculosis complex cells showed approximately 10(6-fold inactivation of the pathogen after treatment. Antibody binding was retained post-treatment, as determined by analysis with a microtip immunosensor. The sensor correctly distinguished between Mycobacterium species and other cell types naturally present in biosafe-treated sputum, with a detection limit of 100 CFU/mL for M. tuberculosis, in a 30-minute sample-to-result process. The microtip device was also semi-automated and shown to be compatible with low-cost, LED-powered fluorescence microscopy. The device and biosafe sputum liquefaction method opens the door to rapid detection of tuberculosis in settings with limited laboratory infrastructure.

  11. Fluorescent in situ folding control for rapid optimization of cell-free membrane protein synthesis.

    Directory of Open Access Journals (Sweden)

    Annika Müller-Lucks

    Full Text Available Cell-free synthesis is an open and powerful tool for high-yield protein production in small reaction volumes predestined for high-throughput structural and functional analysis. Membrane proteins require addition of detergents for solubilization, liposomes, or nanodiscs. Hence, the number of parameters to be tested is significantly higher than with soluble proteins. Optimization is commonly done with respect to protein yield, yet without knowledge of the protein folding status. This approach contains a large inherent risk of ending up with non-functional protein. We show that fluorophore formation in C-terminal fusions with green fluorescent protein (GFP indicates the folding state of a membrane protein in situ, i.e. within the cell-free reaction mixture, as confirmed by circular dichroism (CD, proteoliposome reconstitution and functional assays. Quantification of protein yield and in-gel fluorescence intensity imply suitability of the method for membrane proteins of bacterial, protozoan, plant, and mammalian origin, representing vacuolar and plasma membrane localization, as well as intra- and extracellular positioning of the C-terminus. We conclude that GFP-fusions provide an extension to cell-free protein synthesis systems eliminating the need for experimental folding control and, thus, enabling rapid optimization towards membrane protein quality.

  12. Cutting edge: Rapid recovery of NKT cells upon institution of highly active antiretroviral therapy for HIV-1 infection

    NARCIS (Netherlands)

    van der Vliet, Hans J. J.; van Vonderen, Marit G. A.; Molling, Johan W.; Bontkes, Hetty J.; Reijm, Martine; Reiss, Peter; van Agtmael, Michiel A.; Danner, Sven A.; van den Eertwegh, Alfons J. M.; von Blomberg, B. Mary E.; Scheper, Rik J.

    2006-01-01

    CD1d-restricted NKT cells play important regulatory roles in various immune responses and are rapidly and selectively depleted upon infection with HIV-1. The cause of this selective depletion is incompletely understood, although it is in part due to the high susceptibility of CD4+ NKT cells to

  13. Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor.

    Science.gov (United States)

    Obata, Fumiaki; Tanaka, Shiho; Kashio, Soshiro; Tsujimura, Hidenobu; Sato, Ryoichi; Miura, Masayuki

    2015-07-08

    Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Herein, we established a method for inducing rapid and selective cell necrosis by the pore-forming bacterial toxin Cry1Aa, which is specifically active in cells expressing the Cry1Aa receptor (CryR) derived from the silkworm Bombyx mori. We demonstrated that overexpressing CryR in Drosophila melanogaster tissues induced rapid cell death of CryR-expressing cells only, in the presence of Cry1Aa toxin. Cry/CryR system was effective against both proliferating cells in imaginal discs and polyploid postmitotic cells in the fat body. Live imaging analysis of cell ablation revealed swelling and subsequent osmotic lysis of CryR-positive cells after 30 min of incubation with Cry1Aa toxin. Osmotic cell lysis was still triggered when apoptosis, JNK activation, or autophagy was inhibited, suggesting that Cry1Aa-induced necrotic cell death occurred independently of these cellular signaling pathways. Injection of Cry1Aa into the body cavity resulted in specific ablation of CryR-expressing cells, indicating the usefulness of this method for in vivo cell ablation. With Cry toxins from Bacillus thuringiensis, we developed a novel method for genetic induction of cell necrosis. Our system provides a "proteinous drill" for killing target cells through physical injury of the cell membrane, which can potentially be used to ablate any cell type in any organisms, even those that are resistant to apoptosis or JNK-dependent programmed cell death.

  14. An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture.

    Science.gov (United States)

    Doherty, Margaret; Bones, Jonathan; McLoughlin, Niaobh; Telford, Jayne E; Harmon, Bryan; DeFelippis, Michael R; Rudd, Pauline M

    2013-11-01

    Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Glyphosate resistance in Ambrosia trifida: Part 1. Novel rapid cell death response to glyphosate.

    Science.gov (United States)

    Van Horn, Christopher R; Moretti, Marcelo L; Robertson, Renae R; Segobye, Kabelo; Weller, Stephen C; Young, Bryan G; Johnson, William G; Schulz, Burkhard; Green, Amanda C; Jeffery, Taylor; Lespérance, Mackenzie A; Tardif, François J; Sikkema, Peter H; Hall, J Christopher; McLean, Michael D; Lawton, Mark B; Sammons, R Douglas; Wang, Dafu; Westra, Philip; Gaines, Todd A

    2018-05-01

    Glyphosate-resistant (GR) Ambrosia trifida is now present in the midwestern United States and in southwestern Ontario, Canada. Two distinct GR phenotypes are known, including a rapid response (GR RR) phenotype, which exhibits cell death within hours after treatment, and a non-rapid response (GR NRR) phenotype. The mechanisms of resistance in both GR RR and GR NRR remain unknown. Here, we present a description of the RR phenotype and an investigation of target-site mechanisms on multiple A. trifida accessions. Glyphosate resistance was confirmed in several accessions, and whole-plant levels of resistance ranged from 2.3- to 7.5-fold compared with glyphosate-susceptible (GS) accessions. The two GR phenotypes displayed similar levels of resistance, despite having dramatically different phenotypic responses to glyphosate. Glyphosate resistance was not associated with mutations in EPSPS sequence, increased EPSPS copy number, EPSPS quantity, or EPSPS activity. These encompassing results suggest that resistance to glyphosate in these GR RR A. trifida accessions is not conferred by a target-site resistance mechanism. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing

    Directory of Open Access Journals (Sweden)

    Samuel C. Kim

    2015-10-01

    Full Text Available Effective treatment of bacterial infection relies on timely diagnosis and proper prescription of antibiotic drugs. The antimicrobial susceptibility test (AST is one of the most crucial experimental procedures, providing the baseline information for choosing effective antibiotic agents and their dosages. Conventional methods, however, require long incubation times or significant instrumentation costs to obtain test results. We propose a lab-on-a-chip approach to perform AST in a simple, economic, and rapid manner. Our assay platform miniaturizes the standard broth microdilution method on a microfluidic device (20 × 20 mm that generates an antibiotic concentration gradient and delivers antibiotic-containing culture media to eight 30-nL chambers for cell culture. When tested with 20 μL samples of a model bacterial strain (E. coli ATCC 25922 treated with ampicillin or streptomycin, our method allows for the determination of minimum inhibitory concentrations consistent with the microdilution test in three hours, which is almost a factor of ten more rapid than the standard method.

  17. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles.

    Science.gov (United States)

    Chang, Yi-Chung; Yang, Chia-Ying; Sun, Ruei-Lin; Cheng, Yi-Feng; Kao, Wei-Chen; Yang, Pan-Chyr

    2013-01-01

    Staphylococcus aureus is one of the most important human pathogens, causing more than 500,000 infections in the United States each year. Traditional methods for bacterial culture and identification take several days, wasting precious time for patients who are suffering severe bacterial infections. Numerous nucleic acid-based detection methods have been introduced to address this deficiency; however, the costs and requirement for expensive equipment may limit the widespread use of such technologies. Thus, there is an unmet demand of new platform technology to improve the bacterial detection and identification in clinical practice. In this study, we developed a rapid, ultra-sensitive, low cost, and non-polymerase chain reaction (PCR)-based method for bacterial identification. Using this method, which measures the resonance light-scattering signal of aptamer-conjugated gold nanoparticles, we successfully detected single S. aureus cell within 1.5 hours. This new platform technology may have potential to develop a rapid and sensitive bacterial testing at point-of-care.

  18. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis.

    Science.gov (United States)

    Mucci, Maíra; Noyma, Natalia Pessoa; de Magalhães, Leonardo; Miranda, Marcela; van Oosterhout, Frank; Guedes, Iamê Alves; Huszar, Vera L M; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-07-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show that chitosan may rapidly compromise membrane integrity and kill certain cyanobacteria leading to release of cell contents in the water. A strain of Cylindrospermopsis raciborskii and one strain of Planktothrix agardhii were most sensitive. A 1.3 h exposure to a low dose of 0.5 mg l -1 chitosan already almost completely killed these cultures resulting in release of cell contents. After 24 h, reductions in PSII efficiencies of all cyanobacteria tested were observed. EC50 values varied from around 0.5 mg l -1 chitosan for the two sensitive strains, via about 5 mg l -1 chitosan for an Aphanizomenon flos-aquae strain, a toxic P. agardhii strain and two Anabaena cylindrica cultures, to more than 8 mg l -1 chitosan for a Microcystis aeruginosa strain and another A. flos-aquae strain. Differences in sensitivity to chitosan might be related to polymeric substances that surround cyanobacteria. Rapid lysis of toxic strains is likely and when chitosan flocking and sinking of cyanobacteria is considered in lake restoration, flocculation efficacy studies should be complemented with investigation on the effects of chitosan on the cyanobacteria assemblage being targeted. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Rapid activation of Rac GTPase in living cells by force is independent of Src.

    Directory of Open Access Journals (Sweden)

    Yeh-Chuin Poh

    2009-11-01

    Full Text Available It is well known that mechanical forces are crucial in regulating functions of every tissue and organ in a human body. However, it remains unclear how mechanical forces are transduced into biochemical activities and biological responses at the cellular and molecular level. Using the magnetic twisting cytometry technique, we applied local mechanical stresses to living human airway smooth muscle cells with a magnetic bead bound to the cell surface via transmembrane adhesion molecule integrins. The temporal and spatial activation of Rac, a small guanosine triphosphatase, was quantified using a fluorescent resonance energy transfer (FRET method that measures changes in Rac activity in response to mechanical stresses by quantifying intensity ratios of ECFP (enhanced cyan fluorescent protein as a donor and YPet (a variant yellow fluorescent protein as an acceptor of the Rac biosensor. The applied stress induced rapid activation (less than 300 ms of Rac at the cell periphery. In contrast, platelet derived growth factor (PDGF induced Rac activation at a much later time (>30 sec. There was no stress-induced Rac activation when a mutant form of the Rac biosensor (RacN17 was transfected or when the magnetic bead was coated with transferrin or with poly-L-lysine. It is known that PDGF-induced Rac activation depends on Src activity. Surprisingly, pre-treatment of the cells with specific Src inhibitor PP1 or knocking-out Src gene had no effects on stress-induced Rac activation. In addition, eliminating lipid rafts through extraction of cholesterol from the plasma membrane did not prevent stress-induced Rac activation, suggesting a raft-independent mechanism in governing the Rac activation upon mechanical stimulation. Further evidence indicates that Rac activation by stress depends on the magnitudes of the applied stress and cytoskeletal integrity. Our results suggest that Rac activation by mechanical forces is rapid, direct and does not depend on Src

  20. Rapid and simple purification of elastin-like polypeptides directly from whole cells and cell lysates by organic solvent extraction.

    Science.gov (United States)

    VerHeul, Ross; Sweet, Craig; Thompson, David H

    2018-03-26

    Elastin-like polypeptides (ELP) are a well-known class of proteins that are being increasingly utilized in a variety of biomedical applications, due to their beneficial physicochemical properties. A unifying feature of ELP is their demonstration of a sequence tunable inverse transition temperature (Tt) that enables purification using a simple, straightforward process called inverse transition cycling (ITC). Despite the utility of ITC, the process is inherently limited to ELP with an experimentally accessible Tt. Since the underlying basis for the ELP Tt is related to its high overall hydrophobicity, we anticipated that ELP would be excellent candidates for purification by organic extraction. We report the first method for rapidly purifying ELP directly from whole E. coli cells or clarified lysates using pure organic solvents and solvent mixtures, followed by aqueous back extraction. Our results show that small ELP and a large ELP-fusion protein can be isolated in high yield from whole cells or cell lysates with greater than 95% purity in less than 30 min and with very low levels of LPS and DNA contamination.

  1. Rapid labeling of intracellular His-tagged proteins in living cells.

    Science.gov (United States)

    Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe

    2015-03-10

    Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni(2+)-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni(2+)-NTA-based probes. Unfortunately, previous Ni-NTA-based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni(2+) ions. The probe, driven by Ni(2+)-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells.

  2. Rapid acquisition and model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria

    Science.gov (United States)

    Wienecke, Sarah; Ishwarbhai, Alka; Tsipa, Argyro; Aw, Rochelle; Kylilis, Nicolas; Bell, David J.; McClymont, David W.; Jensen, Kirsten; Biedendieck, Rebekka

    2018-01-01

    Native cell-free transcription–translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription–translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription–translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications. PMID:29666238

  3. Rapid fabricating technique for multi-layered human hepatic cell sheets by forceful contraction of the fibroblast monolayer.

    Directory of Open Access Journals (Sweden)

    Yusuke Sakai

    Full Text Available Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered human hepatocyte sheets from cells with limited proliferation potential, and the engineered cell sheet could be used for cell transplantation with highly specific functions.

  4. A rapid selection strategy for an anodophilic consortium for microbial fuel cells

    KAUST Repository

    Wang, Aijie

    2010-07-01

    A rapid selection method was developed to enrich for a stable and efficient anodophilic consortium (AC) for microbial fuel cells (MFCs). A biofilm sample from a microbial electrolysis cell was serially diluted up to 10-9 in anaerobic phosphate buffer solution and incubated in an Fe(III)-acetate medium, and an Fe(III)-reducing AC was obtained for dilutions up to 10-6. The activity of MFC inoculated with the enrichment AC was compared with those inoculated with original biofilm or activated sludge. The power densities and Coulombic efficiencies of the AC (226 mW/m2, 34%) were higher than those of the original biofilm (209 mW/m2, 23%) and activated sludge (192 mW/m2, 19%). The start-up period of the AC (60 h) was also shorter than those obtained with the other inocula (biofilm, 95 h; activated sludge, 300 h). This indicated that such a strategy is highly efficient for obtaining an anodophilic consortium for improving the performance of an MFC. © 2010 Elsevier Ltd.

  5. Morphed and moving: TNFα-driven motility promotes cell dissemination through MAP4K4-induced cytoskeleton remodeling

    Directory of Open Access Journals (Sweden)

    Min Ma

    2014-04-01

    Full Text Available Cell dissemination from an initial site of growth is a highly coordinated and controlled process that depends on cell motility. The mechanistic principles that orchestrate cell motility, namely cell shape control, traction and force generation, are highly conserved between cells of different origins. Correspondingly, the molecular mechanisms that regulate these critical aspects of migrating cells are likely functionally conserved too. Thus, cell motility deregulation of unrelated pathogenesis could be caused and maintained by similar mechanistic principles. One such motility deregulation disorder is the leukoproliferative cattle disease Tropical Theileriosis, which is caused by the intracellular, protozoan parasite Theileria annulata. T. annulata transforms its host cell and promotes the dissemination of parasite-infected cells throughout the body of the host. An analogous condition with a fundamentally different pathogenesis is metastatic cancer, where oncogenically transformed cells disseminate from the primary tumor to form distant metastases. Common to both diseases is the dissemination of motile cells from the original site. However, unlike metastatic cancer, host cell transformation by Theileria parasites can be reverted by drug treatment and cell signaling be analyzed under transformed and non-transformed conditions. We have used this reversible transformation model and investigated parasite control of host cell motile properties in the context of inflammatory signaling in Ma M. et al. [PLoS Pathog (2014 10: e1004003]. We found that parasite infection promotes the production of the inflammatory cytokine TNFα in the host macrophage. We demonstrated that increased TNFα triggers motile and invasive properties by enhancing actin cytoskeleton remodeling and cell motility through the ser/thr kinase MAP4K4. We concluded that inflammatory conditions resulting in increased TNFα could facilitate cell dissemination by activating the actin

  6. Essential Function of Dicer in Resolving DNA Damage in the Rapidly Dividing Cells of the Developing and Malignant Cerebellum

    Directory of Open Access Journals (Sweden)

    Vijay Swahari

    2016-01-01

    Full Text Available Maintenance of genomic integrity is critical during neurodevelopment, particularly in rapidly dividing cerebellar granule neuronal precursors that experience constitutive replication-associated DNA damage. As Dicer was recently recognized to have an unexpected function in the DNA damage response, we examined whether Dicer was important for preserving genomic integrity in the developing brain. We report that deletion of Dicer in the developing mouse cerebellum resulted in the accumulation of DNA damage leading to cerebellar progenitor degeneration, which was rescued with p53 deficiency; deletion of DGCR8 also resulted in similar DNA damage and cerebellar degeneration. Dicer deficiency also resulted in DNA damage and death in other rapidly dividing cells including embryonic stem cells and the malignant cerebellar progenitors in a mouse model of medulloblastoma. Together, these results identify an essential function of Dicer in resolving the spontaneous DNA damage that occurs during the rapid proliferation of developmental progenitors and malignant cells.

  7. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification.

    Science.gov (United States)

    Eguiara, Arrate; Holgado, Olaia; Beloqui, Izaskun; Abalde, Leire; Sanchez, Yolanda; Callol, Carles; Martin, Angel G

    2011-11-01

    The cancer stem cell is defined by its capacity to self-renew, the potential to differentiate into all cells of the tumor and the ability to proliferate and drive the expansion of the tumor. Thus, targeting these cells may provide novel anti-cancer treatment strategies. Breast cancer stem cells have been isolated according to surface marker expression, ability to efflux fluorescent dyes, increased activity of aldehyde dehydrogenase or the capacity to form spheres in non-adherent culture conditions. In order to test novel drugs directed towards modulating self-renewal of cancer stem cells, rapid, easy and inexpensive assays must be developed. Using 2 days-post-fertilization (dpf) zebrafish embryos as transplant recipients, we show that cells grown in mammospheres from breast carcinoma cell lines migrate to the tail of the embryo and form masses with a significantly higher frequency than parental monolayer populations. When stem-like self-renewal was targeted in the parental population by the use of the dietary supplement curcumin, cell migration and mass formation were reduced, indicating that these effects were associated with stem-like cell content. This is a proof of principle report that proposes a rapid and inexpensive assay to target in vivo cancer stem-like cells, which may be used to unravel basic cancer stem cell biology and for drug screening.

  8. A rapid microassay for detecting antibodies against poliovirus based on [14C]thymidine uptake of treated cell cultures

    International Nuclear Information System (INIS)

    Hilfenhaus, J.; Damm, H.; Ziegelmaier, R.; Gruschkau, H.

    1977-01-01

    DNA synthesis of mammalian cells propagated in microplates can easily be measured if cell cultures incubated with [ 14 C]thymidine are harvested on to glass fibre filters by a semiautomatic harvesting technique. Soon after infection with poliovirus, [ 14 C]thymidine uptake of U cells (established, human amniotic cell line) is inhibited. This inhibition can be prevented by previous virus neutralization with antibody. Based on this effect a rapid, precise assay method was set up to determine neutralizing antibody titres against poliovirus. There was a good correlation between titres obtained by this assay and those obtained by 50% endpoint titrations in cytopathogenic effect inhibition assays

  9. Effects of rapid thermal annealing on the optical properties of strain-free quantum ring solar cells

    Science.gov (United States)

    2013-01-01

    Strain-free GaAs/Al0.33Ga0.67As quantum rings are fabricated by droplet epitaxy. Both photoresponse and photoluminescence spectra confirm optical transitions in quantum rings, suggesting that droplet epitaxial nanomaterials are applicable to intermediate band solar cells. The effects of post-growth annealing on the quantum ring solar cells are investigated, and the optical properties of the solar cells with and without thermal treatment are characterized by photoluminescence technique. Rapid thermal annealing treatment has resulted in the significant improvement of material quality, which can be served as a standard process for quantum structure solar cells grown by droplet epitaxy. PMID:23281811

  10. Tissue spray ionization mass spectrometry for rapid recognition of human lung squamous cell carcinoma

    Science.gov (United States)

    Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen

    2015-05-01

    Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 - 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery.

  11. Investigation of Near-Surface Defects Induced by Spike Rapid Thermal Annealing in c-SILICON Solar Cells

    Science.gov (United States)

    Liu, Guodong; Ren, Pan; Zhang, Dayong; Wang, Weiping; Li, Jianfeng

    2016-01-01

    The defects induced by a spike rapid thermal annealing (RTA) process in crystalline silicon (c-Si) solar cells were investigated by the photoluminescence (PL) technique and the transmission electron microscopy (TEM), respectively. Dislocation defects were found to form in the near-surface junction region of the monocrystalline Si solar cell after a spike RTA process was performed at 1100∘C. Photo J-V characteristics were measured on the Si solar cell before and after the spike RTA treatments to reveal the effects of defects on the Si cell performances. In addition, the Silvaco device simulation program was used to study the effects of defects density on the cell performances by fitting the experimental data of RTA-treated cells. The results demonstrate that there was an obvious degradation in the Si solar cell performances when the defect density after the spike RTA treatment was above 1×1013cm-3.

  12. Rapid Extraction of Genomic DNA from Medically Important Yeasts and Filamentous Fungi by High-Speed Cell Disruption

    OpenAIRE

    Müller, Frank-Michael C.; Werner, Katherine E.; Kasai, Miki; Francesconi, Andrea; Chanock, Stephen J.; Walsh, Thomas J.

    1998-01-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolatio...

  13. A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells.

    Science.gov (United States)

    Abdolahad, Mohammad; Taghinejad, Mohammad; Taghinejad, Hossein; Janmaleki, Mohsen; Mohajerzadeh, Shams

    2012-03-21

    A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.

  14. Microcrystalline thin-film solar cell deposition on moving substrates using a linear VHF-PECVD reactor and a cross-flow geometry

    International Nuclear Information System (INIS)

    Flikweert, A J; Zimmermann, T; Merdzhanova, T; Weigand, D; Appenzeller, W; Gordijn, A

    2012-01-01

    A concept for high-rate plasma deposition (PECVD) of hydrogenated microcrystalline silicon on moving substrates (dynamic deposition) is developed and evaluated. The chamber allows for substrates up to a size of 40 × 40 cm 2 . The deposition plasma is sustained between linear VHF electrodes (60 MHz) and a moving substrate. Due to the gas flow geometry and the high degree of source gas depletion, from the carrier's point of view the silane concentration varies when passing the electrodes. This is known to lead to different growth conditions which can induce transitions from microcrystalline to amorphous growth. The effect of different silane concentrations is simulated at a standard RF showerhead electrode by intentionally varying the silane concentration during deposition in static mode. This variation may decrease the layer quality of microcrystalline silicon, due to a shift of the crystallinity away from the optimum. However, adapting the input silane concentration, state-of-the-art solar cells are obtained. Microcrystalline cells (ZnO : Al/Ag back contacts) produced by the linear VHF plasma sources show an efficiency of 7.9% and 6.6% for depositions in static and dynamic mode, respectively. (paper)

  15. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion.

    Directory of Open Access Journals (Sweden)

    Sébastien Besteiro

    2009-02-01

    Full Text Available One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1 and the neck of the rhoptries (for RON2/RON4/RON5 proteins, have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes.

  16. Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity.

    Science.gov (United States)

    Fedele, Giorgio; Schiavoni, Ilaria; Adkins, Irena; Klimova, Nela; Sebo, Peter

    2017-09-21

    Adenylate cyclase toxin (CyaA) is released in the course of B. pertussis infection in the host's respiratory tract in order to suppress its early innate and subsequent adaptive immune defense. CD11b-expressing dendritic cells (DC), macrophages and neutrophils are professional phagocytes and key players of the innate immune system that provide a first line of defense against invading pathogens. Recent findings revealed the capacity of B. pertussis CyaA to intoxicate DC with high concentrations of 3',5'-cyclic adenosine monophosphate (cAMP), which ultimately skews the host immune response towards the expansion of Th17 cells and regulatory T cells. CyaA-induced cAMP signaling swiftly incapacitates opsonophagocytosis, oxidative burst and NO-mediated killing of bacteria by neutrophils and macrophages. The subversion of host immune responses by CyaA after delivery into DC, macrophages and neutrophils is the subject of this review.

  17. Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity

    Directory of Open Access Journals (Sweden)

    Giorgio Fedele

    2017-09-01

    Full Text Available Adenylate cyclase toxin (CyaA is released in the course of B. pertussis infection in the host’s respiratory tract in order to suppress its early innate and subsequent adaptive immune defense. CD11b-expressing dendritic cells (DC, macrophages and neutrophils are professional phagocytes and key players of the innate immune system that provide a first line of defense against invading pathogens. Recent findings revealed the capacity of B. pertussis CyaA to intoxicate DC with high concentrations of 3′,5′-cyclic adenosine monophosphate (cAMP, which ultimately skews the host immune response towards the expansion of Th17 cells and regulatory T cells. CyaA-induced cAMP signaling swiftly incapacitates opsonophagocytosis, oxidative burst and NO-mediated killing of bacteria by neutrophils and macrophages. The subversion of host immune responses by CyaA after delivery into DC, macrophages and neutrophils is the subject of this review.

  18. Rapid selection of escape mutants by the first CD8 T cell responses in acute HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette Tina Marie [Los Alamos National Laboratory

    2008-01-01

    The recent failure of a vaccine that primes T cell responses to control primary HIV-1 infection has raised doubts about the role of CD8+ T cells in early HIV-1 infection. We studied four patients who were identified shortly after HIV-1 infection and before seroconversion. In each patient there was very rapid selection of multiple HIV-1 escape mutants in the transmitted virus by CD8 T cells, including examples of complete fixation of non-synonymous substitutions within 2 weeks. Sequencing by single genome amplification suggested that the high rate of virus replication in acute infection gave a selective advantage to virus molecules that contained simultaneous and gained sequential T cell escape mutations. These observations show that whilst early HIV-1 specific CD8 T cells can act against virus, rapid escape means that these T cell responses are unlikely to benefit the patient and may in part explain why current HIV-1 T cell vaccines may not be protective.

  19. Estradiol attenuates EGF-induced rapid uPAR mobilization and cell migration via the G-protein-coupled receptor 30 in ovarian cancer cells

    DEFF Research Database (Denmark)

    Henic, Emir; Noskova, Vera; Høyer-Hansen, Gunilla

    2009-01-01

    : rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression...... for ERalpha, and quantitative polymerase chain reaction. Estradiol attenuates the stimulatory effect of EGF on cell migration and uPAR expression. Specifically, E(2) reduces the very rapid increase of detergent extractable uPAR, which occurs within minutes of EGF stimulation and probably represents...... agonist G1, mimicked the effect of E(2) on uPAR expression and cell migration. OVCAR-3 cells express mRNA for GPR30.Estradiol attenuates EGF-induced mobilization of ligated uPAR from detergent-resistant domains and subsequent migration in ovarian cancer cells. The response to various ER ligands indicates...

  20. ERK/CANP rapid signaling mediates 17β-estradiol-induced proliferation of human breast cancer cell line MCF-7 cells.

    Science.gov (United States)

    Wang, Guo-Sheng; Huang, Yan-Gang; Li, Huan; Bi, Shi-Jie; Zhao, Jin-Long

    2014-01-01

    17β-estradiol (E2) exerts its functions through both genomic and non-genomic signaling pathways. Because E2 is important in breast cancer development, we investigated whether its actions in promoting breast cancer cell proliferation occur through the non-genomic signaling pathway via extracellular signal-regulated kinase 1/2 (ERK1/2)/calcium-activated neutral protease (CANP). MCF-7 breast cancer cells were treated with ERKl/2 inhibitor (PD98059) or CANP inhibitor (calpeptin) before exposure to 1×10(-8) M E2. MTT colorimetry and flow cytometry were used to analyze effects on cell proliferation and cell cycle progression, respectively. Expression of phosphorylated-ERK (p-ERK), total ERK, and Capn4 proteins were assessed by Western blotting. Cell proliferation increased in cells treated with E2 for 24 h (P<0.05), and the proportion of cells in G0/G1 was decreased, accompanied by accelerated G1/S. Calpeptin pre-treatment significantly inhibited the E2-induced proliferation of MCF-7 cells (P<0.05), while also ameliorating the effects of E2 on cell cycle progression. Further, expression of p-ERK was rapidly up-regulated (after 10 min) by E2 (P<0.05), an effect that persisted 16 h after E2 exposure but which was significantly inhibited by PD98059 (P<0.05). Finally, expression of Capn4 protein was rapidly up-regulated in E2-exposed cells (P<0.05), but this change was significantly inhibited by PD98059 or calpeptin (P<0.05) pre-treatment. Thus, the rapid, non-genomic ERK/CANP signaling pathway mediates E2-induced proliferation of human breast cancer cells.

  1. Rapid blockade of telomerase activity and tumor cell growth by the DPL lipofection of ribbon antisense to hTR.

    Science.gov (United States)

    Bajpai, Arun K; Park, Jeong-Hoh; Moon, Ik-Jae; Kang, Hyungu; Lee, Yun-Han; Doh, Kyung-Oh; Suh, Seong-Il; Chang, Byeong-Churl; Park, Jong-Gu

    2005-09-29

    Ribbon antisense (RiAS) to the hTR RNA, a component of the telomerase complex, was employed to inhibit telomerase activity and cancer cell growth. The antisense molecule, hTR-RiAS, combined with enhanced cellular uptake was shown to effectively inhibit telomerase activity and cause rapid cell death in various cancer cell lines. When cancer cells were treated with hTR-RiAS, the level of hTR RNA was reduced by more than 90% accompanied with reduction in telomerase activity. When checked for cancer cell viability, cancer cell lines treated with hTR-RiAS using DNA+Peptide+Lipid complex showed 70-80% growth inhibition in 3 days. The reduced cell viability was due to apoptosis as the percentage of cells exhibiting the sub-G0 arrest and DNA fragmentation increased after antisense treatment. Further, when subcutaneous tumors of a colon cancer cell line (SW480) were treated intratumorally with hTR-RiAS, tumor growth was markedly suppressed with almost total ablation of hTR RNA in the tumor tissue. Cells in the tumor tissue were also found to undergo apoptosis after hTR-RiAS treatment. These results suggest that hTR-RiAS is an effective anticancer reagent, with a potential for broad efficacy to diverse malignant tumors.

  2. Moving from job-shop to production cells without losing flexibility: a case study from the wooden frames industry

    Directory of Open Access Journals (Sweden)

    Dinis-Carvalho, J.

    2014-11-01

    Full Text Available Cellular production is usually seen as a hybrid approach between job-shop and flow-line paradigms, reducing the major disadvantages of these two paradigms: the low productivity of job-shops and the low flexibility (in terms of products’ variety of the flow-lines. This paper describes the implementation of a production cell in a production unit of wood- framed pictures and mirrors, which was originally configured as a traditional job-shop, without losing the necessary flexibility to face market demand and simultaneously increasing the production unit’s performance. By implementing a highly flexible cell, very significant improvements were expected for the system’s overall performance and the quality of the products. These expectations were met, and the implementation was successful, as demonstrated by the results presented.

  3. Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity

    Czech Academy of Sciences Publication Activity Database

    Fedele, G.; Schiavoni, O.; Adkins, I.; Klímová, Nela; Šebo, Peter

    2017-01-01

    Roč. 9, č. 10 (2017), s. 1-15, č. článku 293. E-ISSN 2072-6651 R&D Projects: GA MZd(CZ) NV16-28126A; GA ČR(CZ) GA13-14547S; GA MŠk(CZ) LM2015064 Institutional support: RVO:61388971 Keywords : immune response * intracellular pathways * phagocytosis Subject RIV: EA - Cell Biology OBOR OECD: Other biological topics Impact factor: 3.030, year: 2016

  4. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward.

    Science.gov (United States)

    Li, Jian; Li, Wenwen; Huang, Kejia; Zhang, Yang; Kupfer, Gary; Zhao, Qi

    2018-02-13

    Recently, the US Food and Drug Administration (FDA) approved the first chimeric antigen receptor T cell (CAR-T) therapy for the treatment CD19-positive B cell acute lymphoblastic leukemia. While CAR-T has achieved remarkable success in the treatment of hematopoietic malignancies, whether it can benefit solid tumor patients to the same extent is still uncertain. Even though hundreds of clinical trials are undergoing exploring a variety of tumor-associated antigens (TAA), no such antigen with comparable properties like CD19 has yet been identified regarding solid tumors CAR-T immunotherapy. Inefficient T cell trafficking, immunosuppressive tumor microenvironment, suboptimal antigen recognition specificity, and lack of safety control are currently considered as the main obstacles in solid tumor CAR-T therapy. Here, we reviewed the solid tumor CAR-T clinical trials, emphasizing the studies with published results. We further discussed the challenges that CAR-T is facing for solid tumor treatment and proposed potential strategies to improve the efficacy of CAR-T as promising immunotherapy.

  5. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong-Ak; Han, Jongyoon [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Batista, Candy [Roxbury Community College, 1234 Columbus Ave., Roxbury Crossing, MA 02120 (United States); Sarpeshkar, Rahul [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2008-09-01

    In this paper we demonstrate a simple and rapid fabrication method for a microfluidic polymer electrolyte membrane (PEM) fuel cell using polydimethylsiloxane (PDMS), which has become the de facto standard material in BioMEMS. Instead of integrating a Nafion sheet film between two layers of a PDMS device in a traditional ''sandwich format,'' we pattern a perfluorinated ion-exchange resin such as a Nafion resin on a glass substrate using a reversibly bonded PDMS microchannel to generate an ion-selective membrane between the fuel-cell electrodes. After this patterning step, the assembly of the microfluidic fuel cell is accomplished by simple oxygen plasma bonding between the PDMS chip and the glass substrate. In an example implementation, the planar PEM microfluidic fuel cell generates an open circuit voltage of 600-800 mV and delivers a maximum current output of nearly 4 {mu}A. To enhance the power output of the fuel cell we utilize self-assembled colloidal arrays as a support matrix for the Nafion resin. Such arrays allow us to increase the thickness of the ion-selective membrane to 20 {mu}m and increase the current output by 166%. Our novel fabrication method enables rapid prototyping of microfluidic fuel cells to study various ion-exchange resins for the polymer electrolyte membrane. Our work will facilitate the development of miniature, implantable, on-chip power sources for biomedical applications. (author)

  6. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells.

    Science.gov (United States)

    Léguillier, Teddy; Vandormael-Pournin, Sandrine; Artus, Jérôme; Houlard, Martin; Picard, Christel; Bernex, Florence; Robine, Sylvie; Cohen-Tannoudji, Michel

    2012-07-15

    Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.

  7. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Teddy Léguillier

    2012-05-01

    Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.

  8. Aptamer-Based Dual-Functional Probe for Rapid and Specific Counting and Imaging of MCF-7 Cells.

    Science.gov (United States)

    Yang, Bin; Chen, Beibei; He, Man; Yin, Xiao; Xu, Chi; Hu, Bin

    2018-02-06

    Development of multimodal detection technologies for accurate diagnosis of cancer at early stages is in great demand. In this work, we report a novel approach using an aptamer-based dual-functional probe for rapid, sensitive, and specific counting and visualization of MCF-7 cells by inductively coupled plasma-mass spectrometry (ICP-MS) and fluorescence imaging. The probe consists of a recognition unit of aptamer to catch cancer cells specifically, a fluorescent dye (FAM) moiety for fluorescence resonance energy transfer (FRET)-based "off-on" fluorescence imaging as well as gold nanoparticles (Au NPs) tag for both ICP-MS quantification and fluorescence quenching. Due to the signal amplification effect and low spectral interference of Au NPs in ICP-MS, an excellent linearity and sensitivity were achieved. Accordingly, a limit of detection of 81 MCF-7 cells and a relative standard deviation of 5.6% (800 cells, n = 7) were obtained. The dynamic linear range was 2 × 10 2 to 1.2 × 10 4 cells, and the recoveries in human whole blood were in the range of 98-110%. Overall, the established method provides quantitative and visualized information on MCF-7 cells with a simple and rapid process and paves the way for a promising strategy for biomedical research and clinical diagnostics.

  9. Laser flow microphotometry for rapid analysis and sorting of mammalian cells

    International Nuclear Information System (INIS)

    Mullaney, P.F.; Steinkamp, J.A.; Crissman, H.A.; Cram, L.S.; Crowell, J.M.; Salzman, G.C.; Martin, J.C.; Price, B.

    1976-01-01

    Quantitative precision measurements can be made of the optical properties of individual mammalian cells using flow microphotometry. Suspended cells pass through a special flow chamber where they are lined up for exposure to blue light from an argon-ion laser. As each cell crosses the laser beam, it produces one or more optical pulses of a duration equal to cell transit time across the beam. These pulses are detected, amplified, and analyzed using the techniques of gamma ray spectroscopy. Quantitative DNA distributions made it possible to distinguish tumor cells from normal cells as well as to assay for radiation effects on tumor cells subjected to x and gamma radiation

  10. Laser flow microphotometry for rapid analysis and sorting of mammalian cells. [X and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mullaney, P.F.; Steinkamp, J.A.; Crissman, H.A.; Cram, L.S.; Crowell, J.M.; Salzman, G.C.; Martin, J.C.; Price, B.

    1976-01-01

    Quantitative precision measurements can be made of the optical properties of individual mammalian cells using flow microphotometry. Suspended cells pass through a special flow chamber where they are lined up for exposure to blue light from an argon-ion laser. As each cell crosses the laser beam, it produces one or more optical pulses of a duration equal to cell transit time across the beam. These pulses are detected, amplified, and analyzed using the techniques of gamma ray spectroscopy. Quantitative DNA distributions made it possible to distinguish tumor cells from normal cells as well as to assay for radiation effects on tumor cells subjected to x and gamma radiation. (HLW)

  11. Rapid effects of 17beta-estradiol on epithelial TRPV6 Ca2+ channel in human T84 colonic cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2008-11-01

    The control of calcium homeostasis is essential for cell survival and is of crucial importance for several physiological functions. The discovery of the epithelial calcium channel Transient Receptor Potential Vaniloid (TRPV6) in intestine has uncovered important Ca(2+) absorptive pathways involved in the regulation of whole body Ca(2+) homeostasis. The role of steroid hormone 17beta-estradiol (E(2)), in [Ca(2+)](i) regulation involving TRPV6 has been only limited at the protein expression levels in over-expressing heterologous systems. In the present study, using a combination of calcium-imaging, whole-cell patch-clamp techniques and siRNA technology to specifically knockdown TRPV6 protein expression, we were able to (i) show that TRPV6 is natively, rather than exogenously, expressed at mRNA and protein levels in human T84 colonic cells, (ii) characterize functional TRPV6 channels and (iii) demonstrate, for the first time, the rapid effects of E(2) in [Ca(2+)](i) regulation involving directly TRPV6 channels in T84 cells. Treatment with E(2) rapidly (<5 min) enhanced [Ca(2+)](i) and this increase was partially but significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV6 protein expression. These results indicate that when cells are stimulated by E(2), Ca(2+) enters the cell through TRPV6 channels. TRPV6 channels in T84 cells contribute to the Ca(2+) entry\\/signalling pathway that is sensitive to 17beta-estradiol.

  12. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun

    2014-11-24

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  13. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun; Lee, Kunwoo; Murthy, Niren; Pisano, Albert P

    2014-01-01

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  14. Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack

    Directory of Open Access Journals (Sweden)

    Takemoto Daigo

    2008-06-01

    Full Text Available Abstract Background Plant cells respond to the presence of potential fungal or oomycete pathogens by mounting a basal defence response that involves aggregation of cytoplasm, reorganization of cytoskeletal, endomembrane and other cell components and development of cell wall appositions beneath the infection site. This response is induced by non-adapted, avirulent and virulent pathogens alike, and in the majority of cases achieves penetration resistance against the microorganism on the plant surface. To explore the nature of signals that trigger this subcellular response and to determine the timing of its induction, we have monitored the reorganization of GFP-tagged actin, microtubules, endoplasmic reticulum (ER and peroxisomes in Arabidopsis plants – after touching the epidermal surface with a microneedle. Results Within 3 to 5 minutes of touching the surface of Arabidopsis cotyledon epidermal cells with fine glass or tungsten needles, actin microfilaments, ER and peroxisomes began to accumulate beneath the point of contact with the needle. Formation of a dense patch of actin was followed by focusing of actin cables on the site of contact. Touching the cell surface induced localized depolymerization of microtubules to form a microtubule-depleted zone surrounding a dense patch of GFP-tubulin beneath the needle tip. The concentration of actin, GFP-tubulin, ER and peroxisomes remained focused on the contact site as the needle moved across the cell surface and quickly dispersed when the needle was removed. Conclusion Our results show that plant cells can detect the gentle pressure of a microneedle on the epidermal cell surface and respond by reorganizing subcellular components in a manner similar to that induced during attack by potential fungal or oomycete pathogens. The results of our study indicate that during plant-pathogen interactions, the basal defence response may be induced by the plant's perception of the physical force exerted by the

  15. Platform for Rapid Delivery of Biologics and Drugs to Ocular Cells and Tissues Following Combat Associated Trauma

    Science.gov (United States)

    2013-09-01

    death pathways such as apoptosis subsequent to acute trauma as soon as possible, ideally by self- administration of a drug or a biologic that can be... Drugs to Ocular Tissues Including Retina and Cornea . Mol Ther, 2007;16(1):107- 14. 3. Read SP, Cashman SM, and Kumar-Singh R: POD...1 AD_________________ Award Number: W81XWH-12-1-0374 TITLE: Platform for Rapid Delivery of Biologics and Drugs to Ocular Cells

  16. Ultrasound-mediated method for rapid delivery of nano-particles into cells for intracellular surface-enhanced Raman spectroscopy and cancer cell screening

    International Nuclear Information System (INIS)

    Feng, Shangyuan; Li, Zhihua; Chen, Guannan; Huang, Shaohua; Huang, Zufang; Li, Yongzeng; Lin, Juqiang; Chen, Rong; Lin, Duo; Zeng, Haishan

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful technology for providing finger-printing information of cells. A big challenge has been the long time duration and inefficient uptake of metal nano-particles into living cells as substrate for SERS analysis. Herein, a simple method (based on ultrasound) for the rapid transfer of silver nanoparticles (NPs) into living cells for intracellular SERS spectroscopy was presented. In this study, the ultrasound-mediated method for NP delivery overcame the shortcoming of ‘passive uptake’, and achieved quick acquisition of reproducible SERS spectra from living human nasopharyngeal carcinoma cell lines (C666 and CNE1) and normal nasopharyngeal cell line (NP69). Tentative assignment of the Raman bands in the measured SERS spectra showed cancer cell specific biomolecular differences, including significantly lower DNA concentrations and higher protein concentrations in cancerous nasopharyngeal cells as compared to those of normal cells. Combined with PCA–LDA multivariate analysis, ultrasound-mediated cell SERS spectroscopy differentiated the cancerous cells from the normal nasopharyngeal cells with high diagnostic accuracy (98.7%), demonstrating great potential for high-throughput cancer cell screening applications. (paper)

  17. Rapid cell cycle analysis by measurement of the radioactivity per cell in a narrow window in S phase (RCSsub(i))

    International Nuclear Information System (INIS)

    Gray, J.W.; Carver, J.H.; George, Y.S.; Mendelsohn, M.L.

    1977-01-01

    A new rapid method for the cell cycle analysis of asynchronously growing cells is presented. The new method is an alternative to the more time consuming and subjective fraction of labeled mitoses (FLM) method. Like the FLM method, all cells in the S phase of the cell cycle are marked by pulse labeling with a radioactive DNA precursor. The subsequent progress of the cohort of cells thus labeled is monitored through a narrow window in the cell cycle. The window is defined by a narrow range of DNA contents corresponding to cells in mid-S phase and is designated Ssub(i). The cellular DNA content is measured by flow cytometry and the cells in the window Ssub(i) are selected by electronic cell sorting. The radioactivity per cell in Ssub(i) (RCSsub(i)) is determined by liquid scintillation counting. The duration of S phase and of the total cycle and the dispersions therein are determined from the oscillation of the RCSsub(i) values with time. The complete cell cycle analysis can be accomplished in as little as 1 day following the collection of samples. Exponentially growing Chinese hamster ovary (CHO) cells were analyzed according to the RCSsub(i) method and the FLM method. It is demonstrated that the two techniques give essentially the same results. (author)

  18. Rapid progression of mediastinal tumor within a few days: A case report of T cell lymphoblastic lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae Ran; Lee, Young Kyung; Jun, Hyun Jung; Jung, Eun Ah; Son, Jin Sung [Seoul Medical Center, Seoul (Korea, Republic of)

    2016-05-15

    T-cell lymphoblastic lymphoma is a highly aggressive tumor derived from lymphocyte of the thymus, which accounts for 2% of non-Hodgkin's lymphoma. The disease occurs most commonly in adolescent and young adult males. It often results in respiratory emergency because of high proliferation rate. In this case, we confirmed the rapid progression of T-cell lymphoblastic lymphoma through the chest CT scan with one week interval. Three days of empirical chemotherapy resulted in substantial reduction of mediastinal mass, pleural thickening and pleural effusion.

  19. Rapid modifications of peripheral T-cell subsets that express CD127 in macaques treated with recombinant IL-7.

    Science.gov (United States)

    Dereuddre-Bosquet, Nathalie; Vaslin, Bruno; Delache, Benoit; Brochard, Patricia; Clayette, Pascal; Aubenque, Céline; Morre, Michel; Assouline, Brigitte; Le Grand, Roger

    2007-08-01

    Interleukin-7 (IL-7) is a key regulator of thymopoiesis and T-cell homeostasis, which increases blood T-cell number by enhancing thymic output of naive cells and peripheral proliferation. We explored the effects of unglycosylated recombinant simian IL-7 (rsIL-7) administration on peripheral T-cell subpopulations in healthy macaques. RsIL-7 was well tolerated. Mean half-life ranged between 9.3 and 13.9 hours. Blood CD3(+)CD4(+) and CD3(+)CD8(+) lymphocyte counts decreased rapidly after each rsIL-7 administration, the duration of these effects being dependent on the frequency of administration. At treatment completion, the increased of CD3(+) lymphocytes was marked at 100 microg/kg every 2 days. CD3(+) lymphocytes that harbour the alpha chain of IL-7 receptor (CD127) and CD3(+)CD8(+) lymphocytes that expressed the proliferation marker Ki-67 exhibited a similar initial profile. The expression of the anti-apoptotic marker Bcl-2 increased in CD3(+) lymphocytes during the treatment and post-treatment period in a dose/frequency dependent manner. RsIL-7 was well tolerated in macaques and induces rapid modifications of T-cells that express CD127.

  20. Rapid Elimination of the Persistent Synergid through a Cell Fusion Mechanism

    KAUST Repository

    Maruyama, Daisuke; Volz, Ronny; Takeuchi, Hidenori; Mori, Toshiyuki; Igawa, Tomoko; Kurihara, Daisuke; Kawashima, Tomokazu; Ueda, Minako; Ito, Masaki; Umeda, Masaaki; Nishikawa, Shuhichi; Groß -Hardt, Rita; Higashiyama, Tetsuya

    2015-01-01

    the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling

  1. Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons.

    Science.gov (United States)

    Tong, Ling; Strong, Melissa K; Kaur, Tejbeer; Juiz, Jose M; Oesterle, Elizabeth C; Hume, Clifford; Warchol, Mark E; Palmiter, Richard D; Rubel, Edwin W

    2015-05-20

    During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival. Copyright © 2015 the authors 0270-6474/15/357878-14$15.00/0.

  2. Rapid development of Leydig cell tumors in a Wistar rat substrain

    NARCIS (Netherlands)

    Teerds, K. J.; de rooij, D. G.; de Jong, F. H.; Rommerts, F. F.

    1991-01-01

    In 78% of the Wistar rats (substrain U) studied, spontaneous Leydig cell tumors developed between the ages of 12 and 30 months. The first signs of tumor development, in the form of nodules of Leydig cells, were already apparent in 1-month-old U-rats. These nodules of Leydig cells were found in all

  3. Measurement of cell proliferation in microculture using Hoechst 33342 for the rapid semiautomated microfluorimetric determination of chromatin DNA.

    Science.gov (United States)

    Richards, W L; Song, M K; Krutzsch, H; Evarts, R P; Marsden, E; Thorgeirsson, S S

    1985-07-01

    We report the development and characterization of a semiautomated method for measurement of cell proliferation in microculture using Hoechst 33342, a non-toxic specific vital stain for DNA. In this assay, fluorescence resulting from interaction of cell chromatin DNA with Hoechst 33342 dye was measured by an instrument that automatically reads the fluorescence of each well of a 96-well microtiter plate within 1 min. Each cell line examined was shown to require different Hoechst 33342 concentrations and time of incubation with the dye to attain optimum fluorescence in the assay. In all cell lines, cell chromatin-enhanced Hoechst 33342 fluorescence was shown to be a linear function of the number of cells or cell nuclei per well when optimum assay conditions were employed. Because of this linear relation, equivalent cell doubling times were calculated from growth curves based on changes in cell counts or changes in Hoechst/DNA fluorescence and the fluorimetric assay was shown to be useful for the direct assay of the influence of growth factors on cell proliferation. The fluorimetric assay also provided a means for normalizing the incorporation of tritiated thymidine ( [3H] TdR) into DNA; normalized values of DPM per fluorescence unit closely paralleled values of percent 3H-labelled nuclei when DNA synthesis was studied as a function of the concentration of rat serum in the medium. In summary, the chromatin-enhanced Hoechst 33342 fluorimetric assay provides a rapid, simple, and reproducible means for estimating cell proliferation by direct measurement of changes in cell fluorescence or by measurement of changes in the normalized incorporation of thymidine into DNA.

  4. A magnetic micropore chip for rapid (<1 hour) unbiased circulating tumor cell isolation and in situ RNA analysis.

    Science.gov (United States)

    Ko, Jina; Bhagwat, Neha; Yee, Stephanie S; Black, Taylor; Redlinger, Colleen; Romeo, Janae; O'Hara, Mark; Raj, Arjun; Carpenter, Erica L; Stanger, Ben Z; Issadore, David

    2017-09-12

    The use of microtechnology for the highly selective isolation and sensitive detection of circulating tumor cells has shown enormous promise. One challenge for this technology is that the small feature sizes - which are the key to this technology's performance - can result in low sample throughput and susceptibility to clogging. Additionally, conventional molecular analysis of CTCs often requires cells to be taken off-chip for sample preparation and purification before analysis, leading to the loss of rare cells. To address these challenges, we have developed a microchip platform that combines fast, magnetic micropore based negative immunomagnetic selection (>10 mL h -1 ) with rapid on-chip in situ RNA profiling (>100× faster than conventional RNA labeling). This integrated chip can isolate both rare circulating cells and cell clusters directly from whole blood and allow individual cells to be profiled for multiple RNA cancer biomarkers, achieving sample-to-answer in less than 1 hour for 10 mL of whole blood. To demonstrate the power of this approach, we applied our device to the circulating tumor cell based diagnosis of pancreatic cancer. We used a genetically engineered lineage-labeled mouse model of pancreatic cancer (KPCY) to validate the performance of our chip. We show that in a cohort of patient samples (N = 25) that this device can detect and perform in situ RNA analysis on circulating tumor cells in patients with pancreatic cancer, even in those with extremely sparse CTCs (<1 CTC mL -1 of whole blood).

  5. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting, E-mail: BTZhu@kumc.edu

    2012-07-15

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K{sub 3}) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of

  6. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    International Nuclear Information System (INIS)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2012-01-01

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K 3 ) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of ATP

  7. Job Surfing: Move On to Move Up.

    Science.gov (United States)

    Martin, Justin

    1997-01-01

    Looks at the process of switching jobs and changing careers. Discusses when to consider options and make the move as well as the need to be flexible and open minded. Provides a test for determining the chances of promotion and when to move on. (JOW)

  8. Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses

    Directory of Open Access Journals (Sweden)

    Kathrin Davari

    2017-04-01

    Full Text Available Summary: Activation of immune cells results in rapid functional changes, but how such fast changes are accomplished remains enigmatic. By combining time courses of 4sU-seq, RNA-seq, ribosome profiling (RP, and RNA polymerase II (RNA Pol II ChIP-seq during T cell activation, we illustrate genome-wide temporal dynamics for ∼10,000 genes. This approach reveals not only immediate-early and posttranscriptionally regulated genes but also coupled changes in transcription and translation for >90% of genes. Recruitment, rather than release of paused RNA Pol II, primarily mediates transcriptional changes. This coincides with a genome-wide temporary slowdown in cotranscriptional splicing, even for polyadenylated mRNAs that are localized at the chromatin. Subsequent splicing optimization correlates with increasing Ser-2 phosphorylation of the RNA Pol II carboxy-terminal domain (CTD and activation of the positive transcription elongation factor (pTEFb. Thus, rapid de novo recruitment of RNA Pol II dictates the course of events during T cell activation, particularly transcription, splicing, and consequently translation. : Davari et al. visualize global changes in RNA Pol II binding, transcription, splicing, and translation. T cells change their functional program by rapid de novo recruitment of RNA Pol II and coupled changes in transcription and translation. This coincides with fluctuations in RNA Pol II phosphorylation and a temporary reduction in cotranscriptional splicing. Keywords: RNA Pol II, cotranscriptional splicing, T cell activation, ribosome profiling, 4sU, H3K36, Ser-5 RNA Pol II, Ser-2 RNA Pol II, immune response, immediate-early genes

  9. Rapid and dynamic arginylation of the leading edge β-actin is required for cell migration.

    Science.gov (United States)

    Pavlyk, Iuliia; Leu, Nicolae A; Vedula, Pavan; Kurosaka, Satoshi; Kashina, Anna

    2018-04-01

    β-actin plays key roles in cell migration. Our previous work demonstrated that β-actin in migratory non-muscle cells is N-terminally arginylated and that this arginylation is required for normal lamellipodia extension. Here, we examined the function of β-actin arginylation in cell migration. We found that arginylated β-actin is concentrated at the leading edge of lamellipodia and that this enrichment is abolished after serum starvation as well as in contact-inhibited cells in confluent cultures, suggesting that arginylated β-actin at the cell leading edge is coupled to active migration. Arginylated actin levels exhibit dynamic changes in response to cell stimuli, lowered after serum starvation and dramatically elevating within minutes after cell stimulation by readdition of serum or lysophosphatidic acid. These dynamic changes require active translation and are not seen in confluent contact-inhibited cell cultures. Microinjection of arginylated actin antibodies into cells severely and specifically inhibits their migration rates. Together, these data strongly suggest that arginylation of β-actin is a tightly regulated dynamic process that occurs at the leading edge of locomoting cells in response to stimuli and is integral to the signaling network that regulates cell migration. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Transmitted/Founder Viruses Rapidly Escape from CD8+ T Cell Responses in Acute Hepatitis C Virus Infection.

    Science.gov (United States)

    Bull, Rowena A; Leung, Preston; Gaudieri, Silvana; Deshpande, Pooja; Cameron, Barbara; Walker, Melanie; Chopra, Abha; Lloyd, Andrew R; Luciani, Fabio

    2015-05-01

    The interaction between hepatitis C virus (HCV) and cellular immune responses during very early infection is critical for disease outcome. To date, the impact of antigen-specific cellular immune responses on the evolution of the viral population establishing infection and on potential escape has not been studied. Understanding these early host-virus dynamics is important for the development of a preventative vaccine. Three subjects who were followed longitudinally from the detection of viremia preseroconversion until disease outcome were analyzed. The evolution of transmitted/founder (T/F) viruses was undertaken using deep sequencing. CD8(+) T cell responses were measured via enzyme-linked immunosorbent spot (ELISpot) assay using HLA class I-restricted T/F epitopes. T/F viruses were rapidly extinguished in all subjects associated with either viral clearance (n = 1) or replacement with viral variants leading to establishment of chronic infection (n = 2). CD8(+) T cell responses against 11 T/F epitopes were detectable by 33 to 44 days postinfection, and 5 of these epitopes had not previously been reported. These responses declined rapidly in those who became chronically infected and were maintained in the subject who cleared infection. Higher-magnitude CD8(+) T cell responses were associated with rapid development of immune escape variants at a rate of up to 0.1 per day. Rapid escape from CD8(+) T cell responses has been quantified for the first time in the early phase of primary HCV infection. These rapid escape dynamics were associated with higher-magnitude CD8(+) T cell responses. These findings raise questions regarding optimal selection of immunogens for HCV vaccine development and suggest that detailed analysis of individual epitopes may be required. A major limitation in our detailed understanding of the role of immune response in HCV clearance has been the lack of data on very early primary infection when the transmitted viral variants successfully establish

  11. The Rapid Detection of Single Bacterial Cells by Deep UV Micro Raman Spectroscopy.

    Science.gov (United States)

    1992-04-01

    Saltzman and C.T. Gregg, Appl. Environ. Microbiol. 44, 1081 (1982). 14. D.’. Mc Greggor, W.K. Grace and G.C. Salzman, in "Rapid Methods and...was used by Dr. Marcus Peter of the Dana -Farber Cancer Institute. During that period he came to our laboratories weekly to study GTP- binding

  12. Inhibition of exportin-1 function results in rapid cell cycle-associated DNA damage in cancer cells.

    Science.gov (United States)

    Burke, Russell T; Marcus, Joshua M; Orth, James D

    2017-06-13

    Selective inhibitors of nuclear export (SINE) are small molecules in development as anti-cancer agents. The first-in-class SINE, selinexor, is in clinical trials for blood and solid cancers. Selinexor forms a covalent bond with exportin-1 at cysteine-528, and blocks its ability to export cargos. Previous work has shown strong cell cycle effects and drug-induced cell death across many different cancer-derived cell lines. Here, we report strong cell cycle-associated DNA double-stranded break formation upon the treatment of cancer cells with SINE. In multiple cell models, selinexor treatment results in the formation of clustered DNA damage foci in 30-40% of cells within 8 hours that is dependent upon cysteine-528. DNA damage strongly correlates with G1/S-phase and decreased DNA replication. Live cell microscopy reveals an association between DNA damage and cell fate. Cells that form damage in G1-phase more often die or arrest, while those damaged in S/G2-phase frequently progress to cell division. Up to half of all treated cells form damage foci, and most cells that die after being damaged, were damaged in G1-phase. By comparison, non-transformed cell lines show strong cell cycle effects but little DNA damage and less death than cancer cells. Significant drug combination effects occur when selinexor is paired with different classes of agents that either cause DNA damage or that diminish DNA damage repair. These data present a novel effect of exportin-1 inhibition and provide a strong rationale for multiple combination treatments of selinexor with agents that are currently in use for the treatment of different solid cancers.

  13. Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells

    OpenAIRE

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C.

    2013-01-01

    This study developed a highly efficient serum-free pluripotent stem cell (PSC) neural induction medium that can induce human PSCs into primitive neural stem cells (NSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. This method of primitive NSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  14. Rapid effects of 17beta-estradiol on TRPV5 epithelial Ca2+ channels in rat renal cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2009-08-01

    The renal distal tubules and collecting ducts play a key role in the control of electrolyte and fluid homeostasis. The discovery of highly calcium selective channels, Transient Receptor Potential Vanilloid 5 (TRPV5) of the TRP superfamily, has clarified the nature of the calcium entry channels. It has been proposed that this channel mediates the critical Ca(2+) entry step in transcellular Ca(2+) re-absorption in the kidney. The regulation of transmembrane Ca(2+) flux through TRPV5 is of particular importance for whole body calcium homeostasis.In this study, we provide evidence that the TRPV5 channel is present in rat cortical collecting duct (RCCD(2)) cells at mRNA and protein levels. We demonstrate that 17beta-estradiol (E(2)) is involved in the regulation of Ca(2+) influx in these cells via the epithelial Ca(2+) channels TRPV5. By combining whole-cell patch-clamp and Ca(2+)-imaging techniques, we have characterized the electrophysiological properties of the TRPV5 channel and showed that treatment with 20-50nM E(2) rapidly (<5min) induced a transient increase in inward whole-cell currents and intracellular Ca(2+) via TRPV5 channels. This rise was significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV5.These data demonstrate for the first time, a novel rapid modulation of endogenously expressed TRPV5 channels by E(2) in kidney cells. Furthermore, the results suggest calcitropic effects of E(2). The results are discussed in relation to present concepts of non-genomic actions of E(2) in Ca(2+) homeostasis.

  15. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents.

    Science.gov (United States)

    Mukhey, Dev; Phillips, James B; Daniels, Julie T; Kureshi, Alvena K

    2018-02-01

    The architecture of the human corneal stroma consists of a highly organized extracellular matrix (ECM) interspersed with keratocytes. Their progenitor cells; corneal stromal stem cells (CSSC) are located at the periphery, in the limbal stroma. A highly organized corneal ECM is critical for effective transmission of light but this structure may be compromised during injury or disease, resulting in loss of vision. Re-creating normal organization in engineered tissue equivalents for transplantation often involves lengthy culture times that are inappropriate for clinical use or utilisation of synthetic substrates that bring complications such as corneal melting. CSSC have great therapeutic potential owing to their ability to reorganize a disorganized matrix, restoring transparency in scarred corneas. We examined CSSC contractile behavior to assess whether this property could be exploited to rapidly generate cell and ECM organization in Real Architecture For 3D Tissues (RAFT) tissue equivalents (TE) for transplantation. Free-floating collagen gels were characterized to assess contractile behavior of CSSC and establish optimum cell density and culture times. To mediate cell and collagen organization, tethered collagen gels seeded with CSSC were cultured and subsequently stabilized with the RAFT process. We demonstrated rapid creation of biomimetic RAFT TE with tunable structural properties. These displayed three distinct regions of varying degrees of cellular and collagen organization. Interestingly, increased organization coincided with a dramatic loss of PAX6 expression in CSSC, indicating rapid differentiation into keratocytes. The organized RAFT TE system could be a useful bioengineering tool to rapidly create an organized ECM while simultaneously controlling cell phenotype. For the first time, we have demonstrated that human CSSC exhibit the phenomenon of cellular self-alignment in tethered collagen gels. We found this mediated rapid co-alignment of collagen fibrils

  16. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens

    DEFF Research Database (Denmark)

    Holst, Peter J; Bartholdy, Christina; Buus, Anette Stryhn

    2007-01-01

    -linked lymphocytic choriomeningitis virus (LCMV)-derived epitopes was long-lived and protective. Notably, in contrast to full-length protein, the response elicited with the beta(2)-microglobulin-linked LCMV-derived epitope was CD4(+) T-cell independent. Furthermore, virus-specific CD8(+) T cells primed...... in the absence of CD4(+) T-cell help were sustained in the long term and able to expand and control a secondary challenge with LCMV. Our results demonstrate that modifications to the antigen used in adenovirus vaccines may be used to improve the induced T-cell response. Such a strategy for CD4(+) T-cell...... to that elicited with an adenovirus-encoded minimal epitope covalently linked to beta(2)-microglobulin. We demonstrate that the beta(2)-microglobulin-linked epitope induced an accelerated and augmented CD8(+) T-cell response. Furthermore, the immunity conferred by vaccination with beta(2)-microglobulin...

  17. Thin-film culturing technique allowing rapid gas-liquid equilibration (6 sec) with no toxicity to mammalian cells

    International Nuclear Information System (INIS)

    Koch, C.J.

    1984-01-01

    A method is described for inoculating mammalian cells onto the central area of glass petri dishes. The medium depth above the cells is only 100 μm for an added medium volume of 1 ml and increases linearly and rapidly with additional medium. The theoretical time constant for equilibration of the medium with the gas is related to the square of the medium depth. The experimental time constant was measured in two different ways for large and small medium depths, giving excellent agreement with the theoretical values. Although the time constant is only 6 sec for the case of 1 ml of added medium, there is no drying out of the medium or toxicity to the cells because of a large reservoir of medium in the meniscus at the periphery of the dish

  18. Rapid allergen-induced interleukin-17 and interferon-γ secretion by skin-resident memory CD8(+) T cells

    DEFF Research Database (Denmark)

    Schmidt, Jonas D; Ahlström, Malin G; Johansen, Jeanne D

    2017-01-01

    , the mechanisms whereby TRM cells induce rapid recall responses need further investigation. OBJECTIVES: To study whether contact allergens induce local and/or global memory, and to determine the mechanisms involved in memory responses in the skin. METHODS: To address these questions, we analysed responses......BACKGROUND: Skin-resident memory T (TRM ) cells are associated with immunological memory in the skin. Whether immunological memory responses to allergens in the skin are solely localized to previously allergen-exposed sites or are present globally in the skin is not clear. Furthermore......, long-lasting local memory and a weaker, temporary global immunological memory response to the allergen that is mediated by IL-17A-producing and IFN-γ-producing CD8(+) TRM cells....

  19. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth

    Science.gov (United States)

    Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan

    2016-05-01

    The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ~1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.The development of novel biomaterials that deliver precise regulatory signals to

  20. A role for α-galactosidase in the degradation of the endosperm cell walls of lettuce seeds, cv. Grand Rapids.

    Science.gov (United States)

    Leung, D W; Bewley, J D

    1983-04-01

    Isolated endosperms of Grand Rapids lettuce (Lactuca sativa L.) seeds undergo extensive cell-wall degradation and sugars are released into the surrounding incubation medium. One sugar so released is galactose. α-Galactosidase (EC 3.2.122) is present at the same level in both dry and imbibed isolated endosperms and is responsible for the release of galactose. However, this enzyme does not act upon the native endosperm cell wall, but requires first its partial hydrolysis and the production of oligomers by the action of endo-β-mannanase (EC 3.2.1.787). Galactose is then cleaved from these oligomers, allowing their further subsequent hydrolysis by endo-β-mannanase. Thus α-galactosidase and endo-β-mannanase act cooperatively to effect the hydrolysis of the lettuce endosperm cell walls.

  1. A Rapid Embryonic Stem Cell-Based Mouse Model for B-cell Lymphomas Driven by Epstein-Barr Virus Protein LMP1.

    Science.gov (United States)

    Ba, Zhaoqing; Meng, Fei-Long; Gostissa, Monica; Huang, Pei-Yi; Ke, Qiang; Wang, Zhe; Dao, Mai N; Fujiwara, Yuko; Rajewsky, Klaus; Zhang, Baochun; Alt, Frederick W

    2015-06-01

    The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) contributes to oncogenic human B-cell transformation. Mouse B cells conditionally expressing LMP1 are not predisposed to B-cell malignancies, as LMP1-expressing B cells are eliminated by T cells. However, mice with conditional B-cell LMP1 expression and genetic elimination of α/β and γ/δ T cells ("CLT" mice) die early in association with B-cell lymphoproliferation and lymphomagenesis. Generation of CLT mice involves in-breeding multiple independently segregating alleles. Thus, although introduction of additional activating or knockout mutations into the CLT model is desirable for further B-cell expansion and immunosurveillance studies, doing such experiments by germline breeding is time-consuming, expensive, and sometimes unfeasible. To generate a more tractable model, we generated clonal CLT embryonic stem (ES) cells from CLT embryos and injected them into RAG2-deficient blastocysts to generate chimeric mice, which, like germline CLT mice, harbor splenic CLT B cells and lack T cells. CLT chimeric mice generated by this RAG2-deficient blastocyst complementation ("RDBC") approach die rapidly in association with B-cell lymphoproliferation and lymphoma. Because CLT lymphomas routinely express the activation-induced cytidine deaminase (AID) antibody diversifier, we tested potential AID roles by eliminating the AID gene in CLT ES cells and testing them via RDBC. We found that CLT and AID-deficient CLT ES chimeras had indistinguishable phenotypes, showing that AID is not essential for LMP1-induced lymphomagenesis. Beyond expanding accessibility and utility of CLT mice as a cancer immunotherapy model, our studies provide a new approach for facilitating generation of genetically complex mouse cancer models. ©2015 American Association for Cancer Research.

  2. Development of a Rapid and Sensitive Test for the Detection of Prions in Cultured Cells

    National Research Council Canada - National Science Library

    Taraboulos, Albert

    2004-01-01

    .... Increase the level of prion/Prp(exp SC) amplification in the infected cells. 4. Design better ways to detect prion infection in cells, either by increasing the formation of PrP(exp SC) or by devising new, non-PrP(exp SC) surrogate' markers.

  3. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating.

    Science.gov (United States)

    Ghanizadeh Tabriz, Atabak; Mills, Christopher G; Mullins, John J; Davies, Jamie A; Shu, Wenmiao

    2017-01-01

    Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 µm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells).

  4. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth.

    Science.gov (United States)

    Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan

    2016-05-21

    The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ∼1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.

  5. Rapid isolation of bone marrow mesenchymal stromal cells using integrated centrifuge-based technology.

    Science.gov (United States)

    Meppelink, Amanda M; Wang, Xing-Hua; Bradica, Gino; Barron, Kathryn; Hiltz, Kathleen; Liu, Xiang-Hong; Goldman, Scott M; Vacanti, Joseph P; Keating, Armand; Hoganson, David M

    2016-06-01

    The use of bone marrow-derived mesenchymal stromal cells (MSCs) in cell-based therapies is currently being developed for a number of diseases. Thus far, the clinical results have been inconclusive and variable, in part because of the variety of cell isolation procedures and culture conditions used in each study. A new isolation technique that streamlines the method of concentration and demands less time and attention could provide clinical and economic advantages compared with current methodologies. In this study, we evaluated the concentrating capability of an integrated centrifuge-based technology compared with standard Ficoll isolation. MSCs were concentrated from bone marrow aspirate using the new device and the Ficoll method. The isolation capabilities of the device and the growth characteristics, secretome production, and differentiation capacity of the derived cells were determined. The new MSC isolation device concentrated the bone marrow in 90 seconds and resulted in a mononuclear cell yield 10-fold higher and with a twofold increase in cell retention compared with Ficoll. The cells isolated using the device were shown to exhibit similar morphology and functional activity as assessed by growth curves and secretome production compared to the Ficoll-isolated cells. The surface marker and trilineage differentiation profile of the device-isolated cells was consistent with the known profile of MSCs. The faster time to isolation and greater cell yield of the integrated centrifuge-based technology may make this an improved approach for MSC isolation from bone marrow aspirates. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Mycobacterium tuberculosis specific CD8(+ T cells rapidly decline with antituberculosis treatment.

    Directory of Open Access Journals (Sweden)

    Melissa R Nyendak

    Full Text Available Biomarkers associated with response to therapy in tuberculosis could have broad clinical utility. We postulated that the frequency of Mycobacterium tuberculosis (Mtb specific CD8(+ T cells, by virtue of detecting intracellular infection, could be a surrogate marker of response to therapy and would decrease during effective antituberculosis treatment.We sought to determine the relationship of Mtb specific CD4(+ T cells and CD8(+ T cells with duration of antituberculosis treatment.We performed a prospective cohort study, enrolling between June 2008 and August 2010, of HIV-uninfected Ugandan adults (n = 50 with acid-fast bacillus smear-positive, culture confirmed pulmonary TB at the onset of antituberculosis treatment and the Mtb specific CD4(+ and CD8(+ T cell responses to ESAT-6 and CFP-10 were measured by IFN-γ ELISPOT at enrollment, week 8 and 24.There was a significant difference in the Mtb specific CD8(+ T response, but not the CD4(+ T cell response, over 24 weeks of antituberculosis treatment (p<0.0001, with an early difference observed at 8 weeks of therapy (p = 0.023. At 24 weeks, the estimated Mtb specific CD8(+ T cell response decreased by 58%. In contrast, there was no significant difference in the Mtb specific CD4(+ T cell during the treatment. The Mtb specific CD4(+ T cell response, but not the CD8(+ response, was negatively impacted by the body mass index.Our data provide evidence that the Mtb specific CD8(+ T cell response declines with antituberculosis treatment and could be a surrogate marker of response to therapy. Additional research is needed to determine if the Mtb specific CD8(+ T cell response can detect early treatment failure, relapse, or to predict disease progression.

  7. Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS.

    Directory of Open Access Journals (Sweden)

    Sung Sun Yim

    Full Text Available Antibodies and their derivatives are the most important agents in therapeutics and diagnostics. Even after the significant progress in the technology for antibody screening from huge libraries, it takes a long time to isolate an antibody, which prevents a prompt action against the spread of a disease. Here, we report a new strategy for isolating desired antibodies from a combinatorial library in one day by repeated fluorescence-activated cell sorting (FACS. First, we constructed a library of synthetic human antibody in which single-chain variable fragment (scFv was expressed in the periplasm of Escherichia coli. After labeling the cells with fluorescent antigen probes, the highly fluorescent cells were sorted by using a high-speed cell sorter, and these cells were reused without regeneration in the next round of sorting. After repeating this sorting, the positive clones were completely enriched in several hours. Thus, we screened the library against three viral antigens, including the H1N1 influenza virus, Hepatitis B virus, and Foot-and-mouth disease virus. Finally, the potential antibody candidates, which show K(D values between 10 and 100 nM against the target antigens, could be successfully isolated even though the library was relatively small (∼ 10(6. These results show that repeated FACS screening without regeneration of the sorted cells can be a powerful method when a rapid response to a spreading disease is required.

  8. A Portable Cell Maintenance System for Rapid Toxicity Monitoring Final Report CRADA No. TC-02081-04

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhou, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    The Phase I STTR research project was targeted at meeting the objectives and requirements stated in STTR solicitation A04-T028 for a Portable Cell Maintenance System for Rapid Toxicity Monitoring. In accordance with the requirements for STTR programs, collaboration was formed between a small business, Kionix, Inc., and The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL). The collaboration included CytoDiscovery, Inc. (CDI) which, in collaboration with Kionix, provided access to membrane chip technology and provided program support and coordination. The objective of the overall program (excerpted from the original solicitation) was: “To develop a small, portable cell maintenance system for the transport, storage, and monitoring of viable vertebrate cells and tissues.” The goal of the Phase I project was to demonstrate the feasibility of achieving the program objectives utilizing a system comprised of a small-size, microfluidic chip-based cell maintenance cartridge (CMC) and a portable cell maintenance system (CMS) capable of housing a minimum of four CMCs. The system was designed to be capable of optimally maintaining multiple vertebrate cell types while supporting a wide variety of cellular assays.

  9. A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra

    International Nuclear Information System (INIS)

    Chen LiMei; Carpita, N.C.; Reiter, W.D.; Wilson, R.H.; Jeffries, C.; McCann, M.C.

    1998-01-01

    We have developed a rapid method to screen large numbers of mutant plants for a broad range of cell wall phenotypes using Fourier transform infrared (FTIR) microspectroscopy of leaves. We established and validated a model that can discriminate between the leaves of wild-type and a previously defined set of cell-wall mutants of Arabidopsis. Exploratory principal component analysis indicated that mutants deficient in different cell-wall sugars can be distinguished from each other. Discrimination of cell-wall mutants from wild-type was independent of variability in starch content or additional unrelated mutations that might be present in a heavily mutagenised population. We then developed an analysis of FTIR spectra of leaves obtained from over 1000 mutagenised flax plants, and selected 59 plants whose spectral variation from wild-type was significantly out of the range of a wild-type population, determined by Mahalanobis distance. Cell wall sugars from the leaves of selected putative mutants were assayed by gas chromatography-mass spectrometry and 42 showed significant differences in neutral sugar composition. The FTIR spectra indicated that six of the remaining 17 plants have altered ester or protein content. We conclude that linear discriminant analysis of FTIR spectra is a robust method to identify a broad range of structural and architectural alterations in cell walls, appearing as a consequence of developmental regulation, environmental adaptation or genetic modification. (author)

  10. Primary bovine skeletal muscle cells enters apoptosis rapidly via the intrinsic pathway when available oxygen is removed.

    Directory of Open Access Journals (Sweden)

    Sissel Beate Rønning

    Full Text Available Muscle cells undergo changes post-mortem during the process of converting muscle into meat, and this complex process is far from revealed. Recent reports have suggested programmed cell death (apoptosis to be important in the very early period of converting muscle into meat. The dynamic balance that occurs between anti-apoptotic members, such as Bcl-2, and pro-apoptotic members (Bid, Bim helps determine whether the cell initiates apoptosis. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to investigate if apoptosis is induced when oxygen is removed from the growth medium. Primary bovine muscle cells were differentiated to form myotubes, and anoxia was induced for 6h. The anoxic conditions significantly increased (P<0.05 the relative gene expression of anti- and pro-apoptotic markers (Aif, Bcl-2, Bid and Bim, and the PARK7 (P<0.05 and Grp75 (Hsp70 protein expressions were transiently increased. The anoxic conditions also led to a loss of mitochondrial membrane potential, which is an early apoptotic event, as well as cytochrome c release from the mitochondria. Finally, reorganization and degradation of cytoskeletal filaments occurred. These results suggest that muscle cells enters apoptosis via the intrinsic pathway rapidly when available oxygen in the muscle diminishes post-mortem.

  11. Paraffin oil as a "methane vector" for rapid and high cell density cultivation of Methylosinus trichosporium OB3b.

    Science.gov (United States)

    Han, Bing; Su, Tao; Wu, Hao; Gou, Zhongxuan; Xing, Xin-Hui; Jiang, Hao; Chen, Yin; Li, Xin; Murrell, J Colin

    2009-06-01

    Slow growth and relatively low cell densities of methanotrophs have limited their uses in industrial applications. In this study, a novel method for rapid cultivation of Methylosinus trichosporium OB3b was studied by adding a water-immiscible organic solvent in the medium. Paraffin oil was the most effective at enhancing cell growth and final cell density. This is at least partially due to the increase of methane gas transfer between gas and medium phases since methane solubility is higher in paraffin than in water/nitrate minimal salt medium. During cultivation with paraffin oil at 5% (v/v) in the medium, M. trichosporium OB3b cells also showed higher concentrations of the intermediary metabolites, such as formic acid and pyruvic acid, and consumed more methane compared with the control. Paraffin as methane vector to improve methanotroph growth was further studied in a 5-L fermentor at three concentrations (i.e., 2.5%, 5%, and 10%). Cell density reached about 14 g dry weight per liter with 5% paraffin, around seven times higher than that of the control (without paraffin). Cells cultivated with paraffin tended to accumulate around the interface between oil droplets and the water phase and could exist in oil phase in the case of 10% (v/v) paraffin. These results indicated that paraffin could enhance methanotroph growth, which is potentially useful in cultivation of methanotrophs in large scale in industry.

  12. Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells.

    Science.gov (United States)

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C

    2013-11-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  13. A rapid, efficient, and economic device and method for the isolation and purification of mouse islet cells.

    Directory of Open Access Journals (Sweden)

    Yin Zongyi

    Full Text Available Rapid, efficient, and economic method for the isolation and purification of islets has been pursued by numerous islet-related researchers. In this study, we compared the advantages and disadvantages of our developed patented method with those of commonly used conventional methods (Ficoll-400, 1077, and handpicking methods. Cell viability was assayed using Trypan blue, cell purity and yield were assayed using diphenylthiocarbazone, and islet function was assayed using acridine orange/ethidium bromide staining and enzyme-linked immunosorbent assay-glucose stimulation testing 4 days after cultivation. The results showed that our islet isolation and purification method required 12 ± 3 min, which was significantly shorter than the time required in Ficoll-400, 1077, and HPU groups (34 ± 3, 41 ± 4, and 30 ± 4 min, respectively; P 1000 islets. In summary, the MCT method is a rapid, efficient, and economic method for isolating and purifying murine islet cell clumps. This method overcomes some of the shortcomings of conventional methods, showing a relatively higher quality and yield of islets within a shorter duration at a lower cost. Therefore, the current method provides researchers with an alternative option for islet isolation and should be widely generalized.

  14. Rapid-mix studies on the anomalous radiosensitization of mammalian cells by 5-chloro-1-methyl-4-nitroimidazole

    International Nuclear Information System (INIS)

    Watts, M.E.; Hodgkiss, R.J.; Sehmi, D.S.; Woodcock, M.

    1980-01-01

    It has been suggested that the anomalously high radiosensitization shown by 5-chloro-1-methyl-4-nitroimidazole (CMNI) arises from dissociation of the CMNI radical-anion, yielding Cl - and an arylating free radical, and that the importance of this dehalogenation process could be investigated by irradiating hypoxic mammalian cells in vitro in the presence of CMNI, followed by the rapid addition of oxygen to prevent the dehalogenation process. 0.1 mmol dm -3 CMNI gave a sensitizer enhancement ratio (SER) of 1.7 when irradiated under steady-state conditions with 250 kVp X-rays (dose rate 3.93 Gymin -1 ) using V79 379A cells. Irradiation with 2.5 MeV electrons in the rapid-mix apparatus with 0.15 mmol dm -3 CMNI flowing through both tubes gave a slightly lower value, SER=1.5, in hypoxia. When air- or oxygen saturated 0.15 mmol dm -3 CMNI in Eagle's MEM were added to cells irradiated in hypoxic 0.15 mmol dm -3 CMNI solution 17 ms after irradiation, no change in SER was observed. Control experiments without CMNI also confirmed that the addition of oxygen at this time has no influence on radiosensitization. It was concluded that since a significant reduction in SER was not observed, the elimination of the ortho-substituted 'leaving group' is not responsible for the anomalously high radiosensitization efficiency. (U.K.)

  15. Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro

    NARCIS (Netherlands)

    Jones, CA; Fernandez, M; Herc, K; Bosnjak, L; Miranda-Saksena, M; Boadle, RA; Cunningham, A

    2003-01-01

    Dendritic cells (DC) are critical for stimulation of naive T cells. Little is known about the effect of herpes simplex virus type 2 (HSV-2) infection on DC structure or function or if the observed effects of HSV-1 on human DC are reproduced in murine DC. Here, we demonstrate that by 12 h

  16. Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by high-speed cell disruption.

    Science.gov (United States)

    Müller, F M; Werner, K E; Kasai, M; Francesconi, A; Chanock, S J; Walsh, T J

    1998-06-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolation of DNA from three medically important yeasts (Candida albicans, Cryptococcus neoformans, and Trichosporon beigelii) and two filamentous fungi (Aspergillus fumigatus and Fusarium solani). Additional extractions by HSCD were performed on Saccharomyces cerevisiae, Pseudallescheria boydii, and Rhizopus arrhizus. Two different inocula (10(8) and 10(7) CFU) were compared for optimization of obtained yields. The entire extraction procedure was performed on as many as 12 samples within 1 h compared to 6 h for PC extraction. In comparison to the PC procedure, HSCD DNA extraction demonstrated significantly greater yields for 10(8) CFU of C. albicans, T. beigelii, A. fumigatus, and F. solani (P extraction and PC extraction. For 10(7) CFU of T. beigelii, PC extraction resulted in a greater yield than did HSCD (P fungi than for yeasts by the HSCD extraction procedure (P extraction procedure, differences were not significant. For all eight organisms, the rapid extraction procedure resulted in good yield, integrity, and quality of DNA as demonstrated by restriction fragment length polymorphism, PCR, and random amplified polymorphic DNA. We conclude that mechanical disruption of fungal cells by HSCD is a safe, rapid, and efficient procedure for extracting genomic DNA from medically important yeasts and especially from filamentous fungi.

  17. Rapid changes in plasma membrane protein phosphorylation during initiation of cell wall digestion

    International Nuclear Information System (INIS)

    Blowers, D.P.; Boss, W.F.; Trewavas, A.J.

    1988-01-01

    Plasma membrane vesicles from wild carrot cells grown in suspension culture were isolated by aqueous two-phase partitioning, and ATP-dependent phosphorylation was measured with [γ- 32 P]ATP in the presence and absence of calcium. Treatment of the carrot cells with the cell wall digestion enzymes, driselase, in a sorbitol osmoticum for 1.5 min altered the protein phosphorylation pattern compared to that of cells treated with sorbitol alone. Driselase treatment resulted in decreased phosphorylation of a band of M r 80,000 which showed almost complete calcium dependence in the osmoticum treated cells; decreased phosphorylation of a band of M r 15,000 which showed little calcium activation, and appearance of a new band of calcium-dependent phosphorylation at M r 22,000. However, protein phosphorylation was decreased. Adding driselase to the in vitro reaction mixture caused a general decrease in the membrane protein phosphorylation either in the presence or absence of calcium which did not mimic the in vivo response. Cells labeled in vivo with inorganic 32 P also showed a response to the Driselase treatment. An enzymically active driselas preparation was required for the observed responses

  18. Fluorescent protein-tagged Vpr dissociates from HIV-1 core after viral fusion and rapidly enters the cell nucleus.

    Science.gov (United States)

    Desai, Tanay M; Marin, Mariana; Sood, Chetan; Shi, Jiong; Nawaz, Fatima; Aiken, Christopher; Melikyan, Gregory B

    2015-10-29

    HIV-1 Vpr is recruited into virions during assembly and appears to remain associated with the viral core after the reverse transcription and uncoating steps of entry. This feature has prompted the use of fluorescently labeled Vpr to visualize viral particles and to follow trafficking of post-fusion HIV-1 cores in the cytoplasm. Here, we tracked single pseudovirus entry and fusion and observed that fluorescently tagged Vpr gradually dissociates from post-fusion viral cores over the course of several minutes and accumulates in the nucleus. Kinetics measurements showed that fluorescent Vpr released from the cores very rapidly entered the cell nucleus. More than 10,000 Vpr molecules can be delivered into the cell nucleus within 45 min of infection by HIV-1 particles pseudotyped with the avian sarcoma and leukosis virus envelope glycoprotein. The fraction of Vpr from cell-bound viruses that accumulated in the nucleus was proportional to the extent of virus-cell fusion and was fully blocked by viral fusion inhibitors. Entry of virus-derived Vpr into the nucleus occurred independently of envelope glycoproteins or target cells. Fluorescence correlation spectroscopy revealed two forms of nuclear Vpr-monomers and very large complexes, likely involving host factors. The kinetics of viral Vpr entering the nucleus after fusion was not affected by point mutations in the capsid protein that alter the stability of the viral core. The independence of Vpr shedding of capsid stability and its relatively rapid dissociation from post-fusion cores suggest that this process may precede capsid uncoating, which appears to occur on a slower time scale. Our results thus demonstrate that a bulk of fluorescently labeled Vpr incorporated into HIV-1 particles is released shortly after fusion. Future studies will address the question whether the quick and efficient nuclear delivery of Vpr derived from incoming viruses can regulate subsequent steps of HIV-1 infection.

  19. Study of small-cell lung cancer cell-based sensor and its applications in chemotherapy effects rapid evaluation for anticancer drugs.

    Science.gov (United States)

    Guohua, Hui; Hongyang, Lu; Zhiming, Jiang; Danhua, Zhu; Haifang, Wan

    2017-11-15

    Small cell lung cancer (SCLC) is a smoking-related cancer disease. Despite improvement in clinical survival, SCLC outcome remains extremely poor. Cisplatin (DDP) is the first-line chemotherapy drug for SCLC, but the choice of second-line chemotherapy drugs is not clear. In this paper, a SCLC cell-based sensor was proposed, and its applications in chemotherapy effects rapid evaluation for anticancer drugs were investigated. SCLC cell lines lung adenocarcinoma cell (LTEP-P) and DDP-resistant lung adenocarcinoma cell (LTEP-P/DDP-1.0) are cultured on carbon screen-printed electrode (CSPE) to fabricate integrated cell-based sensor. Several chemotherapy anticancer drugs, including cisplatin, ifosmamide, gemcitabine, paclitaxel, docetaxel, vinorelbine, etoposide, camptothecin, and topotecan, are selected as experimental chemicals. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests are conducted to evaluate chemotherapy drug effects on LTEP-P and LTEP-P/DDP-1.0 cell lines. Electrical cell-substrate impedance sensing (ECIS) responses to anti-tumor chemicals are measured and processed by double-layered cascaded stochastic resonance (DCSR). Cisplatin solutions in different concentrations measurement results demonstrate that LTEP-P cell-based sensor presents quantitative analysis abilities for cisplatin and topotecan. Cisplatin and its mixtures can also be discriminated. Results demonstrate that LTEP-P cell-based sensor sensitively evaluates chemotherapy drugs' apoptosis function to SCLC cells. LTEP-P/DDP-1.0 cell-based sensor responses demonstrate that gemcitabine, vinorelbine, and camptothecin are ideal second-line drugs for clinical post-cisplatin therapy than other drugs according to MTT test results. This work provides a novel way for SCLC second-line clinical chemotherapy drug screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Generation of human induced pluripotent stem cells from a Bombay individual: Moving towards 'universal-donor' red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Seifinejad, Ali; Taei, Adeleh [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Totonchi, Mehdi; Vazirinasab, Hamed [Department of Genetics, Royan Institute for Reproductive Biomedicine, ACECR, Tehran (Iran, Islamic Republic of); Hassani, Seideh Nafiseh [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Aghdami, Nasser [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Department of Regenerative Biomedicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Shahbazi, Ebrahim [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Yazdi, Reza Salman [Department of Genetics, Royan Institute for Reproductive Biomedicine, ACECR, Tehran (Iran, Islamic Republic of); Salekdeh, Ghasem Hosseini, E-mail: Salekdeh@royaninstitute.org [Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj (Iran, Islamic Republic of); Baharvand, Hossein, E-mail: Baharvand@royaninstitute.org [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Department of Regenerative Biomedicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Department of Developmental Biology, University of Science and Culture, ACECR, Tehran (Iran, Islamic Republic of)

    2010-01-01

    Bombay phenotype is one of the rare phenotypes in the ABO blood group system that fails to express ABH antigens on red blood cells. Nonsense or missense mutations in fucosyltransfrase1 (FUT1) and fucosyltransfrase2 (FUT2) genes are known to create this phenotype. This blood group is compatible with all other blood groups as a donor, as it does not express the H antigen on the red blood cells. In this study, we describe the establishment of human induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of a Bombay blood-type individual by the ectopic expression of established transcription factors Klf4, Oct4, Sox2, and c-Myc. Sequence analyses of fibroblasts and iPSCs revealed a nonsense mutation 826C to T (276 Gln to Ter) in the FUT1 gene and a missense mutation 739G to A (247 Gly to Ser) in the FUT2 gene in the Bombay phenotype under study. The established iPSCs resemble human embryonic stem cells in morphology, passaging, surface and pluripotency markers, normal karyotype, gene expression, DNA methylation of critical pluripotency genes, and in-vitro differentiation. The directed differentiation of the iPSCs into hematopoietic lineage cells displayed increased expression of the hematopoietic lineage markers such as CD34, CD133, RUNX1, KDR, {alpha}-globulin, and {gamma}-globulin. Such specific stem cells provide an unprecedented opportunity to produce a universal blood group donor, in-vitro, thus enabling cellular replacement therapies, once the safety issue is resolved.

  1. A novel, rapid and automated conductometric method to evaluate surfactant-cells interactions by means of critical micellar concentration analysis.

    Science.gov (United States)

    Tiecco, Matteo; Corte, Laura; Roscini, Luca; Colabella, Claudia; Germani, Raimondo; Cardinali, Gianluigi

    2014-07-25

    Conductometry is widely used to determine critical micellar concentration and micellar aggregates surface properties of amphiphiles. Current conductivity experiments of surfactant solutions are typically carried out by manual pipetting, yielding some tens reading points within a couple of hours. In order to study the properties of surfactant-cells interactions, each amphiphile must be tested in different conditions against several types of cells. This calls for complex experimental designs making the application of current methods seriously time consuming, especially because long experiments risk to determine alterations of cells, independently of the surfactant action. In this paper we present a novel, accurate and rapid automated procedure to obtain conductometric curves with several hundreds reading points within tens of minutes. The method was validated with surfactant solutions alone and in combination with Saccharomyces cerevisiae cells. An easy-to use R script, calculates conductometric parameters and their statistical significance with a graphic interface to visualize data and results. The validations showed that indeed the procedure works in the same manner with surfactant alone or in combination with cells, yielding around 1000 reading points within 20 min and with high accuracy, as determined by the regression analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Human Adipose-Derived Stem Cells on Rapid Prototyped Three-Dimensional Hydroxyapatite/Beta-Tricalcium Phosphate Scaffold.

    Science.gov (United States)

    Canciani, Elena; Dellavia, Claudia; Ferreira, Lorena Maria; Giannasi, Chiara; Carmagnola, Daniela; Carrassi, Antonio; Brini, Anna Teresa

    2016-05-01

    In the study, we assess a rapid prototyped scaffold composed of 30/70 hydroxyapatite (HA) and beta-tricalcium-phosphate (β-TCP) loaded with human adipose-derived stem cells (hASCs) to determine cell proliferation, differentiation toward osteogenic lineage, adhesion and penetration on/into the scaffold.In this in vitro study, hASCs isolated from fat tissue discarded after plastic surgery were expanded, characterized, and then loaded onto the scaffold. Cells were tested for: viability assay (Alamar Blue at days 3, 7 and Live/Dead at day 32), differentiation index (alkaline phosphatase activity at day 14), scaffold adhesion (standard error of the mean analysis at days 5 and 18), and penetration (ground sections at day 32).All the hASC populations displayed stemness markers and the ability to differentiate toward adipogenic and osteogenic lineages.Cellular vitality increased between 3 and 7 days, and no inhibitory effect by HA/β-TCP was observed. Under osteogenic stimuli, scaffold increased alkaline phosphatase activity of +243% compared with undifferentiated samples. Human adipose-derived stem cells adhered on HA/β-TCP surface through citoplasmatic extensions that occupied the macropores and built networks among them. Human adipose derived stem cells were observed in the core of HA/β-TCP. The current combination of hASCs and HA/β-TCP scaffold provided encouraging results. If authors' data will be confirmed in preclinical models, the present engineering approach could represent an interesting tool in treating large bone defects.

  3. Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields.

    Directory of Open Access Journals (Sweden)

    Robart Babona-Pilipos

    Full Text Available BACKGROUND: The existence of neural stem and progenitor cells (together termed neural precursor cells in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. METHODS AND FINDINGS: With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. CONCLUSIONS: These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.

  4. Rapid and Sensitive Detection of Breast Cancer Cells in Patient Blood with Nuclease-Activated Probe Technology

    Directory of Open Access Journals (Sweden)

    Sven Kruspe

    2017-09-01

    Full Text Available A challenge for circulating tumor cell (CTC-based diagnostics is the development of simple and inexpensive methods that reliably detect the diverse cells that make up CTCs. CTC-derived nucleases are one category of proteins that could be exploited to meet this challenge. Advantages of nucleases as CTC biomarkers include: (1 their elevated expression in many cancer cells, including cells implicated in metastasis that have undergone epithelial-to-mesenchymal transition; and (2 their enzymatic activity, which can be exploited for signal amplification in detection methods. Here, we describe a diagnostic assay based on quenched fluorescent nucleic acid probes that detect breast cancer CTCs via their nuclease activity. This assay exhibited robust performance in distinguishing breast cancer patients from healthy controls, and it is rapid, inexpensive, and easy to implement in most clinical labs. Given its broad applicability, this technology has the potential to have a substantive impact on the diagnosis and treatment of many cancers. Keywords: cancer, circulating tumor cells, diagnostic nucleic acids, nucleases, diagnostic markers, breast cancer, liquid biopsy

  5. A portable cell-based optical detection device for rapid detection of Listeria and Bacillus toxins

    Science.gov (United States)

    Banerjee, Pratik; Banada, Padmapriya P.; Rickus, Jenna L.; Morgan, Mark T.; Bhunia, Arun K.

    2005-11-01

    A mammalian cell-based optical biosensor was built to detect pathogenic Listeria and Bacillus species. This sensor measures the ability of the pathogens to infect and induce cytotoxicity on hybrid lymphocyte cell line (Ped-2E9) resulting in the release of alkaline phosphatase (ALP) that can be detected optically using a portable spectrophotometer. The Ped-2E9 cells were encapsulated in collagen gel matrices and grown in 48-well plates or in specially designed filtration tube units. Toxin preparations or bacterial cells were introduced and ALP release was assayed after 3-5 h. Pathogenic L. monocytogenes strains or the listeriolysin toxins preparation showed cytotoxicity ranging from 55% - 92%. Toxin preparations (~20 μg/ml) from B. cereus strains showed 24 - 98% cytotoxicity. In contrast, a non-pathogenic L. innocua (F4247) and a B. substilis induced only 2% and 8% cytotoxicity, respectively. This cell-based detection device demonstrates its ability to detect the presence of pathogenic Listeria and Bacillus species and can potentially be used onsite for food safety or in biosecurity application.

  6. A Label Free Disposable Device for Rapid Isolation of Rare Tumor Cells from Blood by Ultrasounds

    Directory of Open Access Journals (Sweden)

    Itziar González

    2018-03-01

    Full Text Available The use of blood samples as liquid biopsy is a label-free method for cancer diagnosis that offers benefits over traditional invasive biopsy techniques. Cell sorting by acoustic waves offers a means to separate rare cells from blood samples based on their physical properties in a label-free, contactless and biocompatible manner. Herein, we describe a flow-through separation approach that provides an efficient separation of tumor cells (TCs from white blood cells (WBCs in a microfluidic device, “THINUS-Chip” (Thin-Ultrasonic-Separator-Chip, actuated by ultrasounds. We introduce for the first time the concept of plate acoustic waves (PAW applied to acoustophoresis as a new strategy. It lies in the geometrical chip design: different to other microseparators based on either bulk acoustic waves (BAW or surface waves (SAW, SSAW and tSAW, it allows the use of polymeric materials without restrictions in the frequency of work. We demonstrate its ability to perform high-throughput isolation of TCs from WBCs, allowing a recovery rate of 84% ± 8% of TCs with a purity higher than 80% and combined viability of 85% at a flow rate of 80 μL/min (4.8 mL/h. The THINUS-Chip performs cell fractionation with low-cost manufacturing processes, opening the door to possible easy printing fabrication.

  7. Diltiazem Reduces Mortality and Breakdown of ATP in Red Blood Cell Induced by Isoproterenol in a Freely Moving Rat Model in Vivo

    Directory of Open Access Journals (Sweden)

    Pollen K.F. Yeung

    2014-09-01

    Full Text Available The benefit of calcium channel blockers for cardiovascular prevention against heart attack and stroke has not been firmly supported. We investigated the possible cardiovascular protective effect of diltiazem (DTZ against injury induced by isoproterenol using a freely moving rat model in vivo. Sprague Dawley rats were injected subcutaneously (sc with either 5 or 10 mg/kg of DTZ, or saline as control, twice daily for five doses. One hour after the last injection, a single dose of isoproterenol (30 mg/kg was injected sc to each rat. Blood samples were collected serially for 6 h for measurement of adenine nucleotides (ATP, ADP and AMP in red blood cell (RBC by a validated HPLC. The study has shown isoproterenol induced 50% mortality and also increased RBC concentrations of AMP from 0.04 ± 0.02 to 0.29 ± 0.21 mM at the end of the experiment (p < 0.05. Treatment with 10 mg/kg of DTZ reduced mortality from 50% to <20% and attenuated the increase of RBC concentrations of AMP from +0.25 ± 0.22 in the control rats to +0.072 ± 0.092 mM (p < 0.05. The study concluded that 10 mg/kg of DTZ reduced mortality and breakdown of ATP induced by isoproterenol in rats.

  8. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning

    KAUST Repository

    Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan

    2016-01-01

    and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm2. This lens

  9. A rapid crosstalk of human gammadelta T cells and monocytes drives the acute inflammation in bacterial infections.

    Directory of Open Access Journals (Sweden)

    Matthias Eberl

    2009-02-01

    Full Text Available Vgamma9/Vdelta2 T cells are a minor subset of T cells in human blood and differ from other T cells by their immediate responsiveness to microbes. We previously demonstrated that the primary target for Vgamma9/Vdelta2 T cells is (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, an essential metabolite produced by a large range of pathogens. Here we wished to study the consequence of this unique responsiveness in microbial infection. The majority of peripheral Vgamma9/Vdelta2 T cells shares migration properties with circulating monocytes, which explains the presence of these two distinct blood cell types in the inflammatory infiltrate at sites of infection and suggests that they synergize in anti-microbial immune responses. Our present findings demonstrate a rapid and HMB-PP-dependent crosstalk between Vgamma9/Vdelta2 T cells and autologous monocytes that results in the immediate production of inflammatory mediators including the cytokines interleukin (IL-6, interferon (IFN-gamma, tumor necrosis factor (TNF-alpha, and oncostatin M (OSM; the chemokines CCL2, CXCL8, and CXCL10; and TNF-related apoptosis-inducing ligand (TRAIL. Moreover, under these co-culture conditions monocytes differentiate within 18 hours into inflammatory dendritic cells (DCs with antigen-presenting functions. Addition of further microbial stimuli (lipopolysaccharide, peptidoglycan induces CCR7 and enables these inflammatory DCs to trigger the generation of CD4(+ effector alphabeta T cells expressing IFN-gamma and/or IL-17. Importantly, our in vitro model replicates the responsiveness to microbes of effluent cells from peritoneal dialysis (PD patients and translates directly to episodes of acute PD-associated bacterial peritonitis, where Vgamma9/Vdelta2 T cell numbers and soluble inflammatory mediators are elevated in patients infected with HMB-PP-producing pathogens. Collectively, these findings suggest a direct link between invading pathogens, microbe

  10. Simultaneous point-of-care detection of anemia and sickle cell disease in Tanzania: the RAPID study.

    Science.gov (United States)

    Smart, Luke R; Ambrose, Emmanuela E; Raphael, Kevin C; Hokororo, Adolfine; Kamugisha, Erasmus; Tyburski, Erika A; Lam, Wilbur A; Ware, Russell E; McGann, Patrick T

    2018-02-01

    Both anemia and sickle cell disease (SCD) are highly prevalent across sub-Saharan Africa, and limited resources exist to diagnose these conditions quickly and accurately. The development of simple, inexpensive, and accurate point-of-care (POC) assays represents an important advance for global hematology, one that could facilitate timely and life-saving medical interventions. In this prospective study, Robust Assays for Point-of-care Identification of Disease (RAPID), we simultaneously evaluated a POC immunoassay (Sickle SCAN™) to diagnose SCD and a first-generation POC color-based assay to detect anemia. Performed at Bugando Medical Center in Mwanza, Tanzania, RAPID tested 752 participants (age 1 day to 20 years) in four busy clinical locations. With minimally trained medical staff, the SCD POC assay diagnosed SCD with 98.1% sensitivity and 91.1% specificity. The hemoglobin POC assay had 83.2% sensitivity and 74.5% specificity for detection of severe anemia (Hb ≤ 7 g/dL). Interobserver agreement was excellent for both POC assays (r = 0.95-0.96). Results for the hemoglobin POC assay have informed the second-generation assay design to be more suitable for low-resource settings. RAPID provides practical feasibility data regarding two novel POC assays for the diagnosis of anemia and SCD in real-world field evaluations and documents the utility and potential impact of these POC assays for sub-Saharan Africa.

  11. Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity

    Science.gov (United States)

    2016-03-07

    109 | e53555 | Page 1 of 8 Video Article Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of...www.jove.com/ video /53555 DOI: doi:10.3791/53555 Keywords: Environmental Sciences, Issue 109, Fish cells, impedance, sensors, biochip, water toxicity...sensitivity to cholinesterase-inhibiting pesticides . Applications for this toxicity detector are for rapid field-portable testing of drinking water

  12. Rapid and Sensitive Assessment of Globin Chains for Gene and Cell Therapy of Hemoglobinopathies

    NARCIS (Netherlands)

    Loucari, C.C. (Constantinos C.); Patsali, P. (Petros); T.B. van Dijk (Thamar); Stephanou, C. (Coralea); Papasavva, P. (Panayiota); Zanti, M. (Maria); Kurita, R. (Ryo); Nakamura, Y. (Yukio); S. Christou (Soteroula); Sitarou, M. (Maria); J.N.J. Philipsen (Sjaak); C.W. Lederer (Carsten); M. Kleanthous (Marina)

    2018-01-01

    textabstractThe β-hemoglobinopathies sickle cell anemia and β-thalassemia are the focus of many gene-therapy studies. A key disease parameter is the abundance of globin chains because it indicates the level of anemia, likely toxicity of excess or aberrant globins, and therapeutic potential of

  13. Tissue-resident adult stem cell populations of rapidly self-renewing organs

    NARCIS (Netherlands)

    Barker, N.; Bartfeld, S.; Clevers, H.

    2010-01-01

    The epithelial lining of the intestine, stomach, and skin is continuously exposed to environmental assault, imposing a requirement for regular self-renewal. Resident adult stem cell populations drive this renewal, and much effort has been invested in revealing their identity. Reliable adult stem

  14. Leptin rapidly activates PPARs in C2C12 muscle cells

    International Nuclear Information System (INIS)

    Bendinelli, Paola; Piccoletti, Roberta; Maroni, Paola

    2005-01-01

    Experimental evidence suggests that leptin operates on the tissues, including skeletal muscle, also by modulating gene expression. Using electrophoretic mobility shift assays, we have shown that physiological doses of leptin promptly increase the binding of C2C12 cell nuclear extracts to peroxisome proliferator-activated receptor (PPAR) response elements in oligonucleotide probes and that all three PPAR isoforms participate in DNA-binding complexes. We pre-treated C2C12 cells with AACOCF 3 , a specific inhibitor of cytosolic phospholipase A 2 (cPLA 2 ), an enzyme that supplies ligands to PPARs, and found that it abrogates leptin-induced PPAR DNA-binding activity. Leptin treatment significantly increased cPLA 2 activity, evaluated as the release of [ 3 H]arachidonic acid from pre-labelled C2C12 cells, as well as phosphorylation. Further, using MEK1 inhibitor PD-98059 we showed that leptin activates cPLA 2 through ERK induction. These results support a direct effect of leptin on skeletal muscle cells, and suggest that the hormone may modulate muscle transcription also by precocious activation of PPARs through ERK-cPLA 2 pathway

  15. Polymer based biosensor for rapid electrochemical detection of virus infection of human cells

    DEFF Research Database (Denmark)

    Kiilerich-Pedersen, Katrine; Poulsen, Claus R.; Jain, Titoo

    2011-01-01

    The demand in the field of medical diagnostics for simple, cost efficient and disposable devices is growing. Here, we present a label free, all-polymer electrochemical biosensor for detection of acute viral disease. The dynamics of a viral infection in human cell culture was investigated in a mic...

  16. Rapid diagnosis of primary ciliary dyskinesia: cell culture and soft computing analysis.

    Science.gov (United States)

    Pifferi, Massimo; Bush, Andrew; Montemurro, Francesca; Pioggia, Giovanni; Piras, Martina; Tartarisco, Gennaro; Di Cicco, Maria; Chinellato, Iolanda; Cangiotti, Angela M; Boner, Attilio L

    2013-04-01

    Diagnosis of primary ciliary dyskinesia (PCD) sometimes requires repeated nasal brushing to exclude secondary ciliary alterations. Our aim was to evaluate whether the use of a new method of nasal epithelial cell culture can speed PCD diagnosis in doubtful cases and to identify which are the most informative parameters by means of a multilayer artificial neural network (ANN). A cross-sectional study was performed in patients with suspected PCD. All patients underwent nasal brushing for ciliary motion analysis, ultrastructural assessment and evaluation of ciliary function after ciliogenesis in culture by ANN. 151 subjects were studied. A diagnostic suspension cell culture was obtained in 117 nasal brushings. A diagnosis of PCD was made in 36 subjects (29 of whom were children). In nine out of the 36 patients the diagnosis was made only after a second brushing, because of equivocal results of both tests at first examination. In each of these subjects diagnosis of PCD was confirmed by cell culture results. Cell culture in suspension evaluated by means of ANN allows the separation of PCD from secondary ciliary dyskinesia patients after only 5 days of culture and allows diagnosis to be reached in doubtful cases, thus avoiding the necessity of a second sample.

  17. Hypercytotoxicity and rapid loss of NKp44+ innate lymphoid cells during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Haiying Li

    2014-12-01

    Full Text Available HIV/SIV infections break down the integrity of the gastrointestinal mucosa and lead to chronic immune activation and associated disease progression. Innate lymphoid cells (ILCs, distinguishable by high expression of NKp44 and RORγt, play key roles in mucosal defense and homeostasis, but are depleted from gastrointestinal (GI tract large bowel during chronic SIV infection. However, less is known about the kinetics of ILC loss, or if it occurs systemically. In acute SIV infection, we found a massive, up to 8-fold, loss of NKp44+ILCs in all mucosae as early as day 6 post-infection, which was sustained through chronic disease. Interestingly, no loss of ILCs was observed in mucosa-draining lymph nodes. In contrast, classical NK cells were not depleted either from gut or draining lymph nodes. Both ILCs and NK cells exhibited significantly increased levels of apoptosis as measured by increased Annexin-V expression, but while classical NK cells also showed increased proliferation, ILCs did not. Interestingly, ILCs, which are normally noncytolytic, dramatically upregulated cytotoxic functions in acute and chronic infection and acquired a polyfunctional phenotype secreting IFN-γ, MIP1-β, and TNF-α, but decreased production of the prototypical cytokine, IL-17. Classical NK cells had less dramatic functional change, but upregulated perforin expression and increased cytotoxic potential. Finally, we show that numerical and functional loss of ILCs was due to increased apoptosis and ROR γt suppression induced by inflammatory cytokines in the gut milieu. Herein we demonstrate the first evidence for acute, systemic, and permanent loss of mucosal ILCs during SIV infection associated with reduction of IL-17. The massive reduction of ILCs involves apoptosis without compensatory de novo development/proliferation, but the full mechanism of depletion and the impact of functional change so early in infection remain unclear.

  18. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch.

    Science.gov (United States)

    Poulain, Adeline; Perret, Sylvie; Malenfant, Félix; Mullick, Alaka; Massie, Bernard; Durocher, Yves

    2017-08-10

    To rapidly produce large amounts of recombinant proteins, the generation of stable Chinese Hamster Ovary (CHO) cell pools represents a useful alternative to large-scale transient gene expression (TGE). We have developed a cell line (CHO BRI/rcTA ) allowing the inducible expression of recombinant proteins, based on the cumate gene switch. After the identification of optimal plasmid DNA topology (supercoiled vs linearized plasmid) for PEIpro™ mediated transfection and of optimal conditions for methionine sulfoximine (MSX) selection, we were able to generate CHO BRI/rcTA pools producing high levels of recombinant proteins. Volumetric productivities of up to 900mg/L were reproducibly achieved for a Fc fusion protein and up to 350mg/L for an antibody after 14days post-induction in non-optimized fed-batch cultures. In addition, we show that CHO pool volumetric productivities are not affected by a freeze-thaw cycle or following maintenance in culture for over one month in the presence of MSX. Finally, we demonstrate that volumetric protein production with the CR5 cumate-inducible promoter is three- to four-fold higher than with the human CMV or hybrid EF1α-HTLV constitutive promoters. These results suggest that the cumate-inducible CHO BRI/rcTA stable pool platform is a powerful and robust system for the rapid production of gram amounts of recombinant proteins. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology

    Science.gov (United States)

    Austin, Robert; Lee, Sanghyuk; Park, Sungsu

    We have developed a microfluidic device consisting of approximately 500 hexagonal micro-compartments which provides a complex ecology with wide ranges of drug and nutrient gradients and local populations. This ecology of a fragmented metapopulation induced the drug resistance in stage IV U87 glioblastoma cells to doxorubicin in seven days. Exome and transcriptome sequencing of the resistant cells identified mutations and differentially expressed genes. Gene ontology and pathway analyses of the genes identified showed that they were functionally relevant with the established mechanisms of doxorubicin action. Functional experiments support the in silico analyses and together demonstrate the effects of these genetic changes. Our findings suggest that given the rapid evolution of resistance and the focused response, this technology could act as a rapid screening modality for genetic aberrations leading to resistance to chemotherapy as well as counter-selection of drugs unlikely to be successful ultimately. Technology Innovation Program of the Ministry of Trade, Industry and Energy, Republic of Korea (10050154 to S.L. and S.P.), the National Research Foundation of Korea (NRF-2014M3C9A3065221 to S.L., NRF-2015K1A4A3047851 to J.K. and S.L.) funded by the Minis.

  20. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis☆

    Science.gov (United States)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2013-01-01

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K3) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ~12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. PMID:22575170

  1. An atypical cause of rapidly progressing breast lump with abscess formation: Pure squamous cell carcinoma of the breast.

    Science.gov (United States)

    Cilekar, Murat; Erkasap, Serdar; Oner, Ulku; Akici, Murat; Ciftci, Evrim; Dizen, Hayrettin; Turel, Serkan; Kavak, Ozgu I; Yilmaz, Sezgin

    2015-01-01

    Squamous cell carcinoma (SCC) is a rare type of breast malignancy and little is known about long-term outcome. In the present report, the clinical features, histopathologic findings and postoperative course of a patient with squamous cell carcinoma are described. We have treated a 47-years-old woman who admitted for right breast mass without any discharge, bleeding and pain. The tumor was, 3 × 2 × 1.5 cm in size with central abscess formation. The result of surgical biopsy revealed large cell keratinizing type of SCC. The metastatic work-up studies ruled out any other probable sources of primary tumor. The patient was performed modified radical mastectomy and axillary dissection and received two cycles of chemotherapy. Squamous cell carcinoma of the breast (SCCB) is a rare entity and should be considered in patients with rapidly progressing breast mass. It should also be considered in breast lesions with abscess formation. The initial therapeutic approach should be surgical excision after histopathological diagnosis.

  2. A system for applying rapid warming or cooling stimuli to cells during patch clamp recording or ion imaging.

    Science.gov (United States)

    Reid, G; Amuzescu, B; Zech, E; Flonta, M L

    2001-10-15

    We describe a system for superfusing small groups of cells at a precisely controlled and rapidly adjustable local temperature. Before being applied to the cell or cells under study, solutions are heated or cooled in a chamber of small volume ( approximately 150 microl) and large surface area, sandwiched between four small Peltier elements. The current through the Peltier elements is controlled by a microprocessor using a PID (proportional-integral-derivative) feedback algorithm. The chamber can be heated to at least 60 degrees C and cooled to 0 degrees C, changing its temperature at a maximum rate of about 7 degrees C per second; temperature ramps can be followed under feedback control at up to 4 degrees C per second. Temperature commands can be applied from the digital-to-analogue converter of any laboratory interface or generated digitally by the microprocessor. The peak-to-peak noise contributed by the system does not exceed that contributed by a patch pipette, holder and headstage, making it suitable for single channel as well as whole cell recordings.

  3. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi; Nishiyama, Masahiko

    2010-01-01

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor γ agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-β1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  4. High annealing temperature induced rapid grain coarsening for efficient perovskite solar cells.

    Science.gov (United States)

    Cao, Xiaobing; Zhi, Lili; Jia, Yi; Li, Yahui; Cui, Xian; Zhao, Ke; Ci, Lijie; Ding, Kongxian; Wei, Jinquan

    2018-08-15

    Thermal annealing plays multiple roles in fabricating high quality perovskite films. Generally, it might result in large perovskite grains by elevating annealing temperature, but might also lead to decomposition of perovskite. Here, we study the effects of annealing temperature on the coarsening of perovskite grains in a temperature range from 100 to 250 °C, and find that the coarsening rate of the perovskite grain increase significantly with the annealing temperature. Compared with the perovskite films annealed at 100 °C, high quality perovskite films with large columnar grains are obtained by annealing perovskite precursor films at 250 °C for only 10 s. As a result, the power conversion efficiency of best solar cell increased from 12.35% to 16.35% due to its low recombination rate and high efficient charge transportation in solar cells. Copyright © 2018. Published by Elsevier Inc.

  5. Rapid and Sensitive Assessment of Globin Chains for Gene and Cell Therapy of Hemoglobinopathies

    Science.gov (United States)

    Loucari, Constantinos C.; Patsali, Petros; van Dijk, Thamar B.; Stephanou, Coralea; Papasavva, Panayiota; Zanti, Maria; Kurita, Ryo; Nakamura, Yukio; Christou, Soteroulla; Sitarou, Maria; Philipsen, Sjaak; Lederer, Carsten W.; Kleanthous, Marina

    2018-01-01

    The β-hemoglobinopathies sickle cell anemia and β-thalassemia are the focus of many gene-therapy studies. A key disease parameter is the abundance of globin chains because it indicates the level of anemia, likely toxicity of excess or aberrant globins, and therapeutic potential of induced or exogenous β-like globins. Reversed-phase high-performance liquid chromatography (HPLC) allows versatile and inexpensive globin quantification, but commonly applied protocols suffer from long run times, high sample requirements, or inability to separate murine from human β-globin chains. The latter point is problematic for in vivo studies with gene-addition vectors in murine disease models and mouse/human chimeras. This study demonstrates HPLC-based measurements of globin expression (1) after differentiation of the commonly applied human umbilical cord blood–derived erythroid progenitor-2 cell line, (2) in erythroid progeny of CD34+ cells for the analysis of clustered regularly interspaced short palindromic repeats/Cas9-mediated disruption of the globin regulator BCL11A, and (3) of transgenic mice holding the human β-globin locus. At run times of 8 min for separation of murine and human β-globin chains as well as of human γ-globin chains, and with routine measurement of globin-chain ratios for 12 nL of blood (tested for down to 0.75 nL) or of 300,000 in vitro differentiated cells, the methods presented here and any variant-specific adaptations thereof will greatly facilitate evaluation of novel therapy applications for β-hemoglobinopathies. PMID:29325430

  6. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells

    Science.gov (United States)

    Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H.; Watkins, Scott E.; Kim, Dong-Yu; Vak, Doojin

    2016-01-01

    We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%. PMID:26853266

  7. Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Dana M. Cairns

    2016-09-01

    Full Text Available Limited availability of human neurons poses a significant barrier to progress in biological and preclinical studies of the human nervous system. Current stem cell-based approaches of neuron generation are still hindered by prolonged culture requirements, protocol complexity, and variability in neuronal differentiation. Here we establish stable human induced neural stem cell (hiNSC lines through the direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells. These hiNSCs can be passaged indefinitely and cryopreserved as colonies. Independently of media composition, hiNSCs robustly differentiate into TUJ1-positive neurons within 4 days, making them ideal for innervated co-cultures. In vivo, hiNSCs migrate, engraft, and contribute to both central and peripheral nervous systems. Lastly, we demonstrate utility of hiNSCs in a 3D human brain model. This method provides a valuable interdisciplinary tool that could be used to develop drug screening applications as well as patient-specific disease models related to disorders of innervation and the brain.

  8. Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity.

    Science.gov (United States)

    Kaya, Mine; Hajimirza, Shima

    2018-05-25

    This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.

  9. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells.

    Science.gov (United States)

    Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H; Watkins, Scott E; Kim, Dong-Yu; Vak, Doojin

    2016-02-08

    We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%.

  10. A system for the rapid detection of bacterial contamination in cell-based therapeutica

    Science.gov (United States)

    Bolwien, Carsten; Erhardt, Christian; Sulz, Gerd; Thielecke, Hagen; Johann, Robert; Pudlas, Marieke; Mertsching, Heike; Koch, Steffen

    2010-02-01

    Monitoring the sterility of cell or tissue cultures is of major concern, particularly in the fields of regenerative medicine and tissue engineering when implanting cells into the human body. Our sterility-control system is based on a Raman micro-spectrometer and is able to perform fast sterility testing on microliters of liquid samples. In conventional sterility control, samples are incubated for weeks to proliferate the contaminants to concentrations above the detection limit of conventional analysis. By contrast, our system filters particles from the liquid sample. The filter chip fabricated in microsystem technology comprises a silicon nitride membrane with millions of sub-micrometer holes to retain particles of critical sizes and is embedded in a microfluidic cell specially suited for concomitant microscopic observation. After filtration, identification is carried out on the single particle level: image processing detects possible contaminants and prepares them for Raman spectroscopic analysis. A custom-built Raman-spectrometer-attachment coupled to the commercial microscope uses 532nm or 785nm Raman excitation and records spectra up to 3400cm-1. In the final step, the recorded spectrum of a single particle is compared to an extensive library of GMP-relevant organisms, and classification is carried out based on a support vector machine.

  11. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Bihua; Luo, Xueshi; Li, Zhiwen [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Zhuang, Caiping [Department of Anesthesiology, Huizhou Central People' s Hospital, Huizhou 516001 (China); Li, Lihua, E-mail: tlihuali@jnu.edu.cn [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Lu, Lu; Ding, Shan; Tian, Jinhuan [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China)

    2016-11-01

    Collagen biomineralization is regulated by complicated interactions between the collagen matrix and non-collagenous extracellular proteins. Here, the use of sodium tripolyphosphate to simulate the templating functional motif of the C-terminal fragment of non-collagenous proteins is reported, and a low molecular weight polyacrylic acid served as a sequestration agent to stabilize amorphous calcium phosphate into nanoprecursors. Self-assembled collagen fibrils served as a fixed template for achieving rapid biomimetic mineralization in vitro. Results demonstrated that, during the mineralization process, intrafibrillar and extrafibrillar hydroxyapatite mineral with collagen fibrils formed and did so via bottom-up nanoparticle assembly based on the non-classical crystallization approach in the presence of these dual biomimetic functional analogues. In vitro human umbilical cord mesenchymal stem cell (hUCMSC) culture found that the mineralized scaffolds have a better cytocompatibility in terms of cell viability, adhesion, proliferation, and differentiation into osteoblasts. A rabbit femoral condyle defect model was established to confirm the ability of the n-HA/collagen scaffolds to facilitate bone regeneration and repair. The images of gross anatomy, MRI, CT and histomorphology taken 6 and 12 weeks after surgery showed that the biomimetic mineralized collagen scaffolds with hUCMSCs can promote the healing speed of bone defects in vivo, and both of the scaffolds groups performing better than the bone defect control group. As new bone tissue formed, the scaffolds degraded and were gradually absorbed. All these results demonstrated that both of the scaffolds and cells have better histocompatibility. - Highlights: • A rapid and facile biomimetic mineralization approach is proposed. • Intrafibrillar and extrafibrillar mineralization of collagen fibrils was achieved. • HA/COL scaffolds promote hUCMSCs adhesion, proliferation, and differentiation. • Feasibility of h

  12. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing

    International Nuclear Information System (INIS)

    Ye, Bihua; Luo, Xueshi; Li, Zhiwen; Zhuang, Caiping; Li, Lihua; Lu, Lu; Ding, Shan; Tian, Jinhuan; Zhou, Changren

    2016-01-01

    Collagen biomineralization is regulated by complicated interactions between the collagen matrix and non-collagenous extracellular proteins. Here, the use of sodium tripolyphosphate to simulate the templating functional motif of the C-terminal fragment of non-collagenous proteins is reported, and a low molecular weight polyacrylic acid served as a sequestration agent to stabilize amorphous calcium phosphate into nanoprecursors. Self-assembled collagen fibrils served as a fixed template for achieving rapid biomimetic mineralization in vitro. Results demonstrated that, during the mineralization process, intrafibrillar and extrafibrillar hydroxyapatite mineral with collagen fibrils formed and did so via bottom-up nanoparticle assembly based on the non-classical crystallization approach in the presence of these dual biomimetic functional analogues. In vitro human umbilical cord mesenchymal stem cell (hUCMSC) culture found that the mineralized scaffolds have a better cytocompatibility in terms of cell viability, adhesion, proliferation, and differentiation into osteoblasts. A rabbit femoral condyle defect model was established to confirm the ability of the n-HA/collagen scaffolds to facilitate bone regeneration and repair. The images of gross anatomy, MRI, CT and histomorphology taken 6 and 12 weeks after surgery showed that the biomimetic mineralized collagen scaffolds with hUCMSCs can promote the healing speed of bone defects in vivo, and both of the scaffolds groups performing better than the bone defect control group. As new bone tissue formed, the scaffolds degraded and were gradually absorbed. All these results demonstrated that both of the scaffolds and cells have better histocompatibility. - Highlights: • A rapid and facile biomimetic mineralization approach is proposed. • Intrafibrillar and extrafibrillar mineralization of collagen fibrils was achieved. • HA/COL scaffolds promote hUCMSCs adhesion, proliferation, and differentiation. • Feasibility of h

  13. Moving and Being Moved: Implications for Practice.

    Science.gov (United States)

    Kretchmar, R. Scott

    2000-01-01

    Uses philosophical writings, a novel about baseball, and a nonfiction work on rowing to analyze levels of meaning in physical activity, showing why three popular methods for enhancing meaning have not succeeded and may have moved some students away from deeper levels of meaning. The paper suggests that using hints taken from the three books could…

  14. Rapid green synthesis of ZnO nanoparticles using a hydroelectric cell without an electrolyte

    Science.gov (United States)

    Shah, Jyoti; Kumar Kotnala, Ravinder

    2017-09-01

    In this study, zinc oxide (ZnO) nanoparticles were synthesized using a novel environmentally friendly hydroelectric cell without an electrolyte or external current source. The hydroelectric cell comprised a nanoporous Li substituted magnesium ferrite pellet in contact with two electrodes, with zinc as the anode and silver as an inert cathode. The surface unsaturated cations and oxygen vacancies in the nanoporous ferrite dissociated water molecules into hydronium and hydroxide ions when the hydroelectric cell was dipped into deionized water. Hydroxide ions migrated toward the zinc electrode to form zinc hydroxide and the hydronium ions were evolved as H2 gas at the silver electrode. The zinc hydroxide collected as anode mud was converted into ZnO nanoparticles by heating at 250 °C. Structural analysis using Raman spectroscopy indicated the good crystallinity of the ZnO nanoparticles according to the presence of a high intensity E2-(high) mode. The nanoparticle size distribution was 5-20 nm according to high resolution transmission electron microscopy. An indirect band gap of 2.75 eV was determined based on the Tauc plot, which indicated the existence of an interstitial cation level in ZnO. Near band edge and blue emissions were detected in photoluminescence spectral studies. The blue emissions obtained from the ZnO nanoparticles could potentially have applications in blue lasers and LEDs. The ZnO nanoparticles synthesized using this method had a high dielectric constant value of 5 at a frequency of 1 MHz, which could be useful for fabricating nano-oscillators. This facile, clean, and cost-effective method obtained a significant yield of 0.017 g for ZnO nanoparticles without applying an external current source.

  15. Survival of plant tissue at super-low temperatures v. An electron microscope study of ice in cortical cells cooled rapidly.

    Science.gov (United States)

    Sakai, A; Otsuka, K

    1967-12-01

    Experiments were carried out with cortical cells in twig bark of mulberry trees in winter in order to clarify the mechanism of survival at super-low temperatures with rapid cooling and rewarming. Attention was given to the relation between the existence of intracellular ice crystals and survival.Cortical cells were cooled rapidly by direct immersion into liquid nitrogen or isopentane cooled at various temperatures. After immersion, they were freeze-substituted with absolute ethanol at -78 degrees . They were then embedded, sectioned and examined under the electron microscope for the presence and distribution of cavities left after ice removal.Cells were found to remain alive and contain no ice cavities when immersed rapidly into isopentane baths kept below -60 degrees . Those cells at intermediate temperatures from -20 degrees to -45 degrees , were almost all destroyed. It was also observed that many ice cavities were contained in the cells immersed rapidly into isopentane baths at -30 degrees . The data seem to indicate that no ice crystals were formed when cooled rapidly by direct immersion into isopentane baths below -60 degrees or into liquid nitrogen.The tissue sections immersed in liquid nitrogen were rapidly transferred to isopentane baths at temperatures ranging from -70 degrees to -10 degrees before rapid rewarming. There was little damage when samples were held at temperatures below -50 degrees for 10 minutes or below -60 degrees for 16 hours. No cavities were found in these cells. Above -45 degrees , and especially at -30 degrees , however, all cells were completely destroyed even when exposed only for 1 minute. Many ice cavities were observed throughout these cells. The results obtained may be explained in terms of the growth rate of intracellular ice crystals.

  16. Rapid prototyping of microbial cell factories via genome-scale engineering.

    Science.gov (United States)

    Si, Tong; Xiao, Han; Zhao, Huimin

    2015-11-15

    Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Rapid Prototyping of Microbial Cell Factories via Genome-scale Engineering

    Science.gov (United States)

    Si, Tong; Xiao, Han; Zhao, Huimin

    2014-01-01

    Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. PMID:25450192

  18. Rapid detection of defects in fuel-cell electrodes using infrared reactive-flow-through technique

    Science.gov (United States)

    Das, Prodip K.; Weber, Adam Z.; Bender, Guido; Manak, Austin; Bittinat, Daniel; Herring, Andrew M.; Ulsh, Michael

    2014-09-01

    As fuel cells become more prominent, new manufacturing and production methods will need to be developed to deal efficiently and effectively with increased demand. One necessary component of this industrial growth is the accurate measurement of the variability in the manufacturing process. In this study, we present a diagnostic system that combines infrared thermography with a reactive-flow-through technique to detect catalyst-loading defects in fuel-cell gas-diffusion electrodes accurately with high spatial and temporal resolutions. Experimental results are compared with model predictions of thermal response with good agreement. Data analysis, operating-condition impacts, and detection limits are explored using both experiments and simulation. Overall, the results demonstrate the potential of this technique to measure defects on the millimeter length scale with temporal resolutions appropriate for use on a web-line. Thus we present the first development stage of a next-generation non-destructive diagnostic tool, which may be amenable to eventual use on roll-to-roll manufacturing lines.

  19. A comparison of cryopreservation methods: Slow-cooling vs. rapid-cooling based on cell viability, oxidative stress, apoptosis, and CD34+ enumeration of human umbilical cord blood mononucleated cells

    Directory of Open Access Journals (Sweden)

    Sandra Ferry

    2011-09-01

    Full Text Available Abstract Background The finding of human umbilical cord blood as one of the most likely sources of hematopoietic stem cells offers a less invasive alternative for the need of hematopoietic stem cell transplantation. Due to the once-in-a-life time chance of collecting it, an optimum cryopreservation method that can preserve the life and function of the cells contained is critically needed. Methods Until now, slow-cooling has been the routine method of cryopreservation; however, rapid-cooling offers a simple, efficient, and harmless method for preserving the life and function of the desired cells. Therefore, this study was conducted to compare the effectiveness of slow- and rapid-cooling to preserve umbilical cord blood of mononucleated cells suspected of containing hematopoietic stem cells. The parameters used in this study were differences in cell viability, malondialdehyde content, and apoptosis level. The identification of hematopoietic stem cells themselves was carried out by enumerating CD34+ in a flow cytometer. Results Our results showed that mononucleated cell viability after rapid-cooling (91.9% was significantly higher than that after slow-cooling (75.5%, with a p value = 0.003. Interestingly, the malondialdehyde level in the mononucleated cell population after rapid-cooling (56.45 μM was also significantly higher than that after slow-cooling (33.25 μM, with a p value p value = 0.138. However, CD34+ enumeration was much higher in the population that underwent slow-cooling (23.32 cell/μl than in the one that underwent rapid-cooling (2.47 cell/μl, with a p value = 0.001. Conclusions Rapid-cooling is a potential cryopreservation method to be used to preserve the umbilical cord blood of mononucleated cells, although further optimization of the number of CD34+ cells after rapid-cooling is critically needed.

  20. Fluorescence excitation-emission matrix (EEM) spectroscopy for rapid identification and quality evaluation of cell culture media components.

    Science.gov (United States)

    Li, Boyan; Ryan, Paul W; Shanahan, Michael; Leister, Kirk J; Ryder, Alan G

    2011-11-01

    The application of fluorescence excitation-emission matrix (EEM) spectroscopy to the quantitative analysis of complex, aqueous solutions of cell culture media components was investigated. These components, yeastolate, phytone, recombinant human insulin, eRDF basal medium, and four different chemically defined (CD) media, are used for the formulation of basal and feed media employed in the production of recombinant proteins using a Chinese Hamster Ovary (CHO) cell based process. The comprehensive analysis (either identification or quality assessment) of these materials using chromatographic methods is time consuming and expensive and is not suitable for high-throughput quality control. The use of EEM in conjunction with multiway chemometric methods provided a rapid, nondestructive analytical method suitable for the screening of large numbers of samples. Here we used multiway robust principal component analysis (MROBPCA) in conjunction with n-way partial least squares discriminant analysis (NPLS-DA) to develop a robust routine for both the identification and quality evaluation of these important cell culture materials. These methods are applicable to a wide range of complex mixtures because they do not rely on any predetermined compositional or property information, thus making them potentially very useful for sample handling, tracking, and quality assessment in biopharmaceutical industries.

  1. Angiogenin activates phospholipase C and elicits a rapid incorporation of fatty acid into cholesterol esters in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Moore, F.; Riordan, J.F.

    1990-01-01

    Angiogenin activates the phosphoinositide-specific phospholipase C (PLC) in cultured rat aortic smooth muscle cells to yield a transient (30 s) peak of 1,2-diacylglycerol (DG) and inositol trisphosphate. Within 1 min, the DG level falls below that of the control and remains so for at least 20 min. A transient increase in monoacylglycerol indicates that depletion of DG may be the consequence of hydrolysis by DG lipase. In addition to these changes in second messengers, a rapid increase in incorporating of radiolabeled tracer into cellular cholesterol esters is observed. Stimulated cholesterol ester labeling is inhibited by preincubation with either the DG lipase inhibitor RHC 80267 or the acyl coenzyme A:cholesterol acyltransferase inhibitor Sandoz 58035. Cells prelabeled with [ 3 H]arachidonate show a sustained increase in labeling of cholesterol esters following exposure to angiogenin. In contrast, cells prelabeled with [ 3 H]oleate show only a transient elevation that returns to the basal level by 5 min. This suggests initial cholesterol esterification by oleate followed by arachidonate that is released by stimulation of the PLC/DG lipase pathway

  2. Radiosensitization of hypoxic bacterial cells by nitroimidazoles of low lipophilicity: steady-state and rapid-mix studies

    International Nuclear Information System (INIS)

    Anderson, R.F.; Patel, K.B.; Sehmi, D.S.

    1981-01-01

    Radiosensitization of hypoxic bacterial cells by five 2-nitroimidazoles, with similar reduction potentials to misonidazole but having lower lipophilicites, has been measured in Escherichia coli AB 1157 and Streptococcus lactis 712. Sensitization efficiency progressively decreased with decreasing lepophilicity in E. coli but not in S. lactis. This difference is discussed in terms of the differing membrane properties of the two bacteria; E. coli resembled a multicompartment model, as would also be expected with mammalian cells. Rapid-mix experiments are described which show that the radiosensitization observed after experiments are described which show that the radiosensitization observed after preirradiation contact times between ca. 3 and 30 msec is dependent on the lipophilicity of the sensitizer, higher lipophilicity resulting in a lower contact time being required for radiosensitization. This result and the observation that a highly lipophilic compound affects only half the full oxygen enhancement level after short contact times suggest that part of the sensitization process occurs in a lipophilic compartment of the cell

  3. Optical Aptamer Probes of Fluorescent Imaging to Rapid Monitoring of Circulating Tumor Cell

    Directory of Open Access Journals (Sweden)

    Ji Yeon Hwang

    2016-11-01

    Full Text Available Fluorescence detecting of exogenous EpCAM (epithelial cell adhesion molecule or muc1 (mucin1 expression correlated to cancer metastasis using nanoparticles provides pivotal information on CTC (circulating tumor cell occurrence in a noninvasive tool. In this study, we study a new skill to detect extracellular EpCAM/muc1 using quantum dot-based aptamer beacon (QD-EpCAM/muc1 ALB (aptamer linker beacon. The QD-EpCAM/muc1 ALB was designed using QDs (quantum dots and probe. The EpCAM/muc1-targeting aptamer contains a Ep-CAM/muc1 binding sequence and BHQ1 (black hole quencher 1 or BHQ2 (black hole quencher2. In the absence of target EpCAM/muc1, the QD-EpCAM/muc1 ALB forms a partial duplex loop-like aptamer beacon and remained in quenched state because the BHQ1/2 quenches the fluorescence signal-on of the QD-EpCAM/muc1 ALB. The binding of EpCAM/muc1 of CTC to the EpCAM/muc1 binding aptamer sequence of the EpCAM/muc1-targeting oligonucleotide triggered the dissociation of the BHQ1/2 quencher and subsequent signal-on of a green/red fluorescence signal. Furthermore, acute inflammation was stimulated by trigger such as caerulein in vivo, which resulted in increased fluorescent signal of the cy5.5-EpCAM/muc1 ALB during cancer metastasis due to exogenous expression of EpCAM/muc1 in Panc02-implanted mouse model.

  4. Cobalamin C Deficiency Shows a Rapidly Progressing Maculopathy With Severe Photoreceptor and Ganglion Cell Loss

    Science.gov (United States)

    Bonafede, Lucas; Ficicioglu, Can H.; Serrano, Leona; Han, Grace; Morgan, Jessica I. W.; Mills, Monte D.; Forbes, Brian J.; Davidson, Stefanie L.; Binenbaum, Gil; Kaplan, Paige B.; Nichols, Charles W.; Verloo, Patrick; Leroy, Bart P.; Maguire, Albert M.; Aleman, Tomas S.

    2015-01-01

    Purpose To describe in detail the retinal structure and function of a group of patients with cobalamin C (cblC) disease. Methods Patients (n = 11, age 4 months to 15 years) with cblC disease (9/11, early onset) diagnosed by newborn screening underwent complete ophthalmic examinations, fundus photography, near-infrared reflectance imaging, and spectral-domain optical coherence tomography (SD-OCT). Electroretinograms (ERGs) were performed in a subset of patients. Results Patients carried homozygous or compound heterozygote mutations in the methylmalonic aciduria and homocystinuria type C (MMACHC) gene. Late-onset patients had a normal exam. All early-onset patients showed a maculopathy; older subjects had a retina-wide degeneration (n = 4; >7 years of age). In general, retinal changes were first observed before 1 year of age and progressed within months to a well-established maculopathy. Pseudocolobomas were documented in three patients. Measurable visual acuities ranged from 20/200 to 20/540. Nystagmus was present in 8/11 patients; 5/6 patients had normal ERGs; 1/6 had reduced rod-mediated responses. Spectral-domain OCT showed macular thinning, with severe ganglion cell layer (GCL) and outer nuclear layer (ONL) loss. Inner retinal thickening was observed in areas of total GCL/ONL loss. A normal lamination pattern in the peripapillary nasal retina was often seen despite severe central and/or retina-wide disease. Conclusions Patients with early-onset cblC and MMACHC mutations showed an early-onset, unusually fast-progressing maculopathy with severe central ONL and GCL loss. An abnormally thickened inner retina supports a remodeling response to both photoreceptor and ganglion cell degeneration and/or an interference with normal development in early-onset cblC. PMID:26658511

  5. Neuronal injury external to the retina rapidly activates retinal glia, followed by elevation of markers for cell cycle re-entry and death in retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Alba Galan

    Full Text Available Retinal ganglion cells (RGCs are neurons that relay visual signals from the retina to the brain. The RGC cell bodies reside in the retina and their fibers form the optic nerve. Full transection (axotomy of the optic nerve is an extra-retinal injury model of RGC degeneration. Optic nerve transection permits time-kinetic studies of neurodegenerative mechanisms in neurons and resident glia of the retina, the early events of which are reported here. One day after injury, and before atrophy of RGC cell bodies was apparent, glia had increased levels of phospho-Akt, phospho-S6, and phospho-ERK1/2; however, these signals were not detected in injured RGCs. Three days after injury there were increased levels of phospho-Rb and cyclin A proteins detected in RGCs, whereas these signals were not detected in glia. DNA hyperploidy was also detected in RGCs, indicative of cell cycle re-entry by these post-mitotic neurons. These events culminated in RGC death, which is delayed by pharmacological inhibition of the MAPK/ERK pathway. Our data show that a remote injury to RGC axons rapidly conveys a signal that activates retinal glia, followed by RGC cell cycle re-entry, DNA hyperploidy, and neuronal death that is delayed by preventing glial MAPK/ERK activation. These results demonstrate that complex and variable neuro-glia interactions regulate healthy and injured states in the adult mammalian retina.

  6. A rapid-mix study on the effect of lipophilicity of nitroimidazoles on the radiosensitization of mammalian cells in vitro

    International Nuclear Information System (INIS)

    Watts, M.E.; Hodgkiss, R.J.; Jones, N.R.; Sehmi, D.S.; Woodcock, M.

    1983-01-01

    A liquid flow rapid-mixing apparatus has been used to study the role of lipophilicity (octanol: water partition coefficient, P) in the sensitization of hypoxic V79 cells by nitroimidazoles. Sensitization by seven neutral 2-nitroimidazoles of similar reduction potential but widely differing partition (0.11-77) and one basic 2-nitroimidazole (pKsub(a) = 8.9; p = 8.5 (of free base)) was studied as a function of pre-irradiated contact time ca. 3-40 ms. With increasing P, sensitization occurs at increasingly shorter pre-irradiated contact times. The results suggest that even though factors other than passive diffusion control the sensitization observed with the base Ro 03-8799 it is able to diffuse to the target site faster than misonidazole. (author)

  7. Moving Field Guides

    Science.gov (United States)

    Cassie Meador; Mark Twery; Meagan. Leatherbury

    2011-01-01

    The Moving Field Guides (MFG) project is a creative take on site interpretation. Moving Field Guides provide an example of how scientific and artistic endeavors work in parallel. Both begin with keen observations that produce information that must be analyzed, understood, and interpreted. That interpretation then needs to be communicated to others to complete the...

  8. People on the Move

    Science.gov (United States)

    Mohan, Audrey

    2018-01-01

    The purpose of this 2-3 day lesson is to introduce students in Grades 2-4 to the idea that people move around the world for a variety of reasons. In this activity, students explore why people move through class discussion, a guided reading, and interviews. The teacher elicits student ideas using the compelling question (Dimension 1 of the C3…

  9. Substance P induces rapid and transient membrane blebbing in U373MG cells in a p21-activated kinase-dependent manner.

    Directory of Open Access Journals (Sweden)

    John Meshki

    Full Text Available U373MG astrocytoma cells endogenously express the full-length neurokinin 1 receptor (NK1R. Substance P (SP, the natural ligand for NK1R, triggers rapid and transient membrane blebbing and we report that these morphological changes have different dynamics and intracellular signaling as compared to the changes that we have previously described in HEK293-NK1R cells. In both cell lines, the SP-induced morphological changes are Gq-independent, and they require the Rho, Rho-associated coiled-coil kinase (ROCK signaling pathway. Using confocal microscopy we have demonstrated that tubulin is phosphorylated subsequent to cell stimulation with SP and that tubulin accumulates inside the blebs. Colchicine, a tubulin polymerization inhibitor, blocked SP-induced blebbing in U373MG but not in HEK293-NK1R cells. Although p21-activated kinase (PAK is expressed in both cell lines, SP induced rapid phosphorylation of PAK in U373MG, but failed to phosphorylate PAK in HEK293-NK1R cells. The cell-permeable Rho inhibitor C3 transferase inhibited SP-induced PAK phosphorylation, but the ROCK inhibitor Y27632 had no effect on PAK phosphorylation, suggesting that Rho activates PAK in a ROCK-independent manner. Our study demonstrates that SP triggers rapid changes in cell morphology mediated by distinct intracellular signaling mechanisms in U373MG versus HEK293-NK1R cells.

  10. Rapid and specific purification of Argonaute-small RNA complexes from crude cell lysates.

    Science.gov (United States)

    Flores-Jasso, C Fabián; Salomon, William E; Zamore, Phillip D

    2013-02-01

    Small interfering RNAs (siRNAs) direct Argonaute proteins, the core components of the RNA-induced silencing complex (RISC), to cleave complementary target RNAs. Here, we describe a method to purify active RISC containing a single, unique small RNA guide sequence. We begin by capturing RISC using a complementary 2'-O-methyl oligonucleotide tethered to beads. Unlike other methods that capture RISC but do not allow its recovery, our strategy purifies active, soluble RISC in good yield. The method takes advantage of the finding that RISC partially paired to a target through its siRNA guide dissociates more than 300 times faster than a fully paired siRNA in RISC. We use this strategy to purify fly Ago1- and Ago2-RISC, as well as mouse AGO2-RISC. The method can discriminate among RISCs programmed with different guide strands, making it possible to deplete and recover specific RISC populations. Endogenous microRNA:Argonaute complexes can also be purified from cell lysates. Our method scales readily and takes less than a day to complete.

  11. Embodied affectivity: On moving and being moved

    Directory of Open Access Journals (Sweden)

    Thomas eFuchs

    2014-06-01

    Full Text Available There is a growing body of research indicating that bodily sensation and behaviour strongly influences one’s emotional reaction towards certain situations or objects. On this background, a framework model of embodied affectivity is suggested: we regard emotions as resulting from the circular interaction between affective qualities or affordances in the environment and the subject’s bodily resonance, be it in the form of sensations, postures, expressive movements or movement tendencies. Motion and emotion are thus intrinsically connected: one is moved by movement (perception; impression; affection and moved to move (action; expression; e-motion. Through its resonance, the body functions as a medium of emotional perception: it colours or charges self-experience and the environment with affective valences while it remains itself in the background of one’s own awareness. This model is then applied to emotional social understanding or interaffectivity which is regarded as an intertwinement of two cycles of embodied affectivity, thus continuously modifying each partner’s affective affordances and bodily resonance. We conclude with considerations of how embodied affectivity is altered in psychopathology and can be addressed in psychotherapy of the embodied self.

  12. Rapid Disease Progression With Delay in Treatment of Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Mohammed, Nasiruddin; Kestin, Larry Llyn; Grills, Inga Siiner; Battu, Madhu; Fitch, Dwight Lamar; Wong, Ching-yee Oliver; Margolis, Jeffrey Harold; Chmielewski, Gary William; Welsh, Robert James

    2011-01-01

    Purpose: To assess rate of disease progression from diagnosis to initiation of treatment for Stage I-IIIB non-small-cell lung cancer (NSCLC). Methods and Materials: Forty patients with NSCLC underwent at least two sets of computed tomography (CT) and 18-fluorodeoxyglucose positron emission tomography (PET) scans at various time intervals before treatment. Progression was defined as development of any new lymph node involvement, site of disease, or stage change. Results: Median time interval between first and second CT scans was 13.4 weeks, and between first and second PET scans was 9.0 weeks. Median initial primary maximum tumor dimension (MTD) was 3.5 cm (0.6-8.5 cm) with a median standardized uptake value (SUV) of 13.0 (1.7-38.5). The median MTD increased by a median of 1.0 cm (mean, 1.6 cm) between scans for a median relative MTD increase of 35% (mean, 59%). Nineteen patients (48%) progressed between scans. Rate of any progression was 13%, 31%, and 46% at 4, 8, and 16 weeks, respectively. Upstaging occurred in 3%, 13%, and 21% at these intervals. Distant metastasis became evident in 3%, 13%, and 13% after 4, 8, and 16 weeks, respectively. T and N stage were associated with progression, whereas histology, grade, sex, age, and maximum SUV were not. At 3 years, overall survival for Stage III patients with vs. without progression was 18% vs. 67%, p = 0.05. Conclusions: With NSCLC, treatment delay can lead to disease progression. Diagnosis, staging, and treatment initiation should be expedited. After 4-8 weeks of delay, complete restaging should be strongly considered.

  13. Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells

    Science.gov (United States)

    Hadi, Aseel; Alhabradi, Mansour; Chen, Qian; Liu, Hong; Guo, Wei; Curioni, Michele; Cernik, Robert; Liu, Zhu

    2018-01-01

    In this paper we demonstrate for the first time that a fibre laser with a wavelength of 1070 nm and a pulse width of milliseconds can be applied to generate mesoporous nanocrystalline (nc) TiO2 thin films on ITO coated glass in ambient atmosphere, by complete vaporisation of organic binder and inter-connection of TiO2 nanoparticles, without thermally damaging the ITO layer and the glass substrate. The fabrication of the mesoporous TiO2 thin films was achieved by stationary laser beam irradiation of 1 min. The dye sensitized solar cell (DSSC) with the laser-sintered TiO2 photoanode reached higher power conversion efficiency (PCE) of 3.20% for the TiO2 film thickness of 6 μm compared with 2.99% for the furnace-sintered. Electrochemical impedance spectroscopy studies revealed that the laser sintering under the optimised condition effectively decreased charge transfer resistance and increased electron lifetime of the TiO2 thin films. The use of the fibre laser with over 40% wall-plug efficiency offers an economically-feasible, industrial viable solution to the major challenge of rapid fabrication of large scale, mass production of mesoporous metal oxide thin film based solar energy systems, potentially for perovskite and monolithic tandem solar cells, in the future.

  14. Rapid Thermal Annealing and Hydrogen Passivation of Polycrystalline Silicon Thin-Film Solar Cells on Low-Temperature Glass

    Directory of Open Access Journals (Sweden)

    Mason L. Terry

    2007-01-01

    Full Text Available The changes in open-circuit voltage (Voc, short-circuit current density (Jsc, and internal quantum efficiency (IQE of aLuminum induced crystallization, ion-assisted deposition (ALICIA polycrystalline silicon thin-film solar cells on low-temperature glass substrates due to rapid thermal anneal (RTA treatment and subsequent remote microwave hydrogen plasma passivation (hydrogenation are examined. Voc improvements from 130 mV to 430 mV, Jsc improvements from 1.2 mA/cm2 to 11.3 mA/cm2, and peak IQE improvements from 16% to > 70% are achieved. A 1-second RTA plateau at 1000°C followed by hydrogenation increases the Jsc by a factor of 5.5. Secondary ion mass spectroscopy measurements are used to determine the concentration profiles of dopants, impurities, and hydrogen. Computer modeling based on simulations of the measured IQE data reveals that the minority carrier lifetime in the absorber region increases by 3 orders of magnitude to about 1 nanosecond (corresponding to a diffusion length of at least 1 μm due to RTA and subsequent hydrogenation. The evaluation of the changes in the quantum efficiency and Voc due to RTA and hydrogenation with computer modeling significantly improves the understanding of the limiting factors to cell performance.

  15. Battling malaria in rural Zambia with modern technology: a qualitative study on the value of cell phones, geographical information systems, asymptomatic carriers and rapid diagnostic tests to identify, treat and control malaria

    Directory of Open Access Journals (Sweden)

    David Nygren

    2014-02-01

    Full Text Available During the last decade much progress has been made in reducing malaria transmission in Macha, Southern Province, Zambia. Introduction of artemisinin combination therapies as well as mass screenings of asymptomatic carriers is believed to have contributed the most. When an endemic malaria situation is moving towards a non-endemic situation the resident population loses acquired immunity and therefore active case detection and efficient surveillance is crucial to prevent epidemic outbreaks. Our purpose was to evaluate the impact of cell phone surveillance and geographical information systems on malaria control in Macha. Furthermore, it evaluates what screening and treatment of asymptomatic carriers and implementation of rapid diagnostic tests in rural health care has led to. Ten in-depth semistructured interviews, field observations and data collection were performed at the Macha Research Trust and at surrounding rural health centers. This qualitative method was inspired by rapid assessment procedure. The cell phone surveillance has been easily integrated in health care, and its integration with Geographical Information Systems has provided the ability to follow malaria transmission on a weekly basis. In addition, active case detection of asymptomatic carriers has been fruitful, which is reflected in it soon being applied nationwide. Furthermore, rapid diagnostic tests have provided rural health centers with reliable malaria diagnostics, thereby decreasing excessive malaria treatments and selection for drug resistance. This report reflects the importance of asymptomatic carriers in targeting malaria elimination, as well as development of effective surveillance systems when transmission decreases. Such an approach would be cost-efficient in the long run through positive effects in reduced child mortality and relief in health care.

  16. Synthetic virus-like particles target dendritic cell lipid rafts for rapid endocytosis primarily but not exclusively by macropinocytosis.

    Directory of Open Access Journals (Sweden)

    Rajni Sharma

    Full Text Available DC employ several endocytic routes for processing antigens, driving forward adaptive immunity. Recent advances in synthetic biology have created small (20-30 nm virus-like particles based on lipopeptides containing a virus-derived coiled coil sequence coupled to synthetic B- and T-cell epitope mimetics. These self-assembling SVLP efficiently induce adaptive immunity without requirement for adjuvant. We hypothesized that the characteristics of DC interaction with SVLP would elaborate on the roles of cell membrane and intracellular compartments in the handling of a virus-like entity known for its efficacy as a vaccine. DC rapidly bind SVLP within min, co-localised with CTB and CD9, but not caveolin-1. In contrast, internalisation is a relatively slow process, delivering SVLP into the cell periphery where they are maintained for a number of hrs in association with microtubules. Although there is early association with clathrin, this is no longer seen after 10 min. Association with EEA-1(+ early endosomes is also early, but proteolytic processing appears slow, the SVLP-vesicles remaining peripheral. Association with transferrin occurs rarely, and only in the periphery, possibly signifying translocation of some SVLP for delivery to B-lymphocytes. Most SVLP co-localise with high molecular weight dextran. Uptake of both is impaired with mature DC, but there remains a residual uptake of SVLP. These results imply that DC use multiple endocytic routes for SVLP uptake, dominated by caveolin-independent, lipid raft-mediated macropinocytosis. With most SVLP-containing vesicles being retained in the periphery, not always interacting with early endosomes, this relates to slow proteolytic degradation and antigen retention by DC. The present characterization allows for a definition of how DC handle virus-like particles showing efficacious immunogenicity, elements valuable for novel vaccine design in the future.

  17. Synthetic Virus-Like Particles Target Dendritic Cell Lipid Rafts for Rapid Endocytosis Primarily but Not Exclusively by Macropinocytosis

    Science.gov (United States)

    Sharma, Rajni; Ghasparian, Arin; Robinson, John A.; McCullough, Kenneth C.

    2012-01-01

    DC employ several endocytic routes for processing antigens, driving forward adaptive immunity. Recent advances in synthetic biology have created small (20–30 nm) virus-like particles based on lipopeptides containing a virus-derived coiled coil sequence coupled to synthetic B- and T-cell epitope mimetics. These self-assembling SVLP efficiently induce adaptive immunity without requirement for adjuvant. We hypothesized that the characteristics of DC interaction with SVLP would elaborate on the roles of cell membrane and intracellular compartments in the handling of a virus-like entity known for its efficacy as a vaccine. DC rapidly bind SVLP within min, co-localised with CTB and CD9, but not caveolin-1. In contrast, internalisation is a relatively slow process, delivering SVLP into the cell periphery where they are maintained for a number of hrs in association with microtubules. Although there is early association with clathrin, this is no longer seen after 10 min. Association with EEA-1+ early endosomes is also early, but proteolytic processing appears slow, the SVLP-vesicles remaining peripheral. Association with transferrin occurs rarely, and only in the periphery, possibly signifying translocation of some SVLP for delivery to B-lymphocytes. Most SVLP co-localise with high molecular weight dextran. Uptake of both is impaired with mature DC, but there remains a residual uptake of SVLP. These results imply that DC use multiple endocytic routes for SVLP uptake, dominated by caveolin-independent, lipid raft-mediated macropinocytosis. With most SVLP-containing vesicles being retained in the periphery, not always interacting with early endosomes, this relates to slow proteolytic degradation and antigen retention by DC. The present characterization allows for a definition of how DC handle virus-like particles showing efficacious immunogenicity, elements valuable for novel vaccine design in the future. PMID:22905240

  18. Thymic irradiation inhibits the rapid recovery of TH1 but not TH2-like functions of CD4+ T cells after total lymphoid irradiation

    International Nuclear Information System (INIS)

    Bass, H.; Adkins, B.; Strober, S.

    1991-01-01

    Four to six weeks after total lymphoid irradiation (TLI), there is a selective deficit in the CD4+ T cells which secrete IL-2, proliferate in the MLR, and induce GVHD (Th1-like functions). A similar deficit in CD4+ T cells which secrete IL-4 and help antibody responses (Th2-like functions) is not observed. In the present study, shielding of the thymus with lead during TLI increased the Th1-like functions of CD4+ cells. Mice without thymus shields showed a marked selective reduction in the medullary stromal cells identified with the monoclonal antibody, MD1, and the severe reduction was prevented with thymus shields. Thus, shielding the thymus prevents the depletion of thymic medullary stromal cells and allows for a rapid recovery of Th1-like functions in the mouse spleen after TLI. Th2-like functions recover rapidly after TLI whether or not the thymus is irradiated

  19. PARALLEL MOVING MECHANICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberius Petrescu

    2014-09-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Moving mechanical systems parallel structures are solid, fast, and accurate. Between parallel systems it is to be noticed Stewart platforms, as the oldest systems, fast, solid and precise. The work outlines a few main elements of Stewart platforms. Begin with the geometry platform, kinematic elements of it, and presented then and a few items of dynamics. Dynamic primary element on it means the determination mechanism kinetic energy of the entire Stewart platforms. It is then in a record tail cinematic mobile by a method dot matrix of rotation. If a structural mottoelement consists of two moving elements which translates relative, drive train and especially dynamic it is more convenient to represent the mottoelement as a single moving components. We have thus seven moving parts (the six motoelements or feet to which is added mobile platform 7 and one fixed.

  20. The Moving image

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    Every day we are presented with bodily expressions in audiovisual media – by anchors, journalists and characters in films for instance. This article explores how body language in the moving image has been and can be approached in a scholarly manner.......Every day we are presented with bodily expressions in audiovisual media – by anchors, journalists and characters in films for instance. This article explores how body language in the moving image has been and can be approached in a scholarly manner....

  1. Rapid agonist-induced loss of sup 125 I-. beta. -endorphin opioid receptor sites in NG108-15, but not SK-N-SH neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cone, R.I.; Lameh, J.; Sadee, W. (Univ. of California, San Francisco (United States))

    1991-01-01

    The authors have measured {mu} and {delta} opioid receptor sites on intact SK-N-SH and NG108-15 neuroblastoma cells, respectively, in culture. Use of {sup 125}I-{beta}-endorphin ({beta}E) as a tracer, together with {beta}E(6-31) to block high-affinity non-opioid binding in both cell lines, permitted the measurement of cell surface {mu} and {delta} opioid receptor sites. Labeling was at {delta} sites in NG108-15 cells and predominantly at {mu} sites in SK-N-SH cells. Pretreatment with the {mu} and {delta} agonist, DADLE, caused a rapid loss of cell surface {delta} receptor sites in NG108-15 cells, but failed to reduce significantly {mu} receptor density in SK-N-SH cells.

  2. Rapid method for detecting base damage in DNA of mammalian cells: assay of U. V. -induced pyrimidine dimers in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, P E [Hammersmith Hospital, London (UK). M.R.C. Cyclotron Unit; Jansson, G; Ahnstroem, G

    1978-11-01

    Simple and rapid techniques are described for the detection of pyrimidine dimers in DNA. Human cells derived from embryonic lung tissue were UV-irradiated and subjected to either an osmotic shock procedure or detergent lysis, then treated with UV-endonuclease from Micrococcus luteus and the DNA partially denatured by treatment with weak alkali. Brief sonication reduced the molecular weight of the DNA, and the single- and double-stranded DNA could then be separated by hydroxylapatite chromatography. Approximately 40% of the expected number of pyrimidine dimers were detected by the enzyme treatment technique. The mean value of numbers of strand breaks per 10/sup 9/ dalton per J/m/sup 2/ was approximately 50% of the expected value. The method has advantages of speed and reproducibility and a large reduction in the quantities of materials used, particularly at the scintillation-counting stage.

  3. Female human pluripotent stem cells rapidly lose X chromosome inactivation marks and progress to a skewed methylation pattern during culture.

    Science.gov (United States)

    Geens, M; Seriola, A; Barbé, L; Santalo, J; Veiga, A; Dée, K; Van Haute, L; Sermon, K; Spits, C

    2016-04-01

    Does a preferential X chromosome inactivation (XCI) pattern exist in female human pluripotent stem cells (hPSCs) and does the pattern change during long-term culture or upon differentiation? We identified two independent phenomena that lead to aberrant XCI patterns in female hPSC: a rapid loss of histone H3 lysine 27 trimethylation (H3K27me3) and long non-coding X-inactive specific transcript (XIST) expression during culture, often accompanied by erosion of XCI-specific methylation, and a frequent loss of random XCI in the cultures. Variable XCI patterns have been reported in female hPSC, not only between different hPSC lines, but also between sub-passages of the same cell line, however the reasons for this variability remain unknown. Moreover, while non-random XCI-linked DNA methylation patterns have been previously reported, their origin and extent have not been investigated. We investigated the XCI patterns in 23 human pluripotent stem cell (hPSC) lines, during long-term culture and after differentiation, by gene expression analysis, histone modification assessment and study of DNA methylation. The presence and location of H3K27me3 was studied by immunofluorescence, XIST expression by real-time PCR, and mono- or bi-allelic expression of X-linked genes was studied by sequencing of cDNA. XCI-specific DNA methylation was analysed using methylation-sensitive restriction and PCR, and more in depth by massive parallel bisulphite sequencing. All hPSC lines showed XCI, but we found a rapid loss of XCI marks during the early stages of in vitro culture. While this loss of XCI marks was accompanied in several cases by an extensive erosion of XCI-specific methylation, it did not result in X chromosome reactivation. Moreover, lines without strong erosion of methylation frequently displayed non-random DNA methylation, which occurred independently from the loss of XCI marks. This bias in X chromosome DNA methylation did not appear as a passenger event driven by clonal culture

  4. A detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum.

    Science.gov (United States)

    Cheng, Mengzhu; Wang, Lihong; Yang, Qing; Huang, Xiaohua

    2018-08-30

    The pollution of rare earth elements (REEs) in ecosystem is becoming more and more serious, so it is urgent to establish methods for monitoring the pollution of REEs. Monitoring environmental pollution via the response of plants to pollutants has become the most stable and accurate method compared with traditional methods, but scientists still need to find the primary response of plants to pollutants to improve the sensitivity and speed of this method. Based on the facts that the initiation of endocytosis is the primary cellular response of the plant leaf cells to REEs and the detection of endocytosis is complex and expensive, we constructed a detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum [La(III), a representative of REEs] by designing a new immuno-electrochemical method for detecting the content change in extracellular vitronectin-like protein (VN) that are closely related to endocytosis. Results showed that when 30 μM La(III) initiated a small amount of endocytosis, the content of extracellular VN increased by 5.46 times, but the structure and function of plasma membrane were not interfered by La(III); when 80 μM La(III) strongly initiated a large amount of endocytosis, the content of extracellular VN increased by 119 times, meanwhile, the structure and function of plasma membrane were damaged. In summary, the detection method can reflect the response of plants to La(III) via detecting the content change in extracellular VN, which provides an effective and convenient way to monitor the response of plants to exogenous REEs. Copyright © 2018. Published by Elsevier Inc.

  5. Moving a House by Moved Participants

    DEFF Research Database (Denmark)

    Axel, Erik

    himself in controlling every detail of the shape of the concrete slaps. He pushed all the other participants of the meetings, asking for details, information, the change of drawings etc. He explained the technical issues he was pursuing, was prepared for problems at the meetings, was well informed, always......? The participant observer believed it was a matter of changing coordinates, but the engineers immediately saw it was an issue of pipes in the ground, could they be moved and still function as planned? To decide the possibility of this suggestion the engineer was given the task of investigating the consequences...... they saw him as a bit pushy. On the other hand they understood why he was so since his firm would be fined if the concrete slabs did not meet specifications. The case will be the basis for a discussion of double motivation of the engineer, his evident interest in his professional work, and the wish...

  6. Tc-99m red blood cells for the study of rapid hemolytic processes associated with heterologous blood transfusions

    International Nuclear Information System (INIS)

    Benedetto, A.R.; Harrison, C.R.; Blumhardt, R.; Trow, L.L.

    1984-01-01

    Chromium-51 labeled erythrocytes (Cr-51 RBC) are suitable for the study of hematologic disorders which involve relatively slow destruction of circulating erythrocytes, taking several days to several weeks. However, Cr-51 RBC are not suitable for investigating rapid hemolytic processes which occur within a matter of a few hours due to the variable and unpredictable elution of Cr-51 from the erythrocytes during the first 24 hours or so. Imaging, which could be useful in identifying organ systems involved in the hemolytic process, cannot be performed with Cr-51 RBC because of the high dose commitment caused by the low yield of gamma rays from Cr-51 (2). A method of labeling RBC with Tc-99m, which results in a radiopharmaceutical that combines the excellent dosimetric and imaging qualities of Tc-99m with an extremely stable bond between the Tc-99m and the RBC, is reported. The successful application of this technique in providing red cell support for a cancer patient with an unusual history of intravascular hemolytic transfusion reactions is also reported

  7. Development of a rapid thermal annealing process for polycrystalline silicon thin-film solar cells on glass

    Energy Technology Data Exchange (ETDEWEB)

    Rau, B. [Helmholtz Centre Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin (Germany)], E-mail: bjoern.rau@helmholtz-berlin.de; Weber, T.; Gorka, B.; Dogan, P.; Fenske, F.; Lee, K.Y.; Gall, S.; Rech, B. [Helmholtz Centre Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin (Germany)

    2009-03-15

    In this report, we discuss the influence of rapid thermal annealing (RTA) on the performance of polycrystalline Si (poly-Si) thin-film solar cells on glass where the poly-Si layers are differently prepared. The first part presents a comprehensive study of RTA treatments on poly-Si thin-films made by solid phase crystallization (SPC) (standard material of CSG Solar AG, Thalheim). By varying both plateau temperature (up to 1050 deg. C) and duration (up to 1000 s) of the annealing profile, we determined the parameters for a maximum open-circuit voltage (V{sub OC}). In addition, we applied our standard plasma hydrogenation treatment in order to passivate the remaining intra-grain defects and grain boundaries by atomic hydrogen resulting in a further increase of V{sub OC}. We found, that the preceding RTA treatment increases the effect of hydrogenation already at comparable low RTA temperatures. The effect on hydrogenation increases significantly with RTA temperature. In a second step we investigated the effect of the RTA and hydrogenation on large-grained poly-Si films based on the epitaxial thickening of poly-Si seed layers.

  8. Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection

    NARCIS (Netherlands)

    Hazenberg, Mette D.; Borleffs, J.C.C.; Otto, S.A.; Cohen Stuart, J.W.T. (James Willem Theodoor); Verschuren, M.C.M. (Martie); Boucher, C.A.B.; Coutinho, R.A.; Lange, Joep M.A.; Rinke de Wit, T.F. (Tobias); Tsegaye, A. (Aster); Dongen, J.J.M. (Jaques) van; Hamann, D. (Dörte); Boer, R.J. de; Miedema, F.

    2000-01-01

    Recent thymic emigrants can be identified by T cell receptor excision circles (TRECs) formed during T-cell receptor rearrangement. Decreasing numbers of TRECs have been observed with aging and in human immunodeficiency virus (HIV)-1 infected individuals, suggesting for thymic impairment. Here,

  9. MOVES regional level sensitivity analysis

    Science.gov (United States)

    2012-01-01

    The MOVES Regional Level Sensitivity Analysis was conducted to increase understanding of the operations of the MOVES Model in regional emissions analysis and to highlight the following: : the relative sensitivity of selected MOVES Model input paramet...

  10. Move of ground water

    International Nuclear Information System (INIS)

    Kimura, Shigehiko

    1983-01-01

    As a ground water flow which is difficult to explain by Darcy's theory, there is stagnant water in strata, which moves by pumping and leads to land subsidence. This is now a major problem in Japan. Such move on an extensive scale has been investigated in detail by means of 3 H such as from rainfall in addition to ordinary measurement. The move of ground water is divided broadly into that in an unsaturated stratum from ground surface to water-table and that in a saturated stratum below the water-table. The course of the analyses made so far by 3 H contained in water, and the future trend of its usage are described. A flow model of regarding water as plastic fluid and its flow as channel assembly may be available for some flow mechanism which is not possible to explain with Darcy's theory. (Mori, K.)

  11. Moving toroidal limiter

    International Nuclear Information System (INIS)

    Ikuta, Kazunari; Miyahara, Akira.

    1983-06-01

    The concept of the limiter-divertor proposed by Mirnov is extended to a toroidal limiter-divertor (which we call moving toroidal limiter) using the stream of ferromagnetic balls coated with a low Z materials such as plastics, graphite and ceramics. An important advantage of the use of the ferromagnetic materials would be possible soft landing of the balls on a catcher, provided that the temperature of the balls is below Curie point. Moreover, moving toroidal limiter would work as a protector of the first wall not only against the vertical movement of plasma ring but also against the violent inward motion driven by major disruption because the orbit of the ball in the case of moving toroidal limiter distributes over the small major radius side of the toroidal plasma. (author)

  12. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    International Nuclear Information System (INIS)

    Pham, Anh; Bortolazzo, Anthony; White, J. Brandon

    2012-01-01

    Highlights: ► Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. ► Quercetin forms a heterodimer through oxidation in media with serum. ► The quercetin heterodimer does not kill MDA-MB-231 cells. ► Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. ► Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin’s ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.

  13. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Anh; Bortolazzo, Anthony [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States); White, J. Brandon, E-mail: Brandon.White@sjsu.edu [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. Black-Right-Pointing-Pointer Quercetin forms a heterodimer through oxidation in media with serum. Black-Right-Pointing-Pointer The quercetin heterodimer does not kill MDA-MB-231 cells. Black-Right-Pointing-Pointer Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. Black-Right-Pointing-Pointer Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.

  14. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1982-01-01

    We have completed a design of the Prototype Moving-Ring Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma (Compact Toroids). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three burn stations. Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for 1/3 of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power

  15. Use of high throughput qPCR screening to rapidly clone low frequency tumour specific T-cells from peripheral blood for adoptive immunotherapy

    Directory of Open Access Journals (Sweden)

    Serrano Oscar K

    2008-10-01

    Full Text Available Abstract Background The adoptive transfer of autologous tumor reactive lymphocytes can mediate significant tumor regression in some patients with refractory metastatic cancer. However, a significant obstacle for this promising therapy has been the availability of highly efficient methods to rapidly isolate and expand a variety of potentially rare tumor reactive lymphocytes from the natural repertoire of cancer patients. Methods We developed a novel in vitro T cell cloning methodology using high throughput quantitative RT-PCR (qPCR assay as a rapid functional screen to detect and facilitate the limiting dilution cloning of a variety of low frequency T cells from bulk PBMC. In preclinical studies, this strategy was applied to the isolation and expansion of gp100 specific CD8+ T cell clones from the peripheral blood of melanoma patients. Results In optimization studies, the qPCR assay could detect the reactivity of 1 antigen specific T cell in 100,000 background cells. When applied to short term sensitized PBMC microcultures, this assay could detect T cell reactivity against a variety of known melanoma tumor epitopes. This screening was combined with early limiting dilution cloning to rapidly isolate gp100154–162 reactive CD8+ T cell clones. These clones were highly avid against peptide pulsed targets and melanoma tumor lines. They had an effector memory phenotype and showed significant proliferative capacity to reach cell numbers appropriate for adoptive transfer trials (~1010 cells. Conclusion This report describes a novel high efficiency strategy to clone tumor reactive T cells from peripheral blood for use in adoptive immunotherapy.

  16. Autonomous Landing on Moving Platforms

    KAUST Repository

    Mendoza Chavez, Gilberto

    2016-08-01

    This thesis investigates autonomous landing of a micro air vehicle (MAV) on a nonstationary ground platform. Unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs) are becoming every day more ubiquitous. Nonetheless, many applications still require specialized human pilots or supervisors. Current research is focusing on augmenting the scope of tasks that these vehicles are able to accomplish autonomously. Precise autonomous landing on moving platforms is essential for self-deployment and recovery of MAVs, but it remains a challenging task for both autonomous and piloted vehicles. Model Predictive Control (MPC) is a widely used and effective scheme to control constrained systems. One of its variants, output-feedback tube-based MPC, ensures robust stability for systems with bounded disturbances under system state reconstruction. This thesis proposes a MAV control strategy based on this variant of MPC to perform rapid and precise autonomous landing on moving targets whose nominal (uncommitted) trajectory and velocity are slowly varying. The proposed approach is demonstrated on an experimental setup.

  17. Moving to Jobs?

    OpenAIRE

    Dave Maré; Jason Timmins

    2003-01-01

    This paper examines whether New Zealand residents move from low-growth to high-growth regions, using New Zealand census data from the past three inter-censal periods (covering 1986-2001). We focus on the relationship between employment growth and migration flows to gauge the strength of the relationship and the stability of the relationship over the business cycle. We find that people move to areas of high employment growth, but that the probability of leaving a region is less strongly relate...

  18. Cultured bovine granulosa cells rapidly lose important features of their identity and functionality but partially recover under long-term culture conditions.

    Science.gov (United States)

    Yenuganti, Vengala Rao; Vanselow, Jens

    2017-05-01

    Cell culture models are essential for the detailed study of molecular processes. We analyze the dynamics of changes in a culture model of bovine granulosa cells. The cells were cultured for up to 8 days and analyzed for steroid production and gene expression. According to the expression of the marker genes CDH1, CDH2 and VIM, the cells maintained their mesenchymal character throughout the time of culture. In contrast, the levels of functionally important transcripts and of estradiol and progesterone production were rapidly down-regulated but showed a substantial up-regulation from day 4. FOXL2, a marker for granulosa cell identity, was also rapidly down-regulated after plating but completely recovered towards the end of culture. In contrast, expression of the Sertoli cell marker SOX9 and the lesion/inflammation marker PTGS2 increased during the first 2 days after plating but gradually decreased later on. We conclude that only long-term culture conditions (>4 days) allow the cells to recover from plating stress and to re-acquire characteristic granulosa cell features.

  19. Collagen gel contraction serves to rapidly distinguish epithelial- and mesenchymal-derived cells irrespective of alpha-smooth muscle actin expression

    DEFF Research Database (Denmark)

    Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, René

    2004-01-01

    Mesenchymal-like cells in the stroma of breast cancer may arise as a consequence of plasticity within the epithelial compartment, also referred to as epithelial-mesenchymal transition, or by recruitment of genuine mesenchymal cells from the peritumoral stroma. Cells of both the epithelial...... compartment and the stromal compartment express alpha smooth muscle actin (alpha-sm actin) as part of a myoepithelial or a myofibroblastic differentiation program, respectively. Moreover, because both epithelial- and mesenchymal-derived cells are nontumorigenic, other means of discrimination are warranted....... Here, we describe the contraction of hydrated collagen gels as a rapid functional assay for the distinction between epithelial- and mesenchymal-derived stromal-like cells irrespective of the status of alpha-sm actin expression. Three epithelial-derived cell lines and three genuine mesenchymal...

  20. Libraries on the MOVE.

    Science.gov (United States)

    Edgar, Jim; And Others

    1986-01-01

    Presents papers from Illinois State Library and Shawnee Library System's "Libraries on the MOVE" conference focusing on how libraries can impact economic/cultural climate of an area. Topics addressed included information services of rural libraries; marketing; rural library development; library law; information access; interagency…

  1. Sense of moving

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Grünbaum, Thor

    2017-01-01

    In this chapter, we assume the existence of a sense of “movement activity” that arises when a person actively moves a body part. This sense is usually supposed to be part of sense of agency (SoA). The purpose of the chapter is to determine whether the already existing experimental paradigms can...

  2. Indexing Moving Points

    DEFF Research Database (Denmark)

    Agarwal, Pankaj K.; Arge, Lars Allan; Erickson, Jeff

    2003-01-01

    We propose three indexing schemes for storing a set S of N points in the plane, each moving along a linear trajectory, so that any query of the following form can be answered quickly: Given a rectangle R and a real value t, report all K points of S that lie inside R at time t. We first present an...

  3. Moving up in industry.

    Science.gov (United States)

    Covell, Charlotte

    2016-01-23

    Charlotte Covell is commercial business manager at Virbac UK, a role that gives her responsibility for the company's sales to corporate practices, some buying groups and internet pharmacies. She began her career as a veterinary nurse, but moved into industry and now has a role in senior business management. British Veterinary Association.

  4. Optics of moving media

    Science.gov (United States)

    Piwnicki, P.; Leonhardt, U.

    2001-01-01

    Light experiences a moving medium as an effective gravitational field. In the limit of low medium velocities the medium flow plays the role of a magnetic vector potential. We review the background of our theory [U. Leonhardt and P. Piwnicki, Phys. Rev. A 60, 4301 (1999); Phys. Rev. Lett. 84, 822 (2000)], including our proposal of making optical black holes.

  5. Moving Another Big Desk.

    Science.gov (United States)

    Fawcett, Gay

    1996-01-01

    New ways of thinking about leadership require that leaders move their big desks and establish environments that encourage trust and open communication. Educational leaders must trust their colleagues to make wise choices. When teachers are treated democratically as leaders, classrooms will also become democratic learning organizations. (SM)

  6. Making Images That Move

    Science.gov (United States)

    Rennie, Richard

    2015-01-01

    The history of the moving image (the cinema) is well documented in books and on the Internet. This article offers a number of activities that can easily be carried out in a science class. They make use of the phenomenon of "Persistence of Vision." The activities presented herein demonstrate the functionality of the phenakistoscope, the…

  7. Aboard the "Moving School."

    Science.gov (United States)

    Ainscow, Mel; Hopkins, David

    1992-01-01

    In many countries, education legislation embodies contradictory pressures for centralization and decentralization. In the United Kingdom, there is growing government control over policy and direction of schools; schools are also being given more responsibility for resource management. "Moving" schools within Improving the Quality of…

  8. An insert-based enzymatic cell culture system to rapidly and reversibly induce hypoxia: investigations of hypoxia-induced cell damage, protein expression and phosphorylation in neuronal IMR-32 cells

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2013-11-01

    Ischemia-reperfusion injury and tissue hypoxia are of high clinical relevance because they are associated with various pathophysiological conditions such as myocardial infarction and stroke. Nevertheless, the underlying mechanisms causing cell damage are still not fully understood, which is at least partially due to the lack of cell culture systems for the induction of rapid and transient hypoxic conditions. The aim of the study was to establish a model that is suitable for the investigation of cellular and molecular effects associated with transient and long-term hypoxia and to gain insights into hypoxia-mediated mechanisms employing a neuronal culture system. A semipermeable membrane insert system in combination with the hypoxia-inducing enzymes glucose oxidase and catalase was employed to rapidly and reversibly generate hypoxic conditions in the culture medium. Hydrogen peroxide assays, glucose measurements and western blotting were performed to validate the system and to evaluate the effects of the generated hypoxia on neuronal IMR-32 cells. Using the insert-based two-enzyme model, hypoxic conditions were rapidly induced in the culture medium. Glucose concentrations gradually decreased, whereas levels of hydrogen peroxide were not altered. Moreover, a rapid and reversible (onoff generation of hypoxia could be performed by the addition and subsequent removal of the enzyme-containing inserts. Employing neuronal IMR-32 cells, we showed that 3 hours of hypoxia led to morphological signs of cellular damage and significantly increased levels of lactate dehydrogenase (a biochemical marker of cell damage. Hypoxic conditions also increased the amounts of cellular procaspase-3 and catalase as well as phosphorylation of the pro-survival kinase Akt, but not Erk1/2 or STAT5. In summary, we present a novel framework for investigating hypoxia-mediated mechanisms at the cellular level. We claim that the model, the first of its kind, enables researchers to rapidly and

  9. Large volume unresectable locally advanced non-small cell lung cancer: acute toxicity and initial outcome results with rapid arc

    Directory of Open Access Journals (Sweden)

    Fogliata Antonella

    2010-10-01

    Full Text Available Abstract Background To report acute toxicity, initial outcome results and planning therapeutic parameters in radiation treatment of advanced lung cancer (stage III with volumetric modulated arcs using RapidArc (RA. Methods Twenty-four consecutive patients were treated with RA. All showed locally advanced non-small cell lung cancer with stage IIIA-IIIB and with large volumes (GTV:299 ± 175 cm3, PTV:818 ± 206 cm3. Dose prescription was 66Gy in 33 fractions to mean PTV. Delivery was performed with two partial arcs with a 6 MV photon beam. Results From a dosimetric point of view, RA allowed us to respect most planning objectives on target volumes and organs at risk. In particular: for GTV D1% = 105.6 ± 1.7%, D99% = 96.7 ± 1.8%, D5%-D95% = 6.3 ± 1.4%; contra-lateral lung mean dose resulted in 13.7 ± 3.9Gy, for spinal cord D1% = 39.5 ± 4.0Gy, for heart V45Gy = 9.0 ± 7.0Gy, for esophagus D1% = 67.4 ± 2.2Gy. Delivery time was 133 ± 7s. At three months partial remission > 50% was observed in 56% of patients. Acute toxicities at 3 months showed 91% with grade 1 and 9% with grade 2 esophageal toxicity; 18% presented grade 1 and 9% with grade 2 pneumonia; no grade 3 acute toxicity was observed. The short follow-up does not allow assessment of local control and progression free survival. Conclusions RA proved to be a safe and advantageous treatment modality for NSCLC with large volumes. Long term observation of patients is needed to assess outcome and late toxicity.

  10. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis

    OpenAIRE

    K?mper, Sandra; Mardakheh, Faraz K; McCarthy, Afshan; Yeo, Maggie; Stamp, Gordon W; Paul, Angela; Worboys, Jonathan; Sadok, Amine; J?rgensen, Claus; Guichard, Sabrina; Marshall, Christopher J

    2016-01-01

    eLife digest Animal cells contain a structure called the cytoskeleton, which helps give the cells their shape. This structure can rapidly disassemble and reassemble, which enables cells to change their shape, move and divide into two. Many proteins are involved in controlling these processes. In particular, two proteins called ROCK1 and ROCK2 are known to be important for helping cancer cells move. However, investigations into the exact roles of these proteins have so far produced contradicto...

  11. Rapid Recovery of CD3+CD8+ T Cells on Day 90 Predicts Superior Survival after Unmanipulated Haploidentical Blood and Marrow Transplantation.

    Directory of Open Access Journals (Sweden)

    Deng-Mei Tian

    Full Text Available Rapid immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT is significantly associated with lower infection, relapse and possibly secondary malignancy rates. The aim of this study was to investigate the role of peripheral lymphocyte subsets, especially CD3+CD8+ cytotoxic T cell recovery, in predicting transplant outcomes, including the overall survival (OS and non-relapse mortality (NRM rates after unmanipulated haploidentical blood and marrow transplantation (HBMT.Peripheral blood samples were obtained from 214 HBMT recipients with hematological malignancies. The peripheral lymphocyte subsets (CD3+ T cells, CD3+CD4+ helper T cells, CD3+CD8+ cytotoxic T cells, and CD19+ B cells were analyzed by flow cytometry at days 30, 60, 90, 180, 270 and 360 after HBMT.The CD3+CD8+ cytotoxic T cell recovery at day 90 (CD3+CD8+-90 was correlated with bacterial infection (P = 0.001, NRM (P = 0.001, leukemia-free survival (LFS, P = 0.005, and OS (P = 0.001 at a cutoff value of 375 cells/μL CD3+CD8+ T cells. The incidence of bacterial infection in patients with the CD3+CD8+-90 at ≥375 cells/μL was significantly lower than that of cases with the CD3+CD8+-90 at <375 cells/μL after HBMT (14.6% versus 41.6%, P<0.001. Multivariate analysis showed the rapid recovery of CD3+CD8+ T cells at day 90 after HBMT was strongly associated with a lower incidence of NRM (HR = 0.30; 95% CI: 0.15-0.60; P = 0.000 and superior LFS (HR = 0.51; 95% CI: 0.32-0.82; P = 0.005 and OS (HR = 0.38; 95% CI: 0.23-0.63; P = 0.000.The results suggest that the rapid recovery of CD3+CD8+ cytotoxic T cells at day 90 following HBMT could predict superior transplant outcomes.

  12. Moving in Circles

    DEFF Research Database (Denmark)

    Simonsen, Gunvor

    2008-01-01

    The article examines the development of African diaspora history during the last fifty years. It outlines the move from a focus on African survivals to a focus on deep rooted cultural principles and back again to a revived interest in concrete cultural transfers from Africa to the Americas....... This circular movement can be explained by a combination of elements characterizing African Atlantic and black Atlantic history. Among them is a lack of attention to questions of periodisation and change. Likewise, it has proven difficult to conceptualize Africa and America at one and the same time...... as characterized by cultural diversity and variation. Moreover, the field has been haunted by a tendency of moving to easily from descriptive evidence to conclusions about African identity in the Americas. A promising way to overcome these problems, it is suggested, is to develop research that focuses on single...

  13. Electric moving shadow garden

    OpenAIRE

    Bracey, Andrew

    2010-01-01

    Electric Moving Shadow Garden is a multi-directional exploration of the links between artists and cinema, with multiple reference and contextual points. it accompanied the exhibition, UnSpooling: Artists & Cinema, curated by Bracey and Dave Griffiths at Corernhouse, Manchester, who also edited the publication. Published to accompany the Cornerhouse exhibition, UnSpooling: Artists & Cinema, curated by artists Andrew Bracey and Dave Griffiths. This illustrated catalogue explores how internat...

  14. TCR moves to MCR

    CERN Multimedia

    Peter Sollander, AB/OP/TI

    2005-01-01

    The monitoring of CERN's technical infrastructure has moved from the Technical Control Room in building 212 to the Meyrin Control Room (MCR) in building 354 (see map) and from the TS/CSE group to AB/OP. The operation's team as well as the services provided remain the same as before and you can still reach the operator on shift by calling 72201. Peter Sollander, AB/OP/TI

  15. CERN Pension Fund move

    CERN Multimedia

    HR Department

    2007-01-01

    The CERN Pension Fund has moved to new offices on the 5th floor of Building 5. The Benefits Service of the Fund is now located in Offices 5-5-017 - 5-5-021 - 5-5-023. We remind you that the office hours are: Tuesday/Wednesday/Thursday from 10 am to 12 am and from 3 pm to 5 pm. The Fund would like to take this opportunity to warmly thank all the persons involved in the relocation.

  16. Lecture - "Move! Eat better"

    CERN Multimedia

    2012-01-01

    As part of the "Move! Eat better" campaign, Novae’s nutrition adviser, Irène Rolfo, will give a talk on the subject of everyday good nutrition. This will be held in the main building auditorium at 12:30 on Thursday, 20 September 2012. Don’t miss this informative event. For more information, go to http://cern.ch/bpmm            

  17. The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions.

    Science.gov (United States)

    Smith, Eric E; Malik, Harmit S

    2009-05-01

    Apolipoprotein L1 (APOL1) is a human protein that confers immunity to Trypanosoma brucei infections but can be countered by a trypanosome-encoded antagonist SRA. APOL1 belongs to a family of programmed cell death genes whose proteins can initiate host apoptosis or autophagic death. We report here that all six members of the APOL gene family (APOL1-6) present in humans have rapidly evolved in simian primates. APOL6, furthermore, shows evidence of an adaptive sweep during recent human evolution. In each APOL gene tested, we found rapidly evolving codons in or adjacent to the SRA-interacting protein domain (SID), which is the domain of APOL1 that interacts with SRA. In APOL6, we also found a rapidly changing 13-amino-acid cluster in the membrane-addressing domain (MAD), which putatively functions as a pH sensor and regulator of cell death. We predict that APOL genes are antagonized by pathogens by at least two distinct mechanisms: SID antagonists, which include SRA, that interact with the SID of various APOL proteins, and MAD antagonists that interact with the MAD hinge base of APOL6. These antagonists either block or prematurely cause APOL-mediated programmed cell death of host cells to benefit the infecting pathogen. These putative interactions must occur inside host cells, in contrast to secreted APOL1 that trafficks to the trypanosome lysosome. Hence, the dynamic APOL gene family appears to be an important link between programmed cell death of host cells and immunity to pathogens.

  18. A moving experience !

    CERN Document Server

    2005-01-01

    The Transport Service pulled out all the stops and, more specifically, its fleet of moving and lifting equipment for the Discovery Monday on 6 June - a truly moving experience for all the visitors who took part ! Visitors could play at being machine operator, twiddling the controls of a lift truck fitted with a jib to lift a dummy magnet into a wooden mock-up of a beam-line.They had to show even greater dexterity for this game of lucky dip...CERN-style.Those with a head for heights took to the skies 20 m above ground in a telescopic boom lift.Children were allowed to climb up into the operator's cabin - this is one of the cranes used to move the LHC magnets around. Warm thanks to all members of the Transport Service for their participation, especially B. Goicoechea, T. Ilkei, R. Bihery, S. Prodon, S. Pelletier, Y. Bernard, A.  Sallot, B. Pigeard, S. Guinchard, B. Bulot, J. Berrez, Y. Grandjean, A. Bouakkaz, M. Bois, F. Stach, T. Mazzarino and S. Fumey.

  19. The use of fluorescence microscopy and image analysis for rapid detection of non-producing revertant cells of Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002.

    Science.gov (United States)

    Schulze, Katja; Lang, Imke; Enke, Heike; Grohme, Diana; Frohme, Marcus

    2015-04-17

    Ethanol production via genetically engineered cyanobacteria is a promising solution for the production of biofuels. Through the introduction of a pyruvate decarboxylase and alcohol dehydrogenase direct ethanol production becomes possible within the cells. However, during cultivation genetic instability can lead to mutations and thus loss of ethanol production. Cells then revert back to the wild type phenotype. A method for a rapid and simple detection of these non-producing revertant cells in an ethanol producing cell population is an important quality control measure in order to predict genetic stability and the longevity of a producing culture. Several comparable cultivation experiments revealed a difference in the pigmentation for non-producing and producing cells: the accessory pigment phycocyanin (PC) is reduced in case of the ethanol producer, resulting in a yellowish appearance of the culture. Microarray and western blot studies of Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002 confirmed this PC reduction on the level of RNA and protein. Based on these findings we developed a method for fluorescence microscopy in order to distinguish producing and non-producing cells with respect to their pigmentation phenotype. By applying a specific filter set the emitted fluorescence of a producer cell with a reduced PC content appeared orange. The emitted fluorescence of a non-producing cell with a wt pigmentation phenotype was detected in red, and dead cells in green. In an automated process multiple images of each sample were taken and analyzed with a plugin for the image analysis software ImageJ to identify dead (green), non-producing (red) and producing (orange) cells. The results of the presented validation experiments revealed a good identification with 98 % red cells in the wt sample and 90 % orange cells in the producer sample. The detected wt pigmentation phenotype (red cells) in the producer sample were either not fully induced yet (in 48 h induced

  20. Evidence from a mouse model that epithelial cell migration and mesenchymal-epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation.

    Science.gov (United States)

    Cousins, Fiona L; Murray, Alison; Esnal, Arantza; Gibson, Douglas A; Critchley, Hilary O D; Saunders, Philippa T K

    2014-01-01

    In women dynamic changes in uterine tissue architecture occur during each menstrual cycle. Menses, characterised by the shedding of the upper functional layer of the endometrium, is the culmination of a cascade of irreversible changes in tissue function including stromal decidualisation, inflammation and production of degradative enzymes. The molecular mechanisms that contribute to the rapid restoration of tissue homeostasis at time of menses are poorly understood. A modified mouse model of menses was developed to focus on the events occurring within the uterine lining during endometrial shedding/repair. Decidualisation, vaginal bleeding, tissue architecture and cell proliferation were evaluated at 4, 8, 12, and 24 hours after progesterone (P4) withdrawal; mice received a single injection of bromodeoxyuridine (BrdU) 90 mins before culling. Expression of genes implicated in the regulation of mesenchymal to epithelial transition (MET) was determined using a RT2 PCR profiler array, qRTPCR and bioinformatic analysis. Mice exhibited vaginal bleeding between 4 and 12 hours after P4 withdrawal, concomitant with detachment of the decidualised cell mass from the basal portion of the endometrial lining. Immunostaining for BrdU and pan cytokeratin revealed evidence of epithelial cell proliferation and migration. Cells that appeared to be in transition from a mesenchymal to an epithelial cell identity were identified within the stromal compartment. Analysis of mRNAs encoding genes expressed exclusively in the epithelial or stromal compartments, or implicated in MET, revealed dynamic changes in expression, consistent with a role for reprogramming of mesenchymal cells so that they could contribute to re-epithelialisation. These studies have provided novel insights into the cellular processes that contribute to re-epithelialisation post-menses implicating both epithelial cell migration and mesenchymal cell differentiation in restoration of an intact epithelial cell layer. These

  1. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning

    KAUST Repository

    Feizi, Alborz

    2016-09-24

    Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm2. This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP\\'s performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 105 to 1.4 × 106 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.

  2. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning.

    Science.gov (United States)

    Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan

    2016-11-01

    Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm 2 . This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP's performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 10 5 to 1.4 × 10 6 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.

  3. Rapid Preparation of a Plasma Membrane Fraction: Western Blot Detection of Translocated Glucose Transporter 4 from Plasma Membrane of Muscle and Adipose Cells and Tissues.

    Science.gov (United States)

    Yamamoto, Norio; Yamashita, Yoko; Yoshioka, Yasukiyo; Nishiumi, Shin; Ashida, Hitoshi

    2016-08-01

    Membrane proteins account for 70% to 80% of all pharmaceutical targets, indicating their clinical relevance and underscoring the importance of identifying differentially expressed membrane proteins that reflect distinct disease properties. The translocation of proteins from the bulk of the cytosol to the plasma membrane is a critical step in the transfer of information from membrane-embedded receptors or transporters to the cell interior. To understand how membrane proteins work, it is important to separate the membrane fraction of cells. This unit provides a protocol for rapidly obtaining plasma membrane fractions for western blot analysis. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  4. Flow cytometry as a rapid test for detection of penicillin resistance directly in bacterial cells in Enterococcus faecalis and Staphylococcus aureus.

    Science.gov (United States)

    Jarzembowski, T; Wiśniewska, K; Józwik, A; Bryl, E; Witkowski, J

    2008-08-01

    We studied the usefulness of flow cytometry for detection of penicillin resistance in E. faecalis and S. aureus by direct binding of commercially available fluorescent penicillin, Bocillin FL, to cells obtained from culture. There were significantly lower percentages of fluorescent cells and median and mean fluorescence values per particle in penicillin-resistant than in penicillin-sensitive strains of both species observed. The method allows rapid detection of penicillin resistance in S. aureus and E. faecalis. The results encourage further investigations on the detection of antibiotic resistance in bacteria using flow cytometry.

  5. Rehabilitation of the nose using CAD/CAM and rapid prototyping technology after ablative surgery of squamous cell carcinoma: a pilot clinical report.

    Science.gov (United States)

    Ciocca, Leonardo; De Crescenzio, Francesca; Fantini, Massimiliano; Scotti, Roberto

    2010-01-01

    Restoration of a nasal defect after ablative surgery for squamous cell carcinoma necessitates replacing the missing volume and anchoring a prosthesis to the patient's face. This report describes the failure of plastic reconstructive surgery after ablation of a squamous cell cancer of the nose and the esthetic and functional restoration of the patient with a nasal prosthesis. The process of making an implant-supported prosthesis using digital technology, including digitized anatomic models from a "nose library," and the rapid prototyping of the mesiostructure for bar anchorage and of the mold for silicone processing are presented.

  6. Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity.

    Science.gov (United States)

    Brennan, Linda M; Widder, Mark W; McAleer, Michael K; Mayo, Michael W; Greis, Alex P; van der Schalie, William H

    2016-03-07

    This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities.

  7. Measurement of Rapid Amiloride-Dependent pH Changes at the Cell Surface Using a Proton-Sensitive Field-Effect Transistor.

    Science.gov (United States)

    Schaffhauser, Daniel; Fine, Michael; Tabata, Miyuki; Goda, Tatsuro; Miyahara, Yuji

    2016-03-30

    We present a novel method for the rapid measurement of pH fluxes at close proximity to the surface of the plasma membrane in mammalian cells using an ion-sensitive field-effect transistor (ISFET). In conjuction with an efficient continuous superfusion system, the ISFET sensor was capable of recording rapid changes in pH at the cells' surface induced by intervals of ammonia loading and unloading, even when using highly buffered solutions. Furthermore, the system was able to isolate physiologically relevant signals by not only detecting the transients caused by ammonia loading and unloading, but display steady-state signals as would be expected by a proton transport-mediated influence on the extracellular proton-gradient. Proof of concept was demonstrated through the use of 5-(N-ethyl-N-isopropyl)amiloride (EIPA), a small molecule inhibitor of sodium/hydrogen exchangers (NHE). As the primary transporter responsible for proton balance during cellular regulation of pH, non-electrogenic NHE transport is notoriously difficult to detect with traditional methods. Using the NHE positive cell lines, Chinese hamster ovary (CHO) cells and NHE3-reconstituted mouse skin fibroblasts (MSF), the sensor exhibited a significant response to EIPA inhibition, whereas NHE-deficient MSF cells were unaffected by application of the inhibitor.

  8. Rapid Diminution in the Level and Activity of DNA-Dependent Protein Kinase in Cancer Cells by a Reactive Nitro-Benzoxadiazole Compound

    Directory of Open Access Journals (Sweden)

    Viviane A. O. Silva

    2016-05-01

    Full Text Available The expression and activity of DNA-dependent protein kinase (DNA-PK is related to DNA repair status in the response of cells to exogenous and endogenous factors. Recent studies indicate that Epidermal Growth Factor Receptor (EGFR is involved in modulating DNA-PK. It has been shown that a compound 4-nitro-7-[(1-oxidopyridin-2-ylsulfanyl]-2,1,3-benzoxadiazole (NSC, bearing a nitro-benzoxadiazole (NBD scaffold, enhances tyrosine phosphorylation of EGFR and triggers downstream signaling pathways. Here, we studied the behavior of DNA-PK and other DNA repair proteins in prostate cancer cells exposed to compound NSC. We showed that both the expression and activity of DNA-PKcs (catalytic subunit of DNA-PK rapidly decreased upon exposure of cells to the compound. The decline in DNA-PKcs was associated with enhanced protein ubiquitination, indicating the activation of cellular proteasome. However, pretreatment of cells with thioglycerol abolished the action of compound NSC and restored the level of DNA-PKcs. Moreover, the decreased level of DNA-PKcs was associated with the production of intracellular hydrogen peroxide by stable dimeric forms of Cu/Zn SOD1 induced by NSC. Our findings indicate that reactive oxygen species and electrophilic intermediates, generated and accumulated during the redox transformation of NBD compounds, are primarily responsible for the rapid modulation of DNA-PKcs functions in cancer cells.

  9. Characterisation of vaccine-induced, broadly cross-reactive IFN-γ secreting T cell responses that correlate with rapid protection against classical swine fever virus.

    Science.gov (United States)

    Graham, Simon P; Haines, Felicity J; Johns, Helen L; Sosan, Olubukola; La Rocca, S Anna; Lamp, Benjamin; Rümenapf, Till; Everett, Helen E; Crooke, Helen R

    2012-04-05

    Live attenuated C-strain classical swine fever viruses (CSFV) provide a rapid onset of protection, but the lack of a serological test that can differentiate vaccinated from infected animals limits their application in CSF outbreaks. Since immunity may precede antibody responses, we examined the kinetics and specificity of peripheral blood T cell responses from pigs vaccinated with a C-strain vaccine and challenged after five days with a genotypically divergent CSFV isolate. Vaccinated animals displayed virus-specific IFN-γ responses from day 3 post-challenge, whereas, unvaccinated challenge control animals failed to mount a detectable response. Both CD4(+) and cytotoxic CD8(+) T cells were identified as the cellular source of IFN-γ. IFN-γ responses showed extensive cross-reactivity when T cells were stimulated with CSFV isolates spanning the major genotypes. To determine the specificity of these responses, T cells were stimulated with recombinant CSFV proteins and a proteome-wide peptide library from a related virus, BVDV. Major cross-reactive peptides were mapped on the E2 and NS3 proteins. Finally, IFN-γ was shown to exert potent antiviral effects on CSFV in vitro. These data support the involvement of broadly cross-reactive T cell IFN-γ responses in the rapid protection conferred by the C-strain vaccine and this information should aid the development of the next generation of CSFV vaccines. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  10. CERN Pension Fund move

    CERN Multimedia

    HR Department

    2007-01-01

    The CERN Pension Fund has moved to new offices at the 5th floor of Building 5. The Benefits Service of the Fund will henceforth receive you in the offices: 5-5-017 - 5-5-021 - 5-5-023. We remind you that the office hours are: Tuesday/Wednesday/Thursday from 10 am to 12 am and from 3 pm to 5 pm. The Fund would like to take this opportunity to warmly thank all the persons involved in the Removal.

  11. Sex and estrous cycle-dependent rapid protein kinase signaling actions of estrogen in distal colonic cells.

    LENUS (Irish Health Repository)

    O'Mahony, Fiona

    2008-10-01

    Previous studies from our laboratory demonstrated that 17beta-estradiol (E2) rapidly inhibits Cl(-) secretion in rat and human distal colonic epithelium. The inhibition has been shown to occur via targeting of a basolateral K(+) channel identified as the KCNQ1 (KvLQT1) channel. E2 indirectly modulates the channel activity via a cascade of second messengers which are rapidly phosphorylated in response to E2. The anti-secretory mechanism may be the manner by which E2 induces fluid retention in the intestine during periods of high circulating plasma E2. Here we review the sex-dependent and estrous cycle regulation of this novel rapid response to E2. The inhibition of KCNQ1 channel activity and Cl(-) secretion will be of interest in the future in the investigation of the retentive effects of estrogen in female tissue and also in the study of secretory disorders and drugable targets of the intestine.

  12. Moving related to separation : who moves and to what distance

    NARCIS (Netherlands)

    Mulder, Clara H.; Malmberg, Gunnar

    We address the issue of moving from the joint home on the occasion of separation. Our research question is: To what extent can the occurrence of moves related to separation, and the distance moved, be explained by ties to the location, resources, and other factors influencing the likelihood of

  13. Ready, set, move!

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    This year, the CERN Medical Service is launching a new public health campaign. Advertised by the catchphrase “Move! & Eat Better”, the particular aim of the campaign is to encourage people at CERN to take more regular exercise, of whatever kind.   The CERN annual relay race is scheduled on 24 May this year. The CERN Medical Service will officially launch its “Move! & Eat Better” campaign at this popular sporting event. “We shall be on hand on the day of the race to strongly advocate regular physical activity,” explains Rachid Belkheir, one of the Medical Service doctors. "We really want to pitch our campaign and answer any questions people may have. Above all we want to set an example. So we are going to walk the same circuit as the runners to underline to people that they can easily incorporate movement into their daily routine.” An underlying concern has prompted this campaign: during their first few year...

  14. Slow light in moving media

    Science.gov (United States)

    Leonhardt, U.; Piwnicki, P.

    2001-06-01

    We review the theory of light propagation in moving media with extremely low group velocity. We intend to clarify the most elementary features of monochromatic slow light in a moving medium and, whenever possible, to give an instructive simplified picture.

  15. Rapid establishment of the European Bank for induced Pluripotent Stem Cells (EBiSC - the Hot Start experience

    Directory of Open Access Journals (Sweden)

    Paul A. De Sousa

    2017-04-01

    eTOC: The report focuses on the EBiSC experience of rapidly establishing an operational capacity to procure, bank and distribute a foundational collection of established hiPSC lines. It validates the feasibility and defines the challenges of harnessing and integrating the capability and productivity of centres across Europe using commonly available resources currently in the field.

  16. Recruitment of cells in the small intestine into rapid cell cycle by small doses of external γ or internal β-radiation

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Potten, C.S.

    1985-01-01

    Epithelial cell recruitment was examined in mouse ileum after external γ-irradiation (50 cGy) or internal β-irradiation (0.148 MBq/g of [ 3 H]thymidine), using the per cent-labelled-mitoses method and by analysing the distribution of mitotic cells in the crypts. In the presumptive stem cell zone at the lower cell positions of the crypt, the slowly cycling cells decreased their cell cycle 6 or 12 hours after a dose of 50 cGy. In the higher cell positions, a slight shortening of the cell cycle was also observed. After administration of a high dose of [ 3 H]thymidine, dormant (G 0 ) cells also entered the cell cycle in the lower cell positions. The results suggest that stem cells in the crypt may react to irradiation in two ways: first, by shortening the cell cycle in cycling cells; secondly, by an entry into the cell cycle by other dormant cells. There was destruction of some cycling stem cells before any recruitment. The data support the idea that the stem cell population in the crypt is heterogeneous. (author)

  17. Rapid and efficient CRISPR/Cas9 gene inactivation in human neurons during human pluripotent stem cell differentiation and direct reprogramming.

    Science.gov (United States)

    Rubio, Alicia; Luoni, Mirko; Giannelli, Serena G; Radice, Isabella; Iannielli, Angelo; Cancellieri, Cinzia; Di Berardino, Claudia; Regalia, Giulia; Lazzari, Giovanna; Menegon, Andrea; Taverna, Stefano; Broccoli, Vania

    2016-11-18

    The CRISPR/Cas9 system is a rapid and customizable tool for gene editing in mammalian cells. In particular, this approach has widely opened new opportunities for genetic studies in neurological disease. Human neurons can be differentiated in vitro from hPSC (human Pluripotent Stem Cells), hNPCs (human Neural Precursor Cells) or even directly reprogrammed from fibroblasts. Here, we described a new platform which enables, rapid and efficient CRISPR/Cas9-mediated genome targeting simultaneously with three different paradigms for in vitro generation of neurons. This system was employed to inactivate two genes associated with neurological disorder (TSC2 and KCNQ2) and achieved up to 85% efficiency of gene targeting in the differentiated cells. In particular, we devised a protocol that, combining the expression of the CRISPR components with neurogenic factors, generated functional human neurons highly enriched for the desired genome modification in only 5 weeks. This new approach is easy, fast and that does not require the generation of stable isogenic clones, practice that is time consuming and for some genes not feasible.

  18. Rapid point-of-care testing for epidermal growth factor receptor gene mutations in patients with lung cancer using cell-free DNA from cytology specimen supernatants.

    Science.gov (United States)

    Asaka, Shiho; Yoshizawa, Akihiko; Saito, Kazusa; Kobayashi, Yukihiro; Yamamoto, Hiroshi; Negishi, Tatsuya; Nakata, Rie; Matsuda, Kazuyuki; Yamaguchi, Akemi; Honda, Takayuki

    2018-06-01

    Epidermal growth factor receptor (EGFR) mutations are associated with responses to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small-cell lung cancer (NSCLC). Our previous study revealed a rapid point-of-care system for detecting EGFR mutations. This system analyzes cell pellets from cytology specimens using droplet-polymerase chain reaction (d-PCR), and has a reaction time of 10 min. The present study aimed to validate the performance of the EGFR d-PCR assay using cell-free DNA (cfDNA) from supernatants obtained from cytology specimens. Assay results from cfDNA supernatant analyses were compared with those from cell pellets for 90 patients who were clinically diagnosed with, or suspected of having, lung cancer (80 bronchial lavage fluid samples, nine pleural effusion samples and one spinal fluid sample). EGFR mutations were identified in 12 and 15 cases using cfDNA supernatants and cell pellets, respectively. The concordance rates between cfDNA-supernatant and cell‑pellet assay results were 96.7% [kappa coefficient (K)=0.87], 98.9% (K=0.94), 98.9% (K=0.79) and 98.9% (K=0.79) for total EGFR mutations, L858R, E746_A750del and T790M, respectively. All 15 patients with EGFR mutation-positive results, as determined by EGFR d-PCR assay using cfDNA supernatants or cell pellets, also displayed positive results by conventional EGFR assays using tumor tissue or cytology specimens. Notably, EGFR mutations were even detected in five cfDNA supernatants for which the cytological diagnoses of the corresponding cell pellets were 'suspicious for malignancy', 'atypical' or 'negative for malignancy.' In conclusion, this rapid point-of-care system may be considered a promising novel screening method that may enable patients with NSCLC to receive EGFR-TKI therapy more rapidly, whilst also reserving cell pellets for additional morphological and molecular analyses.

  19. "Our federalism" moves indoors.

    Science.gov (United States)

    Ruger, Theodore W

    2013-04-01

    A great deal of the US Supreme Court's federalism jurisprudence over the past two decades has focused on the outer limits of federal power, suggesting a mutually exclusive division of jurisdiction between the states and the federal government, where subjects are regulated by one sovereign or the other but not both. This is not an accurate picture of American governance as it has operated over the past half century - most important areas of American life are regulated concurrently by both the federal government and the states. The Supreme Court's June 2012 decision clearing the way for the Patient Protection and Affordable Care Act (PPACA) to move forward thus should not be regarded as an affront to state sovereignty but as a realistic embrace of state power in its active, modern form. The PPACA is infused with multiple major roles for the states, and as the statute goes into operation over the next few years, states retain, and are already exercising, substantial policy discretion.

  20. Moving Spatial Keyword Queries

    DEFF Research Database (Denmark)

    Wu, Dingming; Yiu, Man Lung; Jensen, Christian S.

    2013-01-01

    propose two algorithms for computing safe zones that guarantee correct results at any time and that aim to optimize the server-side computation as well as the communication between the server and the client. We exploit tight and conservative approximations of safe zones and aggressive computational space...... text data. State-of-the-art solutions for moving queries employ safe zones that guarantee the validity of reported results as long as the user remains within the safe zone associated with a result. However, existing safe-zone methods focus solely on spatial locations and ignore text relevancy. We...... pruning. We present techniques that aim to compute the next safe zone efficiently, and we present two types of conservative safe zones that aim to reduce the communication cost. Empirical studies with real data suggest that the proposals are efficient. To understand the effectiveness of the proposed safe...

  1. Move! Eat better: news

    CERN Multimedia

    2013-01-01

    Are you curious to know whether you’re doing enough daily exercise…? Test yourself with a pedometer!   Through the Move! Eat better campaign, launched in May 2012, the CERN medical service is aiming to improve the health of members of the personnel by encouraging them to prioritise physical activity in conjunction with a balanced diet. Various successful activities have already taken place: relay race/Nordic walk, Bike2work, Zumba and fitness workshops, two conferences (“Physical activity for health” and “Good nutrition every day”), events in the restaurants, as well as posters and a website. Although everyone has got the message from our various communications that physical activity is good for your health, there is still a relevant question being asked: “What is the minimum amount of exercise recommended?” 10,000 steps per day is the ideal figure, which has been demonstrated as beneficial by scientific studies ...

  2. What moves us?

    DEFF Research Database (Denmark)

    2015-01-01

    Katalog til udstillingen på Museum Jorn - What moves us? Le Corbusier & Asger Jorn - 12. sept. - 13. dec. 2015. Kataloget undersøger Le Corbusiers skifte fra en rationelt funderet tilgang til arkitekturen til en poetisk, materialistisk tilgang i efterkrigstiden. Den viser hans indflydelse på den...... yngre Asger Jorn og beskriver danskerens første beundring, som sidenhen forvandledes til skarp kritik. Kataloget, som er rigt illustreret med billeder af Le Corbusiers og Asger Jorns kunst og arkitektur, indeholder også genoptryk af originale tekster, samt bidrag i ord og billeder fra fremtrædende...... eksperter. Kataloget indeholder en række artikler af internationale skribenter under flg. overskrifter: Le Corbusier - kunstnerarkitekten i efterkrigstidens Europa Le Corbusier og Asger Jorn - David mod Goliat Gensyn med Le Corbusier - spor i dansk arkitektur og byrum...

  3. Mechanics of moving materials

    CERN Document Server

    Banichuk, Nikolay; Neittaanmäki, Pekka; Saksa, Tytti; Tuovinen, Tero

    2014-01-01

    This book deals with theoretical aspects of modelling the mechanical behaviour of manufacturing, processing, transportation or other systems in which the processed or supporting material is travelling through the system. Examples of such applications include paper making, transmission cables, band saws, printing presses, manufacturing of plastic films and sheets, and extrusion of aluminium foil, textiles and other materials.   The work focuses on out-of-plane dynamics and stability analysis for isotropic and orthotropic travelling elastic and viscoelastic materials, with and without fluid-structure interaction, using analytical and semi-analytical approaches.  Also topics such as fracturing and fatigue are discussed in the context of moving materials. The last part of the book deals with optimization problems involving physical constraints arising from the stability and fatigue analyses, including uncertainties in the parameters.   The book is intended for researchers and specialists in the field, providin...

  4. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35.

    Science.gov (United States)

    Zhao, Menglin; Wang, Jiaxian; Luo, Manyu; Luo, Han; Zhao, Meiqi; Han, Lei; Zhang, Mengxiao; Yang, Hui; Xie, Yueqing; Jiang, Hua; Feng, Lei; Lu, Huili; Zhu, Jianwei

    2018-07-01

    Chinese hamster ovary (CHO) cells are the most widely used mammalian hosts for recombinant protein production. However, by conventional random integration strategy, development of a high-expressing and stable recombinant CHO cell line has always been a difficult task due to the heterogenic insertion and its caused requirement of multiple rounds of selection. Site-specific integration of transgenes into CHO hot spots is an ideal strategy to overcome these challenges since it can generate isogenic cell lines with consistent productivity and stability. In this study, we investigated three sites with potential high transcriptional activities: C12orf35, HPRT, and GRIK1, to determine the possible transcriptional hot spots in CHO cells, and further construct a reliable site-specific integration strategy to develop recombinant cell lines efficiently. Genes encoding representative proteins mCherry and anti-PD1 monoclonal antibody were targeted into these three loci respectively through CRISPR/Cas9 technology. Stable cell lines were generated successfully after a single round of selection. In comparison with a random integration control, all the targeted integration cell lines showed higher productivity, among which C12orf35 locus was the most advantageous in both productivity and cell line stability. Binding affinity and N-glycan analysis of the antibody revealed that all batches of product were of similar quality independent on integrated sites. Deep sequencing demonstrated that there was low level of off-target mutations caused by CRISPR/Cas9, but none of them contributed to the development process of transgene cell lines. Our results demonstrated the feasibility of C12orf35 as the target site for exogenous gene integration, and strongly suggested that C12orf35 targeted integration mediated by CRISPR/Cas9 is a reliable strategy for the rapid development of recombinant CHO cell lines.

  5. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    International Nuclear Information System (INIS)

    Semaan, Sheila J; Nickells, Robert W

    2010-01-01

    Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116 BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. HCT116 BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of BAX aggregation at sub-saturation levels suggests that the

  6. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    Directory of Open Access Journals (Sweden)

    Semaan Sheila J

    2010-10-01

    Full Text Available Abstract Background Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Methods Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. Results HCT116BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Conclusion Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of

  7. A simple and rapid micromethod for genomic DNA extraction from jugal epithelial cells. Application to human lymphocyte antigen typing in one large family of atopic/asthmatic probands.

    Science.gov (United States)

    Aron, Y; Swierczewski, E; Lockhart, A

    1994-10-01

    We describe a rapid and reliable micromethod for DNA isolation from buccal epithelial cells from the interior mouth mucosa. This convenient, noninvasive method could be applied to genetic typing in a small number of cells (about 2000 cells per cheek). We have shown that DNA released by this method is suitable for further amplification by polymerase chain reaction (PCR). Using this protocol, coupled with the PCR-RFLP (restriction fragment length polymorphism) method, we analyzed the allelic sequence diversity of the human lymphocyte antigen (HLA) class II genes in an extended family of 33 persons containing 14 asthmatic or atopic members. Six of eight DQA1 alleles, and 11 DQB1, 20 DPB1, and 10 DR haplotypes could be identified in a single DNA sample. Our results suggest that the DR53 group haplotype is frequently associated with allergic asthma and atopy. The micromethod described here may be useful in genetic epidemiology, especially in family studies involving small children.

  8. Rapid transport of CCL11 across the blood-brain barrier: regional variation and importance of blood cells.

    Science.gov (United States)

    Erickson, Michelle A; Morofuji, Yoichi; Owen, Joshua B; Banks, William A

    2014-06-01

    Increased blood levels of the eotaxin chemokine C-C motif ligand 11 (CCL11) in aging were recently shown to negatively regulate adult hippocampal neurogenesis. How circulating CCL11 could affect the central nervous system (CNS) is not clear, but one possibility is that it can cross the blood-brain barrier (BBB). Here, we show that CCL11 undergoes bidirectional transport across the BBB. Transport of CCL11 from blood into whole brain (influx) showed biphasic kinetics, with a slow phase preceding a rapid phase of uptake. We found that the slow phase was explained by binding of CCL11 to cellular components in blood, whereas the rapid uptake phase was mediated by direct interactions with the BBB. CCL11, even at high doses, did not cause BBB disruption. All brain regions except striatum showed a delayed rapid-uptake phase. Striatum had only an early rapid-uptake phase, which was the fastest of any brain region. We also observed a slow but saturable transport system for CCL11 from brain to blood. C-C motif ligand 3 (CCR3), an important receptor for CCL11, did not facilitate CCL11 transport across the BBB, although high concentrations of a CCR3 inhibitor increased brain uptake without causing BBB disruption. Our results indicate that CCL11 in the circulation can access many regions of the brain outside of the neurogenic niche via transport across the BBB. This suggests that blood-borne CCL11 may have important physiologic functions in the CNS and implicates the BBB as an important regulator of physiologic versus pathologic effects of this chemokine.

  9. Investigation of novel bioactive rapidly resorbable bone substitute materials and their influence on osteoblastic cell differentiation in vivo

    OpenAIRE

    Jonscher, Sebastian

    2010-01-01

    Among the various techniques to reconstruct or enlarge a deficient alveolar ridge, the concept of guided bone regeneration (GBR) has become a predictable and well-documented surgical approach. At present, autogenous bone grafts are preferably combined with barrier membranes. Using synthetic biodegradable bone substitute materials, however, is advantageous, since it avoids second-site surgery for autograft harvesting. A bone substitute for alveolar ridge augmentation must be rapidly resorbable...

  10. Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor

    Directory of Open Access Journals (Sweden)

    Jordan S. Leyton-Mange

    2014-02-01

    Full Text Available In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity.

  11. A rapid [3H]glucose incorporation assay for determination of lymphoid cell-mediated inhibition of Candida albicans growth

    International Nuclear Information System (INIS)

    Djeu, J.Y.; Parapanissios, A.; Halkias, D.; Friedman, H.

    1986-01-01

    [ 3 H]glucose uptake by Candida albicans after interaction with lymphoid effector cells was used to provide a quick, accurate and objective assessment of the growth inhibitory potential of lymphoid cells on candida. After 18 h coincubation of effector cells with candida, [ 3 H]glucose was added for 3 h and the amount of radiolabel incorporated into residual candida was measured. The results showed that [ 3 H]glucose uptake was proportional to the number of candida organisms left in the microwell and is dose dependent on the effector/target (E/T) ratio. At an E/T ratio of 300/1, complete inhibition of candida was seen, with significant inhibition still present at 30/1. In addition, monocytes and polymorphonuclear cells were found to be the primary cells responsible for eliminating candida. (Auth.)

  12. Moving In, Moving Through, and Moving Out: The Transitional Experiences of Foster Youth College Students

    Science.gov (United States)

    Gamez, Sara I.

    2017-01-01

    The purpose of this qualitative study was to explore the transitional experiences of foster youth college students. The study explored how foster youth experienced moving into, moving through, and moving out of the college environment and what resources and strategies they used to thrive during their college transitions. In addition, this study…

  13. Visualizing individual sodium channels on the move.

    Science.gov (United States)

    Heinemann, Stefan H

    2012-07-27

    Visualization of voltage-gated sodium channels at work is an important requirement for the understanding of rapid electrical signaling in nerve cells. In this issue of Chemistry & Biology, Ondrus and colleagues have mastered this challenge by chemical synthesis of a fluorescent antagonist and by monitoring single sodium channels in living cells with unprecedented optical resolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Infra-red laser ablative micromachining of parylene-C on SiO2 substrates for rapid prototyping, high yield, human neuronal cell patterning

    International Nuclear Information System (INIS)

    Raos, B J; Unsworth, C P; Costa, J L; Rohde, C A; Simpson, M C; Doyle, C S; Dickinson, M E; Bunting, A S; Murray, A F; Delivopoulos, E; Graham, E S

    2013-01-01

    Cell patterning commonly employs photolithographic methods for the micro fabrication of structures on silicon chips. These require expensive photo-mask development and complex photolithographic processing. Laser based patterning of cells has been studied in vitro and laser ablation of polymers is an active area of research promising high aspect ratios. This paper disseminates how 800 nm femtosecond infrared (IR) laser radiation can be successfully used to perform laser ablative micromachining of parylene-C on SiO 2 substrates for the patterning of human hNT astrocytes (derived from the human teratocarcinoma cell line (hNT)) whilst 248 nm nanosecond ultra-violet laser radiation produces photo-oxidization of the parylene-C and destroys cell patterning. In this work, we report the laser ablation methods used and the ablation characteristics of parylene-C for IR pulse fluences. Results follow that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells. We disseminate the variation in yield of patterned hNT astrocytes on parylene-C with laser pulse spacing, pulse number, pulse fluence and parylene-C strip width. The findings demonstrate how laser ablative micromachining of parylene-C on SiO 2 substrates can offer an accessible alternative for rapid prototyping, high yield cell patterning with broad application to multi-electrode arrays, cellular micro-arrays and microfluidics. (paper)

  15. Rapid bioreduction of trivalent aurum using banana stem powder and its cytotoxicity against MCF-7 and HEK-293 cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Arunkumar, Pichaimani [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India); Vedagiri, Hemamalini [Bharathidasan University, Department of Biotechnology (India); Premkumar, Kumpati, E-mail: pkumpati@hotmail.com [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India)

    2013-03-15

    Bioreduction of metal ions for the synthesis of nanoparticles of well-defined shape and size has been a great challenge in the field of nanotechnology. In this study, we explored the reduction potential of banana stem powder (BSP) for the synthesis of gold nanoparticles (GNP). The kinetics of GNP synthesis was monitored using UV-Vis spectroscopy. The synthesized GNP was characterized using dynamic light scattering (DLS), transmission electron microscopy, and fourier transform infrared spectroscopy. In addition, the cytotoxic potential of the synthesized GNP was investigated using human breast cancer (MCF-7) and normal human embryonic kidney (HEK-293) cell lines, as evaluated by changes in cell morphology, cell viability (MTT), and metabolic activity. BSP exhibited a strong reduction of Au(III) to Au (0) at room temperature within 5 min of reaction time. The synthesized GNP was found to be spherical with an average diameter of 30 nm by DLS analysis. The cytotoxicity analysis reveals a direct dose-response relationship, indicating that the cytotoxicity increases with increasing concentrations of the GNP. Significant cytotoxicity was observed in cancer cells (MCF-7) compared to normal cells (HEK-293). Also the cellular uptake of GNP was more pronounced in MCF-7 cells than HEK-293 cells as evidenced by zeta potential, implicating the possible reason for differential cytotoxicity. Thus the present study demonstrates the importance of these unique, less time-consuming, and stable BSP-mediated GNP as potential drug delivery vehicles in the application of anticancer therapy.

  16. A rapid fluorometric method for semiautomated determination of cytotoxicity and cellular proliferation of human tumor cell lines in microculture.

    Science.gov (United States)

    Larsson, R; Nygren, P

    1989-01-01

    A fluorometric method for the determination of cellular growth and cytotoxicity of human tumor cell lines in 96-well microculture plates is described. The assay is based on the combined use of the DNA-binding dye Hoechst 33342 and the fluorogenic substrate fluorescein diacetate (FDA). Hoechst 33342 undergoes a dramatic enhancement of fluorescence when specifically intercalated with cellular DNA, whereas the FDA fluorescence is dependent on cellular hydrolysis of the non-fluorescent substrate into its fluorescent product. Fluorescence from both dyes was linearly related to the density of freshly seeded cells (6 x 10(3)-1 x 10(5)/well) and correlated well with physical cell count of cells under normal culture conditions as well as in response to the vinca alkaloid vincristine. However, the amount of FDA fluorescence produces and retained by the cultures was clearly dependent on the fraction of intact and viable cells, whereas the fluorescence reported by Hoechst 33342 was not. The assay was found to be simple, reliable and many samples could be analysed in a short period of time with minimal waste of cells and biological reagents. Apart from giving an estimate of cell density, the protocol described also provides a separate index of viability which in certain situations may be of importance for distinguishing between cytocidal and cytostatic drug actions. The method may be well suited for several applications, including the large scale screening for antitumor activity of compounds with potential cytocidal or cytostatic actions.

  17. Germ cell transplantation using sexually competent fish: an approach for rapid propagation of endangered and valuable germlines.

    Directory of Open Access Journals (Sweden)

    Sullip K Majhi

    Full Text Available The transplantation of germ cells into adult recipient gonads is a tool with wide applications in animal breeding and conservation of valuable and/or endangered species; it also provides a means for basic studies involving germ cell (GC proliferation and differentiation. Here we describe the establishment of a working model for xenogeneic germ cell transplantation (GCT in sexually competent fish. Spermatogonial cells isolated from juveniles of one species, the pejerrey Odontesthes bonariensis (Atherinopsidae, were surgically transplanted into the gonads of sexually mature Patagonian pejerrey O. hatcheri, which have been partially depleted of endogenous GCs by a combination of Busulfan (40 mg/kg and high water temperature (25 degrees C treatments. The observation of the donor cells' behavior showed that transplanted spermatogonial cells were able to recolonize the recipients' gonads and resume spermatogenesis within 6 months from the GCT. The presence of donor-derived gametes was confirmed by PCR in 20% of the surrogate O. hatcheri fathers at 6 months and crosses with O. bonariensis mothers produced hybrids and pure O. bonariensis, with donor-derived germline transmission rates of 1.2-13.3%. These findings indicate that transplantation of spermatogonial cells into sexually competent fish can shorten considerably the production time of donor-derived gametes and offspring and could play a vital role in germline conservation and propagation of valued and/or endangered fish species.

  18. Metagenomics and single-cell genomics reveal high abundance of comammox Nitrospira in a rapid gravity sand filter treating groundwater

    DEFF Research Database (Denmark)

    Palomo, Alejandro; Fowler, Jane; Gülay, Arda

    genus was recovered harboring metabolic capacity for complete ammonia oxidation. We developed a cell extraction strategy that enables the disruption of Nitrospira cell clusters attached to the mineral coating of the sand. Individual cells were identified via fluorescent in situ hybridization (FISH...... taxonomic differences with the recently described comammox Nitrospira genomes. The high abundance of comammox Nitrospira spp. together with the low abundance of canonical ammonia oxidizing prokaryotes in the investigated RSF system suggests the essential role of this novel comammox Nitrospira in the RSFs...

  19. The random co-polymer glatiramer acetate rapidly kills primary human leukocytes through sialic-acid-dependent cell membrane damage

    DEFF Research Database (Denmark)

    Christiansen, Stig Hill; Zhang, Xianwei; Juul-Madsen, Kristian

    2017-01-01

    in innate immunity. It shares the positive charge and amphipathic character of GA, and, as shown here, also the ability to kill human leukocyte. The cytotoxicity of both compounds depends on sialic acid in the cell membrane. The killing was associated with the generation of CD45 + debris, derived from cell...... membrane deformation. Nanoparticle tracking analysis confirmed the formation of such debris, even at low GA concentrations. Electric cell-substrate impedance sensing measurements also recorded stable alterations in T lymphocytes following such treatment. LL-37 forms oligomers through weak hydrophobic...

  20. Rapid increase of inositol 1,4,5-trisphosphate in the HeLa cells after hypergravity exposure

    Science.gov (United States)

    Kumei, Yasuhiro; Whitson, Peggy A.; Cintron, Nitza M.; Sato, Atsushige

    1990-01-01

    The IP3 level in HeLa cells has been elevated through the application in hypergravity in a time-dependent manner. The data obtained for the hydrolytic products of PIP2, IP3, and DG are noted to modulate c-myc gene expression. It is also established that the cAMP accumulation by the IBMX in hypergravity-exposed cells was suppressed relative to the control. In light of IP3 increase and cAMP decrease results, a single GTP-binding protein may play a role in the hypergravity signal transduction of HeLa cells by stimulating PLC while inhibiting adenylate cyclase.

  1. Rapid road repair vehicle

    Science.gov (United States)

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  2. Role of moving planes and moving spheres following Dupin cyclides

    KAUST Repository

    Jia, Xiaohong

    2014-03-01

    We provide explicit representations of three moving planes that form a μ-basis for a standard Dupin cyclide. We also show how to compute μ-bases for Dupin cyclides in general position and orientation from their implicit equations. In addition, we describe the role of moving planes and moving spheres in bridging between the implicit and rational parametric representations of these cyclides. © 2014 Elsevier B.V.

  3. Role of moving planes and moving spheres following Dupin cyclides

    KAUST Repository

    Jia, Xiaohong

    2014-01-01

    We provide explicit representations of three moving planes that form a μ-basis for a standard Dupin cyclide. We also show how to compute μ-bases for Dupin cyclides in general position and orientation from their implicit equations. In addition, we describe the role of moving planes and moving spheres in bridging between the implicit and rational parametric representations of these cyclides. © 2014 Elsevier B.V.

  4. Moving into advanced nanomaterials. Toxicity of rutile TiO{sub 2} nanoparticles immobilized in nanokaolin nanocomposites on HepG2 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Bessa, Maria João, E-mail: mjbessa8@gmail.com [Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto (Portugal); Costa, Carla, E-mail: cstcosta@gmail.com [Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto (Portugal); EPIUnit - Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600, Porto (Portugal); Reinosa, Julian, E-mail: jjreinosa@icv.csic.es [Electroceramic Department, Instituto de Cerámica y Vidrio, CSIC, Campus de Cantoblanco, Calle de Kelson, 5, 28049 Madrid (Spain); Pereira, Cristiana, E-mail: cristianacostapereira@gmail.com [Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto (Portugal); EPIUnit - Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600, Porto (Portugal); Fraga, Sónia, E-mail: teixeirafraga@hotmail.com [Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto (Portugal); EPIUnit - Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600, Porto (Portugal); Fernández, José, E-mail: jfernandez@icv.csic.es [Electroceramic Department, Instituto de Cerámica y Vidrio, CSIC, Campus de Cantoblanco, Calle de Kelson, 5, 28049 Madrid (Spain); Bañares, Miguel A., E-mail: miguel.banares@csic.es [Catalytic Spectroscopy Laboratory, Instituto de Catálisis y Petroleoquímica, ICP-CSIC, Madrid (Spain); and others

    2017-02-01

    Immobilization of nanoparticles on inorganic supports has been recently developed, resulting in the creation of nanocomposites. Concerning titanium dioxide nanoparticles (TiO{sub 2} NPs), these have already been developed in conjugation with clays, but so far there are no available toxicological studies on these nanocomposites. The present work intended to evaluate the hepatic toxicity of nanocomposites (C-TiO{sub 2}), constituted by rutile TiO{sub 2} NPs immobilized in nanokaolin (NK) clay, and its individual components. These nanomaterials were analysed by means of FE-SEM and DLS analysis for physicochemical characterization. HepG2 cells were exposed to rutile TiO{sub 2} NPs, NK clay and C-TiO{sub 2} nanocomposite, in the presence and absence of serum for different exposure periods. Possible interferences with the methodological procedures were determined for MTT, neutral red uptake, alamar blue (AB), LDH, and comet assays, for all studied nanomaterials. Results showed that MTT, AB and alkaline comet assay were suitable for toxicity analysis of the present materials after slight modifications to the protocol. Significant decreases in cell viability were observed after exposure to all studied nanomaterials. Furthermore, an increase in HepG2 DNA damage was observed after shorter periods of exposure in the absence of serum proteins and longer periods of exposure in their presence. Although the immobilization of nanoparticles in micron-sized supports could, in theory, decrease the toxicity of single nanoparticles, the selection of a suitable support is essential. The present results suggest that NK clay is not the appropriate substrate to decrease TiO{sub 2} NPs toxicity. Therefore, for future studies, it is critical to select a more appropriate substrate for the immobilization of TiO{sub 2} NPs. - Highlights: • Only the MTT and AB assays were found to be suitable for cytotoxicity assessment. • Alkaline comet assay was also appropriate for genotoxicity evaluation

  5. Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice

    International Nuclear Information System (INIS)

    Jenkins, Darlene E; Hornig, Yvette S; Oei, Yoko; Dusich, Joan; Purchio, Tony

    2005-01-01

    Our goal was to generate xenograft mouse models of human breast cancer based on luciferase-expressing MDA-MB-231 tumor cells that would provide rapid mammary tumor growth; produce metastasis to clinically relevant tissues such as lymph nodes, lung, and bone; and permit sensitive in vivo detection of both primary and secondary tumor sites by bioluminescent imaging. Two clonal cell sublines of human MDA-MB-231 cells that stably expressed firefly luciferase were isolated following transfection of the parental cells with luciferase cDNA. Each subline was passaged once or twice in vivo to enhance primary tumor growth and to increase metastasis. The resulting luciferase-expressing D3H1 and D3H2LN cells were analyzed for long-term bioluminescent stability, primary tumor growth, and distal metastasis to lymph nodes, lungs, bone and soft tissues by bioluminescent imaging. Cells were injected into the mammary fat pad of nude and nude-beige mice or were delivered systemically via intracardiac injection. Metastasis was also evaluated by ex vivo imaging and histologic analysis postmortem. The D3H1 and D3H2LN cell lines exhibited long-term stable luciferase expression for up to 4–6 months of accumulative tumor growth time in vivo. Bioluminescent imaging quantified primary mammary fat pad tumor development and detected early spontaneous lymph node metastasis in vivo. Increased frequency of spontaneous lymph node metastasis was observed with D3H2LN tumors as compared with D3H1 tumors. With postmortem ex vivo imaging, we detected additional lung micrometastasis in mice with D3H2LN mammary tumors. Subsequent histologic evaluation of tissue sections from lymph nodes and lung lobes confirmed spontaneous tumor metastasis at these sites. Following intracardiac injection of the MDA-MB-231-luc tumor cells, early metastasis to skeletal tissues, lymph nodes, brain and various visceral organs was detected. Weekly in vivo imaging data permitted longitudinal analysis of metastasis at

  6. Evidence from a mouse model that epithelial cell migration and mesenchymal-epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation.

    Directory of Open Access Journals (Sweden)

    Fiona L Cousins

    Full Text Available BACKGROUND: In women dynamic changes in uterine tissue architecture occur during each menstrual cycle. Menses, characterised by the shedding of the upper functional layer of the endometrium, is the culmination of a cascade of irreversible changes in tissue function including stromal decidualisation, inflammation and production of degradative enzymes. The molecular mechanisms that contribute to the rapid restoration of tissue homeostasis at time of menses are poorly understood. METHODOLOGY: A modified mouse model of menses was developed to focus on the events occurring within the uterine lining during endometrial shedding/repair. Decidualisation, vaginal bleeding, tissue architecture and cell proliferation were evaluated at 4, 8, 12, and 24 hours after progesterone (P4 withdrawal; mice received a single injection of bromodeoxyuridine (BrdU 90 mins before culling. Expression of genes implicated in the regulation of mesenchymal to epithelial transition (MET was determined using a RT2 PCR profiler array, qRTPCR and bioinformatic analysis. PRINCIPAL FINDINGS: Mice exhibited vaginal bleeding between 4 and 12 hours after P4 withdrawal, concomitant with detachment of the decidualised cell mass from the basal portion of the endometrial lining. Immunostaining for BrdU and pan cytokeratin revealed evidence of epithelial cell proliferation and migration. Cells that appeared to be in transition from a mesenchymal to an epithelial cell identity were identified within the stromal compartment. Analysis of mRNAs encoding genes expressed exclusively in the epithelial or stromal compartments, or implicated in MET, revealed dynamic changes in expression, consistent with a role for reprogramming of mesenchymal cells so that they could contribute to re-epithelialisation. CONCLUSIONS/SIGNIFICANCE: These studies have provided novel insights into the cellular processes that contribute to re-epithelialisation post-menses implicating both epithelial cell migration and

  7. Sub-minute kinetics of human red cell fumarase: 1 H spin-echo NMR spectroscopy and 13 C rapid-dissolution dynamic nuclear polarization.

    Science.gov (United States)

    Shishmarev, Dmitry; Wright, Alan J; Rodrigues, Tiago B; Pileio, Giuseppe; Stevanato, Gabriele; Brindle, Kevin M; Kuchel, Philip W

    2018-03-01

    Fumarate is an important probe of metabolism in hyperpolarized magnetic resonance imaging and spectroscopy. It is used to detect the release of fumarase in cancer tissues, which is associated with necrosis and drug treatment. Nevertheless, there are limited reports describing the detailed kinetic studies of this enzyme in various cells and tissues. Thus, we aimed to evaluate the sub-minute kinetics of human red blood cell fumarase using nuclear magnetic resonance (NMR) spectroscopy, and to provide a quantitative description of the enzyme that is relevant to the use of fumarate as a probe of cell rupture. The fumarase reaction was studied using time courses of 1 H spin-echo and 13 C-NMR spectra. 1 H-NMR experiments showed that the fumarase reaction in hemolysates is sufficiently rapid to make its kinetics amenable to study in a period of approximately 3 min, a timescale characteristic of hyperpolarized 13 C-NMR spectroscopy. The rapid-dissolution dynamic nuclear polarization (RD-DNP) technique was used to hyperpolarize [1,4- 13 C]fumarate, which was injected into concentrated hemolysates. The kinetic data were analyzed using recently developed FmR α analysis and modeling of the enzymatic reaction using Michaelis-Menten equations. In RD-DNP experiments, the decline in the 13 C-NMR signal from fumarate, and the concurrent rise and fall of that from malate, were captured with high spectral resolution and signal-to-noise ratio, which allowed the robust quantification of fumarase kinetics. The kinetic parameters obtained indicate the potential contribution of hemolysis to the overall rate of the fumarase reaction when 13 C-NMR RD-DNP is used to detect necrosis in animal models of implanted tumors. The analytical procedures developed will be applicable to studies of other rapid enzymatic reactions using conventional and hyperpolarized substrate NMR spectroscopy. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Rapid detection of DNA-interstrand and DNA-protein cross-links in mammalian cells by gravity-flow alkaline elution

    International Nuclear Information System (INIS)

    Hincks, J.R.; Coulombe, R.A. Jr.

    1989-01-01

    Alkaline elution is a sensitive and commonly used technique to detect cellular DNA damage in the form of DNA strand breaks and DNA cross-links. Conventional alkaline elution procedures have extensive equipment requirements and are tedious to perform. Our laboratory recently presented a rapid, simplified, and sensitive modification of the alkaline elution technique to detect carcinogen-induced DNA strand breaks. In the present study, we have further modified this technique to enable the rapid characterization of chemically induced DNA-interstrand and DNA-protein associated cross-links in cultured epithelial cells. Cells were exposed to three known DNA cross-linking agents, nitrogen mustard (HN 2 ), mitomycin C (MMC), or ultraviolet irradiation (UV). One hour exposures of HN 2 at 0.25, 1.0, and 4.0 microM or of MMC at 20, 40, and 60 microM produced a dose-dependent induction of total DNA cross-links by these agents. Digestion with proteinase K revealed that HN 2 and MMC induced both DNA-protein cross-links and DNA-interstrand cross-links. Ultraviolet irradiation induced both DNA cross-links and DNA strand breaks, the latter of which were either protein and nonprotein associated. The results demonstrate that gravity-flow alkaline elution is a sensitive and accurate method to characterize the molecular events of DNA cross-linking. Using this procedure, elution of DNA from treated cells is completed in 1 hr, and only three fractions per sample are analyzed. This method may be useful as a rapid screening assay for genotoxicity and/or as an adjunct to other predictive assays for potential mutagenic or carcinogenic agents

  9. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway

    Science.gov (United States)

    Weeden, Clare E.; Chen, Yunshun; Ma, Stephen B.; Hu, Yifang; Ramm, Georg; Sutherland, Kate D.; Smyth, Gordon K.

    2017-01-01

    Lung squamous cell carcinoma (SqCC), the second most common subtype of lung cancer, is strongly associated with tobacco smoking and exhibits genomic instability. The cellular origins and molecular processes that contribute to SqCC formation are largely unexplored. Here we show that human basal stem cells (BSCs) isolated from heavy smokers proliferate extensively, whereas their alveolar progenitor cell counterparts have limited colony-forming capacity. We demonstrate that this difference arises in part because of the ability of BSCs to repair their DNA more efficiently than alveolar cells following ionizing radiation or chemical-induced DNA damage. Analysis of mice harbouring a mutation in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key enzyme in DNA damage repair by nonhomologous end joining (NHEJ), indicated that BSCs preferentially repair their DNA by this error-prone process. Interestingly, polyploidy, a phenomenon associated with genetically unstable cells, was only observed in the human BSC subset. Expression signature analysis indicated that BSCs are the likely cells of origin of human SqCC and that high levels of NHEJ genes in SqCC are correlated with increasing genomic instability. Hence, our results favour a model in which heavy smoking promotes proliferation of BSCs, and their predilection for error-prone NHEJ could lead to the high mutagenic burden that culminates in SqCC. Targeting DNA repair processes may therefore have a role in the prevention and therapy of SqCC. PMID:28125611

  10. Automated Method for the Rapid and Precise Estimation of Adherent Cell Culture Characteristics from Phase Contrast Microscopy Images

    Science.gov (United States)

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-01-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license. Biotechnol. Bioeng. 2014;111: 504–517. © 2013 Wiley Periodicals, Inc. PMID:24037521

  11. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.

    Science.gov (United States)

    Lee, Sangyeop; Chon, Hyangah; Lee, Jiyoung; Ko, Juhui; Chung, Bong Hyun; Lim, Dong Woo; Choo, Jaebum

    2014-01-15

    We report a surface-enhanced Raman scattering (SERS)-based cellular imaging technique to detect and quantify breast cancer phenotypic markers expressed on cell surfaces. This technique involves the synthesis of SERS nano tags consisting of silica-encapsulated hollow gold nanospheres (SEHGNs) conjugated with specific antibodies. Hollow gold nanospheres (HGNs) enhance SERS signal intensity of individual particles by localizing surface electromagnetic fields through pinholes in the hollow particle structures. This capacity to enhance imaging at the level of single molecules permits the use of HGNs to detect specific biological markers expressed in living cancer cells. In addition, silica encapsulation greatly enhances the stability of nanoparticles. Here we applied a SERS-based imaging technique using SEHGNs in the multiplex imaging of three breast cancer cell phenotypes. Expression of epidermal growth factor (EGF), ErbB2, and insulin-like growth factor-1 (IGF-1) receptors were assessed in the MDA-MB-468, KPL4 and SK-BR-3 human breast cancer cell lines. SERS imaging technology described here can be used to test the phenotype of a cancer cell and quantify proteins expressed on the cell surface simultaneously. Based on results, this technique may enable an earlier diagnosis of breast cancer than is currently possible and offer guidance in treatment. © 2013 Elsevier B.V. All rights reserved.

  12. Continuous de novo biosynthesis of haem and its rapid turnover to bilirubin are necessary for cytoprotection against cell damage

    Science.gov (United States)

    Takeda, Taka-aki; Mu, Anfeng; Tai, Tran Tien; Kitajima, Sakihito; Taketani, Shigeru

    2015-01-01

    It is well known that haem serves as the prosthetic group of various haemoproteins that function in oxygen transport, respiratory chain, and drug metabolism. However, much less is known about the functions of the catabolites of haem in mammalian cells. Haem is enzymatically degraded to iron, carbon monoxide (CO), and biliverdin, which is then converted to bilirubin. Owing to difficulties in measuring bilirubin, however, the generation and transport of this end product remain unclear despite its clinical importance. Here, we used UnaG, the recently identified bilirubin-binding fluorescent protein, to analyse bilirubin production in a variety of human cell lines. We detected a significant amount of bilirubin with many non-blood cell types, which was sensitive to inhibitors of haem metabolism. These results suggest that there is a basal level of haem synthesis and its conversion into bilirubin. Remarkably, substantial changes were observed in the bilirubin generation when cells were exposed to stress insults. Since the stress-induced cell damage was exacerbated by the pharmacological blockade of haem metabolism but was ameliorated by the addition of biliverdin and bilirubin, it is likely that the de novo synthesis of haem and subsequent conversion to bilirubin play indispensable cytoprotective roles against cell damage. PMID:25990790

  13. A single-cell technique for the measurement of membrane potential, membrane conductance, and the efflux of rapidly penetrating solutes in Amphiuma erythrocytes.

    Science.gov (United States)

    Stoner, L C; Kregenow, F M

    1980-10-01

    We describe a single-cell technique for measuring membrane potential, membrane resistance, and the efflux of rapidly penetrating solutes such as Cl and H2O. Erythrocytes from Amphiuma means were aspirated into a Sylgard (Dow Corning Corp.)-coated capillary. The aspirated cell separated a solution within the capillary from a solution in the bath. Each of these two solutions was contiguous with approximately 5% of the total membrane surface. Microelectrodes placed concentrically within the capillary permit the measurement of intracellular voltage, specific membrane resistance, and the electrical seal between the two solutions. The intracellular voltage averaged -17.7 mV (pH 7.6) and changed as either intra- or extracellular chloride was varied. The average specific membrane resistance measured by passing current across the exposed membrane surface was 110 ohm-cm2. 36Cl and tritiated H2O fluxes (0.84 +/- 0.05 x 10(-6) M . cm-2 . min-1 and 6.4 +/- 1.5 x 10(-3) M . cm-2 . min-1, respectively) were determined by noting the rate at which isotope leaves the cell and crosses the membrane exposed to the bath. Our measured values for the flux of 36Cl and tritiated H2O approximate reported values for free-floating cells. 36Cl efflux, in addition, is inhibited by 4-acetamido-4'-isothiocyano-stilbene 2,2'-disulfonic acid (SITS) and furosemide, known inhibitors of the anion exchange mechanism responsible for the rapid anion fluxes of red blood cells. One can also demonstrate directly that > 89% of 36Cl efflux is "electrically silent" by analyzing the flux in the presence of an imposed transcellular voltage.

  14. Move and eat better

    CERN Document Server

    2012-01-01

    CERN has many traditions, but in a week that’s seen the launch of the Medical Service’s  ‘Move & eat better’ campaign, it’s refreshing to note that among the oldest is a sporting one.  The CERN relay race dates back to 15 October 1971 when 21 pioneering teams set off to pound the pavements of CERN. Back then, the Focus users group came in first with a time of 12 minutes and 42 seconds. Today’s route is slightly different, and the number of teams has risen to over 100, with a new category of Nordic Walking introduced, as part of the campaign, for the first time.   The relay has provided some memorable events, and perhaps one of the longest-standing records in the history of sport, with the UA1 strollers’ 10 minutes and 13 seconds unbeaten for thirty years. In the women’s category, the UN Gazelles set the fastest time of 13 minutes and 16 seconds in 1996, while in the veterans category, you wi...

  15. ATLAS starts moving in

    CERN Multimedia

    Della Mussia, S

    2004-01-01

    The first large active detector component was lowered into the ATLAS cavern on 1st March. It consisted of the 8 modules forming the lower part of the central barrel of the tile hadronic calorimeter. The work of assembling the barrel, which comprises 64 modules, started the following day. Two road trailers each with 64 wheels, positioned side by side. This was the solution chosen to transport the lower part of the central barrel of ATLAS' tile hadronic calorimeter from Building 185 to the PX16 shaft at Point 1 (see Figure 1). The transportation, and then the installation of the component in the experimental cavern, which took place over three days were, to say the least, rather spectacular. On 25 February, the component, consisting of eight 6-metre modules, was loaded on to the trailers. The segment of the barrel was transported on a steel support so that it wouldn't move an inch during the journey. On 26 February, once all the necessary safety checks had been carried out, the convoy was able to leave Buildi...

  16. Fed-batch hydrolysate addition and cell separation by settling in high cell density lignocellulosic ethanol fermentations on AFEX™ corn stover in the Rapid Bioconversion with Integrated recycling Technology process.

    Science.gov (United States)

    Sarks, Cory; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2017-09-01

    The Rapid Bioconversion with Integrated recycling Technology (RaBIT) process uses enzyme and yeast recycling to improve cellulosic ethanol production economics. The previous versions of the RaBIT process exhibited decreased xylose consumption using cell recycle for a variety of different micro-organisms. Process changes were tested in an attempt to eliminate the xylose consumption decrease. Three different RaBIT process changes were evaluated in this work including (1) shortening the fermentation time, (2) fed-batch hydrolysate addition, and (3) selective cell recycling using a settling method. Shorting the RaBIT fermentation process to 11 h and introducing fed-batch hydrolysate addition eliminated any xylose consumption decrease over ten fermentation cycles; otherwise, decreased xylose consumption was apparent by the third cell recycle event. However, partial removal of yeast cells during recycle was not economical when compared to recycling all yeast cells.

  17. Antiviral therapy during primary simian immunodeficiency virus infection fails to prevent acute loss of CD4+ T cells in gut mucosa but enhances their rapid restoration through central memory T cells.

    Science.gov (United States)

    Verhoeven, David; Sankaran, Sumathi; Silvey, Melanie; Dandekar, Satya

    2008-04-01

    Gut-associated lymphoid tissue (GALT) is an early target of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) and a site for severe CD4+ T-cell depletion. Although antiretroviral therapy (ART) is effective in suppressing HIV replication and restoring CD4+ T cells in peripheral blood, restoration in GALT is delayed. The role of restored CD4+ T-cell help in GALT during ART and its impact on antiviral CD8+ T-cell responses have not been investigated. Using the SIV model, we investigated gut CD4+ T-cell restoration in infected macaques, initiating ART during either the primary stage (1 week postinfection), prior to acute CD4+ cell loss (PSI), or during the chronic stage at 10 weeks postinfection (CSI). ART led to viral suppression in GALT and peripheral blood mononuclear cells of PSI and CSI animals at comparable levels. CSI animals had incomplete CD4+ T-cell restoration in GALT. In PSI animals, ART did not prevent acute CD4+ T-cell loss by 2 weeks postinfection in GALT but supported rapid and complete CD4+ T-cell restoration thereafter. This correlated with an accumulation of central memory CD4+ T cells and better suppression of inflammation. Restoration of CD4+ T cells in GALT correlated with qualitative changes in SIV gag-specific CD8+ T-cell responses, with a dominance of interleukin-2-producing responses in PSI animals, while both CSI macaques and untreated SIV-infected controls were dominated by gamma interferon responses. Thus, central memory CD4+ T-cell levels and qualitative antiviral CD8+ T-cell responses, independent of viral suppression, were the immune correlates of gut mucosal immune restoration during ART.

  18. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  19. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells

    Directory of Open Access Journals (Sweden)

    Misako Yajima

    2018-04-01

    Full Text Available Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.

  20. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells.

    Science.gov (United States)

    Yajima, Misako; Ikuta, Kazufumi; Kanda, Teru

    2018-04-03

    Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.

  1. Rapid, High-Throughput, and Direct Molecular Beacon Delivery to Human Cancer Cells Using a Nanowire-Incorporated and Pneumatic Pressure-Driven Microdevice.

    Science.gov (United States)

    Kim, Kyung Hoon; Kim, Jung; Choi, Jong Seob; Bae, Sunwoong; Kwon, Donguk; Park, Inkyu; Kim, Do Hyun; Seo, Tae Seok

    2015-12-01

    Tracking and monitoring the intracellular behavior of mRNA is of paramount importance for understanding real-time gene expression in cell biology. To detect specific mRNA sequences, molecular beacons (MBs) have been widely employed as sensing probes. Although numerous strategies for MB delivery into the target cells have been reported, many issues such as the cytotoxicity of the carriers, dependence on the random probability of MB transfer, and critical cellular damage still need to be overcome. Herein, we have developed a nanowire-incorporated and pneumatic pressure-driven microdevice for rapid, high-throughput, and direct MB delivery to human breast cancer MCF-7 cells to monitor survivin mRNA expression. The proposed microdevice is composed of three layers: a pump-associated glass manifold layer, a monolithic polydimethylsiloxane (PDMS) membrane, and a ZnO nanowire-patterned microchannel layer. The MB is immobilized on the ZnO nanowires by disulfide bonding, and the glass manifold and PDMS membrane serve as a microvalve, so that the cellular attachment and detachment on the MB-coated nanowire array can be manipulated. The combination of the nanowire-mediated MB delivery and the microvalve function enable the transfer of MB into the cells in a controllable way with high cell viability and to detect survivin mRNA expression quantitatively after docetaxel treatment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effects of gamma irradiation on the plasma membrane of suspension-cultured apple cells. Rapid irreversible inhibition of H+-ATPase activity

    International Nuclear Information System (INIS)

    Dong, C.-Z.; Montillet, J.-L.; Triantaphylides, C.

    1994-01-01

    The effects of ionizing radiation, used in post-harvest treatment of fruit and vegetables. were investigated on cultured apple cells (Pyrus malus L. cv. Royal Red) on a short-term period. Irradiation (2 kGy) induced an increase of passive ion effluxes from cells and a decrease of cell capacity to regulate external pH. These alterations are likely due to effects on plasma membrane structure and function and were further investigated by studying the effects of irradiation on plasma membrane H + -ATPase activity. Plasma membrane-enriched vesicles were prepared and the H + -ATPase activity was characterized. Irradiation of the vesicles induced a dose dependent inhibition of H + -ATPase activity. The loss of enzyme activity was immediate, even at low doses (0.5 kGy), and was not reversed by the addition of 2mM dithiothreitol. This inhibition may be the result of an irreversible oxidation of enzyme sulfhydryl moieties and/or the result of changes induced within the lipid bilayer affecting the membrane-enzyme interactions. Further analysis of the H + -ATPase activity was carried out on vesicles obtained from irradiated cells confirming the previous results. In vivo recovery of activity was not observed within 5 h following the treatment, thus explaining the decrease of cell capacity to regulate external pH. This rapid irreversible inhibition of the plasma membrane H + -ATPase must be considered as one of the most important primary biochemical events occurring in irradiated plant material. (author)

  3. Chloride on the Move

    KAUST Repository

    Li, Bo; Tester, Mark A.; Gilliham, Matthew

    2017-01-01

    were poorly defined. We discuss here how recent advances highlight the role of newly identified transport proteins, some that directly transfer Cl− into the xylem, and others that act on endomembranes in ‘gatekeeper’ cell types in the root stele

  4. Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells

    Science.gov (United States)

    Mortusewicz, Oliver; Amé, Jean-Christophe; Leonhardt, Heinrich

    2007-01-01

    Genome integrity is constantly threatened by DNA lesions arising from numerous exogenous and endogenous sources. Survival depends on immediate recognition of these lesions and rapid recruitment of repair factors. Using laser microirradiation and live cell microscopy we found that the DNA-damage dependent poly(ADP-ribose) polymerases (PARP) PARP-1 and PARP-2 are recruited to DNA damage sites, however, with different kinetics and roles. With specific PARP inhibitors and mutations, we could show that the initial recruitment of PARP-1 is mediated by the DNA-binding domain. PARP-1 activation and localized poly(ADP-ribose) synthesis then generates binding sites for a second wave of PARP-1 recruitment and for the rapid accumulation of the loading platform XRCC1 at repair sites. Further PARP-1 poly(ADP-ribosyl)ation eventually initiates the release of PARP-1. We conclude that feedback regulated recruitment of PARP-1 and concomitant local poly(ADP-ribosyl)ation at DNA lesions amplifies a signal for rapid recruitment of repair factors enabling efficient restoration of genome integrity. PMID:17982172

  5. Structure of the gene encoding VGF, a nervous system-specific mRNA that is rapidly and selectively induced by nerve growth factor in PC12 cells.

    Science.gov (United States)

    Salton, S R; Fischberg, D J; Dong, K W

    1991-05-01

    Nerve growth factor (NGF) plays a critical role in the development and survival of neurons in the peripheral nervous system. Following treatment with NGF but not epidermal growth factor, rat pheochromocytoma (PC12) cells undergo neural differentiation. We have cloned a nervous system-specific mRNA, NGF33.1, that is rapidly and relatively selectively induced by treatment of PC12 cells with NGF and basic fibroblast growth factor in comparison with epidermal growth factor. Analysis of the nucleic acid and predicted amino acid sequences of the NGF33.1 cDNA clone suggested that this clone corresponded to the NGF-inducible mRNA called VGF (A. Levi, J. D. Eldridge, and B. M. Paterson, Science 229:393-395, 1985; R. Possenti, J. D. Eldridge, B. M. Paterson, A. Grasso, and A. Levi, EMBO J. 8:2217-2223, 1989). We have used the NGF33.1 cDNA clone to isolate and characterize the VGF gene, and in this paper we report the complete sequence of the VGF gene, including 853 bases of 5' flank revealed TATAA and CCAAT elements, several GC boxes, and a consensus cyclic AMP response element-binding protein binding site. The VGF promoter contains sequences homologous to other NGF-inducible, neuronal promoters. We further show that VGF mRNA is induced in PC12 cells to a greater extent by depolarization and by phorbol-12-myristate-13-acetate treatment than by 8-bromo-cyclic AMP treatment. By Northern (RNA) and RNase protection analysis, VGF mRNA is detectable in embryonic and postnatal central and peripheral nervous tissues but not in a number of nonneural tissues. In the cascade of events which ultimately leads to the neural differentiation of NGF-treated PC12 cells, the VGF gene encodes the most rapidly and selectively regulated, nervous-system specific mRNA yet identified.

  6. Physical Exercise Leads to Rapid Adaptations in Hippocampal Vasculature : Temporal Dynamics and Relationship to Cell Proliferation and Neurogenesis

    NARCIS (Netherlands)

    Van der Borght, Karin; Kobor-Nyakas, Dora E.; Klauke, Karin; Eggen, Bart J. L.; Nyakas, Csaba; Van der Zee, Eddy A.; Meerlo, Peter

    2009-01-01

    Increased levels of angiogenesis and neurogenesis possibly mediate the beneficial effects of physical activity on hippocampal plasticity. This study was designed to investigate the temporal dynamics of exercise-induced changes in hippocampal angiogenesis and cell proliferation. Mice were housed with

  7. The prohibitin-repressive interaction with E2F1 is rapidly inhibited by androgen signalling in prostate cancer cells

    NARCIS (Netherlands)

    Koushyar, S.; Economides, G.; Zaat, S.; Jiang, W.; Bevan, C. L.; Dart, D. A.

    2017-01-01

    Prohibitin (PHB) is a tumour suppressor molecule with pleiotropic activities across several cellular compartments including mitochondria, cell membrane and the nucleus. PHB and the steroid-activated androgen receptor (AR) have an interplay where AR downregulates PHB, and PHB represses AR.

  8. Disruption of the novel gene fad104 causes rapid postnatal death and attenuation of cell proliferation, adhesion, spreading and migration

    International Nuclear Information System (INIS)

    Nishizuka, Makoto; Kishimoto, Keishi; Kato, Ayumi; Ikawa, Masahito; Okabe, Masaru; Sato, Ryuichiro; Niida, Hiroyuki; Nakanishi, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-01-01

    The molecular mechanisms at the beginning of adipogenesis remain unknown. Previously, we identified a novel gene, fad104 (factor for adipocyte differentiation 104), transiently expressed at the early stage of adipocyte differentiation. Since the knockdown of the expression of fad104 dramatically repressed adipogenesis, it is clear that fad104 plays important roles in adipocyte differentiation. However, the physiological roles of fad104 are still unknown. In this study, we generated fad104-deficient mice by gene targeting. Although the mice were born in the expected Mendelian ratios, all died within 1 day of birth, suggesting fad104 to be crucial for survival after birth. Furthermore, analyses of mouse embryonic fibroblasts (MEFs) prepared from fad104-deficient mice provided new insights into the functions of fad104. Disruption of fad104 inhibited adipocyte differentiation and cell proliferation. In addition, cell adhesion and wound healing assays using fad104-deficient MEFs revealed that loss of fad104 expression caused a reduction in stress fiber formation, and notably delayed cell adhesion, spreading and migration. These results indicate that fad104 is essential for the survival of newborns just after birth and important for cell proliferation, adhesion, spreading and migration

  9. Combinatorial Approaches to Controlling Cell Behaviour and Tissue Formation in 3D via Rapid-Prototyping and Smart Scaffold Design

    NARCIS (Netherlands)

    Woodfield, T.B.F.; Moroni, Lorenzo; Malda, Jos

    2009-01-01

    The understanding of fundamental phenomena involved in tissue engineering and regenerative medicine is continuously growing and leads to the demand for three-dimensional (3D) models that better represent tissue architecture and direct cells into the proper lineage for specific tissue repair. Porous

  10. Ionic responses rapidly elicited by activation of protein kinase C in quiescent Swiss 3T3 cells

    International Nuclear Information System (INIS)

    Vara, F.; Schneider, J.A.; Rozengurt, E.

    1985-01-01

    Diacylglycerol and phorbol esters activate protein kinase C in intact cells. The authors report here that addition of the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol (OAG) to quiescent cultures of Swiss 3T3 cells caused a marked increase in the rate of ouabain-sensitive 86 Rb + uptake, a measure of the activity of the Na + /K + pump. The effect was dose-dependent and could be detected after 1 min of exposure to the diacylglycerol. OAG stimulated Na + influx via an amiloride-sensitive pathway and increased intracellular pH by 0.15 pH unit. Phorbol 12,13-dibutyrate (PBt 2 ) also enhanced ouabain sensitive 86 Rb + uptake and amiloride-sensitive 22 Na + influx. Prolonged treatment (40 hr) of 3T3 cells with PBt 2 at a saturating dose, which reduces the number of PBt 2 binding sites and protein kinase C activity, abolished the ionic response of the cells to a subsequent addition of either OAG or PBt 2 . They suggest that activation of protein kinase C elicits, either directly or indirectly, enhanced Na + /H + antiport activity, which, in turn, leads to Na + influx, intracellular pH modulation, and stimulation of the Na + /K + pump

  11. Large-timestep techniques for particle-in-cell simulation of systems with applied fields that vary rapidly in space

    International Nuclear Information System (INIS)

    Friedman, A.; Grote, D.P.

    1996-10-01

    Under conditions which arise commonly in space-charge-dominated beam applications, the applied focusing, bending, and accelerating fields vary rapidly with axial position, while the self-fields (which are, on average, comparable in strength to the applied fields) vary smoothly. In such cases it is desirable to employ timesteps which advance the particles over distances greater than the characteristic scales over which the applied fields vary. Several related concepts are potentially applicable: sub-cycling of the particle advance relative to the field solution, a higher-order time-advance algorithm, force-averaging by integration along approximate orbits, and orbit-averaging. We report on our investigations into the utility of such techniques for systems typical of those encountered in accelerator studies for heavy-ion beam-driven inertial fusion

  12. Rapid Scientific Promotion of Scientific Productions in Stem Cells According to The Indexed Papers in The ISI (web of knowledge).

    Science.gov (United States)

    Alijani, Rahim

    2015-01-01

    In recent years emphasis has been placed on evaluation studies and the publication of scientific papers in national and international journals. In this regard the publication of scientific papers in journals in the Institute for Scientific Information (ISI) database is highly recommended. The evaluation of scientific output via articles in journals indexed in the ISI database will enable the Iranian research authorities to allocate and organize research budgets and human resources in a way that maximises efficient science production. The purpose of the present paper is to publish a general and valid view of science production in the field of stem cells. In this research, outputs in the field of stem cell research are evaluated by survey research, the method of science assessment called Scientometrics in this branch of science. A total of 1528 documents was extracted from the ISI database and analysed using descriptive statistics software in Excel. The results of this research showed that 1528 papers in the stem cell field in the Web of Knowledge database were produced by Iranian researchers. The top ten Iranian researchers in this field have produced 936 of these papers, equivalent to 61.3% of the total. Among the top ten, Soleimani M. has occupied the first place with 181 papers. Regarding international scientific participation, Iranian researchers have cooperated to publish papers with researchers from 50 countries. Nearly 32% (452 papers) of the total research output in this field has been published in the top 10 journals. These results show that a small number of researchers have published the majority of papers in the stem cell field. International participation in this field of research unacceptably low. Such participation provides the opportunity to import modern science and international experience into Iran. This not only causes scientific growth, but also improves the research and enhances opportunities for employment and professional development. Iranian

  13. 17β-estradiol rapidly activates calcium release from intracellular stores via the GPR30 pathway and MAPK phosphorylation in osteocyte-like MLO-Y4 cells

    KAUST Repository

    Ren, Jian

    2012-03-06

    Estrogen regulates critical cellular functions, and its deficiency initiates bone turnover and the development of bone mass loss in menopausal females. Recent studies have demonstrated that 17β-estradiol (E 2) induces rapid non-genomic responses that activate downstream signaling molecules, thus providing a new perspective to understand the relationship between estrogen and bone metabolism. In this study, we investigated rapid estrogen responses, including calcium release and MAPK phosphorylation, in osteocyte-like MLO-Y4 cells. E 2 elevated [Ca 2+] i and increased Ca 2+ oscillation frequency in a dose-dependent manner. Immunolabeling confirmed the expression of three estrogen receptors (ERα, ERβ, and G protein-coupled receptor 30 [GPR30]) in MLO-Y4 cells and localized GPR30 predominantly to the plasma membrane. E 2 mobilized calcium from intracellular stores, and the use of selective agonist(s) for each ER showed that this was mediated mainly through the GPR30 pathway. MAPK phosphorylation increased in a biphasic manner, with peaks occurring after 7 and 60 min. GPR30 and classical ERs showed different temporal effects on MAPK phosphorylation and contributed to MAPK phosphorylation sequentially. ICI182,780 inhibited E 2 activation of MAPK at 7 min, while the GPR30 agonist G-1 and antagonist G-15 failed to affect MAPK phosphorylation levels. G-1-mediated MAPK phosphorylation at 60 min was prevented by prior depletion of calcium stores. Our data suggest that E 2 induces the non-genomic responses Ca 2+ release and MAPK phosphorylation to regulate osteocyte function and indicate that multiple receptors mediate rapid E 2 responses. © 2012 Springer Science+Business Media, LLC.

  14. Radiation by moving charges

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2017-04-01

    It is generally accepted that in order to describe the dynamics of relativistic particles in the laboratory (lab) frame it is sufficient to take into account the relativistic dependence of the particle momenta on the velocity. This solution of the dynamics problem in the lab frame makes no reference to Lorentz transformations. For this reason they are not discussed in particle tracking calculations in accelerator and plasma physics. It is generally believed that the electrodynamics problem can be treated within the same ''single inertial frame'' description without reference to Lorentz transformations. In particular, in order to evaluate radiation fields arising from charged particles in motion we need to know their velocities and positions as a function of the lab frame time t. The relativistic motion of a particle in the lab frame is described by Newton's second law ''corrected'' for the relativistic dependence of momentum on velocity. It is assumed in all standard derivations that one can perform identification of the trajectories in the source part of the usual Maxwell's equations with the trajectories vector x(t) measured (or calculated by using the corrected Newton's second law) in the lab frame. This way of coupling fields and particles is considered since more than a century as the relativistically correct procedure.We argue that this procedure needs to be changed, and we demonstrate the following, completely counterintuitive statement: the results of conventional theory of radiation by relativistically moving charges are not consistent with the principle of relativity. In order to find the trajectory of a particle in the lab frame consistent with the usual Maxwell's equations, one needs to solve the dynamic equation inmanifestly covariant form by using the coordinate-independent proper time τ to parameterize the particle world-line in space-time. We show that there is a difference between ''true'' particle trajectory vector x(t) calculated or measured in

  15. Rapid desensitization and resensitization of 5-HT2 receptor mediated phosphatidyl inositol hydrolysis by serotonin agonists in quiescent calf aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Pauwels, P.J.; Van Gompel, P.; Leysen, J.E.

    1990-01-01

    Agonist regulation of 5-hydroxytryptamine 2 (5-HT 2 ) receptors was studied in calf aortic smooth muscle cultures incubated in a quiescent, defined synthetic medium that does not stimulate cell proliferation, but that provides cells with supplements that maintain cell viability. In these cells, 5-hydroxytryptamine (5-HT)-induced [ 3 H]inositol phosphates accumulation showed the characteristics of a 5-HT 2 receptor coupled transducing system according to the inhibition of the response by 5-HT 2 antagonists at nanomolar concentrations. The 5-HT 2 receptor coupled response became rapidly desensitized during continued incubation with 5-HT and 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM); nearly full desensitization was obtained in two hours with 10 μM 5-HT and DOM pretreatment. The recovery of the response had a half-live of 5 hours after 2 hours pretreatment and of 9.5 to 12.5 hours after 24 to 96 hours agonist pretreatment. The DOM-induced desensitization of the 5-HT 2 receptor coupled response was fully blocked by 0.1 μM cinanserin. Cinanserin alone did not induce desensitization or up-regulation of the 5-HT 2 receptor coupled response at 0.1 μM

  16. Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis: Hormone production

    International Nuclear Information System (INIS)

    Hecker, Markus; Newsted, John L.; Murphy, Margaret B.; Higley, Eric B.; Jones, Paul D.; Wu, Rudolf; Giesy, John P.

    2006-01-01

    To identify and prioritize chemicals that may alter steroidogenesis, an in vitro screening assay based on measuring alterations in hormone production was developed using the H295R human adrenocortical carcinoma cell line. Previous studies indicated that this cell line was useful to screen for effects on gene expression of steroidogenic enzymes. This study extended that work to measure the integrated response on production of testosterone (T), estradiol (E2), and progesterone/pregnenolone (P) using an ELISA. Under optimized culture and experimental conditions, the basal release of P, T and E2 into the medium was 7.0 ± 1.2 ng/ml, 1.6 ± 0.4 ng/ml, and 0.51 ± 0.13 ng/ml, respectively. Model chemicals with different modes of action on steroidogenic systems were tested. Exposure to forskolin resulted in dose-dependent increases in all three hormones with the greatest relative increase being observed for E2. This differed from cells exposed to prochloraz or ketoconazole where P concentrations increased while T and E2 concentrations decreased in a dose-dependent manner. In cells exposed to fadrozole, E2 decreased in a dose-dependent manner while T and P only decreased at the greatest dose tested. Aminoglutethimide decreased P and E2 concentrations but increased T concentrations. Vinclozolin reduced both P and T but resulted in a slight increase in E2. The alteration in the patterns of hormone production in the H295R assay was consistent with the modes of action of the chemicals and was also consistent with observed effects of these chemicals in animal models. Based on these results, the H295R in vitro system has potential for high throughput screening to not only characterize the effects of chemicals on endocrine systems but also to prioritize chemicals for additional testing

  17. Cell-Free Expression and In Situ Immobilization of Parasite Proteins from Clonorchis sinensis for Rapid Identification of Antigenic Candidates.

    Directory of Open Access Journals (Sweden)

    Christy Catherine

    Full Text Available Progress towards genetic sequencing of human parasites has provided the groundwork for a post-genomic approach to develop novel antigens for the diagnosis and treatment of parasite infections. To fully utilize the genomic data, however, high-throughput methodologies are required for functional analysis of the proteins encoded in the genomic sequences. In this study, we investigated cell-free expression and in situ immobilization of parasite proteins as a novel platform for the discovery of antigenic proteins. PCR-amplified parasite DNA was immobilized on microbeads that were also functionalized to capture synthesized proteins. When the microbeads were incubated in a reaction mixture for cell-free synthesis, proteins expressed from the microbead-immobilized DNA were instantly immobilized on the same microbeads, providing a physical linkage between the genetic information and encoded proteins. This approach of in situ expression and isolation enables streamlined recovery and analysis of cell-free synthesized proteins and also allows facile identification of the genes coding antigenic proteins through direct PCR of the microbead-bound DNA.

  18. Development of a high-throughput microscale cell disruption platform for Pichia pastoris in rapid bioprocess design.

    Science.gov (United States)

    Bláha, Benjamin A F; Morris, Stephen A; Ogonah, Olotu W; Maucourant, Sophie; Crescente, Vincenzo; Rosenberg, William; Mukhopadhyay, Tarit K

    2018-01-01

    The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high-throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species, such as Pichia pastoris, no effective high-throughput disruption methods exist. The development of an automated, miniaturized, high-throughput, noncontact, scalable platform based on adaptive focused acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein is described. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pretreatment step. Three different modes of AFA were studied and compared to the performance high-pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA-based methods to mimic large-scale homogenization processes. These results demonstrate that AFA-mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development, and whole bioprocess integration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:130-140, 2018. © 2017 American Institute of Chemical Engineers.

  19. Mycobacterium oryzae sp. nov., a scotochromogenic, rapidly growing species is able to infect human macrophage cell line.

    Science.gov (United States)

    Ramaprasad, E V V; Rizvi, A; Banerjee, S; Sasikala, Ch; Ramana, Ch V

    2016-11-01

    Gram-stain-positive, acid-fast-positive, rapidly growing, rod-shaped bacteria (designated as strains JC290T, JC430 and JC431) were isolated from paddy cultivated soils on the Western Ghats of India. Phylogenetic analysis placed the three strains among the rapidly growing mycobacteria, being most closely related to Mycobacterium tokaiense 47503T (98.8 % 16S rRNA gene sequence similarity), Mycobacterium murale MA112/96T (98.8 %) and a few other Mycobacterium species. The level of DNA-DNA reassociation of the three strains with M. tokaiense DSM 44635T was 23.4±4 % (26.1±3 %, reciprocal analysis) and 21.4±2 % (22.1±4 %, reciprocal analysis). The three novel strains shared >99.9 % 16S rRNA gene sequence similarity and DNA-DNA reassociation values >85 %. Furthermore, phylogenetic analysis based on concatenated sequences (3071 bp) of four housekeeping genes (16S rRNA, hsp65, rpoB and sodA) revealed that strain JC290T is clearly distinct from all other Mycobacteriumspecies. The three strains had diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannosides, unidentified phospholipids, unidentified glycolipids and an unidentified lipid as polar lipids. The predominant isoprenoid quinone for all three strains was MK-9(H2). Fatty acids were C17 : 1ω7c, C16 : 0, C18 : 1ω9c, C16 : 1ω7c/C16 : 1ω6c and C19 : 1ω7c/C19 : 1ω6c for all the three strains. On the basis of phenotypic, chemotaxonomic and phylogenetic data, it was concluded that strains JC290T, JC430 and JC431 are members of a novel species within the genus Mycobacterium and for which the name Mycobacterium oryzae sp. nov. is proposed. The type strain is JC290T (=KCTC 39560T=LMG 28809T).

  20. Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin

    LENUS (Irish Health Repository)

    Boehm, Manja

    2012-04-25

    AbstractBackgroundCampylobacter jejuni is one of the most important bacterial pathogens causing food-borne illness worldwide. Crossing the intestinal epithelial barrier and host cell entry by C. jejuni is considered the primary reason of damage to the intestinal tissue, but the molecular mechanisms as well as major bacterial and host cell factors involved in this process are still widely unclear.ResultsIn the present study, we characterized the serine protease HtrA (high-temperature requirement A) of C. jejuni as a secreted virulence factor with important proteolytic functions. Infection studies and in vitro cleavage assays showed that C. jejuni’s HtrA triggers shedding of the extracellular E-cadherin NTF domain (90 kDa) of non-polarised INT-407 and polarized MKN-28 epithelial cells, but fibronectin was not cleaved as seen for H. pylori’s HtrA. Deletion of the htrA gene in C. jejuni or expression of a protease-deficient S197A point mutant did not lead to loss of flagella or reduced bacterial motility, but led to severe defects in E-cadherin cleavage and transmigration of the bacteria across polarized MKN-28 cell layers. Unlike other highly invasive pathogens, transmigration across polarized cells by wild-type C. jejuni is highly efficient and is achieved within a few minutes of infection. Interestingly, E-cadherin cleavage by C. jejuni occurs in a limited fashion and transmigration required the intact flagella as well as HtrA protease activity, but does not reduce transepithelial electrical resistance (TER) as seen with Salmonella, Shigella, Listeria or Neisseria.ConclusionThese results suggest that HtrA-mediated E-cadherin cleavage is involved in rapid crossing of the epithelial barrier by C. jejuni via a very specific mechanism using the paracellular route to reach basolateral surfaces, but does not cleave the fibronectin receptor which is necessary for cell entry.

  1. Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin.

    Science.gov (United States)

    Boehm, Manja; Hoy, Benjamin; Rohde, Manfred; Tegtmeyer, Nicole; Bæk, Kristoffer T; Oyarzabal, Omar A; Brøndsted, Lone; Wessler, Silja; Backert, Steffen

    2012-04-25

    Campylobacter jejuni is one of the most important bacterial pathogens causing food-borne illness worldwide. Crossing the intestinal epithelial barrier and host cell entry by C. jejuni is considered the primary reason of damage to the intestinal tissue, but the molecular mechanisms as well as major bacterial and host cell factors involved in this process are still widely unclear. In the present study, we characterized the serine protease HtrA (high-temperature requirement A) of C. jejuni as a secreted virulence factor with important proteolytic functions. Infection studies and in vitro cleavage assays showed that C. jejuni's HtrA triggers shedding of the extracellular E-cadherin NTF domain (90 kDa) of non-polarised INT-407 and polarized MKN-28 epithelial cells, but fibronectin was not cleaved as seen for H. pylori's HtrA. Deletion of the htrA gene in C. jejuni or expression of a protease-deficient S197A point mutant did not lead to loss of flagella or reduced bacterial motility, but led to severe defects in E-cadherin cleavage and transmigration of the bacteria across polarized MKN-28 cell layers. Unlike other highly invasive pathogens, transmigration across polarized cells by wild-type C. jejuni is highly efficient and is achieved within a few minutes of infection. Interestingly, E-cadherin cleavage by C. jejuni occurs in a limited fashion and transmigration required the intact flagella as well as HtrA protease activity, but does not reduce transepithelial electrical resistance (TER) as seen with Salmonella, Shigella, Listeria or Neisseria. These results suggest that HtrA-mediated E-cadherin cleavage is involved in rapid crossing of the epithelial barrier by C. jejuni via a very specific mechanism using the paracellular route to reach basolateral surfaces, but does not cleave the fibronectin receptor which is necessary for cell entry.

  2. Development of a new rapid isolation device for circulating tumor cells (CTCs using 3D palladium filter and its application for genetic analysis.

    Directory of Open Access Journals (Sweden)

    Akiko Yusa

    Full Text Available Circulating tumor cells (CTCs in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D palladium (Pd filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings.

  3. Radiation by moving charges

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-04-15

    It is generally accepted that in order to describe the dynamics of relativistic particles in the laboratory (lab) frame it is sufficient to take into account the relativistic dependence of the particle momenta on the velocity. This solution of the dynamics problem in the lab frame makes no reference to Lorentz transformations. For this reason they are not discussed in particle tracking calculations in accelerator and plasma physics. It is generally believed that the electrodynamics problem can be treated within the same ''single inertial frame'' description without reference to Lorentz transformations. In particular, in order to evaluate radiation fields arising from charged particles in motion we need to know their velocities and positions as a function of the lab frame time t. The relativistic motion of a particle in the lab frame is described by Newton's second law ''corrected'' for the relativistic dependence of momentum on velocity. It is assumed in all standard derivations that one can perform identification of the trajectories in the source part of the usual Maxwell's equations with the trajectories vector x(t) measured (or calculated by using the corrected Newton's second law) in the lab frame. This way of coupling fields and particles is considered since more than a century as the relativistically correct procedure.We argue that this procedure needs to be changed, and we demonstrate the following, completely counterintuitive statement: the results of conventional theory of radiation by relativistically moving charges are not consistent with the principle of relativity. In order to find the trajectory of a particle in the lab frame consistent with the usual Maxwell's equations, one needs to solve the dynamic equation inmanifestly covariant form by using the coordinate-independent proper time τ to parameterize the particle world-line in space-time. We show that there is a difference between &apos

  4. Compressor Has No Moving Macroscopic Parts

    Science.gov (United States)

    Gasser, Max

    1995-01-01

    Compressor containing no moving macroscopic parts functions by alternating piston and valve actions of successive beds of magnetic particles. Fabricated easily because no need for precisely fitting parts rotating or sliding on each other. Also no need for lubricant fluid contaminating fluid to be compressed. Compressor operates continuously, eliminating troublesome on/off cycling of other compressors, and decreasing consumption of energy. Phased cells push fluid from bottom to top, adding increments of pressure. Each cell contains magnetic powder particles loose when electromagnet coil deenergized, but tightly packed when coil energized.

  5. How Rapid is Rapid Prototyping? Analysis of ESPADON Programme Results

    Directory of Open Access Journals (Sweden)

    Ian D. Alston

    2003-05-01

    Full Text Available New methodologies, engineering processes, and support environments are beginning to emerge for embedded signal processing systems. The main objectives are to enable defence industry to field state-of-the-art products in less time and with lower costs, including retrofits and upgrades, based predominately on commercial off the shelf (COTS components and the model-year concept. One of the cornerstones of the new methodologies is the concept of rapid prototyping. This is the ability to rapidly and seamlessly move from functional design to the architectural design to the implementation, through automatic code generation tools, onto real-time COTS test beds. In this paper, we try to quantify the term “rapid” and provide results, the metrics, from two independent benchmarks, a radar and sonar beamforming application subset. The metrics show that the rapid prototyping process may be sixteen times faster than a conventional process.

  6. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging

    DEFF Research Database (Denmark)

    Trampe, Erik Christian Løvbjerg; Kolbowski, J.; Schreiber, U.

    2011-01-01

    , red or white light. Automated sequential exposure of microscopic samples to the three excitation colours enables subsequent deconvolution of the resulting fluorescence signals and colour marking of cells with different photopigmentation, i.e., cyanobacteria, green algae, red algae and diatoms....... The photosynthetic activity in complex mixtures of phototrophs and natural samples can thus be assigned to different types of phototrophs, which can be quantified simultaneously. Here, we describe the composition and performance of the new imaging system and present applications with both natural phytoplankton...

  7. Design of mitochondria-targeted colorimetric and ratiometric fluorescent probes for rapid detection of SO2 derivatives in living cells

    Science.gov (United States)

    Yang, Yutao; Zhou, Tingting; Bai, Bozan; Yin, Caixia; Xu, Wenzhi; Li, Wei

    2018-05-01

    Two mitochondria-targeted colorimetric and ratiometric fluorescent probes for SO2 derivatives were constructed based on the SO2 derivatives-triggered Michael addition reaction. The probes exhibit high specificity toward HSO3-/SO32- by interrupting their conjugation system resulting in a large ratiometric blue shift of 46-121 nm in their emission spectrum. The two well-resolved emission bands can ensure accurate detection of HSO3-. The detection limits were calculated to be 1.09 and 1.35 μM. Importantly, probe 1 and probe 2 were successfully used to fluorescence ratiometric imaging of endogenous HSO3- in BT-474 cells.

  8. A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC)

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    Asubmersiblemicrobial fuel cell (SBMFC) was developed as a biosensor forin situand real time monitoring of dissolvedoxygen (DO) in environmental waters. Domestic wastewater was utilized as sole fuel for powering the sensor. The sensor performance was firstly examined with tap water at varying DO...... the sensing activities. The sensor ability was further explored under different environmental conditions (e.g., pH, temperature, conductivity, alternative electron acceptor), and the results indicated that a calibration would be required before field application. Lastly, the sensor was tested with different...

  9. A simple and rapid Hepatitis A Virus (HAV titration assay based on antibiotic resistance of infected cells: evaluation of the HAV neutralization potency of human immune globulin preparations

    Directory of Open Access Journals (Sweden)

    Kaplan Gerardo G

    2008-12-01

    Full Text Available Abstract Background Hepatitis A virus (HAV, the causative agent of acute hepatitis in humans, is an atypical Picornaviridae that grows poorly in cell culture. HAV titrations are laborious and time-consuming because the virus in general does not cause cytopathic effect and is detected by immunochemical or molecular probes. Simple HAV titration assays could be developed using currently available viral construct containing selectable markers. Results We developed an antibiotic resistance titration assay (ARTA based on the infection of human hepatoma cells with a wild type HAV construct containing a blasticidin (Bsd resistance gene. Human hepatoma cells infected with the HAV-Bsd construct survived selection with 2 μg/ml of blasticidin whereas uninfected cells died within a few days. At 8 days postinfection, the color of the pH indicator phenol red in cell culture media correlated with the presence of HAV-Bsd-infected blasticidin-resistant cells: an orange-to-yellow color indicated the presence of growing cells whereas a pink-to-purple color indicated that the cells were dead. HAV-Bsd titers were determined by an endpoint dilution assay based on the color of the cell culture medium scoring orange-to-yellow wells as positive and pink-to-purple wells as negative for HAV. As a proof-of-concept, we used the ARTA to evaluate the HAV neutralization potency of two commercially available human immune globulin (IG preparations and a WHO International Standard for anti-HAV. The three IG preparations contained comparable levels of anti-HAV antibodies that neutralized approximately 1.5 log of HAV-Bsd. Similar neutralization results were obtained in the absence of blasticidin by an endpoint dilution ELISA at 2 weeks postinfection. Conclusion The ARTA is a simple and rapid method to determine HAV titers without using HAV-specific probes. We determined the HAV neutralization potency of human IG preparations in 8 days by ARTA compared to the 14 days required by the

  10. Chloride on the Move

    KAUST Repository

    Li, Bo

    2017-01-09

    Chloride (Cl−) is an essential plant nutrient but under saline conditions it can accumulate to toxic levels in leaves; limiting this accumulation improves the salt tolerance of some crops. The rate-limiting step for this process – the transfer of Cl− from root symplast to xylem apoplast, which can antagonize delivery of the macronutrient nitrate (NO3−) to shoots – is regulated by abscisic acid (ABA) and is multigenic. Until recently the molecular mechanisms underpinning this salt-tolerance trait were poorly defined. We discuss here how recent advances highlight the role of newly identified transport proteins, some that directly transfer Cl− into the xylem, and others that act on endomembranes in ‘gatekeeper’ cell types in the root stele to control root-to-shoot delivery of Cl−.

  11. A rapid separation of two distinct populations of mouse corneal epithelial cells with limbal stem cell characteristics by centrifugation on percoll gradient

    Czech Academy of Sciences Publication Activity Database

    Krulová, Magdalena; Pokorná, Kateřina; Lenčová, Anna; Frič, Jan; Zajícová, Alena; Filipec, Martin; Forrester, J. V.; Holáň, Vladimír

    2008-01-01

    Roč. 49, č. 9 (2008), s. 3903-3908 ISSN 0146-0404 R&D Projects: GA AV ČR KAN200520804; GA MŠk 1M0506; GA ČR GD310/08/H077 Institutional research plan: CEZ:AV0Z50520514 Keywords : limbal stem cells * Percoll gradient * corneal epithelial cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.582, year: 2008

  12. Rapid evaluation of the electrooxidation of fuel compounds with a multiple-electrode setup for direct polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Naoko; Siroma, Zyun; Ioroi, Tsutomu; Yasuda, Kazuaki [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2007-02-10

    Electrochemical oxidation of fuel compounds in acidic media was examined on eight electrodes (Pt, Ru, PtRu, Rh, Ir, Pd, Au, and glassy carbon) simultaneously by multiple cyclic voltammetry (CV) with an electrochemical cell equipped with an eight-electrode configuration. Direct-type polymer electrolyte fuel cells (PEFCs), in which aqueous solutions of the fuel compounds are directly supplied to the anode, were also evaluated. The performances of direct PEFCs with various anode catalysts could be roughly estimated from the results obtained with multiple CV. This multiple evaluation may be useful for identifying novel fuels or electrocatalysts. Methanol, ethanol, ethylene glycol, 2-propanol, and D-glucose were oxidized selectively on Pt or PtRu, as reported previously. However, several compounds that are often used as reducing agents show electrochemical oxidation with unique characteristics. Large current was obtained for the oxidation of formic acid, hypophosphorous acid, and phosphorous acid on a Pd electrode. L-Ascorbic acid and sulfurous acid were oxidized on all of the electrodes used in the present study. (author)

  13. Rapid and Scalable Characterization of CRISPR Technologies Using an E. coli Cell-Free Transcription-Translation System.

    Science.gov (United States)

    Marshall, Ryan; Maxwell, Colin S; Collins, Scott P; Jacobsen, Thomas; Luo, Michelle L; Begemann, Matthew B; Gray, Benjamin N; January, Emma; Singer, Anna; He, Yonghua; Beisel, Chase L; Noireaux, Vincent

    2018-01-04

    CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression-all without protein purification or live cells. We used TXTL to measure the dynamics of DNA cleavage and gene repression for single- and multi-effector CRISPR nucleases, predict gene repression strength in E. coli, determine the specificities of 24 diverse anti-CRISPR proteins, and develop a fast and scalable screen for protospacer-adjacent motifs that was successfully applied to five uncharacterized Cpf1 nucleases. These examples underscore how TXTL can facilitate the characterization and application of CRISPR technologies across their many uses. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Rapid Osteogenic Enhancement of Stem Cells in Human Bone Marrow Using a Glycogen-Synthease-Kinase-3-Beta Inhibitor Improves Osteogenic Efficacy In Vitro and In Vivo.

    Science.gov (United States)

    Clough, Bret H; Zeitouni, Suzanne; Krause, Ulf; Chaput, Christopher D; Cross, Lauren M; Gaharwar, Akhilesh K; Gregory, Carl A

    2018-04-01

    Non-union defects of bone are a major problem in orthopedics, especially for patients with a low healing capacity. Fixation devices and osteoconductive materials are used to provide a stable environment for osteogenesis and an osteogenic component such as autologous human bone marrow (hBM) is then used, but robust bone formation is contingent on the healing capacity of the patients. A safe and rapid procedure for improvement of the osteoanabolic properties of hBM is, therefore, sought after in the field of orthopedics, especially if it can be performed within the temporal limitations of the surgical procedure, with minimal manipulation, and at point-of-care. One way to achieve this goal is to stimulate canonical Wingless (cWnt) signaling in bone marrow-resident human mesenchymal stem cells (hMSCs), the presumptive precursors of osteoblasts in bone marrow. Herein, we report that the effects of cWnt stimulation can be achieved by transient (1-2 hours) exposure of osteoprogenitors to the GSK3β-inhibitor (2'Z,3'E)-6-bromoindirubin-3'-oxime (BIO) at a concentration of 800 nM. Very-rapid-exposure-to-BIO (VRE-BIO) on either hMSCs or whole hBM resulted in the long-term establishment of an osteogenic phenotype associated with accelerated alkaline phosphatase activity and enhanced transcription of the master regulator of osteogenesis, Runx2. When VRE-BIO treated hBM was tested in a rat spinal fusion model, VRE-BIO caused the formation of a denser, stiffer, fusion mass as compared with vehicle treated hBM. Collectively, these data indicate that the VRE-BIO procedure may represent a rapid, safe, and point-of-care strategy for the osteogenic enhancement of autologous hBM for use in clinical orthopedic procedures. Stem Cells Translational Medicine 2018;7:342-353. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  15. Honeycomb-like NiCo2S4 nanosheets prepared by rapid electrodeposition as a counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Yin, Jie; Wang, Yuqiao; Meng, Wenfei; Zhou, Tianyue; Li, Baosong; Wei, Tao; Sun, Yueming

    2017-08-01

    Honeycomb-like nickel cobalt sulfide (NiCo2S4) nanosheets were directly deposited on fluorine-doped tin oxide substrate by a rapid voltammetric deposition method. The method was also controllable and feasible for preparing NiCo2S4 on flexible Ti foil without any heating processes. Compared with Pt, CoS and NiS, NiCo2S4 exhibited low charge-transfer resistances and excellent electrocatalytic activity for {{{{I}}}3}- reduction, acting as a counter electrode for a dye-sensitized solar cell. The NiCo2S4-based solar cell showed higher power conversion efficiency (7.44%) than that of Pt-based solar cell (7.09%) under simulated illumination (AM 1.5 G, 100 mW cm-2). The device based on the flexible NiCo2S4/Ti foil achieved a power conversion efficiency of 5.28% under the above illumination conditions. This work can be extended to flexible and wearable technologies due to its facile technique.

  16. Effect of rapid thermal annealing on the Mo back contact properties for Cu_2ZnSnSe_4 solar cells

    International Nuclear Information System (INIS)

    Placidi, Marcel; Espindola-Rodriguez, Moises; Lopez-Marino, Simon; Sanchez, Yudania; Giraldo, Sergio; Acebo, Laura; Neuschitzer, Markus; Alcobé, Xavier; Pérez-Rodríguez, Alejandro; Saucedo, Edgardo

    2016-01-01

    The effect of a rapid thermal process (RTP) on the molybdenum (Mo) back contact for Cu_2ZnSnSe_4 (CZTSe) solar cells is here investigated. It is shown that the annealing of the Mo layer during 5 min at 550 °C, not only improves the crystalline quality of the back contact (avoiding the absorber decomposition at this region because Mo becomes more resistant to the selenization), but also helps achieving higher crystalline quality of the absorber with bigger grains, reducing the current leakage through the heterojunction. We demonstrate that this is related to the relaxation of the compressive stress of the CZTSe absorber, when synthesized on the RTP annealed substrates. CZTSe solar cells prepared on annealed Mo films exhibited higher short circuit current densities and higher open circuit voltages, resulting in 10% and 33% higher fill factors and efficiencies. - Highlights: • An RTP annealing applied for the first time on Mo for CZTSe solar cells. • Clear improvement of the efficiency from 5.7 to 7.6% with RTP treatment. • Discussion of this improvement with adequate material/device characterizations. • Stress-induced defects responsible of the electrical leakage are revealed.

  17. Effect of rapid thermal annealing on the Mo back contact properties for Cu{sub 2}ZnSnSe{sub 4} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, Marcel, E-mail: mplacidi@irec.cat [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain); Espindola-Rodriguez, Moises; Lopez-Marino, Simon; Sanchez, Yudania; Giraldo, Sergio; Acebo, Laura; Neuschitzer, Markus [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain); Alcobé, Xavier [Centres Científics i Tecnològics (CCiTUB), Lluis Solé i Sabarís 1, 08028 Barcelona (Spain); Pérez-Rodríguez, Alejandro [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain); IN2UB, Departament d’Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Saucedo, Edgardo [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain)

    2016-08-05

    The effect of a rapid thermal process (RTP) on the molybdenum (Mo) back contact for Cu{sub 2}ZnSnSe{sub 4} (CZTSe) solar cells is here investigated. It is shown that the annealing of the Mo layer during 5 min at 550 °C, not only improves the crystalline quality of the back contact (avoiding the absorber decomposition at this region because Mo becomes more resistant to the selenization), but also helps achieving higher crystalline quality of the absorber with bigger grains, reducing the current leakage through the heterojunction. We demonstrate that this is related to the relaxation of the compressive stress of the CZTSe absorber, when synthesized on the RTP annealed substrates. CZTSe solar cells prepared on annealed Mo films exhibited higher short circuit current densities and higher open circuit voltages, resulting in 10% and 33% higher fill factors and efficiencies. - Highlights: • An RTP annealing applied for the first time on Mo for CZTSe solar cells. • Clear improvement of the efficiency from 5.7 to 7.6% with RTP treatment. • Discussion of this improvement with adequate material/device characterizations. • Stress-induced defects responsible of the electrical leakage are revealed.

  18. A novel beta-glucosidase from the cell wall of maize (Zea mays L.): rapid purification and partial characterization

    Science.gov (United States)

    Nematollahi, W. P.; Roux, S. J.

    1999-01-01

    Plants have a variety of glycosidic conjugates of hormones, defense compounds, and other molecules that are hydrolyzed by beta-glucosidases (beta-D-glucoside glucohydrolases, E.C. 3.2.1.21). Workers have reported several beta-glucosidases from maize (Zea mays L.; Poaceae), but have localized them mostly by indirect means. We have purified and partly characterized a 58-Ku beta-glucosidase from maize, which we conclude from a partial sequence analysis, from kinetic data, and from its localization is not identical to any of those already reported. A monoclonal antibody, mWP 19, binds this enzyme, and localizes it in the cell walls of maize coleoptiles. An earlier report showed that mWP19 inhibits peroxidase activity in crude cell wall extracts and can immunoprecipitate peroxidase activity from these extracts, yet purified preparations of the 58 Ku protein had little or no peroxidase activity. The level of sequence similarity between beta-glucosidases and peroxidases makes it unlikely that these enzymes share epitopes in common. Contrary to a previous conclusion, these results suggest that the enzyme recognized by mWP19 is not a peroxidase, but there is a wall peroxidase closely associated with the 58 Ku beta-glucosidase in crude preparations. Other workers also have co-purified distinct proteins with beta-glucosidases. We found no significant charge in the level of immunodetectable beta-glucosidase in mesocotyls or coleoptiles that precedes the red light-induced changes in the growth rate of these tissues.

  19. Video Vortex reader II: moving images beyond YouTube

    NARCIS (Netherlands)

    Lovink, G.; Somers Miles, R.

    2011-01-01

    Video Vortex Reader II is the Institute of Network Cultures' second collection of texts that critically explore the rapidly changing landscape of online video and its use. With the success of YouTube ('2 billion views per day') and the rise of other online video sharing platforms, the moving image

  20. Rapid and selective expansion of nonclonotypic T cells in regulatory T cell-deficient, foreign antigen-specific TCR-transgenic scurfy mice: antigen-dependent expansion and TCR analysis.

    Science.gov (United States)

    Sharma, Rahul; Ju, Angela Chiao-Ying; Kung, John T; Fu, Shu Man; Ju, Shyr-Te

    2008-11-15

    Foreign Ag-specific TCR-transgenic (Tg) mice contain a small fraction of T cells bearing the endogenous Vbeta and Valpha chains as well as a population expressing an intermediate level of Tg TCR. Importantly, these minor nonclonotypic populations contain > or = 99% of the CD4(+)Foxp3(+) regulatory T cells (Treg) and, despite low overall Treg expression, peripheral tolerance is maintained. In the OT-II TCR (OVA-specific, Vbeta5(high)Valpha2(high)) Tg scurfy (Sf) mice (OT-II Sf) that lack Treg, nonclonotypic T cells markedly expanded in the periphery but not in the thymus. Expanded T cells expressed memory/effector phenotype and were enriched in blood and inflamed lungs. In contrast, Vbeta5(high)Valpha2(high) clonotypic T cells were not expanded, displayed the naive phenotype, and found mainly in the lymph nodes. Importantly, Vbeta5(neg) T cells were able to transfer multiorgan inflammation in Rag1(-/-) recipients. T cells bearing dual TCR (dual Vbeta or dual Valpha) were demonstrated frequently in the Vbeta5(int) and Valpha2(int) populations. Our study demonstrated that in the absence of Treg, the lack of peripheral expansion of clonotypic T cells is due to the absence of its high-affinity Ag OVA. Thus, the rapid expansion of nonclonotypic T cells in OT-II Sf mice must require Ag (self and foreign) with sufficient affinity. Our study has implications with respect to the roles of Ag and dual TCR in the selection and regulation of Treg and Treg-controlled Ag-dependent T cell expansion in TCR Tg and TCR Tg Sf mice, respectively.

  1. Extensin network formation in Vitis vinifera callus cells is an essential and causal event in rapid and H2O2-induced reduction in primary cell wall hydration

    Science.gov (United States)

    2011-01-01

    Background Extensin deposition is considered important for the correct assembly and biophysical properties of primary cell walls, with consequences to plant resistance to pathogens, tissue morphology, cell adhesion and extension growth. However, evidence for a direct and causal role for the extensin network formation in changes to cell wall properties has been lacking. Results Hydrogen peroxide treatment of grapevine (Vitis vinifera cv. Touriga) callus cell walls was seen to induce a marked reduction in their hydration and thickness. An analysis of matrix proteins demonstrated this occurs with the insolubilisation of an abundant protein, GvP1, which displays a primary structure and post-translational modifications typical of dicotyledon extensins. The hydration of callus cell walls free from saline-soluble proteins did not change in response to H2O2, but fully regained this capacity after addition of extensin-rich saline extracts. To assay the specific contribution of GvP1 cross-linking and other wall matrix proteins to the reduction in hydration, GvP1 levels in cell walls were manipulated in vitro by binding selected fractions of extracellular proteins and their effect on wall hydration during H2O2 incubation assayed. Conclusions This approach allowed us to conclude that a peroxidase-mediated formation of a covalently linked network of GvP1 is essential and causal in the reduction of grapevine callus wall hydration in response to H2O2. Importantly, this approach also indicated that extensin network effects on hydration was only partially irreversible and remained sensitive to changes in matrix charge. We discuss this mechanism and the importance of these changes to primary wall properties in the light of extensin distribution in dicotyledons. PMID:21672244

  2. Cell-cycle control in cell-biomaterial interactions : Expression of p53 and Ki67 in human umbilical vein endothelial cells in direct contact and extract testing of biomaterials

    NARCIS (Netherlands)

    van Kooten, TG; Klein, CL; Kirkpatrick, CJ

    2000-01-01

    Current biocompatibility testing involves the demonstration of cell proliferation, which is usually interpreted as a sign of positive biocompatibility when the materials sustain cell proliferation. As the field of biomaterials research is rapidly moving toward tissue-engineered devices and hybrid

  3. Collagen-embedded hydroxylapatite-beta-tricalcium phosphate-silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaati, Shahram M; Thimm, Benjamin W; Unger, Ronald E; Orth, Carina; Barbeck, Mike; Kirkpatrick, C James [Institute of Pathology, Johannes Gutenberg-University Mainz, Langenbeckstr.1, 55101 Mainz (Germany); Kohler, Thomas; Mueller, Ralph, E-mail: ghanaati@uni-mainz.d [Institute for Biomechanics, ETH Zuerich, Wolfgang-Pauli-Str.10, 8093 Zuerich (Switzerland)

    2010-04-15

    In the present study we assessed the biocompatibility in vitro and in vivo of a low-temperature sol-gel-manufactured SiO{sub 2}-based bone graft substitute. Human primary osteoblasts and the osteoblastic cell line, MG63, cultured on the SiO{sub 2} biomatrix in monoculture retained their osteoblastic morphology and cellular functionality in vitro. The effect of the biomaterial in vivo and its vascularization potential was tested subcutaneously in Wistar rats and demonstrated both rapid vascularization and good integration within the peri-implant tissue. Scaffold degradation was progressive during the first month after implantation, with tartrate-resistant acid phosphatase-positive macrophages being present and promoting scaffold degradation from an early stage. This manuscript describes successful osteoblastic growth promotion in vitro and a promising biomaterial integration and vasculogenesis in vivo for a possible therapeutic application of this biomatrix in future clinical studies.

  4. GmWRKY53, a water- and salt-inducible soybean gene for rapid dissection of regulatory elements in BY-2 cell culture

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C.; Lin, Jun; Rushton, Paul J.

    2013-01-01

    Drought is the major cause of crop losses worldwide. Water stress-inducible promoters are important for understanding the mechanisms of water stress responses in crop plants. Here we utilized tobacco (Nicotiana tabacum L.) Bright Yellow 2 (BY-2) cell system in presence of polyethylene glycol, salt and phytohormones. Extension of the system to 85 mM NaCl led to inducibility of up to 10-fold with the water stress and salt responsive soybean GmWRKY53 promoter. Upon ABA and JA treatment fold inducibility was up to 5-fold and 14-fold, respectively. Thus, we hypothesize that GmWRKY53 could be used as potential model candidate for dissecting drought regulatory elements as well as understanding crosstalk utilizing a rapid heterologous system of BY-2 culture. PMID:23511199

  5. Rapid concentration and dialysis of proteins with single hollow fibers: possible applications in analysis of protein secretion by isolated cells and steroid radioimmunoassays

    International Nuclear Information System (INIS)

    Rommerts, F.F.G.; Clotscher, W.F.; Van der Molen, H.J.

    1977-01-01

    Single hollow fibers were used in specially made cells for fast concentration and dialysis of solutions containing macromolecules. Volumes on the order of 5 ml of diluted protein solutions could be concentrated to 50--100 μl or less within 7 min with a protein recovery of 60--80%. More than 99% of the molecules with a molecular weight less than 500 could be removed in less than 1 hr. A possible application of the rapid dialysis method for the mechanization of radioimmunoassays is indicated. It was shown that in the radioimmunoassay of steriods the unbound steroids could be removed after incubation with antiserum, within 10 min and without a change in volume

  6. A rapid and cell-free assay to test the activity of lynch syndrome-associated MSH2 and MSH6 missense variants

    DEFF Research Database (Denmark)

    Drost, Mark; Zonneveld, José B M; van Hees, Sandrine

    2012-01-01

    amino acid alterations. The pathogenicity of these variants of uncertain significance (VUS) is difficult to assess, precluding diagnosis of carriers and their relatives. Here we present a rapid cell-free assay to investigate MMR activity of MSH2 or MSH6 VUS. We used this assay to analyze a series of MSH......2 and MSH6 VUS, selected from the Leiden Open Variation Database. Whereas a significant fraction of the MSH2 VUS has lost MMR activity, suggesting pathogenicity, the large majority of the MSH6 VUS appears MMR proficient. We anticipate that this assay will be an important tool in the development...... of a comprehensive and widely applicable diagnostic procedure for LS-associated VUS....

  7. Rapid profiling of antimicrobial compounds characterising B. subtilis TR50 cell-free filtrate by high-performance liquid chromatography coupled to high-resolution Orbitrap™ mass spectrometry.

    Science.gov (United States)

    Monaci, Linda; Quintieri, Laura; Caputo, Leonardo; Visconti, Angelo; Baruzzi, Federico

    2016-01-15

    Several Bacillus strains, typically isolated from different food sources, represent renowned producers of a multitude of low and high molecular weight compounds, including lipopeptides and macrolactones, with an importance for their antimicrobial activity. The high homology shared by many of these compounds also occurring as closely related isoforms poses a challenge in their prompt detection. Identification and structural elucidation is generally achieved by matrix-assisted laser desorption/ionization (MALDI) or liquid chromatography (LC) coupled to mass spectrometry (MS) after a pre-fractionation and/or purification step of the extract. In this paper we report the application of a method based on LC separation and high-resolution Orbitrap™-based MS for the rapid screening of raw filtrate of the strain Bacillus subtilis TR50 endowed with antimicrobial activity, without requiring any sample pre-treatment. Upon direct analysis of the cell-free filtrate of Bacillus subtilis TR50 by high-resolution mass spectrometry (HRMS), different compounds families, that proved to exert a remarked antimicrobial activity against several foodborne pathogens, can be readily displayed along the chromatographic run. Among them, three different classes were identified and characterized belonging to the iturin, fengycin and surfactin groups. The high resolving power and accurate mass accuracy provided by the HRMS system in use ensured an enhanced selectivity compared to other mass spectrometers. In addition, after activation of the HCD cell, the HR-MS/MS spectra can provide insights in the structural elucidation of several compounds. The acquisition of HRMS spectra of raw filtrates of subtilis strains allows untargeted analysis of the major classes of compounds produced to be performed, thus facilitating identification of other unknown bioactive molecules after retrospective analysis. These features make this approach a fast tool applicable to the rapid screening and further

  8. Toxoplasma gondii infection shifts dendritic cells into an amoeboid rapid migration mode encompassing podosome dissolution, secretion of TIMP-1, and reduced proteolysis of extracellular matrix.

    Science.gov (United States)

    Ólafsson, Einar B; Varas-Godoy, Manuel; Barragan, Antonio

    2018-03-01

    Dendritic cells (DCs) infected by Toxoplasma gondii rapidly acquire a hypermigratory phenotype that promotes systemic parasite dissemination by a "Trojan horse" mechanism in mice. Recent paradigms of leukocyte migration have identified the amoeboid migration mode of DCs as particularly suited for rapid locomotion in extracellular matrix and tissues. Here, we have developed a microscopy-based high-throughput approach to assess motility and matrix degradation by Toxoplasma-challenged murine and human DCs. DCs challenged with T. gondii exhibited dependency on metalloproteinase activity for hypermotility and transmigration but, strikingly, also dramatically reduced pericellular proteolysis. Toxoplasma-challenged DCs up-regulated expression and secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) and their supernatants impaired matrix degradation by naïve DCs and by-stander DCs dose dependently. Gene silencing of TIMP-1 by short hairpin RNA restored matrix degradation activity in Toxoplasma-infected DCs. Additionally, dissolution of podosome structures in parasitised DCs coincided with abrogated matrix degradation. Toxoplasma lysates inhibited pericellular proteolysis in a MyD88-dependent fashion whereas abrogated proteolysis persevered in Toxoplasma-infected MyD88-deficient DCs. This indicated that both TLR/MyD88-dependent and TLR/MyD88-independent signalling pathways mediated podosome dissolution and the abrogated matrix degradation. We report that increased TIMP-1 secretion and cytoskeletal rearrangements encompassing podosome dissolution are features of Toxoplasma-induced hypermigration of DCs with an impact on matrix degradation. Jointly, the data highlight how an obligate intracellular parasite orchestrates key regulatory cellular processes consistent with non-proteolytic amoeboid migration of the vehicle cells that facilitate its dissemination. © 2017 John Wiley & Sons Ltd.

  9. Rapid tyrosine phosphorylation of Lck following ligation of the tumor-associated cell surface molecule A6H

    DEFF Research Database (Denmark)

    Labuda, T; Gerwien, J; Ødum, Niels

    1999-01-01

    and the TCR-CD3 complex takes place and which signaling pathway might be involved. Here we show that ligation of the A6H antigen with mAb induces tyrosine phosphorylation of the Lck protein tyrosine kinase (PTK). Co-ligation of the A6H antigen with CD3 resulted in augmented Lck phosphorylation and mitogenesis....... In addition, A6H ligation induced an up-regulation of CD3-mediated phosphorylation of the 23 kDa high mol. wt form of TCR zeta and the zeta-associated protein, ZAP-70. Co-precipitation of Lck and ZAP-70 was only seen in T cells activated by combined A6H and anti-CD3 stimulation. In contrast, another Src...... family PTK, Fyn, was not affected by A6H ligation. In conclusion, we now demonstrate, for the first time, that A6H ligation triggers Lck phosphorylation, and that cross-talk between A6H and the TCR-CD3 complex involves Lck, ZAP-70 and the slow migrating isoform of TCR zeta. These results further suggests...

  10. Myxobacteria: moving, killing, feeding, and surviving together

    Directory of Open Access Journals (Sweden)

    José eMuñoz-Dorado

    2016-05-01

    Full Text Available Myxococcus xanthus, like other myxobacteria, is a social bacterium that moves and feeds cooperatively in predatory groups. On surfaces, rod-shaped vegetative cells move in search of the prey in a coordinated manner, forming dynamic multicellular groups referred to as swarms. Within the swarms, cells interact with one another and use two separate locomotion systems. Adventurous motility, which drives the movement of individual cells, is associated with the secretion of slime that forms trails at the leading edge of the swarms. It has been proposed that cellular traffic along these trails contributes to M. xanthus social behavior via stigmergic regulation. However, most of the cells travel in groups by using social motility, which is cell contact-dependent and requires a large number of individuals. Exopolysaccharides and the retraction of type IV pili at alternate poles of the cells are the engines associated with social motility. When the swarms encounter prey, the population of M. xanthus lyses and takes up nutrients from nearby cells. This cooperative and highly density-dependent feeding behavior has the advantage that the pool of hydrolytic enzymes and other secondary metabolites secreted by the entire group is shared by the community to optimize the use of the degradation products. This multicellular behavior is especially observed in the absence of nutrients. In this condition, M. xanthus swarms have the ability to organize the gliding movements of thousands of rods, synchronizing rippling waves of oscillating cells, to form macroscopic fruiting bodies, with three subpopulations of cells showing division of labor. A small fraction of cells either develop into resistant myxospores or remain as peripheral rods, while the majority of cells die, probably to provide nutrients to allow aggregation and spore differentiation. Sporulation within multicellular fruiting bodies has the benefit of enabling survival in hostile environments, and increases

  11. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-11-09

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  12. Imaging of Moving Ground Vehicles

    National Research Council Canada - National Science Library

    Rihaczek, A

    1996-01-01

    ... requires that use be made of the complex image. The yaw/pitch/roll/bounce/flex motion of a moving ground vehicle demands that different motion compensations be applied to different parts of the vehicle...

  13. Nordic Seniors on the Move

    DEFF Research Database (Denmark)

    ”I believe that all people need to move about. Actually, some have difficulties in doing so. They stay in their home neighbourhoods where they’ve grown up and feel safe. I can understand that, but my wife and I, we didn’t want that. We are more open to new ideas.” This anthology is about seniors...... on the move. In seven chapters, Nordic researchers from various disciplines, by means of ethnographic methods, attempt to comprehend the phenomenon of Nordic seniors who move to leisure areas in their own or in other countries. The number of people involved in this kind of migratory movement has grown...... above gives voice to one of these seniors, stressing the necessity of moving. The anthology contributes to the international body of literature about later life migration, specifically representing experiences made by Nordic seniors. As shown here, mobility and migration in later life have implications...

  14. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-01-08

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  15. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong; Sundaramoorthi, Ganesh

    2017-01-01

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  16. Protein Kinase Cε, Which Is Linked to Ultraviolet Radiation-Induced Development of Squamous Cell Carcinomas, Stimulates Rapid Turnover of Adult Hair Follicle Stem Cells

    International Nuclear Information System (INIS)

    Singh, A.; Singh, A.; Sand, J. M.; Bin Hafeez, B.; Verma, A. K.; Sand, J. M.; Heninger, E.

    2013-01-01

    To find clues about the mechanism by which kinase C epsilon (PKCε) may impart susceptibility to ultraviolet radiation (UVR)-induced development of cutaneous squamous cell carcinomas (SCC), we compared PKCε transgenic (TG) mice and their wild-type (WT) litter mates for (1) the effects of UVR exposures on percent of putative hair follicle stem cells (HSC s ) and (2) HSCs proliferation. The percent of double HSC s (CD34+ andα6-integrin or CD34+/CD49f+) in the isolated keratinocytes were determined by flow cytometric analysis. Both single and chronic UVR treatments (1.8 kJ/m 2 ) resulted in an increase in the frequency of double positive HSCs in PKCεTG mice as compared to their WT litter mates. To determine the rate of proliferation of bulge region stem cells, a 5-bromo-2-deoxyuridine labeling (BrdU) experiment was performed. In the WT mice, the percent of double positive HSC s retaining BrdU label was 28.4±0.6% compared to 4.0±0.06% for the TG mice, an approximately 7-fold decrease. A comparison of gene expression profiles of FACS sorted double positive HSCs showed increased expression of Pes1, Rad21, Tfdp1 and Cks1b genes in TG mice compared to WT mice. Also, PKCεover expression in mice increased the clonogenicity of isolated keratinocytes, a property commonly ascribed to stem cells.

  17. Autowaves in moving excitable media

    Directory of Open Access Journals (Sweden)

    V.A.Davydov

    2004-01-01

    Full Text Available Within the framework of kinematic theory of autowaves we suggest a method for analytic description of stationary autowave structures appearing at the boundary between the moving and fixed excitable media. The front breakdown phenomenon is predicted for such structures. Autowave refraction and, particulary, one-side "total reflection" at the boundary is considered. The obtained analytical results are confirmed by computer simulations. Prospects of the proposed method for further studies of autowave dynamics in the moving excitable media are discussed.

  18. Infinite games with uncertain moves

    Directory of Open Access Journals (Sweden)

    Nicholas Asher

    2013-03-01

    Full Text Available We study infinite two-player games where one of the players is unsure about the set of moves available to the other player. In particular, the set of moves of the other player is a strict superset of what she assumes it to be. We explore what happens to sets in various levels of the Borel hierarchy under such a situation. We show that the sets at every alternate level of the hierarchy jump to the next higher level.

  19. Proliferating Cell Nuclear Antigen-dependent Rapid Recruitment of Cdt1 and CRL4Cdt2 at DNA-damaged Sites after UV Irradiation in HeLa Cells*

    Science.gov (United States)

    Ishii, Takashi; Shiomi, Yasushi; Takami, Toshihiro; Murakami, Yusuke; Ohnishi, Naho; Nishitani, Hideo

    2010-01-01

    The licensing factor Cdt1 is degraded by CRL4Cdt2 ubiquitin ligase dependent on proliferating cell nuclear antigen (PCNA) during S phase and when DNA damage is induced in G1 phase. Association of both Cdt2 and PCNA with chromatin was observed in S phase and after UV irradiation. Here we used a micropore UV irradiation assay to examine Cdt2 accumulation at cyclobutane pyrimidine dimer-containing DNA-damaged sites in the process of Cdt1 degradation in HeLa cells. Cdt2, present in the nucleus throughout the cell cycle, accumulated rapidly at damaged DNA sites during G1 phase. The recruitment of Cdt2 is dependent on prior PCNA chromatin binding because Cdt2 association was prevented when PCNA was silenced. Cdt1 was also recruited to damaged sites soon after UV irradiation through its PIP-box. As Cdt1 was degraded, the Cdt2 signal at damaged sites was reduced, but PCNA, cyclobutane pyrimidine dimer, and XPA (xeroderma pigmentosum, complementation group A) signals remained at the same levels. These findings suggest that Cdt1 degradation following UV irradiation occurs rapidly at damaged sites due to PCNA chromatin loading and the recruitment of Cdt1 and CRL4Cdt2, before DNA damage repair is completed. PMID:20929861

  20. Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner.

    Directory of Open Access Journals (Sweden)

    Tania J Fernandes

    Full Text Available In bone, depletion of osteoclasts reduces bone formation in vivo, as does osteal macrophage depletion. How osteoclasts and macrophages promote the action of bone forming osteoblasts is, however, unclear. Since recruitment and differentiation of multi-potential stromal cells/mesenchymal stem cells (MSC generates new active osteoblasts, we investigated whether human osteoclasts and macrophages (generated from cord blood-derived hematopoietic progenitors induce osteoblastic maturation in adipose tissue-derived MSC. When treated with an osteogenic stimulus (ascorbate, dexamethasone and β-glycerophosphate these MSC form matrix-mineralising, alkaline phosphatase-expressing osteoblastic cells. Cord blood-derived progenitors were treated with macrophage colony stimulating factor (M-CSF to form immature proliferating macrophages, or with M-CSF plus receptor activator of NFκB ligand (RANKL to form osteoclasts; culture medium was conditioned for 3 days by these cells to study their production of osteoblastic factors. Both osteoclast- and macrophage-conditioned medium (CM greatly enhanced MSC osteoblastic differentiation in both the presence and absence of osteogenic medium, evident by increased alkaline phosphatase levels within 4 days and increased mineralisation within 14 days. These CM effects were completely ablated by antibodies blocking gp130 or oncostatin M (OSM, and OSM was detectable in both CM. Recombinant OSM very potently stimulated osteoblastic maturation of these MSC and enhanced bone morphogenetic protein-2 (BMP-2 actions on MSC. To determine the influence of macrophage activation on this OSM-dependent activity, CM was collected from macrophage populations treated with M-CSF plus IL-4 (to induce alternative activation or with GM-CSF, IFNγ and LPS to cause classical activation. CM from IL-4 treated macrophages stimulated osteoblastic maturation in MSC, while CM from classically-activated macrophages did not. Thus, macrophage-lineage cells

  1. Targeted disruption in mice of a neural stem cell-maintaining, KRAB-Zn finger-encoding gene that has rapidly evolved in the human lineage.

    Directory of Open Access Journals (Sweden)

    Huan-Chieh Chien

    Full Text Available Understanding the genetic basis of the physical and behavioral traits that separate humans from other primates is a challenging but intriguing topic. The adaptive functions of the expansion and/or reduction in human brain size have long been explored. From a brain transcriptome project we have identified a KRAB-Zn finger protein-encoding gene (M003-A06 that has rapidly evolved since the human-chimpanzee separation. Quantitative RT-PCR analysis of different human tissues indicates that M003-A06 expression is enriched in the human fetal brain in addition to the fetal heart. Furthermore, analysis with use of immunofluorescence staining, neurosphere culturing and Western blotting indicates that the mouse ortholog of M003-A06, Zfp568, is expressed mainly in the embryonic stem (ES cells and fetal as well as adult neural stem cells (NSCs. Conditional gene knockout experiments in mice demonstrates that Zfp568 is both an NSC maintaining- and a brain size-regulating gene. Significantly, molecular genetic analyses show that human M003-A06 consists of 2 equilibrated allelic types, H and C, one of which (H is human-specific. Combined contemporary genotyping and database mining have revealed interesting genetic associations between the different genotypes of M003-A06 and the human head sizes. We propose that M003-A06 is likely one of the genes contributing to the uniqueness of the human brain in comparison to other higher primates.

  2. A rapid NMR-based method for discrimination of strain-specific cell wall teichoic acid structures reveals a third backbone type in Lactobacillus plantarum.

    Science.gov (United States)

    Tomita, Satoru; Tanaka, Naoto; Okada, Sanae

    2017-03-01

    The lactic acid bacterium Lactobacillus plantarum is capable of producing strain-specific structures of cell wall teichoic acid (WTA), an anionic polysaccharide found in the Gram-positive bacterial cell wall. In this study, we established a rapid, NMR-based procedure to discriminate WTA structures in this species, and applied it to 94 strains of L. plantarum. Six previously reported glycerol- and ribitol-containing WTA subtypes were successfully identified from 78 strains, suggesting that these were the dominant structures. However, the level of structural variety differed markedly among bacterial sources, possibly reflecting differences in strain-level microbial diversity. WTAs from eight strains were not identified based on NMR spectra and were classified into three groups. Structural analysis of a partial degradation product of an unidentified WTA produced by strain TUA 1496L revealed that the WTA was 1-O-β-d-glucosylglycerol. Two-dimensional NMR analysis of the polymer structure showed phosphodiester bonds between C-3 and C-6 of the glycerol and glucose residues, suggesting a polymer structure of 3,6΄-linked poly(1-O-β-d-glucosyl-sn-glycerol phosphate). This is the third WTA backbone structure in L. plantarum, following 3,6΄-linked poly(1-O-α-d-glucosyl-sn-glycerol phosphate) and 1,5-linked poly(ribitol phosphate). © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Rapid activation of spleen dendritic cell subsets following lymphocytic choriomeningitis virus infection of mice: analysis of the involvement of type 1 IFN.

    Science.gov (United States)

    Montoya, Maria; Edwards, Matthew J; Reid, Delyth M; Borrow, Persephone

    2005-02-15

    In this study, we report the dynamic changes in activation and functions that occur in spleen dendritic cell (sDC) subsets following infection of mice with a natural murine pathogen, lymphocytic choriomeningitis virus (LCMV). Within 24 h postinfection (pi), sDCs acquired the ability to stimulate naive LCMV-specific CD8+ T cells ex vivo. Conventional (CD11chigh CD8+ and CD4+) sDC subsets rapidly up-regulated expression of costimulatory molecules and began to produce proinflammatory cytokines. Their tendency to undergo apoptosis ex vivo simultaneously increased, and in vivo the number of conventional DCs in the spleen decreased markedly, dropping approximately 2-fold by day 3 pi. Conversely, the number of plasmacytoid (CD11clowB220+) DCs in the spleen increased, so that they constituted almost 40% of sDCs by day 3 pi. Type 1 IFN production was up-regulated in plasmacytoid DCs by 24 h pi. Analysis of DC activation and maturation in mice unable to respond to type 1 IFNs implicated these cytokines in driving infection-associated phenotypic activation of conventional DCs and their enhanced tendency to undergo apoptosis, but also indicated the existence of type 1 IFN-independent pathways for the functional maturation of DCs during LCMV infection.

  4. Rapid phase segregation of P3HT:PCBM composites by thermal annealing for high-performance bulk-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Fang, G.J.; Qin, P.L.; Cheng, F.; Zhao, X.Z. [Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan (China)

    2011-12-15

    The performances of bulk-heterojunction (BHJ) solar cells are investigated for time-dependent thermal annealing with different morphology evolution scales, having special consideration for the diffusion and aggregation of fullerene derivative molecules based on blends of poly(3-hexylthiophene):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM). Meaningfully, rapid formation of dot-like and needle-like crystalline PCBM structures of a few micrometers up to 60 {mu}m in size is obtained with thermal annealing treatment from 2 to 15 min, which dynamically reflects a fast process of PCBM molecule and cluster aggregation. Upon ultrasonic-assisted processing and annealing treatment, the scale of P3HT crystals is drastically increased in view of X-ray diffraction (XRD) patterns, leading to a high hole mobility. And, the P3HT domains can be gradually converted into larger P3HT crystals approved by the decreased full width at half-maximum in the XRD patterns. Corresponding current-voltage curves are measured in quantity and we propose a model to explain the effect of the crystalline degree of P3HT domains and aggregation of PCBM molecules and clusters on the phase segregation, expressing a viewpoint towards high performance of BHJ solar cells. (orig.)

  5. Moving event and moving participant in aspectual conceptions

    Directory of Open Access Journals (Sweden)

    Izutsu Katsunobu

    2016-06-01

    Full Text Available This study advances an analysis of the event conception of aspectual forms in four East Asian languages: Ainu, Japanese, Korean, and Ryukyuan. As earlier studies point out, event conceptions can be divided into two major types: the moving-event type and the moving-participant type, respectively. All aspectual forms in Ainu and Korean, and most forms in Japanese and Ryukyuan are based on that type of event conception. Moving-participant oriented Ainu and movingevent oriented Japanese occupy two extremes, between which Korean and Ryukyuan stand. Notwithstanding the geographical relationships among the four languages, Ryukyuan is closer to Ainu than to Korean, whereas Korean is closer to Ainu than to Japanese.

  6. Concise review: the yin and yang of intestinal (cancer) stem cells and their progenitors

    NARCIS (Netherlands)

    Stange, D.E.; Clevers, H.

    2013-01-01

    The intestine has developed over the last few years into a prime model system for adult stem cell research. Intestinal cells have an average lifetime of 5 days, moving within this time from the bottom of intestinal crypts to the top of villi. This rapid self-renewal capacity combined with an easy to

  7. Rapid Induction of Cerebral Organoids From Human Induced Pluripotent Stem Cells Using a Chemically Defined Hydrogel and Defined Cell Culture Medium.

    Science.gov (United States)

    Lindborg, Beth A; Brekke, John H; Vegoe, Amanda L; Ulrich, Connor B; Haider, Kerri T; Subramaniam, Sandhya; Venhuizen, Scott L; Eide, Cindy R; Orchard, Paul J; Chen, Weili; Wang, Qi; Pelaez, Francisco; Scott, Carolyn M; Kokkoli, Efrosini; Keirstead, Susan A; Dutton, James R; Tolar, Jakub; O'Brien, Timothy D

    2016-07-01

    Tissue organoids are a promising technology that may accelerate development of the societal and NIH mandate for precision medicine. Here we describe a robust and simple method for generating cerebral organoids (cOrgs) from human pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. By using no additional neural induction components, cOrgs appeared on the hydrogel surface within 10-14 days, and under static culture conditions, they attained sizes up to 3 mm in greatest dimension by day 28. Histologically, the organoids showed neural rosette and neural tube-like structures and evidence of early corticogenesis. Immunostaining and quantitative reverse-transcription polymerase chain reaction demonstrated protein and gene expression representative of forebrain, midbrain, and hindbrain development. Physiologic studies showed responses to glutamate and depolarization in many cells, consistent with neural behavior. The method of cerebral organoid generation described here facilitates access to this technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. Tissue organoids are a promising technology with many potential applications, such as pharmaceutical screens and development of in vitro disease models, particularly for human polygenic conditions where animal models are insufficient. This work describes a robust and simple method for generating cerebral organoids from human induced pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. This method, by virtue of its simplicity and use of defined materials, greatly facilitates access to cerebral organoid technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. ©AlphaMed Press.

  8. Phosphorylation of rat kidney Na-K pump at Ser938 is required for rapid angiotensin II-dependent stimulation of activity and trafficking in proximal tubule cells.

    Science.gov (United States)

    Massey, Katherine J; Li, Quanwen; Rossi, Noreen F; Keezer, Susan M; Mattingly, Raymond R; Yingst, Douglas R

    2016-02-01

    How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser(938) were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K · mg protein(-1) · min(-1) and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser(938) is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells.

  9. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-05-14

    This thesis presents a general framework and method for detection of an object in a video based on apparent motion. The object moves, at some unknown time, differently than the “background” motion, which can be induced from camera motion. The goal of proposed method is to detect and segment the object as soon it moves in an online manner. Since motion estimation can be unreliable between frames, more than two frames are needed to reliably detect the object. Observing more frames before declaring a detection may lead to a more accurate detection and segmentation, since more motion may be observed leading to a stronger motion cue. However, this leads to greater delay. The proposed method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms, defined as declarations of detection before the object moves or incorrect or inaccurate segmentation at the detection time. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  10. Contribution of Beta-HPV Infection and UV-Damage to Rapid-onset Cutaneous Squamous Cell Carcinoma during BRAF-inhibition Therapy

    Science.gov (United States)

    Cohen, Daniel N.; Lawson, Steven K.; Shaver, Aaron C.; Du, Liping; Nguyen, Harrison P.; He, Qin; Johnson, Douglas B.; Lumbang, Wilfred A.; Moody, Brent R.; Prescott, James L.; Chandra, Pranil K.; Boyd, Alan S.; Zwerner, Jeffrey P.; Robbins, Jason B.; Tyring, Stephen K.; Rady, Peter L.; Chappell, James D.; Shyr, Yu; Infante, Jeffrey R.; Sosman, Jeffrey A.

    2015-01-01

    Purpose BRAF-inhibition (BRAFi) therapy for advanced melanoma carries a high rate of secondary cutaneous squamous cell carcinoma (cSCC) and risk of other cancers. Ultraviolet (UV) radiation and α-genus human papillomavirus (HPV) are highly associated with SCC, but a novel role for β-genus HPV is suspected in BRAFi-cSCC. Cutaneous β-HPV may act in concert with host and environmental factors in BRAFi-cSCC. Experimental Design Primary BRAFi-cSCC tissue DNA isolated from patients receiving vemurafenib (Vem) or dabrafenib from two cancer centers was analyzed for the presence of cutaneous oncogenic viruses and host genetic mutations. Diagnostic specimens underwent consensus dermatopathology review. Clinical parameters for UV exposure and disease course were statistically analyzed in conjunction with histopathology. Results Twenty-nine patients contributed 69 BRAFi-cSCC lesions. BRAFi-cSCC had wart-like features (BRAFi-cSCC-WF) in 22% of specimens. During Vem therapy, BRAFi-cSCC-WF arose 11.6 weeks more rapidly than conventional-cSCC when controlled for gender and UV-exposure (p-value=0.03). Among all BRAFi-cSCC, β-genus HPV-17, HPV-38, HPV-111 were most frequently isolated and novel β-HPV genotypes were discovered (CTR, CRT-11, CRT-22). Sequencing revealed 63% of evaluated BRAFi-cSCCs harbored RAS mutations with PIK3CA, CKIT, ALK and EGFR mutations also detected. Conclusions We examined clinical, histopathologic, viral and genetic parameters in BRAFi-cSCC demonstrating rapid onset; wart-like histomorphology; β-HPV-17, HPV-38, and HPV-111 infection; UV damage; and novel ALK and CKIT mutations. Discovered β-HPV genotypes expand the spectrum of tumor-associated viruses. These findings enhance our understanding of factors cooperating with BRAF inhibition that accelerate keratinocyte oncogenesis as well as broaden the knowledge base of multifactorial mediators of cancer in general. PMID:25724524

  11. Moving Horizon Estimation and Control

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp

    successful and applied methodology beyond PID-control for control of industrial processes. The main contribution of this thesis is introduction and definition of the extended linear quadratic optimal control problem for solution of numerical problems arising in moving horizon estimation and control...... problems. Chapter 1 motivates moving horizon estimation and control as a paradigm for control of industrial processes. It introduces the extended linear quadratic control problem and discusses its central role in moving horizon estimation and control. Introduction, application and efficient solution....... It provides an algorithm for computation of the maximal output admissible set for linear model predictive control. Appendix D provides results concerning linear regression. Appendix E discuss prediction error methods for identification of linear models tailored for model predictive control....

  12. Moving forward research agendas on international NGOS

    DEFF Research Database (Denmark)

    Opoku-Mensah, Paul Yaw; Lewis, David

    2006-01-01

    This paper sates out an argument for moving forwrd research on non-governmental organisations (NGOs)within development studies. The body of research on NGOs that emerged from the late 1980s onwards focused primarily on NGO roles as development actors and their organisational attributes, but pais ...... less attention to theory and context. While such research had many positive strenghts, it was also criticised for its normative focus, and for its vulnerability to changing development fashions and donor preoccupations. Today, attitudes to NGOs have grown more complex and ambiguous......, and the institutional landscape in which NGOs are embedded is undergoing rapid change. A new wave of NGO-related reserach is underway which gives particular emphasis to theory, agency, method and context. Such approaches have the potential to consolidate the field of NGO research within development studies as a more...

  13. Automatic Moving Object Segmentation for Freely Moving Cameras

    Directory of Open Access Journals (Sweden)

    Yanli Wan

    2014-01-01

    Full Text Available This paper proposes a new moving object segmentation algorithm for freely moving cameras which is very common for the outdoor surveillance system, the car build-in surveillance system, and the robot navigation system. A two-layer based affine transformation model optimization method is proposed for camera compensation purpose, where the outer layer iteration is used to filter the non-background feature points, and the inner layer iteration is used to estimate a refined affine model based on the RANSAC method. Then the feature points are classified into foreground and background according to the detected motion information. A geodesic based graph cut algorithm is then employed to extract the moving foreground based on the classified features. Unlike the existing global optimization or the long term feature point tracking based method, our algorithm only performs on two successive frames to segment the moving foreground, which makes it suitable for the online video processing applications. The experiment results demonstrate the effectiveness of our algorithm in both of the high accuracy and the fast speed.

  14. Carlson Wagonlit Travel is moving

    CERN Multimedia

    2013-01-01

    The renovation of the Main Building continues!   Because of this, Carlson Wagonlit Travel will move from building 62 to building 510 on 4 October and the agency will be closed in the afternoon. An emergency service will be organised for official travels only. Phone: 022 799 75 73 & 022 799 75 78 / e-mail: cern@carlsonwagonlit.ch

  15. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-01-01

    This thesis presents a general framework and method for detection of an object in a video based on apparent motion. The object moves, at some unknown time, differently than the “background” motion, which can be induced from camera motion. The goal

  16. Congestion and residential moving behaviour

    DEFF Research Database (Denmark)

    Larsen, Morten Marott; Pilegaard, Ninette; Van Ommeren, Jos

    2008-01-01

    to congestion. We focus on the equilibrium in which some workers currently living in one region accept jobs in the other, with a fraction of them choosing to commute from their current residence to the new job in the other region and the remainder choosing to move to the region in which the new job is located...

  17. Moving ring reactor 'Karin-1'

    International Nuclear Information System (INIS)

    1983-12-01

    The conceptual design of a moving ring reactor ''Karin-1'' has been carried out to advance fusion system design, to clarify the research and development problems, and to decide their priority. In order to attain these objectives, a D-T reactor with tritium breeding blanket is designed, a commercial reactor with net power output of 500 MWe is designed, the compatibility of plasma physics with fusion engineering is demonstrated, and some other guideline is indicated. A moving ring reactor is composed mainly of three parts. In the first formation section, a plasma ring is formed and heated up to ignition temperature. The plasma ring of compact torus is transported from the formation section through the next burning section to generate fusion power. Then the plasma ring moves into the last recovery section, and the energy and particles of the plasma ring are recovered. The outline of a moving ring reactor ''Karin-1'' is described. As a candidate material for the first wall, SiC was adopted to reduce the MHD effect and to minimize the interaction with neutrons and charged particles. The thin metal lining was applied to the SiC surface to solve the problem of the compatibility with lithium blanket. Plasma physics, the engineering aspect and the items of research and development are described. (Kako, I.)

  18. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong; Sundaramoorthi, Ganesh

    2017-01-01

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon

  19. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Science.gov (United States)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max L.; Christensen, Lance E.; Kelly, James F.

    2017-05-01

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of 2 picomoles at a 1 Hz data rate.

  20. Rapidly Progressive Disseminated Sporotrichosis as the First Presentation of HIV Infection in a Patient with a Very Low CD4 Cell Count.

    Science.gov (United States)

    de Oliveira-Esteves, Isis Cristine Morávia Ribeiro; Almeida Rosa da Silva, Guilherme; Eyer-Silva, Walter de Araujo; Basílio-de-Oliveira, Rodrigo Panno; de Araujo, Luciana Ferreira; Martins, Carlos José; Neves-Motta, Rogério; Velho Mendes de Azevedo, Marcelo Costa; Signorini, Dario José Hart Pontes; Francisco da Cunha Pinto, Jorge; Moura, Lívia Machado; Laterça, Rafael Jacyntho; Pereira, Diogo Raphael Garcia de Oliveira; do Lago, Isabela Vieira; Raphael de Almeida Ferry, Fernando

    2017-01-01

    Sporotrichosis is a human and animal disease caused by species of the Sporothrix schenckii complex. It is classically acquired through traumatic inoculation of fungal elements. Most frequently, sporotrichosis presents as a fixed cutaneous or as a lymphocutaneous form. A much smaller number of cases occur as cutaneous disseminated and disseminated forms. These cases require immediate diagnosis and management to reduce morbidity and mortality. We present the case of a 34-year-old male patient in whom the first presentation of HIV infection was a rapidly progressive sporotrichosis with multiple cutaneous lesions, a high fungal burden in tissues, and pulmonary involvement. He had an extremely low CD4 cell count (06/mm 3 ). Treatment with amphotericin B deoxycholate led to complete clinical resolution. Sporotrichosis remains a neglected opportunistic infection among HIV-infected patients in Rio de Janeiro state, Brazil, and awareness of this potentially fatal infection is of utmost importance if treatment is not to be delayed and if potentially devastating complications are to be avoided.

  1. Rapid Exercise-Induced Mobilization of Dendritic Cells Is Potentially Mediated by a Flt3L- and MMP-9-Dependent Process in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Nathalie Deckx

    2015-01-01

    Full Text Available In healthy individuals, one exercise bout induces a substantial increase in the number of circulating leukocytes, while their function is transiently suppressed. The effect of one exercise bout in multiple sclerosis (MS is less studied. Since recent evidence suggests a role of dendritic cells (DC in the pathogenesis of MS, we investigated the effect of one combined endurance/resistance exercise bout on the number and function of DC in MS patients and healthy controls. Our results show a rapid increase in the number of DC in response to physical exercise in both MS patients and controls. Further investigation revealed that in particular DC expressing the migratory molecules CCR5 and CD62L were increased upon acute physical activity. This may be mediated by Flt3L- and MMP-9-dependent mobilization of DC, as demonstrated by increased circulating levels of Flt3L and MMP-9 following one exercise bout. Circulating DC display reduced TLR responsiveness after acute exercise, as evidenced by a less pronounced upregulation of activation markers, HLA-DR and CD86, on plasmacytoid DC and conventional DC, respectively. Our results indicate mobilization of DC, which may be less prone to drive inflammatory processes, following exercise. This may present a negative feedback mechanism for exercise-induced tissue damage and inflammation.

  2. Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Chao, Ching-Hsun; Chang, Chi-Lung; Chan, Chien-Hung; Lien, Shui-Yang; Weng, Ko-Wei; Yao, Kuo-Shan

    2010-01-01

    TiO 2 nano-particles with an anchored ZnO nano-rod structure were synthesized using the hydrothermal method to grow ZnO nano-rods and coated TiO 2 nano-particles on ZnO nano-rods using the rapid thermal annealing method on ITO conducting glass pre-coated with nano porous TiO 2 film. The XRD study showed that there was little difference in crystal composition for various types of TiO 2 nano-particles anchored to ZnO nano-rods. The as-prepared architecture was characterized using field-emission scanning electron microscopy (FE-SEM). Films with TiO 2 nano-particles anchored to ZnO nano-rods were used as electrode materials to fabricate dye sensitized solar cells (DSSCs). The best solar energy conversion efficiency of 2.397% was obtained by modified electrode material, under AM 1.5 illumination, achieved up to J sc = 15.382 mA/cm 2 , V oc = 0.479 V and fill factor = 32.8%.

  3. The Novel Biomarker of Germ Cell Tumours, Micro-RNA-371a-3p, Has a Very Rapid Decay in Patients with Clinical Stage 1.

    Science.gov (United States)

    Radtke, Arlo; Hennig, Finja; Ikogho, Raphael; Hammel, Johannes; Anheuser, Petra; Wülfing, Christian; Belge, Gazanfer; Dieckmann, Klaus-Peter

    2018-01-01

    Accumulating evidence suggests serum levels of microRNA (miR)-371a-3p to be a novel tumour marker of testicular germ cell tumours (GCTs). Presently, there is only limited information regarding the velocity of decline of serum levels in response to treatment. Twenty-four patients with testicular GCT (20 seminoma, 4 nonseminoma, median age 40 years) with clinical stage 1 had measurements of serum levels of miR-371a-3p preoperatively and repeatedly on the following 3 days. Three had additional tests done within 24 h after surgery. Measurement results were analysed using descriptive statistical methods. Serum levels dropped to 2.62, 1.27, and 0.47% of the preoperative level within 1, 2, and 3 days, respectively. The computed half-life amounts to 3.7-7 h. The velocity of decay is significantly associated with tumour size. Serum-levels of miR-371a-3p have a short half-life of less than 12 h. The rapid decay after treatment represents a valuable feature confirming the usefulness of miR-371a-3p as a valuable serum biomarker of GCT. © 2018 S. Karger AG, Basel.

  4. Safety and Effectiveness of Bone Marrow Cell Concentrate in the Treatment of Chronic Critical Limb Ischemia Utilizing a Rapid Point-of-Care System

    Directory of Open Access Journals (Sweden)

    Venkatesh Ponemone

    2017-01-01

    Full Text Available Critical limb ischemia (CLI is the end stage of lower extremity peripheral vascular disease (PVD in which severe obstruction of blood flow results in ischemic rest pain, ulcers and/or gangrene, and a significant risk of limb loss. This open-label, single-arm feasibility study evaluated the safety and therapeutic effectiveness of autologous bone marrow cell (aBMC concentrate in revascularization of CLI patients utilizing a rapid point-of-care device. Seventeen (17 no-option CLI patients with ischemic rest pain were enrolled in the study. Single dose of aBMC, prepared utilizing an intraoperative point-of-care device, the Res-Q™ 60 BMC system, was injected intramuscularly into the afflicted limb and patients were followed up at regular intervals for 12 months. A statistically significant improvement in Ankle Brachial Index (ABI, Transcutaneous Oxygen Pressure (TcPO2, mean rest pain and intermittent claudication pain scores, wound/ ulcer healing, and 6-minute walking distance was observed following aBMC treatment. Major amputation-free survival (mAFS rate and amputation-free rates (AFR at 12 months were 70.6% and 82.3%, respectively. In conclusion, aBMC injections were well tolerated with improved tissue perfusion, confirming the safety, feasibility, and preliminary effectiveness of aBMC treatment in CLI patients.

  5. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max; Christensen, Lance; Kelly, James F.

    2017-05-05

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L ~ 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of ~2 picomoles at a 1 Hz data rate.

  6. Rapid Electrical Stimulation Increased Cardiac Apoptosis Through Disturbance of Calcium Homeostasis and Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Le Geng

    2018-06-01

    Full Text Available Background/Aims: Heart failure induced by tachycardia, the most common arrhythmia, is frequently observed in clinical practice. This study was designed to investigate the underlying mechanisms. Methods: Rapid electrical stimulation (RES at a frequency of 3 Hz was applied on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs for 7 days, with 8 h/day and 24 h/day set to represent short-term and long-term tachycardia, respectively. Age-matched hiPSC-CMs without electrical stimulation or with slow electrical stimulation (1 Hz were set as no electrical stimulation (NES control or low-frequency electrical stimulation (LES control. Following stimulation, JC-1 staining flow cytometry analysis was performed to examine mitochondrial conditions. Apoptosis in hiPSC-CMs was evaluated using Hoechst staining and Annexin V/propidium iodide (AV/PI staining flow cytometry analysis. Calcium transients and L-type calcium currents were recorded to evaluate calcium homeostasis. Western blotting and qPCR were performed to evaluate the protein and mRNA expression levels of apoptosis-related genes and calcium homeostasis-regulated genes. Results: Compared to the controls, hiPSC-CMs following RES presented mitochondrial dysfunction and an increased apoptotic percentage. Amplitudes of calcium transients and L-type calcium currents were significantly decreased in hiPSC-CMs with RES. Molecular analysis demonstrated upregulated expression of Caspase3 and increased Bax/Bcl-2 ratio. Genes related to calcium re-sequence were downregulated, while phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII was significantly upregulated following RES. There was no significant difference between the NES control and LES control groups in these aspects. Inhibition of CaMKII with 1 µM KN93 partly reversed these adverse effects of RES. Conclusion: RES on hiPSC-CMs disturbed calcium homeostasis, which led to mitochondrial stress, promoted cell apoptosis and

  7. Particle Trapping and Banding in Rapid Colloidal Solidification

    KAUST Repository

    Elliott, J. A. W.; Peppin, S. S. L.

    2011-01-01

    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related

  8. Neurotrophin responsiveness of sympathetic neurons is regulated by rapid mobilization of the p75 receptor to the cell surface through TrkA activation of Arf6.

    Science.gov (United States)

    Edward Hickman, F; Stanley, Emily M; Carter, Bruce D

    2018-05-22

    availability, may provide insight into how and why neurodegenerative processes manifest and reveal new therapeutic targets. Results from this study indicate a novel mechanism by which p75NTR can be rapidly shuttled to the cell surface from existing intracellular pools and explores a unique pathway by which NGF regulates the sympathetic innervation of target tissues, which has profound consequences for the function of these organs. Copyright © 2018 the authors.

  9. Moving Manifolds in Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    David V. Svintradze

    2017-08-01

    Full Text Available We propose dynamic non-linear equations for moving surfaces in an electromagnetic field. The field is induced by a material body with a boundary of the surface. Correspondingly the potential energy, set by the field at the boundary can be written as an addition of four-potential times four-current to a contraction of the electromagnetic tensor. Proper application of the minimal action principle to the system Lagrangian yields dynamic non-linear equations for moving three dimensional manifolds in electromagnetic fields. The equations in different conditions simplify to Maxwell equations for massless three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic equations and to the Poisson-Boltzmann equation.

  10. Stand up and move forward

    OpenAIRE

    de Jong, Johan; Shokoohi, Roya

    2017-01-01

    Insufficient physical activity or being inactive is one of the leading risk factors for non-communicable diseases worldwide. Globally between 6-10% of