WorldWideScience

Sample records for rapidly hydrated sorbent

  1. Desulfurization characteristics of rapidly hydrated sorbents with various adhesive carrier particles for a semidry CFB-FGD system.

    Science.gov (United States)

    You, Changfu; Li, Yuan

    2013-03-19

    Semidry flue gas desulfurization (FGD) experiments were conducted using rapidly hydrated sorbents with four different adhesive carrier particles: circulation ash from a circulating fluidized bed boiler (CFBB circulation ash), fly ash from the first electrical field of the electrostatic precipitator of a circulating fluidized bed boiler (CFBB ESP ash), fly ash from a chain boiler (chain boiler ash), and river sand smaller than 1 mm. The influences of various adhesive carrier particles and operating conditions on the desulfurization characteristics of the sorbents were investigated, including sprayed water, reaction temperature, and the ratio of calcium to sulfur (Ca/S). The experimental results indicated that the rapidly hydrated sorbents had better desulfurization characteristics by using adhesive carrier particles which possessed better pore, adhesion, and fluidization characteristics. The desulfurization efficiency of the system increased as the reaction temperature decreased, it improved from 35% to 90% as the mass flow rate of the sprayed water increased from 0 to 10 kg/h, and it increased from 65.6% to 82.7% as Ca/S increased from 1.0 to 2.0. Based on these findings, a new semidry circulating fluidized bed (CFB)-FGD system using rapidly hydrated sorbent was developed. Using the rapidly hydrated sorbent, this system uses a cyclone separator instead of an ESP or a bag filter to recycle the sorbent particles, thereby decreasing the system flow resistance, saving investment and operating costs of the solids collection equipment.

  2. Organoclay Sorbents versus Soil Organic Matter: Sorbent Hydration Effect on Interactions with Organic Compounds

    Science.gov (United States)

    Borisover, M.; Gerstl, Z.; Burshtein, F.; Yariv, S.; Mingelgrin, U.

    2009-04-01

    The assemblages of soil organic matter (SOM) and mineral components present in soils are considerably more heterogeneous than are organoclays and hence the latter cannot directly serve as models for the complex systems that are soils. Yet, comparison between the behavior of soils and of organoclays vis a vis organic sorbates may shed light on the nature of the interaction of organic sorbates with SOM and the architecture of this key environmental sorbent. This presentation provides a comparative examination of recently published data on the effect of sorbent hydration on sorption interactions of selected probe organic compounds with a model organoclay (Na-montmorillonite exchanged with n-hexadecyltrimethylammonium) and model SOM. Effect of the sorbent hydration has been established by comparing the sorption isotherms of a probe organic compound measured on a (dried) sorbent from water and from inert, non-aqueous medium (n-hexadecane). To eliminate differences in compound-bulk solvent interactions, a comparison of sorption isotherms was carried out using the compound activities instead of compound concentrations in a solution phase. A different effect of sorbent hydration on the interactions of organic compounds with organoclays and with SOM is observed. While sorbent hydration may significantly enhance the sorbate's interactions with SOM, in the case of the organoclays it strengthened interactions to a much lesser extent or even weakened them. This difference may be associated with a large number of functional groups present in SOM and the non-covalent, intra- as well as inter-molecular links they form. Such links block sorbate access but are broken in the presence of water. This effect is not present in organoclays which lack functional groups in the quasi-organic layer. This contrast supports the previously proposed idea that the presence and disruption of non-covalent linkages formed between functional groups in the SOM structure as well as a direct involvement

  3. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  4. Concentration and immobilization of 137Cs from liquid radioactive waste using sorbents based on hydrated titanium and zirconium oxides

    Science.gov (United States)

    Voronina, A. V.; Noskova, A. Y.; Gritskevich, E. Y.; Mashkovtsev, M. A.; Semenishchev, V. S.

    2017-09-01

    The possibility of use of sorbents based on hydrated titanium and zirconium oxides (T-3A, T-35, NPF-HTD) for concentration and immobilization of 137Cs from liquid radioactive waste of various chemical composition (fresh water, seawater, solutions containing NaNO3, ammonium acetate, EDTA) was evaluated. It was shown that the NPF-HTD and T-35 sorbents separate 137Cs from fresh water and seawater with distribution coefficients as high as 6.2.104 and 6.1.104, 4.0.105 and 1.6.105 L kg-1 respectively; in 1 M ammonium acetate these values were 2.0.103 and 1.0.103 L kg-1. The NPF-HTD sorbent showed the highest selectivity for cesium in NaNO3 solution: cesium distribution coefficients in 1M NaNO3 was 1.4.106 L kg-1. All studied sorbents are suitable for deactivation of solutions containing EDTA. Cesium distribution coefficients were around 102-103 L kg-1 depending on EDTA concentration. Chemical stability of the sorbents was also studied. It was shown that 137Cs leaching rate from all sorbents meet the requirements for matrix materials.

  5. Evaluation of Ohio fly ash/hydrated lime slurries and Type 1 cement sorbent slurries in the U.C. Pilot spray dryer facility. Final report, September 1, 1993--August 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Keener, T.C.; Khang, S.J.; Meyers, G.R. [Cincinnati Univ., OH (United States)

    1995-02-01

    The objectives of this year`s work included an evaluation of the performance of fly ash/hydrated lime as well as hydrated cement sorbents for spray drying adsorption (SDA) of SO{sub 2} from a simulated high-sulfur flue gas. These sorbents were evaluated for several different hydration methods, and under different SDA operating conditions. In addition, the physical properties of surface area and porosity of the sorbents was determined. The most reactive fly ash/hydrated lime sorbent studied was prepared at room temperature with milled fly ash. Milling fly ash prior to hydration with lime did have a beneficial effect on calcium utilization. No benefit in utilization was experienced either by hydrating the slurries at a temperature of 90{degrees}C as compared to hydration at room temperature, or by increasing hydration time. While the surface areas varied greatly from sorbent to sorbent, the pore size distributions indicated ``ink bottle`` pores with surface porosity on the order of 0.5 microns. No correlation could be drawn between the surface area of the sorbents and calcium utilization. These results suggest that the composition of the resulting sorbent might be more important than its surface area. The most effective sorbent studied this year was produced by hydrating cement for 3 days at room temperature. This sorbent provided a removal efficiency and a calcium utilization over 25 percent higher than baseline results at an approach to saturation temperature of 30{degrees}F and a stoichiometric ratio of 0.9. A maximum SO{sub 2} removal efficiency of about 90 percent was experienced with this sorbent at an approach to saturation temperature of 20{degrees}F.

  6. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Science.gov (United States)

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  7. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.

    2012-10-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  8. Surface hydration drives rapid water imbibition into strongly hydrophilic nanopores.

    Science.gov (United States)

    Fang, Chao; Qiao, Rui

    2017-08-09

    The imbibition of liquids into nanopores plays a critical role in numerous applications, and most prior studies focused on imbibition due to capillary flows. Here we report molecular simulations of the imbibition of water into single mica nanopores filled with pressurized gas. We show that, while capillary flow is suppressed by the high gas pressure, water is imbibed into the nanopore through surface hydration in the form of monolayer liquid films. As the imbibition front moves, the water film behind it gradually densifies. Interestingly, the propagation of the imbibition front follows a simple diffusive scaling law. The effective diffusion coefficient of the imbibition front, however, is more than ten times larger than the diffusion coefficient of the water molecules in the water film adsorbed on the pore walls. We clarify the mechanism for the rapid water imbibition observed here.

  9. Low-δD hydration rinds in Yellowstone perlites record rapid syneruptive hydration during glacial and interglacial conditions

    Science.gov (United States)

    Bindeman, Ilya N.; Lowenstern, Jacob B.

    2016-01-01

    Hydration of silicic volcanic glass forms perlite, a dusky, porous form of altered glass characterized by abundant “onion-skin” fractures. The timing and temperature of perlite formation are enigmatic and could plausibly occur during eruption, during post-eruptive cooling, or much later at ambient temperatures. To learn more about the origin of natural perlite, and to fingerprint the hydration waters, we investigated perlitic glass from several synglacial and interglacial rhyolitic lavas and tuffs from the Yellowstone volcanic system. Perlitic cores are surrounded by a series of conchoidal cracks that separate 30- to 100-µm-thick slivers, likely formed in response to hydration-induced stress. H2O and D/H profiles confirm that most D/H exchange happens together with rapid H2O addition but some smoother D/H variations may suggest separate minor exchange by deuterium atom interdiffusion following hydration. The hydrated rinds (2–3 wt% H2O) transition rapidly (within 30 µm, or by 1 wt% H2O per 10 µm) to unhydrated glass cores. This is consistent with quenched “hydration fronts” where H2O diffusion coefficients are strongly dependent on H2O concentrations. The chemical, δ18O, and δD systematics of bulk glass records last equilibrium between ~110 and 60 °C without chemical exchange but with some δ18O exchange. Similarly, the δ18O of water extracted from glass by rapid heating suggests that water was added to the glass during cooling at hydration at temperatures as low as 60 °C; prolonged exposure to high temperature of 175°–225° during water addition is less likely as the glass would lose alkalies and should alter to clays within days. A compilation of low-temperature hydration diffusion coefficients suggests ~2 orders of magnitude higher rates of diffusion at 60–110 °C temperatures, compared with values expected from extrapolation of high-temperature (>400 °C) experimental data. The thick hydration rinds in perlites, measuring

  10. Low-δD hydration rinds in Yellowstone perlites record rapid syneruptive hydration during glacial and interglacial conditions

    Science.gov (United States)

    Bindeman, Ilya N.; Lowenstern, Jacob B.

    2016-11-01

    Hydration of silicic volcanic glass forms perlite, a dusky, porous form of altered glass characterized by abundant "onion-skin" fractures. The timing and temperature of perlite formation are enigmatic and could plausibly occur during eruption, during post-eruptive cooling, or much later at ambient temperatures. To learn more about the origin of natural perlite, and to fingerprint the hydration waters, we investigated perlitic glass from several synglacial and interglacial rhyolitic lavas and tuffs from the Yellowstone volcanic system. Perlitic cores are surrounded by a series of conchoidal cracks that separate 30- to 100-µm-thick slivers, likely formed in response to hydration-induced stress. H2O and D/H profiles confirm that most D/H exchange happens together with rapid H2O addition but some smoother D/H variations may suggest separate minor exchange by deuterium atom interdiffusion following hydration. The hydrated rinds (2-3 wt% H2O) transition rapidly (within 30 µm, or by 1 wt% H2O per 10 µm) to unhydrated glass cores. This is consistent with quenched "hydration fronts" where H2O diffusion coefficients are strongly dependent on H2O concentrations. The chemical, δ18O, and δD systematics of bulk glass records last equilibrium between 110 and 60 °C without chemical exchange but with some δ18O exchange. Similarly, the δ18O of water extracted from glass by rapid heating suggests that water was added to the glass during cooling at 400 °C) experimental data. The thick hydration rinds in perlites, measuring hundreds of microns, preserve the original D/H values of hydrating water as a recorder of paleoclimate conditions. Measured δD values in perlitic lavas are -150 to -191 or 20-40 ‰ lower than glass hydrated by modern Yellowstone waters. This suggests that Yellowstone perlites record the low-δD signature of glacial ice. Cooling calculations, combined with the observed high water diffusion coefficients noted for 60-150 °C, suggest that if sufficient hot

  11. Sorbent materials for rapid remediation of wash water during radiological event relief

    Energy Technology Data Exchange (ETDEWEB)

    Jolin, William C.; Kaminski, Michael

    2016-11-01

    Procedures for removing harmful radiation from interior and exterior surfaces of homes and businesses after a nuclear or radiological disaster may generate large volumes of radiologically contaminated waste water. Rather than releasing this waste water to potentially contaminate surrounding areas, it is preferable to treat it onsite. Retention barrels are a viable option because of their simplicity in preparation and availability of possible sorbent materials. This study investigated the use of aluminosilicate clay minerals as sorbent materials to retain 137Cs, 85Sr, and 152Eu. Vermiculite strongly retained 137Cs, though other radionuclides displayed diminished affinity for the surface. Montmorillonite exhibited increased affinity to sorb 85Sr and 152Eu in the presence of higher concentrations of 137Cs. To simulate flow within retention barrels, vermiculite was mixed with sand and used in small-scale column experiments. The GoldSim contaminate fate module was used to model breakthrough and assess the feasibility of using clay minerals as sorbent materials in retention barrels. The modeled radionuclide breakthrough profiles suggest that vermiculite-sand and montmorillonite-sand filled barrels could be used for treatment of contaminated water generated from field operations.

  12. CO2 Hydrate Slurries For Rapid Chilling Of Fresh Food Products

    NARCIS (Netherlands)

    Lobregt, S.; Broeze, J.; Infante Ferreira, C.A.; Groll, Eckhard

    2016-01-01

    For rapid chilling fresh products we propose the immersion in melting carbon dioxide hydrate crystals, produced at +8 oC and 30 bar. We compare the chilling time of a specific fresh product from 30 to 4 oC making use of a “shock freezer” (2 m/s air velocity, air at -10 oC) and applying a slurry of

  13. Aerogel sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Begag, Redouane; Rhine, Wendell E; Dong, Wenting

    2016-04-05

    The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.

  14. Hydration, hydration, hydration

    National Research Council Canada - National Science Library

    Miller, Veronica S; Bates, Graham P

    2010-01-01

    .... Although the importance of adequate hydration in combating heat stress is universally recognized, studies in a range of worker groups have demonstrated a disturbingly poor hydration level in a high...

  15. Rapid analysis of polybrominated diphenyl ethers in soil by matrix solid-phase dispersion using bamboo charcoal as dispersive sorbent.

    Science.gov (United States)

    Yuan, Jin-Peng; Zhao, Ru-Song; Cheng, Chuan-Ge; Wang, Xiao-Li; Cui, Zhao-Jie

    2012-09-01

    An expeditious and sensitive method for the analysis of eight major polybrominated diphenyl ethers (PBDEs) in soil is presented in this study. The method is based on matrix solid-phase dispersion (MSPD) extraction and gas chromatography with negative chemical ionization mass spectrometry. Bamboo charcoal, a cheap and potentially useful material, was selected for the first time as the MSPD dispersive sorbent. Parameters affecting the extraction efficiency, including the ratio of sorbent to sample, and the type and amount of eluent, were investigated and optimized in detail. Under optimal conditions, the spiked recovery of the PBDEs was in the range 71.7-105.9%, and the limits of detection varied from 10 to 400 pg g(-1) (dry weight). Excellent linearity with correlation coefficients (r(2)) of 0.9992-0.9999 was obtained over the concentration range of 0.10-500 ng g(-1) , except for BDE-209, for which the effective concentration range was 1.0-5000 ng g(-1) . The developed method has been successfully applied to the analysis of PBDEs in real soil samples. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rapid identification and quantification of methamphetamine and amphetamine in hair by gas chromatography/mass spectrometry coupled with micropulverized extraction, aqueous acetylation and microextraction by packed sorbent.

    Science.gov (United States)

    Miyaguchi, Hajime; Iwata, Yuko T; Kanamori, Tatsuyuki; Tsujikawa, Kenji; Kuwayama, Kenji; Inoue, Hiroyuki

    2009-05-01

    We developed a rapid identification and quantification method for the toxicological analysis of methamphetamine and amphetamine in human hair by gas chromatography/mass spectrometry coupled with a novel combination of micropulverized extraction, aqueous acetylation and microextraction by packed sorbent (MEPS) named MiAMi-GC/MS. A washed hair sample (1-5 mg) was micropulverized for 5 min in a 2 mL plastic tube with 250 microL of water. An anion-exchange sorbent was added to adsorb anionic interferences. After removing the residue with a membrane-filter unit, sodium carbonate and acetic anhydride was admixed in turn. Acetylation was completed in approximately 20 min at room temperature. The acetylated analytes in the reaction liquid were concentrated to an octadecylsilica sorbent packed in the needle of a syringe by a CombiPAL autosampler. Elution was carried out with 50 microL of methanol, and the entire eluate injected into a gas chromatograph using a programmable temperature vaporizing (PTV) technique. The time required for sample preparation and GC/MS analysis was approximately 1 h from a washed hair sample, and an evaporation process was not required. Ranges for quantification were 0.20-50 (ng/mg) each for methamphetamine and amphetamine using 1 mg of hair. Accuracy and relative standard deviation (RSD) were evaluated intraday and interday at three concentrations, and the results were within the limit of a guidance issued by U.S. Food and Drug Administration. For identification, full-scan mass spectra of methamphetamine and amphetamine were obtained using 5 mg of fortified hair samples at 0.2 ng/mg. The extraction device of MEPS was durable for at least 300 extractions, whereas the liner of the gas chromatograph should be replaced after 20-30 times use. The carry over was estimated to be about 1-2%. This sample-preparation method coupled with GC/MS is fast and labor-saving in comparison with conventional methods.

  17. Opto-thermal transient emission radiometry for rapid, non-destructive and non-contact determination of hydration and hydration depth profile in the skin of a grape

    NARCIS (Netherlands)

    Guo, X.; Bicanic, D.D.; Keijser, K.; Imhof, R.

    2003-01-01

    .The concept of optothermal transient emission radiometry at a wavelength of 2.94 µm was applied to non-destructively determine the level of hydration and the profile of hydration in the skin of intact fresh grapes taken from top and bottom sections of the same bunch.

  18. Novel sorbents for environmental remediation

    Science.gov (United States)

    Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David

    2014-05-01

    Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session

  19. Preparation of diatomite/Ca(OH){sub 2} sorbents and modelling their sulphation reaction Istanbul Technical University, Istanbul (Turkey). Chemical and Metallurgical Engineering Faculty

    Energy Technology Data Exchange (ETDEWEB)

    Nilgun Karatepe; Nilufer Erdoan; Aysegul Ersoy-Mericboyu; Sadriye Kucukbayrak

    2004-09-01

    Mixtures of Ca(OH){sub 2} and diatomite were hydrated at different conditions to produce reactive SO{sub 2} sorbents. Two different hydration techniques were used; namely, atmospheric and pressure hydration. The effect of the hydration temperature, time and diatomite/Ca(OH){sub 2} weight ratio on the physical properties of the activated sorbents were investigated. In atmospheric hydration, it was found that increasing the temperature and hydration time caused an increase in the total surface area of the sorbents. However, surface area values of the sorbents prepared from mixtures which have different diatomite/Ca(OH){sub 2} weight ratio were generally not changed significantly. In pressure hydration, the surface area of the activated sorbents was positively affected from the hydration temperature and pressure. Finally, Ca(OH){sub 2} and two diatomite/Ca(OH){sub 2} sorbents were sulphated at constant temperature (338 K) using a synthetic gaseous mixture consisting of 5% O{sub 2}, 10% CO{sub 2}, 5000 ppm SO{sub 2} and the balance of nitrogen with a 55% relative humidity. The sulphation reaction of these sorbents were investigated and modelled. The unreacted shrinking core model was chosen to describe this non-catalytic solid/gas (hydrated sorbent/SO{sub 2}) reaction mechanism. The experimental results were found to be correlated successfully by this model.

  20. New Composite Sorbents for Caesium and Strontium Ions Sorption

    Directory of Open Access Journals (Sweden)

    Mykola Kartel

    2017-06-01

    Full Text Available Composite lignocellulose-inorganic sorbents derived from plant residues of agriculture and food industry, modified with ferrocyanides of d-metals and hydrated antimony pentoxide were prepared. Caesium and strontium ions removal from water was tested by radiotracer method. Sorption of heavy metal ions, methylene blue, gelatin, vitamin B12 was also studied.

  1. Desulfurization sorbent regeneration

    Science.gov (United States)

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  2. Effect of sorbent attrition on utilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Keener, T.C.; Khang, S.J.; Li, G. [Cincinnati Univ., OH (United States). Dept. of Civil and Environmental Engineering

    1993-09-30

    The overall objective for 1992-1993 was to investigate ways of using chemical attrition to improve dolomitic sorbent utilization for duct injection processes. It is known that one of the primary mechanisms for poor sorbent utilization lies in the fact that the products of SO{sub 2}-sorbent reactions have such large molar volumes that they plug the pores necessary for SO{sub 2} to diffuse into the particle interior. Any method that may cause the fracture of used sorbent particles will thus expose fresh un-reacted surface of sorbent and result in available sorbent recovery. There are several mechanisms that may cause the breakage of particles. External mechanical stress may be exerted on a particle and cause particle fracture when it exceeds the cohesive forces to prevent the breakage. Heat and pressure can also induce particle fracture. In addition, chemical reaction is also a very important factor in leading to particle fracture. Among many sorbents currently used in desulfurization processes, dolomitic lime may be a good candidate for use in medium temperature duct injection. Dolomites are characterized by a large portion of magnesium (instead of high calcium) in the crystal structure of common limestones. Because of the special composition of dolomitic lime and its reactions with flue gas constituents under medium temperature duct injection conditions, a unique structure is formed for spent dolomitic particles that provides for the potential of recovering available sorbent just by hydration-induced particle fracture. By re-injecting the recovered sorbent, it is expected that a high sorbent utilization can be obtained.

  3. Sorbent preparation/modification/additives. Final report, September 1, 1992--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Prudich, M.E.; Venkataramakrishnan, R. [Ohio Univ., Athens, OH (United States)

    1994-02-01

    Sorbent preparation techniques used today have generally been adapted from techniques traditionally used by the lime industry. Traditional dry hydration and slaking processes have been optimized to produce materials intended for use in the building industry. These preparation techniques should be examined with an eye to optimization of properties important to the SO{sub 2} capture process. The study of calcium-based sorbents for sulfur dioxide capture is complicated by two factors: (1) little is known about the chemical mechanisms by which the standard sorbent preparation and enhancement techniques work, and (2) a sorbent preparation technique that produces a calcium-based sorbent that enjoys enhanced calcium utilization in one regime of operation [flame zone (>2400 F), in-furnace (1600--2400 F), economizer (800--1100 F), after air preheater (<350 F)] may not produce a sorbent that enjoys enhanced calcium utilization in the other reaction zones. Again, an in-depth understanding of the mechanism of sorbent enhancement is necessary if a systematic approach to sorbent development is to be used. As a long-term goal, an experimental program is being carried out for the purpose of (1) defining the effects of slaking conditions on the properties of calcium-based sorbents, (2) determining how the parent limestone properties of calcium-based sorbents, and (3) elucidating the mechanism(s) relating to the activity of various dry sorbent additives. An appendix contains a one-dimensional duct injection model with modifications to handle the sodium additives.

  4. Sorbent Scoping Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chancellor, Christopher John [Los Alamos National Lab. (LANL), Carlsbad, NM (United States). Difficult Waste Team

    2016-11-14

    The Los Alamos National Laboratory–Carlsbad Operations (LANL-CO) office was tasked by the DOE CBFO, Office of the Manager to perform a review of the acceptable knowledge (AK) to identify the oxidizers and sorbents in transuranic (TRU) waste streams, to conduct scoping studies on the oxidizers and sorbents identified in AK review to inform the Quality Level 1 (QL1) testing, and to conduct a series of QL1 tests to provide the scientific data to support a basis of knowledge document for determining the criteria for (1) accepting waste at the Waste Isolation Pilot Plant (WIPP) without treatment, (2) determining waste that will require treatment, and (3) if treatment is required, how the treatment must be performed. The purpose of this report is to present the results of the AK review of sorbents present in active waste streams, provide a technical analysis of the sorbent list, report the results of the scoping studies for the fastest-burning organic sorbent, and provide the list of organic and inorganic sorbents to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-001, Oxidizer Scoping Studies, has similar information for oxidizers identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  5. Simultaneous SO{sub 2} and NO removal using sorbents derived from rice husks: An optimisation study

    Energy Technology Data Exchange (ETDEWEB)

    L.C. Lau; K.T. Lee; A.R. Mohamed [Universiti Sains Malaysia, Pulau Pinang (Malaysia). School of Chemical Engineering

    2011-05-15

    In this study, rice husk-derived ash (RHA) was hydrated with CaO and then impregnated with copper to synthesize a sorbent that was subsequently tested for its capacity in simultaneous removal of SO{sub 2} and NO from a simulated flue gas. The effect of various sorbent preparation parameters, including copper loading, RHA/CaO ratio, hydration period and NaOH concentration, on the desulphurisation/denitrification capacity of the sorbents was studied using Design-Expert Version 6.0.6 software. Specifically, central composite design (CCD) coupled with response surface method (RSM) was used. The individual parameters that were found to significantly affect the sorbent capacity were RHA/CaO ratio and NaOH concentration. In addition, the interactive effect between RHA/CaO ratio, hydration period and NaOH concentration was also found to have a significant effect on the sorbent activity. The preparation condition for optimal sorbent activity was found to be CuO loading of 3.0%, RHA/CaO ratio of 1.4, hydration period of 20.0 h and NaOH concentration of 0.2 M. Characterisation of the sorbent was performed using scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen adsorption-desorption method to describe the effect of the sorbent preparation parameters on its desulphurisation/denitrification activity. 23 refs., 3 figs., 5 tabs.

  6. Sorbents Remove Oxygen At High Temperatures

    Science.gov (United States)

    Sharma, Pramod K.

    1995-01-01

    Cobalt-exchanged, platinized zeolites 13X and L found conveniently reducible in hot gaseous mixture of hydrogen and nitrogen and thereafter useful as sorbents of trace amounts of oxygen at high temperatures. Aided by catalytic action of platinum, sorbents exhibit rapid oxygen-sorption kinetics and, according to thermodynamic properties of O2/CoO system, capable of lowering level of oxygen in otherwise inert gaseous atmosphere to less than 1 part per trillion in temperature range of 400 to 800 degrees C. Inert atmospheres with these oxygen levels required for processing of certain materials in semiconductor industry.

  7. Mercury removal sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  8. Encapsulated liquid sorbents for carbon dioxide capture.

    Science.gov (United States)

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  9. Evaluation of Type I cement sorbent slurries in the U.C. pilot spray dryer facility. Final report, November 1, 1994--February 28, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Keener, T.C.; Khang, S.J.

    1996-07-31

    This research was focused on evaluating hydrated cement sorbents in the U. C. pilot spray dryer. The main goal of this work was to determine the hydration conditions resulting in reactive hydrated cement sorbents. Hydration of cement was achieved by stirring or by grinding in a ball mill at either room temperature or elevated temperatures. Also, the effects of several additives were studied. Additives investigated include calcium chloride, natural diatomite, calcined diatomaceous earth, and fumed silica. The performance of these sorbents was compared with conventional slaked lime. Further, the specific surface area and pore volume of the dried SDA sorbents were measured and compared to reactivity. Bench-scale tests were performed to obtain a more detailed picture of the development of the aforementioned physical properties as a function of hydration time.

  10. Supported-sorbent injection. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S. Jr.

    1997-07-01

    A new retrofitable, wastefree acid-rain control concept was pilot-tested at Ohio Edison`s high-sulfur coal-fired R.E. Burger generating station at the 2-MWe level. During the project, moistened {open_quotes}supported{close_quotes} sorbents, made from a combination of lime and vermiculite or perlite, were injected into a humidified 6,500-acfm flue-gas slipstream. After the sorbents reacted with the sulfur dioxide in the flue gas, they were removed from ductwork with a cyclone and baghouse. The $1.0 million project was co-funded by Sorbent Technologies Corporation, the Ohio Edison Company, and the Ohio Coal Development Office. The project included a preliminary bench-scale testing phase, construction of the pilot plant, parametric studies, numerous series of recycle tests, and a long-term run. The project proceeded as anticipated and achieved its expected results. This duct injection technology successfully demonstrated SO{sub 2}-removal rates of 80 to 90% using reasonable stoichiometric injection ratios (2:1 Ca:S) and approach temperatures (20-25F). Under similar conditions, dry injection of hydrated lime alone typically only achieves 40 to 50% SO{sub 2} removal. During the testing, no difficulties were encountered with deposits in the ductwork or with particulate control, which have been problems in tests of other duct-injection schemes.

  11. ADVANCED SORBENT DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Javad Abbasian

    2000-01-01

    The overall objective of this program was to develop regenerable sorbents for use in the temperature range of 343 to 538 C (650 to 1000 F) to remove hydrogen sulfide (H{sub 2}S) from coal-derived fuel gases in a fluidized-bed reactor. The goal was to develop sorbents that are capable of reducing the H{sub 2}S level in the fuel gas to less than 20 ppmv in the specified temperature range and pressures in the range of 1 to 20 atmospheres, with chemical characteristics that permit cyclic regeneration over many cycles without a drastic loss of activity, as well as physical, characteristics that are compatible with the fluidized bed application. This topical report focuses on the investigation directed toward preparation of zinc-based sorbents using the sol-gel approach that has been shown to require only a moderate temperature for calcination, while resulting in significantly more attrition-resistant sorbents. The sorbents prepared in this part of the investigation and the results from their evaluation in packed-bed and fluidized-bed reactors are described in this report.

  12. Long Duration Sorbent Testbed

    Science.gov (United States)

    Knox, James; Long, David; Miller, Lee; Thomas, John; Cmarik, Greg; Howard, David

    2016-01-01

    The LDST is a flight experiment demonstration designed to expose current and future candidate carbon dioxide removal system sorbents to an actual crewed space cabin environment to assess and compare sorption working capacity degradation resulting from long term operation. An analysis of sorbent materials returned to earth after approximately one year of operation in the International Space Station's (ISS) Carbon Dioxide Removal Assembly (CDRA) indicated as much as a 70% loss of working capacity of the silica gel desiccant material at the extreme system inlet location, with a gradient of capacity loss down the bed. The primary science objective is to assess the degradation of potential sorbents for exploration class missions and ISS upgrades when operated in a true crewed space cabin environment. A secondary objective is to compare degradation of flight test to a ground test unit with contaminant dosing to determine applicability of ground testing.

  13. Hydration lubrication

    National Research Council Canada - National Science Library

    Klein, Jacob

    2013-01-01

    The hydration lubrication paradigm, whereby hydration layers are both strongly held by the charges they surround, and so can support large pressures without being squeezed out, and at the same time...

  14. Sorbent Selection Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Ziegler, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Fortner, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Mertz, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gelis, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Tsai, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Bakel, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States); Chun, P. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2009-07-24

    This report describes batch studies comparing the uptake of 99Mo from uranium solutions, chemical and radiolytic stability, and sorbent physical properties. The uranyl nitrate concentration being considered for AHR operation is 150 g-U/L at a pH 1.

  15. Inorganic ion sorbent method

    Science.gov (United States)

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.

    2007-07-17

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  16. Inorganic ion sorbents

    Science.gov (United States)

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.

    2006-10-17

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  17. Combustion of Methane Hydrate

    Science.gov (United States)

    Roshandell, Melika

    from the experimental component of the research was that hydrates can burn completely, and that they burn most rapidly just after ignition and then burn steadily when some of the water in the dissociated zone is allowed to drain away. Excessive surfactant in the water creates a foam layer around the hydrate that acts as an insulator. The layer prevents sufficient heat flux from reaching the hydrate surface below the foam to release additional methane and the hydrate flame extinguishes. No self-healing or ice-freezing processes were observed in any of the combustion experiments. There is some variability, but a typical hydrate flame is receiving between one and two moles of water vapor from the liquid dissociated zone of the hydrate for each mole of methane it receives from the dissociating solid region. This limits the flame temperature to approximately 1800 K. In the theoretical portion of the study, a physical model using an energy balance from methane combustion was developed to understand the energy transfer between the three phases of gas, liquid and solid during the hydrate burn. Also this study provides an understanding of the different factors impacting the hydrate's continuous burn, such as the amount of water vapor in the flame. The theoretical study revealed how the water layer thickness on the hydrate surface, and its effect on the temperature gradient through the dissociated zone, plays a significant role in the hydrate dissociation rate and methane release rate. Motivated by the above mentioned observation from the theoretical analysis, a 1-D two-phase numerical simulation based on a moving front model for hydrate dissociation from a thermal source was developed. This model was focused on the dynamic growth of the dissociated zone and its effect on the dissociation rate. The model indicated that the rate of hydrate dissociation with a thermal source is a function of the dissociated zone thickness. It shows that in order for a continuous dissociation and

  18. Sorbents for mercury removal from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  19. Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin

    Science.gov (United States)

    Leonte, Mihai; Kessler, John D.; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Sylva, Sean P.

    2017-05-01

    Aerobic oxidation is an important methane sink in seawater overlying gas seeps. Recent surveys have identified active methane seeps in the waters of Hudson Canyon, US Atlantic Margin near the updip limit of methane clathrate hydrate stability. The close proximity of these seeps to the upper stability limit of methane hydrates suggests that changing bottom water temperatures may influence the release rate of methane into the overlying water column. In order to assess the significance of aerobic methane oxidation in limiting the atmospheric expression of methane released from Hudson Canyon, the total extent of methane oxidized along with integrated oxidation rates were quantified. These calculations were performed by combining the measurements of the natural levels of methane concentrations, stable carbon isotopes, and water current velocities into kinetic isotope models yielding rates ranging from 22.8 ± 17 to 116 ± 76 nM/day with an average of 62.7 ± 37 nM/day. Furthermore, an average of 63% of methane released into the water column from an average depth of 515 m was oxidized before leaving this relatively small study area (6.5 km2). Results from the kinetic isotope model were compared to previously-published but concurrently-sampled ex situ measurements of oxidation potential performed using 13C-labeled methane. Ex situ rates were substantially lower, ranging from 0.1 to 22.5 nM/day with an average of 5.6 ± 2.3 nM/day, the discrepancy likely due to the inherent differences between these two techniques. Collectively, the results reveal exceptionally-rapid methane oxidation, with turnover times for methane as low as 0.3-3.7 days, indicating that methane released to the water column is removed quantitatively within the greater extent of Hudson Canyon. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text.

  20. Development of the advanced coolside sorbent injection process for SO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Withum, J.A.; Maskew, J.T.; Rosenhoover, W.A. [Consol, Inc., Library, PA (United States)] [and others

    1995-11-01

    The goal of this work was to develop a low-capital-cost process capable of over 90% SO{sub 2} removal as an economically attractive option for compliance with the Clean Air Act. The Advanced Coolside Process uses a contactor to simultaneously remove fly ash and saturate the flue gas with water, followed by sorbent injection into the highly humid flue gas and collection of the sorbent by the existing particulate collector High sorbent utilization is achieved by sorbent recycle. The original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization were exceeded in 1000 acfm pilot plant operations using commercial hydrated lime as the only sorbent. Process optimization simplified the process equipment, resulting in significant cost reduction. Recent accomplishments include completion of equipment testing and sorbent optimization, a waste management study, and a long-term performance test. An economic evaluation for the optimized process projects capital costs 55% to 60 % less than those of limestone forced oxidation wet FGD. The projected levelized control cost is 15% to 35% lower than wet FGD (25% lower for a 260 MWe plant burning a 2.5% sulfur coal), depending on plant size and coal sulfur content.

  1. Sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides

    Directory of Open Access Journals (Sweden)

    R.V. Smotraiev

    2016-05-01

    Full Text Available The actual problem of water supply in the world and in Ukraine, in particular, is a high level of pollution in water resources and an insufficient level of drinking water purification. With industrial wastewater, a significant amount of pollutants falls into water bodies, including suspended particles, sulfates, iron compounds, heavy metals, etc. Aim: The aim of this work is to determine the impact of aluminum and manganese ions additives on surface and sorption properties of zirconium oxyhydroxide based sorbents during their production process. Materials and Methods: The sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were prepared by sol-gel method during the hydrolysis of metal chlorides (zirconium oxychloride ZrOCl2, aluminum chloride AlCl3 and manganese chloride MnCl2 with carbamide. Results: The surface and sorption properties of sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were investigated. X-ray amorphous structure and evolved hydroxyl-hydrate cover mainly characterize the obtained xerogels. The composite sorbents based on xerogels of zirconium oxyhydroxide doped with aluminum oxyhydroxide (aS = 537 m2/g and manganese oxyhydroxide (aS = 356 m2/g have more developed specific surface area than single-component xerogels of zirconium oxyhydroxide (aS = 236 m2/g and aluminum oxyhydroxide (aS = 327 m2/g. The sorbent based on the xerogel of zirconium and manganese oxyhydroxides have the maximum SO42--ions sorption capacity. It absorbs 1.5 times more SO42–-ions than the industrial anion exchanger AN-221. The sorbents based on xerogels of zirconium oxyhydroxide has the sorption capacity of Fe3+-ions that is 1.5…2 times greater than the capacity of the industrial cation exchanger KU-2-8. The Na+-ions absorption capacity is 1.47…1.56 mmol/g for each sorbent. Conclusions: Based on these data it can be concluded that the proposed method is effective for sorbents production based on

  2. High capacity immobilized amine sorbents

    Science.gov (United States)

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Filburn, Thomas

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  3. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . faulting and fluid migration, and 4. trapping of free gas beneath a hydrate seal. Experiments are being conducted to assess the impact of gas hydrate on sediment behavior, particularly with respect to slope failure and other potential geohazards....K. Paull, R. Matsumoto, P.J. Wallace, and W.P. Dillon (Eds.), Proceedings ODP, Scientific Results, v. 164 College Station, TX (Ocean Drilling Program), pp. 179-191. Dallimore, S. R., T. Uchida, and T. S. Collett, 1999, Summary, in S. R. Dallimore, T...

  4. Characterization of calcium carbonate sorbent particle in furnace environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Soo [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Jung, Jae Hee [Environment Sensor System Research Center, KIST 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791 (Korea, Republic of); Keel, Sang In; Yun, Jin Han; Min, Tai Jin [Environmental Systems Research Division, KIMM 104 Sinseongno, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Kim, Sang Soo, E-mail: sskim@kaist.ac.kr [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO{sub 2} and NO{sub X} emissions. Furthermore, sulfation reaction mechanism under CO{sub 2}-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO{sub 3}) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO{sub 3}, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO{sub 3} sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO{sub 2} atmosphere due to the higher CO{sub 2} partial pressure. Instead, the sintering effect was dominant in the CO{sub 2} atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO{sub 2} atmospheres.

  5. Natural Gas Hydrates

    OpenAIRE

    Ersland, Geir

    2010-01-01

    The experimental set-up with the MRI monitoring apparatus was capable of forming large quantities of methane hydrates in sandstone pores and monitor hydrate growth patterns for various initial conditions. Spontaneous conversion of methane hydrate to carbon dioxide hydrate occurred when methane hydrate, in porous media, was exposed to liquid carbon dioxide. The MRI images did not detect any significant increase in signal in the hydrate saturated cores that would indicate the presence of free w...

  6. Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods

    Directory of Open Access Journals (Sweden)

    Edward J. Anthony

    2010-08-01

    Full Text Available This paper presents a review of the research on CO2 capture by lime-based looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO2 capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC reactor which contains a carbonator—a unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO2 carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use.

  7. High capacity carbon dioxide sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  8. PENJERAPAN GAS CO HASIL PEMBAKARAN SAMPAH MENGGUNAKAN SORBENT TERMODIFIKASI DALAM REAKTOR FIXED BED

    Directory of Open Access Journals (Sweden)

    Mariana Mariana

    2013-11-01

    Full Text Available ADSORPTION OF CO FROM WASTE COMBUSTION USING MODIFIED SORBENT IN A FIXED BED REACTOR. Gases produced by garbage burning consist of dangerous gases such as CO, SO2 and other gases. Technology for reducing dangerous gases from incinerator outlet can be done by using a dry or wet process. The dry process is more economical process because of simple process, easy maintenance and no liquid waste as product. However, the weakness of the dry process is low absorption conversion and low gas removal efficiency. One way to overcome these problems is to use sorbent which has high reactivity. An inexpensive sorbent that commonly used is Ca(OH2. The aim of this research was to increase the reactivity of Ca(OH2 sorbent by using diatomaceous earth and compost as a source of silica and biosorbent, respectively. Diatomaceous earth contains CaO, SiO2 and Al2O3 and compost contains bacteria as a biosorbent that can convert CO to CO2 and CH4. The reaction between SiO2 and Ca(OH2 would form calcium silicate hydrate (CaO.SiO2.2H2O that has a high porosity and reactivity. The results showed that the reactivity of Ca(OH2 sorbent increased by addition of diatomaceous earth and compost. The results also showed that the sorption of CO gas increases with increasing of height of sorbent bed and temperature. The highest CO gas sorption was obtained at temperature of 150oC and sorbent bed height of 6 cm using the modified sorbent with Ca(OH2/DE/compost ratio of 3:1:1. Gas hasil pembakaran sampah terdiri dari gas-gas yang berbahaya seperti CO, SO2 dan lain sebagainya. Teknologi penghilangan gas-gas tersebut dapat dilakukan dengan menggunakan proses kering maupun proses basah. Penghilangan dengan proses kering lebih ekonomis karena sederhana, mudah pemeliharaan dan tidak menghasilkan limbah cair. Namun demikian, kelemahan proses kering adalah konversi absorpsi rendah dan efisiensi penyisihan  gas relatif kecil. Salah satu cara mengatasi masalah tersebut di atas adalah dengan

  9. Sorption and transport characteristics of composite sorbent

    Science.gov (United States)

    Zinovyev, V. N.; Kazanin, I. V.; Lebiga, V. A.; Pak, A. Y.; Vereshchagin, A. S.; Fomin, V. M.

    2017-10-01

    The study of sorption and transport characteristics of a composite sorbent based on various types of glass microspheres is carried out. In order to carry out this research, an experimental stand has been prepared for measuring sorbent characteristics at specified pressure and temperature values. The technique of carrying out the experiment and processing the experimental data for the purpose of determining the helium permeability of composite sorbents with a filler made of different material: sodium borosilicate glass, silica microspheres, cenospheres has been worked out. The values of the helium permeability of the composite sorbent in the temperature range from 20 to 140 °C are determined. The transport characteristics of the medium formed by the granules of the composite sorbent, as well as the values of the characteristic time of helium sorption by the composite sorbent are found.

  10. SO2-Resistant Immobilized Amine Sorbents for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Tumuluri, Uma [Univ. of Akron, OH (United States)

    2014-01-01

    The solid amine sorbent for CO2 capture process has advantages of simplicity and low operating cost compared to the MEA (monoethanolamine) process. Solid amine sorbents reported so far suffered from either low CO2 capture capacity or low stability in the flue gas environment. This project is aimed at developing a SO2-resistant solid amine sorbent for capturing CO2 from coal–fired power plants with SCR/FGD which emits SO2ranging from 15 to 30 ppm and NO ranging from 5 to 10 ppm. The amine sorbent we developed in a previous project degraded rapidly with 65% decrease in the initial capture capacity in presence of 1% SO2. This amine sorbent was further modified by coating with polyethyleneglycol (PEG) to increase the SO2-resistance. Polyethylene glycol (PEG) was found to decrease the SO2-amine interaction, resulting in the decrease in the maximum SO desorption temperature (Tmax ) of amine sorbent. The PEG-coated amine sorbent exhibited higher stability with only 40% decrease in the initial capture capacity compared to un-coated amine sorbents. The cost of the solid amine sorbent developed in this project is estimated to be less than $7.00/lb; the sorbent exhibited CO2 capture capacity more than 2.3 mmol/g. The results of this study provided the scientific basis for further development of SO2-resistant sorbents.

  11. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  12. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    Science.gov (United States)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  13. Desulfurization sorbent development activities at METC

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, R.V.

    1995-06-01

    Development of a suitable regenerable sorbent is a major barrier issue in the hot gas cleanup program for integrated gasification combined-cycle (IGCC) systems. This has been a challenging problem during the last 20 years, since many of the sorbents developed in the program could not retain their reactivity and physical integrity during repeated cycles of sulfidation and regeneration reactions. A series of promising sorbents (METC 2-10), which were capable of sustaining their reactivity and physical integrity during repeated sulfidation/ regeneration cycles, have been developed at the Morgantown Energy Technology Center (METC). These sorbents were tested both in low-pressure (260 KPa/23 psig) and high-pressure (520 KPa/60.7 psig) fixed-bed reactors at 538{degrees}C (1000{degrees}F) with simulated coal gas. High-pressure testing was continued for 20 cycles with steam regeneration. A major research goal during the last year was to lower the cost of materials utilized during the sorbent preparation. The METC 9 sorbent was prepared by substituting low-cost materials for some of the materials in METC 6 sorbent. The sulfur capacity of the two sorbents were similar during the 20-cycle testing. METC 2 sorbent was exposed to coal gas in the Modular Gas Cleanup Rig and it was later tested in the high-pressure fixed-bed reactor. The reactivity of the METC 2 sorbent was unaffected by the exposure to the coal gas. Development of these sorbents will be continued for both fluid-bed and moving-bed applications.

  14. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  15. Sorbent Structural Impacts Due to Humidity on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    Science.gov (United States)

    Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.

  16. CaO-Based CO2 Sorbents Effectively Stabilized by Metal Oxides.

    Science.gov (United States)

    Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Müller, Christoph R

    2017-08-18

    Calcium looping (i.e., CO2 capture by CaO) is a promising second-generation CO2 capture technology. CaO, derived from naturally occurring limestone, offers an inexpensive solution, but due to the harsh operating conditions of the process, limestone-derived sorbents undergo a rapid capacity decay induced by the sintering of CaCO3 . Here, we report a Pechini method to synthesize cyclically stable, CaO-based CO2 sorbents with a high CO2 uptake capacity. The sorbents synthesized feature compositional homogeneity in combination with a nanostructured and highly porous morphology. The presence of a single (Al2 O3 or Y2 O3 ) or bimetal oxide (Al2 O3 -Y2 O3 ) provides cyclic stability, except for MgO which undergoes a significant increase in its particle size with the cycle number. We also demonstrate a direct relationship between the CO2 uptake and the morphology of the synthesized sorbents. After 30 cycles of calcination and carbonation, the best performing sorbent, containing an equimolar mixture of Al2 O3 and Y2 O3 , exhibits a CO2 uptake capacity of 8.7 mmol CO2  g(-1) sorbent, which is approximately 360 % higher than that of the reference limestone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Methane hydrate dissociation rates as 0.1 MPa and temperatures above 272K

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W B; Circone, S; Stern, L A; Kirby, S H; Pinkston, J C

    1999-10-25

    We performed rapid depressurization experiments on methane hydrate under isothermal conditions above 272 K to determine the amount and rate of methane evolution. Sample temperatures rapidly drop below 273 K and stabilize near 272.5 K during dissociation. This thermal anomaly and the persistence of methane hydrate are consistent with the reported recovery of partially dissociated methane hydrate from ocean drilling cores.

  18. Silver containing sorbents: Physicochemical and biological properties

    Directory of Open Access Journals (Sweden)

    L.N. Rachkovskaya

    2016-06-01

    Full Text Available New silver containing sorbents, based on mineral carriers, such as alumina and silica systems with a meso- and macro- porous structure, have a higher mechanical resistance and, hydrophilic and hydrophobic chemical composition of the surface. These sorbents are easy to find and relatively inexpensive, compared to their known equivalents. They are furthermore characterised by high specific surface and simple preparation, whilst the addition of silver considerably increases their antiseptic activity. The results of research of the physical, chemical and biological properties of the developed substances, as well as bio-comparability of sorbents with biological tissues, are presented in this paper. The modified material acts simultaneously as the carrier for active substances to the area of therapeutic application and as a sorbent used to remove toxic agents from such areas. This approach led us to modify the sorbent, and prolong the delivery of substances such as silver, as an effective antibacterial and antimycotic agent.

  19. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S; Holmes, Michael J; Pavlish, John Henry

    2013-08-20

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  20. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  1. Sorbents for the oxidation and removal of mercur

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2017-09-12

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  2. Sorption of methylxanthines by different sorbents

    Science.gov (United States)

    Dmitrienko, S. G.; Andreeva, E. Yu.; Tolmacheva, V. V.; Terent'eva, E. A.

    2013-05-01

    Sorption of caffeine, theophylline, theobromine, diprophylline, and pentoxyphylline on different sorbents (supercross-linked polystyrene, surface-modified copolymer of styrene and divinylbenzene Strata-X, and carbon nanomaterials Taunit and Diasorb-100-C16T) was studied in a static mode in an effort to find new sorbents suitable for sorption isolation and concentration of methylxanthines. The peculiarities of sorption of methylxanthines were explained in relation to the solution acidity, the nature of the sorbates and their concentration, the nature of the solvent, and the structural characteristics of the sorbents.

  3. Clathrate hydrate tuning for technological purposes

    Science.gov (United States)

    di Profio, Pietro; Germani, Raimondo; Savelli, Gianfranco

    2010-05-01

    Gas hydrates are being increasingly considered as convenient media for gas storage and transportation as the knowledge of their properties increases, in particular as relates to methane and hydrogen. Clathrate hydrates may also represent a feasible sequestration technology for carbon dioxide, due to a well defined P/T range of stability, and several research programs are addressing this possibility. Though the understanding of the molecular structure and supramolecular interactions which are responsible of most properties of hydrates have been elucitated in recent years, the underlying theoretical physico-chemical framework is still poor, especially as relates to the role of "conditioners" (inhibitors and promoters) from the molecular/supramolecular point of view. In the present communication we show some results from our research approach which is mainly focused on the supramolecular properties of clathrate hydrate systems - and their conditioners - as a way to get access to a controlled modulation of the formation, dissociation and stabilization of gas hydrates. In particular, this communication will deal with: (a) a novel, compact apparatus for studying the main parameters of formation and dissociation of gas hydrates in a one-pot experiment, which can be easily and rapidly carried out on board of a drilling ship;[1] (b) the effects of amphiphile molecules (surfactants) as inhibitors or promoters of gas hydrate formation;[2] (c) a novel nanotechnology for a reliable and quick production of hydrogen hydrates, and its application to fuel cells;[3,4] and (d) the development of a clathrate hydrate tecnology for the sequestration and geological storage of man-made CO2, possibly with concomitant recovery of natural gas from NG hydrate fields. Furthermore, the feasibility of catalyzing the reduction of carbon dioxide to energy-rich species by hydrates is being investigated. [1] Di Profio, P., Germani, R., Savelli, G., International Patent Application PCT/IT2006

  4. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  5. Functionalized Organosilicate Sorbents for Air Purification

    Science.gov (United States)

    2013-12-23

    magnetic stirring in a closed vessel. For a 50/50 sorbent, 2.62 g BTE and 1.56 g DEB were used. For a 70/30 sorbent, 1.87 g BTE and 2.59 g DEB were... Textile Surfaces Using Microwave-Promoted Silane Coupling,” J. Mat. Sci. 46(8), 2503-2509 (2011). 63. ASTM designation E 96 / E 96M - 05 Standard

  6. Analysis of Ethane and Diethylbenzene Bridged Sorbents

    Science.gov (United States)

    2017-12-13

    isocratic 45:55 acetonitrile: 1% aqueous acetic acid mobile phase (1.2 mL/min). [21] A series of dilutions was used to produce a standard curve for...comparison, and aliquots of stock solutions were measured. Variations in the calibration curves were typical at ±5%. Figure 3 presents the data...sorbents. Binding isotherms for these compounds do not indicate formation of a target monolayer on the sorbent surface, the behavior described by the LF

  7. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  8. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  9. Critical pressure and multiphase flow in Blake Ridge gas hydrates

    Science.gov (United States)

    Flemings, P.B.; Liu, Xiuying; Winters, W.J.

    2003-01-01

    We use core porosity, consolidation experiments, pressure core sampler data, and capillary pressure measurements to predict water pressures that are 70% of the lithostatic stress, and gas pressures that equal the lithostatic stress beneath the methane hydrate layer at Ocean Drilling Program Site 997, Blake Ridge, offshore North Carolina. A 29-m-thick interconnected free-gas column is trapped beneath the low-permeability hydrate layer. We propose that lithostatic gas pressure is dilating fractures and gas is migrating through the methane hydrate layer. Overpressured gas and water within methane hydrate reservoirs limit the amount of free gas trapped and may rapidly export methane to the seafloor.

  10. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent

    Science.gov (United States)

    Jalan, Vinod M.; Frost, David G.

    1984-01-01

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  11. The antimicrobial efficiency of silver activated sorbents

    Science.gov (United States)

    Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana B.; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

    2015-12-01

    This study is focused on the surface modifications of the materials that are used for antimicrobial water treatment. Sorbents of different origin were activated by Ag+-ions. The selection of the most appropriate materials and the most effective activation agents was done according to the results of the sorption and desorption kinetic studies. Sorption capacities of selected sorbents: granulated activated carbon (GAC), zeolite (Z), and titanium dioxide (T), activated by Ag+-ions were following: 42.06, 13.51 and 17.53 mg/g, respectively. The antimicrobial activity of Ag/Z, Ag/GAC and Ag/T sorbents were tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. After 15 min of exposure period, the highest cell removal was obtained using Ag/Z against S. aureus and E. coli, 98.8 and 93.5%, respectively. Yeast cell inactivation was unsatisfactory for all three activated sorbents. The antimicrobial pathway of the activated sorbents has been examined by two separate tests - Ag+-ions desorbed from the activated surface to the aqueous phase and microbial cell removal caused by the Ag+-ions from the solid phase (activated surface sites). The results indicated that disinfection process significantly depended on the microbial-activated sites interactions on the modified surface. The chemical state of the activating agent had crucial impact to the inhibition rate. The characterization of the native and modified sorbents was performed by X-ray diffraction technique, X-ray photoelectron spectroscopy and scanning electron microscope. The concentration of adsorbed and released ions was determined by inductively coupled plasma optical emission spectroscopy and mass spectrometry. The antimicrobial efficiency of activated sorbents was related not only to the concentration of the activating agent, but moreover on the surface characteristics of the material, which affects the distribution and the accessibility of the activating agent.

  12. Organic arsenic adsorption onto a magnetic sorbent.

    Science.gov (United States)

    Lim, Soh-Fong; Zheng, Yu-Ming; Chen, J Paul

    2009-05-05

    The adsorption of organic arsenate, monomethylarsonate (MMA), onto a calcium alginate encapsulated magnetic sorbent is studied in this paper. A novel alginate encalsulated magnetic sorbent was used in the experiments on adsorption isotherm, kinetics, and pH effect. It was found that the equilibrium sorption can be attained within 25 h. Solution pH plays a key role in the removal of MMA from the solution. A greater adsorption can be achieved at pH 4 and below. The maximum sorption capacity of MMA was 8.57 mg As/g, which is slightly higher than the reported adsorbents. The interaction characteristics between the organic arsenate and magnetic sorbent were elucidated by applying FT-IR and XPS analyses. It is shown that the -COOH and Fe-O groups in the sorbent are involved in the adsorption process. The appearance of As-CH(3) and alkane C-H groups in the FT-IR spectrum reveals the binding of the organic arsenate to the sorbent. The XPS analysis indicates that reduction of organic arsenate to organic arsenite on the sorbent's surface happens through solid state redox reaction via charge transport from Fe(II) and C-O species in the sorbent. The XPS results also show the disappearance of C-OH and formation of As-O. It is deduced from the spectral results that mechanisms of organic arsenate adsorption involve C-OH, As-O, and Fe-O groups with the solid state redox process.

  13. Regenerable Sorbent for CO2 Removal

    Science.gov (United States)

    Alptekin, Gokhan; Jayaraman, Ambal

    2013-01-01

    A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.

  14. Surfactant effects on SF6 hydrate formation.

    Science.gov (United States)

    Lee, Bo Ram; Lee, Ju Dong; Lee, Hyun Ju; Ryu, Young Bok; Lee, Man Sig; Kim, Young Seok; Englezos, Peter; Kim, Myung Hyun; Kim, Yang Do

    2009-03-01

    Sulfur hexafluoride (SF(6)) has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate or collect it from waste gas streams. One separation method is through hydrate crystal formation. In this study, SF(6) hydrate was formed in aqueous surfactant solutions of 0.00, 0.01, 0.05, 0.15 and 0.20 wt% to investigate the effects of surfactants on the hydrate formation rates. Three surfactants, Tween 20 (Tween), sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS), were tested in a semi-batch stirred vessel at the constant temperature and pressures of 276.2 K and 0.78 MPa, respectively. All surfactants showed kinetic promoter behavior for SF(6) hydrate formation. It was also found that SF(6) hydrate formation proceeded in two stages with the second stage being the most rapid. In situ Raman spectroscopy analysis revealed that the increased gas consumption rate with the addition of surfactant was possibly due to the increased gas filling rate in the hydrate cavity.

  15. Aquatic oil spill cleanup using natural sorbents.

    Science.gov (United States)

    Paulauskienė, Tatjana; Jucikė, Indrė

    2015-10-01

    One of the most popular transportation methods of crude oil is water transport, leading to potential spills of these pollutants in the seas and oceans and water areas of ports, during their extraction, transportation, transhipment and use. The growth of the Lithuanian economy and the expansion of competitiveness were hardly imagined without the development of the Klaipeda seaport. However, the intensity of shipping and the increase in cargo loading volumes at specialised terminals are associated with a higher risk of environmental pollution. To achieve a sustainable development of the seaport, it is necessary not only to ensure the prevention of potential water pollution but also, if necessary, to use environmentally friendly technology for pollution management. The work analyses the possibilities related to the collection of oil products from the water surface using natural sorbents (peat, wool, moss and straw) and their composites.The research of absorbed amount of crude oil and diesel fuel spilled on the water surface, while using sorbents and their composites, determined that sorbents' composite straw-peat (composition percentage of straw-peat 25-75 %) absorbs the major amount of both crude oil (60 % of the spilled volume) and diesel fuel (69 % of the spilled volume) comparing to single sorbents and sorbents' composite straw-peat (composition percentage of straw-peat 50-50 %).

  16. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    Units 1 and 2 to evaluate the performance of low-cost activated carbon sorbents for removing mercury. In addition, the effects of the dual flue gas conditioning system on mercury removal performance were evaluated as part of short-term parametric tests on Unit 2. Based on the parametric test results, a single sorbent (e.g., RWE Super HOK) was selected for a 30-day continuous injection test on Unit 1 to observe long-term performance of the sorbent as well as its effects on ESP and FGD system operations as well as combustion byproduct properties. A series of parametric tests were also performed on Shawville Unit 3 over a three-week period in which several activated carbon sorbents were injected into the flue gas duct just upstream of either of the two Unit 3 ESP units. Three different sorbents were evaluated in the parametric test program for the combined ESP 1/ESP 2 system in which sorbents were injected upstream of ESP 1: RWE Super HOK, Norit's DARCO Hg, and a 62:38 wt% hydrated lime/DARCO Hg premixed reagent. Five different sorbents were evaluated for the ESP 2 system in which activated carbons were injected upstream of ESP 2: RWE Super HOK and coarse-ground HOK, Norit's DARCO Hg and DARCO Hg-LH, and DARCO Hg with lime injection upstream of ESP 1. The hydrated lime tests were conducted to reduce SO3 levels in an attempt to enhance the mercury removal performance of the activated carbon sorbents. The Plant Yates and Shawville studies provided data required for assessing carbon performance and long-term operational impacts for flue gas mercury control across small-sized ESPs, as well as for estimating the costs of full-scale sorbent injection processes.

  17. Sorbent Structural Testing on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    Science.gov (United States)

    Watson, David; Knox, James C.; West, Phillip; Bush, Richard

    2016-01-01

    Long term space missions require carbon dioxide removal systems that can function with minimal downtime required for maintenance, low power consumption and maximum efficiency for CO2 removal. A major component of such a system are the sorbents used for the CO2 and desiccant beds. Sorbents must not only have adequate CO2 and H2O removal properties, but they must have the mechanical strength to prevent structural breakdown due to pressure and temperature changes during operation and regeneration, as well as resistance to breakdown due to moisture in the system from cabin air. As part of the studies used to select future CO2 sorbent materials, mechanical tests are performed on various zeolite sorbents to determine mechanical performance while dry and at various humidified states. Tests include single pellet crush, bulk crush and attrition tests. We have established a protocol for testing sorbents under dry and humid conditions, and previously tested the sorbents used on the International Space Station carbon dioxide removal assembly. This paper reports on the testing of a series of commercial sorbents considered as candidates for use on future exploration missions.

  18. Gas Hydrates and Perturbed Permafrost: Can Thermokarst Lakes Leak Hydrate-Derived Methane?

    Science.gov (United States)

    Ruppel, C.; Walter, K.; Pohlman, J.; Wooller, M.

    2008-12-01

    Thermokarst lakes are common features in the continuous permafrost of Siberia, the Alaskan North Slope, and the Canadian Arctic and have been intensely studied as the loci of rapid and substantial methane flux to the atmosphere. Previous numerical modeling has constrained the conditions under which deep thermokarst lakes can develop organic-rich thaw bulbs (talik) tens of meters thick, and seismic surveys have imaged thaw bulbs more than 75 m thick beneath some thermokarst lakes. Microbial processes active in talik organic material are likely the predominant source for thermokarst methane emissions, although coalbed methane and methane associated with conventional hydrocarbons may contribute in some geologic settings. Here we evaluate the possibility that another source--methane released from dissociating gas hydrate--could contribute to methane emissions from these lakes. Temperatures within and beneath thermokarst lakes are significantly warmer than those in surrounding permafrost, and these relatively warm conditions can persist to depths several times greater than the thickness of the thaw bulb. For a 95-m-thick thaw bulb and a geothermal gradient consistent with the regional top of gas hydrate stability at ~200 m depth, the warmer temperatures beneath a thermokarst lake could lead to destabilization of up to 75 m of gas hydrate. Arguably, the presence of gas hydrate near the top of the stability zone in permafrost regions has not yet been observed. Nonetheless, the potential dissociation of such relatively shallow gas hydrate and the widespread availability in terrestrial settings of high permeability conduits (e.g., faults, sandy strata) that could facilitate the migration of hydrate-derived methane to the surface render this an important topic for future investigation. The susceptibility of permafrost gas hydrate zones to thermal perturbations is in sharp contrast to the situation in conventional marine hydrate provinces. There, gas hydrate first dissociates

  19. Attrition resistant, zinc titanate-containing, reduced sulfur sorbents

    Science.gov (United States)

    Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.

    2004-11-02

    The disclosure is directed to sorbent compositions for removing reduced sulfur species (e.g., H.sub.2 S, COS and CS.sub.2) a feed stream. The sorbent is formed from a multi-phase composition including a zinc titanate phase and a zinc oxide-aluminate phase. The sorbent composition is substantially free of unreacted alumina.

  20. Topical Report 5: Sorbent Performance Report

    Energy Technology Data Exchange (ETDEWEB)

    Krutka, Holly; Sjostrom, Sharon

    2011-05-31

    ADA-ES has completed an extensive sorbent screening program funded primarily through DOE NETL cooperative agreement DE-NT0005649 with support from EPRI and industry cost-share participants. Tests were completed on simulated and actual flue gas. The overall project objective is to address the viability and accelerate development of a solid-based postcombustion CO2 capture technology that can be retrofit to the existing fleet of coal-fired power plants. An important component of the viability assessment was to evaluate the state of development of sorbents and measure key performance characteristics under realistic operating conditions.

  1. Sorbent for use in hot gas desulfurization

    Science.gov (United States)

    Gasper-Galvin, Lee D.; Atimtay, Aysel T.

    1993-01-01

    A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200.degree. to about 1600.degree. F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.

  2. Research of a possibility of receiving sorbents for a sewage disposal from a wastage of coal preparation factory

    Science.gov (United States)

    Buyantuev, S. L.; Kondratenko, A. S.; Shishulkin, S. Y.; Stebenkova, Y. Y.; Khmelev, A. B.

    2017-05-01

    The paper presents the results of the studies of the structure and porosity of the coal cake processed by electric arc plasma. The main limiting factor in processing of coal cakes sorbents is their high water content. As a result of coal washing, the main share of water introduced into the cake falls on hard-hydrate and colloidal components. This makes impossible application of traditional processes of manufacturing from a cake of coal sorbents. Using the electric arc intensifies the processes of thermal activation of coal cakes associated with thermal shock, destruction and vapor-gas reactions occurring at the surfaces of the particles at an exposure temperature of up to 3000 °C, which increases the title product outlet (sorbent) and thereby reduces manufacturing costs and improves environmental performance. The investigation of the thermal activation zone is carried out in the plasma reactor chamber by thermal imaging method followed by mapping-and 3D-modeling of temperature fields. the most important physical and chemical properties of the sorbents from coal cake activated by plasma was studied. The obtained results showed the possibility of coal cake thermal activation by electric arc plasma to change its material composition, the appearance of porosity and associated sorption capacity applied for wastewater treatment.

  3. Methane Hydrates: Chapter 8

    Science.gov (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  4. Characteristics of SF{sub 6} gas hydrate formation mechanisms (kinetics) and surfactants effects on hydrate formation rate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.; Lee, H.; Kim, Y.D. [Pusan National Univ., Busan (Korea, Republic of). School of Materials Science and Engineering; Kim, Y.S.; Lee, J.D. [Korea Inst. of Industrial Technology, Busan (Korea, Republic of). Advanced Energy Resource Development Team

    2008-07-01

    Sulfur hexafluoride (SF{sub 6}) is used as an insulating gas in a variety of industrial applications, and is a potent greenhouse gas (GHG). Gas hydrates are stable crystalline compounds formed by water and natural gas molecules that have relatively large cavities that can be occupied by guest molecules. SF{sub 6} gas is able to form hydrates at relatively mild conditions. This study investigated the hydrate formation mechanisms of SF{sub 6} gas, and presented a potential hydration treatment for the gas. The effects of surface active agents on SF{sub 6} gas hydrate formation were examined experimentally using Tween 20, sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS). The surfactants showed promoter behaviour for SF{sub 6} gas hydrate formation. Formation rates occurred in 2 stages, with rates rapidly increasing during the second phase. The inflection point occurred approximately 30 minutes after the hydrate nucleation point. Results indicated the existence of a critical concentration of surfactants. It was concluded that SF{sub 6} gas hydrate formation rates were increased by the addition of surfactants. Further studies are needed to investigate 2-stage hydrate formation rates. 18 refs., 4 figs.

  5. Hydration testing of athletes.

    Science.gov (United States)

    Oppliger, Robert A; Bartok, Cynthia

    2002-01-01

    Dehydration not only reduces athletic performance, but also places athletes at risk of health problems and even death. For athletes, monitoring hydration has significant value in maximising performance during training and competition. It also offers medical personnel the opportunity to reduce health risks in situations where athletes engage in intentional weight loss. Simple non-invasive techniques, including weight monitoring and urine tests, can provide useful information. Bioimpedance methods tend to be easy to use and fairly inexpensive, but generally lack the precision and accuracy necessary for hydration monitoring. Blood tests appear to be the most accurate monitoring method, but are impractical because of cost and invasiveness. Although future research is needed to determine which hydration tests are the most accurate, we encourage sports teams to develop and implement hydration monitoring protocols based on the currently available methods. Medical personnel can use this information to maximise their team's athletic performance and minimise heat- and dehydration-related health risks to athletes.

  6. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    Science.gov (United States)

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  7. Carbon dioxide capture process with regenerable sorbents

    Science.gov (United States)

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  8. The antimicrobial efficiency of silver activated sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Đolić, Maja B., E-mail: mirkovic.maja@gmail.com [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Rajaković-Ognjanović, Vladana N. [Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Štrbac, Svetlana B. [ICTM-Institute of Electrochemistry, University of Belgrade, Njegoševa 12, 11001 Belgrade (Serbia); Rakočević, Zlatko Lj. [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia)

    2015-12-01

    Highlights: • Different sorbents were activated by Ag{sup +}-ions and modified sorbents were determined by sorption capacities, in range of values: 42.06–3.28 mg/g. • Granulated activated carbon (GAC), natural zeolit (Z) and titanium dioxide (T) activated by Ag{sup +}-ions were tested against E. coli, S. aureus and C. albicans. • The most successful bacteria removal was obtained using Ag/Z against S. aureus and E. coli, while the yeast cell reduction reached unsatisfactory effect for all three activated sorbents. • XRD, XPS and FE-SEM analysis showed that the chemical state of the silver activating agent affects the antimicrobial activity, as well as the structural properties of the material. • An overall microbial cell reduction, which is performed by separated antimicrobial tests on the Ag{sup +}-activated surface and Ag{sup +}-ions in aquatic solutions, is a consequence of both mechanisms. - Abstract: This study is focused on the surface modifications of the materials that are used for antimicrobial water treatment. Sorbents of different origin were activated by Ag{sup +}-ions. The selection of the most appropriate materials and the most effective activation agents was done according to the results of the sorption and desorption kinetic studies. Sorption capacities of selected sorbents: granulated activated carbon (GAC), zeolite (Z), and titanium dioxide (T), activated by Ag{sup +}-ions were following: 42.06, 13.51 and 17.53 mg/g, respectively. The antimicrobial activity of Ag/Z, Ag/GAC and Ag/T sorbents were tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. After 15 min of exposure period, the highest cell removal was obtained using Ag/Z against S. aureus and E. coli, 98.8 and 93.5%, respectively. Yeast cell inactivation was unsatisfactory for all three activated sorbents. The antimicrobial pathway of the activated sorbents has been examined by two separate tests – Ag{sup +}-ions desorbed from

  9. Sulfur dioxide removal by sol-gel sorbent derived CuO/Alumina sorbents in fixed bed adsorber

    Directory of Open Access Journals (Sweden)

    Zhong-Min Wang

    2017-02-01

    Full Text Available Nanostructured alumina supported copper oxide granular sorbents were prepared by the sol-gel method. The properties of the sol-gel derived sorbents were compared with a similar commercial sorbent which has been used in the pilot scale moving-bed copper oxide process for flue gas treatment. The crushing strength of the sol-gel derived sorbents is about 6–7 times that of the commercial samples, while the attrition rate of the former is at least 3 times smaller. At temperatures below 400 °C, SO2 sorption capacity of the sol-gel derived sorbent is about 3 times that of the commercial sorbent with a similar amount of CuO loading (7–9 wt%. The better mechanical properties and higher sulfation capacity of the sol-gel derived alumina supported copper oxide sorbents are due to their unique microstructure and the coating method for CuO.

  10. Copper-based sorbents for hot coal gas desulfurization systems

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Zarnegar, M.K. [Inst. of Gas Technology, Des Plaines, IL (United States)] [and others

    1997-07-01

    High-temperature coal gas desulfurization has been recognized as essential in the development of emerging power generation technologies such as the Integrated Gasification Combined Cycle (IGCC), aiming to improve both the efficiency and environmental performance of power generation from coal. Hot gas desulfurization may be accomplished by using regenerable mixed metal oxides sorbents which can reduce the H{sub 2}S content of the coal gas to a few ppmv over many sulfidation/regeneration cycles. The focus of much of the current research on hot gas desulfurization has been on the use of zinc-based sorbents. Although these sorbents have been the subject of extensive pilot-scale and process development work, zinc-based sorbents have been shown to suffer from sulfate formation and zinc volatilization, leading to sorbent degradation over multicycle use, increasing sorbent replacement costs and the overall cost of hot gas desulfurization processes. A novel copper-chromite sorbent has been developed at IGT for hot coal gas desulfurization under the sponsorship of the Illinois Clean Coal Institute (ICCI). Results obtained so far indicate that this sorbent, in granular form (i.e., CuCr-29), has a much higher attrition resistance compared to the commercial granular zinc titanate sorbent, as well as excellent desulfurization efficiency. Furthermore, unlike most zinc titanate sorbents, the reactivity of IGT`s CuCr-29 sorbent gradually and consistently improved during the 20 cycles tested. The sorbent preparation techniques developed at IGT have been applied to produce highly reactive and attrition resistant sorbent pellets for moving-bed applications.

  11. N-Acetylcysteine plus Saline Hydration versus Saline Hydration

    African Journals Online (AJOL)

    ) in patients undergoing coronary angiography pretreated with N-acetylcysteine NAC plus saline hydration or saline hydration alone and to determine the association between various risk factors and RCIN. Methods: Patients were ...

  12. Nanoporous carbon sorbent for molecular-sieve chromatography of lipoprotein complex

    Science.gov (United States)

    Kerimkulova, A. R.; Mansurova, B. B.; Gil'manov, M. K.; Mansurov, Z. A.

    2012-06-01

    The physicochemical characteristics of carbon sorbents are investigated. Electron microscopy data for the sorbent and separated lipoprotein complex are presented. It is found that the obtained carbon sorbent possess high porosity. Nanoporous carbon sorbents for the chromatography of molecular-sieve markers are obtained and tested. The applicability of nanoporous carbon sorbents for separation of lipoprotein complexes (LPC) is investigated.

  13. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Carolyn Ann [Colorado School of Mines, Golden, CO (United States)

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  14. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  15. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  16. Layered solid sorbents for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  17. Layered solid sorbents for carbon dioxide capture

    Science.gov (United States)

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2013-02-25

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  18. Enhancing the use of coals by gas reburning-sorbent injection. Volume 3, Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  19. Adsorption of Ammonia on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wójtowicz, Marek A.; Cosgrove, Jesph E.; Serio, Michael A..; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Data on sorption and desorption of ammonia, which is a major TC of concern, are presented in this paper. The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for ammonia sorption. Ammonia-sorption capacity was related to carbon pore structure characteristics, and the temperature of oxidative carbon-surface treatment was optimized for enhanced ammonia-sorption performance.

  20. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    Science.gov (United States)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, James; Cmarik, Gregory E.; Ebner, Armin; Ritter, James

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0 C, 10 C, 25 C, 50 C, and 75 C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  1. ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

    2000-03-31

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost

  2. ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    AYALA, R E; VENKATARAMANI, V S

    1998-09-30

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 °C (900-1000 °F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 °C (650 °F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 °C (650-1000 °F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a

  3. Sintering and reactivity of CaCO{sub 3}-based sorbents for in situ CO{sub 2} capture in fluidized beds under realistic calcination conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lu, D.Y.; Hughes, R.W.; Anthony, E.J.; Manovic, V. [Natural Resources Canada, Ottawa, ON (Canada)

    2009-06-15

    Sintering during calcination/carbonation may introduce substantial economic penalties for a CO{sub 2} looping cycle using limestone/dolomite-derived sorbents. Cyclic carbonation and calcination reactions were investigated for CO{sub 2} capture under fluidized bed combustion (FBC) conditions. The cyclic carbonation characteristics of CaCO{sub 3}-derived sorbents were compared at various calcination temperatures (700-925{sup o} C) and different gas stream compositions: pure -2 and a realistic calciner environment where high concentrations of CO{sub 2}>80-90% are expected. The conditions during carbonation were 700 {sup o}C and 15% CO{sub 2} in N{sub 2} and 0.18% or 0.50% SO{sub 2} in selected tests. Up to 20 calcination/carbonation cycles were conducted using a thermogravimetric analyzer (TGA) apparatus. Three Canadian limestones were tested: Kelly Rock, Havelock, and Cadomin, using a prescreened particle size range of 400-650 {mu} m. Calcined Kelly Rock and Cadomin samples were hydrated by steam and examined. Sorbent reactivity was reduced whenever SO{sub 2} was introduced to either the calcining or carbonation streams. The multicyclic capture capacity of CaO for CO{sub 2} was substantially reduced at high concentrations of CO{sub 2} during the sorbent regeneration process and carbonation conversion of the Kelly Rock sample obtained after 20 cycles was only 10.5%. Hydrated sorbents performed better for CO{sub 2} capture but showed deterioration following calcination in high CO{sub 2} gas streams indicating that high CO{sub 2} and SO{sub 2} levels in the gas stream lead to lower CaO conversion because of enhanced sintering and irreversible formation of CaSO{sub 4}.

  4. Arctic Gas hydrate, Environment and Climate

    Science.gov (United States)

    Mienert, Jurgen; Andreassen, Karin; Bünz, Stefan; Carroll, JoLynn; Ferre, Benedicte; Knies, Jochen; Panieri, Giuliana; Rasmussen, Tine; Myhre, Cathrine Lund

    2015-04-01

    Arctic methane hydrate exists on land beneath permafrost regions and offshore in shelf and continental margins sediments. Methane or gas hydrate, an ice-like substrate, consists mainly of light hydrocarbons (mostly methane from biogenic sources but also ethane and propane from thermogenic sources) entrapped by a rigid cage of water molecules. The pressure created by the overlying water and sediments offshore stabilizes the CH4 in continental margins at a temperature range well above freezing point; consequently CH4 exists as methane ice beneath the seabed. Though the accurate volume of Arctic methane hydrate and thus the methane stored in hydrates throughout the Quaternary is still unknown it must be enormous if one considers the vast regions of Arctic continental shelves and margins as well as permafrost areas offshore and on land. Today's subseabed methane hydrate reservoirs are the remnants from the last ice age and remain elusive targets for both unconventional energy and as a natural methane emitter influencing ocean environments and ecosystems. It is still contentious at what rate Arctic warming may govern hydrate melting, and whether the methane ascending from the ocean floor through the hydrosphere reaches the atmosphere. As indicated by Greenland ice core records, the atmospheric methane concentration rose rapidly from ca. 500 ppb to ca. 750 ppb over a short time period of just 150 years at the termination of the younger Dryas period ca. 11600 years ago, but the dissociation of large quantities of methane hydrates on the ocean floor have not been documented yet (Brook et al., 2014 and references within). But with the major projected warming and sea ice melting trend (Knies et al., 2014) one may ask, for how long will CH4 stay trapped in methane hydrates if surface and deep-ocean water masses will warm and permafrost continuous to melt (Portnov et al. 2014). How much of the Arctic methane will be consumed by the micro- and macrofauna, how much will

  5. Aluminum Sulfate 18 Hydrate

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  6. Study of physical chemical properties of nanostructured carbon sorbent for cleanup of biomolecules

    Directory of Open Access Journals (Sweden)

    Almagul Kerimkulova

    2012-03-01

    Full Text Available The technology of nanostructured carbon sorbent. Optimized the conditions of carbonization of plant material and studied the basic structural and physicochemical properties of the sorbent. Studied the molecular-sieve and adsorption characteristics of the sorbent.

  7. Exploitation of marine gas hydrates: Benefits and risks (Invited)

    Science.gov (United States)

    Wallmann, K. J.

    2013-12-01

    hydrates. Methane gas leaking into the marine environment is rapidly oxidized by microbes such that only a very small fraction of the methane emitted at the seabed escapes into the atmosphere. Slope failure is a more serious thread. It may lead to a complete destruction of seabed infrastructures for gas production and transport, significant gas emissions, and damage to local benthic ecosystems. New regulations should be developed at the national and international level to address and minimize the specific environmental risks associated with the future commercial exploitation of marine gas hydrates.

  8. A calcium oxide sorbent process for bulk separation of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Silaban, A.; Narcida, M.; Harrison, D.P.

    1992-02-01

    The expected commercialization of coal gasification technology in the US and world-wide will create a need for advanced gas purification and separation processes capable of operating at higher temperatures and in more hostile environments than is common today. For example, a high-temperature, high-pressure process capable of separating CO{sub 2} from coal-derived gas may find application in purifying synthesis gas for H{sub 2}, NH{sub 3}, or CH{sub 3}OH production. High temperature CO{sub 2} removal has the potential for significantly improving the operating efficiency of integrated gasification-molten carbonate fuel cells for electric power generation. This study proved the technical feasibility of a CO{sub 2}-separation process based upon the regenerable noncatalytic gas-solid reaction between CaO and CO{sub 2} to form CACO{sub 3}. Such a process operating at 650{degree}C and 15 atm with 15% CO{sub 2} in the coal gas has the potential for removing in excess of 99% of the CO{sub 2} fed. Selection of a sorbent precursor which, upon calcination, produces high-porosity CaO is important for achieving rapid and complete reaction. The addition of magnesium to the sorbent appears to improve the multicycle durability at a cost of reduced CO{sub 2} capacity per unit mass of sorbent. Reaction conditions, principally calcination and carbonation temperatures, are important factors in multicycle durability. Reaction pressure and CO{sub 2} concentration are important in so far as the initial rapid reaction rate is concerned, but are relatively unimportant in terms of sorbent capacity and durability. Indirect evidence for the simultaneous occurrence of the shift reaction and CO{sub 2}-removal reaction creates the possibility of a direct one-step process for the production of hydrogen from coal-derived gas.

  9. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    Science.gov (United States)

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  10. TRUEX process solvent cleanup with solid sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Pui-Kwan; Reichley-Yinger, L.; Vandegrift, G.F.

    1989-01-01

    Solid sorbents, alumina, silica gel, and Amberlyst A-26 have been tested for the cleanup of degraded TRUEX-NPH solvent. A sodium carbonate scrub alone does not completely remove acidic degradation products from highly degraded solvent and cannot restore the stripping performance of the solvent. By following the carbonate scrub with either neutral alumina or Amberlyst A-26 anion exchange resin, the performance of the TRUEX-NPH is substantially restored. The degraded TRUEX-NPH was characterized before and after treatment by supercritical fluid chromatography. Its performance was evaluated by americium distribution ratios, phase-separation times, and lauric acid distribution coefficients. 17 refs., 2 figs., 5 tabs.

  11. Assessment of spent mushroom substrate as sorbent of fungicides: influence of sorbent and sorbate properties.

    Science.gov (United States)

    Marín-Benito, Jesús M; Rodríguez-Cruz, M Sonia; Andrades, M Soledad; Sánchez-Martín, María J

    2012-01-01

    The capacity of spent mushroom substrate (SMS) as a sorbent of fungicides was evaluated for its possible use in regulating pesticide mobility in the environment. The sorption studies involved four different SMS types in terms of nature and treatment and eight fungicides selected as representative compounds from different chemical groups. Nonlinear sorption isotherms were observed for all SMS-fungicide combinations. The highest sorption was obtained by composted SMS from Agaricus bisporus cultivation. A significant negative and positive correlation was obtained between the K(OC) sorption constants and the polarity index values of sorbents and the K(OW) of fungicides, respectively. The statistic revealed that more than 77% of the variability in the K(OW) could be explained considering these properties jointly. The other properties of both the sorbent (total carbon, dissolved organic carbon, or pH) and the sorbate (water solubility) were nonsignificant. The hysteresis values for cyprodinil (log K(OW)= 4) were for all the sorbents much higher (>3) than for other fungicides. This was consistent with the remaining sorption after desorption considered as an indicator of the sorption efficiency of SMS for fungicides. Changes in the absorption bands of fungicides sorbed by SMS observed by FTIR permitted establishing the interaction mechanism of fungicides with SMS. The findings of this work provide evidence for the potential capacity of SMS as a sorbent of fungicides and the low desorption observed especially for some fungicides, although they suggest that more stabilized or humified organic substrates should be produced to enhance their efficiency in environmental applications. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Development of a Catalyst/Sorbent for Methane Reforming

    Energy Technology Data Exchange (ETDEWEB)

    B.H. Shans; T.D. Wheelock; Justinus Satrio; Karl Albrecht; Tanya Harris Janine Keeley; Ben Silva; Aaron Shell; Molly Lohry; Zachary Beversdorf

    2008-12-31

    conditions tested, the CH{sub 4} conversion was large (>80%) and nearly equal to the predicted thermodynamic equilibrium level as long as CO{sub 2} was being rapidly absorbed. Similar results were obtained with both shell material additives. Limited lifecycle tests of the pellets also produced similar results that were not affected by the choice of additive. However, during each lifecycle test the period during which CO{sub 2} was rapidly absorbed declined from cycle to cycle which directly affected the corresponding period when CH{sub 4} was reformed rapidly. Therefore, the results showed a continuing need for improving the lifecycle performance of the sorbent. Core-in-shell pellets with the improved shell materials were also utilized for conducting the water gas shift reaction in a single step. Three different catalyst formulations were tested. The best results were achieved with a Ni catalyst, which proved capable of catalyzing the reaction whether CO{sub 2} was being absorbed or not. The calcined alumina shell material by itself also proved to be a very good catalyst for the reaction as long as CO{sub 2} was being fully absorbed by the core material. However, neither the alumina nor a third formulation containing Fe{sub 2}O{sub 3} were good catalysts for the reaction when CO{sub 2} was not absorbed by the core material. Furthermore, the Fe{sub 2}O{sub 3}-containing catalyst was not as good as the other two catalysts when CO{sub 2} was being absorbed.

  13. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  14. Methane Clathrate Hydrate Prospecting

    Science.gov (United States)

    Duxbury, N.; Romanovsky, V.

    2003-01-01

    A method of prospecting for methane has been devised. The impetus for this method lies in the abundance of CH4 and the growing shortages of other fuels. The method is intended especially to enable identification of subpermafrost locations where significant amounts of methane are trapped in the form of methane gas hydrate (CH4(raised dot)6H2O). It has been estimated by the U.S. Geological Survey that the total CH4 resource in CH4(raised dot) 6H2O exceeds the energy content of all other fossil fuels (oil, coal, and natural gas from non-hydrate sources). Also, CH4(raised dot)6H2O is among the cleanest-burning fuels, and CH4 is the most efficient fuel because the carbon in CH4 is in its most reduced state. The method involves looking for a proxy for methane gas hydrate, by means of the combination of a thermal-analysis submethod and a field submethod that does not involve drilling. The absence of drilling makes this method easier and less expensive, in comparison with prior methods of prospecting for oil and natural gas. The proposed method would include thermoprospecting in combination with one more of the other non-drilling measurement techniques, which could include magneto-telluric sounding and/or a subsurface-electrical-resistivity technique. The method would exploit the fact that the electrical conductivity in the underlying thawed region is greater than that in the overlying permafrost.

  15. Oceanic gas hydrate instability and dissociation in response to climate change

    Science.gov (United States)

    Reagan, M. T.; Moridis, G. J.

    2007-12-01

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating past global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit for a remarkably rapid sequence of global warming effects that occurred during the late Quaternary period. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood, and existing studies focus on deep hydrate deposits under equilibrium conditions. We simulated the dynamic response of several types of oceanic gas hydrate accumulations to temperature changes at the seafloor and assessed the potential for methane release into the ecosystem. The properties of benthic sediments, the saturation, stability, and distribution of the hydrates, the ocean depth, the geothermal gradient, and the effects of biogeochemical activity were considered. The results suggest that while many deep hydrate deposits are indeed stable under the influence of rapid seafloor temperature variations, shallow deposits, such as those found in arctic regions or in the Gulf of Mexico, can undergo rapid dissociation and produce significant carbon fluxes over a period of decades. These results may be used to provide a source term to regional or global climate models to determine the impact of gas hydrate deposits on global climate.

  16. Highly efficient CO2 sorbents: development of synthetic, calcium-rich dolomites.

    Science.gov (United States)

    Filitz, Rainer; Kierzkowska, Agnieszka M; Broda, Marcin; Müller, Christoph R

    2012-01-03

    The reaction of CaO with CO(2) is a promising approach for separating CO(2) from hot flue gases. The main issue associated with the use of naturally occurring CaCO(3), that is, limestone, is the rapid decay of its CO(2) capture capacity over repeated cycles of carbonation and calcination. Interestingly, dolomite, a naturally occurring equimolar mixture of CaCO(3) and MgCO(3), possesses a CO(2) uptake that remains almost constant with cycle number. However, owing to the large quantity of MgCO(3) in dolomite, the total CO(2) uptake is comparatively small. Here, we report the development of a synthetic Ca-rich dolomite using a coprecipitation technique, which shows both a very high and a stable CO(2) uptake over repeated cycles of calcination and carbonation. To obtain such an excellent CO(2) uptake characteristic it was found to be crucial to mix the Ca(2+) and Mg(2+) on a molecular level, that is, within the crystalline lattice. For sorbents which were composed of mixtures of microscopic crystals of CaCO(3) and MgCO(3), a decay behavior similar to natural limestone was observed. After 15 cycles, the CO(2) uptake of the best sorbent was 0.51 g CO(2)/g sorbent exceeding the CO(2) uptake of limestone by almost 100%.

  17. Modeling PAH mass transfer in a slurry of contaminated soil or sediment amended with organic sorbents.

    Science.gov (United States)

    Ahn, Sungwoo; Werner, David; Luthy, Richard G

    2008-06-01

    A three-compartment kinetic partitioning model was employed to assess contaminant mass transfer and intraparticle diffusion in systems comprising dense slurries of polluted soil or aquifer sediment with or without sorbent amendments to sequester polycyclic aromatic hydrocarbons (PAHs). The model was applied to simulate temporal changes in aqueous and particle-bound PAH concentrations comparing different pollution sources (heavy oil or tar sludge) and various sorbent amendments (polyoxymethylene (POM), coke breeze, and activated carbon). For the model evaluation, all the parameters needed were directly measured from a series of experiments, allowing full calibration and verification of model predictions without parameter fitting. The numerical model reproduced two separate laboratory-scale experiments reasonably: PAH uptake in POM beads and PAH uptake by semipermeable membrane devices. PAH mass transfer was then simulated for various scenarios, considering different sorbent doses and mass transfer rates as well as biodegradation. Such model predictions provide a quick assessment tool for identifying mass transfer limitations during washing, stabilization, or bioslurry treatments of polluted soil or sediment in mixed systems. It appears that PAHs would be readily released from materials contaminated by small oil droplets, but not tar decanter sludge. Released PAHs would be sequestered rapidly by activated carbon amendment but to a much lesser extent by coke breeze. If sorbing black carbon is present in the slurries, POM pellets would not be effective as a sequestration amendment. High first-order biodegradation rates in the free aqueous phase, e.g., in the order of 0.001 s(-1) for phenanthrene, would be required to compete effectively with adsorption and mass transfer for strong sorbents.

  18. Modeling PAH mass transfer in a slurry of contaminated soil or sediment amended with organic sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S.; Werner, D.; Luthy, R.G. [Stanford University, Stanford, CA (United States). Dept. for Civil & Environmental Engineering

    2008-06-15

    A three-compartment kinetic partitioning model was employed to assess contaminant mass transfer and intraparticle diffusion in systems comprising dense slurries of polluted soil or aquifer sediment with or without sorbent amendments to sequester polycyclic aromatic hydrocarbons (PAHs). The model was applied to simulate temporal changes in aqueous and particle-bound PAH concentrations comparing different pollution sources (heavy oil or tar sludge) and various sorbent amendments (polyoxymethylene (POM), coke breeze, and activated carbon). For the model evaluation, all the parameters needed were directly measured from a series of experiments, allowing full calibration and verification of model predictions without parameter fitting. The numerical model reproduced two separate laboratory-scale experiments reasonably: PAH uptake in POM beads and PAH uptake by semipermeable membrane devices. PAH mass transfer was then simulated for various scenarios, considering different sorbent doses and mass transfer rates as well as biodegradation. Such model predictions provide a quick assessment tool for identifying mass transfer limitations during washing, stabilization, or bioslurry treatments of polluted soil or sediment in mixed systems. It appears that PAHs would be readily released from materials contaminated by small oil droplets, but not tar decanter sludge. Released PAHs would be sequestered rapidly by activated carbon amendment but to a much lesser extent by coke breeze. If sorbing black carbon is present in the slurries, POM pellets would not be effective as a sequestration amendment. High first-order biodegradation rates in the free aqueous phase, e.g., in the order of 0.001 s{sup -1} for phenanthrene, would be required to compete effectively with adsorption and mass transfer for strong sorbents.

  19. Magnetic solid-phase extraction using carbon nanotubes as sorbents: a review.

    Science.gov (United States)

    Herrero-Latorre, C; Barciela-García, J; García-Martín, S; Peña-Crecente, R M; Otárola-Jiménez, J

    2015-09-10

    Magnetic solid-phase extraction (M-SPE) is a procedure based on the use of magnetic sorbents for the separation and preconcentration of different organic and inorganic analytes from large sample volumes. The magnetic sorbent is added to the sample solution and the target analyte is adsorbed onto the surface of the magnetic sorbent particles (M-SPs). Analyte-M-SPs are separated from the sample solution by applying an external magnetic field and, after elution with the appropriate solvent, the recovered analyte is analyzed. This approach has several advantages over traditional solid phase extraction as it avoids time-consuming and tedious on-column SPE procedures and it provides a rapid and simple analyte separation that avoids the need for centrifugation or filtration steps. As a consequence, in the past few years a great deal of research has been focused on M-SPE, including the development of new sorbents and novel automation strategies. In recent years, the use of magnetic carbon nanotubes (M-CNTs) as a sorption substrate in M-SPE has become an active area of research. These materials have exceptional mechanical, electrical, optical and magnetic properties and they also have an extremely large surface area and varied possibilities for functionalization. This review covers the synthesis of M-CNTs and the different approaches for the use of these compounds in M-SPE. The performance, general characteristics and applications of M-SPE based on magnetic carbon nanotubes for organic and inorganic analysis have been evaluated on the basis of more than 110 references. Finally, some important challenges with respect the use of magnetic carbon nanotubes in M-SPE are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Numerical modeling of gas recovery from methane hydrate reservoirs

    Science.gov (United States)

    Silpngarmlert, Suntichai

    Class 1 hydrate deposits are characterized by a hydrate bearing layer underlain by a two phase, free-gas and water, zone. A Class 1 hydrate reservoir is more preferable than class 2 and class 3 hydrate accumulations because a small change of pressure and temperature can induce hydrate dissociation. In this study, production characteristics from class 1 methane-hydrate reservoirs by means of conventional depressurization technique are studied. In this work, the production characteristics and efficiency from different production strategies (mainly focused on a constant bottom-hole pressure production scheme) such as well-completion locations, well spacing, and production scheduling are investigated. In the production of conventional gas reservoirs using a constant bottom-hole pressure production scheme, both gas and water production rates exponentially decrease with time. However, for methane-hydrate reservoirs, gas production rate exponentially declines with time whereas water production rate increases with time because methane hydrate dissociation increases water saturation of the reservoir. The effects of well-completion locations on the production performances are examined. The simulation results indicate that the moving well completion location strategy provides better gas production performance than the fixed completion location strategy. The optimum well-completion location (using a moving completion location strategy) is at the middle of free-gas zone. Due to the effects of hydrate saturation on formation permeability, one should not complete a well in the hydrate zone. The effect of well spacing on the production efficiency is also investigated. As expected, smaller well-spacing system yields more total gas production and it can dissociate gas-hydrate more rapidly than the larger well-spacing system. However, the number of wells increases when the well-spacing decreases resulting in the increase of the capital investment of the project. Based on this study

  1. Ultrafine calcium aerosol: Generation and use of a sorbent for sulfur in coal combustion. Volume 2, Economics: Final report, August 1, 1988--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Alam, M.K.; Nahar, N.U.; Stewart, G.D.; Prudich, M.E. [comps.] [Ohio Coal Research Center, Athens, OH (United States)

    1991-11-01

    The goal of this study is to determine the cost effectiveness of using calcium-hydroxide powder sorbent in a commercial power plant flue gas desulfurization (FGD) application. The cost analysis methodology found herein is a direct application of the one found in the January 1986 report, ``Economic Evaluation of Dry-Injection Flue Gas Desulfurization Technology by the Electric Power Research Institute (EPRI). The EPRI study addresses the economic issue of installing a dry-injection FGD system on a 1000 MW (2-500 MW units) power plant using sodium-rich powder sorbents derived from nahcolite and trona ores. In this report`s treatment, the calcium-based derivatives of hydrated limestone are compared directly to nahcolite and trona for both low and high sulfur coals. This type of evaluation is allowable due to the similar material handling properties of 1/4 inch hydrated limestone in comparison to those properties for nahcolite and trona. Thus, this report repeats the EPRI cost analysis for a slightly modified limestone-based FGD design. Note that the calculation methodology is not discussed, in this report as it has already been outlined in the EPRI study. Instead, Appendices A and B contain copies of the calculation spreadsheets based on the EPRI method for the hydrated limestone system.

  2. Sorbent-based Oxygen Production for Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Vijay [Western Research Inst. (WRI), Laramie, WY (United States)

    2017-01-31

    Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a major advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.

  3. Visual observation of gas hydrates nucleation and growth at a water - organic liquid interface

    Science.gov (United States)

    Stoporev, Andrey S.; Semenov, Anton P.; Medvedev, Vladimir I.; Sizikov, Artem A.; Gushchin, Pavel A.; Vinokurov, Vladimir A.; Manakov, Andrey Yu.

    2018-03-01

    Visual observation of nucleation sites of methane and methane-ethane-propane hydrates and their further growth in water - organic liquid - gas systems with/without surfactants was carried out. Sapphire Rocking Cell RCS6 with transparent sapphire cells was used. The experiments were conducted at the supercooling ΔTsub = 20.2 °C. Decane, toluene and crude oils were used as organics. Gas hydrate nucleation occurred on water - metal - gas and water - sapphire - organic liquid three-phase contact lines. At the initial stage of growth hydrate crystals rapidly covered the water - gas or water - organics interfaces (depending on the nucleation site). Further hydrate phase accrete on cell walls (sapphire surface) and into the organics volume. At this stage, growth was accompanied by water «drawing out» from under initial hydrate film formed at water - organic interface. Apparently, it takes place due to water capillary inflow in the reaction zone. It was shown that the hydrate crystal morphology depends on the organic phase composition. In the case of water-in-decane emulsion relay hydrate crystallization was observed in the whole sample, originating most likely due to the hydrate crystal intergrowth through decane. Contacts of such crystals with adjacent water droplets result in rapid hydrate crystallization on this droplet.

  4. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  5. Postglacial response of Arctic Ocean gas hydrates to climatic amelioration

    Science.gov (United States)

    Serov, Pavel; Mienert, Jürgen; Patton, Henry; Portnov, Alexey; Silyakova, Anna; Panieri, Giuliana; Carroll, Michael L.; Carroll, JoLynn; Andreassen, Karin; Hubbard, Alun

    2017-01-01

    Seafloor methane release due to the thermal dissociation of gas hydrates is pervasive across the continental margins of the Arctic Ocean. Furthermore, there is increasing awareness that shallow hydrate-related methane seeps have appeared due to enhanced warming of Arctic Ocean bottom water during the last century. Although it has been argued that a gas hydrate gun could trigger abrupt climate change, the processes and rates of subsurface/atmospheric natural gas exchange remain uncertain. Here we investigate the dynamics between gas hydrate stability and environmental changes from the height of the last glaciation through to the present day. Using geophysical observations from offshore Svalbard to constrain a coupled ice sheet/gas hydrate model, we identify distinct phases of subglacial methane sequestration and subsequent release on ice sheet retreat that led to the formation of a suite of seafloor domes. Reconstructing the evolution of this dome field, we find that incursions of warm Atlantic bottom water forced rapid gas hydrate dissociation and enhanced methane emissions during the penultimate Heinrich event, the Bølling and Allerød interstadials, and the Holocene optimum. Our results highlight the complex interplay between the cryosphere, geosphere, and atmosphere over the last 30,000 y that led to extensive changes in subseafloor carbon storage that forced distinct episodes of methane release due to natural climate variability well before recent anthropogenic warming. PMID:28584081

  6. Postglacial response of Arctic Ocean gas hydrates to climatic amelioration

    Science.gov (United States)

    Serov, Pavel; Vadakkepuliyambatta, Sunil; Mienert, Jürgen; Patton, Henry; Portnov, Alexey; Silyakova, Anna; Panieri, Giuliana; Carroll, Michael L.; Carroll, JoLynn; Andreassen, Karin; Hubbard, Alun

    2017-06-01

    Seafloor methane release due to the thermal dissociation of gas hydrates is pervasive across the continental margins of the Arctic Ocean. Furthermore, there is increasing awareness that shallow hydrate-related methane seeps have appeared due to enhanced warming of Arctic Ocean bottom water during the last century. Although it has been argued that a gas hydrate gun could trigger abrupt climate change, the processes and rates of subsurface/atmospheric natural gas exchange remain uncertain. Here we investigate the dynamics between gas hydrate stability and environmental changes from the height of the last glaciation through to the present day. Using geophysical observations from offshore Svalbard to constrain a coupled ice sheet/gas hydrate model, we identify distinct phases of subglacial methane sequestration and subsequent release on ice sheet retreat that led to the formation of a suite of seafloor domes. Reconstructing the evolution of this dome field, we find that incursions of warm Atlantic bottom water forced rapid gas hydrate dissociation and enhanced methane emissions during the penultimate Heinrich event, the Bølling and Allerød interstadials, and the Holocene optimum. Our results highlight the complex interplay between the cryosphere, geosphere, and atmosphere over the last 30,000 y that led to extensive changes in subseafloor carbon storage that forced distinct episodes of methane release due to natural climate variability well before recent anthropogenic warming.

  7. Sox/Nox Sorbent And Process Of Use

    Science.gov (United States)

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1995-06-27

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  8. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature range during Coal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotis Smirniotis

    2002-09-17

    A number basic sorbents based on CaO were synthesized, characterized with novel techniques and tested for sorption of CO{sub 2} and selected gas mixtures simulating flue gas from coal fired boilers. Our studies resulted in highly promising sorbents which demonstrated zero affinity for N{sub 2}, O{sub 2}, SO{sub 2}, and NO very low affinity for water, ultrahigh CO{sub 2} sorption capacities, and rapid sorption characteristics, CO{sub 2} sorption at a very wide temperature range, durability, and low synthesis cost. One of the 'key' characteristics of the proposed materials is the fact that we can control very accurately their basicity (optimum number of basic sites of the appropriate strength) which allows for the selective chemisorption of CO{sub 2} at a wide range of temperatures. These unique characteristics of this family of sorbents offer high promise for development of advanced industrial sorbents for the effective CO{sub 2} removal.

  9. Sorbent-Based Atmosphere Revitalization System

    Science.gov (United States)

    Knox, James C (Inventor); Miller, Lee A. (Inventor)

    2017-01-01

    The present invention is a sorbent-based atmosphere revitalization (SBAR) system using treatment beds each having a bed housing, primary and secondary moisture adsorbent layers, and a primary carbon dioxide adsorbent layer. Each bed includes a redirecting plenum between moisture adsorbent layers, inlet and outlet ports connected to inlet and outlet valves, respectively, and bypass ports connected to the redirecting plenums. The SBAR system also includes at least one bypass valve connected to the bypass ports. An inlet channel connects inlet valves to an atmosphere source. An outlet channel connects the bypass valve and outlet valves to the atmosphere source. A vacuum channel connects inlet valves, the bypass valve and outlet valves to a vacuum source. In use, one bed treats air from the atmosphere source while another bed undergoes regeneration. During regeneration, the inlet, bypass, and outlet valves sequentially open to the vacuum source, removing accumulated moisture and carbon dioxide.

  10. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  11. Calcium bromide hydration for heat storage systems

    OpenAIRE

    Ai Niwa; Noriyuki Kobayashi

    2015-01-01

    A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the...

  12. Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate

    Science.gov (United States)

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2009-01-01

    We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.

  13. Hydration dynamics promote bacterial coexistence on rough surfaces

    Science.gov (United States)

    Wang, Gang; Or, Dani

    2013-01-01

    Identification of mechanisms that promote and maintain the immense microbial diversity found in soil is a central challenge for contemporary microbial ecology. Quantitative tools for systematic integration of complex biophysical and trophic processes at spatial scales, relevant for individual cell interactions, are essential for making progress. We report a modeling study of competing bacterial populations cohabiting soil surfaces subjected to highly dynamic hydration conditions. The model explicitly tracks growth, motion and life histories of individual bacterial cells on surfaces spanning dynamic aqueous networks that shape heterogeneous nutrient fields. The range of hydration conditions that confer physical advantages for rapidly growing species and support competitive exclusion is surprisingly narrow. The rapid fragmentation of soil aqueous phase under most natural conditions suppresses bacterial growth and cell dispersion, thereby balancing conditions experienced by competing populations with diverse physiological traits. In addition, hydration fluctuations intensify localized interactions that promote coexistence through disproportional effects within densely populated regions during dry periods. Consequently, bacterial population dynamics is affected well beyond responses predicted from equivalent and uniform hydration conditions. New insights on hydration dynamics could be considered in future designs of soil bioremediation activities, affect longevity of dry food products, and advance basic understanding of bacterial diversity dynamics and its role in global biogeochemical cycles. PMID:23051694

  14. Gas Hydrate Petroleum System Analysis

    Science.gov (United States)

    Collett, T. S.

    2012-12-01

    In a gas hydrate petroleum system, the individual factors that contribute to the formation of gas hydrate accumulations, such as (1) gas hydrate pressure-temperature stability conditions, (2) gas source, (3) gas migration, and (4) the growth of the gas hydrate in suitable host sediment can identified and quantified. The study of know and inferred gas hydrate accumulations reveal the occurrence of concentrated gas hydrate is mostly controlled by the presence of fractures and/or coarser grained sediments. Field studies have concluded that hydrate grows preferentially in coarse-grained sediments because lower capillary pressures in these sediments permit the migration of gas and nucleation of hydrate. Due to the relatively distal nature of the deep marine geologic settings, the overall abundance of sand within the shallow geologic section is usually low. However, drilling projects in the offshore of Japan, Korea, and in the Gulf of Mexico has revealed the occurrence of significant hydrate-bearing sand reservoirs. The 1999/2000 Japan Nankai Trough drilling confirmed occurrence of hydrate-bearing sand-rich intervals (interpreted as turbidite fan deposits). Gas hydrate was determined to fill the pore spaces in these deposits, reaching saturations up to 80% in some layers. A multi-well drilling program titled "METI Toaki-oki to Kumano-nada" also identified sand-rich reservoirs with pore-filling hydrate. The recovered hydrate-bearing sand layers were described as very-fine- to fine-grained turbidite sand layers measuring from several centimeters up to a meter thick. However, the gross thickness of the hydrate-bearing sand layers were up to 50 m. In 2010, the Republic of Korea conducted the Second Ulleung Basin Gas Hydrate (UBGH2) Drilling Expedition. Seismic data clearly showed the development of a thick, potential basin wide, sedimentary sections characterized by mostly debris flows. The downhole LWD logs and core data from Site UBGH2-5 reveal that each debris flows is

  15. Diurnally-Varying Lunar Hydration

    Science.gov (United States)

    Hendrix, A. R.; Hurley, D.; Retherford, K. D.; Mandt, K.; Greathouse, T. K.; Farrell, W. M.; Vilas, F.

    2016-12-01

    Dayside, non-polar lunar hydration signatures have been observed by a handful of instruments and present insights into the lunar water cycle. In this study, we utilize the unique measurements from the current Lunar Reconnaissance Orbiter (LRO) mission to study the phenomenon of diurnally-varying dayside lunar hydration. The Lyman Alpha Mapping Project (LAMP) onboard LRO senses a strong far-ultraviolet water absorption edge indicating hydration in small abundances in the permanently shadowed regions as well as on the lunar dayside. We report on diurnal variability in hydration in different terrain types. We investigate the importance of different sources of hydration, including solar wind bombardment and meteoroid bombardment, by observing trends during magnetotail and meteor stream crossings.

  16. Novel sorbents for removal of gadolinium-based contrast agents in sorbent dialysis and hemoperfusion: preventive approaches to nephrogenic systemic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Yantasee, Wassana; Fryxell, Glen E.; Porter, George A.; Pattamakomsan, Kanda; Sukwarotwat, Vichaya; Chouyyok, Wilaiwan; Koonsiripaiboon, View; Xu, Jide; Raymond, Kenneth N.

    2010-02-01

    Gd based contrast agents in many forms of organocomplex have recently been linked to a debilitating and a potentially fatal skin disease called Nephrogenic Systemic Fibrosis (NSF) in patients with renal failures. Free Gd released from the complexes by transmetallation is believed to be the most important trigger for NSF. Removal of Gd complex from the patients immediately after the contrast study would prevent the dissociation of Gd and should eliminate NSF as a complication. Although removal of Gd based contrast agents may be accomplished with conventional hemodialysis, it requires three hemodialysis sessions at 3 hours each to remove 98% of the contrast agents. In this work, mesoporous silica material that are functionalized with 1-hydroxy-2-pyridinone (1,2-HOPO-SAMMS®) has been evaluated for effective removal of both free and chelated Gd (Magnevist, a brand of gadopentetate dimeglumine) from the dialysate and sodium chloride solution. The material has high affinity, rapid removal rate, and large sorption capacity for both free and chelated Gd, the properties that are far superior to those of activated carbon and zirconium phosphate currently used in the state-of-the-art sorbent dialysis systems. 99% of both free and chelated Gd would be removed in a single pass thru the sorbent bed of 1,2-HOPO-SAMMS®. The sorbent provides an effective and predicable strategy for removing Gd from patients with impaired renal function, thus it would allow for the continued use of contrast MRI while removing the risk of NSF and would represent a safe alternative to traditional contrast studies in the patient population.

  17. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  18. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    Science.gov (United States)

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  19. Spray-dried fluid-bed sorbents tests - CMP-5

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, S.K.; Gupta, R.P.

    1995-12-01

    The objective of this study is to determine the feasibility of manufacturing highly reactive and attrition-resistant zinc titanate sorbents by spray drying, suitable for bubbling (conventional) as well as transport-type fluidized-bed reactor systems.

  20. Metal sulfide initiators for metal oxide sorbent regeneration

    Science.gov (United States)

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  1. Novel Sorbent to Clean Up Biogas for CHPs

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gökhan O. [TDA Research, Incorporated, Wheat Ridge, CO (United States); Jayataman, Ambalavanan [TDA Research, Incorporated, Wheat Ridge, CO (United States); Schaefer, Matthew [TDA Research, Incorporated, Wheat Ridge, CO (United States); Ware, Michael [TDA Research, Incorporated, Wheat Ridge, CO (United States); Hunt, Jennifer [FuelCell Energy, Inc., Danbury, CT (United States); Dobek, Frank [FuelCell Energy, Inc., Danbury, CT (United States)

    2015-05-30

    In this project, TDA Research Inc. (TDA) has developed low-cost (on a per unit volume of gas processed basis), high-capacity expendable sorbents that can remove both the H2S and organic sulfur species in biogas to the ppb levels. The proposed sorbents will operate downstream of a bulk desulfurization system as a polishing bed to provide an essentially sulfur-free gas to a fuel cell (or any other application that needs a completely sulfur-free feed). Our sorbents use a highly dispersed mixed metal oxides active phase with desired modifiers prepared over on a mesoporous support. The support structure allows the large organic sulfur compounds (such as the diethyl sulfide and dipropyl sulfide phases with a large kinetic diameter) to enter the sorbent pores so that they can be adsorbed and removed from the gas stream.

  2. Process for preparing zinc oxide-based sorbents

    Science.gov (United States)

    Gangwal, Santosh Kumar [Cary, NC; Turk, Brian Scott [Durham, NC; Gupta, Raghubir Prasad [Durham, NC

    2011-06-07

    The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  3. Novel Liquid Sorbent C02 Removal System for Microgravity Applications

    Science.gov (United States)

    Rogers, Tanya; Westover, Shayne; Graf, John

    2017-01-01

    Removing Carbon Dioxide (CO2) from a spacecraft environment for deep space exploration requires a robust system that is low in weight, power, and volume. Current state-of-the-art microgravity compatible CO2 removal systems, such as the carbon dioxide removal assembly (CDRA), utilize solid sorbents that demand high power usage due to high desorption temperatures and a large volume to accommodate for their comparatively low capacity for CO2. Additionally, solid sorbent systems contain several mechanical components that significantly reduce reliability and contribute to a large overall mass. A liquid sorbent based system has been evaluated as an alternative is proposed to consume 65% less power, weight, and volume than solid based CO2 scrubbers. This paper presents the design of a liquid sorbent CO2 removal system for microgravity applications.

  4. Application of Sorbents and Solidifiers for Oil Spills

    Science.gov (United States)

    This guide assists product manufacturers and members of the response community in distinguishing a sorbent from a solidifier for purposes of listing such products on the National Contingency Plan (NCP) Product Schedule and applying them in the field.

  5. Magnetic fibrous sorbent for remote and efficient oil adsorption.

    Science.gov (United States)

    Song, Botao; Zhu, Jie; Fan, Haiming

    2017-07-15

    Oil spill accident and oily water have potential risks to environment and human health, thus need to be imperatively treated. Herein, a magnetic fibrous sorbent was designed via electrospinning of suspension containing polymer and magnetic nanoparticles in one step for remote and efficient oil adsorption. The morphology of the magnetic fibrous sorbent was characterized by scanning electron microscopy. The magnetic property and the wetting behavior were measured by vibrating sample magnetometer and contact angle system, respectively. The results showed that the morphology of the fibers was homogeneous and the magnetic nanoparticles were well dispersed within the fibers. It was also found that this composite sorbent had good magnetic response, special wettability, and remote oil adsorption capacity. We believed this novel polymer/Fe3O4 fibrous sorbent could be used as a promising material for the remote oil/water separation. Copyright © 2017. Published by Elsevier Ltd.

  6. Experimental study on 2-D acoustic characteristics and hydrate distribution in sand

    Science.gov (United States)

    Bu, Qingtao; Hu, Gaowei; Ye, Yuguang; Liu, Changling; Li, Chengfeng; Wang, Jiasheng

    2017-11-01

    An experimental system was developed to measure the acoustic velocity of hydrate-bearing sands and to infer their 2-D velocity structure and hydrate content during hydrate formation. For this purpose, sands of two different grain sizes were chosen and arranged in alternating layers in a pressure vessel before saturating them with a solution of dissolved methane gas in a sodium dodecyl sulphate solution. During cooling and subsequent hydrate formation, acoustic velocities were measured with ultrasonic probes along the vessel wall. Hydrate formation was measured by time domain reflectometry. A straight ray-tracing method and an iterative algorithm based on the simultaneous iterative reconstruction technique algorithm were used to perform forward modelling and inversion of the ultrasonic tomography. The tomography results were used to obtain acoustic velocity profile distribution images of hydrate formation in loose sediments. The results show that the acoustic velocity in each layer increases rapidly when the hydrate saturation is less than 20 per cent. In contrast, the acoustic velocity increases slowly when the hydrate saturation is greater than 20 per cent. The effective medium theory was used to describe the changes of velocities with hydrate saturation. The empirical formula of P and S-wave velocity in hydrate-bearing sediments as well as the correlation between the wave velocity ratio and the hydrate saturation are also obtained. In the first stage of hydrate formation, the acoustic velocity is larger in the coarse sediment than in the fine sediment. At the end of hydrate formation, the acoustic velocities in different layers differ little and the hydrates are nearly homogeneously distributed in the reservoir. The 2-D velocity structure and inferred hydrate distribution indicate that in the longitudinal direction, the hydrate preferentially forms close to the gas source, thus the acoustic velocity is large in this area. In the transverse direction, the hydrate

  7. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  8. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Raghubir P. Gupta

    2006-03-31

    This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

  9. Oil sorbents from plastic wastes and polymers: A review.

    Science.gov (United States)

    Saleem, Junaid; Adil Riaz, Muhammad; Gordon, McKay

    2018-01-05

    A large volume of the waste produced across the world is composed of polymers from plastic wastes such as polyethylene (HDPE or LDPE), polypropylene (PP), and polyethylene terephthalate (PET) amongst others. For years, environmentalists have been looking for various ways to overcome the problems of such large quantities of plastic wastes being disposed of into landfill sites. On the other hand, the usage of synthetic polymers as oil sorbents in particular, polyolefins, including polypropylene (PP) and polyethylene (PE) have been reported. In recent years, the idea of using plastic wastes as the feed for the production of oil sorbents has gained momentum. However, the studies undertaking such feasibility are rather scattered. This review paper is the first of its kind reporting, compiling and reviewing these various processes. The production of an oil sorbent from plastic wastes is being seen to be satisfactorily achievable through a variety of methods Nevertheless, much work needs to be done regarding further investigation of the numerous parameters influencing production yields and sorbent qualities. For example, differences in results are seen due to varying operating conditions, experimental setups, and virgin or waste plastics being used as feeds. The field of producing oil sorbents from plastic wastes is still very open for further research, and seems to be a promising route for both waste reduction, and the synthesis of value-added products such as oil sorbents. In this review, the research related to the production of various oil sorbents based on plastics (plastic waste and virgin polymer) has been discussed. Further oil sorbent efficiency in terms of oil sorption capacity has been described. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. REMOVAL OF ANIONIC SURFACTANTS FROM WASTEWATER BY MAGNETIC MINERAL SORBENTS

    Directory of Open Access Journals (Sweden)

    Oksana Vladimirova Makarchuk

    2016-07-01

    Full Text Available The simplest and most effective method of removing low concentrations of anionic surfactants such as sodium dodecyl benzenesulfonate (SDBS and sodium lauryl sulfate (SLS is adsorption. Among adsorbents the natural clays are cheap and promising for these purposes. However, there are significant difficulties in removal of spent sorbent after the adsorption process. So, the creation of magnetic sorbents that can be effectively removed from water after sorption by magnetic separation will be a successful decision. The aim of this investigation is the creation of cheap and efficient magnetic sorbents based on natural clays and magnetite for anionic surfactant removal from wastewater. We have synthesized a series of magnetic sorbents from different natural clays with a content of magnetite from 2 to 10 wt%. The ability of magnetic sorbents to remove SDBS and SLS from aqueous solutions has been studied for different adsorbate concentrations by varying the amount of adsorbent, temperature and shaking time. Thermodynamic parameters were calculated from the slope and intercept of the linear plots of ln K against 1/T. Analysis of adsorption results obtained at different temperatures showed that the adsorption pattern on magnetic sorbents correspond to the Langmuir isotherm. It is shown that with increasing the content of magnetite in the magnetic sorbents improves not only their separation from water by magnetic separation, but adsorption capacity to SDBS and SLS. Thus, we obtained of cheap magnetic sorbents based on natural clays and magnetite by the easy way, which not only quickly separated from the solution by magnetic separation, but effectively remove anionic surfactants.

  11. Nonlinear gas chromatography as a way of studying inhomogeneous sorbents

    Science.gov (United States)

    Kotel'nikova, T. A.

    2017-10-01

    A way of organizing and processing the results from gas-chromatographic experiments to obtain chromatographic retention characteristics for a fixed concentration of sorbate in the gas phase or on the surface of the sorbent is proposed and substantiated. The suitability and expediency of such retention characteristics for describing the sorption properties of inhomogenous sorbents is demonstrated using a wide variety of adsorbents of different natures (activated carbons, swelling and nonswelling polymers, silicas and their silver derivatives) as examples.

  12. Shifting Focus: From Hydration for Performance to Hydration for Health.

    Science.gov (United States)

    Perrier, Erica T

    2017-01-01

    Over the past 10 years, literature on hydration biomarkers has evolved considerably - from (de)hydration assessment towards a more global definition of biomarkers of hydration in daily life. This shift in thinking about hydration markers was largely driven by investigating the differences that existed between otherwise healthy individuals whose habitual, ad-libitum drinking habits differ, and by identifying physiological changes in low-volume drinkers who subsequently increase their water intake. Aside from obvious differences in urinary volume and concentration, a growing body of evidence is emerging that links differences in fluid intake with small, but biologically significant, differences in vasopressin (copeptin), glomerular filtration rate, and markers of metabolic dysfunction or disease. Taken together, these pieces of the puzzle begin to form a picture of how much water intake should be considered adequate for health, and represent a shifting focus from hydration for performance, toward hydration for health outcomes. This narrative review outlines the key areas of research in which the global hydration process - including water intake, urinary hydration markers, and vasopressin - has been associated with health outcomes, focusing on kidney and metabolic endpoints. It will also provide a commentary on how various hydration biomarkers may be used in hydration for health assessment. Finally, if adequate water intake can play a role in maintaining health, how might we tell if we are drinking enough? Urine output is easily measured, and can take into account differences in daily physical activity, climate, dietary solute load, and other factors that influence daily water needs. Today, targets have been proposed for urine osmolality, specific gravity, and color that may be used by researchers, clinicians, and individuals as simple indicators of optimal hydration. However, there remain a large number of incomplete or unanswered research questions regarding the

  13. Formation of hydrate films on the surface of calcium silicate and aluminate in the presence of polyelectrolytes

    Science.gov (United States)

    Kurochkina, G. N.

    2017-08-01

    To elucidate the mechanism of moistening and overmoistening of soils and mineral soil components capable of chemical hydration, the sorption of water vapor has been studied in combination with synchronous conductometric measurements. Effect of organic polyelectrolyte molecules on the hydration kinetics and the formation of hydrate films on their surface has been revealed for dehydrated calcium silicate and aluminate simulating minor soil components. The plotting of sorption-desorption curves has shown that hydrate-polymer films formed by aliphatic or aromatic polyelectrolytes with different functional groups (-COOH,-OH,-NH2,-CONH, etc.) significantly vary in dispersion and structure. The changes in dispersion during hydration are frequently not correlated with the amount of resulting hydrates, the content of which is controlled by the crystallochemical features of sorbents, the structure and activity of the polymer functional groups, and the conditions of sorption kinetic studies. It has been shown that the formation of low-permeable surface organomineral layers is typical for aliphatic polyelectrolytes, while more permeable layers determining the water-physical and structure-forming properties of soils are typical for aromatic polyelectrolytes.

  14. In-situ visual observation for the formation and dissociation of methane hydrates in porous media by magnetic resonance imaging.

    Science.gov (United States)

    Zhao, Jiafei; Lv, Qin; Li, Yanghui; Yang, Mingjun; Liu, Weiguo; Yao, Lei; Wang, Shenglong; Zhang, Yi; Song, Yongchen

    2015-05-01

    In this work, magnetic resonance imaging (MRI) was employed to observe the in-situ formation and dissociation of methane hydrates in porous media. Methane hydrate was formed in a high-pressure cell with controlled temperature, and then the hydrate was dissociated by thermal injection. The process was photographed by the MRI, and the pressure was recorded. The images confirmed that the direct visual observation was achieved; these were then employed to provide detailed information of the nucleation, growth, and decomposition of the hydrate. Moreover, the saturation of methane hydrate during the dissociation was obtained from the MRI intensity data. Our results showed that the hydrate saturation initially decreased rapidly, and then slowed down; this finding is in line with predictions based only on pressure. The study clearly showed that MRI is a useful technique to investigate the process of methane hydrate formation and dissociation in porous media. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Engineered sorbent barriers for low-level waste disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs.

  16. The temperature hydration kinetics

    Directory of Open Access Journals (Sweden)

    Mircea Oroian

    2017-07-01

    Full Text Available The aim of this study is to evaluate the hydration kinetics of lentil seeds (Lens culinaris in water at different temperatures (25, 32.5, 40, 55, 70 and 80 °C for assessing the adequacy of models for describing the absorption phenomena during soaking. The diffusion coefficient values were calculated using Fick’s model for spherical and hemispherical geometries and the values were in the range of 10−6 m2/s. The experimental data were fitted to Peleg, Sigmoidal, Weibull and Exponential models. The models adequacy was determined using regression coefficients (R2, root mean square error (RMSE and reduced chi-square (χ2. The Peleg model is the suitable one for predicting the experimental data. Temperature had a positive and significant effect on the water absorption capacities and absorption was an endothermic process.

  17. Ultraviolet photoinitiated on-fiber copolymerization of ionic liquid sorbent coatings for headspace and direct immersion solid-phase microextraction.

    Science.gov (United States)

    Ho, Tien D; Yu, Honglian; Cole, William T S; Anderson, Jared L

    2012-11-06

    A high-throughput method for the production of solid-phase microextraction (SPME) sorbent coatings via ultraviolet (UV) photoinitiated copolymerization of ionic liquid (IL) monomers on a fused silica support is described. The copolymerization of monocationic and dicationic IL cross-linkers was performed "on-fiber" using UV initiated free radical polymerization. Mixtures composed of various amounts of the IL cross-linker, UV initiator (DAROCUR 1173), and IL monomer were dip-coated onto an etched and derivatized fused silica support and placed in a high-capacity UV reactor. The method requires no organic dispersive solvent and is much more rapid compared to traditional methods in which polymeric ionic liquid (PIL) sorbent coatings are prepared by 2,2'-azobis(2-methylpropionitrile) (AIBN)-initiated polymerization. Two ionic liquid-based cross-linkers, namely, 1,8-di (3-vinylimidazolium) octane dibromide ([(VIM)(2)C(8)] 2[Br]) and 1,12-di (3-vinylimidazolium) dodecane dibromide ([(VIM)(2)C(12)] 2[Br]), were copolymerized with an ionic liquid monomer, 1-vinyl-3-hexylimidazolium chloride ([VHIM][Cl]), to produce polar cross-linked PIL-based SPME sorbent coatings. The cross-linking and immobilization of these coatings make them particularly applicable in direct immersion SPME. The coatings were applied in the extraction of polar analytes, including alcohols, aldehydes, and esters, from aqueous solutions using headspace and direct immersion SPME gas chromatography mass spectrometry (GC/MS). Compared to linear PIL-based sorbent coatings containing the same anions, the cross-linked PIL-based coatings exhibited higher thermal stability and lower bleed, making them ideal for GC/MS. Recovery experiments were performed in deionized, well, and river water. The structural integrity of the sorbent coatings, as well as their analytical precision, was not diminished after 90 extractions from complex samples using headspace and direct immersion SPME.

  18. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated

  19. International Society of Nephrology-Hydration and Kidney Health Initiative - Expanding Research and Knowledge.

    Science.gov (United States)

    Moist, Louise M; Clark, William F; Segantini, Luca; Damster, Sandrine; Le Bellego, Laurent; Wong, Germaine; Tonelli, Marcello

    2016-01-01

    The purpose of this manuscript is to describe a collaborative research initiative to explore the role of hydration in kidney health. Our understanding of the effects of hydration in health and disease is surprisingly limited, particularly when we consider the vital role of hydration in basic human physiology. Recent initiatives and research outcomes have challenged the global medical community to expand our knowledge about hydration, including the differences between water, sugared beverages and other consumables. Identification of the potential mechanisms contributing to the benefits of hydration has stimulated the global nephrology community to advance research regarding hydration for kidney health. Hydration and kidney health has been a focus of research for several research centers with a rapidly expanding world literature and knowledge. The International Society of Nephrology has collaborated with Danone Nutricia Research to promote development of kidney research initiatives, which focus on the role of hydration in kidney health and the global translation of this new information. This initiative supports the use of existing data in different regions and countries to expand dialogue among experts in the field of hydration and health, and to increase scientific interaction and productivity with the ultimate goal of improving kidney health. © 2016 The Author(s) Published by S. Karger AG, Basel.

  20. Proton affinities of hydrated molecules

    Science.gov (United States)

    Valadbeigi, Younes

    2016-09-01

    Proton affinities (PA) of non-hydrated, M, and hydrated forms, M(H2O)1,2,3, of 20 organic molecules including alcohols, ethers, aldehydes, ketones and amines were calculated by the B3LYP/6-311++G(d,p) method. For homogeneous families, linear correlations were observed between PAs of the M(H2O)1,2,3 and the PAs of the non-hydrated molecules. Also, the absolute values of the hydration enthalpies of the protonated molecules decreased linearly with the PAs. The correlation functions predicted that for an amine with PA amine with PA > 1100 kJ/mol the PA(M(H2O)) is smaller than the PA.

  1. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 {mu}m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871{degrees}C. Bench-scale testing variables included sorbent type, temperature (550 to 750{degrees}C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750{degrees}C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  2. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 [mu]m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871[degrees]C. Bench-scale testing variables included sorbent type, temperature (550 to 750[degrees]C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750[degrees]C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  3. Hydration in soccer: a review

    OpenAIRE

    Monteiro Cristiano Ralo; Guerra Isabela; Barros Turíbio Leite de

    2003-01-01

    Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. Th...

  4. A Sea Floor Methane Hydrate Displacement Experiment Using N2 Gas

    Science.gov (United States)

    Brewer, P. G.; Peltzer, E. T.; Walz, P. M.; Zhang, X.; Hester, K.

    2009-12-01

    The production of free methane gas from solid methane hydrate accumulations presents a considerable challenge. The presently preferred procedure is pressure reduction whereby the relief of pressure to a condition outside the hydrate phase boundary creates a gas phase. The reaction is endothermic and thus a problematic water ice phase can form if the extraction of gas is too rapid, limiting the applicability of this procedure. Additionally, the removal of the formation water in contact with the hydrate phase is required before meaningful pressure reduction can be attained -- and this can take time. An alternate approach that has been suggested is the injection of liquid CO2 into the formation, thereby displacing the formation water. Formation of a solid CO2 hydrate is thermodynamically favored under these conditions. Competition between CH4 and CO2 for the hydrate host water molecules can occur displacing CH4 from the solid to the gas phase with formation of a solid CO2 hydrate. We have investigated another alternate approach with displacement of the surrounding bulk water phase by N2 gas, resulting in rapid release of CH4 gas and complete loss of the solid hydrate phase. Our experiment was carried out at the Southern Summit of Hydrate Ridge, offshore Oregon, at 780m depth. There we harvested hydrate fragments from surficial sediments using the robotic arm of the ROV Doc Ricketts. Specimens of the hydrate were collected about 1m above the sediment surface in an inverted funnel with a mesh covered neck as they floated upwards. The accumulated hydrate was transferred to an inverted glass cylinder, and N2 gas was carefully injected into this container. Displacement of the water phase occurred and when the floating hydrate material approached the lower rim the gas injection was stopped and the cylinder placed upon a flat metal plate effectively sealing the system. We returned to this site after 7 days to measure progress, and observed complete loss of the hydrate phase

  5. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  6. Dual layer hollow fiber sorbents: Concept, fabrication and characterization

    KAUST Repository

    Bhandari, Dhaval

    2013-02-01

    Hollow fiber sorbents are pseudo-monolithic separations materials created with fiber spinning technology using a polymer \\'binder\\', impregnated with high loadings of sorbent \\'fillers\\' [1]. To increase purified gas recovery during the sorption step and to ensure consistent sorption capacity over repeated cycles, a dense, thin polymer barrier layer on the fiber sorbents is needed to allow only thermal interactions between the sorbate loaded layer and the thermal regeneration fluid. This paper considers materials and methods to create delamination-free dual layer fiber sorbents, with a porous core and a barrier sheath layer formed using a simultaneous co-extrusion process. Low permeability polymers were screened for sheath layer creation, with the core layer comprising cellulose acetate polymer as binder and zeolite NaY as sorbent fillers. Appropriate core and sheath layer dope compositions were determined by the cloud-point method and rheology measurements. The morphology of the as-spun fibers was characterized in detail by SEM, EDX and gas permeation analysis. A simplified qualitative model is described to explain the observed fiber morphology. The effects of core, sheath spin dope and bore fluid compositions, spinning process parameters such as air-gap height, spin dope and coagulation bath temperatures, and elongation draw ratio are examined in detail. © 2012 Elsevier B.V. All rights reserved.

  7. Ecologically pure sorbents for power system of Myanmar

    Science.gov (United States)

    Nikitina, I. S.; Moryganova, Y. A.; Maung, Ko Ko; Arefeva, E. A.

    2017-11-01

    Currently, one of the most important problems of the thermal power plant, and many industrial enterprises in different countries is a wastewater treatment for oil products. When choosing the good sorbents is necessary to consider not only the properties and efficiency of the recommended materials, but also the cost, the possibility of environmentally friendly disposal of used sorbents and the possibility of using secondary resources. The purpose of this paper is to study the possibility of using agricultural waste in Myanmar as the sorbents in wastewater treatment containing oil products. The results of experiments have confirmed that rice hulls, and coconut fiber can be effectively used as the sorbents in wastewater treatment containing oil products at concentrations up to 10 mg/l. According to comparative analysis with the conventional sorbent-activated birch carbon (BAC-A) in the Russian power industry has shown that coconut fiber has very good sorption capacity and it is available to use as the raw materials for industries, which does not require to regenerate after using it and can be directly recycled in the factory.

  8. Cheap carbon sorbents produced from lignite by catalytic pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Schchipko, M.L. [Inst. of Chemistry of Natural Organic Materials, Akademgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    Some data are presented describing the new technology of carbon sorbent production from powdered lignite in the installation with fluidized bed of catalyst. It was shown the different types of char products with extended pore structure and high sorption ability can be produced from cheap and accessible lignite of Kansk-Achinsk coal pit in pilot installation with fluidized bed of Al-Cu-Cr oxide catalyst or catalytically active slag materials. In comparison with the conventional technologies of pyrolysis the catalytic pyrolysis allows to increase by 3-5 times the process productivity and to decrease significantly the formation of harmful compounds. The latter is accomplished by complete oxidation of gaseous pyrolysis products in the presence of catalysts and by avoiding the formation of pyrolysis tars - the source of cancerogenic compounds. The technology of cheap powdered sorbent production from lignites makes possible to obtain from lignite during the time of pyrolysis only a few seconds char products with porosity up to 0.6 cm{sup 3} /g, and specific surface area more than 400 m{sup 3} /g. Some methods of powdered chars molding into carbon materials with the different shape were proved for producing of firmness sorbents. Cheap carbon sorbents obtained by thermocatalytic pyrolysis can be successfully used in purification of different industrial pollutants as one-time sorbent or as adsorbents of long-term application with periodic regeneration.

  9. A calcium oxide sorbent process for bulk separation of carbon dioxide. Quarterly progress report, October--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Silaban, A.; Narcida, M.; Harrison, D.P.

    1992-02-01

    The expected commercialization of coal gasification technology in the US and world-wide will create a need for advanced gas purification and separation processes capable of operating at higher temperatures and in more hostile environments than is common today. For example, a high-temperature, high-pressure process capable of separating CO{sub 2} from coal-derived gas may find application in purifying synthesis gas for H{sub 2}, NH{sub 3}, or CH{sub 3}OH production. High temperature CO{sub 2} removal has the potential for significantly improving the operating efficiency of integrated gasification-molten carbonate fuel cells for electric power generation. This study proved the technical feasibility of a CO{sub 2}-separation process based upon the regenerable noncatalytic gas-solid reaction between CaO and CO{sub 2} to form CACO{sub 3}. Such a process operating at 650{degree}C and 15 atm with 15% CO{sub 2} in the coal gas has the potential for removing in excess of 99% of the CO{sub 2} fed. Selection of a sorbent precursor which, upon calcination, produces high-porosity CaO is important for achieving rapid and complete reaction. The addition of magnesium to the sorbent appears to improve the multicycle durability at a cost of reduced CO{sub 2} capacity per unit mass of sorbent. Reaction conditions, principally calcination and carbonation temperatures, are important factors in multicycle durability. Reaction pressure and CO{sub 2} concentration are important in so far as the initial rapid reaction rate is concerned, but are relatively unimportant in terms of sorbent capacity and durability. Indirect evidence for the simultaneous occurrence of the shift reaction and CO{sub 2}-removal reaction creates the possibility of a direct one-step process for the production of hydrogen from coal-derived gas.

  10. THE EFFECT OF GAS HYDRATES DISSOCIATION AND DRILLING FLUIDS INVASION UPON BOREHOLE STABILITY IN OCEANIC GAS HYDRATES-BEARING SEDIMENT

    Science.gov (United States)

    Ning, F.; Wu, N.; Jiang, G.; Zhang, L.

    2009-12-01

    Under the condition of over-pressure drilling, the solid-phase and liquid-phase in drilling fluids immediately penetrate into the oceanic gas hydrates-bearing sediment, which causes the water content surrounding the borehole to increase largely. At the same time, the hydrates surrounding borehole maybe quickly decompose into water and gas because of the rapid change of temperature and pressure. The drilling practices prove that this two factors may change the rock characteristics of wellbore, such as rock strength, pore pressure, resistivity, etc., and then affect the logging response and evaluation, wellbore stability and well safty. The invasion of filtrate can lower the angle of friction and weaken the cohesion of hydrates-bearing sediment,which is same to the effect of invading into conventional oil and gas formation on borehole mechnical properties. The difference is that temperature isn’t considered in the invasion process of conventional formations while in hydrates-bearing sediments, it is a factor that can not be ignored. Temperature changes can result in hydrates dissociating, which has a great effect on mechanical properties of borehole. With the application of numerical simulation method, we studied the changes of pore pressure and variation of water content in the gas hydrates-bearing sediment caused by drilling fluid invasion under pressure differential and gas hydrate dissociation under temperature differential and analyzed their influence on borehole stability.The result of simulation indicated that the temperature near borehole increased quickly and changed hardly any after 6 min later. About 1m away from the borehole, the temperature of formation wasn’t affected by the temperature change of borehole. At the place near borehole, as gas hydrate dissociated dramatically and drilling fluid invaded quickly, the pore pressure increased promptly. The degree of increase depends on the permeability and speed of temperature rise of formation around

  11. Deep Bed Iodine Sorbent Testing FY 2011 Report

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg; Tony Watson

    2011-08-01

    Nuclear fission results in the production of fission products (FPs) and activation products that increasingly interfere with the fission process as their concentrations increase. Some of these fission and activation products tend to evolve in gaseous species during used nuclear fuel reprocessing. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Deep-bed iodine sorption testing has been done to evaluate the performance of solid sorbents for capturing iodine in off-gas streams from nuclear fuel reprocessing plants. The objectives of the FY 2011 deep bed iodine sorbent testing are: (1) Evaluate sorbents for iodine capture under various conditions of gas compositions and operating temperature (determine sorption efficiencies, capacities, and mass transfer zone depths); and (2) Generate data for dynamic iodine sorption modeling. Three tests performed this fiscal year on silver zeolite light phase (AgZ-LP) sorbent are reported here. Additional tests are still in progress and can be reported in a revision of this report or a future report. Testing was somewhat delayed and limited this year due to initial activities to address some questions of prior testing, and due to a period of maintenance for the on-line GC. Each test consisted of (a) flowing a synthetic blend of gases designed to be similar to an aqueous dissolver off-gas stream over the sorbent contained in three separate bed segments in series, (b) measuring each bed inlet and outlet gas concentrations of iodine and methyl iodide (the two surrogates of iodine gas species considered most representative of iodine species expected in dissolver off-gas), (c) operating for a long enough time to achieve breakthrough of the iodine species from at least one (preferably the first two) bed segments, and (d) post-test purging

  12. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...... and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6...

  13. Kinetic behaviour of iron oxide sorbent in hot gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Y.G. Pan; J.F. Perales; E. Velo; L. Puigjaner [Universitat Politecnica de Catalunya, Barcelona (Spain). Department of Chemical Engineering

    2005-06-01

    Although a number of reports on sorbents containing ZnO for H{sub 2}S removal from coal-derived gases can be found in the literature, it is shown in our study that a special sorbent containing Fe{sub 2}O{sub 3}{center_dot}FeO (SFO) with minor promoters (Al{sub 2}O{sub 3}, K{sub 2}O, and CaO) as the main active species is more attractive for both sulfidation and regeneration stages, also under economic considerations. This paper presents the kinetic behaviour of SFO in a hot gas desulfurization process using a thermogravimetric analysis under isothermal condition in the operating range between 500 and 800{sup o}C. The gas stream was N{sub 2} with a 2% wt of H{sub 2}S. Experiences carried out on sorbent sulfidation with SFO (particle sizes in the range of 0.042-0.12 mm) indicate that the sorbent sulfidation capacity sharply increases with temperature in the range of 500-600{sup o}C. It is also shown that the sample weight reaches its maximum absorption capacity, near saturation, at 600{sup o}C so that it makes no sense to increase the sulfidation temperature from this point. To make a comparison between SFO and a zinc titanate based sorbent, a set of sulfidation tests was carried out at 600{sup o}C during 7200 s using the same sieve range for both sorbents between 42 and 90 m. Results show that the sulfidation capacity of SFO is 1.9 times higher than that of zinc titanate. 11 refs., 8 figs., 1 tab.

  14. Direct sulfur recovery during sorbent regeneration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G.; Little, R.C. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1993-08-01

    The objective of this research project was to improve the direct elemental sulfur yields that occur during the regeneration of SO{sub 2}-saturated MgO-vermiculite sorbents (MagSorbents) by examining three approaches or strategies. The three approaches were regeneration-gas recycle, high-pressure regeneration, and catalytic reduction of the SO{sub 2} gas using a new catalyst developed by Research Triangle Institute (RTI). Prior to the project, Sorbent Technologies Corporation (Sorbtech) had developed a sorbent-regeneration process that yielded directly a pure elemental sulfur product. In the process, typically about 25 to 35 percent of the liberated S0{sub 2} was converted directly to elemental sulfur. The goal of this project was to achieve a conversion rate of over 90 percent. Good success was attained in the project. About 90 percent or more conversion was achieved with two of the approaches that were examined, regeneration-gas recycle and use of the RTI catalyst. Of these approaches, regeneration-gas recycle gave the best results (essentially 100 percent conversion in some cases). In the regeneration-gas recycle approach, saturated sorbent is simply heated to about 750{degree}C in a reducing gas (methane) atmosphere. During heating, a gas containing elemental sulfur, water vapor, H{sub 2}S, S0{sub 2}, and C0{sub 2} is evolved. The elemental sulfur and water vapor in the gas stream are condensed and removed, and the remaining gas is recycled back through the sorbent bed. After several recycles, the S0{sub 2} and H{sub 2}S completely disappear from the gas stream, and the stream contains only elemental sulfur, water vapor and C0{sub 2}.

  15. Calcium bromide hydration for heat storage systems

    Directory of Open Access Journals (Sweden)

    Ai Niwa

    2015-12-01

    Full Text Available A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the object that requires heat. The exothermic heat produced from the solid–liquid reaction was measured, and the relationship between the equivalence ratio and the reaction heat was evaluated. The heat output and heat recovered by the heat storage system, which comprised a reaction vessel and a heat exchanger, were measured. We selected solid CaBr2 because it was the best metal halide for a hydration reaction and had a high heat yield from the dissolution reaction. With this system, we were able to achieve a heat recovery rate of 582 kJ/L-H2O. We found no degradation in the chemical composition of CaBr2 after it being recycled 100 times.

  16. Enhancing preferential oxidation of CO in H{sub 2} on Au/{alpha}-Fe{sub 2}O{sub 3} catalyst via combination with APTES/SBA-15 CO{sub 2}-sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Desmond Ng, Jia Wei; Zhong, Ziyi; Luo, Jizhong; Borgna, Armando [Institute of Chemical and Engineering Sciences, A-Star, 1 Pesek Road, Jurong Island (Singapore)

    2010-12-15

    Au/{alpha}-Fe{sub 2}O{sub 3} was combined with a CO{sub 2}-sorbent (3-aminopropyltriethoxysilane (APTES) grafted on SBA-15 and hereafter denoted as APTES/SBA-15) to enhance preferential oxidation (PROX) of CO in H{sub 2}. The CO{sub 2} molecules could be rapidly adsorbed on APTES/SBA-15 at low temperatures below 50 C with a capacity of 0.68 mmol CO{sub 2}/g-sample, and desorbed at a temperature range of 50 C-80 C. Three different configurations of the Au/{alpha}-Fe{sub 2}O{sub 3} catalyst and the CO{sub 2}-sorbent were tested in the PROX reaction, namely (i) the sorbent-free (catalyst//SBA-15//catalyst) configuration, (ii) the packed three-layer configuration (catalyst//CO{sub 2}-sorbent//catalyst), and (iii) the mechanically mixed catalyst and CO{sub 2}-sorbent configuration. Compared to configuration (i), configuration (ii) achieved an average 10% higher CO conversion at 50 C and a GHSV of 65000 h{sup -1}. However, the CO concentration could not be lowered to below 70 ppm from 2000 ppm using configuration (ii) at a GHSV of 10000 h{sup -1}. Thus, a 5-layer configuration (catalyst//CO{sub 2}-sorbent//catalyst//CO{sub 2}-sorbent//catalyst) was used, and the CO concentration was lowered to ca. 25 ppm. The mechanism for enhancement of the PROX reaction by the continuous removal of CO{sub 2} by the CO{sub 2}-sorbent is discussed and attributed to reduction of the surface carbonate on the Au/{alpha}-Fe{sub 2}O{sub 3} catalyst formed during the PROX process. (author)

  17. Bench-scale studies on capture of mercury on mineral non-carbon based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Wendt, Jost O.L. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Zhang, Junying; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    A new high-temperature, mineral non-carbon based dispersed sorbent derived from paper recycling products has been shown to capture mercury at high temperatures in excess of 600 C. The sorbent is consisted of kaolinite/calcite/lime mixtures. Experiments have been conducted on chemi-sorption of elemental mercury in air on a packed bed. The sorption occurs at temperatures between 600 and 1,100 C and requires activation of the minerals contained within the sorbents. Mercury capture is dominated by temperature and capture on sorbents over long time scales. The capture shows a maximum effectiveness at 1,000 C and increases monotonically with temperature. The presence of oxygen is also the required. Freshly activated sorbent is the most effective, and deactivation of sorbents occurs at high temperatures with long pre-exposure times. This activation is suspected to involve a solid-solid reaction between intimately mixed calcium oxide and silica that are both contained within the sorbent. Deactivation occurs at temperatures higher than 1,000 C, and this is due to melting of the substrate and pore closure. The situation in packed beds is complicated because the bed also shrinks, thus allowing channeling and by-passing, and consequent ambiguities in determining sorbent saturation. Sorbent A had significantly greater capacity for mercury sorption than did Sorbent B, for all temperatures and exposure time examined. The effect of SiO{sub 2} on poor Sorbent B is much larger than sorbent A.

  18. Synthesis of Zeolite from Coal Fly Ash: Its Application as Water Sorbent

    Directory of Open Access Journals (Sweden)

    Prasert Pavasant

    2010-03-01

    Full Text Available Coal fly ash (CFA was used as raw material for zeolite synthesis by fusion method. In detail, it was mixed with NaOH (with ratio of 2.25 and treated under various temperatures. Synthesized zeolite was characterized using various techniques i.e. X-rayfluorescence (XRF, X-ray diffraction (XRD, and BET surface area analysis. It was found that the surface area of synthesized zeolite were in the range of 49.407-69.136 m2/g depending on the preparing condition, compared to the surface area of CFA about 17.163 m2/g. In addition, according to the XRD result, it was proven that the form of zeolite was Sodium Aluminum Silicate Hydrate (1.08Na2O.Al2O3.1.68SiO2.1.8H2O. The synthesized zeolite was then applied as water sorbent to remove water from ethanol solution (95%. The testing results revealed that the optimal fusion temperature was 450.C, which provided maximum percentage of water removal from ethanol solution (from 95% ethanol to 99.25% ethanol. For comparison, commercial-grade molecular sieve was also tested and was found to increase ethanol concentration from 95% to 99.61%. Hence, it is concluded that our synthesized zeolite provides comparable performance to the commercial-grade molecular sieve.

  19. Aminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO 2 Capture

    KAUST Repository

    Li, Fuyue Stephanie

    2013-07-03

    Increasing carbon dioxide emissions are generally believed to contribute to global warming. Developing new materials for capturing CO2 emitted from coal-fired plants can potentially mitigate the effect of these CO 2 emissions. In this study, we developed and optimized porous hollow fiber sorbents with both improved sorption capacities and rapid sorption kinetics by functionalizing aminosilane (N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane) to cellulose acetate hollow fibers as a "proof of concept". A lumen-side barrier layer was also developed in the aminosilane-functionalized cellulose acetate fiber sorbent to allow for facile heat exchange without significant mass transfer with the bore-side heat transfer fluid. The functionalized cellulose acetate fiber sorbents were characterized by pressure decay sorption measurements, multicomponent column chromatography, FT-IR, elemental analysis, and scanning electron microscopy. The carbon dioxide sorption capacity at 1 atm is 0.73 mmol/g by using the pressure decay apparatus. Multicomponent column chromatography measurements showed that aminosilane functionalized cellulose acetate fiber sorbent has a CO2 sorption capacity of 0.23 mmol/g at CO2 partial pressure 0.1 atm and 35 C in simulated flue gas. While this capacity is low, our proof of concept positions the technology to move forward to higher capacity with work that is underway. The presence of silicon and nitrogen elements in the elemental analysis confirmed the success of grafting along with FT-IR spectra which showed the absorbance peak (∼810 cm-1) for Si-C stretching. A cross-linked Neoprene material was used to form the lumen-side barrier layer. Preliminary data showed the required reduction in gas permeance to eliminate mixing between shell side and bore side fluid flows. Specifically the permeance was reduced from 10 000 GPUs for the neat fibers to 6.6 ± 0.1 and 3.3 ± 0.3 GPUs for the coated fibers. The selected lumen layer formation materials

  20. 3-D basin-scale reconstruction of natural gas hydrate system of the Green Canyon, Gulf of Mexico

    Science.gov (United States)

    Burwicz, Ewa; Reichel, Thomas; Wallmann, Klaus; Rottke, Wolf; Haeckel, Matthias; Hensen, Christian

    2017-05-01

    Our study presents a basin-scale 3-D modeling solution, quantifying and exploring gas hydrate accumulations in the marine environment around the Green Canyon (GC955) area, Gulf of Mexico. It is the first modeling study that considers the full complexity of gas hydrate formation in a natural geological system. Overall, it comprises a comprehensive basin reconstruction, accounting for depositional and transient thermal history of the basin, source rock maturation, petroleum components generation, expulsion and migration, salt tectonics, and associated multistage fault development. The resulting 3-D gas hydrate distribution in the Green Canyon area is consistent with independent borehole observations. An important mechanism identified in this study and leading to high gas hydrate saturation (>80 vol %) at the base of the gas hydrate stability zone (GHSZ) is the recycling of gas hydrate and free gas enhanced by high Neogene sedimentation rates in the region. Our model predicts the rapid development of secondary intrasalt minibasins situated on top of the allochthonous salt deposits which leads to significant sediment subsidence and an ensuing dislocation of the lower GHSZ boundary. Consequently, large amounts of gas hydrates located in the deepest parts of the basin dissociate and the released free methane gas migrates upward to recharge the GHSZ. In total, we have predicted the gas hydrate budget for the Green Canyon area that amounts to ˜3256 Mt of gas hydrate, which is equivalent to ˜340 Mt of carbon (˜7 × 1011 m3 of CH4 at STP conditions), and consists mostly of biogenic hydrates.

  1. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Asma, E-mail: asmadr@wol.net.pk [Environmental Biotechnology Group, Biotechnology and Food Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan); Sharif, Mehwish [School of Biological Sciences, University of the Punjab, Lahore 54590 (Pakistan); Iqbal, Muhammad [Environmental Biotechnology Group, Biotechnology and Food Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan)

    2010-07-15

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation {>=}0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g{sup -1}. The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions.

  2. Polypyrrole/silica/magnetite nanoparticles as a sorbent for the extraction of sulfonamides from water samples.

    Science.gov (United States)

    Sukchuay, Thanyaporn; Kanatharana, Proespichaya; Wannapob, Rodtichoti; Thavarungkul, Panote; Bunkoed, Opas

    2015-09-08

    A magnetic solid-phase extraction sorbent of polypyrrole/silica/magnetite nanoparticles was successfully synthesized and applied for the extraction and preconcentration of sulfonamides in water samples. The magnetite nanoparticles provided a simple and fast separation method for the analytes in water samples. The silica coating increased the surface area that helped to increase the polypyrrole layer. The polypyrrole-coated silica provided a high extraction efficiency due to the π-π and hydrophobic interactions between the polypyrrole and sulfonamides. Several parameters that affected the extraction efficiencies, i.e. the amount of sorbent, pH of the sample, extraction time, extraction temperature, ionic strength, and desorption conditions were investigated. Under the optimal conditions, the method was linear over the range of 0.30-200 μg/L for sulfadiazine and sulfamerazine, and 1.0-200 μg/L for sulfamethazine and sulfamonomethoxine. The limit of detection was 0.30 μg/L for sulfadiazine and sulfamerazine and 1.0 μg/L for sulfamethazine and sulfamonomethoxine. This simple and rapid method was successfully applied to efficiently extract sulfonamides from water samples. It showed a high extraction efficiency for all tested sulfonamides, and the recoveries were in the range of 86.7-99.7% with relative standard deviations of < 6%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mechanical instability of monocrystalline and polycrystalline methane hydrates

    NARCIS (Netherlands)

    Wu, J.; Ning, F.; Trinh, T.T.; Kjelstrup, S.; Vlugt, T.J.H.; He, J.; Skallerud, B.H.; Zhang, Z.

    2015-01-01

    Despite observations of massive methane release and geohazards associated with gas hydrate instability in nature, as well as ductile flow accompanying hydrate dissociation in artificial polycrystalline methane hydrates in the laboratory, the destabilising mechanisms of gas hydrates under deformation

  4. Hydrated interfacial ions and electrons.

    Science.gov (United States)

    Abel, Bernd

    2013-01-01

    Charged particles such as hydrated ions and transient hydrated electrons, the simplest anionic reducing agents in water, and the special hydronium and hydroxide ions at water interfaces play an important role in many fields of science, such as atmospheric chemistry, radiation chemistry, and biology, as well as biochemistry. This article focuses on these species near hydrophobic interfaces of water, such as the air or vacuum interface of water or water protein/membrane interfaces. Ions at interfaces as well as solvated electrons have been reviewed frequently during the past decade. Although all species have been known for some time with seemingly familiar features, recently the picture in all cases became increasingly diffuse rather than clearer. The current account gives a critical state-of-the art overview of what is known and what remains to be understood and investigated about hydrated interfacial ions and electrons.

  5. Rate constants of reactions of {kappa}-carrageenan with hydrated electron and hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Abad, L.V. [Nuclear Professional School, School of Engineering Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City (Philippines)], E-mail: lvabad@pnri.dost.gov.ph; Saiki, S.; Kudo, H.; Muroya, Y.; Katsumura, Y. [Nuclear Professional School, School of Engineering Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Rosa, A.M. de la [Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City (Philippines)

    2007-12-15

    The rate constants for the reactions of {kappa}-carrageenan with hydrated electron and hydroxyl radical was investigated by pulse radiolysis and laser photolysis. The kinetics of the reaction of hydrated electron indicates no seeming reaction with {kappa}-carrageenan. On the other hand, hydroxyl radical reacts very rapidly with {kappa}-carrageenan at a rate constant of approximately 1.2 x 10{sup 9} M{sup -1} s{sup -1}. This rate constant varies with pH.

  6. CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials.

    Science.gov (United States)

    Kierzkowska, Agnieszka M; Pacciani, Roberta; Müller, Christoph R

    2013-07-01

    The enormous anthropogenic emission of the greenhouse gas CO2 is most likely the main reason for climate change. Considering the continuing and indeed growing utilisation of fossil fuels for electricity generation and transportation purposes, development and implementation of processes that avoid the associated emissions of CO2 are urgently needed. CO2 capture and storage, commonly termed CCS, would be a possible mid-term solution to reduce the emissions of CO2 into the atmosphere. However, the costs associated with the currently available CO2 capture technology, that is, amine scrubbing, are prohibitively high, thus making the development of new CO2 sorbents a highly important research challenge. Indeed, CaO, readily obtained through the calcination of naturally occurring limestone, has been proposed as an alternative CO2 sorbent that could substantially reduce the costs of CO2 capture. However, one of the major drawbacks of using CaO derived from natural sources is its rapidly decreasing CO2 uptake capacity with repeated carbonation-calcination reactions. Here, we review the current understanding of fundamental aspects of the cyclic carbonation-calcination reactions of CaO such as its reversibility and kinetics. Subsequently, recent attempts to develop synthetic, CaO-based sorbents that possess high and cyclically stable CO2 uptakes are presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dissociation of methane hydrate granules

    Science.gov (United States)

    Misyura, S. Y.; Donskoy, I. G.; Morozov, V. S.

    2017-09-01

    The methane hydrate dissociation at negative temperatures and under external pressure of 1 bar is studied experimentally. It is shown that the dissociation rate of the gas hydrate depends on the granule diameter and heat transfer. The dissociation curve has an extremum. The dissociation rate initially increases due to the temperature increase and reaches the maximum value and then sharply falls due to the curvature of the granules. When describing dissociation kinetics of the spherical granules, it is important to take into account the granule size and their composition.

  8. Experimental Study of Methane Hydrates in Coal

    Directory of Open Access Journals (Sweden)

    Smirnov Vyacheslav

    2017-01-01

    Full Text Available The possibility of gas hydrate formation in porous space of coal has been studied. The experiments conducted have proven the possibility of methane gas hydrate formation in moist coal. It has been demonstrated that the decomposition points of methane gas hydrates in coal are near to the phase equilibrium curve for bulk methane hydrate. Only part of water absorbed by coal can be involved in the methane gas hydrate formation. With the increase in gas pressure increases the amount of gas hydrate formed in natural coal. For formation of hydrates at a positive temperature, the pressure in the system has to be at least 2 MPa. At the same time the speed of formation and decomposition of gas hydrates in coal is big enough.

  9. Regenerable Sorbent Development for Sulfur, Chloride and Ammonia Removal from Coal-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, R.V.; Tian, H.; Simonyi, T.; Webster, T.

    2007-08-01

    A large number of components in coal form corrosive and toxic compounds during coal gasification processes. DOE’s NETL aims to reduce contaminants to parts per billion in order to utilize gasification gas streams in fuel cell applications. Even more stringent requirements are expected if the fuel is to be utilized in chemical production applications. Regenerable hydrogen sulfide removal sorbents have been developed at NETL. These sorbents can remove the hydrogen sulfide to ppb range at 316 °C and at 20 atmospheres. The sorbent can be regenerated with oxygen. Reactivity and physical durability of the sorbent did not change during the multi-cycle tests. The sorbent development work has been extended to include the removal of other major impurities, such as HCl and NH3. The sorbents for HCl removal that are available today are not regenerable. Regenerable HCl removal sorbents have been developed at NETL. These sorbents can remove HCl to ppb range at 300 °C to 500 °C. The sorbent can be regenerated with oxygen. Results of TGA and bench-scale flow reactor tests with both regenerable and non-regenerable HCl removal sorbents will be discussed in the paper. Bench-scale reactor tests were also conducted with NH3 removal sorbents. The results indicated that the sorbents have a high removal capacity and good regenerability during the multi-cycle tests. Future emphasis of the NETL coal gasification/cleanup program is to develop multi-functional sorbents to remove multiple impurities in order to minimize the steps involved in the cleanup systems. To accomplish this goal, a regenerable sorbent capable of removing both HCl and H2S was developed. The results of the TGA conducted with the sorbent to evaluate the feasibility of both H2S and HCl sorption will be discussed in this paper.

  10. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Rack, Frank; Bohrmann, Gerhard; Trehu, Anne; Storms, Michael; Schroeder, Derryl

    2002-09-30

    The primary accomplishment of the JOI Cooperative Agreement with DOE/NETL in this quarter was the deployment of tools and measurement systems on ODP Leg 204 to study hydrate deposits on Hydrate Ridge, offshore Oregon from July through September, 2002. During Leg 204, we cored and logged 9 sites on the Oregon continental margin to determine the distribution and concentration of gas hydrates in an accretionary ridge and adjacent slope basin, investigate the mechanisms that transport methane and other gases into the gas hydrate stability zone (GHSZ), and obtain constraints on physical properties of hydrates in situ. A 3D seismic survey conducted in 2000 provided images of potential subsurface fluid conduits and indicated the position of the GHSZ throughout the survey region. After coring the first site, we acquired Logging-While-Drilling (LWD) data at all but one site to provide an overview of downhole physical properties. The LWD data confirmed the general position of key seismic stratigraphic horizons and yielded an initial estimate of hydrate concentration through the proxy of in situ electrical resistivity. These records proved to be of great value in planning subsequent coring. The second new hydrate proxy to be tested was infrared thermal imaging of cores on the catwalk as rapidly as possible after retrieval. The thermal images were used to identify hydrate samples and to map estimate the distribution and texture of hydrate within the cores. Geochemical analyses of interstitial waters and of headspace and void gases provide additional information on the distribution and concentration of hydrate within the stability zone, the origin and pathway of fluids into and through the GHSZ, and the rates at which the process of gas hydrate formation is occurring. Bio- and lithostratigraphic description of cores, measurement of physical properties, and in situ pressure core sampling and thermal measurements complement the data set, providing ground-truth tests of inferred

  11. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  12. Methods to determine hydration states of minerals and cement hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  13. Core-in-shell sorbent for hot coal gas desulfurization

    Science.gov (United States)

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  14. 21 CFR 876.5870 - Sorbent hemoperfusion system.

    Science.gov (United States)

    2010-04-01

    ... blood system. The device is used in the treatment of poisoning, drug overdose, hepatic coma, or... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbent hemoperfusion system. 876.5870 Section 876.5870 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  15. Monolithic natural gas storage delivery system based on sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Hornbostel, Marc; Krishnan, Gopala N.; Sanjurjo, Angel

    2016-09-27

    The invention provides methods for producing a strong, light, sorbent-based storage/dispenser system for gases and fuels. The system comprises a porous monolithic material with an adherent strong impervious skin that is capable of storing a gas under pressure in a safe and usable manner.

  16. A selective sorbent for removing bacterial endotoxins from blood

    Science.gov (United States)

    Morozov, A. S.; Kopitsyna, M. N.; Bessonov, I. V.; Karelina, N. V.; Nuzhdina, A. V.; Sarkisov, I. Yu.; Pavlova, L. A.; Tsyurupa, M. P.; Blinnikova, Z. K.; Davankov, V. A.

    2016-12-01

    Synthetic ligands carrying a positive charge and capable of selective binding of bacterial endotoxins are covalently immobilized on surfaces of domestic hemosorbent Styrosorb-514 based on hypercrosslinked polystyrene. It is shown that the resulting sorbent aimed at treating sepsis exceeds imported specific hemosorbent in Toraymyxin™ columns in removing lipopolysaccharides, and can be used in domestically-produced Desepta columns.

  17. Novel composite sorbent AAm/MA hydrogels containing starch and ...

    Indian Academy of Sciences (India)

    37, No. 7, December 2014, pp. 1637–1646. c Indian Academy of Sciences. Novel composite sorbent AAm/MA hydrogels containing starch and kaolin for water sorption and dye uptake. ERDENER KARADA ˘G. ∗. , FULYA TOPAÇ, SEM˙IHA KUNDAKCI and ÖMER BARIS ÜZÜM. Fen-Edebiyat Faculty, Chemistry Department, ...

  18. Modifying sorbents in controlled release formulations to prevent herbicides pollution

    Energy Technology Data Exchange (ETDEWEB)

    Cespedes, F.F.; Sanchez, M.V.; Garcia, S.P.; Perez, M.F. [University of Almeria, Almeria (Spain). Dept. of Inorganic Chemistry

    2007-10-15

    The herbicides chloridazon and metribuzin, identified as groundwater pollutants, were incorporated in alginate-based granules to obtain controlled release properties. In this research the effect of incorporation of sorbents such as bentonite, anthracite and activated carbon in alginate basic formulation were not only studied on encapsulation efficiency but also on the release rate of herbicides which was studied using water release kinetic tests. In addition, sorption studies of herbicides with bentonite, anthracite and activated carbon were made. The kinetic experiments of chloridazon and metribuzin release in water have shown that the release rate is higher in metribuzin systems than in those prepared with chloridazon, which has lower water solubility. Besides, it can be deduced that the use of sorbents reduces the release rate of the chloridazon and metribuzin in comparison to the technical product and to the alginate formulation without sorbents. The highest decrease in release rate corresponds to the formulations prepared with activated carbon as a sorbent. The water uptake, permeability, and time taken for 50% of the active ingredient to be released into water, were calculated to compare the formulations. On the basis of a parameter of an empirical equation used to fit the herbicide release data, the release of chloridazon and metribuzin from the various formulations into water is controlled by a diffusion mechanism.

  19. Inorganic ion sorbents and methods for using the same

    Science.gov (United States)

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.

    2006-07-11

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  20. 77 FR 40032 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2012-07-06

    ... Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee.... SUPPLEMENTARY INFORMATION: Purpose of the Committee: The purpose of the Methane Hydrate Advisory Committee is to...

  1. 78 FR 37536 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2013-06-21

    ... meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee. The Federal... of the Methane Hydrate Advisory Committee is to provide advice on potential applications of methane... Department of Energy's Methane Hydrate Research and Development Program. Tentative Agenda: The agenda will...

  2. Mechanism Study of Carbon Dioxide Capture from Ambient Air by Hydration Energy Variation

    Science.gov (United States)

    Shi, X.; Lackner, K. S.

    2014-12-01

    Hydration of neutral and ionic species on solid interfaces plays an important role in a wide range of natural and engineered processes within energy systems as well as biological and environmental systems. Various chemical reactions are significantly enhanced, both in the rate and the extent of the reaction, because of water molecules present or absent at the interface. A novel technology for carbon dioxide capture, driven by the free energy difference between more or less hydrated states of an anionic exchange resin is studied for a new approach to absorb CO2 from ambient air. For these materials the affinity to CO2 is dramatically lowered as the availability of water is increased. This makes it possible to absorb CO2 from air in a dry environment and release it at two orders of magnitude larger partial pressures in a wet environment. While the absorption process and the thermodynamic properties of air capture via ion exchange resins have been demonstrated, the underlying physical mechanisms remain to be understood. In order to rationally design better sorbent materials, the present work elucidates through molecular dynamics and quantum mechanical modeling the energy changes in the carbonate, bicarbonate and hydroxide ions that are induced by hydration, and how these changes affect sorbent properties. A methodology is developed to determine the free energy change during carbonate ion hydrolysis changes with different numbers of water molecules present. This makes it possible to calculate the equilibrium in the reaction CO3--•nH2O ↔ HCO3- • m1H2O + OH- • m2H2O + (n - 1 - m1 - m2)H2O Molecular dynamics models are used to calculate free energies of hydration for the CO32- ion, the HCO3- ion, and the OH- ion as function of the amount of water that is present. A quantum mechanical model is employed to study the equilibrium of the reaction Na2CO3 + H2O ↔ NaHCO3 + NaOHin a vacuum and at room temperature. The computational analysis of the free energy of

  3. Sorbent-Based Gas Phase Air Cleaning for VOCs in CommercialBuildings

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.

    2006-05-01

    This paper provides a review of current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings as needed to enable reductions in ventilation rates and associated energy savings. The fundamental principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, novel sorbent technologies are described, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  4. Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

    Science.gov (United States)

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

  5. Hydration modelling of calcium sulphates

    NARCIS (Netherlands)

    de Korte, A.C.J.; Eligehausen, R.; Gehlen, C.

    2008-01-01

    The CEMHYD3D model has been extended at the University of Twente in last ten years1,2. At present the cement hydration model is extended for the use of gypsum. Although gypsum was present in the model already, the model was not suitable for high contents of gypsum and did not include the transitions

  6. Hydrated-electron population dynamics

    NARCIS (Netherlands)

    Pshenichnikov, MS; Baltuska, A; Wiersma, DA; Pshenichnikov, Maxim S.; Baltuška, Andrius

    2004-01-01

    A detailed frequency-resolved pump-probe study of hydrated electron dynamics, performed with 5-fs pulses, is presented. We show that the experimental data can be successfully described with a model in which the excited state lifetime is similar to50 fs in regular water and similar to70 A in heavy

  7. Influence of corneal hydration on optical coherence elastography

    Science.gov (United States)

    Twa, Michael D.; Vantipalli, Srilatha; Singh, Manmohan; Li, Jiasong; Larin, Kirill V.

    2016-03-01

    Corneal biomechanical properties are influenced by several factors, including intraocular pressure, corneal thickness, and viscoelastic responses. Corneal thickness is directly proportional to tissue hydration and can influence corneal stiffness, but there is no consensus on the magnitude or direction of this effect. We evaluated the influence of corneal hydration on dynamic surface deformation responses using optical coherence elastography (OCE). Fresh rabbit eyes (n=10) were prepared by removing the corneal epithelium and dropping with 0.9% saline every 5 minutes for 1 hour, followed by 20% dextran solution every 5 minutes for one hour. Corneal thickness was determined from structural OCT imaging and OCE measurements were performed at baseline and every 20 minutes thereafter. Micron-scale deformations were induced at the apex of the corneal tissue using a spatially-focused (150μm) short-duration (corneal thickness due to hydration process. Corneal thickness rapidly increased and remained constant following epithelium removal and changed little thereafter. Likewise, corneal stiffness changed little over the first hour and then decreased sharply after Dextran application (thickness: -46% [-315/682 μm] RR: - 24% [-0.7/2.88 ms-1]; GV: -19% [-0.6/3.2 m/s]). Corneal thickness and corneal stiffness (RR) were well correlated (R2 = .66). Corneal biomechanical properties are highly correlated with tissue hydration over a wide range of corneal thickness and these changes in corneal stiffness are quantifiable using OCE.

  8. Hydration mechanisms of mineral trioxide aggregate.

    Science.gov (United States)

    Camilleri, J

    2007-06-01

    To report the hydration mechanism of white mineral trioxide aggregate (White MTA, Dentsply, Tulsa Dental Products, Tulsa, OK, USA). The chemical constitution of white MTA was studied by viewing the powder in polished sections under the scanning electron microscope (SEM). The hydration of both white MTA and white Portland cement (PC) was studied by characterizing cement hydrates viewed under the SEM, plotting atomic ratios, performing quantitative energy dispersive analyses with X-ray (EDAX) and by calculation of the amount of anhydrous clinker minerals using the Bogue calculation. Un-hydrated MTA was composed of impure tri-calcium and di-calcium silicate and bismuth oxide. The aluminate phase was scarce. On hydration the white PC produced a dense structure made up of calcium silicate hydrate, calcium hydroxide, monosulphate and ettringite as the main hydration products. The un-reacted cement grain was coated with a layer of hydrated cement. In contrast MTA produced a porous structure on hydration. Levels of ettringite and monosulphate were low. Bismuth oxide was present as un-reacted powder but also incorporated with the calcium silicate hydrate. White MTA was deficient in alumina suggesting that the material was not prepared in a rotary kiln. On hydration this affected the production of ettringite and monosulphate usually formed on hydration of PC. The bismuth affected the hydration mechanism of MTA; it formed part of the structure of C-S-H and also affected the precipitation of calcium hydroxide in the hydrated paste. The microstructure of hydrated MTA would likely be weaker when compared with that of PC.

  9. Thermal properties of methane gas hydrates

    Science.gov (United States)

    Waite, William F.

    2007-01-01

    Gas hydrates are crystalline solids in which molecules of a “guest” species occupy and stabilize cages formed by water molecules. Similar to ice in appearance (fig. 1), gas hydrates are stable at high pressures and temperatures above freezing (0°C). Methane is the most common naturally occurring hydrate guest species. Methane hydrates, also called simply “gas hydrates,” are extremely concentrated stores of methane and are found in shallow permafrost and continental margin sediments worldwide. Brought to sea-level conditions, methane hydrate breaks down and releases up to 160 times its own volume in methane gas. The methane stored in gas hydrates is of interest and concern to policy makers as a potential alternative energy resource and as a potent greenhouse gas that could be released from sediments to the atmosphere and ocean during global warming. In continental margin settings, methane release from gas hydrates also is a potential geohazard and could cause submarine landslides that endanger offshore infrastructure. Gas hydrate stability is sensitive to temperature changes. To understand methane release from gas hydrate, the U.S. Geological Survey (USGS) conducted a laboratory investigation of pure methane hydrate thermal properties at conditions relevant to accumulations of naturally occurring methane hydrate. Prior to this work, thermal properties for gas hydrates generally were measured on analog systems such as ice and non-methane hydrates or at temperatures below freezing; these conditions limit direct comparisons to methane hydrates in marine and permafrost sediment. Three thermal properties, defined succinctly by Briaud and Chaouch (1997), are estimated from the experiments described here: - Thermal conductivity, λ: if λ is high, heat travels easily through the material. - Thermal diffusivity, κ: if κ is high, it takes little time for the temperature to rise in the material. - Specific heat, cp: if cp is high, it takes a great deal of heat to

  10. Inhibiting sorbent stripping by designing a sorbent-packed porous probe for headspace solid-phase microextraction.

    Science.gov (United States)

    Qin, Shuai; Tao, Gu; Yunjie, Huang; Shuangshuang, Xu; Luyan, Li; Hongyan, Xiao

    2015-10-01

    To prevent the stripping of coating sorbents in headspace solid-phase microextraction, a porous extraction probe with packed sorbent was introduced by using a porous stainless steel needle tube and homemade sol-gel sorbents. The traditional stainless-steel needle tube was punched by a laser to obtain two rows of holes, which supply a passageway for analyte vapor during extraction and desorption. The sorbent was prepared by a traditional sol-gel method with both poly(ethylene glycol) and hydroxy-terminated silicone oil as coating ingredients. Eight polycyclic aromatic hydrocarbons and six benzene series compounds were used as illustrative semi-volatile and volatile organic compounds in sequence to verify the extraction performance of this porous headspace solid-phase microextraction probe. It was found that the analysis method combining a headspace solid-phase microextraction probe and gas chromatography with mass spectrometry yielded determination coefficients of no less than 0.985 and relative standard deviations of 4.3-12.4%. The porous headspace solid-phase microextraction probe showed no decrease of extraction ability after 200 uses. These results demonstrate that the packed extraction probe with porous structure can be used for headspace solid-phase microextraction. This novel design may overcome both the stripping and breakage problems of the conventional coating fiber. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An Enzyme-Linked Aptamer Sorbent Assay to Evaluate Aptamer Binding.

    Science.gov (United States)

    Moore, Matthew D; Escudero-Abarca, Blanca I; Jaykus, Lee-Ann

    2017-01-01

    Nucleic acid aptamers are a class of alternative ligands increasingly growing in importance in the face of contemporary detection challenges. Aptamers offer multiple advantages over traditional ligands like antibodies; however, their ability to specifically bind target molecules must first be confirmed after their generation. Use of a plate-based enzyme-linked aptamer sorbent assay (ELASA) is a generally rapid way to screen and characterize aptamer binding to protein targets. ELASA involves directly plating a protein target onto a nonspecific (polystyrene) surface and assessing binding of functionalized (biotinylated) aptamers to those plated proteins using an enzyme conjugate that recognizes the aptamers. Here, we describe an ELASA that was designed and used to evaluate and compare binding of ssDNA aptamers against the capsids of different strains of human norovirus.

  12. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has a charact......For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...

  13. Observed gas hydrate morphologies in marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M. [Geotek Ltd., Daventry, Northamptonshire (United Kingdom)

    2008-07-01

    The morphology of gas hydrate in marine sediments determines the basic physical properties of the sediment-hydrate matrix and provides information regarding the formation of gas hydrate deposits, and the nature of the disruption that will occur on dissociation. Small-scale morphology is useful in estimating the concentrations of gas hydrate from geophysical data. It is also important for predicting their response to climate change or commercial production. Many remote techniques for gas hydrate detection and quantification depend on hydrate morphology. In this study, morphology of gas hydrate was examined in HYACINTH pressure cores from recent seagoing expeditions. Visual and infrared observations from non-pressurized cores were also used. The expeditions and pressure core analysis were described in detail. This paper described the difference between two types of gas hydrate morphologies, notably pore-filling and grain-displacing. Last, the paper addressed the impact of hydrate morphology. It was concluded that a detailed morphology of gas hydrate is an essential component for a full understanding of the past, present, and future of any gas hydrate environment. 14 refs., 4 figs.

  14. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  15. Handbook of gas hydrate properties and occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  16. Hydrate Formation/Dissociation in (Natural Gas + Water + Diesel Oil Emulsion Systems

    Directory of Open Access Journals (Sweden)

    Chang-Yu Sun

    2013-02-01

    Full Text Available Hydrate formation/dissociation of natural gas in (diesel oil + water emulsion systems containing 3 wt% anti-agglomerant were performed for five water cuts: 5, 10, 15, 20, and 25 vol%. The natural gas solubilities in the emulsion systems were also examined. The experimental results showed that the solubility of natural gas in emulsion systems increases almost linearly with the increase of pressure, and decreases with the increase of water cut. There exists an initial slow hydrate formation stage for systems with lower water cut, while rapid hydrate formation takes place and the process of the gas-liquid dissolution equilibrium at higher water cut does not appear in the pressure curve. The gas consumption amount due to hydrate formation at high water cut is significantly higher than that at low water cut. Fractional distillation for natural gas components also exists during the hydrate formation process. The experiments on hydrate dissociation showed that the dissociation rate and the amount of dissociated gas increase with the increase of water cut. The variations of temperature in the process of natural gas hydrate formation and dissociation in emulsion systems were also examined.

  17. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.

    2011-06-01

    Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope (150 m - 400 m) west of Svalbard suggests that this process may already have begun, but the source of the methane has not yet been determined. This study performs 2-D simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed gas release. The results show that shallow, low-saturation hydrate deposits, if subjected to recently observed or future predicted temperature changes at the seafloor, can release quantities of methane at the magnitudes similar to what has been observed, and that the releases will be localized near the landward limit of the GHSZ. Both gradual and rapid warming is simulated, along with a parametric sensitivity analysis, and localized gas release is observed for most of the cases. These results resemble the recently published observations and strongly suggest that hydrate dissociation and methane release as a result of climate change may be a real phenomenon, that it could occur on decadal timescales, and that it already may be occurring.

  18. Evaluation of the geological relationships to gas hydrate formation and stability

    Energy Technology Data Exchange (ETDEWEB)

    Krason, J.; Finley, P.

    1988-01-01

    The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

  19. Flows due to pressure induced dissociation-formation of gas hydrates

    Science.gov (United States)

    Agudo, J. R.; Kwon, S.; Saur, R.; Loekman, S.; Luzi, G.; Rauh, C.; Wierschem, A.; Delgado, A.

    2017-10-01

    During the last decade, Gas Hydrates (GH) have attracted the interest of the scientific community for engineering applications. Carbon dioxide hydrate (CO2H), for instance, may play an important role for capture and sequestration methods in order to reduce global climate change. Despite the extensive literature, the transport phenomena involved during CO2H formation are not yet fully understood. CO2 transfer from gas or liquid phase to the bulk of water is expected to happen not only by molecular diffusion but also driven by natural convective currents induced by CO2 dissolution in water. Using particle tracer methods, we experimentally characterize the flow velocity of the bulk of water during CO2H formation. For that purpose, CO2H is grown inside an optical cell with a volume of 12 mL at various pressures and temperatures. Due to CO2 dissolution, convection currents are noticed prior to hydrate formation. Our experimental results point to a significant correlation between this process and the subsequent hydrate formation. Two well-differentiated hydrate growth patterns were observed depending on the hydrate induction time and the corresponding CO2 concentration distribution inside water. For long induction times, CO2 can be provided from the water phase resulting in rapid growth. Short induction times resulted in slow growth at the interface creating a solid barrier accompanied by a significant drop in the flow velocity. In some cases, the hydrate layer appeared to be unstable and convection could restart.

  20. Temperature- and pressure-dependent structural transformation of methane hydrates in salt environments

    Science.gov (United States)

    Shin, Donghoon; Cha, Minjun; Yang, Youjeong; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Ahn, Docheon; Im, Junhyuck; Lee, Yongjae; Han, Oc Hee; Yoon, Ji-Ho

    2017-03-01

    Understanding the stability of volatile species and their compounds under various surface and subsurface conditions is of great importance in gaining insights into the formation and evolution of planetary and satellite bodies. We report the experimental results of the temperature- and pressure-dependent structural transformation of methane hydrates in salt environments using in situ synchrotron X-ray powder diffraction, solid-state nuclear magnetic resonance, and Raman spectroscopy. We find that under pressurized and concentrated brine solutions methane hydrate forms a mixture of type I clathrate hydrate, ice, and hydrated salts. Under a low-pressure condition, however, the methane hydrates are decomposed through a rapid sublimation of water molecules from the surface of hydrate crystals, while NaCl · 2H2O undergoes a phase transition into a crystal growth of NaCl via the migration of salt ions. In ambient pressure conditions, the methane hydrate is fully decomposed in brine solutions at temperatures above 252 K, the eutectic point of NaCl · 2H2O.

  1. Well log characterization of natural gas hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2011-01-01

    In the last 25 years we have seen significant advancements in the use of downhole well logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From an early start of using wireline electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells drilled in Arctic permafrost environments to today where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. The most established and well known use of downhole log data in gas hydrate research is the use of electrical resistivity and acoustic velocity data (both compressional- and shear-wave data) to make estimates of gas hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. New downhole logging tools designed to make directionally oriented acoustic and propagation resistivity log measurements have provided the data needed to analyze the acoustic and electrical anisotropic properties of both highly inter-bedded and fracture dominated gas hydrate reservoirs. Advancements in nuclear-magnetic-resonance (NMR) logging and wireline formation testing have also allowed for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids (i.e., free-water along with clay and capillary bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas hydrate reservoir properties (i.e., permeabilities) needed to accurately predict gas production rates for various gas hydrate

  2. Improvement of gas hydrate preservation by increasing compression pressure to simple hydrates of methane, ethane, and propane

    Science.gov (United States)

    Kida, Masato; Jin, Yusuke; Watanabe, Mizuho; Murayama, Tetsuro; Nagao, Jiro

    2017-09-01

    In this report, we describe the dissociation behavior of gas hydrate grains pressed at 1 and 6 MPa. Certain simple gas hydrates in powder form show anomalous preservation phenomenon under their thermodynamic unstable condition. Investigation of simple hydrates of methane, ethane, and propane reveals that high pressure applied to the gas hydrate particles enhances their preservation effects. Application of high pressure increases the dissociation temperature of methane hydrate and has a restrictive effect against the dissociation of ethane and propane hydrate grains. These improvements of gas hydrate preservation by increasing pressure to the initial gas hydrate particles imply that appropriate pressure applied to gas hydrate particles enhances gas hydrate preservation effects.

  3. Search for memory effects in methane hydrate: structure of water before hydrate formation and after hydrate decomposition.

    Science.gov (United States)

    Buchanan, Piers; Soper, Alan K; Thompson, Helen; Westacott, Robin E; Creek, Jefferson L; Hobson, Greg; Koh, Carolyn A

    2005-10-22

    Neutron diffraction with HD isotope substitution has been used to study the formation and decomposition of the methane clathrate hydrate. Using this atomistic technique coupled with simultaneous gas consumption measurements, we have successfully tracked the formation of the sI methane hydrate from a water/gas mixture and then the subsequent decomposition of the hydrate from initiation to completion. These studies demonstrate that the application of neutron diffraction with simultaneous gas consumption measurements provides a powerful method for studying the clathrate hydrate crystal growth and decomposition. We have also used neutron diffraction to examine the water structure before the hydrate growth and after the hydrate decomposition. From the neutron-scattering curves and the empirical potential structure refinement analysis of the data, we find that there is no significant difference between the structure of water before the hydrate formation and the structure of water after the hydrate decomposition. Nor is there any significant change to the methane hydration shell. These results are discussed in the context of widely held views on the existence of memory effects after the hydrate decomposition.

  4. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Fisk, William J.

    2007-08-01

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  5. Regenerable MgO-based sorbents for high-temperature CO{sub 2} removal from syngas: 1. Sorbent development, evaluation, and reaction modeling

    Energy Technology Data Exchange (ETDEWEB)

    Armin Hassanzadeh; Javad Abbasian [Pyrophase Inc., Chicago, IL (United States)

    2010-06-15

    Highly reactive and mechanically strong low-cost regenerable MgO-based sorbents were prepared by modification of dolomite which involved partial calcinations followed by impregnation with a potassium-based salt. The sorbents are capable of removing CO{sub 2} from gasification-based processes such as Integrated Gasification Combined Cycle (IGCC). The sorbents have high reactivity and good capacity toward CO{sub 2} absorption in the temperature range of 300-450{sup o}C at 20 atm. and can be easily regenerated at 500{sup o}C. The reaction appears to be first order with respect to CO{sub 2} concentration with an activation energy of 44 kJ/mol. The reactivity and the absorption capacity of the sorbents increase with increasing temperature, as long as the partial pressure of CO{sub 2} is above the equilibrium value for sorbent carbonation. The reactivity of the sorbents appears to improve in the presence of steam, which is likely due to the increase in the BET surface area and the porosity of the sorbent. A two-zone expanding grain model, consisting of a high-reactivity outer shell and a low-reactivity inner core is shown to provide an excellent fit to the TGA experimental data on sorbent carbonation at various operating conditions. 31 refs., 16 figs.,3 tabs.

  6. Gas hydrate, fluid flow and free gas: Formation of the bottom-simulating reflector

    Science.gov (United States)

    Haacke, R. Ross; Westbrook, Graham K.; Hyndman, Roy D.

    2007-09-01

    Gas hydrate in continental margins is commonly indicated by a prominent bottom-simulating seismic reflector (BSR) that occurs a few hundred metres below the seabed. The BSR marks the boundary between sediments containing gas hydrate above and free gas below. Most of the reflection amplitude is caused by the underlying free gas. Gas hydrate can occur without a BSR, however, and the controls on its formation are not well understood. Here we describe two complementary mechanisms for free gas accumulation beneath the gas hydrate stability zone (GHSZ). The first is the well-recognised hydrate recycling mechanism that generates gas from dissociating hydrate when the base of the GHSZ moves upward relative to hydrate-bearing sediment. The second is a recently identified mechanism in which the relationship between the advection and diffusion of dissolved gas with the local solubility curve allows the liquid phase to become saturated in a thick layer beneath the GHSZ when hydrate is present near its base. This mechanism for gas production (called the solubility-curvature mechanism) is possible in systems where the influence of diffusion becomes important relative to the influence of advection and where the gas-water solubility decreases to a minimum several hundred metres below the GHSZ. We investigate a number of areas in which gas hydrate occurs to determine where gas formation is dominated by the solubility-curvature mechanism and where it is dominated by hydrate recycling. We show that the former is dominant in areas with low rates of upward fluid flow (such as old, rifted continental margins), low rates of seafloor uplift, and high geothermal gradient and/or pressure. Conversely, free-gas formation is dominated by hydrate recycling where there are rapid rates of upward fluid flow and seabed uplift (such as in subduction zone accretionary wedges). Using these two mechanisms to investigate the formation of free gas beneath gas hydrate in continental margins, we are able

  7. Dipolar response of hydrated proteins

    OpenAIRE

    Matyushov, Dmitry V.

    2011-01-01

    The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins. The effective dielectric constant of the solvated protein, representing the average dipole moment induced at the protein by a uniform external field, shows a remarkable variation among the proteins studied by numerical simulations. It changes from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility of ubiquitin, that is a dia-electri...

  8. IMPORTANCE OF HYDRATION IN SPORTS

    Directory of Open Access Journals (Sweden)

    Goran Vasić

    2008-08-01

    Full Text Available Importance of hydration is detrmined by importance of functions of water in the human organism: i.e. regulation of body temperature, transport, excretion of waste materials through urine, digestion of food which is facilititated by saliva and gastric juices, maintenance of flexibility of organs and tissues About 60 % body mass of an adult person (males: 61 %, females: 54 % is made up of water. Water content of a newly born baby reaches 77 %, and it is up to 50 % in adults. It is very important for sportsmen to provide adequate hydration during and after the time of bodily activities. A symptom of water shortage is thirst. However, thirst is a late response of an organism and it occurs when dehydration has already taken place. Minimum in take of fluids in humans should range between one-and-half to two liters. It has been known for a long time that there is no success in sport without proper hydration in a sportsman.

  9. Gas hydrates: Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In 1983, the US Department of Energy (DOE) assumed the responsibility for expanding the knowledge base and for developing methods to recover gas from hydrates. These are ice-like mixtures of gas and water where gas molecules are trapped within a framework of water molecules. This research is part of the Unconventional Gas Recovery (UGR) program, a multidisciplinary effort that focuses on developing the technology to produce natural gas from resources that have been classified as unconventional because of their unique geologies and production mechanisms. Current work on gas hydrates emphasizes geological studies; characterization of the resource; and generic research, including modeling of reservoir conditions, production concepts, and predictive strategies for stimulated wells. Complementing this work is research on in situ detection of hydrates and field tests to verify extraction methods. Thus, current research will provide a comprehensive technology base from which estimates of reserve potential can be made, and from which industry can develop recovery strategies. 7 refs., 3 figs., 6 tabs.

  10. Development of Sorbents for Extraction and Stabilization of Nucleic Acids

    Science.gov (United States)

    2016-09-13

    biomolecules, espe - cially DNA and RNA. The goal was to provide stabilization methods for reagents and targets in order to allow for a wider range of...within the scaffolds, and optimal methodologies for using the systems to capture, stabilize, and recover nucleic acids. Sorbent design...currently in use. In addition, stabilizing technologies can provide new sampling methodologies that can enhance the capacity for obtaining environmental

  11. Amine enriched solid sorbents for carbon dioxide capture

    Science.gov (United States)

    Gray, McMahan L.; Soong, Yee; Champagne, Kenneth J.

    2003-04-15

    A new method for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The new method entails treating a solid substrate with acid or base and simultaneous or subsequent treatment with a substituted amine salt. The method eliminates the need for organic solvents and polymeric materials for the preparation of CO.sub.2 capture systems.

  12. Pilot plant tests of Z-Sorb{trademark} sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, G.J.; Khare, G.P.; Kubicek, D.H.; Delzer, G.A.; Kinsinger, D.L.

    1995-06-01

    The objective of this work is to determine the long-term chemical reactivity and mechanical durability of Phillips Petroleum Company`s (PPCo`s) proprietary Z-Sorb{trademark} sorbent. Materials developed for fixed-, moving- and fluid bed desulfurization of coal derived gases at high pressure (5-20 atm) and moderate operating temperatures (600-1000{degrees}F) will be discussed.

  13. Studies on defluoridation of water by coal-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Sivasamy, A.; Singh, K.P.; Mohan, D.; Maruthamuthu, M. [Industrial Toxicology Research Center, Lucknow (India). Environmental Chemical Division

    2001-07-01

    Drinking water containing fluoride above a level of 1 mg dm{sup 3} is considered to be unsafe for human consumption. Defluoridation of water samples by coal-based sorbents was studied at different adsorbent dosages. First-order adsorption rate constants using the Lagergren equation, the Freundlich adsorption isotherm, the Langmuir adsorption isotherm, film diffusion and pore diffusion coefficients have been evaluated for each system. The effect of pH on fluoride removal and the mechanism is also discussed.

  14. The mechanism of coal gas desulfurization by iron oxide sorbents.

    Science.gov (United States)

    Lin, Yi-Hsing; Chen, Yen-Chiao; Chu, Hsin

    2015-02-01

    This study aims to understand the roles of hydrogen and carbon monoxide during the desulfurization process in a coal gasification system that H2S of the syngas was removed by Fe2O3/SiO2 sorbents. The Fe2O3/SiO2 sorbents were prepared by incipient wetness impregnation. Through the breakthrough experiments and Fourier transform infrared spectroscopy analyses, the overall desulfurization mechanism of the Fe2O3/SiO2 sorbents was proposed in this study. The results show that the major reaction route is that Fe2O3 reacts with H2S to form FeS, and the existence of CO and H2 in the simulated gas significantly affects equilibrium concentrations of H2S and COS. The formation of COS occurs when the feeding gas is blended with CO and H2S, or CO2 and H2S. The pathways in the formation of products from the desulfurization process by the reaction of Fe2O3 with H2S have been successfully established. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Enhanced capture of elemental mercury by bamboo-based sorbents.

    Science.gov (United States)

    Tan, Zengqiang; Xiang, Jun; Su, Sheng; Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong

    2012-11-15

    To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO2 on gas-phase Hg0 adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 °C and 180 °C. The presence of NO or SO2 could inhibit Hg0 capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.

    2013-05-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  17. Mineralogy and Physical Properties of Cored Se diments from the Gas Hydrate Potential Area of Offshore Southwestern Taiwan

    Directory of Open Access Journals (Sweden)

    Wei-Teh Jiang

    2006-01-01

    Full Text Available Cored sediments from the gas hydrate prospect area offshore southwestern Taiwan exhibit porosities, water contents, and bulk densities comparable to sediments in other gas-hydrate potential areas. Short-distance transport and rapid deposition of the sediments are implied by their poor sorting and detrital and clay mineralogy. These features and the organicrich nature of the sediments present an environment suitable for formation of gas hydrates. High methane concentrations of porewaters and gas-escape structures of the sediments further imply possible occurrence of gas hydrates in the region. Prominent overgrowth microstructures on authigenic pyrite framboids at shallow depths are consistent with sulfate reduction and pyrite precipitation related to migration and oxidation of methane possibly released from gas hydrate zones at later stages of early diagenesis.

  18. Development of Alaskan gas hydrate resources

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  19. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean

    DEFF Research Database (Denmark)

    Treude, T.; Boetius, A.; Knittel, K.

    2003-01-01

    At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate...

  20. New ZnO-Based Regenerable Sulfur Sorbents for Fluid-Bed/Transport Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Slimane, R.B.; Lau, F.S.; Abbasian, J.; Ho, K.H.

    2002-09-19

    The overall objective of the ongoing sorbent development work at GTI is the advancement to the demonstration stage of a promising ZnO-TiO2 sulfur sorbent that has been developed under DCCA/ICCI and DOE/NETL sponsorship. This regenerable sorbent has been shown to possess an exceptional combination of excellent chemical reactivity, high effective capacity for sulfur absorption, high resistance to attrition, and regenerability at temperatures lower than required by typical zinc titanates.

  1. Test and Characterization of Some Zeolite Supported Gas Phase Desulfurization Sorbents

    Science.gov (United States)

    2009-06-01

    Test and Characterization of Some Zeolite Supported Gas Phase Desulfurization Sorbents by Charles Rong, Deryn Chu, and John Hopkins ARL...20783-1197 ARL-TR-4859 June 2009 Test and Characterization of Some Zeolite Supported Gas Phase Desulfurization Sorbents Charles Rong...Characterization of Some Zeolite Supported Gas Phase Desulfurization Sorbents 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 6

  2. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  3. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  4. Advanced Utility Mercury-Sorbent Field-Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  5. Desalination utilizing clathrate hydrates (LDRD final report).

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy (Sandia National Laboratories, Albuquerque, NM); Greathouse, Jeffery A. (Sandia National Laboratories, Albuquerque, NM); Majzoub, Eric H. (University of Missouri, Columbia, MO)

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations

  6. Physical Properties of Gas Hydrates: A Review

    Directory of Open Access Journals (Sweden)

    Jorge F. Gabitto

    2010-01-01

    Full Text Available Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016 m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

  7. 78 FR 26337 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2013-05-06

    ... Management's Lower 48 Assessment; Results of Consortium for Ocean Leadership Workshop; Update on International Activity; FY 2013 Methane Hydrate Program Activities and Plans; Draft Interagency Roadmap; Methane...

  8. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...

  9. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    Science.gov (United States)

    Gangwal, Santosh; Jothimurugesan, Kandaswamy

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  10. Water Vapor Desorption Characteristics of Honeycomb Type Sorption Element Composed of Organic Sorbent

    Science.gov (United States)

    Inaba, Hideo; Kida, Takahisa; Horibe, Akihiko; Kaneda, Makoto; Okamoto, Tamio; Seo, Jeong-Kyun

    This paper describes the water vapor desorption characteristics of honeycomb shape type sorbent element containing new organic sorbent of the bridged complex of sodium polyacrylate. The transient experiments in which the dry air was passed into the honeycomb type sorbent element sorbed water vapor were carried out under various conditions of air velocity, temperature, relative humidity and honeycomb length. The obtained data for desorption process were compared with those for sorption process. Finally, Sherwood number of mass transfer of the organic sorbent for desorption process was derived in terms of Reynolds number, modified Stefan number and non-dimensional honeycomb length.

  11. Sorbent biomaterials for cleaning up hydrocarbon spills on soil and bodies of water

    Directory of Open Access Journals (Sweden)

    Diana Paola Ortíz González

    2010-04-01

    Full Text Available This study was aimed at identifying and evaluating natural organic materials which could be used as sorbents in clean-up operations following hydrocarbons spills on both soils and bodies of water. The sorption capacity of three materials (sugarcane fibre, coco fibre and water Eichornia crassipies was evaluated with three hydrocarbons (35°, 30° and 25°API and two types of water (distilled and artificial marine water adopting the ASTM F-726 standard and following the methodology suggested in the “Oil spill sorbents: testing protocol and certification listing programme” Canadian protocol. It was found that the three materials being evaluated had a sorption capacity equal to or greater than that of the commercial material to which they were compared. It was observed that sorption capacity results depended on some variables such as hydrocarbon viscosity, granulometry (particle size in Tyler sieve and the structure of the material. Sugarcane fibre sorption in water showed the greatest hydrophobicity, different to Eichornia crassipies which is extremely hydrophilic. The materials’ sorption kinetics were determined and modelled with the three hydrocarbons (35°, 30° and 25°API. It was found that the materials became saturated in less than a minute, leading to a rapid alternative for cleaning-up and controlling hydrocarbon spills. Materials were also thermally treated for improving their hydrophobicity and behaviour during spills on bodies of water. Sugarcane fibre was the material which presented the best results with the thermal treatment, followed by water Eichornia crassipies. Coco fibre did not present any significant change in its hydrophobicity.

  12. Sorbent biomaterials for cleaning up hydrocarbon spills on soil and bodies of water

    Directory of Open Access Journals (Sweden)

    Diana Paola Ortíz González

    2006-05-01

    Full Text Available This study was aimed at identifying and evaluating natural organic materials which could be used as sorbents in clean-up operations following hydrocarbons spills on both soils and bodies of water. The sorption capacity of three materials (sugarcane fibre, coco fibre and water Eichornia crassipies was evaluated with three hydrocarbons (35°, 30° and 25°API and two types of water (distilled and artificial marine water adopting the ASTM F-726 standard and following the methodology suggested in the “Oil spill sorbents: testing protocol and certification listing programme” Canadian protocol. It was found that the three materials being evaluated had a sorption capacity equal to or greater than that of the commercial material to which they were compared. It was observed that sorption capacity results depended on some variables such as hydrocarbon viscosity, granulometry (particle size in Tyler sieve and the structure of the material. Sugarcane fibre sorption in water showed the greatest hydrophobicity, different to Eichornia crassipies which is extremely hydrophilic. The materials’ sorption kinetics were determined and modelled with the three hydrocarbons (35°, 30° and 25°API. It was found that the materials became saturated in less than a minute, leading to a rapid alternative for cleaning-up and controlling hydrocarbon spills. Materials were also thermally treated for improving their hydrophobicity and behaviour during spills on bodies of water. Sugarcane fibre was the material which presented the best results with the thermal treatment, followed by water Eichornia crassipies. Coco fibre did not present any significant change in its hydrophobicity.

  13. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments

    Science.gov (United States)

    Lee, J.Y.; Yun, T.S.; Santamarina, J.C.; Ruppel, C.

    2007-01-01

    The interaction among water molecules, guest gas molecules, salts, and mineral particles determines the nucleation and growth behavior of gas hydrates in natural sediments. Hydrate of tetrahydrofuran (THF) has long been used for laboratory studies of gas hydrate-bearing sediments to provide close control on hydrate concentrations and to overcome the long formation history of methane hydrate from aqueous phase methane in sediments. Yet differences in the polarizability of THF (polar molecule) compared to methane (nonpolar molecule) raise questions about the suitability of THF as a proxy for methane in the study of hydrate-bearing sediments. From existing data and simple macroscale experiments, we show that despite its polar nature, THF's large molecular size results in low permittivity, prevents it from dissolving precipitated salts, and hinders the solvation of ions on dry mineral surfaces. In addition, the interfacial tension between water and THF hydrate is similar to that between water and methane hydrate. The processes that researchers choose for forming hydrate in sediments in laboratory settings (e.g., from gas, liquid, or ice) and the pore-scale distribution of the hydrate that is produced by each of these processes likely have a more pronounced effect on the measured macroscale properties of hydrate-bearing sediments than do differences between THF and methane hydrates themselves.

  14. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  15. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    Science.gov (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2017-03-22

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  16. Hydration in soccer: a review

    Directory of Open Access Journals (Sweden)

    Monteiro Cristiano Ralo

    2003-01-01

    Full Text Available Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. The rates that carbohydrate and water are absorbed by the organism are limited by the rates of gastric emptying and intestinal absorption. The composition of drinks offered to the players should be influenced by the relative importance of the need of supplying carbohydrates or water; it should be remembered that the depletion of carbohydrate can result in fatigue and decrease of performance, but it is not usually a life-threatening condition. The addition of carbohydrate in these drinks increases the concentrations of blood glucose, increases the use of external fuel through the increase of the glucose oxidation in the muscles and it spares muscle glycogen. So, the ingestion of carbohydrate before and during the exercise can delay the emergence of fatigue and increase the players' performance. Several tactics can be used to avoid dehydration, like hyperhydration before exercise and player's acclimatization. The ideal situation to restore the player's fluid losses is between the sessions of exercises. Since soccer is a sport with quite peculiar characteristics related to hydration, the players should be concerned and educated about the importance of fluid ingestion before, during and after the exercise.

  17. IMPORTANCE OF HYDRATION IN SPORTS

    OpenAIRE

    Goran Vasić; Dragoslav Jakonić

    2008-01-01

    Importance of hydration is detrmined by importance of functions of water in the human organism: i.e. regulation of body temperature, transport, excretion of waste materials through urine, digestion of food which is facilititated by saliva and gastric juices, maintenance of flexibility of organs and tissues About 60 % body mass of an adult person (males: 61 %, females: 54 %) is made up of water. Water content of a newly born baby reaches 77 %, and it is up to 50 % in adults. It is very importa...

  18. Hydration recommendations for sport 2008.

    Science.gov (United States)

    Montain, Scott J

    2008-01-01

    Fluid replacement remains an important strategy for preserving exercise performance as dehydration in excess of 2% of body weight consistently impairs aerobic exercise performance. Too much of a good thing, however, can have negative health consequences as persistent drinking in excess of sweating rate can induce symptomatic exercise associated hyponatremia. This short review highlights new position stands and/or policy statements regarding fluid replacement for sport, evidence that laboratory findings translate to team sport performance, and current hydration practices of athletes. It is culminated with practical strategies for drinking appropriately during physical activity.

  19. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    Science.gov (United States)

    Bae, Sungchul; Kanematsu, Manabu; Hernández-Cruz, Daniel; Moon, Juhyuk; Kilcoyne, David; Monteiro, Paulo J. M.

    2016-01-01

    The understanding and control of early hydration of tricalcium silicate (C3S) is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h) and acceleration (~4 h) periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H). The formation of C–S–H nanoseeds in the C3S solution and the development of a fibrillar C–S–H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H. PMID:28774096

  20. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    Directory of Open Access Journals (Sweden)

    Sungchul Bae

    2016-12-01

    Full Text Available The understanding and control of early hydration of tricalcium silicate (C3S is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h and acceleration (~4 h periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H. The formation of C–S–H nanoseeds in the C3S solution and the development of a fibrillar C–S–H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H.

  1. Effects of Nanosilica on Early Age Stages of Cement Hydration

    OpenAIRE

    Forood Torabian Isfahani; Elena Redaelli; Weiwen Li; Yaru Sun

    2017-01-01

    Effects of nanosilica on cement hydration have been broadly investigated in the literature and early age cement hydration, as a whole, has been mainly considered, disregarding the substages of the hydration. The hydration of cement is characterized by different substages and nanosilica effect on the hydration could be a result of diverse, even contradictory, behavior of nanosilica in individual stages of the hydration. In this study, effects of nanosilica on different substages of cement hydr...

  2. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  3. Dynamics of a photoexcited hydrated electron

    NARCIS (Netherlands)

    Pshenichnikov, M.S.; Baltuška, A.; Wiersma, D.A.; Kärtner, F.X.

    2004-01-01

    Combining photon-echo and frequency-resolved pump-probe techniques with extremely short laser pulses that consist of only few optical cycles, we investigate the dynamics of the equilibrated hydrated electron. The pure dephasing time of the hydrated electron deduced from the photon-echo measurements

  4. Gas hydrate inhibition of drilling fluid additives

    Energy Technology Data Exchange (ETDEWEB)

    Xiaolan, L.; Baojiang, S.; Shaoran, R. [China Univ. of Petroleum, Dongying (China). Inst. of Petroleum Engineering

    2008-07-01

    Gas hydrates that form during offshore well drilling can have adverse impacts on well operational safety. The hydrates typically form in the risers and the annulus between the casing and the drillstring, and can stop the circulation of drilling fluids. In this study, experiments were conducted to measure the effect of drilling fluid additives on hydrate inhibition. Polyalcohols, well-stability control agents, lubricating agents, and polymeric materials were investigated in a stirred tank reactor at temperatures ranging from -10 degree C to 60 degrees C. Pressure, temperature, and torque were used to detect onset points of hydrate formation and dissociation. The inhibitive effect of the additives on hydrate formation was quantified. Phase boundary shifts were measured in terms of temperature difference or sub-cooling gained when chemicals were added to pure water. Results showed that the multiple hydroxyl groups in polyalcohol chemicals significantly inhibited hydrate formation. Polymeric and polyacrylamide materials had only a small impact on hydrate formation, while sulfonated methyl tannins were found to increase hydrate formation. 6 refs., 1 tab., 4 figs.

  5. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  6. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  7. Mercury Control with Calcium-Based Sorbents and Oxidizing Agents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas K. Gale

    2005-07-01

    This Final Report contains the test descriptions, results, analysis, correlations, theoretical descriptions, and model derivations produced from many different investigations performed on a project funded by the U.S. Department of Energy, to investigate calcium-based sorbents and injection of oxidizing agents for the removal of mercury. Among the technologies were (a) calcium-based sorbents in general, (b) oxidant-additive sorbents developed originally at the EPA, and (c) optimized calcium/carbon synergism for mercury-removal enhancement. In addition, (d) sodium-tetrasulfide injection was found to effectively capture both forms of mercury across baghouses and ESPs, and has since been demonstrated at a slipstream treating PRB coal. It has been shown that sodium-tetrasulfide had little impact on the foam index of PRB flyash, which may indicate that sodium-tetrasulfide injection could be used at power plants without affecting flyash sales. Another technology, (e) coal blending, was shown to be an effective means of increasing mercury removal, by optimizing the concentration of calcium and carbon in the flyash. In addition to the investigation and validation of multiple mercury-control technologies (a through e above), important fundamental mechanism governing mercury kinetics in flue gas were elucidated. For example, it was shown, for the range of chlorine and unburned-carbon (UBC) concentrations in coal-fired utilities, that chlorine has much less effect on mercury oxidation and removal than UBC in the flyash. Unburned carbon enhances mercury oxidation in the flue gas by reacting with HCl to form chlorinated-carbon sites, which then react with elemental mercury to form mercuric chloride, which subsequently desorbs back into the flue gas. Calcium was found to enhance mercury removal by stabilizing the oxidized mercury formed on carbon surfaces. Finally, a model was developed to describe these mercury adsorption, desorption, oxidation, and removal mechanisms, including

  8. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert

    2010-01-01

    Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells....... In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  9. Variation of corneal refractive index with hydration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young L; Walsh, Joseph T Jr.; Goldstick, Thomas K; Glucksberg, Matthew R [Biomedical Engineering Department, Northwestern University, Evanston, IL 60208 (United States)

    2004-03-07

    We report the effect of changes in the corneal hydration on the refractive index of the cornea. Using optical coherence tomography (OCT), the geometrical thickness and the group refractive index of the bovine cornea were derived simultaneously as the corneal hydration was varied. The corneal hydration was then calculated from the corneal thickness. The group refractive index of the cornea increased non-linearly as the cornea dehydrated. In addition, a simple mathematical model was developed, based on the assumption that changes in corneal hydration occur only in the interfibrilar space with constant water content within the collagen fibrils. Good agreement between the experimental results and the mathematical model supports the assumption. The results also demonstrate that the measurement of refractive index is a quantitative indicator of corneal hydration.

  10. Durable zinc oxide-containing sorbents for coal gas desulfurization

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  11. Microwave synthesis of nanostructured oxide sorbents doped with lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Mitrofanov, Andrey A., E-mail: mitrofanov-a@icloud.com; Silyavka, Elena S.; Shilovskikh, Vladimir V.; Kolonitckii, Petr D.; Sukhodolov, Nikolai G.; Selyutin, Artem A., E-mail: selutin@inbox.ru [Saint Petersburg State University, 7/9, Universitetskaya nab., St. Petersburg, 199034 (Russian Federation)

    2016-06-17

    A number of nanostructured mesoporous oxide systems based on aluminum oxide, doped with lanthanide ions have been obtained in this study. Structure and morphology of oxides obtained have been examined by X-ray diffraction analysis, thermogravimetric analysis, scanning electron microscopy. The surface area of the samples was determined by the BET method. The dependence of the adsorption of insulin on synthesized oxides from the concentration was investigated. The containing of insulin in solutions after adsorption was determined by the Bradford method. The isotherms of adsorption of insulin on resulting oxide sorbents were plotted, the dependence capacity of the sorption of insulin from the lanthanide dopant was determined.

  12. Stability of Tritium and Iodine Sorbents in TPOG Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Jacob A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    US regulations could require the removal of both iodine and tritium from the off-gas stream of a used nuclear fuel (UNF) reprocessing facility. Advanced tritium pretreatment is a pretreatment step that uses high concentrations of NOR2R in a gas stream to volatilize tritium and iodine from UNF prior to traditional dissolution. The gaseous effluent from this process would then require abatement to remove tritium and iodine, but high levels of NOR2R could have a detrimental effect on the ability of various solid sorbents to remove the volatile radionuclides. For tritium and iodine, the sorbents of interest are 3Å molecular sieve (3AMS) for tritium and reduced silver mordenite (AgP0 PZ), silver-functionalized silica-aerogel (AgAerogel), and silver-nitrate-impregnated alumina (AgA) for iodine. Prior research has demonstrated that exposure to high concentrations of NOR2R can reduce the iodine loading capacity of AgP0 PZ by > 90% when exposed for 1 week. Research in Japan has demonstrated that AgA is more robust to NOR2R exposure than AgZ. The testing described here was intended to assess the effects of high concentrations of NOR2R on the iodine capture capacity of AgA and the water adsorption capacity of 3AMS. To determine the effect of extended exposure of the sorbents to NOR2R, both 3AMS and AgA were aged in a 75% NOR2R environment prior to loading. The 3AMS samples were aged for 1, 4, and 5.5 weeks at 40°C. They were then loaded with water in a 10°C dew point stream (corresponding to a water concentration of ~12,000 ppmv) at 40°C. There was no significant change in the water adsorption capacity of the 3AMS upon exposure to 75% NOR2R. The AgA samples were aged for 1, 2, and 4 weeks at 150°C and were loaded with 50 ppmv IR2R at 150°C. The results show that the iodine capture capacity of AgA is reduced by exposure to high concentrations of NOR2R. The iodine capacity reductions were 16%, 36%, and 76% for 1, 2, and 4 week exposures, respectively

  13. Biochar: a green sorbent to sequester acidic organic contaminants

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D < MCPA < 2,4-DB < triclosan. Combining comprehensive characterization of the sorbents with the sorption dataset allowed the discussion of sorption mechanisms and driving factors of sorption. Statistical analysis suggests that (i) partitioning was the main driver for sorption to sorbents with small specific surface area (< 25 m²/g), whereas (ii) specific mechanisms dominated sorption to sorbents with larger specific surface area. Results showed that factors usually not considered for the sorption of neutral contaminants play an important role for the sorption of organic acids. The pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic

  14. Overview on Hydrate Coring, Handling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  15. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  16. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  17. Evaluation of the performance of the Spherocel S80 sorbent under flow conditions

    Directory of Open Access Journals (Sweden)

    Nikita Vladislavovich Skvortsov

    2015-06-01

    The implemented process showed that the sorbent Spherocel S80 proved successful under flow conditions due to its selective, capacitive, and hydrodynamic characteristics. Moreover, the sorbent was as efficient in LPS elimination as the conventional ones, ensuring the required degree of LPS elimination both in biotechnological preparations and biological liquids.

  18. Carrageenan-grafted magnetite nanoparticles as recyclable sorbents for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Daniel-da-Silva, Ana L., E-mail: ana.luisa@ua.pt; Salgueiro, Ana M., E-mail: a38242@ua.pt; Creaney, Bianca, E-mail: bianca.creaney@gmail.com; Oliveira-Silva, Rui, E-mail: ruipedro.silva@ua.pt [University of Aveiro, Department of Chemistry, CICECO, Aveiro Institute of Materials (Portugal); Silva, Nuno J. O., E-mail: nunojoao@ua.pt [University of Aveiro, Department of Physics, CICECO, Aveiro Institute of Materials (Portugal); Trindade, Tito, E-mail: tito@ua.pt [University of Aveiro, Department of Chemistry, CICECO, Aveiro Institute of Materials (Portugal)

    2015-07-15

    The efforts dedicated to improving water decontamination procedures have prompted the interest in the development of efficient, inexpensive, and reusable sorbents for the uptake of dye pollutants. In this work, novel sorbents consisting of carrageenan polysaccharides grafted to magnetic iron oxide nanoparticles were prepared. κ- and ι-carrageenan were first chemically modified by carboxymethylation and then covalently attached via amide bond to the surface of aminated silica-coated magnetite nanoparticles, both steps monitored using infrared spectroscopy (FTIR) analysis. The kinetics and the equilibrium behavior of the cationic dye methylene blue (MB) adsorption onto the carrageenan sorbents were investigated. ι-carrageenan sorbents displayed higher MB adsorption capacity that was ascribed to high content of sulfonate groups. Overall, the pseudo-second order equation provided a good description of the adsorption kinetics. The κ-carrageenan sorbents followed an unusual Z-type equilibrium adsorption isotherm whereas the isotherm of ι-carrageenan sorbents, although displaying a conventional shape, could not be successfully predicted by isotherm models commonly used. Noteworthy, both sorbents were long-term stable and could easily be recycled by simply rinsing with KCl aqueous solution. The removal efficiency of κ-carrageenan sorbents was 92 % in the first adsorption cycle and kept high (>80 %) even after six consecutive adsorption/desorption cycles.

  19. Adsorption of H2O and CO2 on supported amine sorbents

    NARCIS (Netherlands)

    Veneman, Rens; Frigka, Natalia; Zhao, Wenying; Li, Zhenshan; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2015-01-01

    In this work the adsorption of H2O and CO2 on Lewatit VP OC 1065 was studied in view of the potential application of this sorbent in post combustion CO2 capture. Both CO2 and H2O were found to adsorb on the amine active sites present on the pore surface of the sorbent material. However, where the

  20. 21 CFR 876.5600 - Sorbent regenerated dialysate delivery system for hemodialysis.

    Science.gov (United States)

    2010-04-01

    ... hemodialysis. 876.5600 Section 876.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....5600 Sorbent regenerated dialysate delivery system for hemodialysis. (a) Identification. A sorbent regenerated dialysate delivery system for hemodialysis is a device that is part of an artificial kidney system...

  1. Cross-linked poly(tetrahydrofuran) as promising sorbent for organic solvent/oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Yati, Ilker; Ozan Aydin, Gulsah; Bulbul Sonmez, Hayal, E-mail: hayalsonmez@gtu.edu.tr

    2016-05-15

    Highlights: • Poly(tetrahydrofuran) based sorbents were prepared. • PTHF sorbents demonstrate reusability at least for ten times. • PTHF based sorbents show fast and quick absorption-desorption process. • 19 g of oil can be absorbed by 1 g of PTHF based sorbent. - Abstract: In this study, a series of different molecular weights of poly(tetrahydrofuran) (PTHF), which is one of the most important commercial polymers around the world, was condensed with tris[3-(trimethoxysilyl)propyl]isocyanurate (ICS) to generate a cross-linked 3-dimensional network in order to obtain organic solvent/oil sorbents having high swelling capacity. The prepared sorbents show high and fast swelling capacity in oils such as dichloromethane (DCM), tetrahydrofuran (THF), acetone, t-butyl methyl ether (MTBE), gasoline, euro diesel, and crude oil. The recovery of the absorbed oils from contaminated surfaces, especially from water, and the regeneration of the sorbents after several applications are effective. The characterization and thermal properties of the sorbents are identified by Fourier transform infrared spectroscopy (FTIR), solid-state {sup 13}C and {sup 29}Si cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC) and thermal gravimetric analyses (TGA), respectively. The new usage area of PTHF is emerged by the preparation of PTHF-based network structure with high oil absorption capacity and having excellent reusability as an oil absorbent for the removal of organic liquids from the spill site.

  2. Coating membranes for a sorbent-based artificial liver: adsorption characteristics

    NARCIS (Netherlands)

    de Koning, H. W.; Chamuleau, R. A.; Bantjes, A.

    1982-01-01

    Techniques are described for the coating of sorbents to be used in an artificial liver support system based on mixed sorbent bed hemoperfusion. Activated charcoal has been coated with cellulose acetate (CA) by solvent evaporation. With Amberlite XAD-4, the Wurster technique was used for coating with

  3. SORBENT/UREA SLURRY INJECTION FOR SIMULTANEOUS SO2/NOX REMOVAL

    Science.gov (United States)

    The combination of sorbent injection and selective noncatalytic reduction (SNCR) technologies has been investigated for simulataneous SO2/NOx removal. A slurry composed of a urea-based solution and various Ca-based sorbents was injected at a range of tempera...

  4. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents.

    Science.gov (United States)

    Dong, Jie; Xu, Zhenghe; Kuznicki, Steven M

    2009-05-01

    Magnetic zeolite composites with supported silver nanoparicles are a new class of multifunctional materials with potential applications as recyclable catalysts, disinfectants, and sorbents. This study evaluated the suitability of the magnetic composites as sorbents for the removal of elemental mercury vapor from flue gases of coal-fired power plants. The sorbents were found to completely capture mercury at temperatures up to 200 degrees C, and the mercury capacity of the sorbents was found to be affected by the state, content, and size of the silver particles in the composite. Cumulative or extended thermal treatments at 400 degrees C were found to improve the mercury capture capacity, allowing the sorbent to be regenerated and recycled multiple times without performance degradation. The magnetic sorbent was readily separated from fly ash by magnetic separation, leaving the fly ash essentially free of sorbent contamination. In initial in-plant tests, the sorbents were able to capture mercury from the flue gases of an operational, full-scale, coal-fired power plant The combination of mercury capacity, ease of separation and regeneration, and recyclability makes these multifunctional magnetic composites excellent candidate sorbentsforthe control of mercury emissions from coal-fired power plants.

  5. Dipolar response of hydrated proteins.

    Science.gov (United States)

    Matyushov, Dmitry V

    2012-02-28

    The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins in solution. We calculate the effective dielectric constant representing the average dipole moment induced at the protein by a uniform external field. The dielectric constant shows a remarkable variation among the proteins, changing from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility, that is a dia-electric dipolar response and negative dielectrophoresis. It means that ubiquitin, carrying an average dipole of ≃240 D, is expected to repel from the region of a stronger electric field. This outcome is the result of a negative cross-correlation between the protein and water dipoles, compensating for the positive variance of the intrinsic protein dipole in the overall dipolar susceptibility. In contrast to the neutral ubiquitin, charged proteins studied here show para-electric dipolar response and positive dielectrophoresis. The study suggests that the dipolar response of proteins in solution is strongly affected by the coupling of the protein surface charge to the hydration water. The protein-water dipolar cross-correlations are long-ranged, extending ~2 nm from the protein surface into the bulk. A similar correlation length of about 1 nm is seen for the electrostatic potential produced by the hydration water inside the protein. The analysis of numerical simulations suggests that the polarization of the protein-water interface is highly heterogeneous and does not follow the standard dielectric results for cavities carved in dielectrics. The polarization of the water shell gains in importance, relative to the intrinsic protein dipole, at high frequencies, above the protein Debye peak. The induced interfacial dipole can be either parallel or antiparallel to the protein dipole, depending on the distribution of the protein surface charge. As a result, the high-frequency absorption of the protein solution can

  6. 40 CFR 75.15 - Special provisions for measuring Hg mass emissions using the excepted sorbent trap monitoring...

    Science.gov (United States)

    2010-07-01

    ... this part. (k) During each RATA of a sorbent trap monitoring system, the type of sorbent material used... shall be used for each RATA run. However, the size of the traps used for the RATA may be smaller than... the traps is changed, the owner or operator shall conduct a diagnostic RATA of the modified sorbent...

  7. Methane Recovery from Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  8. Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation

    Science.gov (United States)

    Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.

    2013-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  9. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  10. Particle Strength of Bayer Hydrate

    Science.gov (United States)

    Anjier, J. L.; Marten, D. F. G.

    Because of the proposed use of fluid bed calciners at the Kaiser Aluminum Baton Rouge Works, studies into the strength of alumina and alumina trihydrate from eight different alumina plants were initiated. It was found in the course of these studies that the particle strength of Bayer hydrate depended on the precipitation process conditions under which it was produced. A series of laboratory precipitation tests was conducted to determine the effect on particle strength of process variables such as seed charge, temperature, caustic concentration and seed recycle. It is concluded from these studies that relative particle strength of alumina trihydrate, as measured by a modified Forsythe-Hertwig Apparatus, can be predicted from a knowledge of the precipitation process conditions.

  11. Comprehensive sulfation model verified for T-T sorbent clusters during flue gas desulfurization at moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yuran Li; Haiying Qi; Changfu You; Lizhai Yang [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

    2010-08-15

    An empirical sulfation model for T-T sorbent clusters was developed based on amassed experimental results under moderate temperatures (300-800{sup o}C). In the model, the reaction rate is a function of clusters mass, SO{sub 2} concentration, CO{sub 2} concentration, calcium conversion and temperature. The smaller pore volume partly results in a lower reaction rate at lower temperatures. The exponent on SO{sub 2} concentration is 0.88 in the rapid reaction stage and then decreases gradually as reaction progresses. The exponent on the fraction of the unreacted calcium is 1/3 in the first stage and then increases significantly in the second stage. The CO{sub 2} concentration has a negative influence on SO{sub 2} removal, especially for the temperature range of 400-650{sup o}C, which should be avoided to achieve a high effective calcium conversion. The sulfation model has been verified for the T-T sorbent clusters and has also been applied to CaO particles. Over extensive reaction conditions, the predictions agree well with experimental data. 17 refs., 10 figs., 2 tabs.

  12. Measurement and modeling of polychlorinated biphenyl bioaccumulation from sediment for the marine polychaete neanthes arenaceodentata and response to sorbent amendment

    Science.gov (United States)

    Janssen, E.M.-L.; Croteau, M.-N.; Luoma, S.N.; Luthy, R.G.

    2010-01-01

    Bioaccumulation rates of polychlorinated biphenyls (PCBs) for the marine polychaete Neanthes arenaceodentata were characterized, including PCB uptake rates from water and sediment, and the effect of sorbent amendment to the sediment on PCB bioavailability, organism growth, and lipid content. Physiological parameters were incorporated into a biodynamic model to predict contaminant uptake. The results indicate rapid PCB uptake from contaminated sediment and significant organism growth dilution during time-series exposure studies. PCB uptake from the aqueous phase accounted for less than 3% of the total uptake for this deposit-feeder. Proportional increase of gut residence time and assimilation efficiency as a consequence of the organism's growth was assessed by PCB uptake and a reactor theory model of gut architecture. Pulse-chase feeding and multilabeled stable isotope tracing techniques proved high sediment ingestion rates (i.e., 6?10 times of dry body weight per day) indicating that such deposit-feeders are promising biological indicators for sediment risk assessment. Activated carbon amendment reduced PCB uptake by 95% in laboratory experiments with no observed adverse growth effects on the marine polychaete. Biodynamic modeling explained the observed PCB body burdens for N. arenaceodentata, with and without sorbent amendment. ?? 2009 American Chemical Society.

  13. Natural and modified nanomaterials as sorbents of environmental contaminants.

    Science.gov (United States)

    Yuan, Guodong

    2004-01-01

    Nanotechnology is a revolutionary scientific and engineering concept that will have a large impact on our life. A core piece of this technology is the production of nanomaterials for electronic, chemical, medical, pharmaceutical, and environmental applications. In the last case, natural and modified natural nanomaterials would be good reference points for comparison of the functionality, cost, and potential ecological implications of synthetic nanomaterials. Here we investigated the performance of natural and modified nanomaterials (an allophane and a surface-modified smectite) in adsorbing copper (a common heavy metal contaminant), naphthalene (a representative polycyclic aromatic hydrocarbon), or 17beta-estradiol (an endocrine-disrupting chemical). Allophane is an effective sorbent of copper (Cu): at pH 5.5 it can take up 4448 mg Cu/kg at the equilibrium concentration of 10mg Cu/L. On the other hand, the surface-modified smectite is an excellent sorbent for naphthalene and 17beta-estradiol. It can sorb 1180mg naphthalene/kg at the equilibrium concentration of 1 mg/L or remove 98% of 17beta-estradiol from a solution after 4h of reaction. While the environmental impact and health effects of synthetic nanomaterials are essentially unknown and their use is of concern, natural nanomaterials (e.g., allophane and smectites) have been part of human existence since antiquity. As such, they do not pose much risk either to the physical environment or to human health.

  14. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  15. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  16. Influence of temperature on methane hydrate formation.

    Science.gov (United States)

    Zhang, Peng; Wu, Qingbai; Mu, Cuicui

    2017-08-11

    During gas hydrate formation process, a phase transition of liquid water exists naturally, implying that temperature has an important influence on hydrate formation. In this study, methane hydrate was formed within the same media. The experimental system was kept at 1.45, 6.49, and 12.91 °C respectively, and then different pressurization modes were applied in steps. We proposed a new indicator, namely the slope of the gas flow rates against time (dν g /dt), to represent the intrinsic driving force for hydrate formation. The driving force was calculated as a fixed value at the different stages of formation, including initial nucleation/growth, secondary nucleation/growth, and decay. The amounts of gas consumed at each stage were also calculated. The results show that the driving force during each stage follows an inverse relation with temperature, whereas the amount of consumed gas is proportional to temperature. This opposite trend indicates that the influences of temperature on the specific formation processes and final amounts of gas contained in hydrate should be considered separately. Our results also suggest that the specific ambient temperature under which hydrate is formed should be taken into consideration, when explaining the formation of different configurations and saturations of gas hydrates in natural reservoirs.

  17. Electrical properties of methane hydrate + sediment mixtures

    Science.gov (United States)

    Du Frane, Wyatt L.; Stern, Laura A.; Weitemeyer, Karen A.; Constable, Steven; Roberts, Jeffery J.

    2011-01-01

    As part of our DOE-funded proposal to characterize gas hydrate in the Gulf of Mexico using marine electromagnetic methods, a collaboration between SIO, LLNL, and USGS with the goal of measuring the electrical properties of lab-created methane (CH4) hydrate and sediment mixtures was formed. We examined samples with known characteristics to better relate electrical properties measured in the field to specific gas hydrate concentration and distribution patterns. Here we discuss first-ever electrical conductivity (σ) measurements on unmixed CH4 hydrate (Du Frane et al., 2011): 6 x 10-5 S/m at 5 °C, which is ~5 orders of magnitude lower than seawater. This difference allows electromagnetic (EM) techniques to distinguish highly resistive gas hydrate deposits from conductive water saturated sediments in EM field surveys. More recently, we performed measurements on CH4 hydrate mixed with sediment and we also discuss those initial findings here. Our results on samples free of liquid water are important for predicting conductivity of sediments with pores highly saturated with gas hydrate, and are an essential starting point for comprehensive mixing models.

  18. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  19. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  20. Evaluation of ultrasound-assisted in situ sorbent formation solid-phase extraction method for determination of arsenic in water, food and biological samples.

    Science.gov (United States)

    Ezoddin, Maryam; Majidi, Behrooz; Abdi, Khosrou

    2015-01-01

    A simple and rapid ultrasound-assisted in situ sorbent formation solid-phase extraction (UAISFSPE) coupled with electrothermal atomic absorption spectrometry detection (ET-AAS) was developed for preconcentration and determination of arsenic (As) in various samples. A small amount of cationic surfactant is dissolved in the aqueous sample containing As ions, which were complexed by ammonium pyrrolidinedithiocarbamate After shaking, a little volume of hexafluorophosphate (NaPF6) as an ion-pairing agent was added into the solution by a microsyringe. Due to the interaction between surfactant and ion-pairing agent, solid particles are formed. The alkyl groups of the surfactant in the solid particles strongly interact with the hydrophobic groups of analytes and become bound. Sonication aids the dispersion of the sorbent into the sample solution and mass transfer of the analyte into the sorbent, thus reducing the extraction time. The solid particles are centrifuged, and the sedimented particles can be dissolved in an appropriate solvent to recover the absorbed analyte. After separation, total arsenic (As(III) and As(V)) was determined by ET-AAS. Several experimental parameters were investigated and optimized. A detection limit of 7 ng L(-1) with preconcentration factor of 100 and relative standard deviation for 10 replicate determinations of 0.1 µg L(-1) As(III) were 4.5% achieved. Consequently, the method was applied to the determination of arsenic in certified reference materials, water, food and biological samples with satisfactory results.

  1. Trace-chitosan-wrapped multi-walled carbon nanotubes as a new sorbent in dispersive micro solid-phase extraction to determine phenolic compounds.

    Science.gov (United States)

    Cao, Wan; Hu, Shuai-Shuai; Ye, Li-Hong; Cao, Jun; Xu, Jing-Jing; Pang, Xiao-Qing

    2015-04-17

    This report describes the use of trace-chitosan-wrapped multi-walled carbon nanotubes (CS-MWCNTs) as a sorbent material in dispersive micro solid-phase extraction (DMSPE), which was combined with ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry to analyze phenolic compounds in chrysanthemum tea and a chrysanthemum beverage. In this study, for the first time, CS-MWCNTs were used as a sorbent for this microextraction mode. Moreover, the proposed method exhibits the advantages of simplicity, rapidity, small sample amount and ease of operation. Furthermore, all of the important parameters that affect the extraction efficiency, such as the sorbent, pH, extraction time and type of elution solvent, were investigated and optimized in the DMSPE. Under the optimized extraction condition, the limit of detection, which was calculated based on a signal-to-noise ratio of 3, was 0.22-16.19ngmL(-1). Satisfactory recovery values of 89-106% were obtained for the tested samples. The results show that the developed method was successfully applied to determine the content of chlorogenic acid and flavonoids in complex chrysanthemum samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Dissociation of Natural and Artificial Methane Hydrate

    Directory of Open Access Journals (Sweden)

    Misyura S. Y.

    2016-01-01

    Full Text Available Present work deals with natural and artificial methane hydrate dissociation. The heating of the powder produced due to the temperature difference between the external air and the powder. The dissociation rate was determined by gravimetric method. The range of the partial self-preservation for the natural hydrate is significantly longer than for the artificial one and moved to higher temperatures. The destruction of the natural sample is slower than the artificial one. The time-averaged dissociation rate for the artificial sample is equal to 1,25 %/s and for the natural hydrate corresponds to 0,59 %/s.

  3. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  4. Methane hydrate stability and anthropogenic climate change

    OpenAIRE

    Archer, D.

    2007-01-01

    Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO<...

  5. A positron annihilation study of hydrated DNA

    DEFF Research Database (Denmark)

    Warman, J. M.; Eldrup, Morten Mostgaard

    1986-01-01

    Positron annihilation measurements are reported for hydrated DNA as a function of water content and as a function of temperature (20 to -180.degree. C) for samples containing 10 and 50% wt of water. The ortho-positronium mean lifetime and its intensity show distinct variations with the degree...... of hydration and with temperature for the 50% sample. The 10% water sample was relatively insensitive to temperature variation. The results indicate that hydrated DNA containing up to 10% water behaves as a rigid crystalline solid but that the rigidity markedly decreases with a further increase in water...

  6. Experimental investigation of gas hydrate formation, plugging and transportability in partially dispersed and water continuous systems

    Science.gov (United States)

    Vijayamohan, Prithvi

    in water. These experiments indicate that the partially dispersed systems tend to be problematic and are more severe cases with respect to flow assurance when compared to systems where the water is completely dispersed in oil. We have found that the partially dispersed systems are distinct, and are not an intermediate case between water dominated, and water-in-oil emulsified systems. Instead the experiments indicate that the hydrate formation and plugging mechanism for these systems are very complex. Hydrate growth is very rapid for such systems when compared to 100% water cut systems. The plugging mechanism for these systems is a combination of various phenomena (wall growth, agglomeration, bedding/settling, etc). Three different oils with different viscosities have been used to investigate the transportability of hydrates with respect to oil properties. The experiments indicate that the transportability of hydrates increases with increase in oil viscosity. The data from the tests performed provide the basis for a mechanistic model for hydrate formation and plugging in partially dispersed systems. It is found that in systems that were in stratified flow regime before hydrate onset, the hydrates eventually settled on the pipe walls thereby decreasing the flow area for the flow of fluids. In systems that were in the slug flow regime before hydrate formation, moving beds of hydrates were the main cause for plugging. In both the flow regimes, the systems studied entered a plugging regime beyond a certain hydrate concentration. This is termed as φplugging onset and can be used as an indicator to calculate the amount of hydrates that can be transported safely without requiring any additional treatment for a given set of flow characteristics. A correlation to calculate this hydrate concentration based on easily accessible parameters is developed in terms of flow characteristics and oil properties. The work performed in this thesis has enhanced the understanding of the

  7. Evaluation of the geological relationships to gas hydrate formation and stability. Progress report, June 16--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Krason, J.; Finley, P.

    1988-12-31

    The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

  8. Performance Evaluation of Engineered Structured Sorbents for Atmosphere Revitalization Systems On Board Crewed Space Vehicles and Habitats

    Science.gov (United States)

    Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir

    2011-01-01

    Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.

  9. Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Sidney [Hudson, OH

    2011-02-15

    Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.

  10. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  11. The interaction of climate change and methane hydrates: Climate-Hydrates Interactions

    OpenAIRE

    Ruppel, Carolyn D.; Kessler, John D.

    2017-01-01

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane ...

  12. Hydration and nutrition knowledge in adolescent swimmers. Does water intake affect urine hydration markers after swimming?

    OpenAIRE

    Altavilla, Cesare; Prats Moya, Soledad; Caballero, Pablo

    2017-01-01

    Little data exists regarding nutritional knowledge and hydration in adolescent swimmers. The aim of this study was to assess the level of nutrition and hydration knowledge and to describe the fluid balance in adolescent swimmers during training. A study was carried out with a cross-sectional descriptive part and a longitudinal part with repeated measurements over five swimming sessions. Eighty-six adolescent swimmers completed a questionnaire to assess their sport nutrition and hydration know...

  13. Hydration education: developing, piloting and evaluating a hydration education package for general practitioners

    OpenAIRE

    McCotter, L; Douglas, P; Laur, C; Gandy, J.; Fitzpatrick, L; Rajput-Ray, M; Ray, S.

    2016-01-01

    Objectives To (1) assess the hydration knowledge, attitudes and practices (KAP) of doctors; (2) develop an evidence-based training package; and (3) evaluate the impact of the training package. Design Educational intervention with impact evaluation. Setting Cambridgeshire, UK. Participants General practitioners (GPs (primary care physicians)). Interventions Hydration and healthcare training. Main outcome measures Hydration KAP score before and immediately after the training session. Results Kn...

  14. Methane hydrate formation in partially water-saturated Ottawa sand

    Science.gov (United States)

    Waite, W.F.; Winters, W.J.; Mason, D.H.

    2004-01-01

    Bulk properties of gas hydrate-bearing sediment strongly depend on whether hydrate forms primarily in the pore fluid, becomes a load-bearing member of the sediment matrix, or cements sediment grains. Our compressional wave speed measurements through partially water-saturated, methane hydrate-bearing Ottawa sands suggest hydrate surrounds and cements sediment grains. The three Ottawa sand packs tested in the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) contain 38(1)% porosity, initially with distilled water saturating 58, 31, and 16% of that pore space, respectively. From the volume of methane gas produced during hydrate dissociation, we calculated the hydrate concentration in the pore space to be 70, 37, and 20% respectively. Based on these hydrate concentrations and our measured compressional wave speeds, we used a rock physics model to differentiate between potential pore-space hydrate distributions. Model results suggest methane hydrate cements unconsolidated sediment when forming in systems containing an abundant gas phase.

  15. A Hydrate Database: Vital to the Technical Community

    Directory of Open Access Journals (Sweden)

    D Sloan

    2007-06-01

    Full Text Available Natural gas hydrates may contain more energy than all the combined other fossil fuels, causing hydrates to be a potentially vital aspect of both energy and climate change. This article is an overview of the motivation, history, and future of hydrate data management using a CODATA vehicle to connect international hydrate databases. The basis is an introduction to the Gas Hydrate Markup Language (GHML to connect various hydrate databases. The accompanying four articles on laboratory hydrate data by Smith et al., on field hydrate data by L?wner et al., on hydrate modeling by Wang et al., and on construction of a Chinese gas hydrate system by Xiao et al. provide details of GHML in their respective areas.

  16. Transient Electromagnetic Modelling and Imaging of Thin Resistive Structures: Applications for Gas Hydrate Assessment

    Science.gov (United States)

    Swidinsky, Andrei

    Gas hydrates are a solid, ice-like mixture of water and low molecular weight hydrocarbons. They are found under the permafrost and to a far greater extent under the ocean, usually at water depths greater than 300m. Hydrates are a potential energy resource, a possible factor in climate change, and a geohazard. For these reasons, it is critical that gas hydrate deposits are quantitatively assessed so that their concentrations, locations and distributions may be established. Due to their ice-like nature, hydrates are electrically insulating. Consequently, a method which remotely detects changes in seafloor electrical conductivity, such as marine controlled source electromagnetics (CSEM), is a useful geophysical tool for marine gas hydrate exploration. Hydrates are geometrically complex structures. Advanced electromagnetic modelling and imaging techniques are crucial for proper survey design and data interpretation. I develop a method to model thin resistive structures in conductive host media which may be useful in building approximate geological models of gas hydrate deposits using arrangements of multiple, bent sheets. I also investigate the possibility of interpreting diffusive electromagnetic data using seismic imaging techniques. To be processed in this way, such data must first be transformed into its non-diffusive, seismic-like counterpart. I examine such a transform from both an analytical and a numerical point of view, focusing on methods to overcome inherent numerical instabilities. This is the first step to applying seismic processing techniques to CSEM data to rapidly and efficiently image resistive gas hydrate structures. The University of Toronto marine electromagnetics group has deployed a permanent marine CSEM array offshore Vancouver Island, in the framework of the NEPTUNE Canada cabled observatory, for the purposes of monitoring gas hydrate deposits. In this thesis I also propose and examine a new CSEM survey technique for gas hydrate which would

  17. Effect of hydration on the electrical explosion of a fine palladium wire in a vacuum

    Science.gov (United States)

    Sarkisov, G. S.

    2017-11-01

    Experiments with fast electric explosion of a hydrated palladium wire in vacuum show a significant decrease in Joule deposited energy, expansion rate, and voltage amplitude at breakdown. An increase in the density of diffused hydrogen and oxygen at the wire surface leads to an early generation of plasma due to evaporation impurity and rapid development of avalanche breakdown along the wire surface. The non-hydrated Pd wire demonstrates a longer resistive time, higher voltage peak, greater energy and expansion speed. The decrease in the deposited energy was ˜35%, and the expansion rate was ˜18%. The peak of light emission during voltage breakdown was twice higher for a hydrated Pd wire than for a bare one.

  18. Substantial effect of acute hydration on blood pressure in patients with autonomic failure

    DEFF Research Database (Denmark)

    Mehlsen, J; Boesen, F

    1987-01-01

    The effect of acute hydration on arterial blood pressure levels was investigated in ten patients with severe postural hypotension due to autonomic failure. Blood pressure and heart rate were determined in the supine and 60-degree head-up tilted position. Plasma volume and left ventricular ejection...... fraction were measured in the supine position. Measurements were repeated after rapid infusion of 11 of isotonic saline. Acute hydration resulted in increased supine mean blood pressure levels (P less than 0.01) despite normal plasma volumes in all patients. The postural reductions in mean blood pressure...... were reduced from 40 mmHg before to 20 mmHg after saline (median values, P less than 0.01). The results indicate that normal plasma volumes do not ensure optimal circulatory status in patients with autonomic failure. Acute hydration with isotonic saline may be used for immediate corrections of blood...

  19. Gas Hydrate Characterization in the GoM using Marine EM Methods

    Energy Technology Data Exchange (ETDEWEB)

    Constable, Steven [Univ. Of California, San Diego, CA (United States)

    2012-03-31

    In spite of the importance of gas hydrate as a low-carbon fuel, a possible contributor to rapid climate change, and a significant natural hazard, our current understanding about the amount and distribution of submarine gas hydrate is somewhat poor; estimates of total volume vary by at least an order of magnitude, and commercially useful concentrations of hydrate have remained an elusive target. This is largely because conventional geophysical tools have intrinsic limitations in their ability to quantitatively image hydrate. It has long been known from well logs that gas hydrate is resistive compared to the host sediments, and electrical and electromagnetic methods have been proposed and occasionally used to image hydrates. This project seeks to expand our capabilities to use electromagnetic methods to explore for gas hydrate in the marine environment. An important basic science aspect of our work was to quantify the resistivity of pure gas hydrate as a function of temperature at seafloor pressures. We designed, constructed, and tested a highpressure cell in which hydrate could be synthesized and then subjected to electrical conductivity measurements. Impedance spectroscopy at frequencies between 20 Hz and 2 MHz was used to separate the effect of the blocking electrodes from the intrinsic conductivity of the hydrate. We obtained very reproducible results that showed that pure methane hydrate was several times more resistive than the water ice that seeded the synthesis, 20,000 {Ohm}m at 0{degrees} C, and that the activation energy is 30.6 kJ/mol over the temperature range of -15 to 15{degrees} C. Adding silica sand to the hydrate, however, showed that the addition of the extra phase caused the conductivity of the assemblage to increase in a counterintuitive way. The fact that the increased conductivity collapsed after a percolation threshold was reached, and that the addition of glass beads does not produce a similar increase in conductivity, together suggest that

  20. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization.

    Science.gov (United States)

    Phrampus, Benjamin J; Hornbach, Matthew J

    2012-10-25

    The Gulf Stream is an ocean current that modulates climate in the Northern Hemisphere by transporting warm waters from the Gulf of Mexico into the North Atlantic and Arctic oceans. A changing Gulf Stream has the potential to thaw and convert hundreds of gigatonnes of frozen methane hydrate trapped below the sea floor into methane gas, increasing the risk of slope failure and methane release. How the Gulf Stream changes with time and what effect these changes have on methane hydrate stability is unclear. Here, using seismic data combined with thermal models, we show that recent changes in intermediate-depth ocean temperature associated with the Gulf Stream are rapidly destabilizing methane hydrate along a broad swathe of the North American margin. The area of active hydrate destabilization covers at least 10,000 square kilometres of the United States eastern margin, and occurs in a region prone to kilometre-scale slope failures. Previous hypothetical studies postulated that an increase of five degrees Celsius in intermediate-depth ocean temperatures could release enough methane to explain extreme global warming events like the Palaeocene-Eocene thermal maximum (PETM) and trigger widespread ocean acidification. Our analysis suggests that changes in Gulf Stream flow or temperature within the past 5,000 years or so are warming the western North Atlantic margin by up to eight degrees Celsius and are now triggering the destabilization of 2.5 gigatonnes of methane hydrate (about 0.2 per cent of that required to cause the PETM). This destabilization extends along hundreds of kilometres of the margin and may continue for centuries. It is unlikely that the western North Atlantic margin is the only area experiencing changing ocean currents; our estimate of 2.5 gigatonnes of destabilizing methane hydrate may therefore represent only a fraction of the methane hydrate currently destabilizing globally. The transport from ocean to atmosphere of any methane released--and thus its

  1. Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage

    Directory of Open Access Journals (Sweden)

    Yannan Zhang

    2016-10-01

    Full Text Available To store low-temperature heat below 100 °C, novel composite sorbents were developed by impregnating LiCl into expanded vermiculite (EVM in this study. Five kinds of composite sorbents were prepared using different salt concentrations, and the optimal sorbent for application was selected by comparing both the sorption characteristics and energy storage density. Textural properties of composite sorbents were obtained by extreme-resolution field emission scanning electron microscopy (ER-SEM and an automatic mercury porosimeter. After excluding two composite sorbents which would possibly exhibit solution leakage in practical thermal energy storage (TES system, thermochemical characterizations were implemented through simulative sorption experiments at 30 °C and 60% RH. Analyses of thermogravimetric analysis/differential scanning calorimetry (TGA/DSC curves indicate that water uptake of EVM/LiCl composite sorbents is divided into three parts: physical adsorption of EVM, chemical adsorption of LiCl crystal, and liquid–gas absorption of LiCl solution. Energy storage potential was evaluated by theoretical calculation based on TGA/DSC curves. Overall, EVMLiCl20 was selected as the optimal composite sorbent with water uptake of 1.41 g/g, mass energy storage density of 1.21 kWh/kg, and volume energy storage density of 171.61 kWh/m3.

  2. Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin.

    Science.gov (United States)

    Wilson, Lee D; Mohamed, Mohamed H; Guo, Rui; Pratt, Dawn Y; Kwon, Jae Hyuck; Mahmud, Sarker T

    2010-04-01

    Polymeric sorbent materials that incorporate beta-cyclodextrin (CD) have been prepared and their sorption behavior toward two model agrochemical contaminant compounds, p-nitrophenol (PNP) and methyl chloride examined. The sorption of PNP was studied in aqueous solution using ultraviolet-visible (UV-Vis) spectroscopy, whereas the sorption of methyl chloride from the gas phase was studied using a Langmuir adsorption method. The sorption results for PNP in solution were compared between granular activated carbon (GAC), modified GAC, CD copolymers, and CD-based mesoporous silica hybrid materials. Nitrogen porosimetry at 77 K was used to estimate the surface area and pore structure properties of the sorbent materials. The sorbents displayed variable surface areas as follows: copolymers (36.2-157 m(2)/g), CD-silica materials (307-906 m(2)/g), surface modified GAC (657 m(2)/g), and granular activated carbon (approximately 10(3) m(2)/g). The sorption capacities for PNP and methyl chloride with the different sorbents are listed in descending order as follows: GAC > copolymers > surface modified GAC > CD-silica hybrid materials. In general, the differences in the sorption properties of the sorbents were related to the following: (i) surface area of the sorbent, (ii) CD content and accessibility, (iii) and the chemical nature of the sorbent material.

  3. [Influence of different sorbents on adsorption effect of ammonia and compost property in aerobic composting].

    Science.gov (United States)

    Hu, Tian-jue; Zeng, Guang-ming; Huang, Guo-he; Liu, Hong-liang; Huang, Dan-lian; Yu, Hong-yan; Dai, Fang

    2005-01-01

    The three kinds of sorbents of 0.18% KH2PO4, 0.06% KH2PO4 + 15% sawdust mixture and 30% sawdust are added separately into composting to investigate their adsorption effect on ammonia. The experiment results exhibite that all the sorbents can restrain ammonia volatilizing. But sorption of 0.18% KH2PO4 sorbnet was best of all, one of 0.06% KH2PO4 + 15% sawdust mixture sorbent was secondly, one of 30% sawdust sorbent was thirdly. The total nitrogen loss ratios were separately reduced 25%, 23% and 17% after adding the three kinds of sorbents into composting. However, excessive KH2PO4 would produce negative influence on compost property, such as pH value being lessened, microorganism activity being reduced, and finally resulting in the reduction of biodegradation ratio of organic matter also. Comparing with it, there were not these problems as 0.06% KH2PO4 + 15% sawdust mixture being sorbent. The mixture sorbent not only produced finer adsorption effect on ammonia, but also made biodegradation ratio of organic matter to be promoted 7%.

  4. Carbon-Containing Waste of Coal Enterprises in Magnetic Sorbents Technology

    Directory of Open Access Journals (Sweden)

    Kvashevaya Ekaterina

    2017-01-01

    Full Text Available The article shows the issues state of coal-mining enterprises carbonaceous wastes utilization, including by obtaining oil-sorbent. The characteristics of the feedstock are presented; experiment methods of obtaining a binder based on the livestock enterprises waste, of forming binder with filler (sawdust, coal waste; of pyrogenetic processing to obtain a sorbent are described. Possible options for the introduction of magnetite (a magnetic component in the composition of the oil sorbent are considered: on the surface, in the volume of the granule and the magnetite core. In the course of the work it was found that the optimum content of coal dust in the sorbent granules is 75% by weight, and the most effective way of obtaining the magnetic sorbent is to apply the carbon material directly to the “core” of magnetite. However, in this case, the problem of finding an effective binder for magnetite arises. The option of applying magnetite on the surface of a carbon sorbent is not effective. Thus, at present, we use a mixture of coal waste, which binds to the uniform distribution of magnetite in the volume. The developed magnetic sorbents can be used in various weather conditions, including strong winds and icing of water bodies, as well as for small and medium currents.

  5. Evaluation of silk-floss fiber and dog fur as sorbent materials for the petroleum sector

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Lucas P. dos [Universidade Federal do Parana (PGMec/UFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Dubiella, Juliana [Universidade Federal do Parana (DEMEC/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica. Programa Institucional de Bolsas de Iniciacao Cientifica; Perotta, Larissa [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Programa Interdisciplinar em Engenharia de Petroleo e Gas Natural; Satyanarayana, Kestur G. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica; Flores-Sahagun, Thais Sydenstricker [Universidade Federal do Parana (DEMEC/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2009-07-01

    In this study silk-floss and dog fur were tested as sorbent materials for oils and the results were compared with peat, a commercial sorbent. Sorption tests were carried out in dry and aqueous systems, with and without stirring for different periods of time (5-1440 min). Density, hydrophobicity, buoyancy and water uptake by the fibers of the impregnated sorbents have been determined. The use of silk-floss and dog fur was also tested in columns to purify water containing toluene, benzene, motor oil or sunflower oil. Breakthrough curves during 120 min were drawn for each material with the samples (oily water or water containing benzene or toluene) and were analyzed by ultraviolet spectroscopy. It was concluded that the silk-floss is the best sorbent material (65.3 g oil/g sorbent) followed by the dog fur (34.6 g oil/g sorbent) and peat (19.5 g oil/g sorbent), for sorption time of 1 h in dynamic condition. The efficiency of the pollutant removal from water with the use of adsorption columns was high for both materials although the use of dog fur was preferable because of the slight superiority in efficiency compared to silk-floss and also, due to the easier packing of the dog fur in the column. (author)

  6. Carbon-Containing Waste of Coal Enterprises in Magnetic Sorbents Technology

    Science.gov (United States)

    Kvashevaya, Ekaterina; Ushakova, Elena; Ushakov, Andrey

    2017-11-01

    The article shows the issues state of coal-mining enterprises carbonaceous wastes utilization, including by obtaining oil-sorbent. The characteristics of the feedstock are presented; experiment methods of obtaining a binder based on the livestock enterprises waste, of forming binder with filler (sawdust, coal waste); of pyrogenetic processing to obtain a sorbent are described. Possible options for the introduction of magnetite (a magnetic component) in the composition of the oil sorbent are considered: on the surface, in the volume of the granule and the magnetite core. In the course of the work it was found that the optimum content of coal dust in the sorbent granules is 75% by weight, and the most effective way of obtaining the magnetic sorbent is to apply the carbon material directly to the "core" of magnetite. However, in this case, the problem of finding an effective binder for magnetite arises. The option of applying magnetite on the surface of a carbon sorbent is not effective. Thus, at present, we use a mixture of coal waste, which binds to the uniform distribution of magnetite in the volume. The developed magnetic sorbents can be used in various weather conditions, including strong winds and icing of water bodies, as well as for small and medium currents.

  7. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  8. Towards Commercial Gas Production from Hydrate Deposits

    Directory of Open Access Journals (Sweden)

    Richard Dawe

    2011-01-01

    Full Text Available Over the last decade global natural gas consumption has steadily increased since many industrialized countries are substituting natural gas for coal to generate electricity. There is also significant industrialization and economic growth of the heavily populated Asian countries of India and China. The general consensus is that there are vast quantities of natural gas trapped in hydrate deposits in geological systems, and this has resulted in the emerging importance of hydrates as a potential energy resource and an accompanying proliferation of recent studies on the technical and economic feasibility of gas production from hydrates. There are then the associated environmental concerns. This study reviews the state of knowledge with respect to natural gas hydrates and outlines remaining challenges and knowledge gaps.

  9. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David [ConocoPhillips Co., Houston, TX (United States); Farrell, Helen [ConocoPhillips Co., Houston, TX (United States); Howard, James [ConocoPhillips Co., Houston, TX (United States); Raterman, Kevin [ConocoPhillips Co., Houston, TX (United States); Silpngarmlert, Suntichai [ConocoPhillips Co., Houston, TX (United States); Martin, Kenneth [ConocoPhillips Co., Houston, TX (United States); Smith, Bruce [ConocoPhillips Co., Houston, TX (United States); Klein, Perry [ConocoPhillips Co., Houston, TX (United States)

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  10. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  11. Worldwide distribution of subaquatic gas hydrates

    Science.gov (United States)

    Kvenvolden, K.A.; Ginsburg, G.D.; Soloviev, V.A.

    1993-01-01

    Sediments containing natural gas hydrates occur worldwide on continental and insular slopes and rises of active and passive margins, on continental shelves of polar regions, and in deep-water (> 300 m) environments of inland lakes and seas. The potential amount of methane in natural gas hydrates is enormous, with current estimates at about 1019 g of methane carbon. Subaquatic gas hydrates have been recovered in 14 different areas of the world, and geophysical and geochemical evidence for them has been found in 33 other areas. The worldwide distribution of natural gas hydrates is updated here; their global importance to the chemical and physical properties of near-surface subaquatic sediments is affirmed. ?? 1993 Springer-Verlag.

  12. Free Communications, Oral Presentations: Hydration Issues

    National Research Council Canada - National Science Library

    Susan Yeargin

    2012-01-01

      Indiana State University, Terre Haute, IN Context: Hydration status is among several variables measured to determine risk of exertional heat illness during pre-participation exams for preseason practices in summer months...

  13. Nano-granular texture of cement hydrates

    Directory of Open Access Journals (Sweden)

    Ioannidou Katerina

    2017-01-01

    Full Text Available Mechanical behavior of concrete crucially depends on cement hydrates, the “glue” of cement. The design of high performance and more environmentally friendly cements demands a deeper understanding of the formation of the multiscale structure of cement hydrates, when they precipitate and densify. We investigate the precipitation and setting of nano-grains of cement hydrates using a combination of Monte Carlo and Molecular Dynamics numerical simulations and study their texture from nano up to the micron scale. We characterize the texture of cement hydrates using the local volume fraction distribution, the pore size distribution, the scattering intensity and the chord length distribution and we compare them with experiments. Our nano-granular model provides cement structure with realistic texture and mechanics and can be further used to investigate degradation mechanisms.

  14. CO2 Hydration Shell Structure and Transformation.

    Science.gov (United States)

    Zukowski, Samual R; Mitev, Pavlin D; Hermansson, Kersti; Ben-Amotz, Dor

    2017-07-06

    The hydration-shell of CO2 is characterized using Raman multivariate curve resolution (Raman-MCR) spectroscopy combined with ab initio molecular dynamics (AIMD) vibrational density of states simulations, to validate our assignment of the experimentally observed high-frequency OH band to a weak hydrogen bond between water and CO2. Our results reveal that while the hydration-shell of CO2 is highly tetrahedral, it is also occasionally disrupted by the presence of entropically stabilized defects associated with the CO2-water hydrogen bond. Moreover, we find that the hydration-shell of CO2 undergoes a temperature-dependent structural transformation to a highly disordered (less tetrahedral) structure, reminiscent of the transformation that takes place at higher temperatures around much larger oily molecules. The biological significance of the CO2 hydration shell structural transformation is suggested by the fact that it takes place near physiological temperatures.

  15. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  16. Development of Highly Durable and Reactive Regenerable Magnesium-Based Sorbents for CO2 Separation in Coal Gasification Process

    Energy Technology Data Exchange (ETDEWEB)

    Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane

    2005-06-01

    The specific objective of this project was to develop physically durable and chemically regenerable MgO-based sorbents that can remove carbon dioxide from raw coal gas at operating condition prevailing in IGCC processes. A total of sixty two (62) different sorbents were prepared in this project. The sorbents were prepared either by various sol-gel techniques (22 formulations) or modification of dolomite (40 formulations). The sorbents were prepared in the form of pellets and in granular forms. The solgel based sorbents had very high physical strength, relatively high surface area, and very low average pore diameter. The magnesium content of the sorbents was estimated to be 4-6 % w/w. To improve the reactivity of the sorbents toward CO{sub 2}, The sorbents were impregnated with potassium salts. The potassium content of the sorbents was about 5%. The dolomite-based sorbents were prepared by calcination of dolomite at various temperature and calcination environment (CO{sub 2} partial pressure and moisture). Potassium carbonate was added to the half-calcined dolomite through wet impregnation method. The estimated potassium content of the impregnated sorbents was in the range of 1-6% w/w. In general, the modified dolomite sorbents have significantly higher magnesium content, larger pore diameter and lower surface area, resulting in significantly higher reactivity compared to the sol-gel sorbents. The reactivities of a number of sorbents toward CO{sub 2} were determined in a Thermogravimetric Analyzer (TGA) unit. The results indicated that at the low CO{sub 2} partial pressures (i.e., 1 atm), the reactivities of the sorbents toward CO{sub 2} are very low. At elevated pressures (i.e., CO{sub 2} partial pressure of 10 bar) the maximum conversion of MgO obtained with the sol-gel based sorbents was about 5%, which corresponds to a maximum CO{sub 2} absorption capacity of less than 1%. The overall capacity of modified dolomite sorbents were at least one order of magnitude

  17. Physical properties of sediment containing methane gas hydrate

    Science.gov (United States)

    Winters, W.J.; Waite, W.F.; Mason, D.H.; Gilbert, L.Y.

    2005-01-01

    A study conducted by the US Geological Survey (USGS) on the formation, behavior, and properties of mixtures of gas hydrate and sediment is presented. The results show that the properties of host material influence the type and quantity of hydrates formed. The presence of hydrate during mechanical shear tests affects the measured sediment pore pressure. Sediment shear strength may be increased more than 500 percent by intact hydrate, but greatly weakened if the hydrate dissociates.

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  19. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling

  20. Exploitation of subsea gas hydrate reservoirs

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  1. [Progress in Raman spectroscopic measurement of methane hydrate].

    Science.gov (United States)

    Xu, Feng; Zhu, Li-hua; Wu, Qiang; Xu, Long-jun

    2009-09-01

    Complex thermodynamics and kinetics problems are involved in the methane hydrate formation and decomposition, and these problems are crucial to understanding the mechanisms of hydrate formation and hydrate decomposition. However, it was difficult to accurately obtain such information due to the difficulty of measurement since methane hydrate is only stable under low temperature and high pressure condition, and until recent years, methane hydrate has been measured in situ using Raman spectroscopy. Raman spectroscopy, a non-destructive and non-invasive technique, is used to study vibrational modes of molecules. Studies of methane hydrate using Raman spectroscopy have been developed over the last decade. The Raman spectra of CH4 in vapor phase and in hydrate phase are presented in this paper. The progress in the research on methane hydrate formation thermodynamics, formation kinetics, decomposition kinetics and decomposition mechanism based on Raman spectroscopic measurements in the laboratory and deep sea are reviewed. Formation thermodynamic studies, including in situ observation of formation condition of methane hydrate, analysis of structure, and determination of hydrate cage occupancy and hydration numbers by using Raman spectroscopy, are emphasized. In the aspect of formation kinetics, research on variation in hydrate cage amount and methane concentration in water during the growth of hydrate using Raman spectroscopy is also introduced. For the methane hydrate decomposition, the investigation associated with decomposition mechanism, the mutative law of cage occupancy ratio and the formulation of decomposition rate in porous media are described. The important aspects for future hydrate research based on Raman spectroscopy are discussed.

  2. Electrical properties of polycrystalline methane hydrate

    Science.gov (United States)

    Du Frane, W. L.; Stern, L.A.; Weitemeyer, K.A.; Constable, S.; Pinkston, J.C.; Roberts, J.J.

    2011-01-01

    Electromagnetic (EM) remote-sensing techniques are demonstrated to be sensitive to gas hydrate concentration and distribution and complement other resource assessment techniques, particularly seismic methods. To fully utilize EM results requires knowledge of the electrical properties of individual phases and mixing relations, yet little is known about the electrical properties of gas hydrates. We developed a pressure cell to synthesize gas hydrate while simultaneously measuring in situ frequency-dependent electrical conductivity (σ). Synthesis of methane (CH4) hydrate was verified by thermal monitoring and by post run cryogenic scanning electron microscope imaging. Impedance spectra (20 Hz to 2 MHz) were collected before and after synthesis of polycrystalline CH4 hydrate from polycrystalline ice and used to calculate σ. We determined the σ of CH4 hydrate to be 5 × 10−5 S/m at 0°C with activation energy (Ea) of 30.6 kJ/mol (−15 to 15°C). After dissociation back into ice, σ measurements of samples increased by a factor of ~4 and Ea increased by ~50%, similar to the starting ice samples.

  3. Structural characteristics of hydration sites in lysozyme.

    Science.gov (United States)

    Soda, Kunitsugu; Shimbo, Yudai; Seki, Yasutaka; Taiji, Makoto

    2011-06-01

    A new method is presented for determining the hydration site of proteins, where the effect of structural fluctuations in both protein and hydration water is explicitly considered by using molecular dynamics simulation (MDS). The whole hydration sites (HS) of lysozyme are composed of 195 single HSs and 38 clustered ones (CHS), and divided into 231 external HSs (EHS) and 2 internal ones (IHS). The largest CHSs, 'Hg' and 'Lβ', are the IHSs having 2.54 and 1.35 mean internal hydration waters respectively. The largest EHS, 'Clft', is located in the cleft region. The real hydration structure of a CHS is an ensemble of multiple structures. The transition between two structures occurs through recombinations of some H-bonds. The number of the experimental X-ray crystal waters is nearly the same as that of the estimated MDS hydration waters for 70% of the HSs, but significantly different for the rest of HSs. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Development of individual hydration strategies for athletes.

    Science.gov (United States)

    Maughan, Ronald J; Shirreffs, Susan M

    2008-10-01

    Athletes are encouraged to begin exercise well hydrated and to consume sufficient amounts of appropriate fluids during exercise to limit water and salt deficits. Available evidence suggests that many athletes begin exercise already dehydrated to some degree, and although most fail to drink enough to match sweat losses, some drink too much and a few develop hyponatremia. Some simple advice can help athletes assess their hydration status and develop a personalized hydration strategy that takes account of exercise, environment, and individual needs. Preexercise hydration status can be assessed from urine frequency and volume, with additional information from urine color, specific gravity, or osmolality. Change in hydration during exercise can be estimated from the change in body mass that occurs during a bout of exercise. Sweat rate can be estimated if fluid intake and urinary losses are also measured. Sweat salt losses can be determined by collection and analysis of sweat samples, but athletes losing large amounts of salt are likely to be aware of the taste of salt in sweat and the development of salt crusts on skin and clothing where sweat has evaporated. An appropriate drinking strategy will take account of preexercise hydration status and of fluid, electrolyte, and substrate needs before, during, and after a period of exercise. Strategies will vary greatly between individuals and will also be influenced by environmental conditions, competition regulations, and other factors.

  5. Mass transfer within electrostatic precipitators: trace gas adsorption by sorbent-covered plate electrodes.

    Science.gov (United States)

    Clack, Herek L

    2006-06-01

    Varying degrees of mercury (Hg) capture have been reported within the electrostatic precipitators (ESPs) of coal-fired electric utility boilers. There has been some speculation that the adsorption takes place on the particulate-covered plate electrodes. This convective mass transfer analysis of laminar and turbulent channel flows provides the maximum potential for Hg adsorption by the plate electrodes within an ESP under those conditions. Mass transfer calculations, neglecting electrohydrodynamic (EHD) effects, reveal 65% removal of elemental Hg for a laminar flow within a 15-m-long channel of 0.2-m spacing and 42% removal for turbulent flow within a similar configuration. Both configurations represent specific collection areas (SCAs) that are significantly larger than conventional ESPs in use. Results reflecting more representative SCA values generally returned removal efficiencies of <20%. EHD effects, although potentially substantial at low Reynolds numbers, diminish rapidly with increasing Reynolds number and become negligible at typical ESP operating conditions. The present results indicate maximum Hg removal efficiencies for ESPs that are much less than those observed in practice for comparable ESP operating conditions. Considering Hg adsorption kinetics and finite sorbent capacity in addition to the present mass transfer analyses would yield even lower adsorption efficiencies than the present results. In a subsequent paper, the author addresses the mass transfer potential presented by the charged, suspended particulates during their collection within an ESP and the role they potentially play in Hg capture within ESPs.

  6. Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L.; Lin, Wenbin; Abney, Carter W.

    2017-03-21

    A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.

  7. Efficient CO2 sorbents based on silica foam with ultra-large mesopores

    KAUST Repository

    Qi, Genggeng

    2012-01-01

    A series of high-capacity, amine impregnated sorbents based on a cost-effective silica foam with ultra-large mesopores is reported. The sorbents exhibit fast CO2 capture kinetics, high adsorption capacity (of up to 5.8 mmol g-1 under 1 atm of dry CO2), as well as good stability over multiple adsorption-desorption cycles. A simple theoretical analysis is provided relating the support structure to sorbent performance. © 2012 The Royal Society of Chemistry.

  8. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    Science.gov (United States)

    Young, John E.; Jalan, Vinod M.

    1984-01-01

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  9. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    Science.gov (United States)

    Young, J.E.; Jalan, V.M.

    1982-07-07

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  10. Improving the action of sulfur sorbents in the fluidized-bed combustion of coal

    Energy Technology Data Exchange (ETDEWEB)

    Schmal, D.

    1985-01-01

    As part of an investigation of the fluidised-bed combustion of coal and its environmental aspects, a study of the sorption of SO/sub 2/ as a combustion product has been undertaken. Special attention is being paid to the reactivation of fluidised-bed ash by treatment with water or water vapour, followed by heating to fluidised-bed temperatures. A laboratory research programme was carried out on the sulphation and reactivation of sorbents on their own, and of sorbent-containing ashes from a 4MW atmospheric fluidized-bed combustor. The experiments show that reactivation can be a versatile method for improving the efficiency of the sorbents.

  11. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    Science.gov (United States)

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  12. The analysis of isotherms of radionuclides sorption by inorganic sorbents

    Science.gov (United States)

    Bykova, E. P.; Nedobukh, T. A.

    2017-09-01

    The isotherm of cesium sorption by an inorganic sorbent based on granulated glauconite obtained in a wide cesium concentrations range was mathematically treated using Langmuir, Freundlich and Redlich-Peterson sorption models. The algorithms of mathematical treatment of experimental data using these models were described; parameters of all isotherms were determined. It was shown that estimating the correctness of various sorption models relies not only on the correlation coefficient values but also on the closeness of the calculated and experimental data. Various types of sorption sites were found as a result of mathematical treatment of the isotherm of cesium sorption. The algorithm was described and calculation of parameters of the isotherm was performed under the assumption that simultaneous sorption on all three types of sorption sites occurs in accordance with Langmuir isotherm.

  13. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Rack, Frank; Storms, Michael; Schroeder, Derryl; Dugan, Brandon; Schultheiss, Peter

    2002-12-31

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were (1) the preliminary postcruise evaluation of the tools and measurement systems that were used during ODP Leg 204 to study hydrate deposits on Hydrate Ridge, offshore Oregon from July through September 2002; and (2) the preliminary study of the hydrate-bearing core samples preserved in pressure vessels and in liquid nitrogen cryofreezers, which are now stored at the ODP Gulf Coast Repository in College Station, TX. During ODP Leg 204, several newly modified downhole tools were deployed to better characterize the subsurface lithologies and environments hosting microbial populations and gas hydrates. A preliminary review of the use of these tools is provided herein. The DVTP, DVTP-P, APC-methane, and APC-Temperature tools (ODP memory tools) were used extensively and successfully during ODP Leg 204 aboard the D/V JOIDES Resolution. These systems provided a strong operational capability for characterizing the in situ properties of methane hydrates in subsurface environments on Hydrate Ridge during ODP Leg 204. Pressure was also measured during a trial run of the Fugro piezoprobe, which operates on similar principles as the DVTP-P. The final report describing the deployments of the Fugro Piezoprobe is provided in Appendix A of this report. A preliminary analysis and comparison between the piezoprobe and DVTP-P tools is provided in Appendix B of this report. Finally, a series of additional holes were cored at the crest of Hydrate Ridge (Site 1249) specifically geared toward the rapid recovery and preservation of hydrate samples as part of a hydrate geriatric study partially funded by the Department of Energy (DOE). In addition, the preliminary results from gamma density non-invasive imaging of the cores preserved in pressure vessels are provided in Appendix C of this report. An initial visual inspection of the samples stored in liquid nitrogen is provided in Appendix D of this

  14. Hydration during intense exercise training.

    Science.gov (United States)

    Maughan, R J; Meyer, N L

    2013-01-01

    Hydration status has profound effects on both physical and mental performance, and sports performance is thus critically affected. Both overhydration and underhydration - if sufficiently severe - will impair performance and pose a risk to health. Athletes may begin exercise in a hypohydrated state as a result of incomplete recovery from water loss induced in order to achieve a specific body mass target or due to incomplete recovery from a previous competition or training session. Dehydration will also develop in endurance exercise where fluid intake does not match water loss. The focus has generally been on training rather than on competition, but sweat loss and fluid replacement in training may have important implications. Hypohydration may impair training quality and may also increase stress levels. It is unclear whether this will have negative effects (reduced training quality, impaired immunity) or whether it will promote a greater adaptive response. Hypohydration and the consequent hyperthermia, however, can enhance the effectiveness of a heat acclimation program, resulting in improved endurance performance in warm and temperate environments. Drinking in training may be important in enhancing tolerance of the gut when athletes plan to drink in competition. The distribution of water between body water compartments may also be important in the initiation and promotion of cellular adaptations to the training stimulus. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  15. HYDRATION PATTERN IN THE HEAT

    Directory of Open Access Journals (Sweden)

    O Hue

    2014-10-01

    Full Text Available To investigate thermal response, hydration behaviour and performance over flatwater kayaking races in tropical conditions (36.8°C and 68 % rh. Five internationally-ranked subjects participated in the 2012 Surfski Ocean Racing World Cup in Guadeloupe to the “Ze Caribbean Race 2012” [i.e., a 35-km downwind race]. Core temperature (T°C and heart rate (HR were measured using portable telemetry units whereas water intake was deduced from backpacks absorption. The kayakers were asked to rate both their comfort sensation and thermal sensation on a scale before and after the race. The performance was related to an increase in T°C, high HR and low water intake (WI; and (2 high values of final T°C were related to high pre T°C and greater increases in T°C being obtained with low pre T°C and (3 WI being related to high pre T°C. The present study demonstrated that the fastest kayakers were those able to paddle at the highest intensities, increasing their T°C and drinking little water without any interference from thermal sensations. Water intake was positively related to pre-race T°C, which reinforces the importance of beginning surfski races with a low T°C. This study demonstrated that well-trained kayakers drinking ad libitum were able to anticipate their intensity/heat storage ratio to prevent heat illness and severe dehydration and maintain high performance.

  16. Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas

    Energy Technology Data Exchange (ETDEWEB)

    Raja A. Jadhav

    2006-05-31

    Several different types of nanocrystalline metal oxide sorbents were synthesized and evaluated for capture of mercury (Hg) from coal-gasifier warm fuel gas. Detailed experimental studies were carried out to understand the fundamental mechanism of interaction between mercury and nanocrystalline sorbents over a range of fuel gas conditions. The metal oxide sorbents evaluated in this work included those prepared by GTI's subcontractor NanoScale Materials, Inc. (NanoScale) as well as those prepared in-house. These sorbents were evaluated for mercury capture in GTI's Mercury Sorbent Testing System. Initial experiments were focused on sorbent evaluation for mercury capture in N{sub 2} stream over the temperature range 423-533 K. These exploratory studies demonstrated that NanoActive Cr{sub 2}O{sub 3} along with its supported form was the most active of the sorbent evaluated. The capture of Hg decreased with temperature, which suggested that physical adsorption was the dominant mechanism of Hg capture. Desorption studies on spent sorbents indicated that a major portion of Hg was attached to the sorbent by strong bonds, which suggested that Hg was oxidized by the O atoms of the metal oxides, thus forming a strong Hg-O bond with the oxide. Initial screening studies also indicated that sulfided form of CuO/alumina was the most active for Hg capture, therefore was selected for detailed evaluation in simulated fuel gas (SFG). It was found that such supported CuO sorbents had high Hg-sorption capacity in the presence of H{sub 2}, provided the gas also contained H{sub 2}S. Exposure of supported CuO sorbent to H{sub 2}S results in the formation of CuS, which is an active sorbent for Hg capture. Sulfur atom in CuS forms a bond with Hg that results into its capture. Although thermodynamically CuS is predicted to form unreactive Cu{sub 2}S form when exposed to H{sub 2}, it is hypothesized that Cu atoms in such supported sorbents are in &apos

  17. Hydrate pingoes at Nyegga: some characteristic features

    Science.gov (United States)

    Hovland, M.

    2009-04-01

    Hydrate pingoes were observed on the seafloor during two different remotely operated vehicle (ROV)-dives, conducted by Statoil at complex-pockmark G11, at Nyegga, off Mid-Norway. Confirmation that these structures actually represent hydrate ice-cored sediment mounds (pingoes), was done by other investigators (Ivanov et al., 2006). Because it is expected that hydrate pingoes represent relatively dynamic seafloor topographic structures and that their shape and size most probably will change over relatively short time, it is important to know how to recognise them visually. Hovland and Svensen (2006) highlighted five different characteristic aspects that define hydrate pingoes on the sea floor: 1) They are dome- or disc-shaped features, which may attain any size from ~0.5 m in height and upwards. Inside pockmark G11, they were up to 1 m high. 2) They are circular or oval in plan view and may attain lateral sizes on the seafloor ranging upwards from ~0.5 m. Inside G11 they had lengths of several metres and widths of up to 4 m. 3) They have dense communities of organisms growing on their surfaces. At G11, they were overgrown with small pogonophoran tube-worms. 4) They have patches of white or grey bacterial mats growing on their surface, indicating advection (seepage) of reduced pore-waters. 5) They have small pits and patches of fluidized sediments on their surface, indicating pit corrosion of the sub-surface gas hydrate. Because gas hydrates often form in high-porosity, near-surface sediments, where water is readily available, it is thought that they will build up at locations where gases are actively migrating upwards from depth. However, gas hydrates are not stable in the presence of ambient seawater, as seawater is deficient in guest molecule gases (normally methane). Therefore, they tend to build up below surface above conduits for gas flow from depth. But, the near-surface hydrate ice-lenses will continually be corroded by seawater circulating into the sediments

  18. Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media.

    Science.gov (United States)

    Baldwin, Bernard A; Stevens, Jim; Howard, James J; Graue, Arne; Kvamme, Bjorn; Aspenes, Erick; Ersland, Geir; Husebø, Jarle; Zornes, David R

    2009-06-01

    Magnetic resonance imaging was used to monitor and quantify methane hydrate formation and exchange in porous media. Conversion of methane hydrate to carbon dioxide hydrate, when exposed to liquid carbon dioxide at 8.27 MPa and approximately 4 degrees C, was experimentally demonstrated with MRI data and verified by mass balance calculations of consumed volumes of gases and liquids. No detectable dissociation of the hydrate was measured during the exchange process.

  19. Distinguishing between hydrated, partially hydrated or unhydrated clinker in hardened concrete using microscopy

    NARCIS (Netherlands)

    Valcke, S.L.A.; Rooij, M.R. de; Visser, J.H.M.; Nijland, T.G.

    2010-01-01

    Hydration of clinker particles is since long a topic of interest in both designing and optimizing cement composition and its quantity used in concrete. The interest for carefully observing and also quantifying the type or stage of clinker hydration in hardened cement paste is twofold. Firstly, the

  20. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  1. Development of the Al{sub 2}O{sub 3}-supported NaNO{sub 3}-Na{sub 2}Mg(CO{sub 3}){sub 2} sorbent for CO{sub 2} capture with facilitated sorption kinetics at intermediate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hwimin; Min, Da Young; Kang, Na Young; Choi, Won Choon; Park, Sunyoung; Park, Yong-Ki [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Lee, Deuk Ki [Gwangju University, Gwangju (Korea, Republic of)

    2015-01-15

    For the development of a dry solid sorbent having quite fast CO{sub 2} sorption kinetics in an intermediate temperature range of 245-300 .deg. C to be applicable to a riser-type fluidized bed carbonator, samples of Al{sub 2}O{sub 3}-supported MgCO{sub 3} (1.2mmol/g) promoted with different molar amounts of Na{sub 2}CO{sub 3} (1.2, 1.8mmol/g) and/or NaNO{sub 3} (0.6mmol/ g) were prepared by incipient wetness pore volume impregnation. For a reference, an unsupported bulk phase sorbent of NaNO{sub 3}-Na{sub 2}Mg(CO{sub 3}){sub 2} was also prepared. From the sorption reaction using a gas mixture containing CO{sub 2} by 2.5- 10% at 1 bar for the sorbents after their activation to MgO, Al{sub 2}O{sub 3}-supported sorbents were featured by their rapid carbonation kinetics in contrast to the unsupported sorbent showing a quite slow carbonation behavior. The addition of Na{sub 2}CO{sub 3} to the MgCO{sub 3}/Al{sub 2}O{sub 3} sorbent made MgO species more reactive for the carbonation, bringing about a markedly enhanced kinetic rate and conversion, as compared with the unpromoted MgCO{sub 3}/Al{sub 2}O{sub 3} sorbent having a small negligible reactivity. The addition of NaNO{sub 3} to MgCO{sub 3}/Al{sub 2}O{sub 3} or to Na{sub 2}CO{sub 3}-MgCO{sub 3}/Al{sub 2}O{sub 3} induced the same promotional effects, but to a lesser magnitude, as observed for the Na{sub 2}CO{sub 3} addition. It was also characteristic for all these MgCO{sub 3}-based sorbents that initial carbonation conversions with time appeared as sigmoid curves. For the Al{sub 2}O{sub 3}-supported sorbent comprised of NaNO{sub 3}, Na{sub 2}CO{sub 3}, and MgCO{sub 3} by 0.6, 1.8, and 1.2mmols, respectively, per gram sorbent, showing the best kinetic performance, a kinetic equation capable of reflecting such sigmoid conversion behavior was established, and its applicability to a riser carbonator was examined throughout a simple model calculation based on the kinetics obtained.

  2. Thermodynamic properties of methane hydrate in quartz powder.

    Science.gov (United States)

    Voronov, Vitaly P; Gorodetskii, Evgeny E; Safonov, Sergey S

    2007-10-04

    Using the experimental method of precision adiabatic calorimetry, the thermodynamic (equilibrium) properties of methane hydrate in quartz sand with a grain size of 90-100 microm have been studied in the temperature range of 260-290 K and at pressures up to 10 MPa. The equilibrium curves for the water-methane hydrate-gas and ice-methane hydrate-gas transitions, hydration number, latent heat of hydrate decomposition along the equilibrium three-phase curves, and the specific heat capacity of the hydrate have been obtained. It has been experimentally shown that the equilibrium three-phase curves of the methane hydrate in porous media are shifted to the lower temperature and high pressure with respect to the equilibrium curves of the bulk hydrate. In these experiments, we have found that the specific heat capacity of the hydrate, within the accuracy of our measurements, coincides with the heat capacity of ice. The latent heat of the hydrate dissociation for the ice-hydrate-gas transition is equal to 143 +/- 10 J/g, whereas, for the transition from hydrate to water and gas, the latent heat is 415 +/- 15 J/g. The hydration number has been evaluated in the different hydrate conditions and has been found to be equal to n = 6.16 +/- 0.06. In addition, the influence of the water saturation of the porous media and its distribution over the porous space on the measured parameters has been experimentally studied.

  3. Chitosan membranes as sorbents for trace elements determination in surface waters: chitosan membranes as sorbents for trace elements.

    Science.gov (United States)

    Mladenova, Elisaveta K; Dakova, Ivanka Grigorova; Karadjova, Irina B

    2011-11-01

    Chitosan membranes (non-crosslinked, crosslinked, and modified with L-cysteine) were evaluated as sorbents prior to electrothermal atomic absorption spectrometry (ETAAS) determination of total dissolved metal content in surface water samples. Different types of chitosan membranes were prepared in the presence or absence of L-cysteine. Chemical parameters for quantitative sorption/desorption of trace analytes have been optimized. The optimal pH for Cd(II), Cu(II), Ni(II), and Pb(II) sorption using L-cysteine-modified membrane is between 7 and 8.5 and coincides with typical surface water pH, allowing in situ preconcentration of analytes without any additional water sample pretreatments. Non-crosslinked chitosan membrane could be used for simultaneous sampling, transportation, and laboratory determination of Hg(II). Determination limits (calculated as 10σ) achieved for total dissolved metal contents are: Cd 0.001 μg/L, Cu 0.02 μg/L, Ni and Pb 0.05 μg/L, and relative standard deviations were 10-15% for all elements at concentration level of 0.05-2 μg/L. The determination limit achieved for Hg(II) was 0.012 μg/L and relative standard deviations at concentration levels 0.015-2 μg/L were within 9% and 15%. Non-crosslinked chitosan membrane was proposed as an efficient sorbent for Hg(II) preconcentration and determination in river and lake waters; L: -cysteine modified chitosan membrane was recommended for solid phase extraction of Cd(II), Cu(II), Ni(II), and Pb(II) from surface (lake, river, and sea) waters. The application of chitosan membranes as adsorbents for in situ field preconcentration of the analytes and their subsequent determination by CVAAS and ETAAS in water samples has been demonstrated.

  4. Hydration of urea and alkylated urea derivatives.

    Science.gov (United States)

    Kaatze, Udo

    2018-01-07

    Compressibility data and broadband dielectric spectra of aqueous solutions of urea and some of its alkylated derivatives have been evaluated to yield their numbers Nh of hydration water molecules per molecule of solute. Nh values in a broad range of solute concentrations are discussed and are compared to hydration numbers of other relevant molecules and organic ions. Consistent with previous results, it is found that urea differs from other solutes in its unusually small hydration number, corresponding to just one third of the estimated number of nearest neighbor molecules. This remarkable hydration behavior is explained by the large density φH of hydrogen bonding abilities offered by the urea molecule. In terms of currently discussed models of reorientational motions and allied dynamics in water and related associating liquids, the large density φH causes a relaxation time close to that of undisturbed water with most parts of water encircling the solute. Therefore only a small part of disturbed ("hydration") water is left around each urea molecule. Adding alkyl groups to the basic molecule leads to Nh values which, within the series of n-alkylurea derivatives, progressively increase with the number of methyl groups per solute. With n-butylurea, Nh from dielectric spectra, in conformity with many other organic solutes, slightly exceeds the number of nearest neighbors. Compared to such Nh values, hydration numbers from compressibility data are substantially smaller, disclosing incorrect assumptions in the formula commonly used to interpret the experimental compressibilities. Similar to other series of organic solutes, effects of isomerization have been found with alkylated urea derivatives, indicating that factors other than the predominating density φH of hydrogen bond abilities contribute also to the hydration properties.

  5. Comparison of Oil Sorbent/Vial Kit for Sampling and Preservation of Liquid Volatile Petroleum

    National Research Council Canada - National Science Library

    Shoji Kurata; Takeshi Iyozumi; Naoyuki Aizawa

    2010-01-01

      An oil sorbent sheet made of nonwoven polypropylene fiber and a vial with screw cap were assessed as the test kit for sampling and preservation of liquid volatile petroleum samples in the forensic science field...

  6. Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Sjostrom, Sharon [Ada-Es, Inc., Highlands Ranch, CO (United States)

    2016-06-02

    ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbent CO2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was

  7. Arsenic removal from aqueous solutions by sorption onto zirconium- and titanium-modified sorbents

    Directory of Open Access Journals (Sweden)

    Ignjatović Ljubiša

    2011-01-01

    Full Text Available Arsenic reduction in drinking water can include treatment by adsorption, switching to alternative water sources, or blending with water that has a lower arsenic concentration. Commercial sorbents MTM, Greensand and BIRM (Clack Corporation were modified with zirconium and titanium after activation. The modifications were performed with titanium tetrachloride and zirconium tetrachloride. The modified sorbents were dried at different temperatures. The sorption of arsenate and arsenite dissolved in drinking water (200μg L-1 onto the sorbents were tested using a batch procedure. After removal of the sorbent, the concentration of arsenic was determined by HG-AAS. Zirconium-modified BIRM showed the best performance for the removal of both arsenite and arsenate. Modification of the greensand did not affect arsenic sorption ability. Zirconium-modified BIRM diminished the concentration of total As to below 5 μg L-1.

  8. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules

    KAUST Repository

    Qi, Genggeng

    2011-01-01

    A novel high efficiency nanocomposite sorbent for CO2 capture has been developed based on oligomeric amine (polyethylenimine, PEI, and tetraethylenepentamine, TEPA) functionalized mesoporous silica capsules. The newly synthesized sorbents exhibit extraordinary capture capacity up to 7.9 mmol g-1 under simulated flue gas conditions (pre-humidified 10% CO 2). The CO2 capture kinetics were found to be fast and reached 90% of the total capacities within the first few minutes. The effects of the mesoporous capsule features such as particle size and shell thickness on CO2 capture capacity were investigated. Larger particle size, higher interior void volume and thinner mesoporous shell thickness all improved the CO2 capacity of the sorbents. PEI impregnated sorbents showed good reversibility and stability during cyclic adsorption-regeneration tests (50 cycles). © 2011 The Royal Society of Chemistry.

  9. Application of magnetic sorbent in the removal of cadmium from soils

    Directory of Open Access Journals (Sweden)

    Michal Lovás

    2006-12-01

    Full Text Available A contamination of soil by heavy metals is a common problem at many metalliferous mining sites. There are various treatment processes for the cleanup of soil contaminated with heavy metals. A method designed for the decontamination of soil polluted by Cd is described. The method utilizes a magnetic sorbent – sludges from the hydrometallurgic processing of nickel mineral, activated by milling. The influence of sorbent concentration, pH and microwave energy on the sorption capacity and content of Cd ions in a soil was studed. The effectiveness of Cd desorption from the soil was 75 %, the maximal sorption capacity of sorbent was 9,8 mg/g. The content of Cd in water is function of pH and the concentration of sorbent. The influence of microwave energy (90 W was negligible.

  10. A Regenerable VOC Control System (RVCS) for Characterizing Properties of Sorbents Used in Separation Technologies

    Science.gov (United States)

    Nolek, Sara D.; Monje, Oscar A.

    2010-01-01

    This slide presentation reviews the design, method of operation, and testing of a regenerable Volatile Organic Compound (VOC) control system that characterizes properties of sorbents used in separation technologies.

  11. Zinc-oxide-based sorbents and processes for preparing and using same

    Science.gov (United States)

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael

    2010-03-23

    Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  12. Zinc oxide-based sorbents and processes for preparing and using same

    Science.gov (United States)

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasad

    2005-10-04

    Zinc oxide-based sorbents, and processes for preparing and using them are provided, wherein the sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents contain an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2 O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, containing a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  13. Screening of granular sorbents for the removal of gaseous alkali metal compounds from hot flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Swift, W.M.; Johnson, I.

    1979-11-01

    Six commercially available sorbent materials have been tested as granular sorbents to be used in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800 to 880/sup 0/C) flue gas of pressurized fluidized-bed combustors (PFBC) for proposed combined-cycle power generation. Tests were performed by passing simulated relatively dry flue gas of PFBC through granular-bed filters in either a laboratory-scale, fixed-bed combustor or a high temperature sorption test rig. The experimental results of screening tests are presented. Diatomaceous earth and activated bauxite were found to be the two most promising sorbents. Possible sorption mechanisms and applications of the sorbents are discussed. 3 figures, 7 tables.

  14. Chitosan-ferrocyanide sorbent for Cs-137 removal from mineralized alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Egorin, Andrei [Far Eastern Federal Univ., Vladivostok (Russian Federation); Institute of Chemistry FEBRAS, Vladivostok (Russian Federation); Ozyorsk Technical Institute MEPHI, Ozersk (Russian Federation); Tokar, Eduard [Far Eastern Federal Univ., Vladivostok (Russian Federation); Zemskova, Larisa [Institute of Chemistry FEBRAS, Vladivostok (Russian Federation)

    2016-11-01

    An organomineral sorbent based on mixed nickel-potassium ferrocyanide and chitosan to be used in removal of Cs-137 radionuclide from highly mineralized media with high pH has been fabricated. The synthesized sorbent was applied to remove Cs-137 from model solutions under static and dynamic conditions. The effects of contact time, pH, and presence of sodium ions and complexing agents in the process of Cs-137 removal have been investigated. The sorbent is distinguished by increased stability to the impact of alkaline media containing complexing agents, whereas the sorbent capacity in solutions with pH 11 exceeds 1000 bed volumes with the Cs-137 removal efficiency higher than 95%.

  15. Hydration education: developing, piloting and evaluating a hydration education package for general practitioners

    Science.gov (United States)

    McCotter, L; Douglas, P; Laur, C; Gandy, J; Fitzpatrick, L; Rajput-Ray, M; Ray, S

    2016-01-01

    Objectives To (1) assess the hydration knowledge, attitudes and practices (KAP) of doctors; (2) develop an evidence-based training package; and (3) evaluate the impact of the training package. Design Educational intervention with impact evaluation. Setting Cambridgeshire, UK. Participants General practitioners (GPs (primary care physicians)). Interventions Hydration and healthcare training. Main outcome measures Hydration KAP score before and immediately after the training session. Results Knowledge gaps of doctors identified before the teaching were the definition of dehydration, European Food Safety Authority water intake recommendations, water content of the human body and proportion of water from food and drink. A face-to-face teaching package was developed on findings from the KAP survey and literature search. 54 questionnaires were completed before and immediately after two training sessions with GPs. Following the training, total hydration KAP scores increased significantly (phydration care to allow policymakers to incorporate hydration awareness and care with greater precision in local and national policies. PMID:27927656

  16. Numerical modelling of hydration reactions

    Science.gov (United States)

    Vrijmoed, Johannes C.; John, Timm

    2017-04-01

    Mineral reactions are generally accompanied by volume changes. Observations in rocks and thin section indicate that this often occurred by replacement reactions involving a fluid phase. Frequently, the volume of the original rock or mineral seems to be conserved. If the density of the solid reaction products is higher than the reactants, the associated solid volume decrease generates space for a fluid phase. In other words, porosity is created. The opposite is true for an increase in solid volume during reaction, which leads to a porosity reduction. This slows down and may even stop the reaction if it needs fluid as a reactant. Understanding the progress of reactions and their rates is important because reaction generally changes geophysical and rock mechanical properties which will therefore affect geodynamical processes and seismic properties. We studied the case of hydration of eclogite to blueschist in a subduction zone setting. Eclogitized pillow basalt structures from the Tian-Shan orogeny are transformed to blueschist on the rims of the pillow (van der Straaten et al., 2008). Fluid pathways existed between the pillow structures. The preferred hypothesis of blueschist formation is to supply the fluid for hydration from the pillow margins progressing inward. Using numerical modelling we simulate this coupled reaction-diffusion process. Porosity and fluid pressure evolution are coupled to local thermodynamic equilibrium and density changes. The first rim of blueschist that forms around the eclogite pillow increases volume to such a degree that the system is clogged and the reaction stops. Nevertheless, the field evidence suggests the blueschist formation continued. To prevent the system from clogging, a high incoming pore fluid pressure on the pillow boundaries is needed along with removal of mass from the system to accommodate the volume changes. The only other possibility is to form blueschist from any remaining fluid stored in the core of the pillow

  17. Synthetic Ca-based solid sorbents suitable for capturing CO{sub 2} in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Pacciani, R.; Muller, C.R.; Davidson, J.F.; Dennis, J.S.; Hayhurst, A.N. [Cambridge Univ., Cambridge (United Kingdom). Dept. of Chemical Engineering

    2008-06-15

    Coprecipitation and calcium oxide (CaO) hydrolysis were used to produce Ca-based synthetic solvents and capture carbon dioxide (CO{sub 2}) in a fluidized bed. Two methods were used to produce a reactive synthetic sorbent for CO{sub 2}. The methods used CaO as the reactive phase. In the coprecipitation method, solutions containing CaO were mixed with a basic agent to precipitate the 2 cations as insoluble hydroxides or carbonates. With the second method, reagent grade powdered CaO was added to an aqueous solution which then caused hydrolysis. The performance of the prepared sorbents was compared with different naturally-occurring sorbents such as limestone. Factors influencing the uptake of the sorbents and their stability were investigated while the sorbents were subjected to successive cycles of calcination and carbonation. A gas adsorption analyzer was used to examine the total surface area of each sorbent as well as the distribution of its pore sizes. X-Ray diffraction (XRD) was used to analyze the samples. Results of the study showed that sorbents made by coprecipitation exhibited low uptakes of CO{sub 2}. Sorbents prepared using the hydrolysis method maintained a constant uptake of CO{sub 2} over 20 cycles. Synthetic sorbents achieved a lower initial uptake of CO{sub 2} than limestone or dolomite. It was concluded that pore size played a significant role in the uptake of the sorbents. 25 refs., 4 tabs., 8 figs.

  18. High-Altitude Hydration System

    Science.gov (United States)

    Parazynski, Scott E.; Orndoff, Evelyne; Bue, Grant C.; Schaefbauer, Mark E.; Urban, Kase

    2010-01-01

    Three methods are being developed for keeping water from freezing during high-altitude climbs so that mountaineers can remain hydrated. Three strategies have been developed. At the time of this reporting two needed to be tested in the field and one was conceptual. The first method is Passive Thermal Control Using Aerogels. This involves mounting the fluid reservoir of the climber s canteen to an inner layer of clothing for better heat retention. For the field test, bottles were mounted to the inner fleece layer of clothing, and then aerogel insulation was placed on the outside of the bottle, and circumferentially around the drink straw. When climbers need to drink, they can pull up the insulated straw from underneath the down suit, take a sip, and then put it back into the relative warmth of the suit. For the field test, a data logger assessed the temperatures of the water reservoir, as well as near the tip of the drink straw. The second method is Passive Thermal Control with Copper-Shielded Drink Straw and Aerogels, also mounted to inner layers of clothing for better heat retention. Braided wire emanates from the inside of the fleece jacket layer, and continues up and around the drink straw in order to use body heat to keep the system-critical drink straw warm enough to keep water in the liquid state. For the field test, a data logger will be used to compare this with the above concept. The third, and still conceptual, method is Active Thermal Control with Microcontroller. If the above methods do not work, microcontrollers and tape heaters have been identified that could keep the drink straw warm even under extremely cold conditions. Power requirements are not yet determined because the thermal environment inside the down suit relative to the external environment has not been established. A data logger will be used to track both the external and internal temperatures of the suit on a summit day.

  19. Mixed and Doped Solid Sorbents for CO2 Capture Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2016-06-14

    The objectives of this presentation are to capture CO2 we need materials with optimal performance and low costs; establish a theoretical procedure to identify most potential candidates of CO2 solid sorbents from a large solid material databank; computational synthesis new materials to fit industrial needs; and explore the optimal working conditions for the promised CO2 solid sorbents, especially from room to warm T ranges with optimal energy usage.

  20. Strategic Design and Optimization of Inorganic Sorbents for Cesium, Strontium and Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Maginn, Edward J.

    2005-07-01

    The basic science goal in this project is to identify structure/affinity relationships for selected radionuclides and existing sorbents. The research will then apply this knowledge to the design and synthesis of sorbents that will exhibit increased cesium, strontium and actinide removal. The target problem focuses on the treatment of high-level nuclear wastes. The general approach can likewise be applied to non-radioactive separations.

  1. Strategic Design and Optimization of Inorganic Sorbents For Cesium, Strontium and Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Nyman, M.; Clearfield, A.; Maginn, E.

    2006-06-01

    The basic science goal in this project identifies structure/affinity relationships for selected radionuclides and existing sorbents. The task will apply this knowledge to the design and synthesis of new sorbents that will exhibit increased affinity for cesium, strontium and actinide separations. The target problem focuses on the treatment of high-level nuclear wastes. The general approach can likewise be applied to nonradioactive separations.

  2. Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry

    2012-05-02

    We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

  3. Irradiation of sorbents by ions of polymorphic metals for modeling 90strontium sedimentation.

    Science.gov (United States)

    Kurbatova, Elena I; Ksenofontov, Alexandre I; Dmitriyev, Alexey M; Regens, James L

    2007-06-01

    Advances in radioecology can support improvements in environmental remediation technologies, especially by illuminating interaction processes between polymorphic metal radionuclides and various materials and their ions in aqueous solutions. This study modeled interaction processes of 90Sr with transitive metals to delineate the behavior of polymorphic metal radionuclides. Experimental and modeling results confirmed Sr sedimentation was sensitive to the physical impact of radionuclides on various sorbents and possible chemical reactions occurring between the radionuclides and sorbents. Models were developed to simulate 90Sr sedimentation process, and the potential physical and chemical reactions accompanying the process. Models were verified, inorganic salts were used as sorbents to absorb metal cations, activity levels were recorded before and after mixing the inorganic salts while the efficiency of sedimentation using the heavy metals composites was quantified. This research demonstrates that the process of the sedimentation is complex and occurs in several stages. Micro-structural analysis shows that zones of interaction between the sorbent and source metal are formed during the irradiation of the target's metal surface. Electrical-microscopic analysis indicates that the composition of the formed zones of interaction of Ti (Sr) with target metals has various structures. Roentgenophase analysis indicates that the interaction of the ions of a precipitable source and a target occurs according to constitution diagrams of equilibrium systems. The results indicate that application of inorganic salts composites based on modeling increases the efficiency of the deactivation of aqueous solutions when compared to standard aluminum sulfate composite. Experimental and modeling results confirm 90Sr sedimentation is sensitive to the physical impact of radionuclides on various sorbents and possible chemical reactions occurring between the radionuclides and sorbents. The models

  4. Kinetics of formation and dissociation of gas hydrates

    Science.gov (United States)

    Manakov, A. Yu; Penkov, N. V.; Rodionova, T. V.; Nesterov, A. N.; Fesenko, E. E., Jr.

    2017-09-01

    The review covers a wide range of issues related to the nucleation, growth and dissociation of gas hydrates. The attention is focused on publications of the last 10-15 years. Along with the mathematical models used to describe these processes, the results of relevant experimental studies are surveyed. Particular sections are devoted to the gas hydrate self-preservation effect, the water memory effect in the hydrate formation, development of catalysts for hydrate formation and the effect of substances dissolved in the aqueous phase on the formation of hydrates. The main experimental techniques used to study gas hydrates are briefly considered. The bibliography includes 230 references.

  5. Complex admixtures of clathrate hydrates in a water desalination method

    Science.gov (United States)

    Simmons, Blake A [San Francisco, CA; Bradshaw, Robert W [Livermore, CA; Dedrick, Daniel E [Berkeley, CA; Anderson, David W [Riverbank, CA

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  6. Experimental Determination of Refractive Index of Gas Hydrates

    DEFF Research Database (Denmark)

    Bylov, Martin; Rasmussen, Peter

    1997-01-01

    The refractive indexes of methane hydrate and natural gas hydrate have been experimentally determined. The refractive indexes were determined in an indirect manner making use of the fact that two non-absorbing materials will have the same refractive index if they cannot be distinguished visually....... For methane hydrate (structure I) the refractive index was found to be 1.346 and for natural gas hydrate (structure II) it was found to be 1.350. The measurements further suggest that the gas hydrate growth rate increases if the water has formed hydrates before. The induction time, on the other hand, seems...

  7. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  8. Hydraulic and Mechanical Effects from Gas Hydrate Conversion and Secondary Gas Hydrate Formation during Injection of CO2 into CH4-Hydrate-Bearing Sediments

    Science.gov (United States)

    Bigalke, N.; Deusner, C.; Kossel, E.; Schicks, J. M.; Spangenberg, E.; Priegnitz, M.; Heeschen, K. U.; Abendroth, S.; Thaler, J.; Haeckel, M.

    2014-12-01

    The injection of CO2 into CH4-hydrate-bearing sediments has the potential to drive natural gas production and simultaneously sequester CO2 by hydrate conversion. The process aims at maintaining the in situ hydrate saturation and structure and causing limited impact on soil hydraulic properties and geomechanical stability. However, to increase hydrate conversion yields and rates it must potentially be assisted by thermal stimulation or depressurization. Further, secondary formation of CO2-rich hydrates from pore water and injected CO2 enhances hydrate conversion and CH4 production yields [1]. Technical stimulation and secondary hydrate formation add significant complexity to the bulk conversion process resulting in spatial and temporal effects on hydraulic and geomechanical properties that cannot be predicted by current reservoir simulation codes. In a combined experimental and numerical approach, it is our objective to elucidate both hydraulic and mechanical effects of CO2 injection and CH4-CO2-hydrate conversion in CH4-hydrate bearing soils. For the experimental approach we used various high-pressure flow-through systems equipped with different online and in situ monitoring tools (e.g. Raman microscopy, MRI and ERT). One particular focus was the design of triaxial cell experimental systems, which enable us to study sample behavior even during large deformations and particle flow. We present results from various flow-through high-pressure experimental studies on different scales, which indicate that hydraulic and geomechanical properties of hydrate-bearing sediments are drastically altered during and after injection of CO2. We discuss the results in light of the competing processes of hydrate dissociation, hydrate conversion and secondary hydrate formation. Our results will also contribute to the understanding of effects of temperature and pressure changes leading to dissociation of gas hydrates in ocean and permafrost systems. [1] Deusner C, Bigalke N, Kossel E

  9. Qualification of the ALKASORB sorbent for the sorption-enhanced water-gas shift process

    Energy Technology Data Exchange (ETDEWEB)

    Van Selow, E.R.; Cobden, P.D.; Dijk, Van H.A.J.; Walspurger, S.; Verbraeken, P.A.; Jansen, D.

    2013-07-01

    For the sorption-enhanced water-gas shift (SEWGS) process, a new sorbent material has been qualified in a reactor of 2 m length under conditions close to industrial designs. The sorbent ALKASORB is a potassium-carbonate promoted hydrotalcite-based compound. ALKASORB is shown to have many favourable properties in comparison to the reference sorbent, in particular with respect to mechanical stability. The cyclic capacity of the new compound is substantially higher than the cyclic capacity of the reference sorbent, and it allows a reduction of the steam requirement of 50%. The sorbent has demonstrated catalytic activity for the water-gas shift reaction that is sufficient to omit a separate catalyst. It is demonstrated that the sorbent remains chemically and mechanically stable during operation of at least 2000 adsorption-desorption cycles, even in the presence of H2S in the feed. H2S is shown not to influence CO2 adsorption capacity and is co-captured with the CO2. In contrast to the reference material that showed mechanical degradation during extended adsorption-desorption cycles, the new material is stable and allows to obtain carbon capture levels exceeding 95% more efficiently and more economically since the required size of the vessels will be smaller.

  10. Sorbent material characterization using in-tube extraction needles as inverse gas chromatography column.

    Science.gov (United States)

    Barajas, Xochitli L Osorio; Jochmann, Maik A; Hüffer, Thorsten; Schilling, Beat; Schmidt, Torsten C

    2017-06-01

    In-tube extraction is a full automated enrichment technique that consists of a stainless-steel needle, packed with sorbent material for the extraction of volatile and semivolatile compounds. In principle, all particulate sorbents used for enrichment in air or headspace analysis can be used. However, the selection of the sorbents is merely based on empirical considerations rather than on experimental data, which is caused by a lack of knowledge about the relevant physicochemical properties of the sorbent. Especially, the knowledge of hydrostatic, advective, diffusive, and dispersion mechanisms in addition to sorption enthalpies are important for combined transport and sorption models. To provide these missing parameters, we developed and evaluated a method in which an ordinary in-tube extraction needle was employed directly as column for sorbent characterization by inverse gas chromatography. As probe compounds, benzene, ethyl acetate, and 3-methyl-1-butanol were used to determine thermodynamic parameters such as sorption enthalpy, partitioning constant between the solid and gas phase, and kinetic parameters such as the diffusion coefficient, dispersion coefficient, and apparent permeability, exemplarily. As sorbent, three commercially available phases were characterized to demonstrate the applicability of the method. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sorbent injection into a slipstream baghouse for mercury control: Project summary

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Jeffrey S.; Pavlish, John H.; Hamre, Lucinda L.; Jensen, Melanie D. [Energy and Environmental Research Center, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202-9018 (United States); Smith, David; Podwin, Steve [SaskPower, 2901 Power House Drive, Regina, Saskatchewan (Canada); Brickett, Lynn A. [National Energy Technology Laboratory, Department of Energy, 626 Cochrans Mill Road, P.O. Box 10940, MS 922-273C, Pittsburgh, PA 15236-0940 (United States)

    2009-11-15

    A project led by the Energy and Environmental Research Center to test and demonstrate sorbent injection as a cost-effective mercury control technology for utilities burning lignites has shown effective mercury capture under a range of operating conditions. Screening, parametric, and long-term tests were carried out at a slipstream facility representing an electrostatic precipitator-activated carbon injection-fabric filter configuration (called a TOXECON trademark in the United States). Screening tests of sorbent injection evaluated nine different sorbents, including both treated and standard activated carbon, to compare mercury capture as a function of sorbent injection rate. Parametric tests evaluated several variables including air-to-cloth (A/C) ratio, flue gas temperature, cleaning frequency, and dust loading to determine the effect on mercury control and systems operation. Long-term tests (approximately 2 months in duration) evaluated the sustainability of systems operation. The screening tests identified four sorbents that achieved greater than 90% mercury capture. Longer-term tests demonstrated mercury capture of 82% at sorbent injection rates of about 2-2.5 lb/Macf. Ash loading and A/C ratio affected the operation of the fabric filter. At lower ash loadings, A/C ratios as high as 6 ft/min could be sustained while operating with conventional bags, but higher ash loadings required the use of high-permeability bags to overcome pressure drop issues. (author)

  12. Strain rate viscoelastic analysis of soft and highly hydrated biomaterials.

    Science.gov (United States)

    Tirella, A; Mattei, G; Ahluwalia, A

    2014-10-01

    Measuring the viscoelastic behavior of highly hydrated biological materials is challenging because of their intrinsic softness and labile nature. In these materials, it is difficult to avoid prestress and therefore to establish precise initial stress and strain conditions for lumped parameter estimation using creep or stress-relaxation (SR) tests. We describe a method ( ɛ˙M or epsilon dot method) for deriving the viscoelastic parameters of soft hydrated biomaterials which avoids prestress and can be used to rapidly test degradable samples. Standard mechanical tests are first performed compressing samples using different strain rates. The dataset obtained is then analyzed to mathematically derive the material's viscoelastic parameters. In this work a stable elastomer, polydimethylsiloxane, and a labile hydrogel, gelatin, were first tested using the ɛ˙M, in parallel SR was used to compare lumped parameter estimation. After demonstrating that the elastic parameters are equivalent and that the estimation of short-time constants is more precise using the proposed method, the viscoelastic behavior of porcine liver was investigated using this approach. The results show that the constitutive parameters of hepatic tissue can be quickly quantified without the application of any prestress and before the onset of time-dependent degradation phenomena. © 2013 Wiley Periodicals, Inc.

  13. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  14. Stability evaluation of hydrate-bearing sediments during thermally-driven hydrate dissociation

    Science.gov (United States)

    Kwon, T.; Cho, G.; Santamarina, J.; Kim, H.; Lee, J.

    2009-12-01

    Hydrate-bearing sediments may destabilize spontaneously as part of geological processes, unavoidably during petroleum drilling/production operations, or intentionally as part of gas extraction from the hydrate itself. In all cases, high pore fluid pressure generation is anticipated during hydrate dissociation. This study examined how thermal changes destabilize gas hydrate-bearing sediments. First, an analytical formulation was derived for predicting fluid pressure evolution in hydrate-bearing sediments subjected to thermal stimulation without mass transfer. The formulation captures the self-preservation behavior, calculates the hydrate and free gas quantities during dissociation, considering effective stress-controlled sediment compressibility and gas solubility in aqueous phase. Pore fluid pressure generation is proportional to the initial hydrate fraction and the sediment bulk stiffness; is inversely proportional to the initial gas fraction and gas solubility; and is limited by changes in effective stress that cause the failure of the sediment. Second, the analytical formulation for hydrate dissociation was incorporated as a user-defined function into a verified finite difference code (FLAC2D). The underlying physical processes of hydrate-bearing sediments, including hydrate dissociation, self-preservation, pore pressure evolution, gas dissolution, and sediment volume expansion, were coupled with the thermal conduction, pore fluid flow, and mechanical response of sediments. We conducted the simulations for a duration of 20 years, assuming a constant-temperature wellbore transferred heat to the surrounding hydrate-bearing sediments, resulting in dissociation of methane hydrate in the well vicinity. The model predicted dissociation-induced excess pore fluid pressures which resulted in a large volume expansion and plastic deformation of the sediments. Furthermore, when the critical stress was reached, localized shear failure of the sediment around the borehole was

  15. Novel Sorbent-Based Process for High Temperature Trace Metal Removal

    Energy Technology Data Exchange (ETDEWEB)

    Gokhan Alptekin

    2008-09-30

    The objective of this project was to demonstrate the efficacy of a novel sorbent can effectively remove trace metal contaminants (Hg, As, Se and Cd) from actual coal-derived synthesis gas streams at high temperature (above the dew point of the gas). The performance of TDA's sorbent has been evaluated in several field demonstrations using synthesis gas generated by laboratory and pilot-scale coal gasifiers in a state-of-the-art test skid that houses the absorbent and all auxiliary equipment for monitoring and data logging of critical operating parameters. The test skid was originally designed to treat 10,000 SCFH gas at 250 psig and 350 C, however, because of the limited gas handling capabilities of the test sites, the capacity was downsized to 500 SCFH gas flow. As part of the test program, we carried out four demonstrations at two different sites using the synthesis gas generated by the gasification of various lignites and a bituminous coal. Two of these tests were conducted at the Power Systems Demonstration Facility (PSDF) in Wilsonville, Alabama; a Falkirk (North Dakota) lignite and a high sodium lignite (the PSDF operator Southern Company did not disclose the source of this lignite) were used as the feedstock. We also carried out two other demonstrations in collaboration with the University of North Dakota Energy Environmental Research Center (UNDEERC) using synthesis gas slipstreams generated by the gasification of Sufco (Utah) bituminous coal and Oak Hills (Texas) lignite. In the PSDF tests, we showed successful operation of the test system at the conditions of interest and showed the efficacy of sorbent in removing the mercury from synthesis gas. In Test Campaign No.1, TDA sorbent reduced Hg concentration of the synthesis gas to less than 5 {micro}g/m{sup 3} and achieved over 99% Hg removal efficiency for the entire test duration. Unfortunately, due to the relatively low concentration of the trace metals in the lignite feed and as a result of the

  16. Effects of Nanosilica on Early Age Stages of Cement Hydration

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani

    2017-01-01

    Full Text Available Effects of nanosilica on cement hydration have been broadly investigated in the literature and early age cement hydration, as a whole, has been mainly considered, disregarding the substages of the hydration. The hydration of cement is characterized by different substages and nanosilica effect on the hydration could be a result of diverse, even contradictory, behavior of nanosilica in individual stages of the hydration. In this study, effects of nanosilica on different substages of cement hydration are investigated. Isothermal calorimetry results show that at early ages (initial 72 hours the effects of nanosilica depend on the phenomenon by which the hydration is governed: when the hydration is chemically controlled, that is, during initial reaction, dormant period, and acceleratory period, the hydration rate is accelerated by adding nanosilica; when the hydration is governed by diffusion process, that is, during postacceleratory period, the hydration rate is decelerated by adding nanosilica. The Thermal Gravimetric Analysis on the samples at the hardened state (after 28 days of curing reveals that, after adding nanosilica, the hydration degree slightly increased compared to the plain paste.

  17. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  18. Spectroscopic investigation of cement hydrate phases and their chloride binding properties

    Science.gov (United States)

    Yu, Ping

    This thesis investigates the chloride binding properties of the hydrate phases present in Portland cement paste and the relationships between chloride binding capacity and the structure of these phases, using primarily NMR spectroscopy, infrared spectroscopy, XRD, thermal analysis, and chemical analysis. It provides important basic data and new insights into the effects of the structure of the individual hydrate phases on their chloride binding properties, and the atomic level structural states and dynamic behavior of the bound chloride in the cement hydrate crystals and at the solid/solution interface. The chloride binding capacity depends on the structure and surface properties of the individual hydrates. Portlandite and AFm surfaces have high affinity for chloride due to their positive zeta-potentials. For C-S-H samples, the chloride binding capacity increases with increasing C/S ratio due to increased numbers of surface Ca-OH sites and decreased polymerization of silicate chains. Aluminum substitution in C-S-H is unfavorable for chloride binding due to reduced layer charge and increased chain polymerization. For all hydrate phases the mechanism of chloride binding is not simply electrostatic attraction. Formation of metal-chloride clusters in the solution and sorption in the Stem layer may contribute substantially. The bound chlorides near the cement hydrate surfaces are in water solvated environments similar to those in the bulk solution and are in rapid exchange (>2kHz) with free chloride in the bulk solution. The chloride concentration near the surfaces is much higher than in the equilibrium bulk solution, and the reorientational frequency of the water molecules solvating the bound chloride is slower than those in the bulk solution. Chloride has a well-defined structural site in Friedel's salt. In solid solutions between Friedel's salt and hydroxyl-AFm, chloride occurs predominantly in Cl-rich domains except at high OH-contents.

  19. Biochar from Coffee Residues: A New Promising Sorbent

    Science.gov (United States)

    Fotopoulou, Kalliopi; Karapanagioti, Hrissi; Manariotis, Ioannis

    2014-05-01

    Biochar is a carbon-rich material produced by heating biomass in an oxygen-limited environment. Biochar is mainly used as an additive to soils to sequester carbon and improve soil fertility as well as a sorbent for environmental remediation processes. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The objective of the present study was to characterize the surface properties of biochar produced, and to investigate the effect of thermal treatment conditions on key characteristics that affect sorptive properties. The espresso coffee residue was obtained after the coffee was brewed through espresso machines in coffee shops. The coffee residue was dried and kept in an oven at 50oC until its pyrolysis at 850oC. Pyrolysis with different coffee mass and containers were tested in order to find optimum biochar characteristics. Detailed characterization techniques were carried out to determine the properties of the produced biochar. The surface area, the pore volume, and the average pore size of the biochars were determined using gas (N2) adsorption-desorption cycles using the Brunauer, Emmett, and Teller (BET) equation. Open surface area and micropore volume were determined using the t-plot method and the Harkins & Jura equation. Total organic carbon was also determined because it is an important factor that affects sorption. The results were compared with the corresponding properties of activated carbons. The biochar produced exhibited a wide range of surface area from 21 to 770 m2/g and open surface area from 21 to 65 m2/g. It is obvious that the surface area results from the formation of pores. Actually it was calculated that up to 90% of the porosity is due to the micropores. More specifically the

  20. Development of Novel Sorbents for Uranium Extraction from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wenbin [Univ. of Chicago, IL (United States); Taylor-Pashow, Kathryn [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-08

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be

  1. Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven [Univ. of North Dakota, Grand Forks, ND (United States); Srinivasachar, Srivats [Envergex LLC, Sturbridge, MA (United States); Laudal, Daniel [Univ. of North Dakota, Grand Forks, ND (United States); Browers, Bruce [Barr Engineering, Minneapolis, MN (United States)

    2014-12-31

    A novel hybrid solid sorbent technology for CO₂ capture and separation from coal combustion-derived flue gas was evaluated. The technology – Capture of CO₂ by Hybrid Sorption (CACHYS™) – is a solid sorbent technology based on the following ideas: 1) reduction of energy for sorbent regeneration, 2) utilization of novel process chemistry, 3) contactor conditions that minimize sorbent-CO₂ heat of reaction and promote fast CO₂ capture, and 4) low-cost method of heat management. This report provides key information developed during the course of the project that includes sorbent performance, energy for sorbent regeneration, physical properties of the sorbent, the integration of process components, sizing of equipment, and overall capital and operational cost of the integrated CACHYS™ system. Seven sorbent formulations were prepared and evaluated at the lab-scale for energy requirements and CO₂ capture performance. Sorbent heat of regeneration ranged from 30-80 kJ/mol CO₂ and was found to be dependent on process conditions. Two sorbent formulations (designated HCK-4 & HCK-7) were down-selected for additional fixed-bed testing. Additional testing involved subjecting the sorbents to 100 continuous cycles in the fixed-bed reactor to determine performance as a function of time. The working capacity achieved for HCK-4 sorbent ranged from 5.5-8.0 g CO₂/100 g sorbent, while the HCK-7 typically ranged from 8.0-10.0 g CO₂/100 g sorbent. Overall, there was no deterioration in capacity with continuous cycling for either sorbent. The CACHYS™ bench-scale testing system designed and fabricated under this award consists of a dual circulating fluidized-bed adsorber and a moving-bed regenerator. The system takes a flue gas slipstream from the University of North Dakota’s coal-fired steam plant. Prior to being sent to the adsorber, the flue gas is scrubbed to remove SO₂ and particulate. During parametric testing of the adsorber, CO₂ capture achieved using

  2. Predicting hydration energies for multivalent ions

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Stipp, Susan Louise Svane

    2014-01-01

    We have predicted the free energy of hydration for 40 monovalent and multivalent cations and anions using density functional theory and the implicit solvent model COnductor like Screening MOdel for Real Solvents (COSMO-RS) at the Becke-Perdew (BP)/Triple zeta valence with polarization functions...... errors. Our results indicate that quantum chemical calculations combined with COSMO-RS solvent treatment is a reliable method for treating multivalent ions in solution, provided one hydration shell of explicit water molecules is included for metal cations. The accuracy is not high enough to allow...... absolute predictions of hydration energies but could be used to investigate trends for several ions, thanks to the low computational cost, in particular for ligand exchange reactions....

  3. Hydration for recreational sport and physical activity.

    Science.gov (United States)

    Kenefick, Robert W; Cheuvront, Samuel N

    2012-11-01

    This review presents recommendations for fluid needs and hydration assessment for recreational activity. Fluid needs are based on sweat losses, dependent on intensity and duration of the activity, and will vary among individuals. Prolonged aerobic activity is adversely influenced by dehydration, and heat exposure will magnify this effect. Fluid needs predicted for running 5-42 km at recreational paces show that fluid losses are sport drinks, gels, bars) can benefit high-intensity (≤ 1 h) and less-intense, long-duration activity (≥ 1 h). Spot measures of urine color or urine-specific gravity to assess hydration status have limitations. First morning urine concentration and body mass with gross thirst perception can be simple ways to assess hydration status. © 2012 International Life Sciences Institute.

  4. Fuel cell membrane hydration and fluid metering

    Science.gov (United States)

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  5. Propane hydrate nucleation: Experimental investigation and correlation

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2008-01-01

    In this work the nucleation kinetics of propane gas hydrate has been investigated experimentally using a stirred batch reactor. The experiments have been performed isothermally recording the pressure as a function of time. Experiments were conducted at different stirring rates, but in the same...... supersaturation region. The experiments showed that the gas dissolution rate rather than the induction time of propane hydrate is influenced by a change in agitation. This was especially valid at high stirring rates when the water surface was severely disturbed.Addition of polyvinylpyrrolidone (PVP...... the presence of additives. In most cases reasonable agreement between the data and the model could be obtained. The results revealed that especially the effective surface energy between propane hydrate and water is likely to change when the stirring rate varies from very high to low. The prolongation...

  6. Simulation of Methane Recovery from Gas Hydrates Combined with Storing Carbon Dioxide as Hydrates

    Directory of Open Access Journals (Sweden)

    Georg Janicki

    2011-01-01

    Full Text Available In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2 from fossil fuel consumption. This idea is supported by the thermodynamics of CO2 and methane (CH4 hydrates and the fact that CO2 hydrates are more stable than CH4 hydrates in a certain P-T range. The potential of producing methane by depressurization and/or by injecting CO2 is numerically studied in the frame of the SUGAR project. Simulations are performed with the commercial code STARS from CMG and the newly developed code HyReS (hydrate reservoir simulator especially designed for hydrate processing in the subsea sediment. HyReS is a nonisothermal multiphase Darcy flow model combined with thermodynamics and rate kinetics suitable for gas hydrate calculations. Two scenarios are considered: the depressurization of an area 1,000 m in diameter and a one/two-well scenario with CO2 injection. Realistic rates for injection and production are estimated, and limitations of these processes are discussed.

  7. Irrigation port hydration in phacoemulsification surgery

    Directory of Open Access Journals (Sweden)

    Suzuki H

    2018-01-01

    Full Text Available Hisaharu Suzuki,1 Yoichiro Masuda,2 Yuki Hamajima,1 Hiroshi Takahashi3 1Department of Ophthalmology, Nippon Medical School Musashikosugi Hospital, Kawasaki City, Kanagawa, 2Department of Ophthalmology, The Jikei University, Katsushika Medical Center, Tokyo, 3Department of Ophthalmology, Nippon Medical School, Tokyo, Japan Background: In most cases, hydration is performed by water injection into the stromal tissue with a needle. The technique is simple, however it is sometimes troublesome.Purpose: We describe a simple technique for hydrating the corneal stroma in cataract surgery using an irrigation port.Patients and methods: The technique began by pushing the irrigation port against the corneal stroma for a few seconds during phacoemulsification, which generated edema in the corneal incision that subsequently prevented leakage. This procedure is called the hydration using irrigation port (HYUIP technique. A total of 60 eyes were randomized and placed in two groups, 30 eyes underwent surgeries using the HYUIP technique (HYUIP group and 30 eyes underwent surgeries without the HYUIP technique (control. The three points evaluated during each surgery included 1 the occurrence of anterior chamber collapse during the pulling out of the I/A tip after inserting the intraocular lens, 2 the need for conventional hydration, and 3 watertight completion at the end stage of surgery.Results: The anterior chamber collapse and the need for conventional hydration were significantly smaller in the HYUIP group compared to the control group. Regarding the self-sealing completion, no significant difference was observed between the two groups.Conclusion: The HYUIP technique is an effective method for creating self-sealing wound. In addition, this technique helps to prevent anterior chamber collapse. Keywords: cataract surgery, hydration, irrigation and aspiration, phacoemulsification, wound, self-sealing 

  8. Hydration and nutrition knowledge in adolescent swimmers. Does water intake affect urine hydration markers after swimming?

    Directory of Open Access Journals (Sweden)

    Cesare Altavilla

    2017-12-01

    Full Text Available Little data exists regarding nutritional knowledge and hydration in adolescent swimmers. The aim of this study was to assess the level of nutrition and hydration knowledge and to describe the fluid balance in adolescent swimmers during training. A study was carried out with a cross-sectional descriptive part and a longitudinal part with repeated measurements over five swimming sessions. Eighty-six adolescent swimmers completed a questionnaire to assess their sport nutrition and hydration knowledge. Fluid balance and urine hydration markers were studied during training. Swimmers showed a limited nutrition knowledge (33.26 % ± SD 12.59 and meagre hydration knowledge (28.61 % ± SD 28.59. Females showed lower scores than male swimmers in nutrition and hydration knowledge. Based on urine specific gravity, swimmers started the training close to the euhydrated threshold (1.019 g/mL ± SD 0.008. Although urine specific gravity and urine colour were reduced after the training, there were minimal changes in body mass (-0.12 Kg ± SD 0.31. Sweat loss (2.67 g/min ± SD 3.23 and the net changes in the fluid balance (-0.22 % ± SD 0.59 were low. The poor knowledge in nutrition and hydration encountered in the swimmers can justify the development of a strategy to incorporate nutritional education programmes for this group. Body water deficit from swimming activity seems to be easily replaced with the water intake to maintain hydration. After the training, the urine of swimmers was diluted regardless of their water intake. Dilution of urine did not reflect real hydration state in swimming.

  9. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  10. Morphology of methane hydrate host sediments

    Science.gov (United States)

    Jones, K.W.; Feng, H.; Tomov, S.; Winters, W.J.; Eaton, M.; Mahajan, D.

    2005-01-01

    The morphological features including porosity and grains of methane hydrate host sediments were investigated using synchrotron computed microtomography (CMT) technique. The sediment sample was obtained during Ocean Drilling Program Leg 164 on the Blake Ridge at water depth of 2278.5 m. The CMT experiment was performed at the Brookhaven National Synchrotron Light Source facility. The analysis gave ample porosity, specific surface area, mean particle size, and tortuosity. The method was found to be highly effective for the study of methane hydrate host sediments.

  11. What are gas hydrates?: Chapter 1

    Science.gov (United States)

    Beaudoin, Y.C.; Waite, W.; Boswell, R.; Dallimore, Scott

    2014-01-01

    The English chemistry pioneer Sir Humphry Davy first combined gas and water to produce a solid substance in his lab in 1810. For more than a century after that landmark moment, a small number of scientists catalogued various solid “hydrates” formed by combining water with an assortment of gases and liquids. Sloan and Koh (2007) review this early research, which was aimed at discerning the chemical structures of gas hydrates (Fig. 1.1), as well as the pressures and temperatures at which they are stable. Because no practical applications were found for these synthetic gas hydrates, they remained an academic curiosity.

  12. Dehydration of plutonium or neptunium trichloride hydrate

    Science.gov (United States)

    Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

    1992-03-24

    A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

  13. CO{sub 2} capture from flue gases using three Ca-based sorbents in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.S.; Fang, F.; Cai, N.S. [Tsinghua University, Beijing (China). Dept. of Thermal Engineering

    2009-06-15

    Abstract: Experiments of CO{sub 2} capture and sorbent regeneration characteristics of limestone, dolomite, and CaO/Ca{sub 1}2Al{sub 14}O{sub 3}3 at high temperature were investigated in a thermogravimetric analyzer (TGA) and a fluidized bed reactor. The effect of reactivity decay of limestone, dolomite, and CaO/Ca{sub 12}Al{sub 14}O{sub 3}3 sorbents on CO{sub 2} capture and sorbent regeneration processes was studied. The experimental results indicated that the operation time of high efficient CO{sub 2} capture stage declined continuously with increasing of the cyclic number due to the loss of the sorbent activity, and the final CO{sub 2} capture efficiency would remain nearly constant, due to the sorbent already reaching the final residual capture capacity. After the CO{sub 2} capture step, the Ca-based sorbents need to be regenerated to be used for a subsequent cycle, and the multiple calcination processes of Ca-based sorbent under different calcination conditions are studied and discussed. Reactivity loss of limestone, dolomite and CaO/Ca{sub 12}Al{sub 14}O{sub 3}3 sorbents from a fluidized bed reactor at both mild and severe calcination conditions was compared with the TGA data. At mild calcination conditions, TGA results of sorbent reactivity loss were similar to the experimental results of fluidized bed reactor for three sorbents at 850 degrees C calcination temperature, and this indicated that TGA experimental results can be used as a reference to predict sorbent reactivity loss behavior in fluidized bed reactor. At severe calcination condition, sorbent reactivity loss behavior for limestone and dolomite from TGA compare well with the result from a fluidized bed reactor.

  14. Development of regenerable copper-based sorbents for hot gas cleanup: Final technical report, September 1, 1995--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Wangerow, J.R.

    1997-05-01

    The overall objective of this study was to determine the effectiveness of the copper-chromite sorbent (developed in previous ICCI-funded projects) for longer duration application under optimum conditions in the temperature range of 550{degrees}-650{degrees}C to minimize sorbent reduction and degradation during the cyclic process. Three (3) formulations of attrition resistant granules of the copper chromite sorbent (i.e., CuCr-10, CuCr-21, and CuCr-29) as well as one (1) copper chromite sorbent in pellet form (i.e., CuCr-36) were selected for cyclic desulfurization tests. The desulfurization and regeneration capabilities of the selected formulations as well as the effects of operating parameters were determined, to identify the {open_quotes}best{close_quotes} sorbent formulation and the optimum operating conditions. The durability of the {open_quotes}best{close_quotes} sorbent formulation was determined in {open_quotes}long-term{close_quotes} multicycle tests conducted at the optimum operating conditions. The attrition resistance of the selected formulations were determined and compared with those of other sorbents, including a limestone, a dolomite, and a commercial zinc titanate sorbent. The results obtained in this study indicate that, the CuCr-29 sorbent has excellent attrition resistance and desulfurization performance, which are far superior to the commercial zinc titanate sorbents. The optimum desulfurization temperature in terms of sorbent efficiency and utilization appears to be about 600{degrees}C. Sorbent regeneration at 750{degrees}C ensured complete conversion of the copper sulfide to oxide without sulfate formation or reactivity deterioration in subsequent cycles.

  15. Mechanical instability of monocrystalline and polycrystalline methane hydrates

    Science.gov (United States)

    Wu, Jianyang; Ning, Fulong; Trinh, Thuat T.; Kjelstrup, Signe; Vlugt, Thijs J. H.; He, Jianying; Skallerud, Bjørn H.; Zhang, Zhiliang

    2015-01-01

    Despite observations of massive methane release and geohazards associated with gas hydrate instability in nature, as well as ductile flow accompanying hydrate dissociation in artificial polycrystalline methane hydrates in the laboratory, the destabilising mechanisms of gas hydrates under deformation and their grain-boundary structures have not yet been elucidated at the molecular level. Here we report direct molecular dynamics simulations of the material instability of monocrystalline and polycrystalline methane hydrates under mechanical loading. The results show dislocation-free brittle failure in monocrystalline hydrates and an unexpected crossover from strengthening to weakening in polycrystals. Upon uniaxial depressurisation, strain-induced hydrate dissociation accompanied by grain-boundary decohesion and sliding destabilises the polycrystals. In contrast, upon compression, appreciable solid-state structural transformation dominates the response. These findings provide molecular insight not only into the metastable structures of grain boundaries, but also into unusual ductile flow with hydrate dissociation as observed during macroscopic compression experiments. PMID:26522051

  16. Synergistic kinetic inhibition of natural gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Malmos, Christine; von Solms, Nicolas

    2013-01-01

    Rocking cells were used to investigate the natural gas hydrate formation and decomposition in the presence of kinetic inhibitor, Luvicap. In addition, the influence of poly ethylene oxide (PEO) and NaCl on the performance of Luvicap was investigated using temperature ramping and isothermal...... experiments. Luvicap decreased the hydrate nucleation temperature in ramping and increased the hydrate nucleation time at fixed temperatures. The presence of PEO and NaCl enhanced the nucleation inhibition strength of Luvicap. However the addition of Luvicap promoted the hydrate growth after nucleation. PEO...... does not affect hydrate growth whereas NaCl reduced the hydrate growth both in the presence and absence of Luvicap. In addition complex two-stage hydrate growth was observed in the presence of Luvicap. Moreover, the hydrate formed in the presence of inhibitor took longer time/higher temperature...

  17. Hydration properties of briquetted wheat straw biomass feedstock

    DEFF Research Database (Denmark)

    Zhang, Heng; Fredriksson, Maria; Mravec, Jozef

    2017-01-01

    process with the aim of subsequent processing for 2nd generation bioethanol production. The hydration properties of the unprocessed and briquetted wheat straw were characterized for water absorption via low field nuclear magnetic resonance and sorption balance measurements. The water was absorbed more......Biomass densification elevates the bulk density of the biomass, providing assistance in biomass handling, transportation, and storage. However, the density and the chemical/physical properties of the lignocellulosic biomass are affected. This study examined the changes introduced by a briquetting...... rapidly and was more constrained in the briquetted straw compared to the unprocessed straw, potentially due to the smaller fiber size and less intracellular air of the briquetted straw. However, for the unprocessed and briquetted wheat straw there was no difference between the hygroscopic sorption...

  18. Microbial Community Structure and Diversity in Hydrate Ridge Gas Hydrates (Cascadia Margin)

    Science.gov (United States)

    Lösekann, T.; Knittel, K.; Boetius, A.; Amann, R.

    2003-04-01

    Here, we present the first quantitative study investigating microorganisms physically associated with Hydrate Ridge gas hydrates. Previous studies have shown that the anaerobic oxidation of methane (AOM) in methane enriched surface sediments of Hydrate Ridge is apparently mediated by highly structured microbial consortia (Boetius et al., 2000). These AOM consortia consist of an inner core of methane-oxidizing archaea (ANME2-group) and an outer shell of sulfate-reducing bacteria (Desulfosarcina/Desulfococcus group). However, recently other microbial associations have been found capable of oxidizing methane anaerobically (e.g. Michaelis et al., 2002; Orphan et al., 2002). Only little is known about microorganisms mediating AOM in direct association with gas hydrates (Lanoil et al., 2001). The microbial community in pure melted gas hydrates sampled at the southern summit of Hydrate Ridge, coast off Oregon (USA), was analyzed by fluorescence in situ hybridization (FISH). Additionally, microbial diversity was studied using 16S rDNA clone libraries for Bacteria and Archaea. First FISH experiments confirm the abundance of AMNE1-group archaea and ANME2-group archaea in pure melted Hydrate Ridge gas hydrates. The abundance of these AOM mediating groups seems to be orders of magnitude lower than in the gas hydrate surrounding sediment. ANME1-cells were detected as filamentous free-living rods. Archaea of the ANME2-group were found in associations. In contrast to the known highly structured Hydrate ridge consortia, these cells are only loosly aggregated. The obtained molecular data will be compared with results of previous studies, which dealt with the microbial diversity in methane enriched surface sediments of Hydrate Ridge. References: Boetius, A., Ravenschlag, K. , Schubert, C., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U. &Pfannkuche, O.: A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623

  19. The Effect of Synthetic Hydrated Calcium Aluminate Additive on the Hydration Properties of OPC

    OpenAIRE

    Jolanta Doneliene; Anatolijus Eisinas; Kestutis Baltakys; Agne Bankauskaite

    2016-01-01

    The effect of synthetic CAH (130°C; 8 h; CaO/(SiO2 + Al2O3) = 0.55; Al2O3/(SiO2 + Al2O3) = 0.1, 0.15) with different crystallinity on the hydration kinetics of OPC at early stages of hydration was investigated. Also, the formation mechanism of compounds during OPC hydration was highlighted. It was determined that the synthetic CAH accelerated the initial reaction and shortened the induction period. Also, the second and third exothermic reactions begun earlier, and, during the latter reaction,...

  20. Valorisation of N and P from waste water by using natural reactive hybrid sorbents: Nutrients (N,P,K) release evaluation in amended soils by dynamic experiments.

    Science.gov (United States)

    Guaya, Diana; Valderrama, César; Farran, Adriana; Sauras, Teresa; Cortina, José Luis

    2018-01-15

    The removal of nutrients (nitrogen (N), phosphorous (P)) from waste water has become a resource recovery option in recent regulations worldwide, as observed in the European Union. Although both of these nutrients could be recovered from the sludge line, >70-75% of the N and P is discharged into the water line. Efforts to improve the nutrient recovery ratios have focused on developing low-cost technologies that use sorption processes. In this study, a natural zeolite (clinoptilolite type) in its potassium (K) form was impregnated with hydrated metal oxides and used to prepare natural hybrid reactive sorbents (HRS) for the simultaneous recovery of ammonium (NH4+) and phosphate (PO43-) from treated urban waste water. Three unfertile soils (e.g., one acidic and two basic) amended with N-P-K charged HRS were leached with deionized water (e.g. to simulate infiltration in the field) at two- and three-day time intervals over 15 different leaching cycles (equivalent to 15 bed volumes). The N-P-K leaching profiles for the three charged hybrid sorbents exhibited continuous nutrient release, with their values dependent on the composition of minerals in the soils. In the basic soil that is rich in illite and calcite, the release of potassium (K+) and ammonium (NH4+) is favoured by-ion exchange with calcium (Ca2+) and accordingly diminishes the release of phosphate (PO43-) due to its limited solubility in saturated calcite solutions (pH8 to 9). The opposite is true for sandy soils that are rich in albite (both acidic and basic), whereas the release of NH4+ and K+ was limited and the values of both ions measured in the leaching solutions were below 1mg/L. Their leaching solutions were poor in Ca2+, and the release of PO43- was higher (up to 12mgP-PO43-/L). The nutrient releases necessary for plant growth were provided continuously and were controlled primarily by the soil mineral dissolution rates fixing the soil aqueous solution composition (e.g. pH and ionic composition; in

  1. Method of making ionic liquid mediated sol-gel sorbents

    Science.gov (United States)

    Malik, Abdul; Shearrow, Anne M.

    2017-01-31

    Ionic liquid (IL)-mediated sol-gel hybrid organic-inorganic materials present enormous potential for effective use in analytical microextraction. One obstacle to materializing this prospect arises from high viscosity of ILs significantly slowing down sol-gel reactions. A method was developed which provides phosphonium-based, pyridinium-based, and imidazolium-based IL-mediated advanced sol-gel organic-inorganic hybrid materials for capillary microextraction. Scanning electron microscopy results demonstrate that ILs can serve as porogenic agents in sol-gel reactions. IL-mediated sol-gel coatings prepared with silanol-terminated polymers provided up to 28 times higher extractions compared to analogous sol-gel coatings prepared without any IL in the sol solution. This study shows that IL-generated porous morphology alone is not enough to provide effective extraction media: careful choice of the organic polymer and the precursor with close sol-gel reactivity must be made to ensure effective chemical bonding of the organic polymer to the created sol-gel material to be able to provide the desired sorbent characteristics.

  2. Sorption Behavior of Radionuclide Iodine on Organic and Inorganic sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Kyoung; Chang, See Un; Choung, Sung Wook; Um, Woo Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Radioactive iodine ({sup 125/129/131}I) has been released into the environment as a result of nuclear testing, nuclear fuel processing, and nuclear accidents such as Chernobyl and Fukushima. The released iodine radioisotopes are harmful to human and ecological system due to their high toxicity. In particular, long half-life of {sup 129}I (t{sub 1/2} = 1.6 x 10{sup 7} years) leads to contamination of soils, sediments, and groundwater surrounding nuclear facilities. Prior studies have suggested that the transport behavior of iodine in environment depends on the iodine speciation, based on different chemical reaction for individual iodine species. Iodate (IO{sub 3}{sup -}) and certain organo-iodine (OI) species are strongly affected by sorption processes, while iodide (I{sup -}) is not. The sorption characteristics of iodine species are also differentiated by the properties and composition of soils and sediments. However, contribution of mineral and organic matter types in soils/sediments on the sorption behavior was not properly evaluated. As the first step of systematical research, the objective of this study is to investigate the sorption behavior of iodine species, especially, IO{sub 3}{sup -}, on different types of natural inorganic and organic sorbents in soils/sediments

  3. Polyacrylonitrile-Chalcogel Hybrid Sorbents for Radioiodine Capture

    Energy Technology Data Exchange (ETDEWEB)

    Brian J. Riley; David A. Pierce; Jaehun Chun; Josef Matyas; William C. Lepry; Troy G. Garn; Jack D. Law; Mercouri G. Kanatzidis

    2014-04-01

    Powders of a Sn2S3 chalcogen-based aerogel (chalcogel) were combined with powdered polyacrylonitrile (PAN) in different mass ratios (SnS33, SnS50, and SnS70; # = mass% of chalcogel), dissolved in dimethyl sulfoxide, and added dropwise to deionized water to form pellets of a porous PAN-chalcogel hybrid material. These pellets, along with pure powdered (SnSp) and granular (SnSg) forms of the chalcogel, were then used to capture iodine gas under both dynamic (dilute) and static (concentrated) conditions. Both SnSp and SnSg chalcogels showed very high iodine loadings at 67.2 and 68.3 mass%, respectively. The SnS50 hybrid sorbent demonstrated a high, although slightly reduced, maximum iodine loading (53.5 mass%) with greatly improved mechanical rigidity. In all cases, X-ray diffraction results showed the formation of crystalline SnI4 and SnI4(S8)2, revealing that the iodine binding in these materials is mainly due to a chemisorption process, although a small amount of physisorption was observed.

  4. Polyacrylonitrile-Chalcogel Hybrid Sorbents for Radioiodine Capture

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Pierce, David A.; Chun, Jaehun; Matyas, Josef; Lepry, William C.; Garn, Troy; Law, Jack; Kanatzidis, Mercouri G.

    2014-04-16

    Powders of a Sn2S3 chalcogen-based aerogel (chalcogel) were combined with powdered polyacrylonitrile (PAN) in different mass ratios (SnS33, SnS50, and SnS70 in mass% of chalcogel), dissolved into dimethyl sulfoxide, and dropped into deionized water to form pellets of a porous PAN-chalcogel hybrid material. Pellets of these hybrid sorbents, along with pure powdered (SnSp) and granular (SnSg) forms of the chalcogel, were then used to adsorb iodine gas under both concentrated and dilute conditions. Both the SnSp and SnSg chalcogels showed very high maximum iodine loadings at 67.2 and 68.3 mass%. The maximum iodine loadings in the SnS33 and SnS50 were high at 32.8 and 53.5 mass%. In all cases, X-ray diffraction results showed the formation of Sn-I phases of SnI4 and SnI4(S8)2 revealing that the iodine binding in these materials is mainly due to a chemisorption process although some evidence also exists that supports a physisorption process.

  5. Efficient separations and processing crosscutting program: Develop and test sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Bray, L.A.

    1995-09-01

    This report summarizes work performed during FY 1995 under the task {open_quotes}Develop and Test Sorbents,{close_quotes} the purpose of which is to develop high-capacity, selective solid extractants to recover cesium, strontium, and technetium from nuclear wastes. This work is being done for the Efficient Separations and Processing Crosscutting Program (ESP), operated by the U.S. Department of Energy`s Office of Environmental Management`s Office of Technology Development. The task is under the direction of staff at Pacific Northwest Laboratory (PNL) with key participation from industrial and university staff at 3M, St. Paul, Minnesota; IBC Advanced Technologies, Inc., American Forks, Utah; AlliedSignal, Inc., Des Plaines, Illinois, and Texas A&M University, College Station, Texas. 3M and IBC are responsible for ligand and membrane technology development; AlliedSignal and Texas A&M are developing sodium titanate powders; and PNL is testing the materials developed by the industry/university team members. Major accomplishments for FY 1995 are summarized in this report.

  6. Gas hydrate occurrence and Morpho-structures along Chilean margin

    OpenAIRE

    Vargas Cordero, Ivan De La Cruz

    2009-01-01

    2007/2008 During the last decades, the scientific community spent many efforts to study the gas hydrates in oceanic and permafrost environments. In fact, the gas hydrate occurrence has a global significance because of the potential energy resource represented by the large amount of hydrocarbon trapped in the hydrate phase. Moreover, it may play a role in global climate change, and it is also study because of the hazard that accumulations of gas hydrate may cause to drilling and seabed inst...

  7. Microscopic Origin of Strain Hardening in Methane Hydrate

    OpenAIRE

    Jihui Jia; Yunfeng Liang; Takeshi Tsuji; Sumihiko Murata; Toshifumi Matsuoka

    2016-01-01

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to ...

  8. Marine Gas Hydrates - An Untapped Non-conventional Energy ...

    Indian Academy of Sciences (India)

    Table of contents. Marine Gas Hydrates - An Untapped Non-conventional Energy Resource · Slide 2 · Slide 3 · Slide 4 · Gas Hydrate Stability Zone · Slide 6 · Slide 7 · Exploration of gas hydrates (seismic) · Characteristics of BSR · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Distribution of Gas Hydrates in KG ...

  9. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability

    KAUST Repository

    Wu, Jingya

    2016-12-05

    To meet the challenges of global oil spills and oil-water contamination, the development of a low-cost and reusable sorbents with good hydrophobicity and oleophilic nature is crucial. In this study, functionalized carbon nanotubes (CNTs) were wrapped in polystyrene (PS) polymer (PS-CNTs) and electrospun to create an effective and rigid sorbent for oil. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer, resulting in a well-aligned CNTs configuration inside the porous fiber structure. Interestingly, the oil sorption process using PS-CNTs was observed to have two phases. First, the oil swiftly entered the membrane pores formed by interconnected nanofibers due to oleophilic properties of the micro-sized void. In the second phase, the oil not only moved to nano interior spaces of the fibers by capillary forces but also adsorbed on the surface of fibers where the latter was retained due to Van der Waals force. The sorption process fits well with the intra particle diffusion model. Maximum oil sorption capacity of the PS-CNTs sorbent for sunflower oil, peanut oil, and motor oils were 116, 123, and 112 g/g, respectively, which was 65% higher than that of the PS sorbent without CNTs. Overall, a significant increase in the porosity, surface area, water contact angle, and oleophilic nature was observed for the PS-CNTs composite sorbents. Not only did the PS-CNTs sorbents exhibited a promising oil sorption capacity but also showed potential for reusability, which is an important factor to be considered in determining the overall performance of the sorbent and its environmental impacts.

  10. Methods of gas hydrate concentration estimation with field examples

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, D.; Dash, R.; Dewangan, P.

    gas hydrate, Geophys. Res. Lett., 32, doi:10.1029/2005GL022607. Waite, W., Helgerud, M. B., Nur, A., Pinksto, J. C., Stern, L., and Kirby, S., 2000. Laboratory measurements of compressional and shear wave speeds through methane hydrate: In Gas Hydrates...

  11. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  12. HYDRATION IN THE SAND SHRIMP CRANGON SEPTEMSPINOSA: RELATION TO DIET.

    Science.gov (United States)

    Wilcox, J Ross; Jeffries, H Perry

    1976-06-01

    Tissue hydration in the estuarine sand shrimp Crangon septemspinosa is correlated with nutritional conditions. Hydration levels of shrimp who are ingesting food remain normal. In starved shrimp or in individuals who are not ingesting adequate amounts of food, hydration levels are high. Presumably, water replaces metabolized tissues.

  13. Methane Production from Gas Hydrate Deposits through Injection of Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Matthias Haeckel

    2012-06-01

    Full Text Available The recovery of natural gas from CH4-hydrate deposits in sub-marine and sub-permafrost environments through injection of CO2 is considered a suitable strategy towards emission-neutral energy production. This study shows that the injection of hot, supercritical CO2 is particularly promising. The addition of heat triggers the dissociation of CH4-hydrate while the CO2, once thermally equilibrated, reacts with the pore water and is retained in the reservoir as immobile CO2-hydrate. Furthermore, optimal reservoir conditions of pressure and temperature are constrained. Experiments were conducted in a high-pressure flow-through reactor at different sediment temperatures (2 °C, 8 °C, 10 °C and hydrostatic pressures (8 MPa, 13 MPa. The efficiency of both, CH4 production and CO2 retention is best at 8 °C, 13 MPa. Here, both CO2- and CH4-hydrate as well as mixed hydrates can form. At 2 °C, the production process was less effective due to congestion of transport pathways through the sediment by rapidly forming CO2-hydrate. In contrast, at 10 °C CH4 production suffered from local increases in permeability and fast breakthrough of the injection fluid, thereby confining the accessibility to the CH4 pool to only the most prominent fluid channels. Mass and volume balancing of the collected gas and fluid stream identified gas mobilization as equally important process parameter in addition to the rates of methane hydrate dissociation and hydrate conversion. Thus, the combination of heat supply and CO2 injection in one supercritical phase helps to overcome the mass transfer limitations usually observed in experiments with cold liquid or gaseous CO2.

  14. Determination of acrylamide in brewed coffee and coffee powder using polymeric ionic liquid-based sorbent coatings in solid-phase microextraction coupled to gas chromatography-mass spectrometry.

    Science.gov (United States)

    Cagliero, Cecilia; Ho, Tien D; Zhang, Cheng; Bicchi, Carlo; Anderson, Jared L

    2016-06-03

    This study describes a simple and rapid sampling method employing a polymeric ionic liquid (PIL) sorbent coating in direct immersion solid-phase microextraction (SPME) for the trace-level analysis of acrylamide in brewed coffee and coffee powder. The crosslinked PIL sorbent coating demonstrated superior sensitivity in the extraction of acrylamide compared to all commercially available SPME coatings. A spin coating method was developed to evenly distribute the PIL coating on the SPME support and reproducibly produce fibers with a large film thickness. Ninhydrin was employed as a quenching reagent during extraction to inhibit the production of interfering acrylamide. The PIL fiber produced a limit of quantitation for acrylamide of 10μgL(-1) and achieved comparable results to the ISO method in the analysis of six coffee powder samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 75 FR 9886 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2010-03-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open... Office of Fossil Energy to the Office of Science 4:45 p.m.-5 p.m. Final Announcements and Adjourn Public...

  16. Pentagonal dodecahedron methane hydrate cage and methanol ...

    Indian Academy of Sciences (India)

    petroleum industry as it plugs the oil flow.12 Restric- tion of hydrate plug ... Interaction energy ( E) for cluster formation has been determined using .... Interaction energies are mentioned in table 2 for all three 1CH4@512 cage, 1CH4@512-methanol clus- ter and 1CH4@512-methanol-Na. + cluster systems. Formation of ...

  17. Methane hydrate stability and anthropogenic climate change

    National Research Council Canada - National Science Library

    Archer, D

    2007-01-01

    .... The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2...

  18. [Terminal phase hydration, pain and delirium

    DEFF Research Database (Denmark)

    Heick, A.

    2009-01-01

    Hydration of the terminal patient may relieve confusion and complaints of "dry mouth". But it may worsen oedema of the brain, lungs, and extremities, worsen terminal rattling and cause a need for frequent changing of diapers. The decision of whether and how to treat a dying patient with fluids sh...

  19. HYDRATION STRUCTURE AND WATER EXCHANGE DYNAMICS ...

    African Journals Online (AJOL)

    Preferred Customer

    was carried out for Fe(II) in water using the 2-body potential and its 3-body correction function to study hydration structure of the Fe(II) ion. Furthermore, the present study investigates the water exchange processes around the Fe(II) ion in the aqueous solution. Emphasis is given on the illumination of the structural changes at ...

  20. Gypsum hydration: a theoretical and experimental study

    NARCIS (Netherlands)

    Yu, Qingliang; Brouwers, Jos; de Korte, A.C.J.; Fischer, H.B; Bode, K.A.

    2009-01-01

    Calcium sulphate dihydrate (CaSO4·2H2O or gypsum) is used widely as building material because of its excellent fire resistance, aesthetics, and low price. Hemihydrate occurs in two formations of α- and β-type. Among them β-hemihydrate is mainly used to produce gypsum plasterboard since the hydration

  1. Gold(III)-Catalyzed Hydration of Phenylacetylene

    Science.gov (United States)

    Leslie, J. Michelle; Tzeel, Benjamin A.

    2016-01-01

    A guided inquiry-based experiment exploring the regioselectivity of the hydration of phenylacetylene is described. The experiment uses an acidic gold(III) catalyst in a benign methanol/water solvent system to introduce students to alkyne chemistry and key principles of green chemistry. The experiment can be easily completed in approximately 2 h,…

  2. A new beaded carbon molecular sieve sorbent for 222Rn monitoring.

    Science.gov (United States)

    Scarpitta, S C

    1996-05-01

    A new commercially available beaded carbon molecular sieve sorbent, Carboxen-564 (20/45 mesh), was tested and compared to Calgon-PCB (40/80) activated carbon for its adsorptive and desorptive characteristics under controlled conditions of temperature (25 degrees C) and relative humidity (RH). The amount of water vapor adsorbed by the beaded carbon molecular sieve material was typically a factor of 4 lower than the activated carbon, with a concomitant fourfold increase in the 222Rn adsorption coefficient, K(Rn). The maximum K(Rn) value for a thin layer of Carboxen-564, following a 2-d exposure at 40% RH, was 7.2 Bq kg(-1) per Bq m(-3). The K(Rn) or a 1-cm bed, following a 2-d exposure was 5.5 Bq m(-3), a 25% reduction. Under dynamic sampling conditions, where 0.4 g of the beaded carbon molecular sieve was contained in a 6 cm x 0.4 cm diameter tube, the maximum K(Rn) value was 6.5 Bq m(-3) after 2.5 h of sampling at 29% RH when the input flow rate was 4.2 x 10(-3) m3 h-1. Kinetic studies were also conducted under passive sampling conditions. The data show that the 222Rn buildup time-constant for a thin layer of the beaded carbon molecular sieve material was 1.3 h, whereas that of a 1 cm bed was 13 h. The 222Rn desorption time-constants, from gram amounts of the beaded carbon molecular sieve material into air and into a commercially available toluene based liquid scintillation cocktail, were 2 h and 3 h, respectively. Carboxen's high 222Rn adsorbing capacity, rapid kinetics, hydrophobicity and physical properties makes it an attractive alternative to other commercially available activated carbon used in passive and dynamic sampling devices.

  3. Selective determination of mandelic acid in urine using molecularly imprinted polymer in microextraction by packed sorbent.

    Science.gov (United States)

    Soleimani, Esmaeel; Bahrami, Abdulrahman; Afkhami, Abbas; Shahna, Farshid Ghorbani

    2017-09-04

    Mandelic acid (MA) is a major metabolite of ethylbenzene and styrene. For the first time, a selective, fast, and easy-to-use procedure was developed for the determination of MA in urine samples. The new procedure is based on MIMEPS, the combination of a molecularly imprinted polymer (MIP) and microextraction by packed sorbent (MEPS). High-performance liquid chromatography with ultraviolet detection (HPLC-UV) was used for the separation and determination of MA. The bulk polymerization method was used to synthesize the MIP, and the MIP and non-imprinted polymer (NIP) were characterized by Fourier transform infrared spectroscopy. The selectivity of the MIP was investigated in the presence of interferents. In addition, we investigated the various parameters that affect the performance of the MEPS, including the pH of the sample, the number of extraction cycles, sample volume, and the types and volumes of the washing and elution solvents. A six-point calibration curve was obtained in the range of 0.2-20 µg/mL (R 2 = 0.9994). The extraction recovery was more than 88.8%. The limit of detection and the limit of quantitation were 0.06 and 0.2 µg/mL, respectively. The intra- and inter-day precisions were in the range of 3.6-4.7% and 3.8-5.1%, respectively. The accuracy was -8.4 to -11.1%. The optimized procedure was selective, sensitive, and rapid, and it was both user friendly and environmentally friendly. The sample preparation process took only about 5 min, so the MIMEPS-HPLC-UV procedure is recommended as an alternative for the biomonitoring of workers exposed to ethylbenzene and/or styrene.

  4. Extended evaluation of polymeric and lipophilic sorbents for passive sampling of marine toxins.

    Science.gov (United States)

    Zendong, Zita; Herrenknecht, Christine; Abadie, Eric; Brissard, Charline; Tixier, Céline; Mondeguer, Florence; Séchet, Véronique; Amzil, Zouher; Hess, Philipp

    2014-12-01

    Marine biotoxins are algal metabolites that can accumulate in fish or shellfish and render these foodstuffs unfit for human consumption. These toxins, released into seawater during algal occurrences, can be monitored through passive sampling. Acetone, methanol and isopropanol were evaluated for their efficiency in extracting toxins from algal biomass. Isopropanol was chosen for further experiments thanks to a slightly higher recovery and no artifact formation. Comparison of Oasis HLB, Strata-X, BondElut C18 and HP-20 sorbent materials in SPE-mode led to the choice of Oasis HLB, HP-20 and Strata-X. These three sorbents were separately exposed as passive samplers for 24 h to seawater spiked with algal extracts containing known amounts of okadaic acid (OA), azaspiracids (AZAs), pinnatoxin-G (PnTX-G), 13-desmethyl spirolide-C (SPX1) and palytoxins (PlTXs). Low density polyethylene (LDPE) and silicone rubber (PDMS) strips were tested in parallel on similar mixtures of spiked natural seawater for 24 h. These strips gave significantly lower recoveries than the polymeric sorbents. Irrespective of the toxin group, the adsorption rate of toxins on HP-20 was slower than on Oasis HLB and Strata-X. However, HP-20 and Strata-X gave somewhat higher recoveries after 24 h exposure. Irrespective of the sorbent tested, recoveries were generally highest for cyclic imines and OA group toxins, slightly lower for AZAs, and the lowest for palytoxins. Trials in re-circulated closed tanks with mussels exposed to Vulcanodinium rugosum or Prorocentrum lima allowed for further evaluation of passive samplers. In these experiments with different sorbent materials competing for toxins in the same container, Strata-X accumulated toxins faster than Oasis HLB, and HP-20, and to higher levels. The deployment of these three sorbents at Ingril French Mediterranean lagoon to detect PnTX-G in the water column showed accumulation of higher levels on HP-20 and Oasis HLB compared to Strata-X. This study

  5. Direct measurement of methane hydrate composition along the hydrate equilibrium boundary

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2005-01-01

    The composition of methane hydrate, namely nW for CH 4??nWH2O, was directly measured along the hydrate equilibrium boundary under conditions of excess methane gas. Pressure and temperature conditions ranged from 1.9 to 9.7 MPa and 263 to 285 K. Within experimental error, there is no change in hydrate composition with increasing pressure along the equilibrium boundary, but nW may show a slight systematic decrease away from this boundary. A hydrate stoichiometry of n W = 5.81-6.10 H2O describes the entire range of measured values, with an average composition of CH4??5.99(??0.07) H2O along the equilibrium boundary. These results, consistent with previously measured values, are discussed with respect to the widely ranging values obtained by thermodynamic analysis. The relatively constant composition of methane hydrate over the geologically relevant pressure and temperature range investigated suggests that in situ methane hydrate compositions may be estimated with some confidence. ?? 2005 American Chemical Society.

  6. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  7. MORPHOLOGY OF METHANE HYDRATE HOST SEDIMENTS.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; FENG,H.; TOMOV,S.; WINTER,W.J.; EATON,M.; MAHAJAN,D.

    2004-12-01

    Results from simulated experiments in several laboratories show that host sediments influence hydrate formation in accord with known heterogeneity of host sediments at sites of gas hydrate occurrence (1). For example, in Mackenzie Delta, NWT Canada (Mallik 2L-38 well), coarser-grained units (pore-filling model) are found whereas in the Gulf of Mexico, the found hydrate samples do not appear to be lithologically controlled. We have initiated a systematic study of sediments, initially focusing on samples from various depths at a specific site, to establish a correlation with hydrate occurrence (or variations thereof) to establish differences in their microstructure, porosity, and other associated properties. The synchrotron computed microtomography (CMT) set-up at the X-27A tomography beam line at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory was used as a tool to study sediments from Blake Ridge at three sub bottom depths of 0.2, 50, and 667 meters. Results from the tomographic analysis of the deepest sample (667 m) are presented here to illustrate how tomography can be used to obtain new insights into the structures of methane hydrate host sediments. The investigation shows the internal grain/pore space resolution in the microstructure and a 3-D visualization of the connecting pathways obtained following data segmentation into pore space and grains within the sediment sample. The analysis gives the sample porosity, specific surface area, mean particle size, and tortuosity, as well. An earlier report on the experimental program has been given by Mahajan et al. (2).

  8. Measurement of mercury in flue gas based on an aluminum matrix sorbent.

    Science.gov (United States)

    Wang, Juan; Xu, Wei; Wang, Xiaohao; Wang, Wenhua

    2011-01-01

    The measurement of total mercury in flue gas based on an economical aluminum matrix sorbent was developed in this paper. A sorbent trap consisted of three tubes was employed to capture Hg from flue gas. Hg trapped on sorbent was transferred into solution by acid leaching and then detected by CVAAS. Hg adsorbed on sorbent was recovered completely by leaching process. The 87.7% recovery of Hg in flue gas by tube 1 and tube 2 was obtained on the equipment of coal combustion and sampling in lab. In order to evaluate the ability to recover and accurately quantify Hg(0) on the sorbent media, the analytical bias test on tube 3 spiked with Hg(0) was also performed and got the average recovery of 97.1%. Mercury measurements based on this method were conducted for three coal-fired power plants in China. The mercury in coal is distributed into bottom ash, electrostatic precipitator (ESP) ash, wet flue gas desulfurization (WFGD) reactant, and flue gas, and the relative distribution varied depending on factors such as the coal type and the operation conditions of plants. The mercury mass balances of three plants were also calculated which were 91.6%, 77.1%, and 118%, respectively. The reliability of this method was verified by the Ontario Hydro (OH) method either in lab or in field.

  9. INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES

    Energy Technology Data Exchange (ETDEWEB)

    Ates Akyurtlu; Jale F. Akyurtle

    2001-08-01

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}.

  10. Sorbent utilization prediction methodology: sulfur control in fluidized-bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Fee, D.C.; Wilson, W.I.; Shearer, J.A.; Smith, G.W.; Lenc, J.F.; Fan, L.S.; Myles, K.M.; Johnson, I.

    1980-09-01

    The United States Government has embarked on an ambitious program to develop and commercialize technologies to efficiently extract energy from coal in an environmentally acceptable manner. One of the more promising new technologies for steam and power generation is the fluidized-bed combustion of coal. In this process, coal is burned in a fluidized bed composed mainly of calcined limestone sorbent. The calcium oxide reacts chemically to capture the sulfur dioxide formed during the combustion and to maintain the stack gas sulfur emissions at acceptable levels. The spent sulfur sorbent, containing calcium sulfate, is a dry solid that can be disposed of along with coal ash or potentially used. Other major advantages of fluidized-bed combustion are the reduction in nitrogen oxide emissions because of the relatively low combustion temperatures, the capability of burning wide varieties of fuel, the high carbon combustion efficiencies, and the high heat-transfer coefficients. A key to the widespread commercialization of fluidized-bed technology is the ability to accurately predict the amount of sulfur that will be captured by a given sorbent. This handbook meets this need by providing a simple, yet reliable, user-oriented methodology (the ANL method) that allows performance of a sorbent to be predicted. The methodology is based on only three essential sorbent parameters, each of which can be readily obtained from standardized laboratory tests. These standard tests and the subsequent method of data reduction are described in detail.

  11. Use of sorbents for air toxics control in a pilot-scale COHPAC baghouse

    Energy Technology Data Exchange (ETDEWEB)

    Butz, J.R.; Chang, R.; Waugh, E.G.; Jensen, B.K.; Lapatnick, L.N.

    1999-07-01

    With funding from EPRI and Public Service Electric and Gas (PSE and G), ADA Technologies has been operating a COHPAC (COmpact Hybrid PArticulate Collector) pulse-jet pilot plant at PSE and G's Hudson station in Jersey City, NJ to expand the application of COHPAC in anticipation of hazardous air pollutants (HAP) regulations. The pilot extracts a slipstream of flue gas from downstream of Hudson's full-scale ESP (a four-field Research Cottrell unit). A series of tests has been run over the past two and one-half years to evaluate the injection of dry sorbents upstream of the COHPAC pilot for removal of acid gases and mercury from the flue gas slipstream. The COHPAC baghouse subsequently removes the sorbent material from the flue gas. Gas samples were taken upstream of sorbent injection and downstream of the pilot to characterize the ability of the sorbents to remove targeted HAPs. The operation of the pilot was also monitored during testing to characterize the impact of sorbent injection on the performance of the baghouse. Data collected during 1998 are compared to data from 1997, when the pilot was operated at a higher air-to-cloth ratio.

  12. Waste Derived Sorbents and Their Potential Roles in Heavy Metal Remediation Applications

    Directory of Open Access Journals (Sweden)

    Chiang Y. W.

    2013-04-01

    Full Text Available Inorganic waste materials that have the suitable inherent characteristics could be used as precursors for the synthesis of micro- and mesoporous materials, which present great potential to be re-utilized as sorbent materials for heavy metal remediation. Three inorganic waste materials were studied in the present work: water treatment residuals (WTRs from an integrated drinking water/wastewater treatment plant, and fly ash and bottom ash samples from a municipal solid waste incinerator (MSWI. These wastes were converted into three sorbent materials: ferrihydrite-like materials derived from drying of WTRs, hydroxyapatite-like material derived from ultrasound assisted synthesis of MSWI fly ash with phosphoric acid solution, and a zeolitic material derived from alkaline hydrothermal conversion of MSWI bottom ash. The performance of these materials, as well as their equivalent commercially available counterparts, was assessed for the adsorption of multiple heavy metals (As, Cd, Co, Ni, Pb, Zn from synthetic solutions, contaminated sediments and surface waters; and satisfactory results were obtained. In addition, it was observed that the combination of sorbents into sorbent mixtures enhanced the performance levels and, where applicable, stabilized inherently mobile contaminants from the waste derived sorbents.

  13. Theoretical Screening of Solid Sorbents for CO{sub 2} Capture Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y [NETL

    2013-08-07

    The work reported in this presentation was establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank; and to explore the optimal working conditions for the promised CO{sub 2} solid sorbents and provide guidelines to the experimentalists. Our methodology can predict thermodynamic properties of solid materials and their CO{sub 2} capture reactions. Single solid may not satisfy the industrial operating conditions as CO{sub 2} sorbent, however, by mixing two or more solids, the new formed solid may satisfy the industrial needs. By exploring series of lithium silicates with different Li{sub 2}O/SiO{sub 2} ratio, we found that with decreasing Li{sub 2}O/SiO{sub 2} ratio the corresponding silicate has a lower turnover temperature and vice versa. Compared to pure MgO, the Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3} and CaCO{sub 3} promoted MgO sorbent has a higher turnover T. These results provide guidelines to synthesize sorbent materials by mixing different solids with different ratio.

  14. Bioaffinity sorbent based on immobilized protein A Staphylococcus aureus: development and application

    Directory of Open Access Journals (Sweden)

    Kordium V. A.

    2012-04-01

    Full Text Available Aim. The obtaining of bioaffinity sorbent based on the immobilized protein A of S. aureus (SPA using two cellulose-binding domains (CBD, and its application for purification of antibodies. Methods. The DNA sequences encoding SPA and two CBD were genetically fused, expressed in the high-productive Escherichia coli system and the protein SPA-CBD2 was obtained in a soluble form. The SPA-CBD2 fusion protein was affinity immobilized on the microcrystalline cellulose. Results. Capacity of bioaffinity sorbent (1 mg SPA-CBD2/1 ml CC31-cellulose, dynamic capacity (3 mg mouse IgG/1 ml bioaffinity sorbent, efficiency and stability during prolonged storage were determined. The bioffinity sorbent was used for purification of antibodies. The purity of antibodies in eluted fractions was more than 95 %. The purified antibodies detected target antigens with a high sensitivity. Conclusions. The designed bioaffinity sorbent provides obtaining pure poly- and monoclonal antibodies in functionally active form and can be useful for the fractionation of mouse immunoglobulin G.

  15. Performance of a novel synthetic Ca-based solid sorbent suitable for desulfurizing flue gases in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Pacciani, R.; Muller, C.R.; Davidson, J.F.; Dennis, J.S.; Hayhurst, A.N. [University of Cambridge, Cambridge (United Kingdom). Dept. of Chemical Engineering & Biotechnology

    2009-08-05

    The extent and mechanism of sulfation and carbonation of limestone, dolomite, and chalk, were compared with a novel, synthetic sorbent (85 wt % CaO and 15 wt % Ca{sub 12}A{sub l14}O{sub 33}), by means of experiments undertaken in a small, electrically heated fluidized bed. The sorbent particles were used either (I) untreated, sieved to two particle sizes and reacted with two different concentrations of SO{sub 2}, or (ii) after being cycled 20 times between carbonation, in 15 vol % CO{sub 2} in N2, and calcination, in pure N2, at 750 degrees C. The uptake of untreated limestone and dolomite was generally low (<0.2 g(SO{sub 2})/g(sorbent)), confirming previous results, However, the untreated chalk and the synthetic sorbent were found to be substantially more reactive with SO{sub 2}, and their final uptake was significantly higher (>0.5 g(SO{sub 2})/g(sorbent)) and essentially independent of the particle size. Here, comparisons are made on the basis of the sorbents in the calcined state. The capacities for the uptake of SO{sub 2}, on a basis of unit mass of calcined sorbent, were comparable for the chalk and the synthetic sorbent. However, previous work has demonstrated the ability of the synthetic sorbent to retain its capacity for CO{sub 2} over many cycles of carbonation and calcination: much more so than natural sorbents such as chalk and limestone. Accordingly, the advantage of the synthetic sorbent is that it could be used to remove CO{sub 2} from flue gases and, at the end of its life, to remove SO{sub 2} on a once-through basis.

  16. Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Carl [URS Group, Inc., Austin, TX (United States); Steen, William [URS Group, Inc., Austin, TX (United States); Triana, Eugenio [URS Group, Inc., Austin, TX (United States); Machalek, Thomas [URS Group, Inc., Austin, TX (United States); Davila, Jenny [URS Group, Inc., Austin, TX (United States); Schmit, Claire [URS Group, Inc., Austin, TX (United States); Wang, Andrew [URS Group, Inc., Austin, TX (United States); Temple, Brian [URS Group, Inc., Austin, TX (United States); Lu, Yongqi [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Lu, Hong [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Zhang, Luzheng [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ruhter, David [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Rostam-Abadi, Massoud [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Sayyah, Maryam [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ito, Brandon [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Suslick, Kenneth [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States)

    2013-09-30

    This document summarizes the work performed on Cooperative Agreement DE-FE0000465, “Evaluation of Dry Sorbent Technology for Pre-Combustion CO{sub 2} Capture,” during the period of performance of January 1, 2010 through September 30, 2013. This project involves the development of a novel technology that combines a dry sorbent-based carbon capture process with the water-gas-shift reaction for separating CO{sub 2} from syngas. The project objectives were to model, develop, synthesize and screen sorbents for CO{sub 2} capture from gasified coal streams. The project was funded by the DOE National Energy Technology Laboratory with URS as the prime contractor. Illinois Clean Coal Institute and The University of Illinois Urbana-Champaign were project co-funders. The objectives of this project were to identify and evaluate sorbent materials and concepts that were suitable for capturing carbon dioxide (CO{sub 2}) from warm/hot water-gas-shift (WGS) systems under conditions that minimize energy penalties and provide continuous gas flow to advanced synthesis gas combustion and processing systems. Objectives included identifying and evaluating sorbents that efficiently capture CO{sub 2} from a gas stream containing CO{sub 2}, carbon monoxide (CO), and hydrogen (H{sub 2}) at temperatures as high as 650 °C and pressures of 400-600 psi. After capturing the CO{sub 2}, the sorbents would ideally be regenerated using steam, or other condensable purge vapors. Results from the adsorption and regeneration testing were used to determine an optimal design scheme for a sorbent enhanced water gas shift (SEWGS) process and evaluate the technical and economic viability of the dry sorbent approach for CO{sub 2} capture. Project work included computational modeling, which was performed to identify key sorbent properties for the SEWGS process. Thermodynamic modeling was used to identify optimal physical properties for sorbents and helped down-select from the universe of possible sorbent

  17. Nano-LC-MS/MS for the identification of proteins trapped in sorbent cartridges used for coupled plasma filtration-adsorption treatments of healthy pigs.

    Science.gov (United States)

    Nardiello, Donatella; Prattichizzo, Clelia; Rocchetti, Maria Teresa; Gesualdo, Loreto; Centonze, Diego

    2017-01-05

    A dedicated proteomic approach based on nano-Liquid Chromatography coupled with tandem mass spectrometry in ion trap is proposed for the analysis of proteins trapped in sorbent resin cartridges used to remove inflammatory mediators from blood by coupled plasma filtration adsorption (CPFA). The final purpose of the proposed proteomic approach was to obtain a reference map of plasma proteins trapped in CPFA sorbents used for the extracorporeal blood purification of healthy pigs, with the potential impact to design new bio-filters able to control the inflammatory imbalance under pathological conditions, such as severe sepsis. The five main steps of the proteomics analysis, (i) protein extraction from resin cartridges, (ii) two-dimensional gel electrophoresis (2D-PAGE) for protein separation and profiling, (iii) in-gel proteolytic digestion, (iv) tandem mass analysis of peptides resulting from enzymatic cleavage and (v) bioinformatics, for protein identification and post-processing validation of MS/MS data sets, have been carefully evaluated. Prior to electrophoresis, the efficiency of different extraction solutions and procedures to recovery plasma proteins trapped into the sorbents were tested. Then, a rapid one-step procedure for protein extraction was optimized. Protein bands corresponding to the main plasma proteins, namely porcine serum albumin, serotransferrin and immunoglobulins, were identified. In addition, the presence of haptoglobin, hemopexin, α-1 acid glycoprotein and fetuin-A, that are known as acute-phase reaction proteins, was observed, suggesting that CPFA resins led to a non-specifically protein depletion from plasma, rather than targeting specific molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of solvent composition on the van't Hoff enthalpic curve using amylose 3,5-dichlorophenylcarbamate-based sorbent.

    Science.gov (United States)

    Lin, Ang-Yeh; Cheng, Kai-Tse; Chen, Sin-Chang; Tsui, Hung-Wei

    2017-09-15

    Van't Hoff plots have been widely used for investigating the thermodynamic properties of adsorption processes in various chromatography systems. By measuring the retention factor k over a certain temperature range, the plot of ln k versus 1/T often yields a straight line with a slope of -ΔHvH0/R. Although this method provides information on adsorption enthalpy changes, its theoretical basis does not account for the effect of the solvent. In this paper, the relationship between apparent enthalpy changes determined directly from van't Hoff plots and solvent modifier concentrations is systematically investigated using three simple solutes-tetrahydrofuran, acetone, and tert-butanol-in an n-hexane-methyl tert-butyl ether (MTBE) mobile phase with an amylose 3,5-dichlorophenylcarbamate-based sorbent. The apparent enthalpy changes of solutes are strongly dependent on MTBE concentration, increasing rapidly with MTBE content at low concentrations but leveling off after ΔH0 reaches approximately -15kJ/mol. These data cannot be explained by the thermodynamic model currently used in the literature. A new three-equilibrium-constant thermodynamic model is developed herein to account for solute-sorbent, solvent-sorbent, and solute-solvent interactions. The thermodynamic parameters of the model are estimated from the apparent enthalpy changes at different MTBE concentrations. The results reveal that two key dimensionless groups control the van't Hoff enthalpic curves: the fractions of solute molecules bound to modifier molecules and adsorption sites occupied by modifier molecules. As a result, the shapes of van't Hoff enthalpic curves reflect the adsorption isotherm of MTBE without complexation or information regarding solute-MTBE complexation without MTBE competitive adsorption. The new model is thus demonstrated to be more reliable than the current model for examining the thermodynamic properties of retention mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Silver-Loaded Aluminosilicate Aerogels As Iodine Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Kroll, Jared O. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Peterson, Jacob A. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Matyáš, Josef [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Olszta, Matthew J. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Li, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Vienna, John D. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States

    2017-09-14

    This paper discusses the development of aluminosilicates aerogels as scaffolds for Ag0 nanoparticles used for chemisorption of I2(g). The starting materials for these scaffolds included both Na-Al-Si-O and Al-Si-O aerogels, both synthesized from metal alkoxides. The Ag0 particles are added by soaking the aerogels in AgNO3 followed by drying and flowing under H2/Ar to reduce Ag+ → Ag0. In some cases, samples were soaked in 3-(mercaptopropyl)trimethoxysilane under supercritical CO2 to add –SH tethers to the aerogel surfaces for more effective binding of Ag+. During the Ag+-impregnation steps, for the Na-Al-Si-O aerogels, Na was replaced with Ag, and for the Al-Si-O aerogel, Si was replaced with Ag. The Ag-loading of thiolated versus non-thiolated Na-Al-Si-O aerogels was comparable at ~35 at% whereas the Ag-loading in unthiolated Al-Si-O aerogels was significantly lower at ~ 7 at% after identical treatment. Iodine loadings in both thiolated and unthiolated Ag0-functionalized Na-Al-Si-O aerogels were > 0.5 g g-1 showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated Al-Si-O aerogel was 0.31 g g-1. The control of Ag uptake over solution residence time and [AgNO3] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the capacity of iodine chemisorption. Consolidation experimental results are also presented.

  20. Dynamic modeling and transient studies of a solid-sorbent adsorber for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Modekurti, Srinivasarao [WVU; Bhattacharyya, Debangsu [WVU; Zitney, Stephen E. [U.S. DOE

    2012-01-01

    The U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI) is dedicated to accelerating the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. In this multi-lab initiative in partnership with academic and industrial institutions, the National Energy Technology Laboratory (NETL) leads the development of a multi-scale modeling and simulation toolset for rapid evaluation and deployment of carbon capture systems. One element of the CCSI is focused on optimizing the operation and control of carbon capture systems since this can have a significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come. Capture processes must be capable of operating over a wide range of transient events, malfunctions, and disturbances, as well as under uncertainties. As part of this work, dynamic simulation and control models, methods, and tools are being developed for CO{sub 2} capture and compression processes and their integration with a baseline commercial-scale supercritical pulverized coal (SCPC) power plant. Solid-sorbent-based post-combustion capture technology was chosen as the first industry challenge problem for CCSI because significant work remains to define and optimize the reactors and processes needed for successful sorbent capture systems. Sorbents offer an advantage because they can reduce the regeneration energy associated with CO{sub 2} capture, thus reducing the parasitic load. In view of this, the current paper focuses on development of a dynamic model of a solid-sorbent CO{sub 2} adsorber-reactor and an analysis of its transient performance with respect to several typical process disturbances. A one-dimensional, non-isothermal, pressure-driven dynamic model of a two-stage bubbling fluidized bed (BFB) adsorber-reactor is developed in Aspen Custom Modeler

  1. Solid state interconversion between anhydrous norfloxacin and its hydrates.

    Science.gov (United States)

    Chongcharoen, Wanchai; Byrn, Stephen R; Sutanthavibul, Narueporn

    2008-01-01

    This work is focused on characterizing and evaluating the solid state interconversion of norfloxacin (NF) hydrates. Four stoichiometric NF hydrates, dihydrate, hemipentahydrate, trihydrate, pentahydrate and a disordered NF state, were generated by various methods and characterized by X-ray powder diffractometry (XRPD), thermal analysis and Karl Fisher titrimetry. XRPD patterns of all NF hydrates exhibited crystalline structures. NF hydrate conversion was studied with respect to mild elevated temperature and various degrees of moisture levels. NF hydrates transformed to anhydrous NF Form A after gentle heating at 60 degrees C for 48 h except dihydrate and trihydrate where mixture in XRPD patterns between anhydrous NF Form A and former structures existed. Desiccation of NF hydrates at 0% RH for 7 days resulted in only partial removal of water molecules from the hydrated structures. The hydrated transitional phase and the disordered NF state were obtained from the incomplete dehydration of NF hydrates after thermal treatment and pentahydrate NF after desiccation, respectively. Anhydrous NF Form A and NF hydrates transformed to pentahydrate NF when exposed to high moisture environment except dihydrate. In conclusion, surrounding moisture levels, temperatures and the duration of exposure strongly influenced the interconversion pathways and stoichiometry of anhydrous NF and its hydrates. (c) 2007 Wiley-Liss, Inc.

  2. Carbon dioxid sequestration in natural gas hydrates: Thermodynamic considerations

    Science.gov (United States)

    Schicks, J. M.; Beeskow-Strauch, B.; Luzi, M.; Girod, M.; Erzinger, J.

    2009-12-01

    Due to the increasing energy demands natural gas hydrates become more and more of interest. The huge amount of hydrocarbons - mainly CH4 - stored in natural hydrate reservoirs suggest the use of natural gas hydrates as an energy resource. However, the combustion of this fossil fuel results in an undesired increase of CO2 in the atmosphere. Therefore, a combination of CH4 production on the one hand and the CO2 sequestration on the other hand seems to be ideal. Several investigations regarding the exchange reaction of CH4 with CO2 using pure methane hydrates and pure CO2 or CO2-N2-mixtures have been performed as laboratory studies in the past. Some showed exchange rates up to 85% and concluded that the driving force of this exchange reaction is the higher stability of CO2 hydrates compared to methane hydrates (e.g. Park et al. 2006). However, natural conditions may differ: natural gas hydrates may contain higher hydrocarbons or H2S, which have significant impact in terms of a higher stability of the mixed hydrate phase compared to pure CH4- and CO2-hydrates. Primary results of our investigations on the exchange reaction of a mixed CH4-C3H8-hydrate with CO2 indicates that although the stability of mixed CH4-C3H8-hydrate is significantly shifted to higher temperatures and lower pressures compared to pure CH4-, mixed CH4-CO2- and pure CO2-hydrates, it changes in the presence of CO2 from a structure II hydrate phase to form a structure I CH4-CO2-hydrate which subsequently transforms to CO2-hydrate. This process starts at the interface between gas and hydrate and continues slowly into the bulk phase. These observation lead to the following conclusions: - The driving force of the exchange reaction is less the stability with respect to temperature and pressure conditions of the hydrate phase but rather the chemical equilibrium state in terms of concentration gradients between hydrate and surrounding gas phase - After the initial formation of a CO2-CH4- or CO2 hydrate layer

  3. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  4. Preservation phenomena of methane hydrate in pore spaces.

    Science.gov (United States)

    Hachikubo, Akihiro; Takeya, Satoshi; Chuvilin, Evgeny; Istomin, Vladimir

    2011-10-21

    Dissociation processes of methane hydrate synthesized with glass beads were investigated using powder X-ray diffraction and calorimetry. Methane hydrate formed with coarse glass beads dissociated quickly at 150-200 K; in this temperature range methane hydrate dissociates at atmospheric pressure. In contrast, methane hydrate formed with glass beads less than a few microns in size showed very high stability up to just below the melting point of ice, even though this temperature is well outside the zone of thermodynamic stability of the hydrate. The rate-determining steps for methane hydrate dissociation within pores are also discussed. The experimental results suggest that methane hydrate existing naturally within the pores of fine particles such as mud at low temperatures would be significantly more stable than expected thermodynamically. This journal is © the Owner Societies 2011

  5. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    Science.gov (United States)

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    BioAggregate™ is a novel material introduced for use as a root-end filling material. It is tricalcium silicate-based, free of aluminium and uses tantalum oxide as radiopacifier. BioAggregate contains additives to enhance the material performance. The purpose of this research was to characterize the un-hydrated and hydrated forms of BioAggregate using a combination of techniques, verify whether the additives if present affect the properties of the set material and compare these properties to those of MTA Angelus™. Un-hydrated and hydrated BioAggregate and MTA Angelus were assessed. Un-hydrated cement was tested for chemical composition, specific surface area, mineralogy and kinetics of hydration. The set material was investigated for mineralogy, microstructure and bioactivity. Scanning electron microscopy, X-ray energy dispersive spectroscopic analysis, X-ray fluorescence spectroscopy, X-ray diffraction and isothermal calorimetry were employed. The specific surface area was investigated using a gas adsorption method with nitrogen as the probe. BioAggregate was composed of tricalcium silicate, tantalum oxide, calcium phosphate and silicon dioxide and was free of aluminium. On hydration, the tricalcium silicate produced calcium silicate hydrate and calcium hydroxide. The former was deposited around the cement grains, while the latter reacted with the silicon dioxide to form additional calcium silicate hydrate. This resulted in reduction of calcium hydroxide in the aged cement. MTA Angelus reacted in a similar fashion; however, since it contained no additives, the calcium hydroxide was still present in the aged cement. Bioactivity was demonstrated by deposition of hydroxyapatite. BioAggregate exhibited a high specific surface area. Nevertheless, the reactivity determined by isothermal calorimetry appeared to be slow compared to MTA Angelus. The tantalum oxide as opposed to bismuth oxide was inert, and tantalum was not leached in solution. BioAggregate exhibited

  6. Trace-Metal Scavenging from Biomass Syngas with Novel High-Temperature Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Gale, Thomas K. [Southern Research Inst., Birmingham, AL (United States); Walsh, Pete M. [Southern Research Inst., Birmingham, AL (United States)

    2007-03-21

    Effective syngas cleanup is one of the remaining major technical challenges yet to be resolved and one that will provide the most benefit to the suite of bio-thermochemical process technologies. Beyond tars and acid gases, which are themselves a significant detriment to reforming catalysts and associated equipment, semi-volatile metals can also damage cleanup systems, catalysts, and contaminate the fungible products. Metals are a difficult challenge to deal with whether using hot-gas filtration or low-temperature processing. Even though most of the metal tends to condense before the barrier filter of hot-gas cleanup systems, some small percentage of the metal (large enough to damage syngas-reforming catalysts, the candle filters themselves, and gas turbine blades) does pass through these barrier filters along with the clean syngas. Low-temperature processing requires expensive measures to remove metals from the process stream. Significant costs are required to remove these metals and if they are not removed before contacting the catalyst, they will significantly reduce the life of the catalyst. One approach to solving the metals problem is to use high-temperature sorbents to capture all of the semi-volatile metals upstream of the barrier filter, which would prevent even small amounts of metal from passing through the filter with the clean syngas. High Temperature sorbents have already been developed that have been shown to be effective at capturing semi-volatile metals from vitiated combustion effluent, i.e., high-temperature flue gas. The objective on this project was to evaluate these same sorbents for their ability to scavenge metals from inert, reducing, and real syngas environments. Subsequently, it was the objective of this project to develop designer sorbents and an injection technology that would optimize the effectiveness of these sorbents at capturing metals from syngas, protecting the barrier filters from damage, and protecting the catalysts and other

  7. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  8. Probing methane hydrate nucleation through the forward flux sampling method.

    Science.gov (United States)

    Bi, Yuanfei; Li, Tianshu

    2014-11-26

    Understanding the nucleation of hydrate is the key to developing effective strategies for controlling methane hydrate formation. Here we present a computational study of methane hydrate nucleation, by combining the forward flux sampling (FFS) method and the coarse-grained water model mW. To facilitate the application of FFS in studying the formation of methane hydrate, we developed an effective order parameter λ on the basis of the topological analysis of the tetrahedral network. The order parameter capitalizes the signature of hydrate structure, i.e., polyhedral cages, and is capable of efficiently distinguishing hydrate from ice and liquid water while allowing the formation of different hydrate phases, i.e., sI, sII, and amorphous. Integration of the order parameter λ with FFS allows explicitly computing hydrate nucleation rates and obtaining an ensemble of nucleation trajectories under conditions where spontaneous hydrate nucleation becomes too slow to occur in direct simulation. The convergence of the obtained hydrate nucleation rate was found to depend crucially on the convergence of the spatial distribution for the spontaneously formed hydrate seeds obtained from the initial sampling of FFS. The validity of the approach is also verified by the agreement between the calculated nucleation rate and that inferred from the direct simulation. Analyzing the obtained large ensemble of hydrate nucleation trajectories, we show hydrate formation at 220 K and 500 bar is initiated by the nucleation events occurring in the vicinity of water-methane interface, and facilitated by a gradual transition from amorphous to crystalline structure. The latter provides the direct support to the proposed two-step nucleation mechanism of methane hydrate.

  9. Investigation of Desiccants and CO2 Sorbents for Exploration Systems 2016-2017

    Science.gov (United States)

    Knox, James C.; Watson, David W.; Giesy, Timothy J.; Cmarik, Gregory E.; Miller, Lee A.

    2017-01-01

    NASA has embarked on the mission to enable humans to explore deep space, including the goal of sending humans to Mars. This journey will require significant developments in a wide range of technical areas as resupply and early return are not possible. Additionally, mass, power, and volume must be minimized for all phases to maximize propulsion availability. Among the critical areas identified for development are life support systems, which will require increases in reliability as well as reduce resource usage. Two primary points for reliability are the mechanical stability of sorbent pellets and recovery of CO2 sorbent productivity after off-nominal events. In this paper, we discuss the present efforts towards screening and characterizing commercially-available sorbents for extended operation in desiccant and CO2 removal beds. With minimized dusting as the primary criteria, a commercial 13X zeolite was selected and tested for performance and risk.

  10. Ionic liquid-functionalized mesoporous sorbents and their use in the capture of polluting gases

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Suk; Koros, William J.; Bhuwania, Nitesh; Hillesheim, Patrick C.; Dai, Sheng

    2016-01-12

    A composite structure for capturing a gaseous electrophilic species, the composite structure comprising mesoporous refractory sorbent particles on which an ionic liquid is covalently attached, wherein said ionic liquid includes an accessible functional group that is capable of binding to said gaseous electrophilic species. In particular embodiments, the mesoporous sorbent particles are contained within refractory hollow fibers. Also described is a method for capturing a gaseous electrophilic species by use of the above-described composite structure, wherein the gaseous electrophilic species is contacted with the composite structure. In particular embodiments thereof, cooling water is passed through the refractory hollow fibers containing the IL-functionalized sorbent particles in order to facilitate capture of the gaseous electrophilic species, and then steam is passed through the refractory hollow fibers to facilitate release of the gaseous electrophilic species such that the composite structure can be re-used to capture additional gas.

  11. Microbial stabilization of sulfur-laden sorbents. Final technical report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Miller, K.W. [Illinois State Univ., Normal, IL (United States); Hillyer, D.

    1993-12-31

    Clean coal technologies that involve limestone for sulfur capture generate lime/limestone products laden with sulfur at various oxidation states. If sulfur is completely stabilized as sulfate, the spent sorbent is ready for commercial utilization as gypsum. However, the presence of reduced sulfur species requires additional processing. Thermal oxidation of reduced sulfur can result in undesirable release of SO{sub 2}. Microbial oxidation might provide an inexpensive and effective alternative. Sorbents laden with reduced forms of sulfur such as sulfide or sulfite can serve as growth substrates for sulfur-oxidizing bacteria, which convert all sulfur to sulfate. The goals of this project are the following: (1) to optimize conditions for sulfate generation from sulfide, thiosulfate, and sulfite; (2) to test and optimize the effectiveness of microbial processing on spent sorbents from flue gas desulfurization, coal gasification, and fluidized bed combustion; (3) to search for hyperalkalinophilic thiobacilli, which would be effective up to pH 11.

  12. Adsorption of Polycyclic Aromatic Hydrocarbons (PAHS from Aqueous Solutions on Different Sorbents

    Directory of Open Access Journals (Sweden)

    Smol Marzena

    2014-12-01

    Full Text Available This paper presents the results of the possibility and effectiveness of PAHs removal from a model aqueous solution, during the sorption on the selected sorbents. Six PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene listed by EPA for the analysis in the environmental samples were determined. Model aqueous solution was prepared with RESTEK 610 mix PAHs standard. After the sorption process, decrease in the concentration of individual hydrocarbons was observed. The removal percentage was dependent on the type of sorbent (quartz sand, mineral sorbent, activated carbon. The highest efficiency (98.1% was observed for activated carbon.. The results shows that the sorption processes can be used in aqueous solutions treatment procedures.

  13. Strategic Design and Optimization of Inorganic Sorbents for Cesium, Strontium and Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Edward J. Maginn

    2009-11-09

    The primary objective of the Notre Dame component of the project was computational in nature. The goal was to provide a design tool for the synthesis of optimized sorbents for the removal of cesium, strontium and actinides from nuclear waste solutions. Molecular modeling enables us to observe and better understand the molecular level interactions that govern the selectivity of specific radionuclides in a particular sorbent. The research focused on the development and validation of a suitable and transferable model for all the cations and ion exchangers of interest, nd then subsequent simulations which determined the siting and mobility of water and cations. Speciic accomplishments include: (1) improving existing intermolecular force fields to accurately model the sorbents of interest; (2) utilizing energy-minimizations and molecular dynamics simulations for structural prediction of CST and niobium-substituted CST materials; (3) determining Na+/water positions in polyoxoniobate materials using molecular dynamics simulations; and (4) developing Hybrid Monte Carlo methods for improved structural prediction.

  14. Adsorption of arsenazo (III due by phosphorus-containing polymer sorbent

    Directory of Open Access Journals (Sweden)

    Alosmanov Rasim M.

    2016-01-01

    Full Text Available Phosphorus-containing polymer sorbent was employed for removal hazardous Arsenazo (III dye from water. The adsorption characteristics were determined by the study at different parameters such as effect of solution pH, effect of initial dye concentration, sorbent dose, phase contact time, and temperature. The equilibrium data were analyzed on the basis of various adsorption isotherm models, namely Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich. The highest monolayer adsorption capacity has been obtained (24.75 mg g-1 at 55°C. Different thermodynamic parameters such as free energy, enthalpy, and entropy have been calculated and it was concluded that when temperature rises, adsorption increases, indicating the endothermic nature of the process. Kinetic parameters were derived by pseudo-first-order, pseudo-second-order and intraparticle kinetic models. Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy were used to characterize the sorbent and also to validate the adsorption mechanism.

  15. Aerosol Formation during the Combustion of Straw with Addition of Sorbents

    DEFF Research Database (Denmark)

    Zeuthen, Frederik Jacob; Jensen, Peter Arendt; Jensen, Jørgen P.

    2007-01-01

    The influence of six sorbents on aerosol formation during the combustion of straw in a 100 MW boiler on a Danish power plant has been studied in full-scale. The following sorbents were studied: ammonium sulfate, monocalcium phosphate, Bentonite, ICA5000, clay, and chalk. Bentonite and ICA5000......, calcium phosphate, Bentonite, ICA5000, and clay. The addition of chalk increased the aerosol mass concentration by 24%. Experiments in a laminar flow aerosol condenser with the six sorbents were carried out in the laboratory using a synthetic flue gas to avoid fluctuations in the alkali feeding...... are mixtures of clay minerals and consist mainly of the oxides from Fe, Al, and Si. The straw used was Danish wheat and seed grass. Measurements were also made with increased flow of primary air. The experiments showed between 46% and 70% reduction in particle mass concentrations when adding ammonium sulfate...

  16. Mechanistic and kinetic studies of high-temperature coal gas desulfurization sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Lew, S.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1991-10-01

    The overall objective of this project was to investigate the properties of and evaluate mixed oxides of zinc and titanium for hot fuel gas desulfurization. Uncombined ZnO was also investigated as a base case. Detailed investigation of the reduction and sulfidation reactions of Zn-Ti-O sorbents was performed. The intrinsic kinetics and the product layer diffusion rates in reduction and sulfidation were determined. Kinetic experiments with sorbents containing various Zn/Ti atomic ratios were performed. Chemical phase and structural transformations were followed by various methods. The results were compared to similar experiments performed with ZnO. The purpose of these experiments was to determine how the presence of titanium dioxide affects the reduction and sulfidation of ZnO. This information would be used to identify and select the sorbent composition that gives the best combination of low reduction rate and acceptable sulfidation performance at temperatures exceeding 600{degree}C. (VC)

  17. Adsorption of Carbon Dioxide, Ammonia, Formaldehyde, and Water Vapor on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is nonregenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for simultaneous carbon dioxide, ammonia, formaldehyde, and water sorption. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also the enhancement of formaldehyde sorption by the presence of ammonia in the gas mixture.

  18. Performance of Amine-Multilayered Solid Sorbents for CO{sub 2} Removal: Effect of Fabrication Variables

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Bingbing; Kish, Vincent; Li, Bingyun; Fauth, Daniel J; Gray, McMahan L; Pennline, Henry W; Richards, George A.

    2011-09-01

    The emission of fossil fuel carbon dioxide (CO{sub 2) to the atmosphere is implicated as the predominant cause of global climate change; therefore, advanced CO{sub 2} capture technologies are of the utmost importance. In this study, innovative amine-multilayered sorbents were fabricated using layer-by-layer (LbL) nanoassembly technology via alternate deposition of a CO{sub 2}-adsorbing amine polymer (e.g. polyethylenimine or PEI) and an oppositely-charged polymer (e.g. polystyrene sulfonate or PSS). We found that the developed sorbents could be used for CO{sub 2} capture and that LbL nanoassembly allows us to engineer their CO{sub 2} capture performance through the fabrication variables (e.g. deposition polymers, deposition media, and number of bilayers). PEI/PSS was found to be the best polymer combination for developing sorbents with relatively high CO{sub 2} capture capacity. The amine-multilayered solid sorbents possessed fine microstructures and may have similar polymer deposition within and on the surface of solid sorbents. These amine-multilayered sorbents had much faster CO{sub 2} desorption rates compared to sorbents prepared using the current PEI-impregnation approach. Such fast CO{sub 2} desorption could make sorbents a good option for CO{sub 2} removal from power plants and even the atmosphere.

  19. Carbon nanocomposite sorbent and methods of using the same for separation of one or more materials from a gas stream

    Science.gov (United States)

    Olson, Edwin S; Pavlish, John H

    2015-04-21

    The present invention relates to carbon nanocomposite sorbents. The present invention provides carbon nanocomposite sorbents, methods for making the same, and methods for separation of a pollutant from a gas that includes that pollutant. Various embodiments provide a method for reducing the mercury content of a mercury-containing gas.

  20. Carbon nanocomposite sorbent and methods of using the same for separation of one or more materials from a gas stream

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Edwin S.; Pavlish, John Henry

    2017-05-30

    The present invention relates to carbon nanocomposite sorbents. The present invention provides carbon nanocomposite sorbents, methods for making the same, and methods for separation of a pollutant from a gas that includes that pollutant. Various embodiments provide a method for reducing the mercury content of a mercury-containing gas.

  1. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature Range During Coal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotis G. Smirniotis

    2007-06-30

    In chapter 1, the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed. In chapter 2, Ca(NO{sub 3}){sub 2} {center_dot} 4H{sub 2}O, CaO, Ca(OH){sub 2}, CaCO{sub 3}, and Ca(CH{sub 3}COO){sub 2} {center_dot} H{sub 2}O were used as precursors for synthesis of CaO sorbents on this work. The sorbents prepared from calcium acetate (CaAc{sub 2}-CaO) resulted in the best uptake characteristics for CO{sub 2}. It possessed higher BET surface area and higher pore volume than the other sorbents. According to SEM images, this sorbent shows 'fluffy' structure, which probably contributes to its high surface area and pore volume. When temperatures were between 550 and 800 C, this sorbent could be carbonated almost completely. Moreover, the carbonation progressed dominantly at the initial short period. Under numerous adsorption-desorption cycles, the CaAc{sub 2}-CaO demonstrated the best reversibility, even under the existence of 10 vol % water vapor. In a 27 cyclic running, the sorbent sustained fairly high carbonation conversion of 62%. Pore size distributions indicate that their

  2. The Relative Influence of Turbulence and Turbulent Mixing on the Adsorption of Mercury within a Gas-Sorbent Suspension

    Science.gov (United States)

    Our previous investigations demonstrated that entrained flow or in-flight adsorption can be a more effective and flexible approach to trace gas adsorption than fixed sorbent beds. The present investigation establishes the turbulent mixing that accompanies sorbent injection is an ...

  3. Phosphate Adsorption using Modified Iron Oxide-based Sorbents in Lake Water: Kinetics, Equilibrium, and Column Tests

    Science.gov (United States)

    Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese (E33/Mn) and silver (E33/AgI and E33/AgII) nanoparticles. Adso...

  4. Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01

    Science.gov (United States)

    Collett, Timothy S.; Boswell, Ray; Cochran, J.R.; Kumar, Pushpendra; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna

    2014-01-01

    The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna-Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna-Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins.

  5. CO{sub 2} Capture from Flue Gas Using Solid Molecular Basket Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Fillerup, Eric; Zhang, Zhonghua; Peduzzi, Emanuela; Wang, Dongxiang; Guo, Jiahua; Ma, Xiaoliang; Wang, Xiaoxing; Song, Chunshan

    2012-08-31

    The objective of this project is to develop a new generation of solid, regenerable polymeric molecular basket sorbent (MBS) for more cost-efficient capture and separation of CO{sub 2} from flue gas of coal-fired power plants. The primary goal is to develop a cost-effective MBS sorbent with better thermal stability. To improve the cost-effectiveness of MBS, we have explored commercially available and inexpensive support to replace the more expensive mesoporous molecular sieves like MCM-41 and SBA- 15. In addition, we have developed some advanced sorbent materials with 3D pore structure such as hexagonal mesoporous silica (HMS) to improve the CO{sub 2} working capacity of MBS, which can also reduce the cost for the whole CO{sub 2} capture process. During the project duration, the concern regarding the desorption rate of MBS sorbents has been raised, because lower desorption rate increases the desorption time for complete regeneration of the sorbent which in turn leads to a lower working capacity if the regeneration time is limited. Thus, the improvement in the thermal stability of MBS became a vital task for later part of this project. The improvement in the thermal stability was performed via increasing the polymer density either using higher molecular weight PEI or PEI cross-linking with an organic compound. Moreover, we have used the computational approach to estimate the interaction of CO{sub 2} with different MBSs for the fundamental understanding of CO{sub 2} sorption, which may benefit the development, design and modification of the sorbents and the process.

  6. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Waysbort, Daniel [Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100 (Israel); McGarvey, David J. [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)], E-mail: david.mcgarvey@us.army.mil; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M. [SAIC, P.O. Box 68, Gunpowder Branch, Aberdeen Proving Ground, MD 21010 (United States); Durst, H. Dupont [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green{sup TM}, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO{sub 4}{sup -2}) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t{sub 1/2} {<=} 4 min), 1:10 for HD (t{sub 1/2} < 2 min with molybdate), and 1:10 for GD (t{sub 1/2} < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  7. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent.

    Science.gov (United States)

    Waysbort, Daniel; McGarvey, David J; Creasy, William R; Morrissey, Kevin M; Hendrickson, David M; Durst, H Dupont

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Greentrade mark, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO(4)(-2)) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t(1/2) < or = 4 min), 1:10 for HD (t(1/2) < 2 min with molybdate), and 1:10 for GD (t(1/2) < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  8. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    Science.gov (United States)

    Knox, James C.; Cmarik, Gregory E.; Watson, David

    2016-01-01

    Design of advanced carbon dioxide removal systems begins with the study of sorbents. Specifically, new CO2 sorbents and desiccants need to be studied to enable greater productivity from existing and future spaceflight systems. This presentation will discuss the studies used as input for selecting future CO2 sorbent materials. Also, the adjoining issues of understanding the effects of water co-adsorption and material selection for desiccant beds will be discussed. Current sorbents for CO2 removal are based on 5A zeolites, but a transition to sorbents derived from 13X will be necessary as CO2 levels in cabin air become leaner. Unfortunately, these 13X zeolites are more susceptible to long-term performance loss due to water co-adsorption than 5A due at achievable regeneration temperatures. A study on how impactful the presence of trace water will be to the cyclic operation of small-scale beds will be discussed. Also, methods to recover the performance of beds in a space environment after a major moisture adsorption event will be discussed. The information obtained from the water co-adsorption studies will play a major part in selecting a CO2 sorbent for advanced removal systems. Pellet structural properties play another major role in the selection process. One factor for long-term, hands-off operation of a system is pellet integrity. Maintaining integrity means preventing pellet fracture and the generation of fines due to various thermal and mechanical means which would eventually clog filters or damage downstream systems. Either of these problems require significant shutdowns and maintenance operations and must be avoided. Therefore, study of high-integrity pellets and design of new pellets will be discussed.

  9. Beverage osmolality as a marker for maintaining appropriate body hydration.

    Science.gov (United States)

    Sadowska1, Anna; Świderski, Franciszek; Rakowska, Rita; Waszkiewicz-Robak, Bożena; Żebrowska-Krasuska, Małgorzata; Dybkowska, Ewa

    Osmolalities can be useful markers for determining whether given beverages are suited for maintaining an adequate hydration of the body. Losing 2% of body water relative to body mass reduces the efficiency of body function when undertaking physical effort by around 20%. Deficiencies in water intakes approaching 5-8% of body mass, double the impairment to the body’s physical and mental functioning, whereas at a level of 10% the body becomes incapable of performing any sort of physical effort. For such reasons the body’s hydration status is vital to its functioning. To asses osmolalities as measured in various types of commercially available mineral waters and non-alcoholic beverages containing different amounts of extracts. Test materials were commercially available mineral waters (of low, medium and high mineral content) along with juices, nectars and drinks that are isotonic, energising and those described as being ‘light’ and sparkling. Osmolality was measured by the 800CL Osmometer instrument from TridentMed whilst the RL-type refractometer was used for determining extract values. Isotonic drinks were found to have the same osmotic pressures as bodily fluids at 275 – 295 mOsm/kg water. The osmotic pressure in mineral waters depended on the extent of mineralisation and ranged from 13 mOsm / kg water (low mineral content) to 119 mOsm/kg water (high mineral content). Low osmolalities were also found in ‘light’ drinks (from 29.3 to 34 mOsm/kg water). Juices, nectars, energising drinks and colas typically have high sugar contents and have high osmolalities ranging 492 – 784 mOsm / kg water. Statistical analysis demonstrated significant associations (p drinks according to similar osmolalities and extract content. Osmolalities measured in beverages are a marker that permits drinks to be classified into groups according to their tonicity and their ability to ensure that the body is properly hydrated; this becoming vital in cases when the body requires

  10. Data summary report for M.W. Kellogg Z-sorb sorbent tests. CRADA 92-008 Final report

    Energy Technology Data Exchange (ETDEWEB)

    Everett, C E; Monaco, S J

    1994-05-01

    A series of tests were undertaken from August 6, 1992 through July 6, 1993 at METC`s High Pressure Bench-Scale Hot Gas Desulfurization Unit to support a Cooperative Research and Development Agreement (CRADA) between METC`s Sorbent Development Cluster and M.W. Kellogg. The M.W. Kellogg Company is currently developing a commercial offering of a hot gas clean-up system to be used in Integrated Gasification Combined Cycle (IGCC) systems. The intent of the CRADA agreement was to identify a suitable zinc-based desulfurization sorbent for the Sierra Pacific Power Company Clean Coal Technology Project, to identify optimum operating conditions for the sorbent, and to estimate potential sorbent loss per year. This report presents results pertaining to Phillips Petroleum`s Z-Sorb III sorbent.

  11. Modeling data of copper(II) sorption onto the composite sorbent based on cation exchanger and tin(IV) hydroxide

    Science.gov (United States)

    Ikanina, Elena V.; Kalyaeva, Mariya I.; Markov, Vyacheslav F.

    2017-09-01

    The methodology of stepwise synthesis of the composite sorbent based on cation exchanger and tin(IV) hydroxide was demonstrated. The results of copper(II) sorption onto the composite sorbent are presented. Langmuir, Freundlich and Temkin adsorption isotherms were used in mathematical modeling of the sorption data. The Langmuir model most accurately describes the sorption process. The constants of the Langmuir model and the specific surface area of the composite sorbent were defined. Granules of the composite sorbent were studied by scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDXMA). The distribution coefficients of copper(II) in the composite sorbent and the sorption degree from CuSO4 aqueous solutions of various concentrations were computed.

  12. DEVELOPMENT OF A HYDROGEN MORDENITE SORBENT FOR THE CAPTURE OF KRYPTON FROM USED NUCLEAR FUEL REPROCESSING OFF-GAS STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell Greenhalgh; Troy G. Garn; Jack D. Law

    2014-04-01

    A novel new sorbent for the separation of krypton from off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A hydrogen mordenite powder was successfully incorporated into a macroporous polymer binder and formed into spherical beads. The engineered form sorbent retained the characteristic surface area and microporosity indicative of mordenite powder. The sorbent was evaluated for krypton adsorption capacities utilizing thermal swing operations achieving capacities of 100 mmol of krypton per kilogram of sorbent at a temperature of 191 K. A krypton adsorption isotherm was also obtained at 191 K with varying krypton feed gas concentrations. Adsorption/desorption cycling effects were also evaluated with results indicating that the sorbent experienced no decrease in krypton capacity throughout testing.

  13. Frontal dynamics of erythromycin sorption on monolithic molecularly imprinted polymer sorbents

    Science.gov (United States)

    Garkushina, I. S.; Polyakova, I. V.; Pisarev, O. A.

    2017-11-01

    The effect the flow rate of a mobile phase has on the frontal dynamics of antibiotic erythromycin sorption by monolithic molecularly imprinted polymeric sorbents based on 2-hydroxyethyl methacrylate and ethylene glycol dimethacrylate and their non-imprinted analog is studied. It is shown that erythromycin sorption proceeds in both the interglobular and intraglobular space of monolithic matrices, and the dynamic capacity of sorption can be regulated by changing the time of the experiment. The mobile phase flow rate at which the maximum specific bonding of the antibiotic by molecularly imprinted monolithic sorbents is observed is determined.

  14. Effects of O{sub 2} and SO{sub 2} on the Capture Capacity of a Primary-Amine Based Polymeric CO{sub 2} Sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, Alexander P; Kitchin, John R

    2013-08-01

    Post combustion CO{sub 2} capture is most commonly carried out using an amine solution that results in a high parasitic energy cost in the stripper unit due to the need to heat the water which comprises a majority of the amine solution. It is also well known that amine solvents suffer from stability issues due to amine leaching and poisoning by flue gas impurities. Solid sorbents provide an alternative to solvent systems that would potentially reduce the energy penalty of carbon capture. However, the cost of using a particular sorbent is greatly affected by the usable lifetime of the sorbent. This work investigated the stability of a primary amine-functionalized ion exchange resin in the presence of O{sub 2} and SO{sub 2}, both of which are constituents of flue gas that have been shown to cause degradation of various amines in solvent processes. The CO{sub 2} capture capacity was measured over multiple capture cycles under continuous exposure to two simulated flue gas streams, one containing 12 vol% CO{sub 2}, 4% O{sub 2}, 84% N{sub 2}, and the other containing 12.5 vol% CO{sub 2}, 4% O{sub 2}, 431 ppm SO{sub 2}, balance N{sub 2} using a custom-built packed bed reactor. The resin maintained its CO{sub 2} capture capacity of 1.31 mol/kg over 17 capture cycles in the presence of O{sub 2} without SO{sub 2}. However, the CO{sub 2} capture capacity of the resin decreased rapidly under exposure to SO{sub 2} by an amount of 1.3 mol/kg over 9 capture cycles. Elemental analysis revealed the resin adsorbed 1.0 mol/kg of SO{sub 2}. Thermal regeneration was determined to not be possible. The poisoned resin was, however, partially regenerated with exposure to 1.5M NaOH for 3 days resulting in a 43% removal of sulfur, determined through elemental analysis, and a 35% recovery of CO{sub 2} capture capacity. Evidence was also found for amine loss upon prolonged (7 days) continuous exposure to high temperatures (120 C) in air. It is concluded that desulfurization of the flue gas

  15. Effects of hydration on blood rheology.

    Science.gov (United States)

    Vlastos, George A; Tangney, Christine C; Rosenson, Robert S

    2003-01-01

    This study investigated the impact of oral fluid intake on blood rheology of 17 healthy adults following a 12-14 hour overnight fast from food and drink. An oral fluid load of 500 ml was consumed every 30 minutes for 2 hours. Blood viscosity values at shear rates of 1, 10 and 100 s(-1) were reduced (p<0.05 to p<0.01) at 30 and 120 minutes following hydration; however, these differences were not significant after hematocrit correction. With fluid intake, both uncorrected and corrected viscous component of blood viscoelasticity at oscillatory shear rate of 1 s(-1) and at a constant frequency of 2 Hz were reduced (p<0.05 to p<0.001) at all time points as compared to fasting values. The corrected elastic component of blood viscoelasticity increased 90 minutes after hydration (p<0.05). An overnight fast is accompanied by rheological abnormalities that are altered by fluid intake.