Sample records for rapidly heated forming

  1. Sheet metal forming using rapid prototyped tooling (United States)

    Park, Young-Bin

    The demand for rapid, low-cost die fabrication and modification technology is greater than ever in sheet metal forming industry. One category of rapid tooling technology involves the application of advanced polymers and composites to fabricate metal forming dies. Despite their advantages in lead time and cost reductions, polymer dies for sheet metal forming applications have several drawbacks. Due to their lack of strength as compared to conventional die materials, the use of polymer dies is often limited to prototype or short-run production. In addition, because the mechanisms by which they fail are not fully understood, the dies are designed on the basis of experience and intuition. The research (1) characterized the mechanical behavior of an advanced polymer composite tooling material, (2) developed a method to predict the failure mode and the life of a polymer die, and (3) established optimal die design guidelines. The focus was on rapid prototyped, aluminum trihydrate(ATH)-filled, polyurethane-based dies in sheet metal forming. The study involved the determination of dominant process parameters based on the finite element analyses of 90° V-die bending and cylindrical cup drawing processes. The effects of process parameters on stress distribution in the die provided guidelines to the modification of die design for achieving the desired die life. The presented parametric study lays the groundwork for providing reliable tool failure prediction and design optimization guidelines for advanced polymer tooling materials in metal forming. In addition, the failure mechanisms were investigated to predict the failure mode and the fatigue life of the die. To establish a fundamental understanding of the fatigue behavior of the polyurethane-based die material, extensive material tests were performed, the microstructure was studied, and the fatigue properties were identified experimentally. The test data were incorporated into the local stress-based fatigue analysis to

  2. Rapid heating of matter using high power lasers

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Woosuk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This slide presentation describes motivation (uniform and rapid heating of a target, opportunity to study warm dense matter, study of nuclear fusion reactions), rapid heating of matter with intense laser-driven ion beams, visualization of the expanding warm dense gold and diamond, and nuclear fusion experiments using high power lasers (direct heating of deuterium spheres (radius ~ 10nm) with an intense laser pulse.

  3. Rapid Heat Treatment of Aluminum High-Pressure Diecastings (United States)

    Lumley, R. N.; Polmear, I. J.; Curtis, P. R.


    Recently, it has been demonstrated that common high-pressure diecasting (HPDC) alloys, such as those based on the Al-Si-Cu and Al-Si-Mg-(Cu) systems, may be successfully heat treated without causing surface blistering or dimensional instability. In some compositions, the capacity to exploit age hardening may allow the proof stress values to be doubled when compared to the as-cast condition. This heat treatment procedure involves the use of severely truncated solution treatment cycles conducted at lower than normal temperatures, followed by quenching and natural or artificial aging. The potential therefore exists to develop and evaluate secondary HPDC alloys designed specifically for rapid heat treatment, while still displaying high castability. This article reports results of an experimental program in which responses of various alloy compositions to age hardening have been investigated with the primary aim of further reducing the duration and cost of the heat treatment cycle while maintaining high tensile properties. Composition ranges have been established for which values of 0.2 pct proof stress exceeding 300 MPa ( i.e., increases of ~100 pct above as-cast values) can be achieved using a procedure that involves a total time for solution treatment plus age hardening of only 30 minutes. This rapid aging behavior is shown to be related to precipitation of the complex Q' phase, which forms primarily when Mg contents of the alloys are above ~0.2 wt pct.

  4. Numerical Methods for Plate Forming by Line Heating

    DEFF Research Database (Denmark)

    Clausen, Henrik Bisgaard


    Line heating is the process of forming originally flat plates into a desired shape by means of heat treatment. Parameter studies are carried out on a finite element model to provide knowledge of how the process behaves with varying heating conditions. For verification purposes, experiments are ca...... are carried out; one set of experiments investigates the actual heat flux distribution from a gas torch and another verifies the validty of the FE calculations. Finally, a method to predict the heating pattern is described....

  5. Thermodynamic properties of pulverized coal during rapid heating devolatilization processes

    Energy Technology Data Exchange (ETDEWEB)

    Proscia, W.M.; Freihaut, J.D. [United Technologies Research Center, E. Hartford, CT (United States); Rastogi, S.; Klinzing, G.E. [Univ. of Pittsburg, PA (United States)


    The thermodynamic properties of coal under conditions of rapid heating have been determined using a combination of UTRC facilities including a proprietary rapid heating rate differential thermal analyzer (RHR-DTA), a microbomb calorimeter (MBC), an entrained flow reactor (EFR), an elemental analyzer (EA), and a FT-IR. The total heat of devolatilization, was measured for a HVA bituminous coal (PSOC 1451D, Pittsburgh No. 8) and a LV bituminous coal (PSOC 1516D, Lower Kittaning). For the HVA coal, the contributions of each of the following components to the overall heat of devolatilization were measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars. Morphological characterization of coal and char samples was performed at the University of Pittsburgh using a PC-based image analysis system, BET apparatus, helium pcynometer, and mercury porosimeter. The bulk density, true density, CO{sub 2} surface area, pore volume distribution, and particle size distribution as a function of extent of reaction are reported for both the HVA and LV coal. Analyses of the data were performed to obtain the fractal dimension of the particles as well as estimates for the external surface area. The morphological data together with the thermodynamic data obtained in this investigation provides a complete database for a set of common, well characterized coal and char samples. This database can be used to improve the prediction of particle temperatures in coal devolatilization models. Such models are used both to obtain kinetic rates from fundamental studies and in predicting furnace performance with comprehensive coal combustion codes. Recommendations for heat capacity functions and heats of devolatilization for the HVA and LV coals are given. Results of sample particle temperature calculations using the recommended thermodynamic properties are provided.

  6. Rapid Nanoparticle Synthesis by Magnetic and Microwave Heating

    Directory of Open Access Journals (Sweden)

    Viktor Chikan


    Full Text Available Traditional hot-injection (HI syntheses of colloidal nanoparticles (NPs allows good separation of the nucleation and growth stages of the reaction, a key limitation in obtaining monodisperse NPs, but with limited scalability. Here, two methods are presented for obtaining NPs via rapid heating: magnetic and microwave-assisted. Both of these techniques provide improved engineering control over the separation of nucleation and growth stages of nanomaterial synthesis when the reaction is initiated from room temperature. The advantages of these techniques with preliminary data are presented in this prospective article. It is shown here that microwave assisted heating could possibly provide some selectivity in activating the nanomaterial precursor materials, while magnetic heating can produce very tiny particles in a very short time (even on the millisecond timescale, which is important for scalability. The fast magnetic heating also allows for synthesizing larger particles with improved size distribution, therefore impacting, not only the quantity, but the quality of the nanomaterials.

  7. Synthesis of CVD-graphene on rapidly heated copper foils. (United States)

    Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Hwangbo, Yun; Yoon, Jong-Hyuk; Lee, Eun-Kyu; Ryu, Jaechul; Lee, Hak-Joo; Cho, Seungmin; Lee, Seung-Mo


    Most chemical vapor deposition (CVD) systems used for graphene growth mainly employ convection and radiation heat transfer between the heating source and the metal catalyst in order to reach the activation temperature of the reaction, which in general leads to a long synthesis time and poor energy efficiency. Here, we report a highly time- and energy-efficient CVD setup, in which the metal catalyst (Cu) is designed to be physically contacted with a heating source to give quick heat transfer by conduction. The induced conduction heating enabled the usual effects of the pretreatment and annealing of Cu (i.e., annihilation of surface defects, impurities and contaminants) to be achieved in a significantly shorter time compared to conventional CVD. Notably, the rapid heating was observed to lead to larger grains of Cu with high uniformity as compared to the Cu annealed by conventional CVD, which are believed to be beneficial for the growth of high quality graphene. Through this CVD setup, bundles of high quality (∼252 Ω per square) and large area (over 16 inch) graphenes were able to be readily synthesized in 40 min in a significantly efficient way. When considering ease of scalability, high energy effectiveness and considerable productivity, our method is expected to be welcomed by industrialists.

  8. Diagnostics for mechanical heating in star-forming galaxies

    NARCIS (Netherlands)

    Kazandjian, Mher V.


    In this thesis the molecular emission of species such as CO, HCN and HNC and HCO+ are used to probe and quantify mechanical heating in star-forming galaxies. In the first part of the thesis photo-dissociation models are used to find a diagnostic of mechanical heating at the level of molecular

  9. Advances in rapid cooling treatment for heat stroke

    Directory of Open Access Journals (Sweden)

    Jia-jia ZHAO


    Full Text Available Heat stroke is a life-threatening disease characterized clinically by central nervous system dysfunction and severe hyperthermia (core temperature rises to higher than 40℃. The unchecked rise of body core temperature overwhelms intrinsic or extrinsic heat generation mechanism, thus overwhelms homoeostatic thermoregulation. Hyperthermia causes cellular and organ dysfunction with progressive exacerbation resulting in multi-organ failure and death. Rapid cooling to reduce core temperature as quickly as possible is the primary and most effective treatment, as it has been shown that the major determinant of outcome in heatstroke is the degree and duration of hyperthermia. If suppression of body temperature is delayed, the fatality rate will be elevated. Several cooling methods are available, including physical cooling by conduction, convection and evaporation with ice/cold water immersion, internal cooling by invasive methods such as hemofiltration, intravascular cooling, cold water gastric and rectal lavage, and cooling with drugs. It is crucial to formulate a scientific and reasonable strategy for the subsequent treatment in accordance with the patient's physical condition, the condition of cooling equipment, and the manipulator's proficiency in cooling methods and equipment usage. This article reviews the domestic and international advances in study of rapid and efficient cooling measures for heat stroke. DOI: 10.11855/j.issn.0577-7402.2014.10.17

  10. Versatile and Rapid Plasma Heating Device for Steel and Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, G.S.


    The main objective of the research was to enhance steel and aluminum manufacturing with the development of a new plasma RPD device. During the project (1) plasma devices were manufactured (2) testing for the two metals were carried out and (3) market development strategies were explored. Bayzi Corporation has invented a Rapid Plasma Device (RPD) which produces plasma, comprising of a mixture of ionized gas and free electrons. The ions, when they hit a conducting surface, deposit heat in addition to the convective heat. Two generic models called the RPD-Al and RPD-S have been developed for the aluminum market and the steel market. Aluminum melting rates increased to as high as 12.7 g/s compared to 3 g/s of the current industrial practice. The RPD melting furnace operated at higher energy efficiency of 65% unlike most industrial processes operating in the range of 13 to 50%. The RPD aluminum melting furnace produced environment friendly cleaner melts with less than 1% dross. Dross is the residue in the furnace after the melt is poured out. Cast ingots were extremely clean and shining. Current practices produce dross in the range of 3 to 12%. The RPD furnace uses very low power ~0.2 kWh/Lb to melt aluminum. RPDs operate in one atmosphere using ambient air to produce plasma while the conventional systems use expensive gases like argon, or helium in air-tight chambers. RPDs are easy to operate and do not need intensive capital investment. Narrow beam, as well as wide area plasma have been developed for different applications. An RPD was developed for thermal treatments of steels. Two different applications have been pursued. Industrial air hardening steel knife edges were subjected to plasma beam hardening. Hardness, as measured, indicated uniform distribution without any distortion. The biggest advantage with this method is that the whole part need not be heated in a furnace which will lead to oxidation and distortion. No conventional process will offer localized

  11. Firearm suppressor having enhanced thermal management for rapid heat dissipation (United States)

    Moss, William C.; Anderson, Andrew T.


    A suppressor is disclosed for use with a weapon having a barrel through which a bullet is fired. The suppressor has an inner portion having a bore extending coaxially therethrough. The inner portion is adapted to be secured to a distal end of the barrel. A plurality of axial flow segments project radially from the inner portion and form axial flow paths through which expanding propellant gasses discharged from the barrel flow through. The axial flow segments have radially extending wall portions that define sections which may be filled with thermally conductive material, which in one example is a thermally conductive foam. The conductive foam helps to dissipate heat deposited within the suppressor during firing of the weapon.


    Directory of Open Access Journals (Sweden)

    E. V. Toropov


    Full Text Available The matters of determination of rational parameters of isolation coverings for heat aggregates, functioning in metallurgical, machine-building and industrial complexes, are examined in the article. Recommendations on choice of geometrical parameters of isolation of complicated form, providing obtaining of energy saving effect at functioning of high-temperature aggregates, are offered.

  13. Rapid heating effects on grain-size, texture and magnetic properties ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 7. Rapid heating effects on ... The rapid heating effects on the microstructure, texture and magnetic properties of 3% Si nonoriented electrical steel has been investigated through optical microscopy, X-ray diffraction and Epstein frame. The results show that ...

  14. Heat Treatment Development for a Rapidly Solidified Heat Resistant Cast Al-Si Alloy (United States)

    Kasprzak, W.; Chen, D. L.; Shaha, S. K.


    Existing heat treatment standards do not properly define tempers for thin-walled castings that solidified with high solidification rates. Recently emerged casting processes such as vacuum high pressure die casting should not require long solution treatment times due to the fine microstructures arising from rapid solidification rates. The heat treatment studies involving rapidly solidified samples with secondary dendrite arm spacing between 10 and 35 μm were conducted for solution times between 30 min and 9 h and temperatures of 510 and 525 °C and for various aging parameters. The metallurgical analysis revealed that an increase in microstructure refinement could enable a reduction of solution time up to 88%. Solution treatment resulted in the dissolution of Al2Cu and Al5Mg8Si6Cu2, while Fe- and TiZrV-based phases remained partially in the microstructure. The highest strength of approximately 351 ± 9.7 and 309 ± 3.4 MPa for the UTS and YS, respectively, was achieved for a 2-step solution treatment at 510 and 525 °C in the T6 peak aging conditions, i.e., 150 °C for 100 h. The T6 temper did not yield dimensionally stable microstructure since exceeding 250 °C during in-service operation could result in phase transformation corresponding to the over-aging reaction. The microstructure refinement had a statistically stronger effect on the alloy strength than the increase in solutionizing time. Additionally, thermal analysis and dilatometer results were presented to assess the dissolution of phases during solution treatment, aging kinetics as well as dimensional stability.

  15. Structural and compositional properties of CZTS thin films formed by rapid thermal annealing of electrodeposited layers (United States)

    Lehner, J.; Ganchev, M.; Loorits, M.; Revathi, N.; Raadik, T.; Raudoja, J.; Grossberg, M.; Mellikov, E.; Volobujeva, O.


    In this work Cu2ZnSnS4 (CZTS) thin films were formed by rapid thermal annealing (RTA) of sequentially electrodeposited Cu-Zn and Sn films in 5% H2S containing atmosphere. Six different thermal profiles were used in the experiments. In three of these, the temperature ramping up was varied, while the variable in the other three profiles was the cooling down rate. The optimising parameters for RTA of electrodeposited films were found and annealed films were characterised by X-ray diffraction (XRD), micro-Raman spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM+EDS). The material parameters such as lattice strain and crystallite size were also determined and the influence of annealing temperature and heating rate on these parameters was discussed.The pathway of MoS2 formation was investigated.

  16. Rapid heating of solid density material by a petawatt laser (United States)

    Evans, R. G.; Clark, E. L.; Eagleton, R. T.; Dunne, A. M.; Edwards, R. D.; Garbett, W. J.; Goldsack, T. J.; James, S.; Smith, C. C.; Thomas, B. R.; Clarke, R.; Neely, D. J.; Rose, S. J.


    Time-resolved x-ray spectra from solid targets irradiated by the VULCAN Petawatt laser focused to 1020Wcm-2 show that material at solid density is heated to temperatures above 500 eV to a depth of about 15 μm and for a duration of more than 30 ps. Modeling with the implicit hybrid plasma code LSP shows that the heating is sensitive to the laser prepulse through resistive inhibition of the laser accelerated electrons in the blow off layer.

  17. Coupled heating/forming optimization of knitted reinforced composites (United States)

    Pancrace, Johann

    The feasibility of knitted fabric reinforcement for highly flexible composites has been investigated for the thermoforming process. The composite sheets were made through compression molding before being shaped. We used thermoplastic elastomers as matrices: Thermoplastic Elastomers and Thermoplastic Olefins. The knit reinforcement was provided by jersey knitted fabrics of polyester fibers. We first introduced the fundamentals involved in the study. The manufacturing is presented through compression molding and thermoforming. The latter is a two-step process: IR heating and plug/pressure assisted deformations. For the IR heating phase, several material properties have been characterized: the emissivity of matrices, absorption, reflection and transmission of radiations in the composite structure have been studied. We particularly paid attention to the reflection on the composite surfaces. The non-reflected or useful radiations leading to the heating are quantified and simulated for three emitter-composite configurations. It has been found that the emitter temperatures and the angle of incidence have significant roles in the IR heating phase. Thermal properties such as calorific capacity and thermal conductivity of the composites were also presented. Thermograms were carried out with an IR camera. Equipment and Thermogram acquisitions were both presented. Optimization of emitters was performed for a three emitter system. The objective function method has been illustrated. Regarding mechanical purposes, the characterizations of the matrices, reinforcements and flexible composites have been carried out. The studied loadings were uniaxial traction, pure shear and biaxial inflation. For the uniaxial extension, both the reinforcement and the composite were found highly anisotropic regarding the orientation of the loading toward the coursewise of the fabric. The resulting strains and stresses to rupture are also found anisotropic. However, for pure shear loading we observed

  18. Rapid IV Versus Oral Rehydration: Responses to Subsequent Exercise Heat Stress

    National Research Council Canada - National Science Library

    Kenefick, Robert W; O'Moore, Kathleen M; Mahood, Nicholas V; Castellani, John W


    This study sought to determine the effect of rapid intravenous (IV) versus oral (ORAL) rehydration immediately after dehydration, on cardiovascular, thermoregulatory, and perceptual responses during subsequent exercise in the heat.

  19. Rapid shift in thermal resistance between generations through maternal heat exposure

    NARCIS (Netherlands)

    Zizzari, Z.V.; Ellers, J.


    Given the current rapid climate change, understanding the mechanisms underlying heat tolerance and its plasticity is an important goal of global change biology. Soil fauna communities are especially vulnerable because of their limited dispersal ability. It is generally recognized that

  20. Optical heating and rapid transformation of functionalized fullerenes. (United States)

    Krishna, Vijay; Stevens, Nathanael; Koopman, Ben; Moudgil, Brij


    Irradiating single-walled carbon nanotubes can lead to heat generation or ignition. These processes could be used in medical and industrial applications, but the poor solvent compatibility and high aspect ratios of nanotubes have led to concerns about safety. Here, we show that certain functionalized fullerenes, including polyhydroxy fullerenes (which are known to be environmentally safe and to have therapeutic properties) are heated or ignited by exposure to low-intensity (fullerenes and other functionalized fullerenes can be transformed into single-walled nanotubes, multiwalled nanotubes and carbon onions without the presence of a catalyst by exposure to low-intensity laser irradiation in an oxygen-free environment. To demonstrate the potential usefulness of these processes in applications, we disrupted animal cells dosed with polyhydroxy fullerenes by exposing them to a near-infrared laser for a few seconds, and also ignited an explosive charge in contact with a particle of carboxy fullerenes.

  1. Heat of Hydration of Low Activity Cementitious Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Nasol, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulants of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.

  2. Transient Response to Rapid Cooling of a Stainless Steel Sodium Heat Pipe (United States)

    Mireles, Omar R.; Houts, Michael G.


    Compact fission power systems are under consideration for use in long duration space exploration missions. Power demands on the order of 500 W, to 5 kW, will be required for up to 15 years of continuous service. One such small reactor design consists of a fast spectrum reactor cooled with an array of in-core alkali metal heat pipes coupled to thermoelectric or Stirling power conversion systems. Heat pipes advantageous attributes include a simplistic design, lack of moving parts, and well understood behavior. Concerns over reactor transients induced by heat pipe instability as a function of extreme thermal transients require experimental investigations. One particular concern is rapid cooling of the heat pipe condenser that would propagate to cool the evaporator. Rapid cooling of the reactor core beyond acceptable design limits could possibly induce unintended reactor control issues. This paper discusses a series of experimental demonstrations where a heat pipe operating at near prototypic conditions experienced rapid cooling of the condenser. The condenser section of a stainless steel sodium heat pipe was enclosed within a heat exchanger. The heat pipe - heat exchanger assembly was housed within a vacuum chamber held at a pressure of 50 Torr of helium. The heat pipe was brought to steady state operating conditions using graphite resistance heaters then cooled by a high flow of gaseous nitrogen through the heat exchanger. Subsequent thermal transient behavior was characterized by performing an energy balance using temperature, pressure and flow rate data obtained throughout the tests. Results indicate the degree of temperature change that results from a rapid cooling scenario will not significantly influence thermal stability of an operating heat pipe, even under extreme condenser cooling conditions.

  3. Simulation of Microstructure during Laser Rapid Forming Solidification Based on Cellular Automaton

    Directory of Open Access Journals (Sweden)

    Zhi-jian Wang


    Full Text Available The grain microstructure of molten pool during the solidification of TC4 titanium alloy in the single point laser cladding was investigated based on the CAFE model which is the cellular automaton (CA coupled with the finite element (FE method. The correct temperature field is the prerequisite for simulating the grain microstructure during the solidification of the molten pool. The model solves the energy equation by the FE method to simulate the temperature distribution in the molten pool of the single point laser cladding. Based on the temperature field, the solidification microstructure of the molten pool is also simulated with the CAFE method. The results show that the maximum temperature in the molten pool increases with the laser power and the scanning rate. The laser power has a larger influence on the temperature distribution of the molten pool than the scanning rate. During the solidification of the molten pool, the heat at the bottom of the molten pool transfers faster than that at the top of the molten pool. The grains rapidly grow into the molten pool, and then the columnar crystals are formed. This study has a very important significance for improving the quality of the structure parts manufactured through the laser cladding forming.

  4. Self-consistent viscous heating of rapidly compressed turbulence (United States)

    Campos, Alejandro; Morgan, Brandon; Olson, Britton; Greenough, Jeffrey


    Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the flow evolution, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As described in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous energy transfer. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Numerical Methods for Plate Forming by Line Heating

    DEFF Research Database (Denmark)

    Clausen, Henrik Bisgaard


    Few researchers have addressed so far the topic Line Heating in the search for better control of the process. Various methods to help understanding the mechanics have been used, including beam analysis approximation, equivalent force calculation and three-dimensional finite element analysis. I...... consider here finite element methods to model the behaviour and to predict the heating paths....

  6. Forming and maintaining a heat engine for quantum biology. (United States)

    Matsuno, Koichiro


    Chemical reactions upholding biological functions and structures are the process of measurement taking place among the participating chemical reactants. Chemical reactions occurring in thermal environments are either endothermic or exothermic. In particular, exothermic reactions that can live with temperature gradients of exogenous origin could potentially be competent enough to synthesize a robust quantum as a heat engine. Molecular organizations leading to the origin of the phenomenon of life might have been associated with the emergence of a quantum coherence embodied in a robust heat engine feeding on quantum decoherence. Evolutionary maintenance of a robust quantum heat engine, once appeared, can further be empowered by the build-up of temperature gradients of endogenous origin. Biology enriches the repertoire of quantum mechanics so as to include a robust heat engine as a legitimate member of a quantum in addition to the already established member of a quantum including an atom, molecule, and macromolecule.

  7. Subsampling phase retrieval for rapid thermal measurements of heated microstructures. (United States)

    Taylor, Lucas N; Talghader, Joseph J


    A subsampling technique for real-time phase retrieval of high-speed thermal signals is demonstrated with heated metal lines such as those found in microelectronic interconnects. The thermal signals were produced by applying a current through aluminum resistors deposited on soda-lime-silica glass, and the resulting refractive index changes were measured using a Mach-Zehnder interferometer with a microscope objective and high-speed camera. The temperatures of the resistors were measured both by the phase-retrieval method and by monitoring the resistance of the aluminum lines. The method used to analyze the phase is at least 60× faster than the state of the art but it maintains a small spatial phase noise of 16 nm, remaining comparable to the state of the art. For slowly varying signals, the system is able to perform absolute phase measurements over time, distinguishing temperature changes as small as 2 K. With angular scanning or structured illumination improvements, the system could also perform fast thermal tomography.

  8. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating (United States)

    Felker, Daniel L.; Burggraf, Larry W.


    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  9. Setting Mechanical Properties of High Strength Steels for Rapid Hot Forming Processes. (United States)

    Löbbe, Christian; Hering, Oliver; Hiegemann, Lars; Tekkaya, A Erman


    Hot stamping of sheet metal is an established method for the manufacturing of light weight products with tailored properties. However, the generally-applied continuous roller furnace manifests two crucial disadvantages: the overall process time is long and a local setting of mechanical properties is only feasible through special cooling techniques. Hot forming with rapid heating directly before shaping is a new approach, which not only reduces the thermal intervention in the zones of critical formability and requested properties, but also allows the processing of an advantageous microstructure characterized by less grain growth, additional fractions (e.g., retained austenite), and undissolved carbides. Since the austenitization and homogenization process is strongly dependent on the microstructure constitution, the general applicability for the process relevant parameters is unknown. Thus, different austenitization parameters are analyzed for the conventional high strength steels 22MnB5, Docol 1400M, and DP1000 in respect of the mechanical properties. In order to characterize the resulting microstructure, the light optical and scanning electron microscopy, micro and macro hardness measurements, and the X-ray diffraction are conducted subsequent to tensile tests. The investigation proves not only the feasibility to adjust the strength and ductility flexibly, unique microstructures are also observed and the governing mechanisms are clarified.

  10. The influence of aging and diabetes on heat transfer characteristics of the skin to a rapidly applied heat source. (United States)

    Petrofsky, Jerrold; Lee, Haneul; Trivedi, Moxi; Hudlikar, Akshay N; Yang, Chia-hao; Goraksh, Neha; Alshammari, Faris; Mohanan, Mitali; Soni, Janhavi; Agilan, Brindha; Pai, Nikhila; Chindam, Tirupathi; Murugesan, Vengatesh; Yim, Jong Eun; Katrak, Vahishta


    Numerous studies have examined the blood flow of the skin at rest and in response to sustained heat and shown that, in older people and people with diabetes, the skin blood flow response to heat is diminished compared to younger people. It is not sustained heat, however, that usually causes burns; it is a more rapid application of heat. Ten younger subjects, 10 older subjects, and 10 subjects with diabetes were examined before and after applying a water-filled thermode to the skin above the quadriceps muscle to observe the changes in skin temperature and skin blood flow and the ability of the skin to absorb heat after a 2-min heat exposure with water at 44°C. Skin temperature rose from 31.2°C at rest to 38.3°C after 2 min of heat application in all subjects (P > 0.05 between groups). The calories required in the younger group of subjects was 2.26 times the calories required in the older group of subjects for the same change in skin temperature and 13.8 times the calories needed to increase skin temperature in the subjects with diabetes. Furthermore, the blood flow at rest was lower in people with diabetes than older subjects and both groups less than that seen in younger subjects. The blood flow response to heat was slower in the subjects with diabetes compared to the older subjects and much slower than that seen in the younger subjects. Reduced skin blood flow of older and subjects with diabetes, decreased thickness of the dermal layer, and increased subcutaneous fat, as well as damage to transient receptor potential vanilloid 1 receptors, may account for some of the differences between the groups.

  11. Improved identification and quantitation of mature endogenous peptides in the rodent hypothalamus using a rapid conductive sample heating system. (United States)

    Yang, Ning; Anapindi, Krishna D B; Romanova, Elena V; Rubakhin, Stanislav S; Sweedler, Jonathan V


    Measurement, identification, and quantitation of endogenous peptides in tissue samples by mass spectrometry (MS) contribute to our understanding of the complex molecular mechanisms of numerous biological phenomena. For accurate results, it is essential to arrest the postmortem degradation of ubiquitous proteins in samples prior to performing peptidomic measurements. Doing so ensures that the detection of endogenous peptides, typically present at relatively low levels of abundance, is not overwhelmed by protein degradation products. Heat stabilization has been shown to inactivate the enzymes in tissue samples and minimize the presence of protein degradation products in the subsequent peptide extracts. However, the efficacy of different heat treatments to preserve the integrity of full-length endogenous peptides has not been well documented; prior peptidomic studies of heat stabilization methods have not distinguished between the full-length (mature) and numerous truncated (possible artifacts of sampling) forms of endogenous peptides. We show that thermal sample treatment via rapid conductive heat transfer is effective for detection of mature endogenous peptides in fresh and frozen rodent brain tissues. Freshly isolated tissue processing with the commercial Stabilizor T1 heat stabilization system resulted in the confident identification of 65% more full-length mature neuropeptides compared to widely used sample treatment in a hot water bath. This finding was validated by a follow-up quantitative multiple reaction monitoring MS analysis of select neuropeptides. The rapid conductive heating in partial vacuum provided by the Stabilizor T1 effectively reduces protein degradation and decreases the chemical complexity of the sample, as assessed by determining total protein content. This system enabled the detection, identification, and quantitation of neuropeptides related to 22 prohormones expressed in individual rat hypothalami and suprachiasmatic nuclei.

  12. Method of forming oxide coatings. [for solar collector heating panels (United States)

    Mcdonald, G. E. (Inventor)


    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  13. X-ray reflectivity measurement of interdiffusion in metallic multilayers during rapid heating (United States)

    Liu, J. P.; Kirchhoff, J.; Zhou, L.; Zhao, M.; Grapes, M. D.; Dale, D. S.; Tate, M. D.; Philipp, H. T.; Gruner, S. M.; Weihs, T. P.; Hufnagel, T. C.


    A technique for measuring interdiffusion in multilayer materials during rapid heating using X-ray reflectivity is described. In this technique the sample is bent to achieve a range of incident angles simultaneously, and the scattered intensity is recorded on a fast high-dynamic-range mixed-mode pixel array detector. Heating of the multilayer is achieved by electrical resistive heating of the silicon substrate, monitored by an infrared pyrometer. As an example, reflectivity data from Al/Ni heated at rates up to 200 K s−1 are presented. At short times the interdiffusion coefficient can be determined from the rate of decay of the reflectivity peaks, and it is shown that the activation energy for interdiffusion is consistent with a grain boundary diffusion mechanism. At longer times the simple analysis no longer applies because the evolution of the reflectivity pattern is complicated by other processes, such as nucleation and growth of intermetallic phases. PMID:28664887

  14. X-ray reflectivity measurement of interdiffusion in metallic multilayers during rapid heating. (United States)

    Liu, J P; Kirchhoff, J; Zhou, L; Zhao, M; Grapes, M D; Dale, D S; Tate, M D; Philipp, H T; Gruner, S M; Weihs, T P; Hufnagel, T C


    A technique for measuring interdiffusion in multilayer materials during rapid heating using X-ray reflectivity is described. In this technique the sample is bent to achieve a range of incident angles simultaneously, and the scattered intensity is recorded on a fast high-dynamic-range mixed-mode pixel array detector. Heating of the multilayer is achieved by electrical resistive heating of the silicon substrate, monitored by an infrared pyrometer. As an example, reflectivity data from Al/Ni heated at rates up to 200 K s-1 are presented. At short times the interdiffusion coefficient can be determined from the rate of decay of the reflectivity peaks, and it is shown that the activation energy for interdiffusion is consistent with a grain boundary diffusion mechanism. At longer times the simple analysis no longer applies because the evolution of the reflectivity pattern is complicated by other processes, such as nucleation and growth of intermetallic phases.

  15. On the material properties of shell plate formed by line heating

    Directory of Open Access Journals (Sweden)

    Hyung Kyun Lim


    Full Text Available This paper is concerned with investigating the plastic material properties of steel plate formed by line heating method, and is aimed at implementing more rational design considering the accidental limit states such as collision or grounding. For the present study, line heating test for marine grade steel plate has been carried out with varying plate thickness and heating speed, and then microscopic examination and tensile test have been carried out. From the microscopic, it is found that the grain refined zones like ferrite and pearlite are formed all around the heat affected zone. From the tensile test results, it is seen that yield strength, tensile strength, fracture strain, hardening exponent and strength coefficient vary with plate thickness and heat input quantity. The formulae relating the material properties and heat input parameter should be, therefore, derived for the design purpose considering the accidental impact loading. This paper ends with describing the extension of the present study.

  16. Heat treatment of nitrided layer formed on X37CrMoV5-1 hot working tool steel (United States)

    Ciski, A.; Wach, P.; Tacikowski, J.; Babul, T.; Šuchmann, P.


    The paper presents the technology consisting of combination of the nitriding process with subsequent austenitizing at temperature above eutectoid temperature of the Fe-C system and further rapid cooling. Such treatment will cause formation of the martensite in the area of the primarily nitrided layer and the additional precipitation hardening by tempering of heat treated steel. The article shows that the heat treatment process of nitrided layer formed on X37CrMoV5-1 steel leads to strengthening of surface layer, the substrate and the core of nitrided part. Heat treatment of nitrided steel with the tempering in inert (nitrogen) or active (ammonia) atmosphere can increase the thickness of the layer formed by short-term nitriding process. After the nitriding process of X37CrMoV5-1 steel the nitrided layer had a thickness of about 160 μm, while a subsurface layer of iron nitrides had a thickness of 7 μm. After subsequent quenching and tempering processes, the nitrided layer undergoes additional diffusion and its thickness is increased to about 220 μm (inert atmosphere) or 280 μm (active atmosphere). If the tempering process is carried out in an inert atmosphere, the primarily formed layer of iron nitrides disappears. Tempering in an active atmosphere leads to forming of white layer with a thickness of 7 μm. Basic properties of nitrided layers formed in such way, like the hardness and the wear resistance, are presented.

  17. Thermal and mechanical effect during rapid heating of astroloy for improving structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Popoolaa, A.P.I., E-mail: [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Oluwasegun, K.M. [Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Olorunniwo, O.E., E-mail: [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Atanda, P.O. [Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Aigbodion, V.S. [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka (Nigeria)


    The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astroloy(Turbine Disc alloy) a Powder metallurgy (PM) nickel base superalloy has been investigated. The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ) microstructure of an inertia friction welded Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual inertial friction welded specimens showed that γ′ particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favoured, and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the centre of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens. - Highlights: • The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astrology • The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ). • significantly enhanced resistance to weld liquation cracking of the alloy. • This was not observed in purely thermally simulated samples. • The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.

  18. The analysis of bottom forming process for hybrid heating device (United States)

    Bałon, Paweł; Świątoniowski, Andrzej; Kiełbasa, Bartłomiej


    In this paper the authors present an unusual method for bottom forming applicable for various industrial purposes including the manufacture of water heaters or pressure equipment. This method allows for the fabrication of the bottom of a given piece of stainless steel into a pre-determined shape conforming to the DIN standard which determines the most advantageous dimensions for the bottom cross section in terms of working pressure loading. The authors checked the validity of the method in a numerical and experimental way generating a tool designed to produce bottoms of specified geometry. Many problems are encountered during the design and production of parts, especially excessive sheet wrinkling over a large area of the part. The experiment showed that a lack of experience and numerical analysis in the design of such elements would result in the production of highly wrinkled parts. This defect would render the parts impossible to assemble with the cylindrical part. Many tool shops employ a method for drawing elements with a spherical surface which involves additional spinning, stamping, and grading operations, which greatly increases the cost of parts production. The authors present and compare two forming methods for spherical and parabolic objects, and experimentally confirm the validity of the sheet reversing method with adequate pressure force. The applied method produces parts in one drawing operation and in a following operation that is based on laser or water cutting to obtain a round blank. This reduces the costs of tooling manufacturing by requiring just one tool which can be placed on any hydraulic press with a minimum force of 2 000 kN.

  19. Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization

    NARCIS (Netherlands)

    Hiemstra, C.; Zhou, W.; Zhong, Zhiyuan; Wouters, Marielle; Feijen, Jan


    Our previous studies have shown that stereocomplexed hydrogels can be rapidly formed in vitro as well as in vivo upon mixing aqueous solutions of eight-arm poly(ethylene glycol)−poly(l-lactide) (PEG−PLLA) and poly(ethylene glycol)−poly(d-lactide) (PEG−PDLA) star block copolymers. In this study,

  20. On the effect of laterally varying boundary heat flux on rapidly rotating spherical shell convection (United States)

    Sahoo, Swarandeep; Sreenivasan, Binod


    The onset of convection in a rotating spherical shell subject to laterally varying heat flux at the outer boundary is considered in this paper. The focus is on the geophysically relevant regime of rapid rotation (low Ekman number) where the natural length scale of convection is significantly smaller than the length scale imposed by the boundary heat flux pattern. Contrary to earlier studies at a higher Ekman number, we find a substantial reduction in the onset Rayleigh number Rac with increasing lateral variation. The decrease in Rac is shown to be closely correlated to the equatorial heat flux surplus in the steady, basic state solution. The consistency of such a correlation makes the estimation of Rac possible without solving the full stability problem. The steady baroclinic flow has a strong cyclone-anticyclone asymmetry in the kinetic helicity only for equatorially symmetric lateral variations, with possible implications for dynamo action. Equatorially antisymmetric variations, on the other hand, break the symmetry of the mean flow, in turn negating its helicity. Analysis of the perturbation solution reveals strongly localized clusters through which convection rolls drift in and out at a frequency higher than that for the reference case with homogeneous boundary heat flux. Large lateral variations produce a marked decrease in the azimuthal length scale of columns, which indicates that small-scale motions are essential to the transport of heat in rapidly rotating, localized convection. With an equatorially antisymmetric heat flux pattern, convection in individual clusters goes through an asynchronous wax-wane cycle whose frequency is much lower than the drift rate of the columns. These continual variations in convection intensity may in turn result in fluctuations in the magnetic field intensity, an effect that needs to be considered in dynamo models. Finally, there is a notable analogy between the role of a laterally varying boundary heat flux and the role of a

  1. Rapid detection of malto-oligosaccharide-forming bacterial amylases by high performance anion-exchange chromatography

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Larsen, K. L.; Zimmermann, W.


    High performance anion-exchange chromatography with pulsed amperometric detection was applied for the rapid analysis of malto-oligosaccharides formed by extracellular enzyme preparations from 49 starch-degrading bacterial strains isolated from soil and compost samples. Malto-oligosaccharide-formi......High performance anion-exchange chromatography with pulsed amperometric detection was applied for the rapid analysis of malto-oligosaccharides formed by extracellular enzyme preparations from 49 starch-degrading bacterial strains isolated from soil and compost samples. Malto......-oligosaccharide-forming amylases, indicated by a predominant formation of maltohexaose from starch, were produced by enzyme preparations from four of the isolates growing at pH 7.0 and 10....

  2. [Selective Heating of Membrane-forming Holes in Teflon Film Exposed to Decimeter Waves]. (United States)

    Alekseev, S I; Fesenko, E E; Fesenko, E E


    Calculations of heating of membrane-forming holes in Teflon film exposed to decimeter waves were performed. The dependence of the temperature increment in holes on the geometry of holes, electrolyte concentration, and decimeter wave frequency was studied. The kinetics of heating depending on the hole diameter was also obtained. It was concluded that the observed in the experiment effects of the decimeter wave on bilayer lipid membranes resulted from the elevated concentration of decimeter electromagnetic waves in membrane-forming hole that led to selective heating of electrolyte in hole and bilayer lipid membranes.

  3. Rapid changes in gene expression direct rapid shifts in intestinal form and function in the Burmese python after feeding. (United States)

    Andrew, Audra L; Card, Daren C; Ruggiero, Robert P; Schield, Drew R; Adams, Richard H; Pollock, David D; Secor, Stephen M; Castoe, Todd A


    Snakes provide a unique and valuable model system for studying the extremes of physiological remodeling because of the ability of some species to rapidly upregulate organ form and function upon feeding. The predominant model species used to study such extreme responses has been the Burmese python because of the extreme nature of postfeeding response in this species. We analyzed the Burmese python intestine across a time series, before, during, and after feeding to understand the patterns and timing of changes in gene expression and their relationship to changes in intestinal form and function upon feeding. Our results indicate that >2,000 genes show significant changes in expression in the small intestine following feeding, including genes involved in intestinal morphology and function (e.g., hydrolases, microvillus proteins, trafficking and transport proteins), as well as genes involved in cell division and apoptosis. Extensive changes in gene expression occur surprisingly rapidly, within the first 6 h of feeding, coincide with changes in intestinal morphology, and effectively return to prefeeding levels within 10 days. Collectively, our results provide an unprecedented portrait of parallel changes in gene expression and intestinal morphology and physiology on a scale that is extreme both in the magnitude of changes, as well as in the incredibly short time frame of these changes, with up- and downregulation of expression and function occurring in the span of 10 days. Our results also identify conserved vertebrate signaling pathways that modulate these responses, which may suggest pathways for therapeutic modulation of intestinal function in humans. Copyright © 2015 the American Physiological Society.

  4. Calculation of heat sink around cracks formed under pulsed heat load (United States)

    Lazareva, G. G.; Arakcheev, A. S.; Kandaurov, I. V.; Kasatov, A. A.; Kurkuchekov, V. V.; Maksimova, A. G.; Popov, V. A.; Shoshin, A. A.; Snytnikov, A. V.; Trunev, Yu A.; Vasilyev, A. A.; Vyacheslavov, L. N.


    The experimental and numerical simulations of the conditions causing the intensive erosion and expected to be realized infusion reactor were carried out. The influence of relevant pulsed heat loads to tungsten was simulated using a powerful electron beam source in BINP. The mechanical destruction, melting and splashing of the material were observed. The laboratory experiments are accompanied by computational ones. Computational experiment allowed to quantitatively describe the overheating near the cracks, caused by parallel to surface cracks.

  5. Electrowetting-based microfluidic operations on rapid-manufactured devices for heat pipe applications (United States)

    Hale, Renee S.; Bahadur, Vaibhav


    The heat transport capacity of traditional heat pipes is limited by the capillary pressure generated in the internal wick that pumps condensate to the evaporator. Recently, the authors conceptualized a novel heat pipe architecture, wherein wick-based pumping is replaced by electrowetting (EW)-based pumping of microliter droplets in the adiabatic section. An electrowetting heat pipe (EHP) can overcome the capillary limit to heat transport capacity and enable compact, planar, gravity-insensitive, and ultralow power consumption heat pipes that transport kiloWatt heat loads over extended distances. This work develops a novel technique for rapid, scalable fabrication of EW-based devices and studies critical microfluidic operations underlying the EHP, with the objective of predicting the key performance parameters of the EHP. Devices are fabricated on a printed circuit board (PCB) substrate with mechanically-milled electrodes, and a removable polyimide dielectric film. The first set of experiments uncovers the maximum channel gap (1 mm) for reliable EW-based pumping; this parameter determines the heat transport capacity of the EHP, which scales linearly with the channel gap. The second set of experiments uncovers the maximum channel gap (375 microns) at which EW voltages can successfully split droplets. This is an important consideration which ensures EHP operability in the event of unintentional droplet merging. The third set of experiments demonstrate and study EW-induced droplet generation from an open-to-air reservoir, which mimics the interface between the condenser and adiabatic sections of the EHP. The experimental findings predict that planar, water-based EHPs with a (10 cm by 4 mm) cross section can transport 1.6 kW over extended distances (>1 m), with a thermal resistance of 0.01 K W-1.

  6. Simulation of stretch forming with intermediate heat treatments of aircraft skins - A physically based modeling approach

    NARCIS (Netherlands)

    Kurukuri, S.; Miroux, Alexis; Wisselink, H.H.; van den Boogaard, Antonius H.


    In the aerospace industry stretch forming is often used to produce skin parts. During stretch forming a sheet is clamped at two sides and stretched over a die, such that the sheet gets the shape of the die. However for complex shapes it is necessary to use expensive intermediate heat-treatments in

  7. Influence of inductive heating on microstructure and material properties in roll forming processes (United States)

    Guk, Anna; Kunke, Andreas; Kräusel, Verena; Landgrebe, Dirk


    The increasing demand for sheet metal parts and profiles with enhanced mechanical properties by using high and ultra-high-strength (UHS) steels for the automotive industry must be covered by increasing flexibility of tools and machines. This can be achieved by applying innovative technologies such as roll forming with integrated inductive heating. This process is similar to indirect press hardening and can be used for the production of hardened profiles and profiles with graded properties in longitudinal and traverse direction. The advantage is that the production of hardened components takes place in a continuous process and the integration of heating and quenching units in the profiling system increases flexibility, accompanied by shortening of the entire process chain and minimizing the springback risk. The features of the mentioned process consists of the combination of inhomogeneous strain distribution over the stripe width by roll forming and inhomogeneity of microstructure by accelerated inductive heating to austenitizing temperature. Therefore, these two features have a direct influence on the mechanical properties of the material during forming and hardening. The aim of this work is the investigation of the influence of heating rates on microstructure evolution and mechanical properties to determine the process window. The results showed that heating rate should be set at 110 K/s for economic integration of inductive heating into the roll forming process.

  8. Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation (United States)

    Davies, E.; Vian, A.; Vian, C.; Stankovic, B.


    When one leaf of a tomato plant is electrically-stimulated or heat-wounded, proteinase inhibitor genes are rapidly up-regulated in distant leaves. The identity of the systemic wound signal(s) is not yet known, but major candidates include hormones transmitted via the phloem or the xylem, the electrically-stimulated self-propagating electrical signal in the phloem (the action potential, AP), or the heat-wound-induced surge in hydraulic pressure in the xylem evoking a local change in membrane potential in adjacent living cells (the variation potential, VP). In order to discriminate between these signals we have adopted two approaches. The first approach involves applying stimuli that evoke known signals and determining whether these signals have similar effects on the "model" transcripts for proteinase inhibitors (pin) and calmodulin (cal). Here we show that a heat wound almost invariably evokes a VP, while an electrical stimulation occasionally evokes an AP, and both of these signals induce accumulation of transcripts encoding proteinase inhibitors. The second approach involves identifying the array of genes turned on by heat-wounding. To this end, we have constructed a subtractive library for heat-wounded tissue, isolated over 800 putatively up-regulated clones, and shown that all but two of the fifty that we have analyzed by Northern hybridization are, indeed, up-regulated. Here we show the early kinetics of up-regulation of three of these transcripts in the terminal (4th) leaf in response to heat-wounding the 3rd leaf, about 5 cm away. Even though these transcripts show somewhat different time courses of induction, with one peaking at 30 min, another at 15 min, and another at 5 min after flaming of a distant leaf, they all exhibit a similar pattern, i.e., a transient period of transcript accumulation preceding a period of transcript decrease, followed by a second period of transcript accumulation.

  9. Three-Dimensional Numerical Simulation of Plate Forming by Line Heating

    DEFF Research Database (Denmark)

    Clausen, Henrik Bisgaard


    Line Heating is the process of forming (steel) plates into shape by means of localised heating often along a line. Though any focussed heat source will do, the inexpensive and widely available oxyacettylene gas torch is commonly applied in ship production.Over the years, many researchers have...... addressed the problem of simulating the process, and although very few have been successful in gaining accurate results valuable information about the mechanics have been derived. However, the increasing power of computers now allows for numerical simulations of the forming process using a three......-dimensional thermo-mechanical model. Although very few have been successful in gaining accurate results valuable information about the mechanics has been derived. However, the increasing power of computers now allows for numerical simulations of the forming process using a three-dimensional thermo-mechanical model....

  10. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. (United States)

    Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R


    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.

  11. Semi-solid dosage form of clonazepam for rapid oral mucosal absorption. (United States)

    Sakata, Osamu; Machida, Yoshiharu; Onishi, Hiraku


    In order to obtain an alternative to the intravenous (i.v.) dosage form of clonazepam (CZ), an oral droplet formulation of CZ was developed previously; however, the droplet was physically unstable. Therefore, in the present study, it was attempted to develop an easily-handled dosage form, which was more physically stable and allowed rapid drug absorption from oral mucosa. A semi-solid dosage form, composed of polyethylene glycol 1500 (PEG), CZ, and oleic acid (OA) at 37/1/2 (w/w) and named PEG/CZ/OA, and a semi-solid dosage form containing PEG and CZ at 39/1 (w/w), called PEG/CZ, were prepared. Their physical stability in air at room temperature and oral mucosal absorption in rats were investigated. The semi-solid dosage forms were much more stable physically than the droplet, that is, no recrystallization of CZ was observed for at least 8 days. The effective concentration for humans and rats (20 ng/mL or more) was achieved within 30 min after buccal administration for both PEG/CZ/OA and PEG/CZ. The plasma concentration increased gradually and less varied at each time point for PEG/CZ/OA. PEG/CZ/OA was found to show more rapid and higher absorption of CZ in buccal administration than in sublingual administration. Buccal administration with the semi-solid dosage PEG/CZ with or without OA was suggested to be a possibly useful novel dosage form as an alternative to i.v. injection.

  12. Rapid self-healable poly(ethylene glycol) hydrogels formed by selective metal-phosphate interactions. (United States)

    Sato, Takeshi; Ebara, Mitsuhiro; Tanaka, Shinji; Asoh, Taka-Aki; Kikuchi, Akihiko; Aoyagi, Takao


    Rapid self-healable and biocompatible hydrogels were prepared using the selective formation of metal-ligand interactions between selected metal ions and phosphate end groups of poly(ethylene glycol) (PEG). The phosphate-terminated branch of PEG was synthesized via a substitution reaction of the hydroxyl end groups using phosphoryl chloride. The gelation and gel properties including rheological properties can be tuned by the careful selection of metal ions, branch numbers, and temperature. Especially, the gels rapidly formed by trivalent metal ions such as Fe(3+), V(3+), Al(3+), Ti(3+), and Ga(3+) have relatively small ionic radii. The ligand substitution rates also affected the repeatable autonomic healing ability. We have also demonstrated a gel-sol/sol-gel transition by switching the redox states of Fe(3+)/Fe(2+) ions. Learning from biological systems, the proposed phosphate-metal ion based self-healable hydrogels could become an attractive candidate for various biomedical and environmental applications.

  13. Calculation and validation of heat transfer coefficient for warm forming operations (United States)

    Omer, Kaab; Butcher, Clifford; Worswick, Michael


    In an effort to reduce the weight of their products, the automotive industry is exploring various hot forming and warm forming technologies. One critical aspect in these technologies is understanding and quantifying the heat transfer between the blank and the tooling. The purpose of the current study is twofold. First, an experimental procedure to obtain the heat transfer coefficient (HTC) as a function of pressure for the purposes of a metal forming simulation is devised. The experimental approach was used in conjunction with finite element models to obtain HTC values as a function of die pressure. The materials that were characterized were AA5182-O and AA7075-T6. Both the heating operation and warm forming deep draw were modelled using the LS-DYNA commercial finite element code. Temperature-time measurements were obtained from both applications. The results of the finite element model showed that the experimentally derived HTC values were able to predict the temperature-time history to within a 2% of the measured response. It is intended that the HTC values presented herein can be used in warm forming models in order to accurately capture the heat transfer characteristics of the operation.

  14. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz


    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  15. Urban form and heat consumption, a comparative study in Copenhagen districts

    DEFF Research Database (Denmark)

    Mohammadi Dehcheshme, Mostafa; Jensen, Jesper Ole

    Since urban form and land use patterns significantly influence the cities energy needs, the study linkage of energy consumption and urban form is an interdisciplinary issue and one the current central topics of urban planners in recent years. Our concern in this paper, therefore, is to address...... models, housing level model and city level model, are presented and each model includes the part of urban form indicators. Finally in the comparative frame, the impacts of urban form indicators on heat consumption are analyzed for the Copenhagen districts....

  16. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars (United States)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby


    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multicomponent (Fe2(SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21 °C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation

  17. Heat balance model for a human body in the form of wet bulb globe temperature indices. (United States)

    Sakoi, Tomonori; Mochida, Tohru; Kurazumi, Yoshihito; Kuwabara, Kohei; Horiba, Yosuke; Sawada, Shin-Ichi


    The purpose of this study is to expand the empirically derived wet bulb globe temperature (WBGT) index to a rational thermal index based on the heat balance for a human body. We derive the heat balance model in the same form as the WBGT for a human engaged in moderate intensity work with a metabolic heat production of 174W/m 2 while wearing typical vapor-permeable clothing under shady and sunny conditions. Two important relationships are revealed based on this derivation: (1) the natural wet bulb and black globe temperature coefficients in the WBGT coincide with the heat balance equation for a human body with a fixed skin wettedness of approximately 0.45 at a fixed skin temperature; and (2) the WBGT can be interpreted as the environmental potential to increase skin temperature rather than the heat storage rate of a human body. We propose an adjustment factor calculation method that supports the application of WBGT for humans dressed in various clothing types and working under various air velocity conditions. Concurrently, we note difficulties in adjusting the WBGT by using a single factor for humans wearing vapor-impermeable protective clothing. The WBGT for shady conditions does not need adjustment depending on the positive radiant field (i.e., when a radiant heat source exists), whereas that for the sunny condition requires adjustments because it underestimates heat stress, which may result in insufficient human protection measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Surge in the heating market. Renewable energies rapidly gaining market share; Wende im Waermemarkt. Erneuerbare Energien gewinnen rasant an Marktanteilen

    Energy Technology Data Exchange (ETDEWEB)

    Briese, Dirk; Hein, Thomas; Gatena, Jens [trend:research GmbH Institut fuer Trend- und Marktforschung, Bremen (Germany)


    The proportion of heat produced from renewable energies is rapidly growing in Germany. The main reasons for this dynamic development are governmental funds for heating technologies based on renewable energy, the growing importance attached by large parts of the population to environmentally responsible energy production and the rising costs of fossil fuels. Biomass plants, solar thermal installations and heat pumps will be widely used in upcoming refurbishment and new building projects, as a recent study shows.

  19. Numerical simulation of hull curved plate forming by electromagnetic force assisted line heating (United States)

    Wang, Ji; Wang, Shun; Liu, Yujun; Li, Rui; Liu, xiao


    Line heating is a common method in shipyards for forming of hull curved plate. The aluminum alloy plate is widely used in shipbuilding. To solve the problem of thick aluminum alloy plate forming with complex curved surface, a new technology named electromagnetic force assisted line heating(EFALH) was proposed in this paper. The FEM model of EFALH was established and the effect of electromagnetic force assisted forming was verified by self development equipment. Firstly, the solving idea of numerical simulation for EFALH was illustrated. Then, the coupled numerical simulation model of multi physical fields were established. Lastly, the reliability of the numerical simulation model was verified by comparing the experimental data. This paper lays a foundation for solving the forming problems of thick aluminum alloy curved plate in shipbuilding.

  20. Rapid heat treatment for anatase conversion of titania nanotube orthopedic surfaces (United States)

    Bhosle, Sachin M.; Friedrich, Craig R.


    The amorphous to anatase transformation of anodized nanotubular titania surfaces has been studied by x-ray diffraction and transmission electron microscopy (TEM). A more rapid heat treatment for conversion of amorphous to crystalline anatase favorable for orthopedic implant applications was demonstrated. Nanotube titania surfaces were fabricated by electrochemical anodization of Ti6Al4V in an electrolyte containing 0.2 wt% NH4F, 60% ethylene glycol and 40% deionized water. The resulting surfaces were systematically heat treated in air with isochronal and isothermal experiments to study the temperature and time dependent transformation respectively. Energy dispersive spectroscopy shows that the anatase phase transformation of TiO2 in the as-anodized amorphous nanotube layer can be achieved in as little as 5 min at 350 °C in contrast to reports of higher temperature and much longer time. Crystallinity analysis at different temperatures and times yield transformation rate coefficients and activation energy for crystalline anatase coalescence. TEM confirms the (101) TiO2 presence within the nanotubes. These results confirm that for applications where amorphous titania nanotube surfaces are converted to crystalline anatase, a 5 min production flow-through heating process could be used instead of a 3 h batch process, reducing time, cost, and complexity.

  1. Isotropic Heating of Galaxy Cluster Cores via Rapidly Reorienting Active Galactic Nucleus Jets (United States)

    Babul, Arif; Sharma, Prateek; Reynolds, Christopher S.


    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P jet = 1044 - 45 erg s-1, typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  2. Rapid Embedded Wire Heating via Resistive Guiding of Laser-Generated Fast Electrons as a Hydrodynamic Driver

    CERN Document Server

    Robinson, A P L; Pasley, J


    Resistively guiding laser-generated fast electron beams in targets consisting of a resistive wire embedded in lower $Z$ material should allow one to rapidly heat the wire to over 100eV over a substantial distance without strongly heating the surrounding material. On the multi-ps timescale this can drive hydrodynamic motion in the surrounding material. Thus ultra-intense laser solid interactions have the potential as a controlled driver of radiation hydrodynamics in solid density material. In this paper we assess the laser and target parameters needed to achieve such rapid and controlled heating of the embedded wire.

  3. The presence of heat-stable conformers of ovalbumin affects properties of thermally formed aggregates. (United States)

    de Groot, Jolan; de Jongh, Harmen H J


    The aim of this work was to study the effect of the formation of more heat-stable conformers of chicken egg ovalbumin during incubation at basic pH (9.9) and elevated temperature (55 degrees C) on the protein aggregation properties at neutral pH. Native ovalbumin (N-OVA) is converted on the hours time-scale into more heat-stable forms denoted I- (intermediate) and S-OVA, that have denaturation temperatures 4.8 and 8.4 degrees C, respectively, higher than that of N-OVA. The conversions most likely proceed via I-OVA, but direct conversion of N-OVA into S-OVA with slower kinetics can not be excluded. It is demonstrated that both I- and S-OVA have similar denaturation characteristics to N-OVA, except that higher temperatures are required for denaturation. The presence of even small contributions of I-OVA does, however, reduce the Stokes radius of the aggregates formed upon heat treatment of the material at 90 degrees C about 2-fold. This affects the gel network formation considerably. Since many (commercial) preparations of ovalbumin contain varying contributions of the more heat-stable forms mentioned, proper characterization or standardization of the isolation procedure of the material is essential to control or predict the industrial application of this protein.

  4. Compact form fitting small antennas using three-dimensional rapid prototyping (United States)

    Willis, Bryan Jon

    Three-dimensional (3D) rapid prototyping holds significant promise for future antenna designs. Many complex designs that would be unmanufacturable or costly are realizable on a 3D printing machine. The ability to create 3D designs of virtually any configuration makes it possible to build compact antennas that can form fit to any space. These antennas build on the concept that small antennas can best reach the ideal operating limit when utilizing the entire 3D space in a sphere surrounding the antenna. Antennas require a combination of dielectric and conductive materials. 3D rapid prototyping is already well advanced for plastics and dielectric materials (with more options coming online). Prototyping with conductive materials has lagged behind; due mainly to their higher melting points, but this is advancing as well. This dissertation focuses on 3D rapid prototyping for antenna design. A 3D antenna made from small cubical cells is optimized for 2.4--3GHz using a genetic algorithm (GA). The antennas are built using 3D printing of plastic covered by conductive paint. The effects of the conductivity of the paint and number of layers on the resonance and gain of the antenna are evaluated. These results demonstrate the feasibility of using 3D rapid prototyping for antenna design. A 3D dipole is also optimized using a GA to function from 510--910MHz. The antenna was built using 3D rapid prototyping from plastic. The 3D antenna was covered with a conductive coating and measured, showing good agreement with simulation. The 3D GA is used to design 3D antennas of random shape to fit inside the empty space in a cell phone case and optimized for cell phone bands 800--900MHz and 1.6--3.7GHz. The research also evaluates methods and materials that can be used to produce 3D antennas. In addition to the flexibility that 3D prototyping brings to antenna design, this paper describes how this new and emerging method for building antennas can provide fast and affordable antennas for

  5. Development and Demonstration of a High Efficiency, Rapid Heating, Low NOx Alternative to Conventional Heating of Round Steel Shapes, Steel Substrate (Strip) and Coil Box Transfer Bars

    Energy Technology Data Exchange (ETDEWEB)

    Kurek, Harry; Wagner, John


    Direct Flame Impingement involves the use of an array of very high-velocity flame jets impinging on a work piece to rapidly heat the work piece. The predominant mode of heat transfer is convection. Because of the locally high rate of heat transfer at the surface of the work piece, the refractory walls and exhaust gases of a DFI furnace are significantly cooler than in conventional radiant heating furnaces, resulting in high thermal efficiency and low NOx emissions. A DFI furnace is composed of a successive arrangement of heating modules through or by which the work piece is conveyed, and can be configured for square, round, flat, and curved metal shapes (e.g., billets, tubes, flat bars, and coiled bars) in single- or multi-stranded applications.

  6. A Rapid Determination of Cinnarizine in Bulk and Pharmaceutical Dosage Form by LC

    Directory of Open Access Journals (Sweden)

    A. A. Heda


    Full Text Available A simple, selective, rapid and precise reverse phase high pressure liquid chromatographic method has been developed for the estimation of cinnarizine from pharmaceutical formulation. The method was developed using MICRA-NPS C18 (length×OD×ID =33×8.0×6.0 mm, 1.5 μm column with a mobile phase consisting of acetonitrile, triethylamine buffer (adjusted to pH 4.5 with 10% w/v potassium hydroxide and tetrahydrofuran in the ratio 30:66:4 respectively, at a flow rate of 0.5 mL/min. Wavelength was fixed at 253 nm. The developed method was validated for linearity, accuracy, precision, limit of detection and limit of quantitation. The proposed method can be used for the routine estimation of cinnarizine in pharmaceutical dosage form.

  7. Blast-Wave Generation and Propagation in Rapidly Heated Laser-Irradiated Targets (United States)

    Ivancic, S. T.; Stillman, C. R.; Nilson, P. M.; Solodov, A. A.; Froula, D. H.


    Time-resolved extreme ultraviolet (XUV) spectroscopy was used to study the creation and propagation of a >100-Mbar blast wave in a target irradiated by an intense (>1018WWcm2 cm2) laser pulse. Blast waves provide a platform to generate immense pressures in the laboratory. A temporal double flash of XUV radiation was observed when viewing the rear side of the target, which is attributed to the emergence of a blast wave following rapid heating by a fast-electron beam generated from the laser pulse. The time-history of XUV emission in the photon energy range of 50 to 200 eV was recorded with an x-ray streak camera with 7-ps temporal resolution. The heating and expansion of the target was simulated with an electron transport code coupled to 1-D radiation-hydrodynamics simulations. The temporal delay between the two flashes measured in a systematic study of target thickness and composition was found to evolve in good agreement with a Sedov-Taylor blast-wave solution. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and Department of Energy Office of Science Award Number DE-SC-0012317.

  8. Bounds on Heat Transport in Rapidly Rotating Rayleigh-B\\'{e}nard Convection

    CERN Document Server

    Grooms, Ian


    The heat transport in rotating Rayleigh-B\\'enard convection is considered in the limit of rapid rotation (small Ekman number $E$) and strong thermal forcing (large Rayleigh number $Ra$). The analysis proceeds from a set of asymptotically reduced equations appropriate for rotationally constrained dynamics; the conjectured range of validity for these equations is $Ra \\lesssim E^{-8/5}$. A rigorous bound on heat transport of $Nu \\le 20.56Ra^3E^4$ is derived in the limit of infinite Prandtl number using the background method. We demonstrate that the exponent in this bound cannot be improved on using a piece-wise monotonic background temperature profile like the one used here. This is true for finite Prandtl numbers as well, i.e. $Nu \\lesssim Ra^3$ is the best upper bound for this particular setup of the background method. The feature that obstructs the availability of a better bound in this case is the appearance of small-scale thermal plumes emanating from (or entering) the thermal boundary layer.

  9. Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage (United States)

    Andersen, Nathan L.; Jicha, Brian R.; Singer, Brad S.; Hildreth, Wes


    Accurate and precise ages of large silicic eruptions are critical to calibrating the geologic timescale and gauging the tempo of changes in climate, biologic evolution, and magmatic processes throughout Earth history. The conventional approach to dating these eruptive products using the 40Ar/39Ar method is to fuse dozens of individual feldspar crystals. However, dispersion of fusion dates is common and interpretation is complicated by increasingly precise data obtained via multicollector mass spectrometry. Incremental heating of 49 individual Bishop Tuff (BT) sanidine crystals produces 40Ar/39Ar dates with reduced dispersion, yet we find a 16-ky range of plateau dates that is not attributable to excess Ar. We interpret this dispersion to reflect cooling of the magma reservoir margins below ˜475 °C, accumulation of radiogenic Ar, and rapid preeruption remobilization. Accordingly, these data elucidate the recycling of subsolidus material into voluminous rhyolite magma reservoirs and the effect of preeruptive magmatic processes on the 40Ar/39Ar system. The youngest sanidine dates, likely the most representative of the BT eruption age, yield a weighted mean of 764.8 ± 0.3/0.6 ka (2σ analytical/full uncertainty) indicating eruption only ˜7 ky following the Matuyama‑Brunhes magnetic polarity reversal. Single-crystal incremental heating provides leverage with which to interpret complex populations of 40Ar/39Ar sanidine and U-Pb zircon dates and a substantially improved capability to resolve the timing and causal relationship of events in the geologic record.

  10. Effect of tungsten addition on high-temperature properties and microstructure of alumina-forming austenitic heat-resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Ho [Division of Materials Science and Engineering, Hanyang University, Seongdong-ku, Seoul 133-791 (Korea, Republic of); Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Moon, Joonoh; Kang, Jun-Yun; Ha, Heon-Young [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Choi, Baig Gyu [High Temperature Materials Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Lee, Tae-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Lee, Changhee, E-mail: [Division of Materials Science and Engineering, Hanyang University, Seongdong-ku, Seoul 133-791 (Korea, Republic of)


    High-temperature tensile and creep properties of W-added Alumina-Forming austenitic (AFA{sub W}) heat-resistant steel were investigated as compared with AFA steel without W. High-temperature tensile properties of two steels were similar to each other, but creep lifetime of AFA{sub W} steel was increased. Microstructural examination using SEM and TEM revealed that creep rate rapidly decreased when Laves phase initially precipitated. This indicated that the precipitation of Laves phase played an important role in hardening of AFA steel. It is also found that AFA{sub W} steel exhibited finer and denser Laves phase compared with AFA steel, which is due to partial substitution of W for Mo. The finer and denser distribution of Laves phase contributed to improved creep properties of AFA{sub W} steel by enhancement in precipitation hardening.

  11. Cortical plasticity induced by rapid Hebbian learning of novel tonal word-forms : Evidence from mismatch negativity

    NARCIS (Netherlands)

    Yue, Jinxing; Bastiaanse, Roelien; Alter, Kai


    Although several experiments reported rapid cortical plasticity induced by passive exposure to novel segmental patterns, few studies have devoted attention to the neural dynamics during the rapid learning of novel tonal word-forms in tonal languages, such as Chinese. In the current study, native

  12. Rapid solidification of an Al-5Ni alloy processed by spray forming

    Directory of Open Access Journals (Sweden)

    Conrado Ramos Moreira Afonso


    Full Text Available Recently, intermetallic compounds have attracted much attention due to their potential technological applications as high-temperature materials. In particular the intermetallic compounds, associated with the Al-Ni binary system stand out as promising candidates for high-temperature materials for the use in harsh environments. It is expected that a bulk Al-Ni alloy may exceed the strength of many commercial materials. The great challenge in developing these alloys is to manipulate the solidification thermal parameters in order to obtain the desired microstructural features. One of the indicated routes to obtain very refined intermetallic phases dispersed in the microstructure is the spray forming process. The dendritic and eutectic growth dependences on cooling rate are already known for directionally solidified (DS hypoeutectic Al-Ni alloys. In the case of rapidly solidified (RS samples, extrapolations of such experimental laws are needed, which can be very helpful to estimate realistic values of high cooling rates imposed during the spray forming process. The present study aims to compare directionally solidified and spray-formed Al-5wt. (%Ni alloy samples with a view to providing a basis for understanding how to control solidification parameters and the as-cast microstructure. The Al-5.0wt. (%Ni alloy was shown to have a cellular morphology for the overspray powder size range examined (up to 500 µm. The mean cell spacing decreased from 5.0 to 1.1 µm with the decrease in the powder average diameter. It was found that the experimental cooling rates imposed during the atomization step of the overspray powder solidification varied from 10³ to 2.10(4 K/s. The DSC trace depicted a crystallization peak of an amorphous structure fraction in the smallest Al-5.0wt. (%Ni alloy powder size range (<32 µm estimating a 15 µm critical diameter of amorphous powder in the binary Al97.5Ni2.5 (at% alloy.

  13. Analysis of Heat-and-Mass Transfer Conjugated Problem Solution while Forming Thin-Wall Castings

    Directory of Open Access Journals (Sweden)

    R. I. Еsman


    Full Text Available The paper contains an analysis of heat-and-mass transfer conjugated problem in case of moving of liquid melts in channels of metallic forms (moulds, dies, crystallizers etc.. Investigations of velocity profiles at various flow sections, current lines in the calculated area, pressure and viscosity fields in non-stationary state have been carried out in the paper.The paper reveals that current is of parabolic shape in the annular channel at rather large distance from a projection up and down the flow and pressure along channel section is practically unchangeable.The executed investigations of heat-and-mass transfer in the moving melt make it possible to create a data base of control parameters for development of prospective technologies  of special casting methods. 

  14. alpha-Dicarbonyl compounds formed by nonenzymatic browning during the dry heating of caseinate and lactose. (United States)

    Ge Pan, Geoffrey; Oliver, Christine M; Melton, Laurence D


    A method using high-performance liquid chromatography with UV and electrospray ionization mass spectrometry detection was developed for monitoring the alpha-dicarbonyl compound profiles generated from nonenzymatic browning using o-phenylenediamine (OPD) as a trapping agent. The alpha-dicarbonyl compounds were generated by the "dry" reaction of sodium caseinate and lactose heated at various relative humidities (RHs). The proportions of alpha-dicarbonyls formed were different for samples heated at low, intermediate, and high RHs. This study shows that relatively large amounts of 3-deoxypentosulose and galactosyl 2-pentosulose are produced under high RHs, while galactosyl hexosulose and 1,4-dideoxyhexosulose are elevated under low RH conditions. Both caramelization and Maillard reaction pathways contributed to the generation of alpha-dicarbonyls.

  15. A Study on Infrared Local Heat Treatment for AA5083 to Improve Formability and Automotive Part Forming (United States)

    Lee, Eun-Ho; Yang, Dong-Yol; Ko, SeJin


    Automotive industries are increasingly employing aluminum alloys for auto parts to reduce vehicle weight. However, the low formability of aluminum alloys has been an obstacle to their application. To resolve the formability problem, some studies involving heat treatments under laboratory conditions have been reported. However, for industrial applications, the heat treatment sequence, heating energy efficiency, and a commercial part test should be studied. This work shows an infrared (IR) local heat treatment, heating only small areas where the heat treatment is required, for an aluminum alloy to improve the formability with a reduction of heating energy. The experiment shows that the formability drastically increases when the aluminum alloy is heat treated between two forming stages, referred to as intermediate heat treatment. The microstructures of the test pieces are evaluated to identify the cause of the increase in the formability. For an industrial application, an aluminum tailgate, which cannot be manufactured without heat treatment, was successfully manufactured by the IR local heat treatment with a reduction of energy. A simulation was also conducted with a stress-based forming limit diagram, which is not affected by the strain path and heat treatment histories. The simulation gives a good prediction of the formability improvement.

  16. Rapid contrasting of ultrathin sections using microwave irradiation with heat dissipation. (United States)

    Hernández-Chavarría, F; Vargas-Montero, M


    The use of microwave irradiation (MWI) to accelerate fixation, dehydration and contrasting (staining) for electron microscopy has been applied to the development of rapid methods to process biological samples in electron microscopy. A simple explanation is that the reduced time in those procedures is due to heating. In this paper we propose a contrasting method for thin sections that avoids the thermal effects of MWI. Grids with thin sections of mouse kidney, the dinoflagellate Alexandrium monilatum, spermatophores of the fly Archicepsis diversiformis, the bacteria Acinetobacter calcoaceticum and Enterobacter cloacae were placed into Beem capsules and stained with uranyl acetate and lead citrate, while immersed in an ice-water bath, and irradiated for periods ranging from 30 s to 2 min. After each contrasting procedure, the Beem capsule was filled with distilled water to wash the grids under MWI with the same irradiation time as used to contrast. Good results were obtained on irradiating for 1 min and the temperature of the Beem capsule was maintained around 5 degrees C.

  17. Thermal energy storage in the form of heat or cold with using of the PCM-based accumulation panels

    Directory of Open Access Journals (Sweden)

    Skovajsa Jan


    Full Text Available This article describes the usage of thermal energy storage in the form of heat and cold with an adaptation of the special device which is composed of the thermal panels. These panels are based on the phase change materials (PCM for normal inner environment temperature in buildings. The energy for the thermal energy storage is possible to get from built-in electric heating foil or from the tube heat exchanger, which is build in the thermal panels. This technology is able to use renewable energy sources, for example, solar thermal collectors and air-to-water heat pump as a source of heat for heating of the hot water tank. In the cooling mode, there is able to use the heat pump or photovoltaics panels in combination with thermoelectric coolers for cooling.

  18. Urban heat island in Krakow, Poland: Land use versus land form interaction (United States)

    Bokwa, A.


    Urban heat island is a well known feature of urban climate, related mainly to the changes in land use in urban areas and anthropogenic heat emission. However, the interaction between the land use and land form in urban areas and its impact on air temperature spatial patterns is much less known. Krakow is a medium size city located in southern Poland, in the valley of the Vistula River. The city is surrounded with convex land forms from three sides, with height differences up to 100 m. Built-up areas of the city can be found in both the valley bottom and on nearby slopes. Numerous studies completed after the Second World War (e.g. Hess 1974, Lewinska et al. 1982, Morawska-Horawska, Cebulak 1981) showed that the characteristic features of the climate of Krakow are e.g. frequent air temperature inversions, poor natural ventilation, large precipitation horizontal gradients. More recent research (e.g. Bokwa 2010) revealed e.g. a thermal asymmetry of the area. On the basis of 3-year (2009-2011) air temperature measurements in 21 points, completed with mobile measurements and analysis of available long-term series, it was proposed to define urban heat island separately in particular vertical zones of the city. Bokwa, A., 2010, Wieloletnie zmiany struktury mezoklimatu miasta na przykladzie Krakowa [Multi-annual changes of the urban mesoclimate structure (using an example of Kraków)], Institute of Geography and Spatial Management, Jagiellonian University, Kraków, 258 pp.; available on-line: Hess M., 1974, Klimat Krakowa {Climate of Krakow], Folia Geogr., ser. Geogr.-Phys., 8, 45-102. Lewińska J., Bartosik J., Baścik J., Czerwieniec M., Zgud K., 1982, Wpływ miasta na klimat lokalny (na przykładzie aglomeracji krakowskiej) [Impact of a city on the local climate using an example of Krakow], Inst. Kształt. Środ., Warszawa. Morawska-Horawska M., Cebulak E., 1981, Badania pionowego zasi

  19. Toxigenic potential and heat survival of spore-forming bacteria isolated from bread and ingredients. (United States)

    De Bellis, Palmira; Minervini, Fiorenza; Di Biase, Mariaelena; Valerio, Francesca; Lavermicocca, Paola; Sisto, Angelo


    Fifty-four spore-forming bacterial strains isolated from bread ingredients and bread, mainly belonging to the genus Bacillus (including Bacillus cereus), together with 11 reference strains were investigated to evaluate their cytotoxic potential and heat survival in order to ascertain if they could represent a risk for consumer health. Therefore, we performed a screening test of cytotoxic activity on HT-29 cells using bacterial culture filtrates after growing bacterial cells in Brain Heart Infusion medium and in the bread-based medium Bread Extract Broth (BEB). Moreover, immunoassays and PCR analyses, specifically targeting already known toxins and related genes of B. cereus, as well as a heat spore inactivation assay were carried out. Despite of strain variability, the results clearly demonstrated a high cytotoxic activity of B. cereus strains, even if for most of them it was significantly lower in BEB medium. Cytotoxic activity was also detected in 30% of strains belonging to species different from B. cereus, although, with a few exceptions (e.g. Bacillus simplex N58.2), it was low or very low. PCR analyses detected the presence of genes involved in the production of NHE, HBL or CytK toxins in B. cereus strains, while genes responsible for cereulide production were not detected. Production of NHE and HBL toxins was also confirmed by specific immunoassays only for B. cereus strains even if PCR analyses revealed the presence of related toxin genes also in some strains of other species. Viable spore count was ascertained after a heat treatment simulating the bread cooking process. Results indicated that B. amyloliquefaciens strains almost completely survived the heat treatment showing less than 2 log-cycle reductions similarly to two strains of B. cereus group III and single strains belonging to Bacillus subtilis, Bacillus mojavensis and Paenibacillus spp. Importantly, spores from strains of the B. cereus group IV exhibited a thermal resistance markedly lower than B

  20. In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating (United States)

    Kenel, C.; Schloth, P.; Van Petegem, S.; Fife, J. L.; Grolimund, D.; Menzel, A.; Van Swygenhoven, H.; Leinenbach, C.


    Beam-based additive manufacturing (AM) typically involves high cooling rates in a range of 103-104 K/s. Therefore, new techniques are required to understand the non-equilibrium evolution of materials at appropriate time scales. Most technical alloys have not been optimized for such rapid solidification, and microstructural, phase, and elemental solubility behavior can be very different. In this work, the combination of complementary in situ synchrotron micro-x-ray diffraction (microXRD) and small angle x-ray scattering (SAXS) studies with laser-based heating and rapid cooling is presented as an approach to study alloy behavior under processing conditions similar to AM techniques. In rapidly solidified Ti-48Al, the full solidification and phase transformation sequences are observed using microXRD with high temporal resolution. The high cooling rates are achieved by fast heat extraction. Further, the temperature- and cooling rate-dependent precipitation of sub-nanometer clusters in an Al-Cu-Mg alloy can be studied by SAXS. The sensitivity of SAXS on the length scales of the newly formed phases allows their size and fraction to be determined. These techniques are unique tools to help provide a deeper understanding of underlying alloy behavior and its influence on resulting microstructures and properties after AM. Their availability to materials scientists is crucial for both in-depth investigations of novel alloys and also future production of high-quality parts using AM.

  1. Isothiocyanates may chemically detoxify mutagenic amines formed in heat processed meat. (United States)

    Lewandowska, Anna; Przychodzeń, Witold; Kusznierewicz, Barbara; Kołodziejski, Dominik; Namieśnik, Jacek; Bartoszek, Agnieszka


    Meat consumption represents a dietary risk factor increasing the incidence of common cancers, probably due to carcinogenic amines (HAAs) formed upon meat heating. Interestingly, cancers whose incidence is increased by meat consumption, are decreased in populations consuming brassica vegetables regularly. This inverse correlation is attributed to brassica anticarcinogenic components, especially isothiocyanates (ITCs) that stimulate detoxification of food carcinogens. However, ITC reactivity towards amines generating stable thioureas, may also decrease mutagenicity of processed meat. We confirmed here that combining meat with cabbage (fresh or lyophilized), in proportions found in culinary recipes, limited by 17-20% formation of HAAs and significantly lowered mutagenic activity of fried burgers. Moreover, MeIQx mutagenicity was lowered in the presence of ITCs, as well as for synthetic ITC-MeIQx conjugates. This suggests that formation of thioureas could lead to chemical detoxification of food carcinogens, reducing the cancer risk associated with meat consumption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. TEM Characterization and Properties of Cu-1 wt.% TiB2 Nanocomposite Prepared by Rapid Solidification and Subsequent Heat Treatment

    Directory of Open Access Journals (Sweden)

    M. Sobhani


    Full Text Available Copper matrix composite reinforced by 1wt.% TiB2 particles was prepared using in situ reaction of Cu-1.4wt.% Ti and Cu-0.7wt.% B by rapid solidification and subsequent heat treatment for 1-20 hrs at 900ºC. High-resolution transmission electron microscopy (HRTEM characterization showed that primary TiB2 particles were formed in liquid copper. Heat treatment of as-solidified samples led to the formation of secondary TiB2 particles via spinodal decomposition of titanium-rich zone inside the grains. Mechanical properties (after 50% reduction in area as well as electrical conductivity of composite were evaluated after heat treatment and were compared with those of pure copper. The results indicated that, due to the formation of secondary TiB2 particles in the matrix, electrical conductivity increased along with hardness up to 10 hrs of heat treatment and reached 65% IACS and 155 HV, respectively. Moreover, the maximum ultimate (i.e. 580 MPa and yield (i.e. 555 MPa strengths of composite were achieved at this time.

  3. Thermal Management of Rapid Fire Gun Breeches: The Case for Heat Pipes (United States)


    at a Depth of 1 Inch ........................................... 23 10. The Effect of the Presence of an Embedded Heat Pipe: Temperature vs. Tim e...desired, the lower the boiling point of the liquid chosen has to be. Exercising the gun barrel heat transfer algorithm of Polk (1980), the effect of the presence of an

  4. Discovery of Rapid and Reversible Water Insertion in Rare Earth Sulfates: A New Process for Thermochemical Heat Storage. (United States)

    Hatada, Naoyuki; Shizume, Kunihiko; Uda, Tetsuya


    Thermal energy storage based on chemical reactions is a prospective technology for the reduction of fossil-fuel consumption by storing and using waste heat. For widespread application, a critical challenge is to identify appropriate reversible reactions that occur below 250 °C, where abundant low-grade waste heat and solar energy might be available. Here, it is shown that lanthanum sulfate monohydrate La 2 (SO 4 ) 3 ⋅H 2 O undergoes rapid and reversible dehydration/hydration reactions in the temperature range from 50 to 250 °C upon heating/cooling with remarkably small thermal hysteresis (dehydration/hydration behavior. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The asymptotic equivalence of fixed heat flux and fixed temperature thermal boundary conditions for rapidly rotating convection

    CERN Document Server

    Calkins, Michael A; Julien, Keith; Nieves, David; Driggs, Derek; Marti, Philippe


    The influence of fixed temperature and fixed heat flux thermal boundary conditions on rapidly rotating convection in the plane layer geometry is investigated for the case of stress-free mechanical boundary conditions. It is shown that whereas the leading order system satisfies fixed temperature boundary conditions implicitly, a double boundary layer structure is necessary to satisfy the fixed heat flux thermal boundary conditions. The boundary layers consist of a classical Ekman layer adjacent to the solid boundaries that adjust viscous stresses to zero, and a layer in thermal wind balance just outside the Ekman layers adjusts the temperature such that the fixed heat flux thermal boundary conditions are satisfied. The influence of these boundary layers on the interior geostrophically balanced convection is shown to be asymptotically weak, however. Upon defining a simple rescaling of the thermal variables, the leading order reduced system of governing equations are therefore equivalent for both boundary condit...

  6. Hydrothermal vents in Lake Tanganyika harbor spore-forming thermophiles with extremely rapid growth

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Prieur, Daniel


    and peptone. The optimum temperature for growth was 60 °C, while minimum and maximum temperatures were 40 and 75 °C. The pH response was alkalitolerant with optimum pH at 7.4 and 8.5 depending on the growth medium. The distinct feature of rapid proliferation and endospore formation may allow the novel...

  7. Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions. (United States)

    Cui, Xinyu; Kim, Hyun-Min; Kawashita, Masakazu; Wang, Longbao; Xiong, Tianying; Kokubo, Tadashi; Nakamura, Takashi


    Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile. The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  8. Rapid nanocrystallization of soft-magnetic amorphous alloys using microwave induction heating

    Energy Technology Data Exchange (ETDEWEB)

    Nicula, R. [Swiss Federal Laboratories for Materials Testing and Research - Empa, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland)], E-mail:; Stir, M.; Ishizaki, K. [Swiss Federal Laboratories for Materials Testing and Research - Empa, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Catala-Civera, J.-M. [Polytechnical University of Valencia, School of Telecommunication, Camino de Vera s/n, E-46022 Valencia (Spain); Vaucher, S. [Swiss Federal Laboratories for Materials Testing and Research - Empa, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland)


    The crystallization of Fe{sub 73}Nb{sub 3}Cu{sub 1}Si{sub 16}B{sub 7} alloy during microwave heating was investigated in situ using synchrotron radiation powder diffraction. The phase transformation comprises a primary nanocrystallization stage and a final microcrystallization step. We provide evidence for a strong enhancement of the transformation kinetics. Microwave heating occurs as a result of both ohmic and magnetic losses induced by eddy currents, which defines a volumetric microwave induction heating process. Nanocrystallization is completed within 5 s, while full crystallization is achieved in less than 10 s.

  9. Undercooling of Rapidly Solidified Droplets and Spray Formed Strips of Al-Cu (Sc) (United States)

    Bogno, A.; Natzke, P.; Yin, S.; Henein, H.

    Impulse Atomization (IA) (a single fluid atomization technique) was used to rapidly solidify Al-4.5wt%Cu and Al-4.5wt%Cu-0.4wt%Sc under argon atmosphere. In addition to the IA-generated droplets, the same technique was used to produce strips by Spray Deposition (SD) of the same alloys on a copper substrate with and without oil coating. The rapid solidification microstructures were analyzed using Scanning Electron Microscopy (SEM). From the SEM images, the amount of eutectic and the secondary dendrite arm spacing (SDAS) were measured. These SDAS results lead to the estimation of cooling rate. The eutectic fraction coupled with the metastable extension of the solidus and liquidus lines of Al-Cu (Sc) phase diagram lead to the estimation of primary and eutectic undercoolings. A comparison of the solidification path of the droplets and the strips was done as well as the analysis of the effects of scandium.

  10. A comparison of different methods for in-situ determination of heat losses form district heating pipes

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Benny [Technical Univ. of Denmark, Dept. of Energy Engineering (Denmark)


    A comparison of different methods for in-situ determination of heat losses has been carried out on a 273 mm transmission line in Copenhagen. Instrumentation includes temperature sensors, heat flux meters and an infrared camera. The methods differ with regard to time consumption and costs of applying the specific method, demand on accuracy of temperature measurements, sensitivity to computational parameters, e.g. the thermal conductivity of the soil, response to transients in water temperature and the ground, and steady state assumptions in the model used in the interpretation of the measurements. Several of the applied methods work well. (au)

  11. Parametric investigation on transient boiling heat transfer of metal rod cooled rapidly in water pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi Young [Department of Fire Protection Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513 (Korea, Republic of); Kim, Sunwoo, E-mail: [Mechanical Engineering Department, University of Alaska Fairbanks, P. O. Box 755905, Fairbanks, AK 99775-5905 (United States)


    Highlights: • Effects of liquid subcooling, surface coating, material property, and surface oxidation are examined. • Liquid subcooling affects remarkably the quenching phenomena. • Cr-coated surfaces for ATF might extend the quenching duration. • Solids with low heat capacity shorten the quenching duration. • Surface oxidation can affect strongly the film boiling heat transfer and MFB point. - Abstract: In this work, the effects of liquid subcooling, surface coating, material property, and surface oxidation on transient pool boiling heat transfer were investigated experimentally using the vertical metal rod and quenching method. The change in rod temperature was measured with time during quenching, and the visualization of boiling around the test specimen was performed using the high-speed video camera. As the test materials, the zircaloy (Zry), stainless steel (SS), niobium (Nb), and copper (Cu) were tested. In addition, the chromium-coated niobium (Cr-Nb) and chromium-coated stainless steel (Cr-SS) were prepared for accident tolerant fuel (ATF) application. Low liquid subcooling and Cr-coating shifted the quenching curve to the right, which indicates a prolongation of quenching duration. On the other hand, the material with small heat capacity and surface oxidation caused the quenching curve to move to the left. To examine the influence of the material property and surface oxidation on the film boiling heat transfer performance and minimum film boiling (MFB) point in more detail, the wall temperature and heat flux were calculated from the present transient temperature profile using the inverse heat transfer analysis, and then the curves of wall temperature and heat flux in the film boiling regime were obtained. In the present experimental conditions, the effect of material property on the film boiling heat transfer performance and MFB point seemed to be minor. On the other hand, based on the experimental results of the Cu test specimen, the surface

  12. Development of Rapid Pipe Moulding Process for Carbon Fiber Reinforced Thermoplastics by Direct Resistance Heating (United States)

    Tanaka, Kazuto; Harada, Ryuki; Uemura, Toshiki; Katayama, Tsutao; Kuwahara, Hideyuki

    To deal with environmental issues, the gasoline mileage of passenger cars can be improved by reduction of the car weight. The use of car components made of Carbon Fiber Reinforced Plastics (CFRP) is increasing because of its superior mechanical properties and relatively low density. Many vehicle structural parts are pipe-shaped, such as suspension arms, torsion beams, door guard bars and impact beams. A reduction of the car weight is expected by using CFRP for these parts. Especially, when considering the recyclability and ease of production, Carbon Fiber Reinforced Thermoplastics are a prime candidate. On the other hand, the moulding process of CFRTP pipes for mass production has not been well established yet. For this pipe moulding process an induction heating method has been investigated already, however, this method requires a complicated coil system. To reduce the production cost, another system without such complicated equipment is to be developed. In this study, the pipe moulding process of CFRTP using direct resistance heating was developed. This heating method heats up the mould by Joule heating using skin effect of high-frequency current. The direct resistance heating method is desirable from a cost perspective, because this method can heat the mould directly without using any coils. Formerly developed Non-woven Stitched Multi-axial Cloth (NSMC) was used as semi-product material. NSMC is very suitable for the lamination process due to the fact that non-crimp stitched carbon fiber of [0°/+45°/90°/-45°] and polyamide 6 non-woven fabric are stitched to one sheet, resulting in a short production cycle time. The use of the pipe moulding process with the direct resistance heating method in combination with the NSMC, has resulted in the successful moulding of a CFRTP pipe of 300 mm in length, 40 mm in diameter and 2 mm in thickness.

  13. Application of morphing technique with mesh-merging in rapid hull form generation

    Directory of Open Access Journals (Sweden)

    Ju Young Kang


    Full Text Available Morphing is a geometric interpolation technique that is often used by the animation industry to transform one form into another seemingly seamlessly. It does this by producing a large number of ‘intermediate’ forms between the two ‘extreme’ or ‘parent’ forms. It has already been shown that morphing technique can be a powerful tool for form design and as such can be a useful addition to the armoury of product designers. Morphing procedure itself is simple and consists of straightforward linear interpolation. However, establishing the correspondence between vertices of the parent models is one of the most difficult and important tasks during a morphing process. This paper discusses the mesh-merging method employed for this process as against the already established mesh-regularising method. It has been found that the merging method minimises the need for manual manipulation, allowing automation to a large extent.

  14. Application of morphing technique with mesh-merging in rapid hull form generation (United States)

    Kang, Ju Young; Lee, Byung Suk


    Morphing is a geometric interpolation technique that is often used by the animation industry to transform one form into another seemingly seamlessly. It does this by producing a large number of `intermediate' forms between the two `extreme' or `parent' forms. It has already been shown that morphing technique can be a powerful tool for form design and as such can be a useful addition to the armoury of product designers. Morphing procedure itself is simple and consists of straightforward linear interpolation. However, establishing the correspondence between vertices of the parent models is one of the most difficult and important tasks during a morphing process. This paper discusses the mesh-merging method employed for this process as against the already established mesh-regularising method. It has been found that the merging method minimises the need for manual manipulation, allowing automation to a large extent.

  15. The Effect of Local Heating by Laser Irradiation for Aluminum, Deep Drawing Steel and Copper Sheets in Incremental Sheet Forming (United States)

    Lehtinen, Pekka; Väisänen, Tapio; Salmi, Mika

    Incremental sheet forming is a technique where a metal sheet is formed into a product usually by a CNC-controlled (Computer Numerical Control) round tipped tool. The part is formed as the tool indents into the sheet and follows a contour of the desired product. In single point incremental forming (SPIF) there is no need for tailored tools and dies, since the process requires only a CNC machine, a clamping rig and a simple tool. The effect of applying local heating by laser irradiation from the bottom side of the metal sheet is investigated with a SPIF approach. Using a laser light source for local heating should increase the material ductility and decrease material strength, and thus, increase the formability. The research was performed using 0.50-0.75 mm thick, deep drawing steel, aluminum and copper sheets. The forming was done with a round tipped tool, whose tip diameter was 4 mm. In order to achieve selective heating, a 1 kW fiber laser was attached to a 3-axis stepper motor driven CNC milling machine. The results show that the applied heating increased the maximum achievable wall angle of aluminum and copper products. However, for the steel sheets the local heating reduced the maximum achievable wall angle and increased the surface roughness.

  16. Low heat flow from young oceanic lithosphere at the Middle America Trench off Mexico [rapid communication (United States)

    Minshull, Timothy A.; Bartolomé, Rafael; Byrne, Siobhán; Dañobeitia, Juanjo


    Seismic reflection profiles across the Middle America Trench at 20°N show a high amplitude bottom simulating reflector interpreted as marking a phase transition between methane hydrate and free gas in the pore space of both accreted and trench sediments. We determine the depth of the hydrate-gas phase boundary in order to estimate the geothermal gradient and hence the heat flow beneath the trench and the frontal part of the accretionary wedge which overlies the downgoing plate. After correction for sedimentation, heat flow values in the trench and through the accretionary wedge are only about half of the values predicted by plate cooling models for the 10 Ma subducting lithosphere. There is no systematic correlation between heat flow in the accretionary wedge and distance from the trench. A comparison with heat flow predicted by a simple analytical model suggests that there is little shear heating from within or beneath the wedge, despite the high basal friction suggested by the large taper angle of the wedge. The geothermal gradient varies systematically along the margin and is negatively correlated with the frontal slope of the wedge. Some local peaks may be attributed to channelised fluid expulsion.

  17. The Troy Microneedle: A Rapidly Separating, Dissolving Microneedle Formed by Cyclic Contact and Drying on the Pillar (CCDP.

    Directory of Open Access Journals (Sweden)

    Miroo Kim

    Full Text Available In dissolving microneedle (DMN-mediated therapy, complete and rapid delivery of DMNs is critical for the desired efficacy. Traditional patch-based DMN delivery, however, may fail due to incomplete delivery from insufficient skin insertion or rapid separation of microneedles due to their strong bond to the backing film. Here, we introduce the Troy microneedle, which was created by cyclic contact and drying on the pillar (CCDP, and which enabled simultaneous complete and rapid delivery of DMN. This CCDP process could be flexibly repeated to achieve a specific desired drug dose in a DMN. We evaluated DMN separation using agarose gel, and the Troy microneedle achieved more complete and rapid separation than other, more deeply dipped DMN, primarily because of the Troy's minimal junction between the DMN and pillar. When Troy microneedles were applied to pig cadaver skin, it took only 15 s for over 90% of encapsulated rhodamine B to be delivered, compared to 2 h with application of a traditional DMN patch. In vivo skin penetration studies demonstrated rapid DMN-separation of Troy microneedles still in solid form before dissolution. The Troy microneedle overcomes critical issues associated with the low penetration efficiency of flat patch-based DMN and provides an innovative route for DMN-mediated therapy, combining patient convenience with the desire drug efficacy.

  18. Peculiar features of boron distribution in high temperature fracture area of rapidly quenched heat-resistant nickel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shulga, A. V., E-mail: [National Research Nuclear University MEPhI (Russian Federation)


    This article comprises the results of comprehensive study of the structure and distribution in the high temperature fracture area of rapidly quenched heat-resistant superalloy of grade EP741NP after tensile tests. The structure and boron distribution in the fracture area are studied in detail by means of direct track autoradiography in combination with metallography of macro- and microstructure. A rather extensive region of microcracks generation and intensive boron redistribution is detected in the high temperature fracture area of rapidly quenched nickel superalloy of grade EP741NP. A significant decrease in boron content in the fracture area and formation of elliptically arranged boride precipitates are revealed. The mechanism of intense boron migration and stability violation of the structural and phase state in the fracture area of rapidly quenched heat-resistant nickel superalloy of grade EP741NP is proposed on the basis of accounting for deformation occurring in the fracture area and analysis of the stressed state near a crack.

  19. Investigation of char strength and expansion properties of an intumescent coating exposed to rapid heating rates

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere


    , char properties, measured at room temperature, were dependent on the preceding storage conditions (in air or in a desiccator). The char was found to have the highest mechanical strength against compression in the outer crust facing the heat source. For thin (147μm) free coating films, a tendency...... with respect to the mechanical resistance against compression, degree of expansion, and residual mass fraction. Experimental results show that when using this type of shock heating, the mechanical resistance of the char against compression cannot meaningfully be correlated to the expansion factor. In addition...

  20. Rapid killing of bed bugs (Cimex lectularius L.) on surfaces using heat: application to luggage. (United States)

    Loudon, Catherine


    The resistance of bed bugs (Cimex lectularius L.) to chemical insecticides has motivated the development of non-chemical control methods such as heat treatment. However, because bed bugs tend to hide in cracks or crevices, their behavior incidentally generates a thermally insulated microenvironment for themselves. Bed bugs located on the outer surface of luggage are less insulated and potentially more vulnerable to brief heat treatment. Soft-sided suitcases with adult male bed bugs on the outside were exposed to an air temperature of 70-75 °C. It took 6 min to kill all of the bed bugs, even those that had concealed themselves under zipper flaps or decorative piping. During heating, only one bed bug (out of 250 in total) moved into the luggage (through a closed zipper). Over long periods of time (24 h) at room temperature, adult male bed bugs on the exterior of luggage only infrequently moved inside; only 3% (5/170) had moved inside during 24 h. Brief exterior heat treatment of luggage is a promising way to reduce the spread of bed bugs being transported on the outer surface of luggage. This treatment will not kill bed bugs inside the luggage, but could be a component of integrated management for this pest. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Rapid quantification of low level polymorph content in a solid dose form using transmission Raman spectroscopy. (United States)

    Griffen, Julia A; Owen, Andrew W; Burley, Jonathan; Taresco, Vincenzo; Matousek, Pavel


    This proof of concept study demonstrates the application of transmission Raman spectroscopy (TRS) to the non-invasive and non-destructive quantification of low levels (0.62-1.32% w/w) of an active pharmaceutical ingredient's polymorphic forms in a pharmaceutical formulation. Partial least squares calibration models were validated with independent validation samples resulting in prediction RMSEP values of 0.03-0.05% w/w and a limit of detection of 0.1-0.2% w/w. The study further demonstrates the ability of TRS to quantify all tablet constituents in one single measurement. By analysis of degraded stability samples, sole transformation between polymorphic forms was observed while excipient levels remained constant. Additionally, a beam enhancer device was used to enhance laser coupling to the sample, which allowed comparable prediction performance at 60 times faster rates (0.2s) than in standard mode. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Transformation Heat Treatment of Rapidly Quenched Nb3A1 Precursor Monitored in situ by High Energy Synchrotron Diffraction

    CERN Document Server

    Scheuerlein, C; Di Michiel, M; Jin, X; Takeuchi, T; Kikuchi, A; Tsuchiya, K; Nakagawa, K; Nakamoto, T


    Nb3Al superconductors are studied for use in high field magnets. Fine grained Nb3Al with nearly stoichiometric Al content is obtained by a Rapid Heating Quenching and Transformation (RHQT) process. We describe a non destructive in situ study of the transformation process step of a RHQ Nb3Al precursor wire with ramp rates of either 120 °C/h or 800 °C/h. High energy synchrotron x-ray diffraction measurements show the transformation from a Nb(Al)SS supersaturated solid solution into Nb3Al. When heating with a ramp rate of 120 °C/h a strong reduction of the Nb(Al)SS (110) diffraction peak component is observed when the temperature exceeds 660 °C. Additional diffraction peaks are detectable in the approximate temperature interval 610 °C - 750 °C and significant Nb3Al growth is observed above 730 °C.

  3. Amyotrophic form of Creutzfeldt-Jakob disease with rapid course in 82-year-old man. (United States)

    Nowacki, P; Kulczycki, J; Narolewska, A; Grzelec, H


    The authors present a case of Creutzfeldt-Jakob disease in 82-year-old man. Besides the onset of the disease in the elderly and short survival time (8 weeks), other uncommon clinical and morphological features also characterized our case. An evident amyotrophic syndrome, confirmed in morphological findings, developed soon after the CJD onset. The spongiform change also observed within the white matter of cerebral hemispheres allowed us to diagnose the 'panencephalopathic' form of CJD.

  4. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms (United States)

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.


    Fe(III) chelated to such compounds as EDTA, N-methyliminodiacetie acid, ethanol diglycine, humic acids, and phosphates stimulated benzene oxidation coupled to Fe(III) reduction in anaerobic sediments from a petroleum- contaminated aquifer as effectively as or more effectively than nitrilotriacetic acid did in a previously demonstrated stimulation experiment. These results indicate that many forms of chelated Fe(III) might be applicable to aquifer remediation.

  5. Peroxynitrate is formed rapidly during decomposition of peroxynitrite at neutral pH. (United States)

    Gupta, Deepali; Harish, B; Kissner, Reinhard; Koppenol, Willem H


    The decomposition of peroxynitrite near neutral pH leads ultimately to the formation of dioxygen and nitrite via an intermediate with an absorbance maximum at 284 nm. The intermediate oxidises I(-) with a rate constant of (78 +/- 8) x 10 M(-1) s(-1) and decays near pH 7 with a rate constant of (0.58 +/- 0.02) s(-1) at 22 degrees C, but is longer-lived at lower pH. On the basis of experiments performed with a tandem-quenching flow reactor, we tentatively identify this intermediate as peroxynitric acid, formed during the proposed reaction sequence ONOOH + ONOO(-) --> NO(2)(-) + O(2)NOO(-) + H(+) --> 2 NO(2)(-) + O(2). These products are those expected from a peracid. The rate constant for the first reaction is ca. 3 x 10(4) M(-1) s(-1). Part of the dioxygen formed is in the (1)Delta(g) state (S. Miyamoto, G. E. Ronsein, T. C. Corréa, G. R. Martinez, M. H. G. Medeiros and P. Di Mascio, Dalton Trans., 2009, DOI: 10.1039/b905560f). The decay of peroxynitrous acid at concentrations higher than 0.1 mM near neutral pH is best described by the simultaneous process of isomerisation (k = 1.2 s(-1)) and decomposition to peroxynitrate. The rate of formation and the amount of peroxynitrate formed are much larger than can be accounted for by homolysis reactions.

  6. Evaluation of Ti(3)Si Phase Stability from Heat-Treated, Rapidly Solidified Ti-Si Alloys


    COSTA, Alex Matos da Silva; de Lima, Gisele Ferreira; Rodrigues,Geovani; NUNES, Carlos Angelo; Coelho,Gilberto Carvalho; Suzuki, Paulo Atsushi


    Ti-base alloys containing significant amounts of silicon have been considered for high temperature structural applications. Thus, information concerning phase stability on the Ti-Si system is fundamental and there are not many investigations covering the phase stability of the Ti(3)Si phase, specially its dependence on oxygen/nitrogen contamination. In this work the stability of this phase has been evaluated through heat-treatment of rapidly solidified Ti-rich Ti-Si alloys at 700 A degrees C ...

  7. DuraLith geopolymer waste form for Hanford secondary waste: Correlating setting behavior to hydration heat evolution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hui; Gong, Weiliang, E-mail:; Syltebo, Larry; Lutze, Werner; Pegg, Ian L.


    Highlights: • Quantitative correlations firstly established for cementitious waste forms. • Quantitative correlations firstly established for geopolymeric materials. • Ternary DuraLith geopolymer waste forms for Hanford radioactive wastes. • Extended setting times which improve workability for geopolymer waste forms. • Reduced hydration heat release from DuraLith geopolymer waste forms. - Abstract: The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results.

  8. Kissinger method applied to the crystallization of glass-forming liquids: Regimes revealed by ultra-fast-heating calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Orava, J., E-mail: [Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Greer, A.L., E-mail: [Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)


    Highlights: • Study of ultra-fast DSC applied to the crystallization of glass-forming liquids. • Numerical modeling of DSC traces at heating rates exceeding 10 orders of magnitude. • Identification of three regimes in Kissinger plots. • Elucidation of the effect of liquid fragility on the Kissinger method. • Modeling to study the regime in which crystal growth is thermodynamically limited. - Abstract: Numerical simulation of DSC traces is used to study the validity and limitations of the Kissinger method for determining the temperature dependence of the crystal-growth rate on continuous heating of glasses from the glass transition to the melting temperature. A particular interest is to use the wide range of heating rates accessible with ultra-fast DSC to study systems such as the chalcogenide Ge{sub 2}Sb{sub 2}Te{sub 5} for which fast crystallization is of practical interest in phase-change memory. Kissinger plots are found to show three regimes: (i) at low heating rates the plot is straight, (ii) at medium heating rates the plot is curved as expected from the liquid fragility, and (iii) at the highest heating rates the crystallization rate is thermodynamically limited, and the plot has curvature of the opposite sign. The relative importance of these regimes is identified for different glass-forming systems, considered in terms of the liquid fragility and the reduced glass-transition temperature. The extraction of quantitative information on fundamental crystallization kinetics from Kissinger plots is discussed.

  9. Quantitative effects of rapid heating on soot-particle sizing through analysis of two-pulse LII

    KAUST Repository

    Cenker, Emre


    During the rapid laser pulse heating and consecutive cooling in laser-induced incandescence (LII), soot particles may undergo thermal annealing and sublimation processes which lead to a permanent change in its optical properties and its primary particle size, respectively. Overall, effects of these two processes on soot and LII model-based particle sizing are investigated by measuring the two-color time-resolved (2C-TiRe) LII signal decay from in-flame soot after two consecutive laser pulses at 1064-nm wavelength. Experiments are carried out on a non-premixed laminar ethylene/air flame from a Santoro burner with both low and moderate laser fluences suitable for particle sizing. The probe volume is set to a radial position close to the flame axis where the soot particles are known to be immature or less graphitic. With the first pulse, soot is pre-heated, and the LII signal after the consecutive second pulse is used for analysis. The two-color incandescence emission technique is used for the pyrometric determination of the LII-heated peak soot temperature at the second pulse. A new LII simulation tool is developed which accounts for particle heating via absorption and annealing, and cooling via sublimation, conduction, and radiation with various existing sub-models from the literature. The same approach of using two laser pulses is implemented in the simulations. Measurements indicate that thermal annealing and associated absorption enhancement becomes important at laser fluences above 0.17 J/cm2 for the immature in-flame soot. After a heating pulse at 0.33 J/cm2, the increase of the soot absorption function is calculated as 35% using the temperature measured at the second pulse and an absorption model based on the Rayleigh approximation. Present annealing model, on the other hand, predicts graphitization of soot even in the absence of laser heating at typical flame temperatures. Recorded experimental LII signal decays and LII-heated peak soot temperature

  10. Numerical study of forced convection in a turbulent heat sink made of several rows of blocks of square form (United States)

    Bouchenafa, Rachid; Saim, Rachid; Abboudi, Said


    Forced convection is a phenomenon associated with the heat transfer fluid flows. The presence of convection affects simultaneously the thermal and hydrodynamic fields, the problem is thus coupled. This form of heat transfer inside ducts occurs in many practical applications such as solar collectors, heat exchangers, cooling of electronic components as well as chemical and nuclear. In this work, we are interested primarily for a numerical study of thermo-hydraulic performances of an incompressible turbulent flow of air through a heat sink composed of several rows of bars of square section. Profiles and the axial velocity fields, as well as profiles and the distribution of the Nusselt number are plotted for all the geometry considered and chosen for different sections. The effects of geometrical parameters of the model and the operating parameters on the dynamic and thermal behavior of the air are analyzed.

  11. Incubation behavior of silicon nanowire growth investigated by laser-assisted rapid heating

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sang-gil; Kim, Eunpa; Grigoropoulos, Costas P., E-mail: [Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740 (United States); Allen, Frances I.; Minor, Andrew M. [Department of Materials Science and Engineering, University of California, Berkeley, California 94720-1740 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Hwang, David J. [Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794 (United States)


    We investigate the early stage of silicon nanowire growth by the vapor-liquid-solid mechanism using laser-localized heating combined with ex-situ chemical mapping analysis by energy-filtered transmission electron microscopy. By achieving fast heating and cooling times, we can precisely determine the nucleation times for nanowire growth. We find that the silicon nanowire nucleation process occurs on a time scale of ∼10 ms, i.e., orders of magnitude faster than the times reported in investigations using furnace processes. The rate-limiting step for silicon nanowire growth at temperatures in the vicinity of the eutectic temperature is found to be the gas reaction and/or the silicon crystal growth process, whereas at higher temperatures it is the rate of silicon diffusion through the molten catalyst that dictates the nucleation kinetics.

  12. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century (United States)

    Coffel, Ethan D.; Horton, Radley M.; de Sherbinin, Alex


    As a result of global increases in both temperature and specific humidity, heat stress is projected to intensify throughout the 21st century. Some of the regions most susceptible to dangerous heat and humidity combinations are also among the most densely populated. Consequently, there is the potential for widespread exposure to wet bulb temperatures that approach and in some cases exceed postulated theoretical limits of human tolerance by mid- to late-century. We project that by 2080 the relative frequency of present-day extreme wet bulb temperature events could rise by a factor of 100–250 (approximately double the frequency change projected for temperature alone) in the tropics and parts of the mid-latitudes, areas which are projected to contain approximately half the world’s population. In addition, population exposure to wet bulb temperatures that exceed recent deadly heat waves may increase by a factor of five to ten, with 150–750 million person-days of exposure to wet bulb temperatures above those seen in today’s most severe heat waves by 2070–2080. Under RCP 8.5, exposure to wet bulb temperatures above 35 °C—the theoretical limit for human tolerance—could exceed a million person-days per year by 2080. Limiting emissions to follow RCP 4.5 entirely eliminates exposure to that extreme threshold. Some of the most affected regions, especially Northeast India and coastal West Africa, currently have scarce cooling infrastructure, relatively low adaptive capacity, and rapidly growing populations. In the coming decades heat stress may prove to be one of the most widely experienced and directly dangerous aspects of climate change, posing a severe threat to human health, energy infrastructure, and outdoor activities ranging from agricultural production to military training.

  13. Rapid therapeutic response onset of a new pharmaceutical form of chloroquine phosphate 300 mg: effervescent tablets. (United States)

    Yanze, M F; Duru, C; Jacob, M; Bastide, J M; Lankeuh, M


    To compare the efficiency, safety and taste of two pharmaceutical forms of chloroquine phosphate 300 mg: effervescent tablets against uncoated tablets. An open randomized study with 60 adults who suffered from acute uncomplicated Plasmodium falciparum malaria in three health centres in Nkongsamba health district, Cameroon. Mean times to fever clearance, symptoms clearance and asexual parasites clearance were longer in the uncoated tablets group: 36 h (range 24-48 h, SD = 16.8) vs. 60 h (range 24-96 h, SD = 31.2, P = 0.001) for fever clearance, 36 h (24-48 h, SD = 16.8) vs. 48 h (24-72, SD = 24, P = 0.001) for symptoms clearance and 48 h (24-72, SD = 1) vs. 72 h (48-96, SD = 24, P = 0.001) for parasitaemia clearance. Uncoated tablets took significantly longer to achieve 50% reduction of the initial asexual parasite density: (mean/SD) 19.2 h/7 vs. 52.8 h/16.8, P 0.05. The cure rate at day 7 in the two groups was similar, P > 0.05. There was no chloroquine resistance in the effervescent tablets group but one RI and one RII resistance in the uncoated tablets group. The taste of the two pharmaceutical forms was significantly different, P Effervescent tablets tasted sweet (score = 7.93), whereas uncoated tablets were bitter (score = 2.07). Effervescent tablets of chloroquine phosphate 300 mg work faster than uncoated tablets and because of their safe use and sweet taste achieve good therapeutic compliance.

  14. Aircraft Sheet Metal Practices, Blueprint Reading, Sheet Metal Forming and Heat Treating; Sheet Metal Work 2: 9855.04. (United States)

    Dade County Public Schools, Miami, FL.

    This course is designed to familiarize vocational students with construction in sheet metal layout. The document outlines goals, specific block objectives, layout practices, blueprint reading, sheet metal forming (by hand and by machine), and heat treatment of metals, and includes posttest samples. Layout techniques and air foil developing are…

  15. Rapid growth of black holes in massive star-forming galaxies. (United States)

    Alexander, D M; Smail, I; Bauer, F E; Chapman, S C; Blain, A W; Brandt, W N; Ivison, R J


    The tight relationship between the masses of black holes and galaxy spheroids in nearby galaxies implies a causal connection between the growth of these two components. Optically luminous quasars host the most prodigious accreting black holes in the Universe, and can account for greater than or approximately equal to 30 per cent of the total cosmological black-hole growth. As typical quasars are not, however, undergoing intense star formation and already host massive black holes (> 10(8)M(o), where M(o) is the solar mass), there must have been an earlier pre-quasar phase when these black holes grew (mass range approximately (10(6)-10(8))M(o)). The likely signature of this earlier stage is simultaneous black-hole growth and star formation in distant (redshift z > 1; >8 billion light years away) luminous galaxies. Here we report ultra-deep X-ray observations of distant star-forming galaxies that are bright at submillimetre wavelengths. We find that the black holes in these galaxies are growing almost continuously throughout periods of intense star formation. This activity appears to be more tightly associated with these galaxies than any other coeval galaxy populations. We show that the black-hole growth from these galaxies is consistent with that expected for the pre-quasar phase.

  16. EU-approved rapid tests for bovine spongiform encephalopathy detect atypical forms: a study for their sensitivities.

    Directory of Open Access Journals (Sweden)

    Daniela Meloni

    Full Text Available Since 2004 it become clear that atypical bovine spongiform encephalopthies (BSEs exist in cattle. Whenever their detection has relied on active surveillance plans implemented in Europe since 2001 by rapid tests, the overall and inter-laboratory performance of these diagnostic systems in the detection of the atypical strains has not been studied thoroughly to date. To fill this gap, the present study reports on the analytical sensitivity of the EU-approved rapid tests for atypical L- and H-type and classical BSE in parallel. Each test was challenged with two dilution series, one created from a positive pool of the three BSE forms according to the EURL standard method of homogenate preparation (50% w/v and the other as per the test kit manufacturer's instructions. Multilevel logistic models and simple logistic models with the rapid test as the only covariate were fitted for each BSE form analyzed as directed by the test manufacturer's dilution protocol. The same schemes, but excluding the BSE type, were then applied to compare test performance under the manufacturer's versus the water protocol. The IDEXX HerdChek ® BSE-scrapie short protocol test showed the highest sensitivity for all BSE forms. The IDEXX® HerdChek BSE-scrapie ultra short protocol, the Prionics®--Check WESTERN and the AJ Roboscreen® BetaPrion tests showed similar sensitivities, followed by the Roche® PrionScreen, the Bio-Rad® TeSeE™ SAP and the Prionics®--Check PrioSTRIP in descending order of analytical sensitivity. Despite these differences, the limit of detection of all seven rapid tests against the different classes of material set within a 2 log(10 range of the best-performing test, thus meeting the European Food Safety Authority requirement for BSE surveillance purposes. These findings indicate that not many atypical cases would have been missed surveillance since 2001 which is important for further epidemiological interpretations of the sporadic character of

  17. A molecular dynamics study on thin film liquid boiling characteristics under rapid linear boundary heating: Effect of liquid film thickness (United States)

    Rabbi, Kazi Fazle; Tamim, Saiful Islam; Faisal, A. H. M.; Mukut, K. M.; Hasan, Mohammad Nasim


    This study is a molecular dynamics investigation of phase change phenomena i.e. boiling of thin liquid films subjected to rapid linear heating at the boundary. The purpose of this study is to understand the phase change heat transfer phenomena at nano scale level. In the simulation, a thin film of liquid argon over a platinum surface has been considered. The simulation domain herein is a three-phase system consisting of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system is brought to an equilibrium state at 90 K and then the temperature of the bottom wall is increased to a higher temperature (250K) within a finite time interval. Four different liquid argon film thicknesses have been considered (3 nm, 4 nm, 5 nm and 6 nm) in this study. The boundary heating rate (40×109 K/s) is kept constant in all these cases. Variation in system temperature, pressure, net evaporation number, spatial number density of the argon region with time for different film thickness have been demonstrated and analyzed. The present study indicates that the pattern of phase transition may be significantly different (i.e. evaporation or explosive boiling) depending on the liquid film thickness. Among the four cases considered in the present study, explosive boiling has been observed only for the liquid films of 5nm and 6nm thickness, while for the other cases, evaporation take place.

  18. Rapid presumptive identification of the Mycobacterium tuberculosis-bovis complex by radiometric determination of heat stable urease

    Energy Technology Data Exchange (ETDEWEB)

    Gandy, J.H.; Pruden, E.L.; Cox, F.R.


    Simple and rapid Bactec methodologies for the determination of neat (unaltered) and heat stable urease activity of mycobacteria are presented. Clinical isolates (63) and stock cultures (32)--consisting of: M. tuberculosis (19), M. bovis (5), M. kansasii (15), M. marinum (4), M. simiae (3), M. scrofulaceum (16), M. gordonae (6), M. szulgai (6), M. flavescens (1), M. gastri (1), M. intracellulare (6), M. fortuitum-chelonei complex (12), and M. smegmatis (1)--were tested for neat urease activity by Bactec radiometry. Mycobacterial isolates (50-100 mg wet weight) were incubated at 35 degrees C for 30 minutes with microCi14C-urea. Urease-positive mycobacteria gave Bactec growth index (GI) values greater than 100 units, whereas urease-negative species gave values less than 10 GI units. Eighty-three isolates possessing neat urease activity were heated at 80 degrees C for 30 minutes followed by incubation at 35 degrees C for 30 minutes with 1 microCi14C-urea. Mycobacterium tuberculosis-bovis complex demonstrated heat-stable urease activity (GI more than 130 units) and could be distinguished from mycobacteria other than tuberculosis (MOTT), which gave GI values equal to or less than 40 units.


    Energy Technology Data Exchange (ETDEWEB)

    Amorin, R.; Vilchez, J. M.; Perez-Montero, E. [Instituto de Astrofisica de Andalucia-CSIC, Glorieta de la Astronomia S/N, E-18008 Granada (Spain); Haegele, G. F.; Firpo, V. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad de la Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Papaderos, P., E-mail: [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)


    Deep, high-resolution spectroscopic observations have been obtained for six compact, strongly star-forming galaxies at redshift z {approx} 0.1-0.3, most of them also known as green peas. Remarkably, these galaxies show complex emission-line profiles in the spectral region including H{alpha}, [N II] {lambda}{lambda}6548, 6584, and [S II] {lambda}{lambda}6717, 6731, consisting of the superposition of different kinematical components on a spatial extent of few kiloparsecs: a very broad line emission underlying more than one narrower component. For at least two of the observed galaxies some of these multiple components are resolved spatially in their two-dimensional spectra, whereas for another one a faint detached H{alpha} blob lacking stellar continuum is detected at the same recessional velocity {approx}7 kpc away from the galaxy. The individual narrower H{alpha} components show high intrinsic velocity dispersion ({sigma} {approx} 30-80 km s{sup -1}), suggesting together with unsharped masking Hubble Space Telescope images that star formation proceeds in an ensemble of several compact and turbulent clumps, with relative velocities of up to {approx}500 km s{sup -1}. The broad underlying H{alpha} components indicate in all cases large expansion velocities (full width zero intensity {>=}1000 km s{sup -1}) and very high luminosities (up to {approx}10{sup 42} erg s{sup -1}), probably showing the imprint of energetic outflows from supernovae. These intriguing results underline the importance of green peas for studying the assembly of low-mass galaxies near and far.

  20. DuraLith geopolymer waste form for Hanford secondary waste: correlating setting behavior to hydration heat evolution. (United States)

    Xu, Hui; Gong, Weiliang; Syltebo, Larry; Lutze, Werner; Pegg, Ian L


    The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Development and Validation of a Stability-Indicating RP-HPLC Method for Rapid Determination of Doxycycline in Pharmaceutical Bulk and Dosage Forms

    Directory of Open Access Journals (Sweden)

    Shabnam Pourmoslemi, Soroush Mirfakhraee, Saeid Yaripour, Ali Mohammadi


    Full Text Available Background: A rapid stability-indicating RP-HPLC method for analysis of doxycycline in the presence of its degradation products was developed and validated. Methods: Forced degradation studies were carried out on bulk samples and capsule dosage forms of doxycycline using acid, base, H2O2, heat, and UV light as described by ICH for stress conditions to demonstrate the stability-indicating power of the method. Separations were performed on a Perfectsil® Target ODS column (3-5µm, 125 mm×4 mm, using a mobile phase consisting of methanol-50 mM ammonium acetate buffer (containing 0.1% v/v trifluoroacetic acid and 0.1% v/v triethylamine, pH 2.5 (50:50 v/v at room temperature. The flow rate was 0.8 mL/min. Results: The method linearity was investigated in the range of 25–500 µg/mL (r > 0.9999. The LOD and LOQ were 5 and 25 µg/mL, respectively. The method selectivity was evaluated by peak purity test using a diode array detector. There was no interference among detection of doxycycline and its stressed degradation products. Total peak purity numbers were in the range of 0.94-0.99, indicating the homogeneity of DOX peaks. Conclusion: These data show the stability-indicating nature of the method for quality control of doxycycline in bulk samples and capsule dosage forms.

  2. Research on the Grain Boundary Liquation Mechanism in Heat Affected Zones of Laser Forming Repaired K465 Nickel-Based Superalloy

    Directory of Open Access Journals (Sweden)

    Qiuge Li


    Full Text Available The damaged K465 nickel-based superalloy parts were repaired by laser forming repair technology. The cracking characteristics and grain boundary liquation in heat affected zones were investigated by optical microscopy (OM, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. It was found that the cracks originated from the heat-affected zone and extended to the repaired zone. The calculation by Thermol-Cale software showed that the larger γ′ particles at grain boundaries partly dissolved in the γ phase, which made the solutes’ concentration at the γ′/γ interface meet the eutectic-type liquation reaction condition of γ + γ′ → L. Then, grain boundaries liquation occurred and liquid films appeared with the temperature increasing in a rapid heating process. However, the intragranular γ′ phase completely dissolved into the γ phase with no devotion to the liquid film. The dissolution of M5B3 borides at grain boundaries could promote grain boundary liquation.

  3. Structural stability of hydrogenated amorphous carbon overcoats used in heat-assisted magnetic recording investigated by rapid thermal annealing

    KAUST Repository

    Wang, N.


    Ultrathin amorphous carbon (a-C) films are extensively used as protective overcoats of magnetic recording media. Increasing demands for even higher storage densities have necessitated the development of new storage technologies, such as heat-assisted magnetic recording (HAMR), which uses laser-assisted heating to record data on high-stability media that can store single bits in extremely small areas (∼1 Tbit/in.2). Because HAMR relies on locally changing the coercivity of the magnetic medium by raising the temperature above the Curie temperature for data to be stored by the magnetic write field, it raises a concern about the structural stability of the ultrathin a-C film. In this study, rapid thermal annealing (RTA) experiments were performed to examine the thermal stability of ultrathin hydrogenated amorphous carbon (a-C:H) films deposited by plasma-enhanced chemical vapor deposition. Structural changes in the a-C:H films caused by RTA were investigated by x-ray photoelectron spectroscopy, Raman spectroscopy, x-ray reflectivity, and conductive atomic force microscopy. The results show that the films exhibit thermal stability up to a maximum temperature in the range of 400-450 °C. Heating above this critical temperature leads to hydrogen depletion and sp 2 clustering. The critical temperature determined by the results of this study represents an upper bound of the temperature rise due to laser heating in HAMR hard-disk drives and the Curie temperature of magnetic materials used in HAMR hard disks. © 2013 American Institute of Physics.

  4. Mechanical Testing of PMCs under Simulated Rapid Heat-Up Propulsion Environments. II; In-Plane Compressive Behavior (United States)

    Stokes, Eric H.; Shin, E. Eugene; Sutter, James K.


    Carbon fiber thermoset polymer matrix composites (PMC) with high temperature polyimide based in-situ polymerized monomer reactant (PMR) resin has been used for some time in applications which can see temperatures up to 550 F. Currently, graphite fiber PMR based composites are used in several aircraft engine components including the outer bypass duct for the GE F-404, exit flaps for the P&W F-100-229, and the core cowl for the GE/Snecma CF6-80A3. Newer formulations, including PMR-II-50 are being investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines that can see temperatures which exceed 550 F. Extensive FEM thermal modeling indicates that these components are exposed to rapid heat-up rates (up to -200 F/sec) and to a maximum temperature of around 600 F. Even though the predicted maximum part temperatures were within the capability of PW-II-50, the rapid heat-up causes significant through-thickness thermal gradients in the composite part and even more unstable states when combined with moisture. Designing composite parts for such extreme service environments will require accurate measurement of intrinsic and transient mechanical properties and the hygrothermal performance of these materials under more realistic use conditions. The mechanical properties of polymers degrade when exposed to elevated temperatures even in the absence of gaseous oxygen. Accurate mechanical characterization of the material is necessary in order to reduce system weight while providing sufficient factors of safety. Historically, the testing of PMCs at elevated temperatures has been plagued by the antagonism between two factors. First, moisture has been shown to profoundly affect the mechanical response of these materials at temperatures above their glass transition temperature while concurrently lowering the material's Tg. Moisture phenomena is due to one or a combination of three effects, i

  5. Rapid automated materials synthesis instrument: exploring the composition and heat-treatment of nanoprecursors toward low temperature red phosphors. (United States)

    Lin, Tian; Kellici, Suela; Gong, Kenan; Thompson, Kathryn; Evans, Julian R G; Wang, Xue; Darr, Jawwad A


    We report on the commissioning experimental run of the rapid automated materials synthesis instrument (RAMSI), a combinatorial robot designed to manufacture, clean, and print libraries of nanocrystal precursor solid compositions. The first stage of RAMSI, parallel synthesis, uses a fully automated high throughput continuous hydrothermal (HiTCH) flow reactor for automatic metal salt precursor mixing, hydrothermal flow reaction, and sample slurry collection. The second stage of RAMSI provides integrated automated cleanup, and the third section is a ceramic printing function. Nanocrystal precursor solid ceramics were synthesized from precursor solutions and collected into 50 mL centrifuge tubes where they were cleaned by multiple centrifugation and redispersion cycles (monitored by intelligent scanning turbidimetry) and printed with an automated pipette. Eight unique compositions of a model phosphor library comprising pure nano-Y(OH)(3) and Eu(3+) doped-yttrium hydroxide, Y(OH)(3):Eu(3+) nanocrystal precursor solid were synthesized (with 2 centrifuge tubes' worth collected per composition), processed, and printed in duplicate as 75, 100, and 125 microL dots in a 21.6 ks (6 h) experiment (note: the actual time for synthesis of each sample tube was only 12 min so up to 60 compositions could easily be synthesized in 12 h if one centrifuge tube per composition was collected instead). The Y(OH)(3):Eu(3+) samples were manually placed in a furnace and heat-treated in air for 14.4 ks (4 h) in the temperature range 200-1200 at 100 degrees C intervals (giving a total of 84 samples plus one as-prepared pure Y(OH)(3) sample). The as-prepared and heat-treated ceramic samples were affixed to 4 mm wide hemispherical wells in a custom-made aluminum well-plate and analyzed using a fluorescence spectrometer. When the library was illuminated with a 254 nm light source (and digitally imaged and analyzed), the 3 mol % Eu(3+) sample heat-treated at 1200 degrees C gave the most intense

  6. Desorption of SVOCs from Heated Surfaces in the Form of Ultrafine Particles

    DEFF Research Database (Denmark)

    Wallace, Lance A.; Ott, Wayne R.; Weschler, Charles J.


    Ultrafine particles (UFP) produced by electric heating of stoves and metal cooking pans, absent food, have been hypothesized to be created from a surface film of semivolatile organic compounds (SVOCs) sorbed from the surrounding air. This study tests that hypothesis by size-resolved measurements...... extending the lower range of the UFP studied from 10 to 2.3 nm, and including other surfaces (glass, aluminum, and porcelain). Heating glass Petri dishes or squares of aluminum foil to about 350-400 degrees C for 4-6 min removed all sorbed organic substances completely. Subsequent exposure of these "clean......" Petri dishes and foil squares to indoor air in two different residences for successively longer periods (1 h to 281 days), followed by heating the materials for 4-6 min, indicated a strong relationship of the number, size distribution, and mass of the UFP to the time exposed. Estimates...

  7. Ultra rapid direct heating synthesis of ZnO nanorods with improved light trapping from stacked photoanodes for high efficiency photocatalytic water splitting (United States)

    Cheat Lee, Wei; Fang, Yuanxing; Commandeur, Daniel; Qian, Rong; Al-Abdullah, Zainab T. Y.; Chen, Qiao


    An ultra rapid growth method for vertically aligned ZnO nanorod (NR) thin films on metal meshes was developed using a direct heating synthesis technique. A typical NR growth rate of 10 μm h-1 was achieved. The effects of the applied heating power and growth duration on the morphologies of ZnO nanostructures were examined. High density surface defects were formed on the ZnO NRs, which is responsible for slow charge recombination and high efficiency in the photoelectrochemical (PEC) water splitting process. The light absorption for a photoanode was significantly improved by light trapping using a 3D stacked metal mesh photoanode structure. With the internal reflection between the stacked photoanodes, the final light leakage is minimised. The light absorption in the stacked photoanode is improved without restricting the charge transportation. In comparison with a single mesh photoanode and a chemical bath deposition grown flat photoanode, the PEC water splitting efficiency from the stacked photoanode was increased by a factor of 2.6 and 6.1 respectively.

  8. Milder form of heat-related symptoms and thermal sensation: a study in a Mediterranean climate. (United States)

    Pantavou, Katerina G; Lykoudis, Spyridon P; Nikolopoulos, Georgios K


    Mild heat-related health effects and their potential association with meteorological and personal parameters in relation to subjective and objective thermal sensation were investigated. Micrometeorological measurements and questionnaire surveys were conducted in an urban Mediterranean environment during a warm, cool, and a transitional season. The participants were asked to indicate their thermal sensation based on a seven-point scale and report whether they were experiencing any of the following symptoms: headache, dizziness, breathing difficulties, and exhaustion. Two thermal indices, Actual Sensation Vote (ASV) and Universal Thermal Climate Index (UTCI), were estimated in order to obtain an objective measure of individuals' thermal sensation. Binary logistic regression was applied to identify risk parameters while cluster analysis was used to determine thresholds of air temperature, ASV and UTCI related to health effects. Exhaustion was the most frequent symptom reported by the interviewees. Females and smokers were more likely to report heat-related symptoms than males and nonsmokers. Based on cluster analysis, 35 °C could be a cutoff point for the manifestation of heat-related symptoms during summer. The threshold for ASV was 0.85 corresponding to "warm" thermal sensation and for UTCI was about 30.85 °C corresponding to "moderate heat stress" according to the Mediterranean assessment scale.

  9. The presence of heat-stable conformers of ovalbumin affects properties of thermally formed aggregates

    NARCIS (Netherlands)

    Groot,; Jongh,


    The aim of this work was to study the effect of the formation of more heat-stable conformers of chicken egg ovalbumin during incubation at basic pH (9.9) and elevated temperature (55°C) on the protein aggregation properties at neutral pH. Native ovalbumin (N-OVA) is converted on the hours time-scale

  10. Studies of Nucleation and Growth, Specific Heat and Viscosity of Undercooled Melts of Quasicrystals and Polytetrehedral-Phase-Forming Alloys (United States)


    By investigating the properties of quasicrystals and quasicrystal-forming liquid alloys, we may determine the role of ordering of the liquid phase in the formation of quasicrystals, leading to a better fundamental understanding of both the quasicrystal and the liquid. A quasicrystal is solid characterized by a symmetric but non-periodic arrangement of atoms, usually in the form of an icosahedron (12 atoms, 20 triangular faces). It is theorized that the short-range order in liquids takes this same form. The degree of ordering depends on the temperature of the liquid, and affects many of the liquid s properties, including specific heat, viscosity, and electrical resistivity. The MSFC role in this project includes solidification studies, phase diagram determination, and thermophysical property measurements on the liquid quasicrystal-forming alloys, all by electrostatic levitation (ESL). The viscosity of liquid quasicrystal-forming alloys is measured by the oscillating drop method, both in the stable and undercooled liquid state. The specific heat of solid, undercooled liquid, and stable liquid are measured by the radiative cooling rate of the droplets.

  11. Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications

    Energy Technology Data Exchange (ETDEWEB)

    Aquil Ahmad


    Within this project, Eaton undertook the task of bringing about significant impact with respect to sustainability. One of the major goals for the Department of Energy is to achieve energy savings with a corresponding reduction in carbon foot print. The use of a coupled induction heat treatment with high magnetic field heat treatment makes possible not only improved performance alloys, but with faster processing times and lower processing energy, as well. With this technology, substitution of lower cost alloys for more exotic alloys became a possibility; microstructure could be tailored for improved magnetic properties or wear resistance or mechanical performance, as needed. A prototype commercial unit has been developed to conduct processing of materials. Testing of this equipment has been conducted and results demonstrate the feasibility for industrial commercialization.

  12. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress. (United States)

    Siebers, Matthew H; Yendrek, Craig R; Drag, David; Locke, Anna M; Rios Acosta, Lorena; Leakey, Andrew D B; Ainsworth, Elizabeth A; Bernacchi, Carl J; Ort, Donald R


    Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high-temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high-temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave-induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures. Published 2015. This article is a U.S. Government work and is

  13. Effects of heat treatment and formulation on the phase composition and chemical durability of the EBR-ll ceramic waste form.

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. E.; Dietz, N. L.; Janney, D. E.


    relatively large amount of nepheline, Na{sub 4}(AlSiO{sub 4}){sub 4}, was formed in the material made with 5.0 mass% salt loading, which was also the least durable of the materials that were tested. Nepheline was not detected in materials made with salt-loaded zeolites containing 15 or 20 mass% salt. Conversely, halite was not detected with XRD in materials made with 5.0 or 7.5 mass% salt loading, but similar amounts of halite were measured in the other CWF materials. The sodalite contents of all materials were similar. The halite content in the CWF source material used in the short-term heat-treatment study, which had the nominal salt and binder glass loadings, was determined to be about 1.3 mass% by standard addition analysis. Heat treatment had only a small effect on the phase composition: the amount of halite increased to as much as 3.7 mass%, and trace amounts of nepheline were detected in samples treated at 800 and 850 C. The CWF samples treated at high temperatures had lower amounts of halite detected in the rapid water-soluble test. The releases of B, Na, and Si in the product consistency tests (PCTs) were not sensitive to the heat-treatment conditions. The PCT responses of all salt-loaded and heat-treated CWF materials were well below that of the Environmental Assessment (EA) glass.

  14. Calcium bromide hydration for heat storage systems


    Ai Niwa; Noriyuki Kobayashi


    A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the...

  15. Heat

    CERN Document Server

    Lawrence, Ellen


    Is it possible to make heat by rubbing your hands together? Why does an ice cube melt when you hold it? In this title, students will conduct experiments to help them understand what heat is. Kids will also investigate concepts such as which materials are good at conducting heat and which are the best insulators. Using everyday items that can easily be found around the house, students will transform into scientists as they carry out step-by-step experiments to answer interesting questions. Along the way, children will pick up important scientific skills. Heat includes seven experiments with detailed, age-appropriate instructions, surprising facts and background information, a "conclusions" section to pull all the concepts in the book together, and a glossary of science words. Colorful, dynamic designs and images truly put the FUN into FUN-damental Experiments.

  16. Monounsaturated fatty acid ether oligomers formed during heating of virgin olive oil show agglutination activity against human red blood cells. (United States)

    Patrikios, Ioannis S; Mavromoustakos, Thomas M


    The present work focuses on the characterization of molecules formed when virgin olive oil is heated at 130 °C for 24 h open in air, which are found to be strong agglutinins. The hemagglutinating activity of the newly formed molecule isolated from the heated virgin olive oil sample was estimated against human red blood cells (RBCs). Dimers and polymers (high molecular weight molecules) were identified through thin layer chromatography (TLC) of the oil mixture. (1)H and (13)C nuclear magnetic resonance (NMR) and gas chromatography-mass spectroscopy (GC-MS) were the methods used for structural characterization. Among others, oligomerization of at least two monounsaturated fatty acids (FA) by an ether linkage between the hydrocarbon chains is involved. Light microscopy was used to characterize and visualize the agglutination process. Agglutination without fusion or lysis was observed. It was concluded that the heating of virgin olive oil open in air, among other effects, produces oligomerization as well as polymerization of unsaturated FA, possibly of monohydroxy, monounsaturated FA that is associated with strong hemagglutinating activity against human RBCs. The nutritional value and the effects on human health of such oligomers are not discussed in the literature and remain to be investigated.

  17. Rapid acclimation of juvenile corals to CO2 -mediated acidification by upregulation of heat shock protein and Bcl-2 genes. (United States)

    Moya, A; Huisman, L; Forêt, S; Gattuso, J-P; Hayward, D C; Ball, E E; Miller, D J


    Corals play a key role in ocean ecosystems and carbonate balance, but their molecular response to ocean acidification remains unclear. The only previous whole-transcriptome study (Moya et al. Molecular Ecology, 2012; 21, 2440) documented extensive disruption of gene expression, particularly of genes encoding skeletal organic matrix proteins, in juvenile corals (Acropora millepora) after short-term (3 d) exposure to elevated pCO2 . In this study, whole-transcriptome analysis was used to compare the effects of such 'acute' (3 d) exposure to elevated pCO2 with a longer ('prolonged'; 9 d) period of exposure beginning immediately post-fertilization. Far fewer genes were differentially expressed under the 9-d treatment, and although the transcriptome data implied wholesale disruption of metabolism and calcification genes in the acute treatment experiment, expression of most genes was at control levels after prolonged treatment. There was little overlap between the genes responding to the acute and prolonged treatments, but heat shock proteins (HSPs) and heat shock factors (HSFs) were over-represented amongst the genes responding to both treatments. Amongst these was an HSP70 gene previously shown to be involved in acclimation to thermal stress in a field population of another acroporid coral. The most obvious feature of the molecular response in the 9-d treatment experiment was the upregulation of five distinct Bcl-2 family members, the majority predicted to be anti-apoptotic. This suggests that an important component of the longer term response to elevated CO2 is suppression of apoptosis. It therefore appears that juvenile A. millepora have the capacity to rapidly acclimate to elevated pCO2 , a process mediated by upregulation of specific HSPs and a suite of Bcl-2 family members. © 2014 John Wiley & Sons Ltd.

  18. Development of a model system for rapid assessment of insect mortality in heated controlled atmosphere quarantine treatments. (United States)

    Neven, Lisa G


    The development of postharvest quarantine treatments can be both expensive and time-consuming. It is necessary to determine the species and stage of the pest most tolerant to the treatment, if more than one species is the target of the treatment. Initial laboratory studies often include infesting the commodity with various egg and larval stages of the pest and performing treatments and evaluations of the fruit. In collaboration with others, I have previously developed combination high temperature under controlled atmosphere treatments against two quarantine pests in apples (Malus spp.) and peaches and nectarines (both Prunus spp.). I decided to develop an artificial system that can be used for these initial tests without the need for infesting large quantities of the fruit. I tested the system on the immature stages of the pests under regular air and controlled atmospheres by using the controlled atmosphere water bath system. This system can be used for rapid assessment of the most tolerant stage and species of a pest to a combination heat and controlled atmosphere treatment without the expense of infesting, treating, and evaluating the commodity.

  19. Microstructural characteristics of spray formed and heat treated Al–(Y, La)–Ni–Co system

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, V.C., E-mail: [Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831 007 (India); Surreddi, K.B.; Scudino, S. [IFW Dresden, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); Schowalter, M. [Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen (Germany); Uhlenwinkel, V.; Schulz, A. [Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen (Germany); Eckert, J. [IFW Dresden, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); TU Dresden, Institute of Materials Science, D-01062 Dresden (Germany); Rosenauer, A. [Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen (Germany); Zoch, H.-W. [Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen (Germany)


    Highlights: •Al–(La, Y)–Ni–Co based alloys are spray formed to thickness 10–12 mm. •XRD and DSC confirms the presence of large fraction of amorphous phase. •Optical, SEM and TEM studies corroborated the observations made. Mechanism of microstructural evolution brought out. •Heat treatment of spray deposited materials showed increased hardness which decreased at high temperature annealing. •La containing system showed better thermal stability than that without La. -- Abstract: Recent studies on the synthesis of bulk Al–RE (Rare Earth)-TM (Transition Metal) based materials, from melt spun ribbons and gas atomized powders, have shown that partially amorphous or nano-crystalline structures lead to a high specific strength. In the present study, therefore, spray atomization and deposition process has been used to produce plates of Al{sub 85}Y{sub 8}Ni{sub 5}Co{sub 2} (deposit D1) and Al{sub 83}Y{sub 5}La{sub 5}Ni{sub 5}Co{sub 2} (deposit D2) systems so as to synthesize bulk deposit of nano-crystalline and/or partially amorphous materials in a single step. The rapid solidification and high undercooling of droplets during atomization and the chilling effect on undercooled liquid upon deposition give rise to the above microstructural features. The microstructural features of deposits as well as overspray powders were studied using optical, scanning and transmission electron microscope. The alloys invariably showed a large fraction of nano-crystalline structure and amorphous features, characterized by featureless regions at optical resolution, along with distribution of primary equilibrium phases. The differential scanning calorimetric (DSC) analysis of the deposits showed similar crystallization features as observed during crystallization of fully amorphous melt spun ribbons of respective compositions. The transmission electron microscopy of deposit D1 showed the presence of 50–100 nm size fcc-Al precipitates in an amorphous matrix decorated with 5

  20. Treatment of Aqueous Film-Forming Foam by Heat-Activated Persulfate Under Conditions Representative of In Situ Chemical Oxidation. (United States)

    Bruton, Thomas A; Sedlak, David L


    Poly- and perfluoroalkyl substances (PFASs) have been detected in an increasing number of water supplies. In many instances, the contamination is associated with the use of PFAS-containing aqueous film-forming foams (AFFF) in firefighting activities. To investigate the potential for remediating AFFF contamination in groundwater with heat-activated persulfate, PFAS oxidation and the generation of transformation products was evaluated under well-controlled conditions. Fluorotelomer- and perfluoroalkyl sulfonamide-based polyfluorinated compounds were transformed to perfluorinated carboxylic acids, which underwent further degradation under acidic conditions produced after persulfate decomposed. The presence of aquifer sediments decreased the efficiency of the remedial process but did not alter the transformation pathways. At high concentrations, the presence of organic solvents, such as those present in AFFF formulations, inhibited transformation of a representative perfluorinated compound, perfluorooctanoic acid. Heat-activated persulfate did not transform perfluorooctanesulfonic acid or perfluorohexanesulfonic acid under any conditions. Despite challenges associated with the creation of acidic conditions in the subsurface, the potential for generation of undesirable transformation products, and the release of toxic metals, heat-activated persulfate may be a useful in situ treatment for sites contaminated with polyfluoroalkyl substances and perfluorocarboxylic acids.

  1. Stationary inverted Lyman population formed from incandescently heated hydrogen gas with certain catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Randell L; Ray, Paresh C; Mayo, Robert M [BlackLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512 (United States)


    A new chemically generated plasma source is reported. The presence of gaseous Rb{sup +} or K{sup +} ions with thermally dissociated hydrogen formed a low applied temperature, extremely low voltage plasma called a resonant transfer or rt-plasma having strong vacuum ultraviolet emission. We propose an energetic catalytic reaction involving a resonant energy transfer between hydrogen atoms and Rb{sup +} or 2K{sup +} since Rb{sup +} to Rb{sup 2+}, 2K{sup +} to K + K{sup 2+}, and K to K{sup 3+} each provide a reaction with a net enthalpy equal to the potential energy of atomic hydrogen. Remarkably, a stationary inverted Lyman population was observed; thus, these catalytic reactions may pump a cw HI laser as predicted by a collisional radiative model used to determine that the observed overpopulation was above threshold.

  2. Crystalline structures of poly(L-lactide) formed under pressure and structure transitions with heating

    DEFF Research Database (Denmark)

    Huang, Shaoyong; Li, Hongfei; Yu, Donghong


    ), real time synchrotron small-angle X-ray scattering (SR-SAXS) and differential scanning calorimetry (DSC) during this process. The structural parameters, such as the size of crystallites, the inverse spacing, the long periods and lamellae thicknesses decrease with pressure increasing. Based...... on the peculiarities of crystalline structure and crystallization behaviors, low and high pressure regions were revealed: disordered α crystal was formed in the high pressure region (>1 kbar). A layer located intermediate between crystalline and melt-like regions was observed, which finally took on crystalline order......The isothermally crystallized poly(L-lactide) (PLLA) samples were obtained at 135 °C under pressures (Pc) ranging from 1 bar to 2.5 kbar. The crystalline structures, the structure transition, and thermal properties of the prepared samples were investigated by wide-angle X-ray diffraction (WAXD...

  3. Externally Heated Protostellar Cores in the Ophiuchus Star-Forming Region (United States)

    Lindberg, Johan E.; Charnley, Steven B.; Jorgensen, Jes K.; Cordiner, Martin A.; Bjerkeli, Per


    We present APEX 218 GHz observations of molecular emission in a complete sample of embedded protostars in the Ophiuchus star-forming region. To study the physical properties of the cores, we calculate H2CO and c-C3H2 rotational temperatures, both of which are good tracers of the kinetic temperature of the molecular gas. We find that the H2CO temperatures range between 16K and 124K, with the highest H2CO temperatures toward the hot corino source IRAS 16293-2422 (69-124 K) and the sources in the rho Oph A cloud (23-49 K) located close to the luminous Herbig Be star S1, which externally irradiates the rho Oph A cores. On the other hand, the c-C3H2 rotational temperature is consistently low (7-17 K) in all sources. Our results indicate that the c-C3H2 emission is primarily tracing more shielded parts of the envelope whereas the H2CO emission (at the angular scale of the APEX beam; 3600 au in Ophiuchus) mainly traces the outer irradiated envelopes, apart from in IRAS?16293-2422, where the hot corino emission dominates. In some sources, a secondary velocity component is also seen, possibly tracing the molecular outflow.

  4. Low-Cost and Rapid Fabrication of Metallic Nanostructures for Sensitive Biosensors Using Hot-Embossing and Dielectric-Heating Nanoimprint Methods

    Directory of Open Access Journals (Sweden)

    Kuang-Li Lee


    Full Text Available We propose two approaches—hot-embossing and dielectric-heating nanoimprinting methods—for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit. The rapid fabrication is also achieved by using radio-frequency (RF sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen–antibody interactions using bovine serum albumin (BSA and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications.

  5. The pulsations of boundary conditions – factor of the rapid wear on heat exchange surfaces in heterogeneous dispersed flows (United States)

    Khodunkov, V. P.


    The results of experimental studies of industrial furnace with a fluidized bed reactor. The data on the values of the coefficient of heat transfer, the quality of fluidization and mixing efficiency. In theory shows that there are significant variables of temperature gradients on the walls of the heat exchange elements are qualitative arguments about the causes of increased wear of heat exchange surfaces in a fluidized bed.

  6. Preparation of a Rapidly Forming Poly(ferrocenylsilane)-Poly(ethylene glycol)-based Hydrogel by a Thiol–Michael Addition Click Reaction

    NARCIS (Netherlands)

    Sui, Xiaofeng; van Ingen, Lennard; Hempenius, Mark A.; Vancso, Gyula J.


    The synthesis of a rapidly forming redox responsive poly(ferrocenylsilane)-poly(ethylene glycol) (PFS-PEG)-based hydrogel is described, achieved by a thiol-Michael addition click reaction. PFS bearing acrylate side groups (PFS-acryl) was synthesized by side group modification of

  7. Rapid, non-destructive and non-contact inspection of solid foods by means of photothermal radiometry; thermal effusivity and initial heating coefficient (United States)

    Gijsbertsen, A.; Bicanic, D.; Gielen, J. L. W.; Chirtoc, M.


    CO 2-laser photothermal radiometry (PTR) was demonstrated to be suitable for the non-destructive and non-contact characterization (both optical and thermal) of solid phase agricultural commodities (fresh vegetables, fruits) and confectionery products (candy). Proper interpretation of PTR signals enable one to calculate two parameters, i.e. the well known thermal effusivity e ( e= λρc p, where λ and ρcp are the thermal conductivity and the volume specific heat, respectively) and a newly introduced physical quantity termed 'initial heating coefficient' chi ( χ= β/( ρcp), β is the absorption coefficient). Obtained values for e are in a good agreement with data reported in the literature. PTR enables one to rapidly determine e via a single measurement. As opposed to this, the knowledge of two out of three thermophysical parameters (thermal diffusivity, thermal conductivity and volume specific heat) is a condition sine qua non for determining effusivity in the conventional manner.

  8. EU-Approved Rapid Tests for Bovine Spongform Encephalopathy Detect Atypical Forms: A Study for Their Sensitivities

    NARCIS (Netherlands)

    Meloni, D.; Davidse, A.; Langeveld, J.P.M.; varello, K.; Casalone, C.; Corona, C.; Balkema-Buschmann, A.; Groschup, M.; Ingravalle, F.; Bozzetta, E.


    Since 2004 it become clear that atypical bovine spongiform encephalopthies (BSEs) exist in cattle. Whenever their detection has relied on active surveillance plans implemented in Europe since 2001 by rapid tests, the overall and inter-laboratory performance of these diagnostic systems in the

  9. Calculation and experimental researches into the heat exchange surface formed by oppositely directed truncated cones with saddle-shaped connection straps (United States)

    Baranov, A. Ye; Ilmov, D. N.; Mavrov, V. A.; Mamontov, Yu N.; Skorokhodov, A. S.


    The article has presented experimental data on the investigation of thermal and hydraulic characteristics of heat exchangers made of thin-walled panels with the surface formed by oppositely directed truncated cones with saddle-shaped connection straps. An approach to the mathematical description of surfaces of given class have also been proposed, and numerical modeling of stream and heat transfer have been performed. Results of numerical modeling have been compared with the experimental ones.

  10. Polymerization of Vinylpyrrolidone to Form a Neutral Coating on Anionic Nanomaterials in Aqueous Suspension for Rapid Sedimentation


    Lai, Edward P. C.; Zafar Iqbal; Sherif Nour


    Nanomaterials in water present an array of identifiable potential hazards to ecological and human health. There is no general consensus about the influence of anionic or cationic charge on the toxicity of nanomaterials on environmental ecology. One challenge is the limited number of scalable technologies available for the removal of charged nanomaterials from water. A new method based on polymer coating has been developed in our laboratory for rapid sedimentation of nanomaterials in aqueous s...

  11. Rapid bonding and easy debonding of orthodontic appliances with 4-META/MMA-TBB resin using thermal heating. (United States)

    Kameda, Takashi; Ohkuma, Kazuo; Terada, Kazuto


    4-Methacryloyloxyethyl trimellitate anhydride/methyl methacrylate-tri-n-butylborane (4-META/MMA-TBB) resin is widely used as a direct bonding adhesive for orthodontic appliances because of its strong bonding ability. However, its clinical disadvantages include long setting times and difficult debonding with subsequent residual adhesive left on the enamel surface. To resolve these problems, thermal heating was applied to orthodontic appliances. The setting time was dramatically reduced by thermal heating (160°C for 5 s), with the shear bond strength remaining the same as that stated in the manufacturer's instructions. Debonding of appliances following thermal heating (160°C for 20 s) could be easily performed, decreasing the amount of adhesive left on enamel. These conditions were not accompanied by an increase in the heat pain threshold of pulpal dentin. These results suggest that the use of thermal heating in the bonding/debonding of 4-META/MMA-TBB resin may resolve its clinical weaknesses, making its ease of use similar to light-cured resin.

  12. Effect of Homogenizing Heat Treatment of Liquid Aluminum-Copper Alloys on the Structure of Rapidly Crystallized Specimens (United States)

    Astaf'ev, V. V.; Kurochkin, A. R.; Yablonskikh, T. I.; Brodova, I. G.; Popel', P. S.


    Centrifugal casting into a massive slot chill mold was used to prepare two series of specimens of alloys of the Al - Cu system, containing from 10 to 32.2 at.% Cu. The first series was fabricated without a homogenizing heat treatment of the melt, while the second series was fabricated with heating of the melt to 1400°C. Both kinds of specimens were cast at the same temperature in order to provide for the same cooling rate of about 104 K/sec. The structures, phase compositions and microhardnesses of the structural components are compared. It is established that the homogenizing heat treatment changes the kinetics of crystallization and, hence, the proportion of phases in the alloy structure and the copper content in them.


    NARCIS (Netherlands)


    When cyanide poisoning is treated with a methemoglobin-forming agent, oxidative metabolism is protected at the expense of the oxygen capacity of the blood.The affinity of methemoglobin for CN- is high enough to compete with cytochrome oxidase, which protects the latter from becoming blocked, but all

  14. Formulation and experimental evaluation of closed-form control laws for the rapid maneuvering of reactor neutronic power

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J.A. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Nuclear Reactor Lab.)


    This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power on spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs.

  15. Heat-set gels formed from easily accessible gelators of a succinamic acid derivative (SAD) and a primary alkyl amine (R-NH2). (United States)

    Zhong, Di-Chang; Liao, Lie-Qiang; Wang, Ke-Jun; Liu, Hui-Jin; Luo, Xu-Zhong


    Currently, the design and construction of an intelligent stimuli-responsive gel system is still a significant challenge. We present here a new gel system from which the formation of heat-set gels, conventional gels and irreversible heat-set gels can be achieved in aromatic solvents. This gel system is based on two-component gelators containing a succinamic acid derivative (SAD) and a primary alkyl amine (R-NH2). With the increase of temperature to 85 °C, a rarely reported reversible heat-set gel (gel formation with the increase of temperature) is afforded. Upon addition of fatty acids into two-component gelators, a conventional gel (gel formation with the decrease of temperature) is formed. When the fatty acid is replaced with dicarboxylic acid, a new heat-set gel is generated, which is irreversible and thermally super-stable. X-ray diffraction analysis reveals that the formation of a reversible heat-set gel relies on electrostatic interactions, hydrogen bonds, and hydrophobic interactions. These two-component gelators show a perfect gel system for the formation of diverse gels including heat-set gels, conventional gels and irreversible heat-set gels. The tunable strategy demonstrated in this letter may provide a new way for creation of more functional gels in gel science.

  16. Rapid differentiation of Listeria monocytogenes epidemic clones III and IV and their intact compared with heat-killed populations using Fourier transform infrared spectroscopy and chemometrics. (United States)

    Nyarko, Esmond B; Puzey, Kenneth A; Donnelly, Catherine W


    The objectives of this study were to determine if Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis (chemometrics) could be used to rapidly differentiate epidemic clones (ECs) of Listeria monocytogenes, as well as their intact compared with heat-killed populations. FT-IR spectra were collected from dried thin smears on infrared slides prepared from aliquots of 10 μL of each L. monocytogenes ECs (ECIII: J1-101 and R2-499; ECIV: J1-129 and J1-220), and also from intact and heat-killed cell populations of each EC strain using 250 scans at a resolution of 4 cm(-1) in the mid-infrared region in a reflectance mode. Chemometric analysis of spectra involved the application of the multivariate discriminant method for canonical variate analysis (CVA) and linear discriminant analysis (LDA). CVA of the spectra in the wavelength region 4000 to 600 cm(-1) separated the EC strains while LDA resulted in a 100% accurate classification of all spectra in the data set. Further, CVA separated intact and heat-killed cells of each EC strain and there was 100% accuracy in the classification of all spectra when LDA was applied. FT-IR spectral wavenumbers 1650 to 1390 cm(-1) were used to separate heat-killed and intact populations of L. monocytogenes. The FT-IR spectroscopy method allowed discrimination between strains that belong to the same EC. FT-IR is a highly discriminatory and reproducible method that can be used for the rapid subtyping of L. monocytogenes, as well as for the detection of live compared with dead populations of the organism. Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis can be used for L. monocytogenes source tracking and for clinical case isolate comparison during epidemiological investigations since the method is capable of differentiating epidemic clones and it uses a library of well-characterized strains. The FT-IR method is potentially less expensive and more rapid compared to genetic

  17. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    Directory of Open Access Journals (Sweden)

    Suzan Bsat


    Full Text Available Advanced additive manufacturing techniques such as electron beam melting (EBM, can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M and immersion times (6, 24 h of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200–300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface.

  18. A rapid molecular method for differentiating two special forms (lycopersici and radicis-lycopersici) of Fusarium oxysporum. (United States)

    Attitalla, Idress H; Fatehi, Jamshid; Levenfors, Jens; Brishammar, Sture


    Two pathogenic special forms (f. sp.) of the Fusarium oxysporum species complex f. sp. lycopersici (Fol) and f. sp. radicis-lycopersici (Forl) are morphologically indistinguishable. Although they are pathogenic to the same host genus Lycopersicon (tomato), and infect the same tomato cultivar, they form distinct diseases; Fol causes wilt and Forl causes crown rot and root rot. These two special forms apparently exist as genetically isolated populations, based on vegetative compatibility and molecular variation at the DNA level. In seeking efficient diagnostic tools for differentiating Fol and Forl isolates, we examined three techniques: isozyme analysis, mitochondrial DNA (mtDNA) RFLP by HaeIII-digestion of total genomic DNA, and an osmotic method using high performance liquid chromatography (HPLC) to detect fungal pigments. The isolates were collected from geographically widespread locations. Distinct HPLC-profile differences were found between an endophytic non-pathogenic isolate and the other pathogenic isolates. However, the direct mtDNA RFLP technique proved to be an efficient diagnostic tool for routine differentiation of Fol and Forl isolates.

  19. Rapid determination of the radiochemical purity of 99mTc-antimony trisulfide colloid prepared by standard and alternative heating methods. (United States)

    Smyth, Douglas R


    The purpose of this study was to validate a rapid quality control method for the lymphoscintigraphic tracer 99mTc-antimony trisulfide colloid (99mTc-ATC). ATC was labeled with 99mTc according to the manufacturer's instructions as well as by alternative heating conditions designed to provide a range of percentages of radiochemical purity (RCP): the tracer was prepared in a dry block heater with heating cavities of different sizes, the temperature of the heating block was varied from 70 degrees C to 115 degrees C, or the duration of heating was varied from 15 to 35 min. Anion-exchange minicolumns were trialled to separate any 99mTc-pertechnetate impurity from 99mTc-ATC with physiologic saline as the eluent. Quality control results were compared with the results from the manufacturer's recommended method, which uses an instant thin-layer chromatography (ITLC) strip with saline as the migrating solution. The quality control results obtained with a cartridge method in 2-3 min compared favorably with those obtained with the ITLC method with saline when the tracer was prepared by heating at 115 degrees C in a dry block heater for 35 min (RCPs, 99.4%+/-0.3% [mean+/-SD] and 99.2%+/-0.3%, respectively; n=25). The cartridge and ITLC quality control results also were in excellent agreement (correlation coefficient, 0.99) over a range of RCPs (80%-100%). An alternative anion-exchange cartridge that was tested in this study was not suitable for assaying the RCP of 99mTc-ATC because of the complete retention of 99mTc-pertechnetate on the sorbent. Compared with the established ITLC method, the cartridge quality control method tested in this study is rapid and provides a reliable assessment of the RCP of 99mTc-ATC. For the preparation of 99mTc-ATC, a dry block heater can be successfully substituted for a boiling water bath and is recommended for heating at high altitudes.

  20. Tsp36, a tapeworm small heat-shock protein with a duplicated alpha-crystallin domain, forms dimers and tetramers with good chaperone-like activity.

    NARCIS (Netherlands)

    Kappe, G.; Aquilina, J.A.; Wunderink, L.; Kamps, B.; Robinson, C.V.; Garate, T.; Boelens, W.C.; Jong, W.W.W. de


    Small heat shock proteins (sHSPs), which range in monomer size between 12 and 42 kDa, are characterized by a conserved C-terminal alpha-crystallin domain of 80-100 residues. They generally form large homo- or heteromeric complexes, and typically have in vitro chaperone-like activity, keeping

  1. Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals


    YOSHIOKA, Miyako; Matsuura, Yuichi; Okada, Hiroyuki; Shimozaki, Noriko; Yamamura, Tomoaki; Murayama, Yuichi; Yokoyama, Takashi; Mohri, Shirou


    Background Prions, infectious agents associated with transmissible spongiform encephalopathy, are primarily composed of the misfolded and pathogenic form (PrPSc) of the host-encoded prion protein. Because PrPSc retains infectivity after undergoing routine sterilizing processes, the cause of bovine spongiform encephalopathy (BSE) outbreaks are suspected to be feeding cattle meat and bone meals (MBMs) contaminated with the prion. To assess the validity of prion inactivation by heat treatment in...

  2. Polymerization of Vinylpyrrolidone to Form a Neutral Coating on Anionic Nanomaterials in Aqueous Suspension for Rapid Sedimentation

    Directory of Open Access Journals (Sweden)

    Edward P. C. Lai


    Full Text Available Nanomaterials in water present an array of identifiable potential hazards to ecological and human health. There is no general consensus about the influence of anionic or cationic charge on the toxicity of nanomaterials on environmental ecology. One challenge is the limited number of scalable technologies available for the removal of charged nanomaterials from water. A new method based on polymer coating has been developed in our laboratory for rapid sedimentation of nanomaterials in aqueous suspension. Using colloidal silica as a model inorganic oxide, coating of polyvinylpyrrolidone (PVP around the SiO2 nanoparticles produced SiO2@PVP particles, as indicated by a linear increase of nephelometric turbidity. Purification of the water sample was afforded by total sedimentation of SiO2@PVP particles when left for 24 h. Characterization by capillary electrophoresis (CE revealed nearly zero ionic charge on the particles. Further coating of polydopamine (PDA around those particles in aqueous suspension produced an intense dark color due to the formation of SiO2@PVP@PDA. The SiO2@PVP@PDA peak appeared at a characteristic migration time of 4.2 min that allowed for quantitative CE-UV analysis to determine the original SiO2 concentration with enhanced sensitivity and without any ambiguous identity.

  3. Rapid degradation of an active formylglycine generating enzyme variant leads to a late infantile severe form of multiple sulfatase deficiency. (United States)

    Schlotawa, Lars; Radhakrishnan, Karthikeyan; Baumgartner, Matthias; Schmid, Regula; Schmidt, Bernhard; Dierks, Thomas; Gärtner, Jutta


    Multiple sulfatase deficiency (MSD) is a rare inborn error of metabolism affecting posttranslational activation of sulfatases by the formylglycine generating enzyme (FGE). Due to mutations in the encoding SUMF1 gene, FGE's catalytic capacity is impaired resulting in reduced cellular sulfatase activities. Both, FGE protein stability and residual activity determine disease severity and have previously been correlated with the clinical MSD phenotype. Here, we report a patient with a late infantile severe course of disease. The patient is compound heterozygous for two so far undescribed SUMF1 mutations, c.156delC (p.C52fsX57) and c.390A>T (p.E130D). In patient fibroblasts, mRNA of the frameshift allele is undetectable. In contrast, the allele encoding FGE-E130D is expressed. FGE-E130D correctly localizes to the endoplasmic reticulum and has a very high residual molecular activity in vitro (55% of wildtype FGE); however, it is rapidly degraded. Thus, despite substantial residual enzyme activity, protein instability determines disease severity, which highlights that potential MSD treatment approaches should target protein folding and stabilization mechanisms.

  4. Rapid alkali catalyzed transesterification of microalgae lipids to biodiesel using simultaneous cooling and microwave heating and its optimization. (United States)

    Chee Loong, Teo; Idris, Ani


    Biodiesel with improved yield was produced from microalgae biomass under simultaneous cooling and microwave heating (SCMH). Nannochloropsis sp. and Tetraselmis sp. which were known to contain higher lipid species were used. The yield obtained using this novel technique was compared with the conventional heating (CH) and microwave heating (MWH) as the control method. The results revealed that the yields obtained using the novel SCMH were higher; Nannochloropsis sp. (83.33%) and Tetraselmis sp. (77.14%) than the control methods. Maximum yields were obtained using SCMH when the microwave was set at 50°C, 800W, 16h of reaction with simultaneous cooling at 15°C; and water content and lipid to methanol ratio in reaction mixture was kept to 0 and 1:12 respectively. GC analysis depicted that the biodiesel produced from this technique has lower carbon components (<19 C) and has both reasonable CN and IV reflecting good ignition and lubricating properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51. (United States)

    Finkelstein, S L; Papovich, C; Dickinson, M; Song, M; Tilvi, V; Koekemoer, A M; Finkelstein, K D; Mobasher, B; Ferguson, H C; Giavalisco, M; Reddy, N; Ashby, M L N; Dekel, A; Fazio, G G; Fontana, A; Grogin, N A; Huang, J-S; Kocevski, D; Rafelski, M; Weiner, B J; Willner, S P


    Of several dozen galaxies observed spectroscopically that are candidates for having a redshift (z) in excess of seven, only five have had their redshifts confirmed via Lyman α emission, at z = 7.008, 7.045, 7.109, 7.213 and 7.215 (refs 1-4). The small fraction of confirmed galaxies may indicate that the neutral fraction in the intergalactic medium rises quickly at z > 6.5, given that Lyman α is resonantly scattered by neutral gas. The small samples and limited depth of previous observations, however, makes these conclusions tentative. Here we report a deep near-infrared spectroscopic survey of 43 photometrically-selected galaxies with z > 6.5. We detect a near-infrared emission line from only a single galaxy, confirming that some process is making Lyman α difficult to detect. The detected emission line at a wavelength of 1.0343 micrometres is likely to be Lyman α emission, placing this galaxy at a redshift z = 7.51, an epoch 700 million years after the Big Bang. This galaxy's colours are consistent with significant metal content, implying that galaxies become enriched rapidly. We calculate a surprisingly high star-formation rate of about 330 solar masses per year, which is more than a factor of 100 greater than that seen in the Milky Way. Such a galaxy is unexpected in a survey of our size, suggesting that the early Universe may harbour a larger number of intense sites of star formation than expected.

  6. Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches (United States)

    Cooper, W James; Westneat, Mark W


    biomechanically defined link between structure and the functional ecology of fish skulls, and indicate that certain mechanisms for transmitting motion through their jaw linkages may require particular anatomical configurations, a conclusion that contravenes the concept of "many-to-one mapping" for fish jaw mechanics. Damselfish trophic evolution is characterized by rapid and repeated shifts between a small number of eco-morphological states, an evolutionary pattern that we describe as reticulate adaptive radiation. PMID:19183467

  7. Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches

    Directory of Open Access Journals (Sweden)

    Cooper W James


    data support a tight and biomechanically defined link between structure and the functional ecology of fish skulls, and indicate that certain mechanisms for transmitting motion through their jaw linkages may require particular anatomical configurations, a conclusion that contravenes the concept of "many-to-one mapping" for fish jaw mechanics. Damselfish trophic evolution is characterized by rapid and repeated shifts between a small number of eco-morphological states, an evolutionary pattern that we describe as reticulate adaptive radiation.

  8. Properties and Developments of Combustion and Gasification of Coal and Char in a CO2-Rich and Recycled Flue Gases Atmosphere by Rapid Heating

    Directory of Open Access Journals (Sweden)

    Zhigang Li


    Full Text Available Combustion and gasification properties of pulverized coal and char have been investigated experimentally under the conditions of high temperature gradient of order 200°C·s−1 by a CO2 gas laser beam and CO2-rich atmospheres with 5% and 10% O2. The laser heating makes a more ideal experimental condition compared with previous studies with a TG-DTA, because it is able to minimize effects of coal oxidation and combustion by rapid heating process like radiative heat transfer condition. The experimental results indicated that coal weight reduction ratio to gases followed the Arrhenius equation with increasing coal temperature; further which were increased around 5% with adding H2O in CO2-rich atmosphere. In addition, coal-water mixtures with different water/coal mass ratio were used in order to investigate roles of water vapor in the process of coal gasification and combustion. Furthermore, char-water mixtures with different water/char mass ratio were also measured in order to discuss the generation ratio of CO/CO2, and specified that the source of Hydrocarbons is volatile matter from coal. Moreover, it was confirmed that generations of CO and Hydrocarbons gases are mainly dependent on coal temperature and O2 concentration, and they are stimulated at temperature over 1000°C in the CO2-rich atmosphere.

  9. Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene. (United States)

    Zhao, Weifeng; Kong, Jie; Liu, Hu; Zhuang, Qiang; Gu, Junwei; Guo, Zhanhu


    Self-alignment of thermally reduced graphene sheets (TRG) that enable highly efficient heat transfer paths in their poly(p-phenylene benzobisoxazole) (PBO)-based nanocomposite films along the in-plane direction was achieved for the first time without any assistance of an external magnetic or an electric field. In the in-plane direction, the nanocomposite films possess an ultra-high thermal diffusivity (900-1000 mm(2) s(-1)) and a thermal conductivity (50 W m(-1) K(-1)) with a TRG concentration graphene filler loading. The arranged TRG was also found to display a high efficiency for PBO reinforcement. A 64% increase in the Young's modulus was achieved by the addition of only 0.35 vol% of TRG, corresponding to a reinforcement value as high as 747 ± 38 GPa, due to effective load transfer between the PBO matrix and TRG sheets via strong interfacial interactions. Moreover, the highly ordered graphene in PBO could provide good candidates for effective heat shielding barriers, and thus the prepared PBO composites exhibit a thermal stability remarkably higher than that of neat PBO resin.


    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko


    Full Text Available The variety of requirements for friction pairs requires the development of different technologies for the production of tribological materials with reference to the operation modes. Composite materials obtained by the casting technology have been successfully applied for the normalization of the thermomechanical state of the steam turbines. These composites consist of the matrix based on copper alloys reinforced with cast iron granules. Because the structure and properties of cast iron are determined by the conditions of their production studies have been conducted on determination of preparation conditions on grain structure and properties of the synthesized composite material. Using an upgraded unit for production of granules technological regimes were determined providing narrow fractional composition. It has been found that granules formed are characterized with typical microstructure of white cast iron containing perlite and ledeburite. Microhardness of pilot cast iron granules is characterized by high values (from 7450 up to 9450 MPa and depends on the size of the fraction. Composite materials obtained using experimental granules had a microhardness of the reinforcing cast iron granules about 3500 MPa, and a bronze matrix – 1220 MPa, which is higher than the hardness of the composite material obtained by using the annealed DCL-1granules (2250 MPa. Metal base of experimental granules in the composite material has the structure of perlitic ductile iron with inclusions of ferrite not exceeding 10–15% and set around a flocculent graphite. As a result, the increase of physical-mechanical properties of finished products made of composite material is observed. 

  11. Calcium bromide hydration for heat storage systems

    Directory of Open Access Journals (Sweden)

    Ai Niwa


    Full Text Available A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the object that requires heat. The exothermic heat produced from the solid–liquid reaction was measured, and the relationship between the equivalence ratio and the reaction heat was evaluated. The heat output and heat recovered by the heat storage system, which comprised a reaction vessel and a heat exchanger, were measured. We selected solid CaBr2 because it was the best metal halide for a hydration reaction and had a high heat yield from the dissolution reaction. With this system, we were able to achieve a heat recovery rate of 582 kJ/L-H2O. We found no degradation in the chemical composition of CaBr2 after it being recycled 100 times.

  12. Application of narrow-bore HPLC columns in rapid determination of sildenafil citrate in its pharmaceutical dosage forms. (United States)

    Ghodsi, Razieh; Kobarfard, Farzad; Tabatabai, Sayyed Abbas


    A special type of silica-based columns has been recently introduced into the market which is called narrow-bore columns. They have lower internal volume than the standard high-performance liquid chromatography (HPLC) columns and thus reduce the solvent consumption by almost 80%. A simple, accurate and environmentally friendly reversed phase- HPLC (RP-HPLC method) which could be used in fast and high throughput analyses has been developed for the purpose of determining the sildenafil in bulk and pharmaceutical dosage forms, using narrow-bore C18 column (50 × 3.2 mm, 5 µm particle size) in isocratic mode, with mobile phase comprising of buffer (pH = 3) and acetonitrile in the ratio of 75:25 v/v. The flow rate was 0.7 mL/min and the detection was monitored through Ultraviolet detector (UV detector) at 292 nm. Clonazepam was used as the internal standard and the run time was 4 min. The proposed method has permitted the quantification of sildenafil over the linearity in the range of 30-4000 ng/mL and its percentage recovery was found to be 99-105%. Limit of quantitation (LOQ) is determined as 30 ng/mL. The intra-day and inter-day precisions were found 1.2-2.2% and 1.56-3.4% respectively. The solvent consumption was 2.8 mL per sample of which ca 0.7 mL was acetonitrile. This study shows that the application of narrow-bore column instead of the conventional reversed phase column in HPLC analyses has the advantages of shorter run time and less organic solvent consumption. This method is highly sensitive with excellent recoveries and precision and there is no need for special column and pre-column or post-column treatment of the sample. Moreover, the method is free from interference by common additives and excipients, suggesting applications in routine quality control analyses.

  13. A rapid validated UV-HPLC method for the simultaneous determination of the antiretroviral compounds darunavir and raltegravir in their dosage form. (United States)

    Estan-Cerezo, G; García-Monsalve, A; Soriano-Irigaray, L; Rodríguez-Lucena, F J; Navarro-Ruiz, A


    A rapid, simple and sensitive high-performance liquid chromatography (HPLC) method with ultraviolet detection has been developed for quantification of darunavir and raltegravir in their pharmaceutical dosage form. The assay enables the measurement of both drugs with a linear calibration curve (R2= 0.999) over the concentration range 5-100 mg/L. The determination was performed on an analytical Tracer Excel 120 ODSB (15x0.4.6 cm) column at 35ºC. The selected wavelength was 254 nm. The mobile phase was a mixture of 0.037 M sodium dihydrogen phosphate buffer, acetonitrile and methanol (40:50:10, v/v/v) at a flow rate of 2.0 mL/min Nevirapine (50 mg/L) was used as internal standard. Accuracy, intra-day repeatability (n = 5), and inter-day precision (n = 3) were found to be satisfactory, being the accuracy from -4.33 to 3.88% and precisions were intra-day and inter-day, 0.25% and 4.42% respectively in case of darunavir. Raltegravir intra-day and inter-day precisions lower of 1.01 and 2.36%, respectively and accuracy values bet from -4.02 to 1.06%. Determination of the darunavir and raltegravir in their dosage form was done with a maximum deviation of 4%. This analytical method is rapid, easily implantable and offers good results.

  14. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Cemil; Sari, Ahmet [Gaziosmanpasa University, Department of Chemistry, Tasliciftlik, 60240 Tokat (Turkey)


    Fatty acids such as stearic acid (SA), palmitic acid (PA), myristic acid (MA), and lauric acid (LA) are promising phase change materials (PCMs) for latent heat thermal energy storage (LHTES) applications, but high cost is the most drawback which limits the utility area of them in thermal energy storage. The use of fatty acids as form-stable PCM will increase their feasibilities in practical LHTES applications due to reduced cost of the energy storage system. In this regard, a series of fatty acid/poly(methyl methacrylate) (PMMA) blends, SA/PMMA, PA/PMMA, MA/PMMA, and LA/PMMA were prepared as new kinds of form-stable PCMs by encapsulation of fatty acids into PMMA which acts as supporting material. The blends were prepared at different mass fractions of fatty acids (50, 60, 70, 80, and 90% w/w) to reach maximum encapsulation ratio. All blends were subjected to leakage test by heating the blends over the melting temperature of the PCM. The blends that do not allow leakage of melted PCM were identified as form-stable PCMs. The form-stable fatty acid/PMMA (80/20 wt.%) blends were characterized using optic microscopy (OM), viscosimetry, and Fourier transform infrared (FT-IR) spectroscopy methods, and the results showed that the PMMA was compatible with the fatty acids. In addition, thermal characteristics such as melting and freezing temperatures and latent heats of the form-stable PCMs were measured by using differential scanning calorimetry (DSC) technique and indicated that they had good thermal properties. On the basis of all results, it was concluded that form-stable fatty acid/PMMA blends had important potential for some practical LHTES applications such as under floor space heating of buildings and passive solar space heating of buildings by using wallboard, plasterboard or floor impregnated with a form-stable PCM due to their satisfying thermal properties, easily preparing in desired dimensions, direct usability without needing an add encapsulation and

  15. Towards the geophysical regime in numerical dynamo models: studies of rapidly-rotating convection driven dynamos with low Pm and constant heat flux boundary conditions

    DEFF Research Database (Denmark)

    Sheyko, A.A.; Finlay, Chris; Marti, P.

    We present a set of numerical dynamo models with the convection strength varied by a factor of 30 and the ratio of magnetic to viscous diffusivities by a factor of 20 at rapid rotation rates (E =nu/(2 Omega d^2 ) = 10-6 and 10-7 ) using a heat flux outer BC. This regime has been little explored...... on the structure of the dynamos and how this changes in relation to the selection of control parameters, a comparison with the proposed rotating convection and dynamo scaling laws, energy spectra of steady solutions and inner core rotation rates. Magnetic field on the CMB. E=2.959*10-7, Ra=6591.0, Pm=0.05, Pr=1....

  16. The Effect of a Rapid Heating Rate, Mechanical Vibration and Surfactant Chemistry on the Structure–Property Relationships of Epoxy/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Kevin Magniez


    Full Text Available The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%.

  17. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions (United States)

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI


    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  18. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions (United States)

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI


    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  19. Two distinct disulfide bonds formed in human heat shock transcription factor 1 act in opposition to regulate its DNA binding activity. (United States)

    Lu, Ming; Kim, Hee-Eun; Li, Chun-Ri; Kim, Sol; Kwak, Im-Jung; Lee, Yun-Ju; Kim, So-Sun; Moon, Ji-Young; Kim, Cho Hee; Kim, Dong-Kyoo; Kang, Ho Sung; Park, Jang-Su


    Under circumstances of heat stress, heat shock transcription factor 1 (HSF1) plays important roles in heat shock protein expression. In this study, an increasing concentration of dithiothreitol (DTT) was found to either enhance or inhibit the heat-induced trimerization of HSF1, suggesting the involvement of dual redox-dependent HSF1 activation mechanisms. Our in vitro experiments show that the heat-induced bonding between the cysteine C36 and C103 residues of HSF1 forms an intermolecular disulfide covalent bond (SS-I bond) and that it directly causes HSF1 to trimerize and bond to DNA. Gel filtration assays show that HSF1 can form intermolecular hydrophobic interaction-mediated (iHI-m) noncovalent oligomers. However, the lack of a trimerization domain prevents HSF1 activation, which suggests that iHI-m noncovalent trimerization is a precondition of SS-I bond formation. On the other hand, intramolecular SS-II bond (in which the C153, C373, and C378 residues of HSF1 participate) formation inhibits this iHI-m trimerization, thereby preventing SS-I bond formation and DNA binding. Thus, HSF1 activation is regulated positively by intermolecular SS-I bond formation and negatively by intramolecular SS-II bond formation. Importantly, these two SS bonds confer different DTT sensitivities (the SS-II bond is more sensitive). Therefore, a low concentration of DTT cleaves the SS-II bond but not the SS-I bond and thus improves DNA binding of HSF1, whereas a high concentration DTT cuts both SS bonds and inhibits HSF1 activation. We propose that these interesting effects further explain cellular HSF1 trimerization, DNA binding, and transcription when cells are under stress.

  20. Investigation of Rapid Low-Power Microwave-Induction Heating Scheme on the Cross-Linking Process of the Poly(4-vinylphenol) for the Gate Insulator of Pentacene-Based Thin-Film Transistors. (United States)

    Fan, Ching-Lin; Shang, Ming-Chi; Wang, Shea-Jue; Hsia, Mao-Yuan; Lee, Win-Der; Huang, Bohr-Ran


    In this study, a proposed Microwave-Induction Heating (MIH) scheme has been systematically studied to acquire suitable MIH parameters including chamber pressure, microwave power and heating time. The proposed MIH means that the thin indium tin oxide (ITO) metal below the Poly(4-vinylphenol) (PVP) film is heated rapidly by microwave irradiation and the heated ITO metal gate can heat the PVP gate insulator, resulting in PVP cross-linking. It is found that the attenuation of the microwave energy decreases with the decreasing chamber pressure. The optimal conditions are a power of 50 W, a heating time of 5 min, and a chamber pressure of 20 mTorr. When suitable MIH parameters were used, the effect of PVP cross-linking and the device performance were similar to those obtained using traditional oven heating, even though the cross-linking time was significantly decreased from 1 h to 5 min. Besides the gate leakage current, the interface trap state density (Nit) was also calculated to describe the interface status between the gate insulator and the active layer. The lowest interface trap state density can be found in the device with the PVP gate insulator cross-linked by using the optimal MIH condition. Therefore, it is believed that the MIH scheme is a good candidate to cross-link the PVP gate insulator for organic thin-film transistor applications as a result of its features of rapid heating (5 min) and low-power microwave-irradiation (50 W).

  1. Investigation of Rapid Low-Power Microwave-Induction Heating Scheme on the Cross-Linking Process of the Poly(4-vinylphenol for the Gate Insulator of Pentacene-Based Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan


    Full Text Available In this study, a proposed Microwave-Induction Heating (MIH scheme has been systematically studied to acquire suitable MIH parameters including chamber pressure, microwave power and heating time. The proposed MIH means that the thin indium tin oxide (ITO metal below the Poly(4-vinylphenol (PVP film is heated rapidly by microwave irradiation and the heated ITO metal gate can heat the PVP gate insulator, resulting in PVP cross-linking. It is found that the attenuation of the microwave energy decreases with the decreasing chamber pressure. The optimal conditions are a power of 50 W, a heating time of 5 min, and a chamber pressure of 20 mTorr. When suitable MIH parameters were used, the effect of PVP cross-linking and the device performance were similar to those obtained using traditional oven heating, even though the cross-linking time was significantly decreased from 1 h to 5 min. Besides the gate leakage current, the interface trap state density (Nit was also calculated to describe the interface status between the gate insulator and the active layer. The lowest interface trap state density can be found in the device with the PVP gate insulator cross-linked by using the optimal MIH condition. Therefore, it is believed that the MIH scheme is a good candidate to cross-link the PVP gate insulator for organic thin-film transistor applications as a result of its features of rapid heating (5 min and low-power microwave-irradiation (50 W.

  2. A form of MHD universal equations of unsteady incompressible fluid flow with variable elctroconductivity on heated moving plate

    Directory of Open Access Journals (Sweden)

    Boričić Zoran


    Full Text Available This paper deals with laminar, unsteady flow of viscous, incompressible and electro conductive fluid caused by variable motion of flat plate. Fluid electro conductivity is variable. Velocity of the plate is time function. Plate moves in its own plane and in "still" fluid. Present external magnetic filed is perpendicular to the plate. Plate temperature is a function of longitudinal coordinate and time. Viscous dissipation, Joule heat, Hole and polarization effects are neglected. For obtaining of universal equations system general similarity method is used as well as impulse and energy equation of described problem.

  3. Studies of Nucleation and Growth, Specific Heat and Viscosity of Undercooled Melts of Quasicrystals and Polytetrahedral-Phase-Forming Alloys (United States)

    Kelton, K. F.; Gangopadhyay, A. K.; Lee, G. W.; Hyers, R. W.; Rogers, J. R.; Robinson, M. B.; Rathz, T. J.; Krishnan, S.; Curreri, Peter A. (Technical Monitor)


    The local atomic structures of undercooled liquid metals are presumed to be icosahedral; this order is incompatible with translational periodicity, constituting a barrier to the nucleation of the crystal phase. The extended atomic structure of the icosahedral quasicrystal (i-phase) is similar to that presumed in the undercooled liquid. Therefore, a comparison of the maximum undercooling in alloys that form the i-phase with those that form crystal phases provides a probe of the liquid structure.

  4. Comparative Analysis of Natural Convection Flows Simulated by both the Conservation and Incompressible Forms of the Navier-Stokes Equations in a Differentially-Heated Square Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Richard C. Martineau; Ray A. Berry; Aurélia Esteve; Kurt D. Hamman; Dana A. Knoll; Ryosuke Park; William Taitano


    This report illustrates a comparative study to analyze the physical differences between numerical simulations obtained with both the conservation and incompressible forms of the Navier-Stokes equations for natural convection flows in simple geometries. The purpose of this study is to quantify how the incompressible flow assumption (which is based upon constant density advection, divergence-free flow, and the Boussinesq gravitational body force approximation) differs from the conservation form (which only assumes that the fluid is a continuum) when solving flows driven by gravity acting upon density variations resulting from local temperature gradients. Driving this study is the common use of the incompressible flow assumption in fluid flow simulations for nuclear power applications in natural convection flows subjected to a high heat flux (large temperature differences). A series of simulations were conducted on two-dimensional, differentially-heated rectangular geometries and modeled with both hydrodynamic formulations. From these simulations, the selected characterization parameters of maximum Nusselt number, average Nusselt number, and normalized pressure reduction were calculated. Comparisons of these parameters were made with available benchmark solutions for air with the ideal gas assumption at both low and high heat fluxes. Additionally, we generated body force, velocity, and divergence of velocity distributions to provide a basis for further analysis. The simulations and analysis were then extended to include helium at the Very High Temperature gas-cooled Reactor (VHTR) normal operating conditions. Our results show that the consequences of incorporating the incompressible flow assumption in high heat flux situations may lead to unrepresentative results. The results question the use of the incompressible flow assumption for simulating fluid flow in an operating nuclear reactor, where large temperature variations are present. The results show that the use of

  5. Criteria selection for the assessment of Serbian lignites tendency to form deposits on power boilers heat transfer surfaces

    Directory of Open Access Journals (Sweden)

    Mladenović Milica


    Full Text Available Based on investigations of ash deposit formation, semi-empirical indicators for slagging and fouling, based on ash chemical composition and its fusion temperature, have been determined. These criteria-indicators, in suggested limits, describe the coals on which they are based (North-American and British well. However, the experience in the thermal power production sector of Serbia shows that their literal application to domestic coals does not produce satisfactory results. This contribution provides an analysis of applicability and the choice of criteria that are suitable for Serbian coals. The focus of the contribution is on coal slagging indicators, since slagging has much heavier consequences on heat transfer inside the steam boiler, and on boiler operation as a whole. The basis for the analysis of chosen criteria comprises of the results of investigations of four coal fields - Kostolac, Kolubara, Kosovo (Serbia, and Ugljevik (Bosnia and Herzegovina.

  6. Effect of metallographic structure and machining process on the apatite-forming ability of sodium hydroxide- and heat-treated titanium. (United States)

    Miyazaki, Toshiki; Sasaki, Takashi; Shirosaki, Yuki; Yokoyama, Ken'ichi; Kawashita, Masakazu


    Although titanium (Ti) is clinically used for hard tissue reconstruction, it has low bone-bonding ability, i.e. bioactivity. Materials able to deposit apatite on their surfaces within the body is considered to exhibit bioactivity. Effects of the metallographic structure and machining process of Ti on its apatite-forming ability remains unclear. In this study, Ti substrates subjected to various preheating and machining processes were then subjected to NaOH and heat treatments. The apatite-forming abilities of resulting Ti were examined in simulated body fluid (SBF). Preheating of the Ti decreased its reactivity with NaOH solution. When quenched or annealed Ti was subjected to NaOH and heat treatments, the induction period for apatite formation in SBF slightly increased. This was attributed to a decrease in sodium titanate and increase in rutile on the Ti surface after the treatments. Substrates subjected to wire-electrical-discharge machining did not form apatite. This was attributed to the inhibition of PO43- adsorption on their surfaces following Ca2+ adsorption, which is an essential process for apatite nucleation. Contamination of Ti surface by components of the brass wire used in the machining contributed to the inhibition. The bioactivity of surface-modified Ti was therefore significantly affected by its thermal treatment and machining process.

  7. Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals. (United States)

    Yoshioka, Miyako; Matsuura, Yuichi; Okada, Hiroyuki; Shimozaki, Noriko; Yamamura, Tomoaki; Murayama, Yuichi; Yokoyama, Takashi; Mohri, Shirou


    Prions, infectious agents associated with transmissible spongiform encephalopathy, are primarily composed of the misfolded and pathogenic form (PrPSc) of the host-encoded prion protein. Because PrPSc retains infectivity after undergoing routine sterilizing processes, the cause of bovine spongiform encephalopathy (BSE) outbreaks are suspected to be feeding cattle meat and bone meals (MBMs) contaminated with the prion. To assess the validity of prion inactivation by heat treatment in yellow grease, which is produced in the industrial manufacturing process of MBMs, we pooled, homogenized, and heat treated the spinal cords of BSE-infected cows under various experimental conditions. Prion inactivation was analyzed quantitatively in terms of the infectivity and PrPSc of the treated samples. Following treatment at 140°C for 1 h, infectivity was reduced to 1/35 of that of the untreated samples. Treatment at 180°C for 3 h was required to reduce infectivity. However, PrPSc was detected in all heat-treated samples by using the protein misfolding cyclic amplification (PMCA) technique, which amplifies PrPScin vitro. Quantitative analysis of the inactivation efficiency of BSE PrPSc was possible with the introduction of the PMCA50, which is the dilution ratio of 10% homogenate needed to yield 50% positivity for PrPSc in amplified samples. Log PMCA50 exhibited a strong linear correlation with the transmission rate in the bioassay; infectivity was no longer detected when the log PMCA50 of the inoculated sample was reduced to 1.75. The quantitative PMCA assay may be useful for safety evaluation for recycling and effective utilization of MBMs as an organic resource.

  8. Studies of Nucleation and Growth, Specific Heat and Viscosity of Undercooled Melts of Quasicrystal and Polytetrahedral-Phase Forming Alloys (United States)

    Kelton, K. F.; Gangopadhyay, Anup K.; Lee, G. W.; Hyers, Robert W.; Rathz, T. J.; Robinson, Michael B.; Rogers, Jan R.


    From extensive ground based work on the phase diagram and undercooling studies of Ti-Zr-Ni alloys, have clearly identified the composition of three different phases with progressively increasing polytetrahedral order such as, (Ti/Zr), the C14 Laves phase, and the i-phase, that nucleate directly from the undercooled liquid. The reduced undercooling decreases progressively with increasing polytetrahedral order in the solid, supporting Frank s hypothesis. A new facility for direct measurements of the structures and phase transitions in undercooled liquids (BESL) was developed and has provided direct proof of the primary nucleation of a metastable icosahedral phase in some Ti-Zr-Ni alloys. The first measurements of specific heat and viscosity in the undercooled liquid of this alloy system have been completed. Other than the importance of thermo-physical properties for modeling nucleation and growth processes in these materials, these studies have also revealed some interesting new results (such as a maximum of C(sup q, sub p) in the undercooled state). These ground-based results have clearly established the necessary background and the need for conducting benchmark nucleation experiments at the ISS on this alloy system.

  9. Rapid detection of human and canine visceral leishmaniasis: assessment of a latex agglutination test based on the A2 antigen from amastigote forms of Leishmania infantum. (United States)

    Akhoundi, Behnaz; Mohebali, Mehdi; Shojaee, Saeedeh; Jalali, Mahmoud; Kazemi, Bahram; Bandehpour, Mojgan; Keshavarz, Hossein; Edrissian, Gholam Hossein; Eslami, Mohammad Bagher; Malekafzali, Hossein; Kouchaki, Ameneh


    The diagnosis of visceral leishmaniasis (VL) in humans and animal reservoir hosts is difficult, particularly in rural areas where the disease is endemic and laboratory facilities are limited. This study aimed to develop a latex agglutination test (LAT) for the rapid detection of anti-Leishmania antibodies against the A2 antigen derived from the amastigote form as well as those against crude antigens derived from the promastigote form of an Iranian strain of Leishmania (Leishmania) infantum. The A2 antigen (42-100 kDa) was prepared from the amastigote form of L. infantum, purified with electroelution and compared with the crude antigen from the promastigote form of L. infantum. Both antigens showed appropriate intensity reactions, were selected using dot blotting of positive and negative pooled sera and used to sensitize 0.9-μm latex beads. The tests were carried out on sera from 43 symptomatic, human patients with VL confirmed by parasitological examination and direct agglutination test (DAT), 30 healthy controls and 32 patients with other infections but without VL. Canine sera were collected from 63 domestic dogs with VL confirmed using parasitological examinations and DAT and 31 healthy dogs from areas non-endemic for VL. Compared with the controls, human sera from DAT-confirmed patients yielded a sensitivity of 88.4% (95% CI, 82.1-94.5%) and specificity of 93.5% (95% CI, 87.0-99.7%) on A2-LAT (amastigote) when 1:3200 was used as the cut-off titre. A good degree of agreement was found between A2-LAT and DAT (0.914). LAT required 3-5 min to complete, versus the 12-18 h needed for DAT. Compared with the controls, A2-LAT of canine sera from DAT-confirmed cases yielded a sensitivity of 95.2% (95% CI, 95.0-95.4%) and specificity of 100% (95% CI 100%) when 1:320 was used as the cut-off titre. A good degree of agreement was found between A2-LAT and DAT (0.968). Similarly, the sensitivity and specificity of Pro.-LAT (promastigote) was calculated to be 88.4% and 91

  10. Studies of Nucleation, Growth, Specific Heat, and Viscosity of Undercooled Melts of Quasicrystals and Polytetrahedral-Phase-Forming Alloys (United States)

    Kelton, K. F.; Croat, T. K.; Gangopadhyay, A.; Holland-Moritz, D.; Hyers, Robert W.; Rathz, Thomas J.; Robinson, Michael B.; Rogers, Jan R.


    Undercooling experiments and thermal physical property measurements of metallic alloys on the International Space Station (ISS) are planned. This recently-funded research focuses on fundamental issues of the formation and structure of highly-ordered non-crystallographic phases (quasicrystals) and related crystal phases (crystal approximants), and the connections between the atomic structures of these phases and those of liquids and glasses. It extends studies made previously by us of the composition dependence of crystal nucleation processes in silicate and metallic glasses, to the case of nucleation from the liquid phase. Motivating results from rf-levitation and drop-tube measurements of the undercooling of Ti/Zr-based liquids that form quasicrystals and crystal approximants are discussed. Preliminary measurements by electrostatic levitation (ESL) are presented.

  11. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress (United States)

    This study is the first field based experiment that uses IR heaters to study the effects of a regionally defined heat wave on soybean physiology and productivity. The heating technology was successful and all of the heat waves were maintained at the target temperature for the three day duration of t...

  12. Comparative evaluation of bivalent malaria rapid diagnostic tests versus traditional methods in field with special reference to heat stability testing in Central India.

    Directory of Open Access Journals (Sweden)

    Neeru Singh

    Full Text Available BACKGROUND: Malaria presents a diagnostic challenge in areas where both Plasmodium falciparum and P.vivax are co-endemic. Bivalent Rapid Diagnostic tests (RDTs showed promise as diagnostic tools for P.falciparum and P.vivax. To assist national malaria control programme in the selection of RDTs, commercially available seven malaria RDTs were evaluated in terms of their performance with special reference to heat stability. METHODOLOGY/PRINCIPAL FINDINGS: This study was undertaken in four forested districts of central India (July, 2011- March, 2012. All RDTs were tested simultaneously in field along with microscopy as gold standard. These RDTs were stored in their original packing at 25°C before transport to the field or they were stored at 35°C and 45°C upto 100 days for testing the performance of RDTs at high temperature. In all 2841 patients with fever were screened for malaria of which 26% were positive for P.falciparum, and 17% for P.vivax. The highest sensitivity of any RDT for P.falciparum was 98% (95% CI; 95.9-98.8 and lowest sensitivity was 76% (95% CI; 71.7-79.6. For P.vivax highest and lowest sensitivity for any RDT was 80% (95% CI; 94.9 - 83.9 and 20% (95% CI; 15.6-24.5 respectively. Heat stability experiments showed that most RDTs for P.falciparum showed high sensitivity at 45°C upto 90 days. While for P.vivax only two RDTs maintained good sensitivity upto day 90 when compared with RDTs kept at room temperature. Agreement between observers was excellent for positive and negative readings for both P.falciparum and P.vivax (Kappa >0.6-0.9. CONCLUSION: This is first field evaluation of RDTs regarding their temperature stability. Although RDTs are useful as diagnostic tool for P.falciparum and P.vivax even at high temperature, the quality of RDTs should be regulated and monitored more closely.

  13. Effect of residual stress relaxation by means of local rapid induction heating on stress corrosion cracking behavior and electrochemical characterization of welded Ti-6Al-4V alloy under slow strain rate test (United States)

    Liu, Yan; Tang, Shawei; Liu, Guangyi; Sun, Yue; Hu, Jin


    In this study, a welded Ti-6Al-4V alloy was treated by means of local rapid induction heating in order to relax the residual stress existed in the weldment. The welded samples were heat treated at the different temperatures. The stress corrosion cracking behavior and electrochemical characterization of the as-welded samples before and after the post weld heat treatment as a function of residual stress were investigated. Electrochemical impedance spectroscopy measurements of the samples under slow strain rate test were performed in a LiCl-methanol solution. The results demonstrated that the residual stress in the as-welded sample was dramatically reduced after the post weld heat treatment, and the residual stress decreased with the increase in the heat treatment temperature. The stress corrosion cracking susceptibility and electrochemical activity of the as-welded sample were significantly reduced after the heat treatment due to the relaxation of the residual stress, which gradually decreased with the decreasing value of the residual stress distributed in the heat treated samples.

  14. Seeking sunlight: rapid phototactic motility of filamentous mat-forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron’s submerged sinkholes

    Directory of Open Access Journals (Sweden)

    Bopaiah A Biddanda


    Full Text Available We studied the motility of filamentous mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen and high-sulfur conditions in Lake Huron’s submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes (100-10,000 µm long filaments, composed of cells ~10 µm wide and ~3 µm tall revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes, then dispersed again. Speed of individual filaments increased with temperature from ~50 µm minute-1 or ~15 body lengths minute-1 at 10°C to ~215 µm minute-1 or ~70 body lengths minute-1 at 35°C – rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis towards pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield – suggesting phototactic motility aids in light acquisition as well as photosynthesis. Once light source was removed, filaments slowly spread out evenly and re-aggregated, demonstrating coordinated movement through inter-filament communication regardless of light. Pebbles and pieces of broken shells placed upon intact mat were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3-4 diurnal cycles – likely facilitating the preservation of falling debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats that resemble the shallow seas in Earth’s early history. Analogous cyanobacterial motility may have played a key role in the oxygenation of the planet by optimizing

  15. Seeking sunlight: rapid phototactic motility of filamentous mat-forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron's submerged sinkholes. (United States)

    Biddanda, Bopaiah A; McMillan, Adam C; Long, Stephen A; Snider, Michael J; Weinke, Anthony D


    We studied the motility of filamentous mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen, and high-sulfur conditions in Lake Huron's submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes (100-10,000 μm long filaments, composed of cells ∼10 μm wide and ∼3 μm tall) revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes, then dispersed again. Speed of individual filaments increased with temperature from ∼50 μm min(-1) or ∼15 body lengths min(-1) at 10°C to ∼215 μm min(-1) or ∼70 body lengths min(-1) at 35°C - rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis toward pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield - suggesting phototactic motility aids in light acquisition as well as photosynthesis. Once light source was removed, filaments slowly spread out evenly and re-aggregated, demonstrating coordinated movement through inter-filament communication regardless of light. Pebbles and pieces of broken shells placed upon intact mat were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3-4 diurnal cycles - likely facilitating the preservation of falling debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats that resemble the shallow seas in Earth's early history. Analogous cyanobacterial motility may have played a key role in the oxygenation of the planet by optimizing photosynthesis while favoring

  16. Furnace for rapid thermal processing

    NARCIS (Netherlands)

    Roozeboom, F.; Duine, P.A.; Sluis, P. van der


    A Method (1) for Rapid Thermal Processing of a wafer (7), wherein the wafer (7) is heated by lamps (9), and the heat radiation is reflected by an optical switching device (15,17) which is in the reflecting state during the heating stage. During the cooling stage of the wafer (7), the heat is

  17. Poly(4-vinylphenol) gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors


    Ching-Lin Fan; Ming-Chi Shang; Mao-Yuan Hsia; Shea-Jue Wang; Bohr-Ran Huang; Win-Der Lee


    A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional therma...

  18. Poly(4-vinylphenol gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan


    Full Text Available A Microwave-Induction Heating (MIH scheme is proposed for the poly(4-vinylphenol (PVP gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  19. Poly(4-vinylphenol) gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors (United States)

    Fan, Ching-Lin; Shang, Ming-Chi; Hsia, Mao-Yuan; Wang, Shea-Jue; Huang, Bohr-Ran; Lee, Win-Der


    A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  20. Rapid, simple and stability-indicating determination of polyhexamethylene biguanide in liquid and gel-like dosage forms by liquid chromatography with diode-array detection

    National Research Council Canada - National Science Library

    Küsters, Markus; Beyer, Sören; Kutscher, Stephan; Schlesinger, Harald; Gerhartz, Michael


    A rapid and simple method for the determination of potyhexamethylene biguanide (polyhexanide, PHMB) in liquid and gel-like pharmaceutical formulations by means of high performance liquid chromatography coupled to diode-array detection...

  1. Seeking sunlight: rapid phototactic motility of filamentous mat-forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron’s submerged sinkholes (United States)

    Biddanda, Bopaiah A.; McMillan, Adam C.; Long, Stephen A.; Snider, Michael J.; Weinke, Anthony D.


    We studied the motility of filamentous mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen, and high-sulfur conditions in Lake Huron’s submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes (100–10,000 μm long filaments, composed of cells ∼10 μm wide and ∼3 μm tall) revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes, then dispersed again. Speed of individual filaments increased with temperature from ∼50 μm min-1 or ∼15 body lengths min-1 at 10°C to ∼215 μm min-1 or ∼70 body lengths min-1 at 35°C – rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis toward pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield – suggesting phototactic motility aids in light acquisition as well as photosynthesis. Once light source was removed, filaments slowly spread out evenly and re-aggregated, demonstrating coordinated movement through inter-filament communication regardless of light. Pebbles and pieces of broken shells placed upon intact mat were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3–4 diurnal cycles – likely facilitating the preservation of falling debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats that resemble the shallow seas in Earth’s early history. Analogous cyanobacterial motility may have played a key role in the oxygenation of the planet by optimizing photosynthesis while

  2. Rapid insight into heating-induced phase transformations in the solid state of the calcium salt of atorvastatin using multivariate data analysis

    DEFF Research Database (Denmark)

    Christensen, Niels Peter Aae; Van Eerdenbrugh, Bernard; Kwok, Kaho


    To investigate the heating-induced dehydration and melting behavior of the trihydrate phase of the calcium salt of atorvastatin.......To investigate the heating-induced dehydration and melting behavior of the trihydrate phase of the calcium salt of atorvastatin....

  3. Rapid total sulphur reduction in coal samples using various dilute alkaline leaching reagents under microwave heating: preventing sulphur emissions during coal processing. (United States)

    Mketo, Nomvano; Nomngongo, Philiswa Nosizo; Ngila, Jane Catherine


    Currently in South Africa, online flue gas desulphurisation (FGD) is being utilized as one of the most effective methods for total sulphur reduction in coal samples during the combustion process. However, the main disadvantage associated with FGD is the formation of its by-products (FGD gypsum). The latter is mostly formed in low grade quality, thereby bringing secondary pollution problems and extra disposal costs. Therefore, the current study describes the development of total sulphur extraction in coal under microwave heating using different dilute alkaline solutions such as NaOH, NaOH-H2O2, NH4OH, and NH4OH-H2O2. The experimental conditions were as follows: 150 °C, 5 min and 10% (m/v or v/v) for temperature, extraction time and reagent concentration, respectively. The most effective alkaline reagent for coal desulphurisation was observed to be NaOH-H2O2 with total sulphur reduction of 55% (from the inductively coupled plasma-optical emission spectrometry (ICP-OES) results). The NaOH-H2O2 reagent also showed significant morphological changes in coal as observed from the SEM images and effective demineralisation as revealed by the powder X-ray diffractometer (P-XRD) results. Additionally, desulphurisation results obtained from the developed microwave-assisted dilute alkaline extraction (MW-ADAE) method were quite comparable with the published work. The proposed total sulphur reduction method is advantageous as compared to some of the literature reported coal desulphurisation methods as it requires a short period (5 min) of time to reach its completion. Additionally, the proposed method shows excellent reproducibility (% RSD from 0.5 to 1); therefore, it can be utilized for routine analysis. Graphical abstract ᅟ.

  4. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... stage of heat illness) include flushed, hot, dry skin; fainting; a rapid, weak pulse; rapid, shallow breathing; vomiting; and increased body temperature of more than 104 degrees. People with these ...

  5. Heat-pipe planets (United States)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.


    Observations of the surfaces of all terrestrial bodies other than Earth reveal remarkable but unexplained similarities: endogenic resurfacing is dominated by plains-forming volcanism with few identifiable centers, magma compositions are highly magnesian (mafic to ultra-mafic), tectonic structures are dominantly contractional, and ancient topographic and gravity anomalies are preserved to the present. Here we show that cooling via volcanic heat pipes may explain these observations and provide a universal model of the way terrestrial bodies transition from a magma-ocean state into subsequent single-plate, stagnant-lid convection or plate tectonic phases. In the heat-pipe cooling mode, magma moves from a high melt-fraction asthenosphere through the lithosphere to erupt and cool at the surface via narrow channels. Despite high surface heat flow, the rapid volcanic resurfacing produces a thick, cold, and strong lithosphere which undergoes contractional strain forced by downward advection of the surface toward smaller radii. We hypothesize that heat-pipe cooling is the last significant endogenic resurfacing process experienced by most terrestrial bodies in the solar system, because subsequent stagnant-lid convection produces only weak tectonic deformation. Terrestrial exoplanets appreciably larger than Earth may remain in heat-pipe mode for much of the lifespan of a Sun-like star.

  6. Infrared heating (United States)

    IR heating was first industrially used in the 1930s for automotive curing applications and rapidly became a widely applied technology in the manufacturing industry. Contrarily, a slower pace in the development of IR technologies for processing foods and agricultural products was observed, due to lim...

  7. Thermally Stable Ni-rich Austenite Formed Utilizing Multistep Intercritical Heat Treatment in a Low-Carbon 10 Wt Pct Ni Martensitic Steel (United States)

    Jain, Divya; Isheim, Dieter; Zhang, Xian J.; Ghosh, Gautam; Seidman, David N.


    Austenite reversion and its thermal stability attained during the transformation is key to enhanced toughness and blast resistance in transformation-induced-plasticity martensitic steels. We demonstrate that the thermal stability of Ni-stabilized austenite and kinetics of the transformation can be controlled by forming Ni-rich regions in proximity of pre-existing (retained) austenite. Atom probe tomography (APT) in conjunction with thermodynamic and kinetic modeling elucidates the role of Ni-rich regions in enhancing growth kinetics of thermally stable austenite, formed utilizing a multistep intercritical ( Quench- Lamellarization- Tempering (QLT)-type) heat treatment for a low-carbon 10 wt pct Ni steel. Direct evidence of austenite formation is provided by dilatometry, and the volume fraction is quantified by synchrotron X-ray diffraction. The results indicate the growth of nm-thick austenite layers during the second intercritical tempering treatment (T-step) at 863 K (590 °C), with austenite retained from first intercritical treatment (L-step) at 923 K (650 °C) acting as a nucleation template. For the first time, the thermal stability of austenite is quantified with respect to its compositional evolution during the multistep intercritical treatment of these steels. Austenite compositions measured by APT are used in combination with the thermodynamic and kinetic approach formulated by Ghosh and Olson to assess thermal stability and predict the martensite-start temperature. This approach is particularly useful as empirical relations cannot be extrapolated for the highly Ni-enriched austenite investigated in the present study.

  8. Characterization, quantitation and evolution of monoepoxy compounds formed in model systems of fatty acid methyl esters and monoacid triglycerides heated at high temperature

    Directory of Open Access Journals (Sweden)

    Berdeaux, O.


    Full Text Available Monoepoxy compounds formed after heating methyl oleate and linoleate, triolein and trilinolein at 180°C for 5, 10 and 15 hours, were characterized and quantitated after derivatization to fatty acid methyl esters by using two base-catalyzed procedures. Structures were identified by GC-MS before and after hydrogénation. A complete recovery of the epoxy compounds was obtained by comparing results from methyl oleate and linoleate before and after transesterification, and good repeatability was also attained. Similar amounts of epoxides were found for methyl esters and triglycerides of the same degree of unsaturation, although formation was considerably greater for the less unsaturated substrates, methyl oleate and triolein, possibly due to the absence of remaining double bonds in the molecule which would involve a lower tendency to participate in further reactions. On other hand, independently of the degree of unsaturation of the model systems and of the period of heating, significantly higher amounts of trans isomers were formed. Finally from comparison between the amounts of epoxides and the level of polar fatty acids in samples, it was deduced that monoepoxy compounds were one of the major groups formed under the conditions used.

    En este estudio se identifican y cuantifican los compuestos epoxidados formados a partir de sistemas modelo de oleato y linoleato de metilo, trioleína y trilinoleína, calentados a 180°C durante 5,10 y 15 horas. La identificación se lleva a cabo mediante CG-EM en las muestras de esteres metílicos antes y después de someter a hidrogenación y para su cuantificación se utilizan dos procedimientos de transesterificación en medio alcalino. La comparación de las cantidades obtenidas, antes y después de la derivatización de los sistemas modelo de esteres metílicos, permitió deducir que la recuperación fue completa, obteniéndose también una excelente repetibilidad. Las cantidades de ep

  9. Synthesis of renewable diesel through hydrodeoxygenation reaction from nyamplung oil (Calophyllum Inophyllum oil) using NiMo/Z and NiMo/C catalysts with rapid heating and cooling method (United States)

    Susanto, B. H.; Prakasa, M. B.; Shahab, M. H.


    The synthesis of metal nanocrystal was conducted by modification preparation from simple heating method which heating and cooling process run rapidly. The result of NiMo/Z 575 °C characterizations are 33.73 m2/gram surface area and 31.80 nm crystal size. By used NiMo/C 700 °C catalyst for 30 minutes which had surface area of 263.21 m2/gram, had 31.77 nm crystal size, and good morphology, obtained catalyst with high activity, selectivity, and stability. After catalyst activated, synthesis of renewable diesel performed in hydrogenation reactor at 375 °C, 12 bar, and 800 rpm. The result of conversion was 81.99%, yield was 68.08%, and selectivity was 84.54%.

  10. Spray-formed tooling for injection molding and die casting applications

    Energy Technology Data Exchange (ETDEWEB)

    K. M. McHugh; B. R. Wickham


    Rapid Solidification Process (RSP) Tooling{trademark} is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  11. Spray-formed Tooling for Injection Molding and Die Casting Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mc Hugh, Kevin Matthew


    Rapid Solidification Process (RSP) ToolingTM is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  12. Spray-formed tooling

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.M.; Key, J.F.


    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be de signed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  13. Floor heating maximizes residents` comfort

    Energy Technology Data Exchange (ETDEWEB)

    Tirkkanen, P.; Wikstroem, T.


    Storing heat in floors by using economical night-time electricity does not increase the specific consumption of heating. According to studies done by IVO, the optimum housing comfort is achieved if the room is heated mainly by means of floor heating that is evened out by window or ceiling heating, or by a combination of all three forms of heating. (orig.)

  14. White Paper for U.S. Army Rapid Equipping Force: Waste Heat Recovery with Thermoelectric and Lithium-Ion Hybrid Power System

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C


    By harvesting waste heat from engine exhaust and storing it in light-weight high-capacity modules, it is believed that the need for energy transport by convoys can be lowered significantly. By storing this power during operation, substantial electrical power can be provided during long periods of silent operation, while the engines are not operating. It is proposed to investigate the potential of installing efficient thermoelectric generators on the exhaust systems of trucks and other vehicles to generate electrical power from the waste heat contained in the exhaust and to store that power in advanced power packs comprised of polymer-gel lithium ion batteries. Efficient inexpensive methods for production of the thermoelectric generator are also proposed. The technology that exists at LLNL, as well as that which exists at industrial partners, all have high technology readiness level (TRL). Work is needed for integration and deployment.

  15. Prefabricated modular district heating station is available rapidly. Welded transfer station DSP Midi; Vorgefertigte, modulare Fernwaermestation ist schnell verfuegbar. Geschweisste Uebergabestation DSP Midi

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Joern [Danfoss GmbH, Hamburg (Germany). District Energy Div.


    Danfoss GmbH (Hamburg, Federal Republic of Germany) has developed a modular, standardized approach for welded district heating stations. The prefabricated transfer stations with a capacity up to 250 kW can be supplied in a compact frame. These stations have short delivery times and are extremely flexible: DSP MIDI systems have a modular design and adapters. Thus, DSP MIDI systems cover about 90 % of the technical connection requirements in Germany.

  16. Effect of Post-Welding Heat Treatment on Mechanical Properties of Joints of Steel P92 Formed by Submerged Arc Welding (United States)

    Mohyla, P.; Foldynová, K.


    Results of mechanical tests and metallographic studies of welded joints of steel P92 obtained by submerged arc welding are presented. The effect of the post-welding heat treatment on the mechanical properties of the welds is described.

  17. Dummy-surface molecularly imprinted polymers on magnetic graphene oxide for rapid and selective quantification of acrylamide in heat-processed (including fried) foods. (United States)

    Ning, Fangjian; Qiu, Tingting; Wang, Qi; Peng, Hailong; Li, Yanbin; Wu, Xiaqing; Zhang, Zhong; Chen, Linxin; Xiong, Hua


    Novel nano-sized dummy-surface molecularly imprinted polymers (DSMIPs) on a magnetic graphene oxide (GO-Fe3O4) surface were developed as substrates, using propionamide as a dummy template molecule for the selective recognition and rapid pre-concentration and removal of acrylamide (AM) from food samples. These products showed rapid kinetics, high binding capacity (adsorption at 3.68mg·g-1), and selectivity (imprinting factor α 2.83); the adsorption processes followed the Langmuir-Freundlich isotherm and pseudo-second-order kinetic models. Excellent recognition selectivity toward acrylamide was achieved compared to structural analogs, such as propionic and acrylic acids (selectivity factor β 2.33, and 2.20, respectively). Moreover, DSMIPs-GO-Fe3O4 was used to quantify acrylamide in food samples, yielding satisfactory recovery (86.7-94.3%) and low relative standard deviation (acrylamide from food samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Rapid Chondrocyte Isolation for Tissue Engineering Applications: The Effect of Enzyme Concentration and Temporal Exposure on the Matrix Forming Capacity of Nasal Derived Chondrocytes. (United States)

    Vedicherla, Srujana; Buckley, Conor Timothy


    Laboratory based processing and expansion to yield adequate cell numbers had been the standard in Autologous Disc Chondrocyte Transplantation (ADCT), Allogeneic Juvenile Chondrocyte Implantation (NuQu®), and Matrix-Induced Autologous Chondrocyte Implantation (MACI). Optimizing cell isolation is a key challenge in terms of obtaining adequate cell numbers while maintaining a vibrant cell population capable of subsequent proliferation and matrix elaboration. However, typical cell yields from a cartilage digest are highly variable between donors and based on user competency. The overall objective of this study was to optimize chondrocyte isolation from cartilaginous nasal tissue through modulation of enzyme concentration exposure (750 and 3000 U/ml) and incubation time (1 and 12 h), combined with physical agitation cycles, and to assess subsequent cell viability and matrix forming capacity. Overall, increasing enzyme exposure time was found to be more detrimental than collagenase concentration for subsequent viability, proliferation, and matrix forming capacity (sGAG and collagen) of these cells resulting in nonuniform cartilaginous matrix deposition. Taken together, consolidating a 3000 U/ml collagenase digest of 1 h at a ratio of 10 ml/g of cartilage tissue with physical agitation cycles can improve efficiency of chondrocyte isolation, yielding robust, more uniform matrix formation.

  19. SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black

    Directory of Open Access Journals (Sweden)

    Wang Feng-Lei


    Full Text Available Abstract SiC nanowires have been synthesized at 1,600 °C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO2nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism.

  20. SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black


    Wang Feng-Lei; Zhang Li-Ying; Zhang Ya-Fei


    Abstract SiC nanowires have been synthesized at 1,600 °C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO2nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assis...

  1. Solar heat receiver (United States)

    Hunt, Arlon J.; Hansen, Leif J.; Evans, David B.


    A receiver for converting solar energy to heat a gas to temperatures from C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  2. The rapid formation of tin oxide pillared laponite by microwave heating: Characterisation by tin-119 Mössbauer spectroscopy, X-ray photoelectron spectroscopy and nuclear magnetic resonance (United States)

    Berry, Frank J.; Ashcroft, R. Claire; Beevers, Martin S.; Bond, Stephen P.; Gelders, Andrew; Lawrence, Monique A. M.; McWhinnie, William R.


    The intercalation of organotin-compounds into laponite and the formation of tin(IV) oxide pillars is rapidly achieved when performed in a microwave oven.119Sn Mössbauer- and x-ray- photoelectron-spectroscopy suggest that Ph3SnCl and Ph2SnCl2 undergo hydrolysis on the surface once sorbed. The treatment of Ph3SnCl/laponite with microwave radiation also induces the formation of a metallic phase which contains both tin and magnesium.

  3. Interaction between fast ions and ion cyclotron heating in a tokamak plasma; Interaction des ions rapides avec les ondes a la frequence cyclotronique ionique dans un plasma de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bergeaud, V


    In an ignited fusion reactor, the plasma temperature is sustained by the fusion reactions. However, before this regime is reached, it is necessary to bring an additional power to the plasma. One of the methods that enables the coupling of power is the use of an electromagnetic wave in the ion cyclotron range of frequencies (ICRF). This thesis deals with the interaction between ICRF heating and the fast ions. The thesis contains a theoretical study of the influence of ICRF heating on the ion distribution function. A particular emphasis is put on the importance of the toroidal spectrum of the modes of propagation of the wave in the tokamak. It is necessary to take into account all these modes in order to correctly assess the strength of the wave particle interaction, especially for high energy particles (of the order of hundreds of keV). The classical treatment of the wave particle interaction is based on the hypothesis that the cyclotron phase of the particle and the wave phase are de-correlated between successive resonant interactions. One is therefore led to consider ICRF heating as a diffusive process. This hypothesis is reconsidered in this thesis and it is shown that strong correlations exist in a large part of the velocity space. For this study, a numerical code that computes the full trajectory of particles interacting with a complete electromagnetic field has been developed. The thesis also deals with the problem of fast ion losses due to the breaking of the toroidal symmetry of the confinement magnetic field (called the ripple modulation). Between two toroidal coils, local magnetic wells exist, and particles can be trapped there. When trapped they undergo a vertical drift that makes them quit the plasma rapidly. The ripple modulation also causes an enhancement of the radial diffusion, thereby increasing the losses. A Monte Carlo model describing these mechanisms is presented. This model is validated thanks to a comparison with an experimental database from

  4. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... weak pulse; rapid, shallow breathing; vomiting; and increased body temperature of more than 104 degrees. People with ... nausea, loss of consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool ...

  5. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... pulse; rapid, shallow breathing; vomiting; and increased body temperature of more than 104 degrees. People with these ... loss of consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool the ...

  6. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... skin; headache; dizziness; weakness; feeling exhausted; heavy sweating; nausea; and giddiness. Symptoms of heat stroke (late stage ... skin, rapid pulse, elevated or lowered blood pressure, nausea, loss of consciousness, vomiting or a high body ...

  7. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS). (United States)

    Kuu, Wei Y; Nail, Steven L


    Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.

  8. Rapid Sintering of Silica Xerogel Ceramic Derived from Sago Waste Ash Using Sub-millimeter Wave Heating with a 300 GHz CW Gyrotron (United States)

    Aripin, Haji; Mitsudo, Seitaro; Sudiana, I. Nyoman; Tani, Shinji; Sako, Katsuhide; Fujii, Yutaka; Saito, Teruo; Idehara, Toshitaka; Sabchevski, Sliven


    In this paper, we present and discuss experimental results from a microwave sintering of a silica-glass ceramic, produced from a silica xerogel extracted from a sago waste ash. As a radiation source for the microwave heating a sub-millimeter wave gyrotron (Gyrotron FU CW I) with an output frequency of 300 GHz has been used. The powders of silica xerogel have been dry pressed and then sintered at temperatures ranging from 300°C to 1500°C. The influence of the sintering temperature on the technological properties such as porosity and bulk density was studied in detail. Furthermore, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy have been used in order to study the structure of the produced silica glass-ceramics. It has been found that the silica xerogel crystallizes at a temperature of 800°C, which is about 200°C lower than the one observed in the conventional process. The silica xerogel samples sintered by their irradiation with a sub-millimeter wave at 900°C for 18 minutes are fully crystallized into a silica glass-ceramic with a density of about 2.2 g/cm3 and cristobalite as a major crystalline phase. The results obtained in this study allow one to conclude that the microwave sintering with sub-millimeter waves is an appropriate technological process for production of silica glass-ceramics from a silica xerogel and is characterized with such advantages as shorter times of the thermal cycle, lower sintering temperatures and higher quality of the final product.

  9. "E" Heating Head (United States)

    Fox, Robert L.; Swaim, Robert J.; Johnson, Samuel D.; Coultrip, Robert H.; Phillips, W. Morris; Copeland, Carl E.


    Two separate areas heated inductively for adhesive bonding in single operation. "E" heating head developed to satisfy need for fast-acting and reliable induction heating device. Used in attaching "high-hat" stiffeners to aircraft panels. Incorporates principles and circuitry of toroid joining gun. Width and length configured to provide variously sized heat zones, depending on bonding requirements. Lightweight, portable and provides rapid, reliable heating of dual areas in any environment. Well suited for flight-line and depot maintenance, and battlefield repair. Also useful in automotive assembly lines to strengthen automobile panels.

  10. Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step-changes in pressure set-point during freeze-drying. (United States)

    Kuu, Wei Y; Nail, Steven L; Sacha, Gregory


    The purpose of this study was to perform a rapid determination of vial heat transfer parameters, that is, the contact parameter K(cs) and the separation distance l(v), using the sublimation rate profiles measured by tunable diode laser absorption spectroscopy (TDLAS). In this study, each size of vial was filled with pure water followed by a freeze-drying cycle using a LyoStar II dryer (FTS Systems) with step-changes of the chamber pressure set-point at to 25, 50, 100, 200, 300, and 400 mTorr. K(cs) was independently determined by nonlinear parameter estimation using the sublimation rates measured at the pressure set-point of 25 mTorr. After obtaining K(cs), the l(v) value for each vial size was determined by nonlinear parameter estimation using the pooled sublimation rate profiles obtained at 25 to 400 mTorr. The vial heat transfer coefficient K(v), as a function of the chamber pressure, was readily calculated, using the obtained K(cs) and l(v) values. It is interesting to note the significant difference in K(v) of two similar types of 10 mL Schott tubing vials, primary due to the geometry of the vial-bottom, as demonstrated by the images of the contact areas of the vial-bottom. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  11. Teaching Form as Form

    DEFF Research Database (Denmark)

    Keiding, Tina Bering


    , this book offers both inspiration to teaching form and a systematic framework for pedagogical and didactical reflection on this topic. In this sense, it shapes and professionalizes design teaching, and contributes to the development of the double-professionalism, which is so essential for teachers in modern...... means that form serves both as the connective value and as the concept for reflection. In other words, form is observed as form, not anything else. The didactical challenge of teaching form as form is accentuated by students’ everyday-based pre-orientation towards function at the expense of form...... in this book that they are highly interested in both the declarative and formative dimension of making form. Methodologically, the courses described in the contributions have a strong focus on student-centered experiential activities, thereby implicitly claiming that students must learn to make form...

  12. Evaluation of capillary and myofiber density in the pectoralis major muscles of rapidly growing, high-yield broiler chickens during increased heat stress. (United States)

    Joiner, K S; Hamlin, G A; Lien, A R J; Bilgili, S F


    Skeletal muscle development proceeds from early embryogenesis through marketing age in broiler chickens. While myofiber formation is essentially complete at hatching, myofiber hypertrophy can increase after hatch by assimilation of satellite cell nuclei into myofibers. As the diameter of the myofibers increases, capillary density peripheral to the myofiber is marginalized, limiting oxygen supply and subsequent diffusion into the myofiber, inducing microischemia. The superficial and deep pectoralis muscles constitute 25% of the total body weight in a market-age bird; thus compromise of those muscle groups can have profound economic impact on broiler production. We hypothesized that marginal capillary support relative to the hypertrophic myofibers increases the incidence of microischemia, especially in contemporary high-yield broilers under stressing conditions such as high environmental temperatures. We evaluated the following parameters in four different broiler strains at 39 and 53 days of age when reared under thermoneutral (20 to 25 C) versus hot (30 to 35 C) environmental conditions: capillary density, myofiber density and diameter, and degree of myodegeneration. Our data demonstrate that myofiber diameter significantly increased with age (P > or = 0.0001), while the absolute numbers of capillaries, blood vessels, and myofibers visible in five 400 x microscopic fields decreased (P > or = 0.0001). This is concomitant with marginalization of vascular support in rapidly growing myofibers. The myofiber diameter was significantly lower with hot environmental temperatures (P > or = 0.001); therefore, the absolute number of myofibers visible in five 400X microscopic fields was significantly higher. The incidence and subjective degree of myodegeneration characterized by loss of cross-striations, myocyte hyperrefractility, sarcoplasmic vacuolation, and nuclear pyknosis or loss also increased in hot conditions. Differences among strains were not observed.

  13. In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni. (United States)

    Tareb, Raouf; Bernardeau, Marion; Gueguen, Marielle; Vernoux, Jean-Paul


    Bacterial aggregation and/or adhesion are key factors for colonization of the digestive ecosystem and the ability of probiotic strains to exclude pathogens. In the present study, two probiotic strains, Lactobacillus rhamnosus CNCM-I-3698 and Lactobacillus farciminis CNCM-I-3699, were evaluated as viable or heat-killed forms and compared with probiotic reference Lactobacillus strains (Lb. rhamnosus GG and Lb. farciminis CIP 103136). The autoaggregation potential of both forms was higher than that of reference strains and twice that of pathogenic strains. The coaggregation potential of these two beneficial micro-organisms was evaluated against several pathogenic agents that threaten the global safety of the feed/food chain: Escherichia coli, Salmonella spp., Campylobacter spp. and Listeria monocytogenes. The strongest coaggregative interactions were demonstrated with Campylobacter spp. by a coaggregation test, confirmed by electron microscopic examination for the two forms. Viable forms were investigated for the nature of the bacterial cell-surface molecules involved, by sugar reversal tests and chemical and enzymic pretreatments. The results suggest that the coaggregation between both probiotic strains and C. jejuni CIP 70.2(T) is mediated by a carbohydrate-lectin interaction. The autoaggregation potential of the two probiotics decreased upon exposure to proteinase, SDS or LiCl, showing that proteinaceous components on the surface of the two lactobacilli play an important role in this interaction. Adhesion abilities of both Lactobacillus strains were also demonstrated at significant levels on Caco-2 cells, mucin and extracellular matrix material. Both viable and heat-killed forms of the two probiotic lactobacilli inhibited the attachment of C. jejuni CIP 70.2(T) to mucin. In conclusion, in vitro assays showed that Lb. rhamnosus CNCM-I-3698 and Lb. farciminis CNCM-I-3699, as viable or heat-killed forms, are adherent to different intestinal matrix models and are

  14. Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus

    NARCIS (Netherlands)

    Berendsen, Erwin M; Wells-Bennik, Marjon H J; Krawczyk, Antonina O; de Jong, Anne; van Heel, Auke; Holsappel, Siger; Eijlander, Robyn T; Kuipers, Oscar P


    Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria.

  15. Influence of the gaseous form on the precursor heating layer of a laser-supported detonation wave using half self-emission half shadowgraph visualization (United States)

    Shimamura, Kohei; Michigami, Keisuke; Ofoso, Joseph; Komursaki, Kimiya


    After breakdown one of the possible mechanisms of occurrence of laser-produced plasma is noted as laser-supported detonation (LSD) wave. This wave consisting of the shock wave and the beam absorbing plasma travels at 1-10 km/s along the beam channel in the direction opposite to the laser incidence. The laser heating structure is recognized as the ZND model of chemical detonation. However, Shimamura et. al, showed that the plasma proceeds the shock wave during LSD regime. The role of shock compression is relatively smaller than preheating by laser. The conventional model is inconsistent with our paper. To investigate the heating structure of a LSD wave, half self-emission half shadowgraph (HSHS) methods provides the self-emission image from the plasma on the top half and the shadowgraph image of the induced shock wave on the bottom half simultaneously. A TEA CO2 laser was used at 10 J incident energy. The locations of both wave fronts were detected from the brightness distribution of the HSHS images. As a result, the propagation of ionization front precedes that of shock wave front by the order of 10-4 m in air and N2. Preheating layer of N2 is shorter than that of air because O2 in air has the lowest ionization energy. Thus, a characteristic of preionization layer depends on the ionization properties because photoionization by the UV radiation generate the seed electrons ahead of shock wave.

  16. Environmental Consequences of Rapid Urbanization in Zhejiang Province, East China


    Xuchao Yang; Wenze Yue; Honghui Xu; Jingsheng Wu; Yue He


    Since reforms carried out in the late 1970s, China has experienced unprecedented rates of urban growth. Remote sensing data and surface observational data are used to investigate the urbanization process and related environmental consequences, focusing on extreme heat events and air pollution, in Zhejiang Province (ZJP, East China). Examination of satellite-measured nighttime light data indicates rapid urbanization in ZJP during the past decade, initially forming three urban clusters. With ra...

  17. Heat Pipe Technology (United States)


    The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.

  18. Temperature control for kinetic refolding of heat-denatured ovalbumin. (United States)

    Tani, F; Shirai, N; Onishi, T; Venelle, F; Yasumoto, K; Doi, E


    The folding of heat-denatured ovalbumin, a non-inhibitory serpin with a molecular size of 45 kDa, was examined. Ovalbumin was heat-denatured at 80 degrees C under nonreducing conditions at pH 7.5 and then cooled either slowly or rapidly. Slow cooling allowed the heat-denatured ovalbumin to refold to its native structure with subsequent resistance to digestion by trypsin. Upon rapid cooling, by contrast, the heat-denatured molecules assumed the metastable non-native conformations that were susceptible to trypsin. The non-native species were marginally stable for several days at a low temperature, but the molecules were transformed slowly into the native conformation. Considering data from size-exclusion chromatography and from analyses of CD, intrinsic tryptophan fluorescence, and adsorption of the dye 1-anilinonaphthalene-8-sulfonate, we postulated that the non-native species that accumulated upon rapid cooling were compact but structureless globules with disordered side chains collectively as a folding intermediate. Temperature-jumped CD experiments revealed biphasic kinetics for the refolding process of heat-denatured ovalbumin, with the features of increasing and subsequently decreasing amplitude of the rapid and the slow phases, respectively, with the decrease in folding temperature. The temperature dependence of the refolding kinetics indicated that the yield of renaturation was maximal at about 55 degrees C. These findings suggested the kinetic partitioning of heat-denatured ovalbumin between alternative fates, slow renaturation to the native state and rapid collapse to the metastable intermediate state. Analysis of disulfide pairing revealed the formation of a scrambled form with non-native disulfide interactions in both the heat-denatured state and the intermediate state that accumulated upon rapid cooling, suggesting that non-native disulfide pairing is responsible for the kinetic barriers that retard the correct folding of ovalbumin.

  19. Graphene heat dissipating structure (United States)

    Washburn, Cody M.; Lambert, Timothy N.; Wheeler, David R.; Rodenbeck, Christopher T.; Railkar, Tarak A.


    Various technologies presented herein relate to forming one or more heat dissipating structures (e.g., heat spreaders and/or heat sinks) on a substrate, wherein the substrate forms part of an electronic component. The heat dissipating structures are formed from graphene, with advantage being taken of the high thermal conductivity of graphene. The graphene (e.g., in flake form) is attached to a diazonium molecule, and further, the diazonium molecule is utilized to attach the graphene to material forming the substrate. A surface of the substrate is treated to comprise oxide-containing regions and also oxide-free regions having underlying silicon exposed. The diazonium molecule attaches to the oxide-free regions, wherein the diazonium molecule bonds (e.g., covalently) to the exposed silicon. Attachment of the diazonium plus graphene molecule is optionally repeated to enable formation of a heat dissipating structure of a required height.

  20. Challenges and advances in systems biology analysis of Bacillus spore physiology; molecular differences between an extreme heat resistant spore forming Bacillus subtilis food isolate and a laboratory strain. (United States)

    Brul, Stanley; van Beilen, Johan; Caspers, Martien; O'Brien, Andrea; de Koster, Chris; Oomes, Suus; Smelt, Jan; Kort, Remco; Ter Beek, Alex


    Bacterial spore formers are prime organisms of concern in the food industry. Spores from the genus Bacillus are extremely stress resistant, most notably exemplified by high thermotolerance. This sometimes allows surviving spores to germinate and grow out to vegetative cells causing food spoilage and possible intoxication. Similar issues though more pending toward spore toxigenicity are observed for the anaerobic Clostridia. The paper indicates the nature of stress resistance and highlights contemporary molecular approaches to analyze the mechanistic basis of it in Bacilli. A molecular comparison between a laboratory strain and a food borne isolate, very similar at the genomic level to the laboratory strain but generating extremely heat resistant spores, is discussed. The approaches cover genome-wide genotyping, proteomics and genome-wide expression analyses studies. The analyses aim at gathering sufficient molecular information to be able to put together an initial framework for dynamic modelling of spore germination and outgrowth behaviour. Such emerging models should be developed both at the population and at the single spore level. Tools and challenges in achieving the latter are succinctly discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Surface texturing effect on crack suppression of SiO2 film formed by F2 laser-induced photochemical surface modification of silicone on polycarbonate under heat resistance test (United States)

    Nojiri, Hidetoshi; Okoshi, Masayuki


    A crack-free SiO2 film was successfully fabricated on silicone-coated polycarbonate (PC) even under heat resistance tests at 100 and 120 °C for 3 h by an additional rubbing treatment with steel wool for use as an automobile window material. The SiO2 film was formed by 157 nm F2 laser-induced photochemical surface modification of silicone on PC. The modified SiO2 layer was also zoned with a mesh mask during the laser irradiation. The zoned SiO2 layer was effective for suppressing cracks during laser irradiation. However, even the zoned layer caused cracks under heat resistance tests. A mechanism of the cracking was analyzed on the basis of observations of sample surfaces by confocal laser microscopy. The rubbed samples showed high heat resistance. By atomic force microscopy, the surface of the modified SiO2 layer was clearly observed to be textured, which reduced the large difference in the thermal expansion coefficient between SiO2 and silicone on PC, thus maintaining optical transparency.

  2. Rapid Thawing and Heating of Foods (United States)


    Agriculture ATTN: Dr. Sam R. Hoover Washington, D.C. 20250 Dr. I.A. Wolff, Director Eastern Marketing & Nutrition Research Division Agricultural Research...Service U.S. Department of Agriculture Wyndmoor, Pennsylvania 19118 Dr. C. H. Harry Neufeld, Director Southeastern Marketing & Nutrition ...20230 3 - Exchange & Gift Division Library of Congress Washington, D.C. 205^0 1 - Subsistence & Culinary Arts Department U.S. Army QM School Ft

  3. Heat Islands (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  4. Heat Waves (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and ... having trouble with the heat. If a heat wave is predicted or happening… - Slow down. Avoid strenuous ...

  5. Heat stroke and related heat stress disorders. (United States)

    Knochel, J P


    Medical disorders related to environmental heat exposure are exceptionally common in persons who perform hard work in hot climates. They are also common in competitive athletes as well as in persons who participate in casual exercise to maintain health. The important issue of salt and water disturbances consequent to heavy sweating in hot climates is discussed in detail as are mechanisms of potassium deficiency and its implications. The major forms of environmental heat illness including heat syncope, heat cramp, heat exhaustion, and heat stroke are presented in detail with relevant clinical examples. A discussion of the differential diagnosis of hyperthermia and rhabdomyolysis follows. Because of the difference in treatment and complications, heat stroke is subdivided into the classic variety that affects the elderly and very young and that form that follows heavy physical work and is always associated with rhabdomyolysis. Because severe heat exhaustion and heat stroke are life-threatening disorders, the chapter includes a detailed discussion of complications and plans for treatment.

  6. Rapidly curable electrically conductive clear coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Mark P.; Anderson, Lawrence G.; Post, Gordon L.


    Rapidly curable electrically conductive clear coatings are applied to substrates. The electrically conductive clear coating includes to clear layer having a resinous binder with ultrafine non-stoichiometric tungsten oxide particles dispersed therein. The clear coating may be rapidly cured by subjecting the coating to infrared radiation that heats the tungsten oxide particles and surrounding resinous binder. Localized heating increases the temperature of the coating to thereby thermally cure the coating, while avoiding unwanted heating of the underlying substrate.

  7. Heat Shock Protein member A2 forms a stable complex with angiotensin converting enzyme and protein disulfide isomerase A6 in human spermatozoa. (United States)

    Bromfield, Elizabeth G; McLaughlin, Eileen A; Aitken, Robert John; Nixon, Brett


    Given the importance of the chaperone Heat Shock Protein A2 (HSPA2) in the regulation of male fertility, this study aimed to identify and characterize additional proteins that may rely on the activity of this chaperone in human spermatozoa. In view of the findings in this study we propose that angiotensin converting enzyme (ACE) and protein disulfide isomerase A6 (PDIA6) are novel interacting proteins of HSPA2 and that this multimeric complex may participate in key elements of the fertilization cascade. The molecular chaperone HSPA2 plays a pivotal role in the remodelling of the sperm surface during capacitation. Indeed, human spermatozoa that are deficient in HSPA2 protein expression lack the ability to recognize human oocytes, resulting in repeated IVF failure in a clinical setting. Moreover, our recent work has shown that defective HSPA2 function induced by oxidative stress leads to the aberrant surface expression of one of its interacting proteins, arylsulfatase A, and thus contributes to a loss of sperm-zona pellucida adhesion. Human spermatozoa were collected from fertile donors, capacitated and prepared for Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) analysis. Protein complexes resolved via BN-PAGE were excised and their constituents were identified using mass spectrometry. The interactions between ACE, PDIA6 and HSPA2 were then confirmed using immunoprecipitation and proximity ligation assays and the localization of these proteins was assessed in isolated spermatozoa and commercially available human testis tissue sections. Finally, pharmacological inhibition of ACE was performed to assess the role of ACE in human sperm capacitation. Herein we have identified ACE and PDIA6 as potential HSPA2-interacting proteins and shown that this assemblage resides in membrane raft microdomains located in the peri-acrosomal region of the sperm head. Additionally, the surface expression of PDIA6, but not ACE, was shown to be dynamically regulated during sperm

  8. Antibacterial action of a heat-stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom. (United States)

    Lee, Mui Li; Tan, Nget Hong; Fung, Shin Yee; Sekaran, Shamala Devi


    The major l-amino acid oxidase (LAAO, EC of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme. Copyright © 2010 Elsevier Inc. All rights reserved.


    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Erica June; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Bezanson, Rachel; Lundgren, Britt [Astronomy Department, Yale University, New Haven, CT 06511 (United States); Brammer, Gabriel [European Southern Observatory, Alonson de Cordova 3107, Casilla 19001, Vitacura, Santiago (Chile); Foerster Schreiber, Natascha [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Labbe, Ivo [Leiden Observatory, Leiden University, Leiden (Netherlands); Rix, Hans-Walter; Da Cunha, Elisabete; Schmidt, Kasper B. [Max Planck Institute for Astronomy (MPIA), Koenigstuhl 17, 69117 Heidelberg (Germany); Kriek, Mariska [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Quadri, Ryan [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)


    We investigate the buildup of galaxies at z {approx} 1 using maps of H{alpha} and stellar continuum emission for a sample of 57 galaxies with rest-frame H{alpha} equivalent widths >100 A in the 3D-HST grism survey. We find that the H{alpha} emission broadly follows the rest-frame R-band light but that it is typically somewhat more extended and clumpy. We quantify the spatial distribution with the half-light radius. The median H{alpha} effective radius r{sub e} (H{alpha}) is 4.2 {+-} 0.1 kpc but the sizes span a large range, from compact objects with r{sub e} (H{alpha}) {approx} 1.0 kpc to extended disks with r{sub e} (H{alpha}) {approx} 15 kpc. Comparing H{alpha} sizes to continuum sizes, we find =1.3 {+-} 0.1 for the full sample. That is, star formation, as traced by H{alpha}, typically occurs out to larger radii than the rest-frame R-band stellar continuum; galaxies are growing their radii and building up from the inside out. This effect appears to be somewhat more pronounced for the largest galaxies. Using the measured H{alpha} sizes, we derive star formation rate surface densities, {Sigma}{sub SFR}. We find that {Sigma}{sub SFR} ranges from {approx}0.05 M{sub Sun} yr{sup -1} kpc{sup -2} for the largest galaxies to {approx}5 M{sub Sun} yr{sup -1} kpc{sup -2} for the smallest galaxies, implying a large range in physical conditions in rapidly star-forming z {approx} 1 galaxies. Finally, we infer that all galaxies in the sample have very high gas mass fractions and stellar mass doubling times <500 Myr. Although other explanations are also possible, a straightforward interpretation is that we are simultaneously witnessing the rapid formation of compact bulges and large disks at z {approx} 1.

  10. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion (United States)

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  11. Influences of Urban Expansion on Urban Heat Island in Beijing during 1989–2010


    Zhi Qiao; Guangjin Tian; Lixiao Zhang; Xinliang Xu


    Beijing has experienced rapid urbanization and associated urban heat island (UHI) effects. This study aimed at analyzing the impact of urban form on UHI in Beijing using TM/ETM images between 1989 and 2010. Spatial analysis was proposed to explore the relationships between area, compactness ratio, the gravity centers of urban land, and UHI. The UHI in Beijing spatially represented a “NE-SW” spindle. The land surface temperature (LST) was higher in south than in north. Urban Heat Island Ratio ...

  12. Evaluation of the Biofire FilmArray BioThreat-E Test (v2.5) for Rapid Identification of Ebola Virus Disease in Heat-Treated Blood Samples Obtained in Sierra Leone and the United Kingdom. (United States)

    Weller, Simon A; Bailey, Daniel; Matthews, Steven; Lumley, Sarah; Sweed, Angela; Ready, Derren; Eltringham, Gary; Richards, Jade; Vipond, Richard; Lukaszewski, Roman; Payne, Phillippa M; Aarons, Emma; Simpson, Andrew J; Hutley, Emma J; Brooks, Tim


    Rapid Ebola virus (EBOV) detection is crucial for appropriate patient management and care. The performance of the FilmArray BioThreat-E test (v2.5) using whole-blood samples was evaluated in Sierra Leone and the United Kingdom and was compared with results generated by a real-time Ebola Zaire PCR reference method. Samples were tested in diagnostic laboratories upon availability, included successive samples from individual patients, and were heat treated to facilitate EBOV inactivation prior to PCR. The BioThreat-E test had a sensitivity of 84% (confidence interval [CI], 64% to 95%) and a specificity of 89% (CI, 73% to 97%) in Sierra Leone (n = 60; 44 patients) and a sensitivity of 75% (CI, 19% to 99%) and a specificity of 100% (CI, 97% to 100%) in the United Kingdom (n = 108; 70 patients) compared to the reference real-time PCR. Statistical analysis (Fisher's exact test) indicated there was no significant difference between the methods at the 99% confidence level in either country. In 9 discrepant results (5 real-time PCR positives and BioThreat-E test negatives and 4 real-time PCR negatives and BioThreat-E test positives), the majority (n = 8) were obtained from samples with an observed or probable low viral load. The FilmArray BioThreat-E test (v2.5) therefore provides an attractive option for laboratories (either in austere field settings or in countries with an advanced technological infrastructure) which do not routinely offer an EBOV diagnostic capability. © Crown copyright 2015.

  13. Collaborative form(s)

    DEFF Research Database (Denmark)

    Gunn, Wendy

    Gunn asks us to consider beauty as collaborative forms of action generated by moving between design by means of anthropology and anthropology by means of design. Specifically, she gives focus to play-like reflexions on practices of designing energy products, systems and infrastructure. Design...... anthropology engages groups of people within collaborative, interdisciplinary, inter-organizational design processes and co-analytic activities vs. the individual anthropologist conducting studies of people. In doing anthropology by means of design as Gatt and Ingold (2013) have shown, design is considered...

  14. Numerical Modelling of Indution Heating - Fundamentals

    DEFF Research Database (Denmark)

    Zhang, Wenqi

    Induction heating is extensively used for brazing and heat treatment of materials to produce consumer and industrial products; structural assemblies; electrical and electronic products; mining, machine, and hand tools; ordnance equipment; and aerospace assemblies. It is often applied when rapid...

  15. Volcanoes drive climate variability by emitting ozone weeks before eruptions, by forming lower stratospheric aerosols, by causing sustained ozone depletion, and by causing rapid changes in regional ozone concentrations affecting temperature and pressure differences driving atmospheric oscillations (United States)

    Ward, P. L.


    Total column ozone observed by satellite on February 19, 2010, increased 75% in a plume from Eyjafjallajökull volcano in southern Iceland eastward past Novaya Zemlya, extending laterally from northern Greenland to southern Norway ( Contemporaneous ground deformation and rapidly increasing numbers of earthquakes imply magma began rising from a sill 4-6 km below the volcano, erupting a month later. Whether the ozone formed from the magma or from very hot gases rising through cracks in the ground is unclear. On February 20-22, 1991, similar increases in ozone were observed north of Pinatubo volcano before its initial eruption on April 2 ( Annual average total column ozone during the year of most moderate to large explosive volcanic eruptions since routine observations of ozone began in 1927 has been substantially higher than normal. Increased total column ozone absorbs more solar ultraviolet-B radiation, warming the ozone layer and cooling Earth. Most major volcanic eruptions form sulfuric-acid aerosols in the lower part of the ozone layer providing aqueous surfaces on which heterogeneous chemical reactions enhance ozone depletion. Within a year, aerosol droplets grew large enough to reflect and scatter high-frequency solar radiation, cooling Earth 0.5oC for 2-3 years. Temperature anomalies in the northern hemisphere rose 0.7oC in 28 years from 1970 to 1998 (HadCRUT4), while annual average ozone at Arosa dropped 27 DU because of manufactured CFC gases. Beginning in August 2014, temperature anomalies in the northern hemisphere rose another 0.6oC in less than two years apparently because of the 6-month eruption of Bárðarbunga volcano in central Iceland, the highest rate of basaltic lava extrusion since 1783. Large extrusions of basaltic lava are typically contemporaneous with the greatest periods of warming throughout Earth history. Ozone concentrations at Arosa change by season typically from 370 DU during

  16. Multileg Heat-Pipe Evaporator (United States)

    Alario, J. P.; Haslett, R. A.


    Parallel pipes provide high heat flow from small heat exchanger. Six parallel heat pipes extract heat from overlying heat exchanger, forming evaporator. Vapor channel in pipe contains wick that extends into screen tube in liquid channel. Rods in each channel hold wick and screen tube in place. Evaporator compact rather than extended and more compatible with existing heat-exchanger geometries. Prototype six-pipe evaporator only 0.3 m wide and 0.71 m long. With ammonia as working fluid, transports heat to finned condenser at rate of 1,200 W.

  17. [Clothing and heat disorder]. (United States)

    Satsumoto, Yayoi


    The influence of the clothing material properties(like water absorbency and rapid dryness, water vapor absorption, water vapor permeability and air permeability) and the design factor of the clothing(like opening condition and fitting of clothing), which contributed to prevent heat disorder, was outlined. WBGT(wet-bulb globe temperature) is used to show a guideline for environmental limitation of activities to prevent heat disorder. As the safety function is more important than thermal comfort for some sportswear and protective clothing with high cover area, clothing itself increases the risk of heat disorder. WBGT is corrected by CAF (clothing adjustment factor) in wearing such kind of protective clothing.

  18. Heat Stress (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir NEW OSHA- ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  19. Heat pump apparatus (United States)

    Nelson, Paul A.; Horowitz, Jeffrey S.


    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  20. Chemical heat pump (United States)

    Greiner, Leonard


    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  1. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices (United States)

    Koplow, Jeffrey P.


    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  2. Rapid Tooling via Investment Casting and Rapid Prototype Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Michael D.


    The objective of this work to develop the materials processing and design technologies required to reduce the die development time for metal mold processes from 12 months to 3 months, using die casting of Al and Mg as the example process. Sandia demonstrated that investment casting, using rapid prototype patterns produced from Stereo lithography or Selective laser Sintering, was a viable alternative/supplement to the current technology of machining form wrought stock. A demonstration die insert (ejector halt) was investment cast and subsequently tested in the die casting environment. The stationary half of the die insert was machined from wrought material to benchmark the cast half. The two inserts were run in a die casting machine for 3,100 shots of aluminum and at the end of the run no visible difference could be detected between the cast and machined inserts. Inspection concluded that the cast insert performed identically to the machined insert. Both inserts had no indications of heat checking or degradation.

  3. Rapid small lot manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Harrigan, R.W.


    The direct connection of information, captured in forms such as CAD databases, to the factory floor is enabling a revolution in manufacturing. Rapid response to very dynamic market conditions is becoming the norm rather than the exception. In order to provide economical rapid fabrication of small numbers of variable products, one must design with manufacturing constraints in mind. In addition, flexible manufacturing systems must be programmed automatically to reduce the time for product change over in the factory and eliminate human errors. Sensor based machine control is needed to adapt idealized, model based machine programs to uncontrolled variables such as the condition of raw materials and fabrication tolerances.

  4. Heat pumps

    CERN Document Server

    Macmichael, DBA


    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  5. Environmental Consequences of Rapid Urbanization in Zhejiang Province, East China

    Directory of Open Access Journals (Sweden)

    Xuchao Yang


    Full Text Available Since reforms carried out in the late 1970s, China has experienced unprecedented rates of urban growth. Remote sensing data and surface observational data are used to investigate the urbanization process and related environmental consequences, focusing on extreme heat events and air pollution, in Zhejiang Province (ZJP, East China. Examination of satellite-measured nighttime light data indicates rapid urbanization in ZJP during the past decade, initially forming three urban clusters. With rapid urban sprawl, a significant Urban Heat Island (UHI effect has emerged. During extreme heat events in summer, the UHI effect significantly exacerbates nocturnal heat stress in highly urbanized areas. Taking a long-term view, urbanization also causes additional hot days and hot degree days in urban areas. Urbanization also imposes a heavy burden on local and regional air quality in ZJP. Degraded visibility and an increase in haze days are observed at most meteorological stations, especially in the three urban clusters. The results show that urbanization has led to serious environmental problems in ZJP, not only on the city scale, but also on the regional scale. Maintaining a balance between the continuing process of urbanization and environmental sustainability is a major issue facing the local government.

  6. Environmental consequences of rapid urbanization in zhejiang province, East china. (United States)

    Yang, Xuchao; Yue, Wenze; Xu, Honghui; Wu, Jingsheng; He, Yue


    Since reforms carried out in the late 1970s, China has experienced unprecedented rates of urban growth. Remote sensing data and surface observational data are used to investigate the urbanization process and related environmental consequences, focusing on extreme heat events and air pollution, in Zhejiang Province (ZJP, East China). Examination of satellite-measured nighttime light data indicates rapid urbanization in ZJP during the past decade, initially forming three urban clusters. With rapid urban sprawl, a significant Urban Heat Island (UHI) effect has emerged. During extreme heat events in summer, the UHI effect significantly exacerbates nocturnal heat stress in highly urbanized areas. Taking a long-term view, urbanization also causes additional hot days and hot degree days in urban areas. Urbanization also imposes a heavy burden on local and regional air quality in ZJP. Degraded visibility and an increase in haze days are observed at most meteorological stations, especially in the three urban clusters. The results show that urbanization has led to serious environmental problems in ZJP, not only on the city scale, but also on the regional scale. Maintaining a balance between the continuing process of urbanization and environmental sustainability is a major issue facing the local government.

  7. Scraped surface heat exchangers. (United States)

    Rao, Chetan S; Hartel, Richard W


    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  8. Controlled Cavitation for Scale-Free Heating, Gum Hydration and Emulsification in Food and Consumer Products (United States)

    Mancosky, Douglas G.; Milly, Paul

    Cavitation is defined as the sudden formation and collapse of bubbles in liquid by means of a mechanical force. As bubbles rapidly form and collapse, pressurized shock waves, localized heating events and tremendous shearing forces occur. As microscopic cavitation bubbles are produced and collapse, shockwaves are given off into the liquid, which can result in heating and/or mixing, similar to ultrasound. These shockwaves can provide breakthrough benefits for the heating of liquids without scale buildup and/or the mixing of liquids with other liquids, gases or solids at the microscopic level to increase the efficiency of the reaction.

  9. Mathematical modeling of heat transfer between the plant seedling and the environment during a radiation frost


    Finnikov K.A.; A.V. Minakov; A.A. Dekterev; A.A. Gavrilov; A.M. Korzun; V.K. Voinikov; Kolesnichenko, A. V.


    The power of the internal heat source sufficient to maintain a positive temperature of plants during one of the possible form of cold stress - radiation frost was determined with the help of numerical simulation.The simulation of unsteady heat transfer in the soil-plant-air system in the conditions of radiation frost showed that the the ground part of plants is cooling most rapidly, and this process is partially slowed down by the natural-convection heat transfer with warmer air. If the frost...

  10. Rapid Prototyping (United States)


    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.


    Directory of Open Access Journals (Sweden)

    O. Ostapenko


    Full Text Available The increasing demand of energy sources for urban, household and industrial facilities requires strategies development for seeking new energy sources. In recent years an important problem is to have energy storage, energy production and energy consumption which fulfill the environment friendly expectations. A lot of attention is devoted to renewable energy sources. One of the most attracting among them is energy production form geothermal sources. At a few meters below the earth’s surface the underground maintains a constant temperature in an approximation through the year allowing to withdraw heat in winter for heating needs and to surrender heat during summer for air-conditioning purposes. Heat pump is a rapidly developing technology for heating and domestic hot water production. Using ground as a heat source, heat exchange is carried out with heat pumps compound to vertical ground heat exchanger tubes that allows the heating and cooling of the buildings utilizing a single unit installation. Heat pump unit provides a high degree of productivity with moderate electric power consumption. In this paper a theoretical performance study of a vapor compression heat pump system with various natural and synthetic refrigerants (HFCs is presented. Operation mode of the heat pump unit was chosen according to European Standard EN14511-2:2007 and EN255-2. An influence of discharge temperature on system performance was evaluated at different boiling temperatures. The comparison of mass flow rate and coefficient of performance for considered refrigerants at constant cooling capacity and condensation temperature was performed.

  12. Microchannel heat sink assembly (United States)

    Bonde, Wayne L.; Contolini, Robert J.


    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  13. Study of the thermal and hydraulic phenomena occurring during power excursion on a heated test section; Etude des phenomenes thermiques et hydrauliques accompagnant une excursion rapide de puissance sur un canal chauffant

    Energy Technology Data Exchange (ETDEWEB)

    Nyer, M. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires


    The thermal and hydrodynamic phenomena occurring during a power excursion were studied in an out-of-pile loop with a water cooled channel at low pressure (1 to 4 atm. abs. ). Circular and rectangular test sections with electrically heated walls of two different thermal diffusivity materials(aluminium and stainless steel) were used. The rectangular test sections were 600 mm long, 35 mm wide and had a 2, 9 mm gap; they simulate two half plates of the M.T.R. fuel element. Natural or forced convection are possible in the test section; the water height above it can be varied from 2.8 to 8 meters and the maximum allowed pressure at its outlet is 4 atm. abs.The heating source is a series of lead batteries which is able to generate, for short periods of time, 85 volts and 25000 amperes; linear, square or exponential power rise versus time can be realized. A 14 channels tape recorder (0-10 000 Hz bandwidth; is used for the measurements of temperature (8/100 mm diameter thermocouple), pressure ('Statham' pressure transducers) and void fraction (X rays). More than 500 tests have been carried out. The influence of the initial water temperature, flow rate, pressure, water height on the water ejections, pressure variations and void fraction in the test section were studied. Tests with energies up to 3000 W/cm in 50 milliseconds were attempted. The energy above which the instabilities appear was determined. An interpretation of the observed phenomena and a simplified theoretical model are presented. [French] Les phenomenes thermiques et hydrodynamiques qui apparaissent au cours d'une excursion de puissance ont ete etudies sur un canal refroidi par de l'eau a basse pression situe sur une installation hors pile. On a utilise des sections d'essais de geometrie cylindrique ou parallipedique dont les parois chauffees par effet Joule sont constituees de materiaux de diffusivite calorifique differente (aluminium et acier inoxydable). La section d


    Clark, J H


    The extent of urea denaturation depends on the concentration of protein and urea and also on the temperature of the solution. Egg albumin solutions (0.9 per cent) are not denatured by 20 per cent urea, denature slowly with 25 per cent urea, and denature rapidly with 35 per cent urea at room temperature. At a higher temperature 30 per cent urea is rapidly effective. Denaturation of the egg albumin molecule by radiation or by heat is accompanied by structural changes as evidenced by optical rotation values, but is not accompanied by association or dissociation of the molecule in the pH range outside the zone in which aggregation follows denaturation. Denaturation of the egg albumin molecule by urea produces no change in optical rotation until the concentration of urea is high enough to dissociate the molecule. In the presence of urea a urea-protein complex is formed in which the protein is denatured but cannot flocculate because of the dispersive action of the urea. This prevents flocculation of proteins exposed to radiation and subsequent heating to 40 degrees C. as the urea-protein complex is not broken down at a temperature of 40 degrees C. The presence of urea therefore prevents the flocculation of proteins denatured by radiation. The urea-protein complex is broken down by heating to 55-58 degrees C. so that the molecules aggregate at a temperature below the temperature of rapid heat denaturation. This appears to be an acceleration of heat denaturation or a lowering of the heat denaturation temperature, but in reality is an effect of heat on the urea-protein complex which frees the urea-denatured protein and permits its aggregation.

  15. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski


    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  16. Vorticity and helicity in relativistic heat-conducting fluid (United States)

    Prasad, G.


    The evolution of heat-conducting fluid described by a pair of Maxwell-like equations is used to construct thermal-fluid helicity and thermal-helicity currents. These currents are found to be dissipative. It is shown that the magnetic part of the particle vorticity two-form is a thermal-fluid vorticity flux vector field composed of a linear combination of the fluid’s vorticity and a spacelike twist of heat flow lines. Heat flow lines are non-geodesic because of the interplay between gravitation and the entropy entrainment in a system composed of a heat-conducting fluid which is in state of rapid differential rotation and far from equilibrium. In general, alignment of the heat flux vector with that of the fluid’s vorticity leads to non-conservation of thermal-fluid vorticity flux in both a thermal-fluid flux tube and a stream tube. It is demonstrated that the twist of the fluid’s vortex lines is caused by the heat flow along the fluid’s vorticity vector in the case of an axisymmetric stationary differentially rotating heat-conducting fluid configuration. In this case, dissipation of thermal-fluid vorticity flux along the flux tube is caused by coupled effects of the fluid’s vorticity magnitude, thermal resistivity and entropy entrainment.

  17. Rapid starting methanol reactor system (United States)

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.


    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.


    Directory of Open Access Journals (Sweden)

    S. L. Rovin


    Full Text Available Heat recovery is an effective method of shortening specific energy consumption. new constructions of recuperators for heating and cupola furnaces have been designed and successfully introduced. two-stage recuperator with computer control providing blast heating up to 600 °C and reducing fuel consumption by 30% is of special interest.

  19. Heat treatment furnace

    Energy Technology Data Exchange (ETDEWEB)

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T


    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  20. Molecular heat pump. (United States)

    Segal, Dvira; Nitzan, Abraham


    We propose a molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation wave forms, thus making it possible to optimize the device performance.

  1. Study of the heat flux generated by accelerated electrons on the components near the plasma; Etude du flux de chaleur dissipe par les electrons rapides sur les composants proches du plasma

    Energy Technology Data Exchange (ETDEWEB)

    Laugier, J. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee


    Experimental data have shown that a heat flux appears on components situated near the wave guide of the lower hybrid antenna of Tore-Supra. This heat flux is due to the energy release during collisions that occur between the component surface and the electrons accelerated by the high frequency field generated by the antenna. Simulations show that the electrons may reach an energy of 2-3 keV and that the heat flux generated in the shield may reach 10 MW/m{sup 2}. In this work a correlation has been established between the local heat flux due to electron impact and the mean electrical field near the antenna: {phi} (W/m{sup 2}) = 4.10{sup -4} x E{sup -6} (10{sup 5} V/m). It is also shown that the ratio of electrons that reach the shield is roughly not dependent on the value of the mean electrical field. In the hypothesis of a Gaussian distribution of electron initial velocities this ratio is 10%. (A.C.)

  2. Modular forms

    NARCIS (Netherlands)

    Edixhoven, B.; van der Geer, G.; Moonen, B.; Edixhoven, B.; van der Geer, G.; Moonen, B.


    Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the

  3. Laminated insulators having heat dissipation means (United States)

    Niemann, R.C.; Mataya, K.F.; Gonczy, J.D.


    A laminated body is provided with heat dissipation capabilities. The insulator body is formed by dielectric layers interleaved with heat conductive layers, and bonded by an adhesive to form a composite structure. The heat conductive layers include provision for connection to an external thermal circuit.

  4. Heat pumps for the home

    CERN Document Server

    Cantor, John


    In recent years, heat pumps have emerged as a promising new form of technology with a relatively low environmental impact. Moreover, they have presented householders with an opportunity to reduce their heating bills. Heat pumps can heat a building by 'pumping' heat from either the ground or the air outside: an intriguing process which utilizes principles that are somewhat analogous to those employed in the domestic refrigerator. Armed with the practical information contained in these pages, homeowners will have the necessary knowledge to take advantage of this potentially low-carbon t

  5. Life cycle study. Carbon dioxide emissions lower in electric heating than in oil heating

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, A.; Jaervinen, P.; Nikula, A.


    A primary objective of energy conservation is to cut carbon dioxide emissions. A comparative study on the various heating forms, based on the life cycle approach, showed that the carbon dioxide emissions resulting form heating are appreciably lower now that electric heating has become more common. The level of carbon dioxide emissions in Finland would have been millions of tonnes higher had oil heating been chosen instead of electric heating. (orig.)

  6. Convective heat transfer in non-uniformly heated corrugated slots (United States)

    Abtahi, Arman; Floryan, J. M.


    An analysis of heat transfer in non-uniformly heated corrugated slots has been carried out. A sinusoidal corrugation is placed at the lower plate that is exposed to heating consisting of uniform and sinusoidal components, while the upper smooth plate is kept isothermal. The phase difference ΩTL describes the shift between the heating and geometric non-uniformities. The analysis is limited to heating conditions that do not give rise to secondary motions. Depending on ΩTL, the conductive heat flow is directed either upwards, or downwards, or is eliminated. Its magnitude is smallest for the long-wavelength systems and largest for the short-wavelength systems, and it increases proportionally to the corrugation amplitude and heating intensity. The same heating creates horizontal temperature gradients that give rise to convection whose form depends on ΩTL. Convection consists of counter-rotating rolls with the size dictated by the system wavelength when the hot spots (points of maximum temperature) overlap either with the corrugation tips or with the corrugation bottoms. Thermal drift forms for all other values of ΩTL. The convective heat flow is always directed upwards, and it is the largest in systems with wavelengths comparable to the slot height. The magnitude of the overall heat flow increases proportionally to the heating intensity when conductive effects dominate and proportionally to the second power of the heating intensity when convection dominates. It also increases proportionally to the corrugation amplitude. The system characteristics are dictated by convection when the relative position of the heating and corrugation patterns eliminates conduction. Addition of the uniform heating component amplifies the above processes, while uniform cooling reduces them. The processes described above are qualitatively similar for all Prandtl numbers of practical interest with the magnitude of the convective heat flow increasing with Pr.

  7. Heated Goggles (United States)


    The electrically heated ski goggles shown incorporate technology similar to that once used in Apollo astronauts' helmet visors, and for the same reason-providing fogfree sight in an activity that demands total vision. Defogging is accomplished by applying heat to prevent moisture condensation. Electric heat is supplied by a small battery built into the h goggles' headband. Heat is spread across the lenses by means of an invisible coating of electrically conductive metallic film. The goggles were introduced to the market last fall. They were designed by Sierracin Corporation, Sylmar, California, specialists in the field of heated transparent materials. The company produces heated windshields for military planes and for such civil aircraft as the Boeing 747, McDonnell Douglas DC-10 and Lockheed L-1011 TriStar.

  8. Terrestrial aftermath of the Moon-forming impact. (United States)

    Sleep, Norman H; Zahnle, Kevin J; Lupu, Roxana E


    Much of the Earth's mantle was melted in the Moon-forming impact. Gases that were not partially soluble in the melt, such as water and CO2, formed a thick, deep atmosphere surrounding the post-impact Earth. This atmosphere was opaque to thermal radiation, allowing heat to escape to space only at the runaway greenhouse threshold of approximately 100 W m(-2). The duration of this runaway greenhouse stage was limited to approximately 10 Myr by the internal energy and tidal heating, ending with a partially crystalline uppermost mantle and a solid deep mantle. At this point, the crust was able to cool efficiently and solidified at the surface. After the condensation of the water ocean, approximately 100 bar of CO2 remained in the atmosphere, creating a solar-heated greenhouse, while the surface cooled to approximately 500 K. Almost all this CO2 had to be sequestered by subduction into the mantle by 3.8 Ga, when the geological record indicates the presence of life and hence a habitable environment. The deep CO2 sequestration into the mantle could be explained by a rapid subduction of the old oceanic crust, such that the top of the crust would remain cold and retain its CO2. Kinematically, these episodes would be required to have both fast subduction (and hence seafloor spreading) and old crust. Hadean oceanic crust that formed from hot mantle would have been thicker than modern crust, and therefore only old crust underlain by cool mantle lithosphere could subduct. Once subduction started, the basaltic crust would turn into dense eclogite, increasing the rate of subduction. The rapid subduction would stop when the young partially frozen crust from the rapidly spreading ridge entered the subduction zone. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Effect of Microwave Heating on the Dielectric Properties and Components of Iron-Fortified Milk

    Directory of Open Access Journals (Sweden)

    Xiao-shu Tang


    Full Text Available With the iron-fortified milk as research object, this paper makes a research on the influence of iron on the dielectric properties and wave absorption properties and effect of nutritional components, such as casein and whey protein in milk, and thermostability in the process of microwave heating, and rapid heat transfer method in ferrous gluconate–milk and ferrous chloride–milk, respectively. The results show that the iron of ionic form has greater influence to convert microwave to heat energy and the effect of microwave absorption properties was greater for ferrous chloride than for ferrous gluconate at high concentration. The effect of different forms of iron on the composition of milk was different, and the composition of milk systems was more stable by microwave heating, but the rapid heat transfer method is superior in the aim of increasing the nutritional value of milk. The ferrous gluconate–milk system has a better thermal stability than ferrous chloride–milk system. From the aspect of dielectric induction, the paper discovers the response rules of iron and evaluates the microwave thermal safety of the traditional and the iron-fortified products by microwave heating.

  10. Rapid Airplane Parametric Input Design (RAPID) (United States)

    Smith, Robert E.


    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool

  11. Effect of heating rate on intercritical annealing of low-carbon cold-rolled steel (United States)

    Thomas, Larrin

    A study was performed on the effect of heating rate on transformations during intercritical annealing of cold-rolled low-carbon sheet steels. Two sets of experiments were developed: 1) a series of alloys (1020, 1019M, 15B25) with two different cold reductions (nominally 40 and 60 pct) were heated at different rates and transformation temperatures were determined using analysis of dilatometry and metallography of intercritically annealed samples, allowing the study of the impact of composition and cold work on transformation behavior with different heating rates. 2) A cold-rolled C-Mn-Nb steel was tested with different heating rates selected for different degrees of recrystallization during austenite formation to test the impact of ferrite recrystallization on austenite formation. Heat treated samples were analyzed with SEM, EBSD, dilatometry, and microhardness to study the changes in transformation behavior. The results of this study were extended by adding step heating tests, heat treatments with an intercritical hold, and secondary ion mass spectrometry (SIMS) measurements of Mn distribution. Austenite transformation temperatures increased logarithmically with heating rate. Greater degrees of cold work led to reduced transformation temperatures across all heating rates because the energy of cold work increased the driving force for austenite formation. The relative effects of alloying additions on transformation temperatures remained with increasing heating rate. Rapid heating minimized ferrite recrystallization and pearlite spheroidization. Austenite formation occurred preferentially in recovered ferrite regions as opposed to recrystallized ferrite boundaries. Martensite was evenly distributed in slowly heated steels because austenite formed on recrystallized, equiaxed, ferrite boundaries. With rapid heating, austenite formed in directionally-oriented recovered ferrite which increased the degree of banding. The greatest degree of banding was found with

  12. Fuel change possibilities in small heat source (United States)

    Durčanský, Peter; Kapjor, Andrej; Jandačka, Jozef


    Rural areas are characterized by a larger number of older family houses with higher fuel consumption for heating. Some areas are not gasified, which means that the fuel base for heating the buildings is very limited. Heating is mainly covered by solid fuels with high emissions and low efficiency. But at the same time, the amount of energy in the form of biowaste can be evaluated and used further. We will explore the possibilities to convert biogas to heat of using a gas burner in a small heat source. However, the heat produced can be used other than for heating or hot water production. The added value for heat generation can be the production of electricity, in the use of heat energy through cogeneration unit with unconventional heat engine. The proposed solution could economically benefit the entire system, because electricity is a noble form of energy and its use is versatile.

  13. Heat exchanger and related methods (United States)

    Turner, Terry D.; McKellar, Michael G.


    Heat exchangers include a housing having an inlet and an outlet and forming a portion of a transition chamber. A heating member may form another portion of the transition chamber. The heating member includes a first end having a first opening and a second end having a second opening larger than the first opening. Methods of conveying a fluid include supplying a first fluid into a transition chamber of a heat exchanger, supplying a second fluid into the transition chamber, and altering a state of a portion of the first fluid with the second fluid. Methods of sublimating solid particles include conveying a first fluid comprising a material in a solid state into a transition chamber, heating the material to a gaseous state by directing a second fluid through a heating member and mixing the first fluid and the second fluid.

  14. Rapid prototype and test

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, D.L.; Hansche, B.D.


    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  15. Crystallization and activation of silicon by microwave rapid annealing (United States)

    Kimura, Shunsuke; Ota, Kosuke; Hasumi, Masahiko; Suzuki, Ayuta; Ushijima, Mitsuru; Sameshima, Toshiyuki


    A combination of the carbon-powder absorber with microwave irradiation is proposed as a rapid heat method. 2-μm-diameter carbon powders with a packing density of 0.08 effectively absorbed 2.45 GHz 1000-W-microwave and heated themselves to 1163 °C for 26 s. The present heat treatment recrystallized n-type crystalline silicon surfaces implanted with 1.0 × 10^{15}hbox {-cm}^{-2}-boron and phosphorus atoms with crystalline volume ratios of 0.99 and 0.93, respectively, by microwave irradiation at 1000 W for 20 s. Activation and carrier generation were simultaneously achieved with a sheet resistivity of 62 Ω / hbox {sq}. A high photo-induced-carrier effective lifetime of 1.0 × 10^{-4} s was also achieved. Typical electrical current-rectified characteristic and solar cell characteristic with an efficiency of 12.1 % under 100-mW/cm2-air-mass-1.5 illumination were obtained. Moreover, heat treatment with microwave irradiation at 1000 W for 22 s successfully crystallized silicon thin films with thicknesses ranging from 2.4 to 50 nm formed on quartz substrates. Nano-crystalline cluster structure with a high volume ratio of 50 % was formed in the 1.8-nm (initial 2.4-nm)-thick silicon films. Photoluminescence around 1.77 eV was observed for the 1.8-nm-thick silicon films annealed at 260 °C in 1.3 × 106-Pa-H2O-vapor for 3 h after the microwave heating.

  16. Heat Stroke

    DEFF Research Database (Denmark)

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg


    Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity...... and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...... not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat...

  17. Spray forming lead strip. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.


    A cooperative research project was conducted between the Idaho National Engineering Laboratory (INEL) and Johnson Controls, Inc. (JCI) to adapt the INEL spray forming process to produce near-net-shape lead alloy strip. The emphasis of the work was to spray form lead strip samples at INEL, using a variety of spray conditions, for characterization at JCI. An existing glove box apparatus was modified at INEL to spray form lead. The main spray forming components were housed inside the glove box. They included a spray nozzle, tundish (crucible), substrate assembly, gas heater and furnaces to heat the nozzle and tundish. To spray form metal strip, liquid metal was pressure-fed at a controlled rate through a series of circular orifices that span the width of the nozzle. There the metal contacted high velocity, high temperature inert gas (nitrogen) which atomized the molten material into fine droplets, entrained the droplets in a directed flow, and deposited them onto glass plates that were swept through the spray plume to form strip samples. In-flight convection cooling of the droplets followed by conduction and convection cooling at the substrate resulted in rapid solidification of the deposit. During operation, the inside of the glove box was purged with an inert gas to limit the effects of in-flight oxidation of the particles and spray-formed strips, as well as to protect personnel from exposure to airborne lead particulate. Remote controls were used to start/stop the spray and control the speed and position of the substrate. In addition, substrate samples were loaded into the substrate translator manually using the gloved side ports of the box. In this way, the glove box remained closed during a series of spray trials, and was opened only when loading the crucible with a lead charge or when removing lead strip samples for shipment to JCI.

  18. Microwave heating causes rapid degradation of antioxidants in polypropylene packaging, leading to greatly increased specific migration to food simulants as shown by ESI-MS and GC-MS. (United States)

    Alin, Jonas; Hakkarainen, Minna


    Microwave heating of commercial microwavable polypropylene packaging in contact with fatty food simulants caused significant antioxidant degradation and increased specific migration as shown by electrospray ionization-mass spectrometry (ESI-MS) and gas chromatography-mass spectrometry (GC-MS). Degradation of the antioxidants Irgafos 168 and Irganox 1010 was not detected during conventional heating of polypropylene packaging at the same temperature. The migration into aqueous food simulants was primarily restricted by the water solubility of the migrants. Using isooctane as fatty food simulant caused significant swelling and greatly enhanced overall migration values compared to the other fatty food simulant, 99.9% ethanol, or the aqueous food simulants 10% ethanol, 3% acetic acid, or water. ESI-MS spectra clearly reflected the overall migration values, and the number and amount of compounds detected decreased as the hydrophilicity of the food simulant increased. ESI-MS was shown to be an excellent tool for the analysis of semivolatile migrants and a good complement to GC-MS analysis of volatile migrants.

  19. Morphology of oxygen precipitates in silicon wafers pre-treated by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kot, D., E-mail:; Kissinger, G.; Schubert, M. A. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Sattler, A. [Siltronic AG, Hanns-Seidel-Platz 4, 81737 München (Germany)


    The morphology of oxygen precipitates in Czochralski silicon wafers pre-treated by rapid thermal annealing (RTA) and subjected to a heat treatment in the temperature range between 800 °C and 1000 °C was investigated by scanning transmission electron microscopy. The samples were pre-treated by RTA in order to establish a defined supersaturation of vacancies. It was found that in such vacancy-rich samples subjected to an annealing at 800 °C three dimensional dendrites are formed. Until now, it was known that during annealing at 800 °C plate-like oxygen precipitates are formed.

  20. The Conditions of use of traditional heating vs fast heating readers of thermoluminescent dosemeters, a comparison. Les conditions d'utilisation d'un lecteur de dosimetres TL a chauffage traditionnel et d'un lecteur automatique a chauffage rapide. Leur comparaison

    Energy Technology Data Exchange (ETDEWEB)

    Marinello, G.; Pollack, J. (Hopital Henri Mondor, 94 - Creteil (FR)); Blanchard, P.; Barthe, J. (CEA Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (FR). Dept. de Protection Technique)


    The dosimetric properties of lithium borate activated with manganese or copper have been compared according to the heating procedures, i.e. with either a traditional heating reader or a new fast heating device associated with an automatic reader. When the adjustments of preheating and main heating are made optimal, fading becomes independent of the reader used and the reproducibility of the measurements is very good. The response curve of the TL material vs the dose is also found to be independent of the reader, provided it is normalized to 1 for the same reference dose. On the other hand the variation of the response vs energy (photon or electron beams) depends upon the heating procedures. Finally a particular characteristic of Li{sub 2}B{sub 4}O{sub 7}: Cu has been demonstrated: the response corresponding to a given dose is not proportional to the mass of the TL material used for the reading. As an interesting consequence it is possible to avoid weighing each reading sample and therefore to save time.

  1. Heat pipes

    CERN Document Server

    Dunn, Peter D


    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  2. Experimental investigations on solar heating/heat pump systems for single family houses

    DEFF Research Database (Denmark)

    Andersen, Elsa; Perers, Bengt

    In the period 2013-2017 the project “Experimental investigations on solar heat pump systems for single family houses” is carried out at Department of Civil Engineering, Technical University of Denmark. The aim of this project is to increase the knowledge of the heat and mass transfer in the combi......In the period 2013-2017 the project “Experimental investigations on solar heat pump systems for single family houses” is carried out at Department of Civil Engineering, Technical University of Denmark. The aim of this project is to increase the knowledge of the heat and mass transfer...... in the combined solar heating/heat pump system type when the heat pump makes use of a horizontal ground source heat exchanger. The knowledge is gained by experimental investigations on a solar heating/heat pump system and forms the basis for improved marketed combined solar heating/heat pump systems....

  3. Heat exchanger panel (United States)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)


    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  4. Hot Topics! Heat Pumps and Geothermal Energy (United States)

    Roman, Harry T.


    The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.

  5. Rapid formation of a sea ice barrier east of Svalbard (United States)

    Nghiem, S. V.; van Woert, M. L.; Neumann, G.


    Daily SeaWinds scatterometer images acquired by the QuikSCAT satellite show an elongated sea ice feature that formed very rapidly (˜1-2 days) in November 2001 east of Svalbard over the Barents Sea. This sea ice structure, called "the Svalbard sea ice barrier," spanning approximately 10° in longitude and 2° in latitude, restricts the sea route and poses a significant navigation hazard. The secret of its formation appears to lie in the bottom of the sea: A comparison between bathymetry from the International Bathymetric Chart of the Arctic Ocean data and the pattern of sea ice formation from scatterometer data reveals that the sea ice barrier conforms well with and stretches above a deep elongated channel connecting the Franz Josef-Victoria Trough to the Hinlopen Basin between Svalbard and Franz Josef Land. Historic hydrographic data from this area indicate that this sea channel contains cold Arctic water less than 50 m below the surface. Strong and persistent cold northerly winds force strong heat loss from this shallow surface layer, leading to the rapid formation of the sea ice barrier. Heat transfer rates estimated from European Centre for Medium-Range Weather Forecasts temperature and wind data over this region suggest that the surface water along the deep channel can be rapidly cooled to the freezing point. Scatterometer results in 1999-2003 show that sea ice forms in this area between October and December. Understanding the ice formation mechanisms helps to select appropriate locations for deployment of buoys measuring wind and air-sea temperature profile and to facilitate ice monitoring, modeling, and forecasting.

  6. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor; Amelioration des caracteristiques de la dissipation de la chaleur de decroissance pour les reacteurs a neutrons rapides de quatrieme generation refroidi au gaz

    Energy Technology Data Exchange (ETDEWEB)

    Epiney, A.S.


    The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For de-pressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure conditions, need to be powered either by the power grid or by batteries for at least 24 hours. The specific contributions of the present research - aimed at achieving enhanced passivity of the DHR system for the GFR - are design and analysis related to (1) the injection of heavy gas into the primary circuit after a LOCA, to enable natural convection cooling at an intermediate-pressure level, and (2) an autonomous Brayton loop to evacuate decay heat at low primary pressure in case of a loss of the guard containment pressure. Both these developments reduce the dependence on blower power availability considerably. First, the thermal-hydraulic codes used in the study - TRACE and CATHARE - are validated for gas cooling. The validation includes benchmark comparisons between the codes, serving to identify the sensitivity of the results to the different modeling assumptions. The parameters found to be the most sensitive in this analysis, such as heat transfer and friction models, are then validated via a

  7. Modular Heat Exchanger With Integral Heat Pipe (United States)

    Schreiber, Jeffrey G.


    Modular heat exchanger with integral heat pipe transports heat from source to Stirling engine. Alternative to heat exchangers depending on integrities of thousands of brazed joints, contains only 40 brazed tubes.

  8. Heat exchanger leakage problem location

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav


    Full Text Available Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  9. Magnetic heat pump flow director (United States)

    Howard, Frank S. (Inventor)


    A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.

  10. Rapid Polymer Sequencer (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)


    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  11. Microgravity condensing heat exchanger (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)


    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  12. Elements of heat transfer

    CERN Document Server

    Rathakrishnan, Ethirajan


    1 Basic Concepts and Definitions1.1 Introduction1.1.1 Driving Potential1.2 Dimensions and Units1.2.1 Dimensional Homogeneity1.3 Closed and Open Systems1.3.1 Closed System (ControlMass)1.3.2 Isolated System1.3.3 Open System (ControlVolume)1.4 Forms of Energy1.4.1 Internal Energy1.5 Properties of a System1.5.1 Intensive and Extensive Properties1.6 State and Equilibrium1.7 Thermal and Calorical Properties1.7.1 Specific Heat of an Incompressible Substance1.7.2 Thermally Perfect Gas 1.8 The Perfect Gas1.9 Summary1.10 Exercise ProblemsConduction Heat Transfer2.1 Introduction2.2 Conduction Heat Trans

  13. One-day pulsed-field gel electrophoresis protocol for rapid determination of emetic Bacillus cereus isolates. (United States)

    Kaminska, Paulina S; Fiedoruk, Krzysztof; Jankowska, Dominika; Mahillon, Jacques; Nowosad, Karol; Drewicka, Ewa; Zambrzycka, Monika; Swiecicka, Izabela


    Bacillus cereus, the Gram-positive and spore-forming ubiquitous bacterium, may cause emesis as the result of food intoxication with cereulide, a heat-stable emetic toxin. Rapid determination of cereulide-positive B. cereus isolates is of highest importance due to consequences of this intoxication for human health and life. Here we present a 1-day pulsed-field gel electrophoresis for emetic B. cereus isolates, which allows rapid and efficient determination of their genomic relatedness and helps determining the source of intoxication in case of outbreaks caused by these bacilli. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Profitability of heating entrepreneurship from the viewpoint of heating energy buyer, heating energy seller and energy wood seller

    Energy Technology Data Exchange (ETDEWEB)

    Sauvula-Seppaelae, T.; Ulander, E. (Seinaejoki Univ. of Applied Sciences, Ahtari (Finland), School of Agriculture and Forestry), e-mail:, e-mail:


    The focus of this research was to study the profitability of heating entrepreneurships from the viewpoint of heating energy buyer, seller as well as energy wood seller. The average costs of heat production were Eur 44,8 / MWh and incomes Eur 43,4 /MWh. Energy wood purchase, comminution and long distance transportation formed slightly over a half of the heat production costs. Average net income in the group of the largest heating plants (>1000 kW) was Eur 29000 per year and in the group of the smallest (<200 kW) average net income was slightly over Eur 4000 per year. The net income from selling heat represents only a part of the income a heating entrepreneur receives from heat production. Other, significant parts are formed by income from selling energy wood to the plant as well as compensation for supervision and maintenance of the plant. The average net income of a forest owner from selling energy wood to heating entrepreneurs was Eur 18 / m3. Without state subsidies the net income would have been Eur 4 / m3. The price of the heating energy sold by heating entrepreneurs was very competitive. In 2006 it was Eur 30 / MWh cheaper than oil heat, Eur 34 / MWh cheaper than electric heat and Eur 3 / MWh cheaper than district heating. (orig.)

  15. Current assisted superplastic forming of titanium alloy

    Directory of Open Access Journals (Sweden)

    Wang Guofeng


    Full Text Available Current assisted superplastic forming combines electric heating technology and superplastic forming technology, and can overcome some shortcomings of traditional superplastic forming effectively, such as slow heating rate, large energy loss, low production efficiency, etc. Since formability of titanium alloy at room temperature is poor, current assisted superplastic forming is suitable for titanium alloy. This paper mainly introduces the application of current assisted superplastic forming in the field of titanium alloy, including forming technology of double-hemisphere structure and bellows.

  16. Orifice Blocks Heat Pipe in Reverse Mode (United States)

    Alario, J. P.


    High forward-mode conductance is combined with rapid reverse-mode shutoff in a heat pipe originally developed to cool spacecraft payloads. A narrow orifice within the pipe "chokes off" the evaporator if heat sink becomes warmer than source. During normal operation, with source warmer than sink, orifice has little effect. Design is simpler and more compact than other thermal-diode heat pipes and requires no special materials, forgings, or unusual construction techniques.

  17. Heat convection

    Energy Technology Data Exchange (ETDEWEB)

    Jiji, L.M. [City Univ. of New York, NY (United States). Dept. of Mechanical Engineering


    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the following ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters. (orig.)

  18. Liquid Film Migration in Warm Formed Aluminum Brazing Sheet (United States)

    Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.


    Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.

  19. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... for signs of heat stroke or exhaustion. Heat Stroke and Exhaustion Symptoms of early heat exhaustion symptoms ... heavy sweating; nausea; and giddiness. Symptoms of heat stroke (late stage of heat illness) include flushed, hot, ...

  20. Renewable Heating and Cooling (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.


    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V


    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  2. Mathematical modeling of heat transfer between the plant seedling and the environment during a radiation frost

    Directory of Open Access Journals (Sweden)

    Finnikov K.A.


    Full Text Available The power of the internal heat source sufficient to maintain a positive temperature of plants during one of the possible form of cold stress - radiation frost was determined with the help of numerical simulation.The simulation of unsteady heat transfer in the soil-plant-air system in the conditions of radiation frost showed that the the ground part of plants is cooling most rapidly, and this process is partially slowed down by the natural-convection heat transfer with warmer air. If the frost is not continuous, the radiative cooling is the main danger for plant. The necessary power of heat-production inside plant that allows it to avoid hypothermia depends both on natural conditions and the size of the plant. For plants with a typical diameter of the stem about 2 mm this heat-production should be from 50 to 100 W / kg. Within 2 hours a total amount of heat about 0.5 MJ / kg in the plant should be allocated. Larger plants will have a smaller surface to mass ratio, and the maintaining of it's temperature will require a lower cost of nutrients per unit, accordingly. Modeling of the influence of plant surface trichomes presence on the process of its cooling showed that the role of trichomes in the protection of plants from hypothermia during radiation frost usually is negative due to the fact that the presence of trichomes increases the radiative heat transfer from the plant and the impediment in air movement near the plant reduces heat flux entering the plant from a warmer air. But in cases where the intensity of heat generation within the plant is sufficient for the maintenance of the plant temperature higher than the air temperature, the presence of trichomes impairs heat transfer from plant to air, and therefore contributes to a better heating of plants.

  3. Heat Transfer Analogies

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, A.


    This report contains descriptions of various analogues utilised to study different steady-state and unsteady-state heat transfer problems. The analogues covered are as follows: 1 . Hydraulic: a) water flow b) air flow 2. Membrane 3. Geometric Electrical: a) Electrolytic-tank b) Conducting sheet 4. Network; a) Resistance b) R-C A comparison of the different analogues is presented in the form of a table.

  4. Rapid magnetic hardening by rapid thermal annealing in NdFeB-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chu, K.-T.; Jin, Z Q; Chakka, Vamsi M; Liu, J P [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)


    A systematic study of heat treatments and magnetic hardening of NdFeB-based melt-spun nanocomposite ribbons have been carried out. Comparison was made between samples treated by rapid thermal annealing and by conventional furnace annealing. Heating rates up to 200 K s{sup -1} were adopted in the rapid thermal processing. It was observed that magnetic hardening can be realized in an annealing time as short as 1 s. Coercivity of 10.2 kOe in the nanocomposites has been obtained by rapid thermal annealing for 1 s, and prolonged annealing did not give any increase in coercivity. Detailed results on the effects of annealing time, temperature and heating rate have been obtained. The dependence of magnetic properties on the annealing parameters has been investigated. Structural characterization revealed that there is a close correlation between magnetic hardening and nanostructured morphology. The coercivity mechanism was also studied by analysing the magnetization minor loops.

  5. Determination of Free-Form and Peptide Bound Pyrraline in the Commercial Drinks Enriched with Different Protein Hydrolysates


    Zhili Liang; Lin Li; Haiping Qi; Xia Zhang; Zhenbo Xu; Bing Li


    Pyrraline, a causative factor for the recent epidemics of diabetes and cardiovascular disease, is also employed as an indicator to evaluate heat damage and formation of advanced glycation end-products (AGEs) in foods. Peptide-enriched drinks (PEDs) are broadly consumed worldwide due to rapid rate of absorption and perceived health effects. It can be hypothesized that PED is an important source of pyrraline, especially peptide bound pyrraline (Pep-Pyr). In this study we determined free-form py...

  6. Rapid Prototyping by Single Point Incremental Forming of Sheet Metal

    DEFF Research Database (Denmark)

    Skjødt, Martin


    explains a lot of experimental observation seen in the literature. SPIF of tailored blanks produced by friction stir welding. It is demonstrated that SPIF of tailored sheets produced by friction stir welding is possible and a promising way of combining two innovative manufacturing processes. Multi stage...

  7. Numerical simulation of the induction heating of hybrid semi-finished materials into the semi-solid state (United States)

    Seyboldt, Christoph; Liewald, Mathias


    Current research activities at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. As part of the research project "Hybrid interaction during and after thixoforging of multi-material systems", which is founded by the German Research Foundation (DFG), a thixoforging process for producing hybrid components with cohesive metal-to-metal connections is developed. In this context, this paper deals with the numerical simulation of the inductive heating process of hybrid semi-finished materials, consisting of two different aluminium alloys. By reason of the skin effect that leads to inhomogeneous temperature distributions during inductive heating processes, the aluminium alloy with the higher melting point is thereby assembled in the outer side and the alloy with the lower melting point is assembled in the core of the semi-finished material. In this way, the graded heat distribution can be adapted to the used materialś flow properties that are heavily heat dependent. Without this graded heat distribution a proper forming process in the semi-solid state will not be possible. For numerically modelling the inductive heating system of the institute, a coupling of the magnetostatic and the thermal solver was realized by using Ansys Workbench. While the electromagnetic field and its associated heat production rate were solved in a frequency domain, the temperature development was solved in the time based domain. The numerical analysis showed that because of the high thermal conductivity of the aluminium, which leads to a rapid temperature equalization in the semi-finished material, the heating process has to be fast and with a high frequency for produce most heat in the outer region of the material. Finally, the obtained numerical results were validated with experimental heating tests.

  8. A study of reduced chromium content in a nickel-base superalloy via element substitution and rapid solidification processing. Ph.D. ThesisFinal Report (United States)

    Powers, William O.


    A study of reduced chromium content in a nickel base superalloy via element substitution and rapid solidification processing was performed. The two elements used as partial substitutes for chromium were Si and Zr. The microstructure of conventionally solidified materials was characterized using microscopy techniques. These alloys were rapidly solidified using the chill block melt spinning technique and the rapidly solidified microstructures were characterized using electron microscopy. The spinning technique and the rapidly solidified microstructures was assessed following heat treatments at 1033 and 1272 K. Rapidly solidified material of three alloys was reduced to particulate form and consolidated using hot isostatic pressing (HIP). The consolidated materials were also characterized using microscopy techniques. In order to evaluate the relative strengths of the consolidated alloys, compression tests were performed at room temperature and 1033 K on samples of as-HIPed and HIPed plus solution treated material. Yield strength, porosity, and oxidation resistance characteristics are given and compared.

  9. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin


    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  10. Heat pump


    Klíma, Martin


    Bakalářská práce popisuje a charakterizuje tepelné čerpadlo. Obsahuje souhrn jednotlivých druhů tepelných čerpadel z hlediska získávání energie, princip jejich funkce a popis odlišností mezi jednotlivými druhy kompresorů, použití pracovní látky a její vývin do budoucna. Závěrem je zde uveden můj vlastní názor na tepelné čerpadlo, které bych preferoval. Bachelor thesis describes and characterizes the heat pump. Summarizes the various types of heat pumps in terms of energy production, princi...

  11. Heat Exchange


    Bottomley, Stephen


    Heat Exchange’ is an international touring exhibition of enamel metalwork curated by Turrell.E (UK), Gegenwart (Germany/UK) and Cameron (Australia). Bottomley was one of twenty-three international artists invited to join a transcontinental on-line blog and forum that recorded individual contemporary approaches to working with vitreous enamel the year prior to the 2012 exhibition that coincided with the SNAG (Society of North American Goldsmiths) National Conference in Phoenix Arizona USA.Vitr...

  12. Methods and compositions for rapid thermal cycling (United States)

    Beer, Neil Reginald; Benett, William J.; Frank, James M.; Deotte, Joshua R.; Spadaccini, Christopher


    The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.

  13. A Novel Biaxial Testing Apparatus for the Determination of Forming Limit under Hot Stamping Conditions. (United States)

    Shao, Zhutao; Li, Nan


    The hot stamping and cold die quenching process is increasingly used to form complex shaped structural components of sheet metals. Conventional experimental approaches, such as out-of-plane and in-plane tests, are not applicable to the determination of forming limits when heating and rapid cooling processes are introduced prior to forming for tests conducted under hot stamping conditions. A novel in-plane biaxial testing system was designed and used for the determination of forming limits of sheet metals at various strain paths, temperatures, and strain rates after heating and cooling processes in a resistance heating uniaxial testing machine. The core part of the biaxial testing system is a biaxial apparatus, which transfers a uniaxial force provided by the uniaxial testing machine to a biaxial force. One type of cruciform specimen was designed and verified for the formability test of aluminum alloy 6082 using the proposed biaxial testing system. The digital image correlation (DIC) system with a high-speed camera was used for taking strain measurements of a specimen during a deformation. The aim of proposing this biaxial testing system is to enable the forming limits of an alloy to be determined at various temperatures and strain rates under hot stamping conditions.

  14. Plasma Heating by Pedersen Current Dissipation From the Photosphere to the Upper Chromosphere (United States)

    Goodman, M. L.


    An MHD model is used to estimate the contribution of Pedersen current dissipation, as a function of height z, to plasma heating from the photosphere to the upper chromosphere. The model computes the particle diffusion velocities, normalized to the local drift velocity, transverse to a vertical magnetic field for a seven species plasma of electrons, protons, a proxy heavy ion, HeI, HeII, HeIII, and H. The proxy heavy ion is a single species representation of singly ionized C, Si, Al, Mg, Fe, Na, and Ca. The temperature and particle densities as functions of z are given by VAL model C. Collisions between all unlike particle species are taken into account. The diffusion velocities are used to compute the heating rate per unit volume Q(z), normalized to the maximum possible heating rate per unit volume at height z, due to Pedersen current dissipation. Q is the fraction of energy in the current density perpendicular to the magnetic field that is dissipated by collisions. Solutions to the model suggest that: (i) The solar chromosphere above photospheric magnetic fields with strengths ~ 102 - 103 G is heated by Pedersen current dissipation; (ii) This heating mechanism first becomes effective at heights corresponding to the lower chromosphere as defined by VAL; (iii) It is the rapid increase of charged particle magnetization with height in the lower chromosphere that triggers the rapid onset of intense heating by Pedersen current dissipation, where the magnetization is the ratio of the cyclotron frequency to the total collision frequency with unlike particles; (iv) Q(z) rapidly decreases to zero for z > ~ 2100 km due to strong magnetization transforming the current perpendicular to the magnetic field into a Hall current, which is not dissipative; (v) The protons and the proxy heavy ions carry essentially all of the Pedersen current. These results suggest that network and internetwork regions of the chromosphere are heated by Pedersen current dissipation. The model does not

  15. Heat pump system (United States)

    Swenson, Paul F.; Moore, Paul B.


    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  16. Restraint Age Forming Of Machined Panels (United States)

    Wood, Rebecca


    Panels bent permanently without cracking. In restraint age forming, panel wrapped onto mandrel having necessary curved contour, restrained on mandrel clamps and vacuum, and heat treated. When panel released after end of heat treatment, retains contour of mandrel except for small springback. Process repeatable: panels subsequently processed under same mechanical and thermal conditions on same contour emerge with same final contour.

  17. Heat treatment effect on crystal structure and design of highly sensitive room temperature CO2 gas sensors using anodic Bi2O3 nanoporous formed in a citric acid electrolyte (United States)

    Ahila, M.; Dhanalakshmi, J.; Celina Selvakumari, J.; Pathinettam Padiyan, D.


    The effect of annealing temperature on the crystal structure of anodic bismuth trioxide (ABO) layers prepared via anodization in a citric acid-based electrolyte was studied. The samples were annealed in air at temperatures ranging from 200 °C to 600 °C. Characterization of nanoporous ABO layers was carried out through x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-visible (UV-Vis) diffuse reflectance spectroscopy and photoluminescence (PL). Effects of heat treatment on crystallinity, morphology and gas-sensing properties were investigated in detail. The XRD measurements showed that a gradual phase change from beta to gamma occurs with an increase in annealing temperature. The beta to gamma transformation occurred between 500 and 600 °C. The changes in the average crystallite sizes of beta and gamma occurring during heat treatment of the ABO layers are correlated with the mechanism of gamma-phase nucleation. During the growth of the gamma phase, the grain size gets enlarged with a reduction in the total area of grain boundary. The pores’ formation and the pore diameter of both anodized and annealed samples were found to be in the range of 50 to 150 nm. The band gap of the ABO layer crystallines was determined using the diffuse reflectance technique according to the Kubelka-Munk theory. Results showed that the band gap of the ABO layer decreased from 4.09 to 2.42 eV when the particle size decreased from 58 to 24 nm. The CO2 sensing properties of the ABO were investigated at room temperature for 0-100 ppm concentration. The variations in the electrical resistances were measured with the exposure of CO2 as a function of time. The maximum value of the response magnitude of 77% was obtained for 100 ppm of CO2. These experimental results show that the ABO layer of nanoporous is a promising material for CO2 sensors at room temperature.

  18. Heat exchanger using graphite foam (United States)

    Campagna, Michael Joseph; Callas, James John


    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  19. Sudurnes Regional Heating Corp.

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J. [ed.


    The Svartsengi geothermal area is close to the town of Grindavik on the Rekjanes peninsula and is part of an active fissure swarm, lined with crater-rows and open fissures and faults. The high-temperature area has an area of 2 sq. km and shows only limited signs of geothermal activity at the surface. The reservoir, however, contains lots of energy and at least 8 wells supply the Svartsengi Power Plant with steam. The steam is not useable for domestic heating purposes so that heat exchangers are used to heat cold groundwater with the steam. Some steam is also used for producing 16.4 MW{sub e} of electrical power. The article shows the distribution system piping hot water to nine towns and the Keflavik International Airport. The effluent brine from the Svartsengi Plant is disposed of into a surface pond, called the Blue Lagoon, popular to tourists and people suffering from psoriasis and other forms of eczema seeking therapeutic effects from the silica rich brine. This combined power plant and regional district heating system (cogeneration) is an interesting and unique design for the application of geothermal energy.

  20. Turbulent energy losses during orchard heating

    Energy Technology Data Exchange (ETDEWEB)

    Bland, W.L.


    Two rapid-response drag anemometers and low time constant thermocouples, all at 4 m above a heated orchard floor, sampled wind component in the vertical direction and temperature at 30 Hz. The turbulent heat flux calculated revealed not more than 10% of the heat lost from the orchard was via turbulent transort. The observations failed to support previous estimates that at least a third of the energy applied was lost through turbulent transport. Underestimation of heat loss due to mean flow and a newly revealed flux due to spatial variations in the mean flow may explain the unaccounted for loss.

  1. Heat-Exchanger/Heat-Pipe Interface (United States)

    Snyder, H. J.; Van Hagan, T. H.


    Monolithic assembly reliable and light in weight. Heat exchanger and evaporator ends of heat pipes integrated in monolithic halves welded together. Interface assembly connects heat exchanger of furnace, reactor, or other power source with heat pipes carrying heat to radiator or power-consuming system. One of several concepts proposed for nuclear power supplies aboard spacecraft, interface useful on Earth in solar thermal power systems, heat engines, and lightweight cooling systems.

  2. Effect of the rate of temperature increase on water quality during heating in electromagnetic- and gas-heated pans. (United States)

    Hiratsuka, Hiroshi; Sasaki, Ken


    More rapid increases in the pH value and hardness during electromagnetic heating of a pan of water were observed than when the pan was heated by LNG or LPG. The water quality changed universally in several tap water samples across Japan. This quality change was closely correlated with the rate of temperature increase, irrespective of heating by electromagnetic induction, LNG or LPG.

  3. Heating systems for heating subsurface formations

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX


    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  4. Hydride heat pump with heat regenerator (United States)

    Jones, Jack A. (Inventor)


    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  5. Development of an air heating system for single Family housing

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gunner, Amalie; Nikolaisen, Christian Grønborg


    The initial objective of the project was to break with common thinking about Space heating and to document that air heating can be used as the sole source of heating in a single Family house. The basic idea is that the ventilation must be installed in any case and it may equally well form the heat...

  6. Contributor Form

    Directory of Open Access Journals (Sweden)

    Chief Editor


    to produce preprints or reprints and translate into languages other than English for sale or free distribution; and 4 the right to republish the work in a collection of articles in any other mechanical or electronic format. We give the rights to the corresponding author to make necessary changes as per the request of the journal, do the rest of the correspondence on our behalf and he/she will act as the guarantor for the manuscript on our behalf. All persons who have made substantial contributions to the work reported in the manuscript, but who are not contributors, are named in the Acknowledgment and have given me/us their written permission to be named. If I/we do not include an Acknowledgment that means I/we have not received substantial contributions from non-contributors and no contributor has been omitted.S NoAuthors' NamesContribution (IJCME Guidelines{1 substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; 2 drafting the article or revising it critically for important intellectual content; and 3 final approval of the version to be published. Authors should meet conditions 1, 2, and 3}.SignatureDate                              Note: All the authors are required to sign independently in this form in the sequence given above. In case an author has left the institution/country and whose whereabouts are not known, the senior author may sign on his/her behalf taking the responsibility.No addition/deletion/ or any change in the sequence of the authorship will be permissible at a later stage, without valid reasons and permission of the Editor.If the authorship is contested at any stage, the article will be either returned or will not be processed for publication till the issue is solved.Maximum up to 4 authors for short communication and up to 6 authors for original article.

  7. Contributors Form

    Directory of Open Access Journals (Sweden)

    Chief Editor


    to produce preprints or reprints and translate into languages other than English for sale or free distribution; and 4 the right to republish the work in a collection of articles in any other mechanical or electronic format. We give the rights to the corresponding author to make necessary changes as per the request of the journal, do the rest of the correspondence on our behalf and he/she will act as the guarantor for the manuscript on our behalf. All persons who have made substantial contributions to the work reported in the manuscript, but who are not contributors, are named in the Acknowledgment and have given me/us their written permission to be named. If I/we do not include an Acknowledgment that means I/we have not received substantial contributions from non-contributors and no contributor has been omitted.S NoAuthors' NamesContribution (IJCME Guidelines{1 substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; 2 drafting the article or revising it critically for important intellectual content; and 3 final approval of the version to be published. Authors should meet conditions 1, 2, and 3}.SignatureDate                              Note: All the authors are required to sign independently in this form in the sequence given above. In case an author has left the institution/country and whose whereabouts are not known, the senior author may sign on his/her behalf taking the responsibility.No addition/deletion/ or any change in the sequence of the authorship will be permissible at a later stage, without valid reasons and permission of the Editor.If the authorship is contested at any stage, the article will be either returned or will not be processed for publication till the issue is solved.Maximum up to 4 authors for short communication and up to 6 authors for original article.

  8. Heat pipes

    CERN Document Server

    Dunn, Peter D


    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  9. Design Considerations for Fusible Heat Sink (United States)

    Cognata, Thomas J.; Leimkuehler, Thomas O.; Sheth, Rubik B.


    Traditionally radiator designs are based off a passive or flow through design depending on vehicle requirements. For cyclical heat loads, a novel idea of combining a full flow through radiator to a phase change material is currently being investigated. The flow through radiator can be designed for an average heat load while the phase change material can be used as a source of supplemental heat rejections when vehicle heat loads go above the average load. Furthermore, by using water as the phase change material, harmful radiation protection can be provided to the crew. This paper discusses numerous trades conducted to understand the most optimal fusible heat sink design for a particular heat load. Trades include configuration concepts, amount of phase change needed for supplemental heat rejection, and the form of interstitial material needed for optimal performance. These trades were used to culminate to a fusible heat sink design. The paper will discuss design parameters taken into account to develop an engineering development unit.

  10. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Emergencies A-Z Share this! Home » Emergency 101 Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at ... about heat cramps and heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the ...

  11. Low temperature nuclear heat

    Energy Technology Data Exchange (ETDEWEB)

    Kotakorpi, J.; Tarjanne, R. (comps.)


    The meeting was concerned with the use of low grade nuclear heat for district heating, desalination, process heat, and agriculture and aquaculture. The sessions covered applications and demand, heat sources, and economics.

  12. Regenerative Hydride Heat Pump (United States)

    Jones, Jack A.


    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  13. Unitary water-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.


    Performance and cost functions for nine unitary water-to-air heat pumps ranging in nominal size from /sup 1///sub 2/ to 26 tons are presented in mathematical form for easy use in heat pump computer simulations. COPs at nominal water source temperature of 60/sup 0/F range from 2.5 to 3.4 during the heating cycle; during the cooling cycle EERs range from 8.33 to 9.09 with 85/sup 0/F entering water source temperatures. The COP and EER values do not include water source pumping power or any energy requirements associated with a central heat source and heat rejection equipment.

  14. Enceladus Heat Pump Model (United States)

    Matson, Dennis L.; Johnson, T. V.; Lunine, J. I.; Castillo-Rogez, J. C.


    Plume gas composition and the presence of dust grains rich in sodium salts [1,2] support a subsurface liquid as the source of the plumes observed at the South pole of Enceladus. We suggest that seawater circulating from the ocean to the surface supplies water, gas, dust and heat to the plumes. Our model needs only a percent or two of gas dissolved in the ocean, a value that is very much consistent with available observations ([1] suggest 10 percent of various gas species in the plume). As seawater comes up, pressure is released and bubbles form. Bubbly seawater is less dense than ice. Expanding gas provides lifting energy (cf. [6], [7]). The model delivers the materials that Postberg et al. [2] use for plume eruptions. Popping bubbles throw a fine spray that contains salt. This aerosol exits with the plume gas [2]. Most significant is the south polar heat flow >15 GW [4]. Water-borne oceanic heat is transferred to the surface ice. Less this heat, the water becomes colder, dissolves the bubble gases and becomes dense. It returns to the ocean via cracks in the ice. A large volume of ice is accessible via cracks SO THAT chemical interactions, heat exchange and other processes are possible. [1] Waite Jr et al., Nature, 460, 487 (2009). [2] Postberg et al., Nature, 459, 1098 (2009). [4] Howett et al BAAS., 41, 1122 (2009). [6] Crawford, and Stevenson, Icarus, 73, 66 (1988). [7] Murchie, and Head, LPS XVII, 583 (1986). This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology under NASA contract, and for JIL under "Incentivazione alla mobilita' di studiosi straineri e italiani residenti all'estero" of Italy.

  15. Enhanced high intensity focused ultrasound heat deposition for more efficient hemostasis (United States)

    Labuda, Cecille Pemberton

    High intensity focused ultrasound (HIFU) is currently being developed for hemorrhage control since it provides rapid energy deposition in the form of heat in the HIFU focal region. When the HIFU focus is targeted on soft tissue wounds, the resulting elevation of tissue temperature cauterizes the tissues thus stopping the bleeding. If HIFU is targeted near blood vessels with millimeter-range diameter, the rate of heat deposition is limited by loss of heat to the blood flow. Maximizing the local heat deposition is important for the achievement of HIFU-induced hemorrhage control, or "hemostasis", near large vessels. In this study, the effect of a fiber device on the heat deposition in the HIFU focal region is investigated in tissue-mimicking flow phantoms with liquid albumen as the heat-sensitive denaturing flow fluid. The effect of the embedded fiber on albumen coagulation in the flow phantom is compared to the degree and rate of albumen coagulation when no fiber is present. The effect of the fiber device on the size of lesions formed in a heat-sensitive tissue-mimicking phantom is also investigated. Finally, finite difference time domain simulations are performed to determine the heat deposition in a tissue-mimicking phantom with a nylon disc embedded and a phantom with the nylon disc removed. The results of this study are quite promising for the possibility of increased efficacy of hemostasis for such a device in concert with HIFU in vessel-containing tissue volumes where HIFU alone is not completely effective.

  16. Article and method of forming an article (United States)

    Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Dutta, Sandip; Schick, David Edward


    Provided are an article and a method of forming an article. The method includes providing a metallic powder, heating the metallic powder to a temperature sufficient to joint at least a portion of the metallic powder to form an initial layer, sequentially forming additional layers in a build direction by providing a distributed layer of the metallic powder over the initial layer and heating the distributed layer of the metallic powder, repeating the steps of sequentially forming the additional layers in the build direction to form a portion of the article having a hollow space formed in the build direction, and forming an overhang feature extending into the hollow space. The article includes an article formed by the method described herein.

  17. Segmented heat exchanger (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann


    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  18. Dual source heat pump (United States)

    Ecker, Amir L.; Pietsch, Joseph A.


    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  19. Turbulent resistive heating of solar coronal arches (United States)

    Benford, G.


    The possibility that coronal heating occurs by means of anomalous Joule heating by electrostatic ion cyclotron waves is examined, with consideration given to currents running from foot of a loop to the other. It is assumed that self-fields generated by the currents are absent and currents follow the direction of the magnetic field, allowing the plasma cylinder to expand radially. Ion and electron heating rates are defined within the cylinder, together with longitudinal conduction and convection, radiation and cross-field transport, all in terms of Coulomb and turbulent effects. The dominant force is identified as electrostatic ion cyclotron instability, while ion acoustic modes remain stable. Rapid heating from an initial temperature of 10 eV to 100-1000 eV levels is calculated, with plasma reaching and maintaining a temperature in the 100 eV range. Strong heating is also possible according to the turbulent Ohm's law and by resistive heating.

  20. Forced convective heat transfer in curved diffusers (United States)

    Rojas, J.; Whitelaw, J. H.; Yianneskis, M.


    Measurements of the velocity characteristics of the flows in two curved diffusers of rectangular cross section with C and S-shaped centerlines are presented and related to measurements of wall heat transfer coefficients along the heated flat walls of the ducts. The velocity results were obtained by laser-Doppler anemometry in a water tunnel and the heat transfer results by liquid crystal thermography in a wind tunnel. The thermographic technique allowed the rapid and inexpensive measurement of wall heat transfer coefficients along flat walls of arbitrary boundary shapes with an accuracy of about 5 percent. The results show that an increase in secondary flow velocities near the heated wall causes an increase in the local wall heat transfer coefficient, and quantify the variation for maximum secondary-flow velocities in a range from 1.5 to 17 percent of the bulk flow velocity.

  1. Characteristics of heat flow in recuperative heat exchangers

    Directory of Open Access Journals (Sweden)

    Lalović Milisav


    Full Text Available A simplified model of heat flow in cross-flow tube recuperative heat exchangers (recuperators was presented in this paper. One of the purposes of this investigation was to analyze changes in the values of some parameters of heat transfer in recuperators during combustion air preheating. The logarithmic mean temperature (Atm and overall heat transfer coefficient (U, are two basic parameters of heat flow, while the total heated area surface (A is assumed to be constant. The results, presented as graphs and in the form of mathematical expressions, were obtained by analytical methods and using experimental data. The conditions of gaseous fuel combustions were defined by the heat value of gaseous fuel Qd = 9263.894 J.m-3, excess air ratio λ= 1.10, content of oxygen in combustion air ν(O2 = 26%Vol, the preheating temperature of combustion air (cold fluid outlet temperature tco = 100-500°C, the inlet temperature of combustion products (hot fluid inlet temperature thi = 600-1100°C.

  2. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.


    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  3. Velocity and temperature field characteristics of water and air during natural convection heating in cans. (United States)

    Erdogdu, Ferruh; Tutar, Mustafa


    Presence of headspace during canning is required since an adequate amount allows forming vacuum during the process. Sealing technology may not totally eliminate all entrapped gases, and headspace might affect heat transfer. Not much attention has been given to solve this problem in computational studies, and cans, for example, were mostly assumed to be fully filled with product. Therefore, the objective of this study was to determine velocity and temperature evolution of water and air in cans during heating to evaluate the relevance of headspace in the transport mechanism. For this purpose, canned water samples with a certain headspace were used, and required governing continuity, energy, and momentum equations were solved using a finite volume approach coupled with a volume of fluid element model. Simulation results correlated well with experimental results validating faster heating effects of headspace rather than insulation effects as reported in the literature. The organized velocity motions along the air-water interface were also shown. Practical Application: Canning is a universal and economic method for processing of food products, and presence of adequate headspace is required to form vacuum during sealing of the cans. Since sealing technology may not totally eliminate the entrapped gases, mainly air, headspace might affect heating rates in cans. This study demonstrated the increased heating rates in the presence of headspace in contrast with some studies in the literature. By applying the effect of headspace, required processing time for thermally processed foods can be reduced leading to more rapid processes and lower energy consumptions.

  4. Enhancement of Aluminum Alloy Forgings through Rapid Billet Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kervick, R.; Blue, C. A.; Kadolkar, P. B.; Ando, T.; Lu, H.; Nakazawa, K.; Mayer, H.; Mochnal, G.


    Forging is a manufacturing process in which metal is pressed, pounded or squeezed under great pressure and, often, under high strain rates into high-strength parts known as forgings. The process is typically performed hot by preheating the metal to a desired temperature before it is worked. The forging process can create parts that are stronger than those manufactured by any other metal working process. Forgings are almost always used where reliability and human safety are critical. Forgings are normally component parts contained inside assembled items such airplanes, automobiles, tractors, ships, oil drilling equipment, engines missiles, and all kinds of capital equipment Forgings are stronger than castings and surpass them in predictable strength properties, producing superior strength that is assured, part to part.

  5. The Effective Fracture Toughness of Aluminum at Rapid Heating Rates. (United States)


    Load (lb) y Load at Yield (lb) 1 Plate thickness N Number of Fatigue Cucles n Ramberg - Osgood exponent for true plastic tensile strain S P Laser power on...l Etftl tun-i ( [I ___nlhfu t _(_t )__l] C10) n + l y toa t I t u t E t where n - the Ramberg - Osgood exponent for true plastic tensile v strain...n htpuatu (at n+l E tf tl ,tu, n uhu n+l [ (-) hf u -0tu tut t where n - the Ramberg - Osgood exponent for true plastic tensile strain atpu - true

  6. Rapid Nanoparticle Synthesis by Magnetic and Microwave Heating

    National Research Council Canada - National Science Library

    Viktor Chikan; Emily J McLaurin


      Traditional hot-injection (HI) syntheses of colloidal nanoparticles (NPs) allows good separation of the nucleation and growth stages of the reaction, a key limitation in obtaining monodisperse NPs, but with limited scalability...

  7. Thermal Inactivation of Bacillus anthracis Spores Using Rapid Resistive Heating (United States)


    I have to extend my gratitude and thanks to one of my previous active duty Air Force units. The AFRL Battlespace Acoustics Branch (RHCB) within...coating (CARC)-painted steel (non-smooth steel surface), polycarbonate, and vinyl tile (Lewandowski et al., 2010; Edmonds et al., 2009). The highest

  8. Gastroretentive dosage forms. (United States)

    Moës, A J


    This article begins with a review of gastric emptying, small intestine transit, and colonic transit of drug delivery systems with special attention paid to the different physiological processes involved in stomach emptying and to the cut-off size of nondigestible solids for passage through the gastroduodenal junction during the digestive phase. Then, the proposed means for prolonging the gastric residence time (GRT) of drug delivery systems are reviewed and analyzed with special emphasis on floating (F) dosage forms. The following means are discussed: the use of passage-delaying agents, large single-unit dosage forms, bioadhesive drug delivery systems, "heavy" pellets, and buoyant forms. In the section devoted to bioadhesive forms, the influence of the turnover time of the intestinal mucus gel layer on the performance of mucoadhesive preparations is pointed out to explain the poor results obtained in humans with such peroral products. The use of a specifically designed apparatus for measuring the total force acting vertically on an object immersed in a liquid is presented as a methodology for selecting optimized buoyant formations in vitro. Scintigraphic studies are described in nonfasting human volunteers either in upright or in supine posture, who concurrently were given one optimized F and one nonfloating (NF) hydrophilic matrix capsules of the same size, for three different sizes (small, medium, and large). In upright subjects, the F forms stayed continuously above the gastric contents irrespective of their size, whereas the NF ones sank rapidly after administration and never rose back to the surface thereafter. Consequently, the F forms show prolonged and more reproducible GRTs compared to the NF ones. The significance and extent of this prolongation are the most marked for the small size units (p 0.05). Moreover, there is no significant difference between the mean GRTs of the small, medium, and large F units (p > 0.05). This indirectly confirms that the

  9. Rapid Solidification of Magnetic Oxides (United States)

    Kalonji, G.; Deguire, M. R.


    The enhanced control over microstructural evolution inherent in rapid solidification processing techniques are exploited to create novel ceramic magnetic materials. The great sensitivity of magnetic properties to local structure provides a powerful probe both for the study of structure and of microscopic solidification mechanisms. The first system studied is the SrO-Fe2O3 binary, which contains the commercially important hard magnetic compound strontium hexaferrite. The products were analyzed by transmission electron microscopy, Mossbauer spectroscopy, magnetic measurements, and differential thermal analysis. As-quenched ribbons contain high concentrations of super-paramagnetic particles, 80 to 250 Angstroms in diameter, in a glassy matrix. This suggests the possibility of crystallizing monodomain strontium hexaferrite during subsequent heat treatment, with a resulting increase in coercivity over conventionally processed ferrite magnets. That magnetic properties can be controlled in solidification processing by varying the quench rate is demonstrated.

  10. Evolution of heat in dry rotary swaging (United States)

    Herrmann, Marius; Liu, Yang; Schenck, Christian; Kuhfuss, Bernd; Ohlsen, Inken


    In dry metal forming processes, the heat dissipation is a critical issue. The cooling by the lubricant is missing. The different heat evolution affects the machine and the process and thus the final product. For the machine the thermal expansion is affected and needs to be considered. Also the tools can bear only a maximum heat load before they get damaged. Furthermore, the heat can influence the material properties like the flow stress if it exceeds a critical value. Furthermore, the process forces and the material flow are directly affected. In addition, heat modifies in combination with plastic strain the generated microstructure of the workpiece. If the heat is high enough even positive effects of cold forming like work hardening are drastically decreased. In summary, the heat evolution during lubricated and dry forming processes need to be investigated. The evolution of heat in rotary swaging was investigated with conventional tools and machine settings. This was realized by varying the feeding velocity for the lubricated forming of aluminum tubes (3.3206) and steel tubes (1.0308). Moreover, the steel tubes are also formed with conventional tools by dry rotary swaging. A temperature measurement was integrated inside the tubes during the rotary process. Thus, the heat evolution inside the tube during the process at two different positions was examined. Also the variation between inside the tubes and the surface of the tubes was investigated by measuring the temperature at the surface directly after the forming process. Comparisons between different measured heat evolutions represent the impact of lubrication, feed rate and material. Thus, the practicability and the challenge for dry forming processes are presented.

  11. Polar heating in Saturn's thermosphere

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith


    Full Text Available A 3-D numerical global circulation model of the Kronian thermosphere has been used to investigate the influence of polar heating. The distributions of temperature and winds resulting from a general heat source in the polar regions are described. We show that both the total energy input and its vertical distribution are important to the resulting thermal structure. We find that the form of the topside heating profile is particularly important in determining exospheric temperatures. We compare our results to exospheric temperatures from Voyager occultation measurements (Smith et al., 1983; Festou and Atreya, 1982 and auroral H3+ temperatures from ground-based spectroscopic observations (e.g. Miller et al., 2000. We find that a polar heat source is consistent with both the Smith et al. determination of T∞~400 K at ~30° N and auroral temperatures. The required heat source is also consistent with recent estimates of the Joule heating rate at Saturn (Cowley et al., 2004. However, our results show that a polar heat source can probably not explain the Festou and Atreya determination of T∞~800 K at ~4° N and the auroral temperatures simultaneously. Keywords. Ionosphere (Planetary ionosphere – Magnetospherica physics (Planetary magnetospheres – Meterology and atmospheric dynamics (Thermospheric dynamics

  12. Rapid Prototyping Laboratory (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  13. Nucleon Electromagnetic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi


    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  14. Nonazeotropic Heat Pump (United States)

    Ealker, David H.; Deming, Glenn


    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  15. High heat flux single phase heat exchanger (United States)

    Valenzuela, Javier A.; Izenson, Michael G.


    This paper presents the results obtained to date in a program to develop a high heat flux, single-phase heat exchanger for spacecraft thermal management. The intended application is a net generation interface heat exchanger to couple the crew module water thermal bus to the two-phase ammonia main thermal bus in the Space Station Freedom. The large size of the interface heat exchanger is dictated by the relatively poor water-side heat transfer characteristics. The objective of this program is to develop a single-phase heat transfer approach which can achieve heat fluxes and heat transfer coefficients comparable to those of the evaporation ammonia side. A new heat exchanger concept has been developed to meet these objecties. The main feature of this heat exchanger is that it can achieve very high heat fluxes with a pressure drop one to two orders of magnitude lower than those of previous microchannel or jet impingement high heat flux heat exchangers. This paper describes proof-of-concept experiments performed in air and water and presents analytical model of the heat exchanger.

  16. Basic measurements on a multiple heat pipe (United States)

    Rohner, P.; Schippl, K.


    A multiple heat pipe which is a specially formed long heat pipe that fulfills the function of several single heat pipes was studied. The suitability of this arrangement for a heat exchanger was investigated. Several laboratory models were manufactured from corrugated tubes and their behavior was measured. Results show that the serpentine model exhibits the expected heat exchange properties. When subjected to severe operating conditions, the pipes remain operational, although somewhat limited in performance. The results are in function of the nature of the exchange media (air-air, air-water, water-water). This corrugated heat pipe design shows good promise for successful further development into an air-air heat exchanger.

  17. Glass heat pipe evacuated tube solar collector (United States)

    McConnell, Robert D.; Vansant, James H.


    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  18. Heat Illness: A Handbook for Medical Officers (United States)


    gastrointestinal bleeding. jaundice due to hepatic Injury, aspiratioai prneumoinla, noncardiogenic pulmonar ~y edema and myocardial Infarction...cerebral edema . 25) 4. Recovery and Profiling Patients with heat exhaustion experience rapid clinical recovery. However, they all need at least heat stroke induced cereb~ral edema is not) kntoVVn. Ncurologic d(et eriorat ion after initial recover i- Judy rep~resent Iinn-;r8 (11 iili

  19. Sensing the Heat Stress by Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Cates Jordan


    Full Text Available Abstract Background The heat-shock response network controls the adaptation and survival of the cell against environmental stress. This network is highly conserved and is connected with many other signaling pathways. A key element of the heat-shock network is the heat-shock transcription factor-1 (HSF, which is transiently activated by elevated temperatures. HSF translocates to the nucleus upon elevated temperatures, forming homotrimeric complexes. The HSF homotrimers bind to the heat shock element on the DNA and control the expression of the hsp70 gene. The Hsp70 proteins protect cells from thermal stress. Thermal stress causes the unfolding of proteins, perturbing thus the pathways under their control. By binding to these proteins, Hsp70 allows them to refold and prevents their aggregation. The modulation of the activity of the hsp70-promoter by the intensity of the input stress is thus critical for cell's survival. The promoter activity starts from a basal level and rapidly increases once the stress is applied, reaches a maximum level and attenuates slowely back to the basal level. This phenomenon is the hallmark of many experimental studies and of all computational network analysis. Results The molecular construct used as a measure of the response to thermal stress is a Hsp70-GFP fusion gene transfected in Chinese hamster ovary (CHO cells. The time profile of the GFP protein depends on the transient activity, Transient(t, of the heat shock system. The function Transient(t depends on hsp70 promoter activity, transcriptional regulation and the translation initiation effects elicited by the heat stress. The GFP time profile is recorded using flow cytometry measurements, a technique that allows a quantitative measurement of the fluorescence of a large number of cells (104. The GFP responses to one and two heat shocks were measured for 261 conditions of different temperatures and durations. We found that: (i the response of the cell to two

  20. Digitalization in roll forming manufacturing (United States)

    Sedlmaier, A.; Dietl, T.; Ferreira, P.


    Roll formed profiles are used in automotive chassis production as building blocks for the body-in-white. The ability to produce profiles with discontinuous cross sections, both in width and in depth, allows weight savings in the final automotive chassis through the use of load optimized cross sections. This has been the target of the 3D Roll Forming process. A machine concept is presented where a new forming concept for roll formed parts in combination with advanced robotics allowing freely positioned roll forming tooling in 3D space enables the production of complex shapes by roll forming. This is a step forward into the digitalization of roll forming manufacturing by making the process flexible and capable of rapid prototyping and production of small series of parts. Moreover, data collection in a large scale through the control system and integrated sensors lead to an increased understanding of the process and provide the basis to develop self-optimizing roll forming machines, increasing the productivity, quality and predictability of the roll-forming process. The first parts successfully manufactured with this new forming concept are presented.

  1. HIFU treatment time reduction through heating approach optimisation. (United States)

    Coon, Joshua; Todd, Nick; Roemer, Robert


    This study evaluated the HIFU treatment time reductions attainable for several scan paths when optimising the heating approach used (single, discrete pulses versus volumetric scanning) and the paths' focal zone heating locations'; number (N(FZL)), spacings, sequencing order, number of heating cycles (N(CYCLES)), and heating times. Also evaluated were the effects of focal zone size, increased tissue absorptivity due to heating, and optimisation technique. Treatments of homogeneous constant property tumours were simulated for several simple generic tumour shapes and sizes. The concentrated heating approach (which delivered the desired thermal dose to each location in one discrete heating pulse (N(CYCLES) = 1)) was compared to the fractionated heating approach (which dosed the tumour using multiple, shorter pulses repeatedly scanned around the heating path (i.e. 'volumetric scanning' with N(CYCLES) > 1)). Treatment times were minimised using both simultaneous, collective pulse optimisation (which used full a priori knowledge of the interacting effects of all pulses) and sequential, single pulse optimisation (which used only the information from previous pulses and cooling of the current pulse). Optimised concentrated heating always had shorter treatment times than optimised fractionated heating, and concentrated heating resulted in less normal tissue heating. When large, rapid tissue absorptivity changes were present (doubled or quadrupled immediately after heating) the optimal ordering of the scan path's sequence of focal zone locations changed. Concentrated heating yields significant treatment time reductions and less normal tissue heating when compared to all fractionated scanning approaches, e.g. volumetric scanning.

  2. Multiple source heat pump (United States)

    Ecker, Amir L.


    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  3. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F


    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  4. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A


    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  5. Densified waste form and method for forming (United States)

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina


    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  6. Furnace for rapid thermal processing with optical switching film disposed between heater and reflector

    NARCIS (Netherlands)

    Roozeboom, F.; Duine, P.A.; Sluis, P. van der


    A furnace (1) for Rapid Thermal Processing of a wafer (7), characterized in that the wafer (7) is heated by lamps (9), and the heat radiation is reflected by an optical switching device (15,17) which is in the reflecting state during the heating stage. During the cooling stage of the wafer (7), the

  7. Role of the carbohydrate chain and two phosphate moieties in the heat-induced aggregation of hen ovalbumin. (United States)

    Tani, Fumito; Shirai, Nobuaki; Nakanishi, Yukiko; Yasumoto, Kyoden; Kitabatake, Naofumi


    We investigated the effect of the carbohydrate chain and two phosphate moieties on heat-induced aggregation of hen ovalbumin. The dephosphorylated form of ovalbumin was obtained by treating the original protein with acid phosphatase. The single carbohydrate chain was removed by digestion of heat-denatured ovalbumin with glycopeptidase F, and the resulting polypeptide without this carbohydrate chain was correctly refolded to acquire protease-resistance. Thermal unfolding can be approximated by a mechanism involving a two-state transition between the folded and unfolded states with a midpoint temperature of 76 degrees C for the original form, of 74 degrees C for the dephosphorylated form, and of 71 degrees C for the carbohydrate-free form. The conformational stability of the original form was higher than that of the carbohydrate-free form. When the three forms of ovalbumin were heated to 80 degrees C and then cooled rapidly in an ice bath, the polypeptide chains were compactly collapsed to metastable intermediates with secondary structures whose properties were indistinguishable. Upon incubation at 60 degrees C, renaturation was possible for a large portion of the intermediates of the original form, but for only a small portion of those of the carbohydrate-free form. Light scattering experiments showed that in the presence of sulfate anions, the intermediates of the carbohydrate-free form aggregated to a greater extent than did those of the original form. The intermediates of the carbohydrate-free form bound to the chaperonin GroEL with about 10-fold higher affinity than those of the original form. It follows that the carbohydrate chain and the two phosphate moieties do not affect hydrophobic collapse in the kinetic refolding of hen ovalbumin but play an important role in the slow rearrangement. They block the off-pathway reaction that competes with correct refolding by effectively decreasing surface hydrophobicity.

  8. Domestic Heat Demand Prediction using Neural Networks

    NARCIS (Netherlands)

    Bakker, Vincent; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria


    By combining a cluster of microCHP appliances, a virtual power plant can be formed. To use such a virtual power plant, a good heat demand prediction of individual households is needed since the heat demand determines the production capacity. In this paper we present the results of using neural

  9. Casein - whey protein interactions in heated milk

    NARCIS (Netherlands)

    Vasbinder, Astrid Jolanda


    Heating of milk is an essential step in the processing of various dairy products, like for example yoghurt. A major consequence of the heat treatment is the denaturation of whey proteins, which either associate with the casein micelle or form soluble whey protein aggregates. By combination of

  10. Split radius-form blocks for tube benders (United States)

    Lange, D. R.; Seiple, C. W.


    Two-piece, radius-form block permits accurate forming and removing of parts with more than a 180 degree bend. Tube bender can shape flexible metal tubing in applications dealing with plumbing, heating, and pressure transmission lines.


    Directory of Open Access Journals (Sweden)

    M. M. Akhmedova


    Full Text Available Methods of computing and mathematical modeling are all widely used in the study of various heat exchange processes that provide the ability to study the dynamics of the processes, as well as to conduct a reasonable search for the optimal technological parameters of heat treatment.This work is devoted to the identification of correlations among the factors that have the greatest effect on the rate of heating of the product at hightemperature heat sterilization in a stream of hot air, which are chosen as the temperature difference (between the most and least warming up points and speed cans during heat sterilization.As a result of the experimental data warming of the central and peripheral layers compote of apples in a 3 liter pot at high-temperature heat treatment in a stream of hot air obtained by the regression equation in the form of a seconddegree polynomial, taking into account the effects of pair interaction of these parameters. 

  12. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger


    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  13. Conductive heat flows in research drill holes in thermal areas of Yellowstone National Park, Wyoming (United States)

    White, Donald E.


    affecting growth is probably the seasonal maximum soil temperature at the root depths preferred by each form, rather than the heat flow as such. Heat flows up to 300 HFU are greatly dominated near the surface by conduction and are little affected by convection within the measured intervals. With increasing total heat flow above 300 HFU, the convection component, as indicated by snowfall calorimetry, becomes increasingly important. Snowfall calorimetry and tree growth as related to heat flow are calibrated by the heat-flow data considered here. Both snowfall calorimetry and tree growth patterns can be extrapolated rapidly, although without high precision, to thermal areas that lack subsurface data.

  14. Moon (Form-Origin) (United States)

    Tsiapas, Elias; Soumelidou, Despina; Tsiapas, Christos


    When the Earth was formed, it was in a state of burning heat. As time went by, temperature on the planet's surface was falling due to radiation and heat transfer, and various components (crusts) began taking solid form at the Earth's poles. The formation of crusts took place at the Earth's poles, because the stirring of burning and fluid masses on the surface of the Earth was significantly slighter there than it was on the equator. Due to centrifugal force and Coriolis Effect, these solid masses headed towards the equator; those originating from the North Pole followed a south-western course, while those originating from the South Pole followed a north-western course and there they rotated from west to east at a lower speed than the underlying burning and liquid earth, because of their lower initial linear velocity, their solid state and inertia. Because inertia is proportional to mass, the initially larger solid body swept all new solid ones, incorporating them to its western side. The density of the new solid masses was higher, because the components on the surface would freeze and solidify first, before the underlying thicker components. As a result, the western side of the initial islet of solid rocks submerged, while the east side elevated. . As a result of the above, this initial islet began to spin in reverse, and after taking on the shape of a sphere, it formed the "heart" of the Moon. The Moon-sphere, rolling on the equator, would sink the solid rocks that continued to descend from the Earth's poles. The sinking rocks partially melted because of higher temperatures in the greater depths that the Moon descended to, while part of the rocks' mass bonded with the Moon and also served as a heat-insulating material, preventing the descended side of the sphere from melting. Combined with the Earth's liquid mass that covered its emerging eastern surface, new sphere-shaped shells were created, with increased density and very powerful structural cohesion. During the

  15. New developments in rapidly solidified magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K. [Allied-Signal, Inc., Morristown, NJ (United States); Chang, C.F. [Allied-Signal, Inc., Morristown, NJ (United States); Raybould, D. [Allied-Signal, Inc., Morristown, NJ (United States); King, J.F. [Magnesium Elektron Ltd., Manchester (United Kingdom); Thistlethwaite, S. [Magnesium Elektron Ltd., Manchester (United Kingdom)


    In the present paper, we will examine the new developments in the rapidly solidified Mg-Al-Zn-Nd (EA55RS) alloy. We shall first briefly review the process scale-up currently employed for producing rapidly solidified magnesium alloys in large quantities, and then discuss the effect of billet size and processing parameters on the mechanical properties of various mill product forms such as extrusions and sheets. The superplastic behavior of EA55RS extrusions and rolled sheets are also discussed. Finally, some results on magnesium metal-matrix composites using rapidly solidified EA55RS matrix powders and SiC particulates are presented. (orig.)

  16. National Certification Standard for Ground Source Heat Pump Personnel

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, John [Geothermal Heat Pump Consortium, Washington, DC (United States)


    The National Certification Standard for the Geothermal Heat Pump Industry adds to the understanding of the barriers to rapid growth of the geothermal heat pump (GHP) industry by bringing together for the first time an analysis of the roles and responsibilities of each of the individual job tasks involved in the design and installation of GHP systems. The standard addresses applicable qualifications for all primary personnel involved in the design, installation, commissioning, operation and maintenance of GHP systems, including their knowledge, skills and abilities. The resulting standard serves as a foundation for subsequent development of curriculum, training and certification programs, which are not included in the scope of this project, but are briefly addressed in the standard to describe ways in which the standard developed in this project may form a foundation to support further progress in accomplishing those other efforts. Follow-on efforts may use the standard developed in this project to improve the technical effectiveness and economic feasibility of curriculum development and training programs for GHP industry personnel, by providing a more complete and objective assessment of the individual job tasks necessary for successful implementation of GHP systems. When incorporated into future certification programs for GHP personnel, the standard will facilitate increased consumer confidence in GHP technology, reduce the potential for improperly installed GHP systems, and assure GHP system quality and performance, all of which benefit the public through improved energy efficiency and mitigated environmental impacts of the heating and cooling of homes and businesses.

  17. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin


    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  18. Heat Related Illnesses

    National Research Council Canada - National Science Library

    Carter, R; Cheuvront, S. N; Sawka, M. N


    .... The risk of serious heat illness can be markedly reduced by implementing a variety of countermeasures, including becoming acclimated to the heat, managing heat stress exposure, and maintaining hydration...

  19. Heat Roadmap Europe 1

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg


    Heat Roadmap Europe (Pre-study 1) investigates the role of district heating in the EU27 energy system by mapping local conditions across Europe, identifying the potential for district heating expansion, and subsequently simulating the potential resource in an hourly model of the EU27 energy system....... In 2010, approximately 12% of the space heating demand in Europe is met by district heating, but in this study four alternative scenarios are considered for the EU27 energy system: 1. 2010 with 30% district heating 2. 2010 with 50% district heating 3. 2030 with 30% district heating 4. 2050 with 50......% district heating These scenarios are investigated in two steps. Firstly, district heating replaces individual boilers by converting condensing power plants to combined heat and power plants (CHP) to illustrate how district heating improves the overall efficiency of the energy system. In the second step...

  20. Multidimensional Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten


    Analytical theory of multidimensional heat conduction. General heat conduction equation in three dimensions. Steay state, analytical solutions. The Laplace equation. Method of separation of variables. Principle of superposition. Shape factors. Transient, multidimensional heat conduction....

  1. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... sweating; nausea; and giddiness. Symptoms of heat stroke (late stage of heat illness) include flushed, hot, dry ... consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool the person further ...

  2. Absorption heat pump system (United States)

    Grossman, Gershon


    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  3. Rapid Solidification of AB{sub 5} Hydrogen Storage Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen-Dahl, Sverre


    This doctoral thesis is concerned with rapid solidification of AB{sub 5} materials suitable for electrochemical hydrogen storage. The primary objective of the work has been to characterise the microstructure and crystal structure of the produced AB{sub 5} materials as a function of the process parameters, e.g. the cooling rate during rapid solidification, the determination of which has been paid special attention to. The thesis is divided into 6 parts, of which Part I is a literature review, starting with a short presentation of energy storage alternatives. Then a general review of metal hydrides and their utilisation as energy carriers is presented. This part also includes more detailed descriptions of the crystal structure, the chemical composition and the hydrogen storage properties of AB{sub 5} materials. Furthermore, a description of the chill-block melt spinning process and the gas atomisation process is given. In Part II of the thesis a digital photo calorimetric technique has been developed and applied for obtaining in situ temperature measurements during chill-block melt spinning of a Mm(NiCoMnA1){sub 5} hydride forming alloy (Mm = Mischmetal of rare earths). Compared with conventional colour transmission temperature measurements, this technique offers a special advantage in terms of a high temperature resolutional and positional accuracy, which under the prevailing experimental conditions were found to be {+-}29 K and {+-} 0.1 mm, respectively. Moreover, it is shown that the cooling rate in solid state is approximately 2.5 times higher than that observed during solidification, indicating that the solid ribbon stayed in intimate contact with the wheel surface down to very low metal temperatures before the bond was broken. During this contact period the cooling regime shifted from near ideal in the melt puddle to near Newtonian towards the end, when the heat transfer from the solid ribbon to the wheel became the rate controlling step. In Part III of the

  4. Effect of heat treatment on the grooving corrosion resistance of ERW pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Kwon; Lee, Jae Young; Lim, Soo Hyun; Park, Ji Hwan; Seo, Bo Min; Kim, Seon Hwa [Soonchunhyang University, Asan (Korea, Republic of)


    The v-sharp grooving corrosion of ERW(electrical resistance welding) steel pipes limited their wide application in the industry in spite of their high productivity and efficiency. The grooving corrosion is caused mainly by the different microstructures between the matrix and weld that is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. Even though the diminishing of sulfur content is most effective to decrease the susceptibility of grooving corrosion, it requires costly process. In this study, improvement of grooving corrosion resistance was pursuited by post weld heat treatment in the temperature range between 650 .deg. C and 950 .deg. C. Also, the effect of heat input in the welding was investigated. By employing chromnoamperometry and potentiodynamic experiment, the corrosion rate and grooving corrosion index({alpha}) were obtained. It was found that heat treatment could improve the grooving corrosion resistance. Among them, the heat treated at 900 .deg. C and 950 .deg. C had excellent grooving corrosion resistance. The index of heat treated specimen at 900 .deg. C and 950 .deg. C were 1.0, 1.2, respectively, which are almost immune to the grooving corrosion. Potential difference after the heat treatment, between base and weld metal was decreased considerably. While the as-received one measured 61{approx}71 mV, that of the 900 .deg. C heat treated steel pipe measured only 10mV. The results were explained and discussed

  5. Regenerative adsorbent heat pump (United States)

    Jones, Jack A. (Inventor)


    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  6. Rapid shallow breathing (United States)

    ... the smallest air passages of the lungs in children ( bronchiolitis ) Pneumonia or other lung infection Transient tachypnea of the newborn Anxiety and panic Other serious lung disease Home Care Rapid, shallow breathing should not be treated at home. It is ...

  7. Rapid Strep Test (United States)

    ... worse than normal. Your first thoughts turn to strep throat. A rapid strep test in your doctor’s office ... your suspicions.Viruses cause most sore throats. However, strep throat is an infection caused by the Group A ...

  8. High specific heat superconducting composite (United States)

    Steyert, Jr., William A.


    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  9. RAPID3? Aptly named! (United States)

    Berthelot, J-M


    The RAPID3 score is the sum of three 0-10 patient self-report scores: pain, functional impairment on MDHAQ, and patient global estimate. It requires 5 seconds for scoring and can be used in all rheumatologic conditions, although it has mostly been used in rheumatoid arthritis where cutoffs for low disease activity (12/30) have been set. A RAPID3 score of ≤ 3/30 with 1 or 0 swollen joints (RAPID3 ≤ 3 + ≤ SJ1) provides remission criteria comparable to Boolean, SDAI, CDAI, and DAS28 remission criteria, in far less time than a formal joint count. RAPID3 performs as well as the DAS28 in separating active drugs from placebos in clinical trials. RAPID3 also predicts subsequent structural disease progression. RAPID3 can be determined at short intervals at home, allowing the determination of the area under the curve of disease activity between two visits and flare detection. However, RAPID3 should not be seen as a substitute for DAS28 and face to face visits in routine care. Monitoring patient status with only self-report information without a rheumatologist's advice (including joints and physical examination, and consideration of imaging and laboratory tests) may indeed be as undesirable for most patients than joint examination without a patient questionnaire. Conversely, combining the RAPID3 and the DAS28 may consist in faster or more sensitive confirmation that a medication is effective. Similarly, better enquiring of most important concerns of patients (pain, functional status and overall opinion on their disorder) should reinforces patients' confidence in their rheumatologist and treatments.

  10. Towards effective solid form screening. (United States)

    Allesø, Morten; Tian, Fang; Cornett, Claus; Rantanen, Jukka


    Solid form screening is commonly performed using solvent-based crystallizations. However, less attention is paid to the role of secondary manufacturing, during which process-induced transformations of the active pharmaceutical ingredient (API) may occur, and potentially a new solid form may be discovered. In this study a new approach for effective solid form screening is presented. The technology combines well-plate-based crystallizations with miniaturized processing equipment, mimicking essential unit operations. Process-induced stresses (heat, solvent, shear, pressure) can be introduced directly to the well-plate unit. Theophylline and nifedipine were used as model compounds. Small-scale wet massing of theophylline resulted in an anhydrate-to-monohydrate transformation, followed by dehydration upon drying at 60 degrees C. Amorphous nifedipine was subjected to small-scale milling and compaction. Kinetic profiling of the milling operation enabled the detection of an intermediate, metastable polymorph (beta form), while the stable polymorph (alpha form) was the predominant form after 20 min of milling. Compaction of amorphous nifedipine at 100 MPa resulted in a complete conversion into the stable polymorph. The reported expanded approach is expected to maximize the outcome of solid form screening with minimal consumption of the compound of interest.

  11. Heat pumps in district heating networks

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... are calculated using an energy system model which includes power plants, heat pumps and district heating consumption profiles. The model is developed with focus on accurate representation of the performance of the units in different locations and operating modes. The model can assist in investment decisions...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  12. Heat pipe nuclear reactor for space power (United States)

    Koening, D. R.


    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  13. Multi-leg heat pipe evaporator (United States)

    Alario, J. P.; Haslett, R. A.


    A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.

  14. General Purpose Heat Source Simulator (United States)

    Emrich, Bill


    The General Purpose Heat Source (GPHS) simulator project is designed to replicate through the use of electrical heaters, the form, fit, and function of actual GPHS modules which generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of spacecraft subsystems and systems without sacrificing the quantity and quality of the test data gathered. Previous GPHS activities are centered around developing robust heater designs with sizes and weights that closely matched those of actual Pu238 fueled GPHS blocks. These efforts were successful, although their maximum temperature capabilities were limited to around 850 C. New designs are being pursued which also replicate the sizes and weights of actual Pu238 fueled GPHS blocks but will allow operation up to 1100 C.

  15. High temperature active heat exchanger research for latent heat storage (United States)

    Alario, J.; Haslett, R.


    An active heat exchange method in a latent heat (salt) thermal energy storage system that prevents a low conductivity solid salt layer from forming on heat transfer surfaces was developed. An evaluation of suitable media with melting points in the temperature range of interest (250 to 400 C) limited the candidates to molten salts from the chloride, hydroxide and nitrate families, based on high storage capacity, good corrosion characteristics and availability in large quantities at reasonable cost. The specific salt recommended for laboratory tests was a choride eutectic (20.5KCL o 24.5NaCL o 55.MgCl2% by wt.), with a nominal melting point of 385 C. Various active heat exchange concepts were given a technical and economic comparison to a passive tube shell design for a reference application (300 MW sub t for 6 hours). Test hardware was then built for the most promising concept: a direct contact heat exchanger in which molten salt droplets are injected into a cooler counter flowing stream of liquid metal carrier fluid (lead/Bismuth).

  16. Nature's Heat Exchangers. (United States)

    Barnes, George


    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  17. Transient Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten


    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  18. Solar Heating Equipment (United States)


    Solar Unlimited, Inc.'s suncatcher line includes a variety of solar arrays, derived from NASA's satellite program: water heating only, partial home heating, or water and whole house central heating. Solar Unlimited developed a set of vigorous requirements to avoid problems common to solar heating technologies.

  19. Rotary magnetic heat pump (United States)

    Kirol, Lance D.


    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  20. Mounting improves heat-sink contact with beryllia washer (United States)


    To conduct heat away from electrical components that must be electrically insulated from a metal heat sink, a metal washer and a coil spring are placed between one end of the electrical component and the beryllia washer mounted on the heat sink. The thermal paths are formed by the component lead and base, the metal and beryllia washers, and the compressed spring.

  1. Microstructure of wood charcoal prepared by flash heating

    NARCIS (Netherlands)

    Kurosaki, F; Ishimaru, K; Hata, T; Bronsveld, P; Kobayashi, E; Imamura, Y


    Carbonized wood prepared by flash heating at 800 degreesC for I h shows a different microstructure and surface chemical structure than char formed after slow heating at 4 degreesC/min to 800 degreesC for I h. Flash heating produces pores that are surrounded by aggregates of carbon structures 25 to

  2. Physiological effects after exposure to heat : A brief literature review

    NARCIS (Netherlands)

    Bogerd, C.P.; Daanen, H.A.M.


    Many employees are exposed to heat stress during their work. Although the direct effects of heat are well reported, the long term physiological effects occurring after heat exposure are hardly described. The present manuscript addresses these issues in the form of a brief literature review. Repeated

  3. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Connolly, David; Lund, Henrik


    of supplying sustainable heating. Different heat production options are included in terms of individual and community heating systems. Furthermore, the levelised cost of supplying sustainable heat is estimated for both a single technology and from an energy system perspective. The results are analysed...... by assessing various parameters such as socio-economic costs and energy efficiency improvements in the national energy systems. The results demonstrate the economically feasible levels of heat savings and heat production for various European countries, highlighting differences in their national conditions......The cost of heat savings in buildings increase as more heat savings are achieved due to the state of the building stock and hence, alternatives other than savings typically become more economically feasible at a certain level of heat reductions. It is important to identify when the cost of heat...

  4. Heat Roadmap Europe 2

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    Many strategies have already been proposed for the decarbonisation of the EU energy system by the year 2050. These typically focus on the expansion of renewable energy in the electricity sector and subsequently, electrifying both the heat and transport sectors as much as possible...... are identified and then, the EU27 energy system is modelled to investigate the impact of district heating. The results indicate that a combination of heat savings, district heating in urban areas, and individual heat pumps in rural areas will enable the EU27 to reach its greenhouse gas emission targets by 2050....... In these strategies, the role of district heating has never been fully explored system, nor have the benefits of district heating been quantified at the EU level. This study combines the mapping of local heat demands and local heat supplies across the EU27. Using this local knowledge, new district heating potentials...

  5. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Lund, Henrik


    information systems (GIS) and energy system analyses. In this report, the inputs for other modelling tools such as PRIMES are presented, in order to enable other researches to generate similar heating scenarios for Europe. Although Heat Roadmap Europe presents a complete heat strategy for Europe, which...... includes energy efficiency, individual heating units (such as boilers and heat pumps), and heat networks, the recommendations here are primarily relating to the potential and modelling of district heating. Although other solutions will play a significant role in decarbonising the heating and cooling sector...... in a low-carbon energy system context, so we have focused on this area based on our extensive experience in this area [1-10]. This report includes guidelines on the potential heat demand in European buildings that can be met by district heating as well as some general guidelines on how this district...

  6. Fundamental Studies of Phase Transformations and Mechanical Properties in the Heat Affected Zone of 10 wt% Nickel Steel (United States)

    Barrick, Erin J.

    United States naval applications require the use of steels with high strength and resistance to fracture at low temperatures to provide good ballistic properties. In recent years, 10 wt% Ni steel has been developed with strength and toughness values exceeding those of steels currently used, and is now being considered as a candidate material to replace existing high-strength, low alloy steels. This steel has excellent toughness from the mechanically induced transformation of interlath austenite films to martensite. These austenite films are formed via a carefully developed quenching, lamellarizing, and tempering heat treatment. However, before 10 wt% Ni steel can be implemented for full-scale applications, the effects of the rapid heating and cooling rates associated with welding thermal cycles on phase transformations and mechanical properties must be understood. In this research, a fundamental understanding of phase transformations and mechanical properties in the heat-affected zone of fusion welds in 10 wt% Ni steel was developed through heating and cooling rate dilatometry experiments, gas tungsten arc welding, and simulation of gas metal arc welding. First, an investigation into the effects of heating and cooling rate on the phase transformations in 10 wt% Ni steel was performed. The Ac1 and Ac3 temperatures during heating were determined as a function of heating rate, and sluggish transformation during fast heating rates manifested itself as a high Ac3 temperature of 1050°C as opposed to a temperature of 850°C at slow heating rates. A continuous cooling transformation diagram produced for 10 wt% Ni steel reveals that martensite will form over a very wide range of cooling rates, which reflects a very high hardenability of this alloy. This is significant because the range of cooling rates for which the diagram was constructed over easily covers the range associated with fusion welding, so there would not be the need for precise control over the weld

  7. Ceramic heat exchanger (United States)

    LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.


    A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.

  8. Combined Heat and Power

    Energy Technology Data Exchange (ETDEWEB)



    At their 2007 Summit in Heiligendamm, G8 leaders called on countries to 'adopt instruments and measures to significantly increase the share of combined heat and power (CHP) in the generation of electricity.' As a result, energy, economic, environmental and utility regulators are looking for tools and information to understand the potential of CHP and to identify appropriate policies for their national circumstances. This report forms the first part of the response. It includes answers to policy makers' questions about the potential economic, energy and environmental benefits of an increased policy commitment to CHP. It also includes for the first time integrated IEA data on global CHP installations, and analyses the benefits of increased CHP investment in the G8+5 countries. A companion report will be produced later in 2008 to document best practice policy approaches that have been used to expand the use of CHP in a variety of countries.

  9. Overcoming heat shock protein inhibition at critical temperature vital ...

    African Journals Online (AJOL)



    Jun 12, 2012 ... Conclusion. The ability to rapidly escape heat mediated HSPs inhibition at the onset of severe heat-stress is crucial for survival in potato. This potential can serve as a selection criterion for breeding primal varieties and generating thermo tolerant genotypes adaptable to the estimated mean global warming ...

  10. Extraterrestrial Regolith Derived Atmospheric Entry Heat Shields (United States)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.


    High-mass planetary surface access is one of NASAs technical challenges involving entry, descent and landing (EDL). During the entry and descent phase, frictional interaction with the planetary atmosphere causes a heat build-up to occur on the spacecraft, which will rapidly destroy it if a heat shield is not used. However, the heat shield incurs a mass penalty because it must be launched from Earth with the spacecraft, thus consuming a lot of precious propellant. This NASA Innovative Advanced Concept (NIAC) project investigated an approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. In this paper, we will describe three types of in situ fabrication methods for heat shields and the testing performed to determine feasibility of this approach.

  11. Introduction to heat transfer

    CERN Document Server



    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  12. Adoption and use of household microgeneration heat technologies


    Caird, Sally; Roy, Robin


    The development and rapid household adoption of smallscale, low and zero carbon microgeneration technologies are key elements of UK and EU strategies to meet the challenge of climate change. Microgeneration heat technologies, including solar thermal hot water, heat pumps and biomass heating systems, have an especially important role in reducing the carbon emissions from buildings. But despite government policies to promote microgeneration, adoption by UK householders is very slow. Surveys by ...

  13. Heat cascading regenerative sorption heat pump (United States)

    Jones, Jack A. (Inventor)


    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  14. Preparation, Evaluation and Optimization of Rapidly Disintegrating ...

    African Journals Online (AJOL)

    The unit dose content uniformity, dissolution rate, assay values and other tablet characteristics evaluated were all within the acceptable limits. Thus, it was possible to formulate an RDT of artemether-lumefantrine FDC using CPVP as a disintegrant and camphor as a pore forming agent. Keywords: rapidly disintegrating tablet ...

  15. Convective Heat Transfer Analysis in Fluid Flow with Turbulence Promoters with Heat Pipes

    Directory of Open Access Journals (Sweden)

    Theodor Mateescu


    Full Text Available The present paper proposes the analysis and the simulation of the convection heat transfer into the fluid flow with turbulence promoters utilizing heat pipes. The study is based on the necesity of the unconventional energy forms capitalization, increasing of the energy efficiency and leads to the energy consumtion decrease in concordance with the sustainable development concept.

  16. Advanced line heating system applying FEM computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishiyama, M.; Tango, Y. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)


    Line heating is a key technique to form the curvature of steel hull plates in shipbuilding, and only experts can skillfully perform line heating. However, the accuracy of conventional line heating is not always well controlled. IHI has established an accurate database for the heating and forming relationship based on parametric experiments and FEM analyses on simple heating lines. It has been confirmed that distribution of inherent strains induced in a plate by flattening the objective curvature, which is defined based on elastic FEM simulation, can be assimilated using the database. This is used for heating process planning for the NC line heating machine with a high frequency induction heater, and facilitates automated thermal forming. (author)

  17. Development and Implementation of South Asia’s First Heat-Health Action Plan in Ahmedabad (Gujarat, India) (United States)

    Knowlton, Kim; Kulkarni, Suhas P.; Azhar, Gulrez Shah; Mavalankar, Dileep; Jaiswal, Anjali; Connolly, Meredith; Nori-Sarma, Amruta; Rajiva, Ajit; Dutta, Priya; Deol, Bhaskar; Sanchez, Lauren; Khosla, Radhika; Webster, Peter J.; Toma, Violeta E.; Sheffield, Perry; Hess, Jeremy J.


    Recurrent heat waves, already a concern in rapidly growing and urbanizing South Asia, will very likely worsen in a warming world. Coordinated adaptation efforts can reduce heat’s adverse health impacts, however. To address this concern in Ahmedabad (Gujarat, India), a coalition has been formed to develop an evidence-based heat preparedness plan and early warning system. This paper describes the group and initial steps in the plan’s development and implementation. Evidence accumulation included extensive literature review, analysis of local temperature and mortality data, surveys with heat-vulnerable populations, focus groups with health care professionals, and expert consultation. The findings and recommendations were encapsulated in policy briefs for key government agencies, health care professionals, outdoor workers, and slum communities, and synthesized in the heat preparedness plan. A 7-day probabilistic weather forecast was also developed and is used to trigger the plan in advance of dangerous heat waves. The pilot plan was implemented in 2013, and public outreach was done through training workshops, hoardings/billboards, pamphlets, and print advertisements. Evaluation activities and continuous improvement efforts are ongoing, along with plans to explore the program’s scalability to other Indian cities, as Ahmedabad is the first South Asian city to address heat-health threats comprehensively. PMID:24670386

  18. Development and Implementation of South Asia’s First Heat-Health Action Plan in Ahmedabad (Gujarat, India

    Directory of Open Access Journals (Sweden)

    Kim Knowlton


    Full Text Available Recurrent heat waves, already a concern in rapidly growing and urbanizing South Asia, will very likely worsen in a warming world. Coordinated adaptation efforts can reduce heat’s adverse health impacts, however. To address this concern in Ahmedabad (Gujarat, India, a coalition has been formed to develop an evidence-based heat preparedness plan and early warning system. This paper describes the group and initial steps in the plan’s development and implementation. Evidence accumulation included extensive literature review, analysis of local temperature and mortality data, surveys with heat-vulnerable populations, focus groups with health care professionals, and expert consultation. The findings and recommendations were encapsulated in policy briefs for key government agencies, health care professionals, outdoor workers, and slum communities, and synthesized in the heat preparedness plan. A 7-day probabilistic weather forecast was also developed and is used to trigger the plan in advance of dangerous heat waves. The pilot plan was implemented in 2013, and public outreach was done through training workshops, hoardings/billboards, pamphlets, and print advertisements. Evaluation activities and continuous improvement efforts are ongoing, along with plans to explore the program’s scalability to other Indian cities, as Ahmedabad is the first South Asian city to address heat-health threats comprehensively.

  19. Rapid Cycling and Its Treatment (United States)

    ... Announcements Public Service Announcements Partnering with DBSA Rapid Cycling and its Treatment What is bipolar disorder? Bipolar ... to Depression and Manic Depression . What is rapid cycling? Rapid cycling is defined as four or more ...

  20. Heat Transfer and Flow Structure Evaluation of a Synthetic Jet Emanating from a Planar Heat Sink (United States)

    Manning, Paul; Persoons, Tim; Murray, Darina


    Direct impinging synthetic jets are a proven method for heat transfer enhancement, and have been subject to extensive research. However, despite the vast amount of research into direct synthetic jet impingement, there has been little research investigating the effects of a synthetic jet emanating from a heated surface, this forms the basis of the current research investigation. Both single and multiple orifices are integrated into a planar heat sink forming a synthetic jet, thus allowing the heat transfer enhancement and flow structures to be assessed. The heat transfer analysis highlighted that the multiple orifice synthetic jet resulted in the greatest heat transfer enhancements. The flow structures responsible for these enhancements were identified using a combination of flow visualisation, thermal imaging and thermal boundary layer analysis. The flow structure analysis identified that the synthetic jets decreased the thermal boundary layer thickness resulting in a more effective convective heat transfer process. Flow visualisation revealed entrainment of local air adjacent to the heated surface; this occurred from vortex roll-up at the surface of the heat sink and from the highly sheared jet flow. Furthermore, a secondary entrainment was identified which created a surface impingement effect. It is proposed that all three flow features enhance the heat transfer characteristics of the system.



    Saxena Vaibhav; Khinchi Mahaveer Pr; Gupta M.K.; Agarwal Dilip; Sharma Natasha


    Orally disintegrating tablets (ODTs) have emerged as one of the popular and widely accepted dosage forms, especially for the paediatric and geriatric patients. In recent decades, a variety of pharmaceutical research has been conducted to develop new dosage forms. Among the dosage forms developed to facilitate ease of medication, the rapid disintegrating tablet (RDT) is one of the most widely employed commercial products.1 As our society is becoming increasingly aged, the development of Fast-...

  2. Preparation and property investigation of multi-walled carbon nanotube (MWCNT/epoxy composite films as high-performance electric heating (resistive heating element

    Directory of Open Access Journals (Sweden)

    F. X. Wang


    Full Text Available A series of multi-walled carbon nanotube (MWCNT/epoxy composite films with a thickness of ~700 µm is prepared by a sequential process of premixing, post dispersing, film casting, and thermal curing. The effects of the physical shear dispersion on the properties of conductive polymer composites as the electric heating element are investigated. The scanning electron microscope (SEM images show that highly efficient conductive networks form with shear dispersions of MWCNTs in the polymer matrix. The electrical resistivity decreases sharply from ~1015 Ω·cm for the neat epoxy resin to ~102 Ω·cm for the composite film with 2.0 wt% MWCNTs in accordance with the percolation behaviour, and a low percolation threshold of ~0.018 wt% is fitted. The electric heating behaviour of the composite film is observed at a low MWCNT content of 0.05 wt% due to the high electrical conductivity. For the composite film with 2.0 wt% MWCNTs, an equilibrium temperature of 115 °C is reached at an applied voltage of 40 V within 30 s. The excellent electric heating behaviour, including the rapid temperature response, electric heating efficiency, and operational stability, is primarily related to the conductive two-dimensional networks consisting of MWCNTs and the thermodynamically stable polymer matrix.

  3. Rapid manufacturing for microfluidics

    CSIR Research Space (South Africa)

    Land, K


    Full Text Available . Microfluidics is at the forefront of developing solutions for drug discovery, diagnostics (from glucose tests to malaria and TB testing) and environmental diagnostics (E-coli monitoring of drinking water). In order to quickly implement new designs, a rapid...

  4. Rapid Prototyping in PVS (United States)

    Munoz, Cesar A.; Butler, Ricky (Technical Monitor)


    PVSio is a conservative extension to the PVS prelude library that provides basic input/output capabilities to the PVS ground evaluator. It supports rapid prototyping in PVS by enhancing the specification language with built-in constructs for string manipulation, floating point arithmetic, and input/output operations.

  5. Rapid Prototyping Reconsidered (United States)

    Desrosier, James


    Continuing educators need additional strategies for developing new programming that can both reduce the time to market and lower the cost of development. Rapid prototyping, a time-compression technique adapted from the high technology industry, represents one such strategy that merits renewed evaluation. Although in higher education rapid…

  6. Reactive synthesis of Ti-Al intermetallics during microwave heating in an E-field maximum

    Energy Technology Data Exchange (ETDEWEB)

    Vaucher, S., E-mail: [Swiss Federal Laboratories for Materials Testing and Research - Empa, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Stir, M.; Ishizaki, K. [Swiss Federal Laboratories for Materials Testing and Research - Empa, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Catala-Civera, J.-M. [Universidad Politecnica de Valencia, Camino Vera s/n, E-46022 Valencia (Spain); Nicula, R. [Swiss Federal Laboratories for Materials Testing and Research - Empa, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland)


    The time-resolved X-ray diffraction synchrotron radiation technique was used in combination with E-field microwave heating to study in situ the kinetics of intermetallic phase formation in the Ti-Al system. The reaction of Ti with Al is triggered by the melting and spreading of Al onto the surface of Ti particles. The tetragonal TiAl{sub 3} phase is the primary reaction product, formed by instantaneous nucleation at the interface between the unreacted Ti cores and the Al melt. The growth of TiAl{sub 3} layers is diffusion-controlled. These preliminary results demonstrate that microwave heating can be used to rapidly synthesise intermetallic phases from high-purity elemental powders.

  7. Transformation of Oxide Inclusions in Type 304 Stainless Steels during Heat Treatment (United States)

    Ren, Ying; Zhang, Lifeng; Pistorius, P. Chris


    Heat treatment of Type 304 stainless steel in the range of 1273 K (1000 °C) to 1473 K (1200 °C) can transform manganese silicate inclusions to manganese chromite (spinel) inclusions. During heat treatment, Cr reacts with manganese silicate to form spinel. The transformation rate of inclusions depends strongly on both temperature [in the range of 1273 K to 1473 K (1000 °C to 1200 °C)] and inclusion size. A kinetic model, developed using FactSage macros, showed that these effects agree quantitatively with diffusion-controlled transformation. A simplified analytical model, which can be used for rapid calculations, predicts similar transformation kinetics, in agreement with the experimental observations.

  8. Multi-scale structure, pasting and digestibility of heat moisture treated red adzuki bean starch. (United States)

    Wang, Hongwei; Wang, Zhaoyuan; Li, Xiaoxi; Chen, Ling; Zhang, Binjia


    The pasting and digestibility of a red adzuki bean starch were simultaneously modulated by heat-moisture treatment (HMT) through altering the multi-scale structure. HMT, especially at high moisture content, could disrupt the granule integrity, semicrystalline lamellae, molecular order (crystallites) and molecular chains. Also, certain rearrangement of starch molecules occurred to form ordered structures with increased thermal stability as shown by DSC. This concomitant disordering and reassembly in the multi-scale structure converted the fractions of resistant starch (RS) and rapidly digestible starch (RDS) into that of slowly digestible starch (SDS). Furthermore, the emergence of thermally-stable orders increased the pasting temperature but suppressed the swelling of granules during heating. Hence, HMT-modified red adzuki starch may serve as a potential thickener/gelling agent with slow digestion rate for various foods. Copyright © 2017. Published by Elsevier B.V.

  9. Dynamic optical absorption characteristics of blood after slow and fast heating. (United States)

    Jia, Hao; Chen, Bin; Li, Dong


    Laser treatment is the most effective therapy in dermatology for vascular skin disorders, such as port-wine stains (PWS). Changes in heat-induced absorbance in blood must be determined for accurate numerical simulation and implementation of multi-pulse laser therapy for treatment of PWS. Thermally induced absorbance changes in hemoglobin in blood were compared in vitro between slow water bath heating and fast heating irradiated by using sub-millisecond Nd:YAG laser. Blood composition at different temperatures was calculated by comparing blood absorption spectra with those of pure HbO2, Hb, and metHb at room temperature. Blood absorbance to heat energy were categorized into three stages distinguished by metHb and coagulation points, which are the validity and security thresholds of the optimized therapy, respectively. Rapid laser heating can distinctively enhance blood absorbance by photochemically induced strong instability compared with slow heating at a constant temperature. Slow heating facilitates metHb point at 70 °C and coagulation point at 75 °C as the temperature of the water bath increases. However, the temperature at which metHb or coagulation point shifts to higher than 10 °C when pulses and fluence in laser irradiation change. Laser fluence less than 20 J/cm(2) and more than 50 J/cm(2) is unsuitable for laser treatment because of its low probability to coagulate vascular hyperplasia and high probability to damage normal tissues adjacent to target lesions, respectively. Few bubbles formed after mediate fluence is beneficial to minimize adverse side-effects. Considering blood absorbance, temperature evolution, and bubble formation, we recommend 30-40 J/cm(2) and 2-4 Hz frequency as the optimal laser parameters in sub-millisecond Nd:YAG laser.

  10. Interface dynamics and banding in rapid solidification

    Energy Technology Data Exchange (ETDEWEB)

    Karma, A.; Sarkissian, A. (Physics Department, Northeastern University, Boston, Massachusetts 02115 (United States))


    Rapid-solidification experiments on metallic alloys in the last decade have provided widespread observations of a novel banded structure.'' We report the results of numerical and analytical studies of the interface dynamics underlying the formation of this structure in a model of directional solidification which includes both solute and heat diffusion and nonequilibrium effects. The thrust of these studies is on the unsteady dynamics of the planar interface and thermal effects. The main conclusion is that the origin of banding can be related to relaxation oscillations of the solidification front, characterized by large variations of the interface velocity, which are dramatically affected by latent-heat diffusion. Without the latter, the oscillations are found to be reasonably well approximated by the phenomenological model of Carrard [ital et] [ital al]. [Acta Metall. 40, 983 (1992)], and the band spacing is inversely proportional to the temperature gradient. In contrast, with latent-heat diffusion the band spacing is insensitive to the temperature gradient, but is controlled instead by the interplay of solute and heat diffusion. The smallness of the solutal diffusivity to thermal diffusivity ratio is exploited to explain analytically this effect and to derive considerably simpler equations of interface motion that provide an efficient numerical means to study the nonplanar interface dynamics expected to cause dark bands. A reasonable agreement with experiment is found for the spacing of banded structures dominated by light-band microsegregation-free regions in Al-Fe alloys.

  11. On good ETOL forms

    DEFF Research Database (Denmark)

    Skyum, Sven


    This paper continues the study of ETOL forms and good EOL forms done by Maurer, Salomaa and Wood. It is proven that binary very complete ETOL forms exist, good synchronized ETOL forms exist and that no propagating or synchronized ETOL form can be very complete.......This paper continues the study of ETOL forms and good EOL forms done by Maurer, Salomaa and Wood. It is proven that binary very complete ETOL forms exist, good synchronized ETOL forms exist and that no propagating or synchronized ETOL form can be very complete....

  12. Activated-Carbon Sorbent With Integral Heat-Transfer Device (United States)

    Jones, Jack A.; Yavrouian, Andre


    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  13. Basic heat transfer

    CERN Document Server

    Bacon, D H


    Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc

  14. Ideal Heat Exchange System (United States)

    Tsirlin, A. M.


    The requirements with which a heat exchange system should comply in order that at certain values of the total contact surface and heat load the entropy production in it should be minimal have been determined. It has been shown that this system can serve as a standard for real systems of irreversible heat exchange. We have found the conditions for physical realizability of a heat exchange system in which heat exchange occurs by a law linear with respect to the temperature difference between contacting flows. Analogous conditions are given without deriving for the case of heat exchange by the Fourier law.

  15. Microscale Regenerative Heat Exchanger (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred


    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  16. Effects of Lewis number on coupled heat and mass transfer in a circular tube subjected to external convective heating (United States)

    Jiao, Anjun; Zhang, Yuwen; Ma, Hongbin; Critser, John


    Heat and mass transfer in a circular tube subject to the boundary condition of the third kind is investigated. The closed form of temperature and concentration distributions, the local Nusselt number based on the total external heat transfer and convective heat transfer inside the tube, as well as the Sherwood number were obtained. The effects of Lewis number and Biot number on heat and mass transfer were investigated. PMID:20862211

  17. Optimal Hierarchical Decision-Making for Heat Source Selection of District Heating Systems

    Directory of Open Access Journals (Sweden)

    Fang Fang


    Full Text Available With the rapid development of China’s urbanization, the proportion between the heating consumption and the energy consumption of the whole society keeps rising in recent years. For a district heating system, the selection of the heat source makes significant impact on the energy efficiency and the pollutant emissions. By integrating the methods of the Analytic Hierarchy Process (AHP and the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE, a multiple-attribute decision-making scheme for the heat source selection of district heating systems is proposed in this paper. As a core part of this scheme, a comprehensive benefit index with hierarchical parallel structure is constructed. The economic benefit, environment benefit, and technical benefit can be reflected with a certain percentage in the comprehensive benefit index. To test the efficiency of the proposed scheme, a case study for a large-scale district heating system in Beijing is carried out, where five kinds of heat sources (water source heat pump, ground source heat pump, gas-fired boiler, coal-fired boiler, and oil-fired boiler are taken into account. The analysis and instructions for the final sorting result are also demonstrated.

  18. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods (United States)

    Kou, Xiao-Xi; Li, Rui; Hou, Li-Xia; Huang, Zhi; Ling, Bo; Wang, Shao-Jin


    Knowledge of bacteria’s heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria’s heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample’s thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS’s performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria’s thermo-tolerances.

  19. Thermal performance of solar district heating plants in Denmark

    DEFF Research Database (Denmark)

    Furbo, Simon; Perers, Bengt; Bava, Federico


    The market for solar heating plants connected to district heating systems is expanding rapidly in Denmark. It is expected that by the end of 2014 the 10 largest solar heating plants in Europe will be located in Denmark. Measurements from 23 Danish solar heating plants, all based on flat plate solar...... collectors mounted on the ground, shows measured yearly thermal performances of the solar heating plants placed in the interval from 313 kWh/m² collector to 493 kWh/m² collector with averages for all plants of 411 kWh/m² collector for 2012 and 450 kWh/m² collector for 2013. Theoretical calculations show...... of the cost/performance ratio for solar collector fields, both with flat plate collectors and with concentrating tracking solar collectors. It is recommended to continue monitoring and analysis of all large solar heating plants to document the reliability of the solar heating plants. It is also recommended...

  20. Rapid manufacturing facilitated customisation


    Tuck, Christopher John; Hague, Richard; Ruffo, Massimiliano; Ransley, Michelle; Adams, Paul Russell


    Abstract This paper describes the production of body-fitting customised seat profiles utilising the following digital methods: three dimensional laser scanning, reverse engineering and Rapid Manufacturing (RM). The seat profiles have been manufactured in order to influence the comfort characteristics of an existing ejector seat manufactured by Martin Baker Aircraft Ltd. The seat, known as Navy Aircrew Common Ejection Seat (NACES), was originally designed with a generic profile. ...

  1. Rapid Detection of Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    David Perlin


    Pathogen identification is a crucial first defense against bioterrorism. A major emphasis of our national biodefense strategy is to establish fast, accurate and sensitive assays for diagnosis of infectious diseases agents. Such assays will ensure early and appropriate treatment of infected patients. Rapid diagnostics can also support infection control measures, which monitor and limit the spread of infectious diseases agents. Many select agents are highly transmissible in the early stages of disease, and it is critical to identify infected patients and limit the risk to the remainder of the population and to stem potential panic in the general population. Nucleic acid-based molecular approaches for identification overcome many of the deficiencies associated with conventional culture methods by exploiting both large- and small-scale genomic differences between organisms. PCR-based amplification of highly conserved ribosomal RNA (rRNA) genes, intergenic sequences, and specific toxin genes is currently the most reliable approach for bacterial, fungal and many viral pathogenic agents. When combined with fluorescence-based oligonucleotide detection systems, this approach provides real-time, quantitative, high fidelity analysis capable of single nucleotide allelic discrimination (4). These probe systems offer rapid turn around time (<2 h) and are suitable for high throughput, automated multiplex operations that are critical for clinical diagnostic laboratories. In this pilot program, we have used molecular beacon technology invented at the Public health Research Institute to develop a new generation of molecular probes to rapidly detect important agents of infectious diseases. We have also developed protocols to rapidly extract nucleic acids from a variety of clinical specimen including and blood and tissue to for detection in the molecular assays. This work represented a cooperative research development program between the Kramer-Tyagi/Perlin labs on probe development

  2. Rapid Airplane Parametric Input Design(RAPID) (United States)

    Smith, Robert E.; Bloor, Malcolm I. G.; Wilson, Michael J.; Thomas, Almuttil M.


    An efficient methodology is presented for defining a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. A small set of design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tail, horizontal tail, and canard components. The wing, tail, and canard components are manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. Grid sensitivity is obtained by applying the automatic differentiation precompiler ADIFOR to software for the grid generation. The computed surface grids, volume grids, and sensitivity derivatives are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations.

  3. Rapid response oxygen-sensing nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Ruipeng [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 (United States); Behera, Prajna; Viapiano, Mariano S. [Department of Neurosurgery, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Lannutti, John J., E-mail: [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 (United States)


    Molecular oxygen has profound effects on cell and tissue viability. Relevant sensor forms that can rapidly determine dissolved oxygen levels under biologically relevant conditions provide critical metabolic information. Using 0.5 μm diameter electrospun polycaprolactone (PCL) fiber containing an oxygen-sensitive probe, tris (4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride, we observed a response time of 0.9 ± 0.12 s while the t{sub 95} for the corresponding film was more than two orders of magnitude greater. Interestingly, the response and recovery times of slightly larger diameter PCL fibers were 1.79 ± 0.23 s and 2.29 ± 0.13 s, respectively, while the recovery time was not statistically different likely due to the more limited interactions of nitrogen with the polymer matrix. A more than 10-fold increase in PCL fiber diameter reduces oxygen sensitivity while having minor effects on response time; conversely, decreases in fiber diameter to less than 0.5 μm would likely decrease response times even further. In addition, a 50 °C heat treatment of the electrospun fiber resulted in both increased Stern–Volmer slope and linearity likely due to secondary recrystallization that further homogenized the probe microenvironment. At exposure times up to 3600 s in length, photobleaching was observed but was largely eliminated by the use of either polyethersulfone (PES) or a PES–PCL core–shell composition. However, this resulted in 2- and 3-fold slower response times. Finally, even the non-core shell compositions containing the Ru oxygen probe result in no apparent cytotoxicity in representative glioblastoma cell populations. Highlights: • Nanofiber-based structures can self-report localized oxygen concentrations. • Ideal for tissue engineering as they allow close interaction of cells. • Nanofiber-incorporated oxygen-sensitive probes provide a perfectly linear response. • Photobleaching is largely eliminated by the use of PES–PCL core

  4. Tiber Personal Rapid Transit

    Directory of Open Access Journals (Sweden)

    Diego Carlo D'agostino


    Full Text Available The project “Tiber Personal Rapid Transit” have been presented by the author at the Rome City Vision Competition1 2010, an ideas competition, which challenges architects, engineers, designers, students and creatives individuals to develop visionary urban proposals with the intention of stimulating and supporting the contemporary city, in this case Rome. The Tiber PRT proposal tries to answer the competition questions with the definition of a provocative idea: a Personal Rapid transit System on the Tiber river banks. The project is located in the central section of the Tiber river and aims at the renewal of the river banks with the insertion of a Personal Rapid Transit infrastructure. The project area include the riverbank of Tiber from Rome Transtevere RFI station to Piazza del Popolo, an area where main touristic and leisure attractions are located. The intervention area is actually no used by the city users and residents and constitute itself a strong barrier in the heart of the historic city.

  5. Experimental setup for rapid crystallization using favoured chemical ...

    Indian Academy of Sciences (India)


    tors (3005 type), the output of which drives the d.c. motor. M3. The solution of ... to motor M1 prevents rapid temperature fluctuations and hence ensures very good temperature control. The thermostatic bath is heated with an infrared lamp I at the base of the unit and ... through chains of hydrogen bonds and these polymers.

  6. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Be Prepared Safe Citizen Day Organize Important Medical Information ER Checklists Preparing for Emergencies Be ready to ... anyone can be affected. Here you will find information about heat cramps and heat stroke and exhaustion. ...

  7. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    David, Andrei; Mathiesen, Brian Vad; Averfalk, Helge


    The Heat Roadmap Europe (HRE) studies estimated a potential increase of the district heating (DH) share to 50% of the entire heat demand by 2050, with approximately 25–30% of it being supplied using large-scale electric heat pumps. This study builds on this potential and aims to document...... that such developments can begin now with technologies currently available. We present a database and the status of the technology and its ability of expansion to other European locations by reviewing experiences aimed at further research or application in the heating industry. This is based on a survey of the existing...... capacity of electric large-scale heat pumps with more than 1 MW thermal output, operating in European DH systems. The survey is the first database of its kind containing the technical characteristics of these heat pumps, and provides the basis for the analysis of this paper. By quantifying the heat sources...

  8. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa


    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  9. Heat resistant microorganism

    NARCIS (Netherlands)

    Berendsen, Erwin M.; Bennik, Maria H.J.; Kuipers, Oscar


    The invention relates to a kit and methods and means for the determination of the presence of heat resistant organisms. The invention further relates to the provision organisms wherein the heat resistance is modulated.

  10. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the legs and stomach area. ... Z Teeth (Dental Emergencies) Sprains and Strains Head Injury Resources Home Safety Checklist ACEP Coloring Book Download ...

  11. Brayton-cycle heat exchanger technology program (United States)

    Killackey, J. J.; Coombs, M. G.; Graves, R. F.; Morse, C. J.


    The following five tasks designed to advance this development of heat exchanger systems for close loop Brayton cycle power systems are presented: (1) heat transfer and pressure drop data for a finned tubular heat transfer matrix. The tubes are arranged in a triangular array with copper stainless steel laminate strips helically wound on the tubes to form a disk fin geometry; (2) the development of a modularized waste heat exchanger. Means to provide verified double containment are described; (3) the design, fabrication, and test of compact plate fin heat exchangers representative of full scale Brayton cycle recuperators; (4) the analysis and design of bellows suitable for operation at 1600 F and 200 psia for 1,000 cycles and 50,000 hours creep life; and (5) screening tests used to select a low cost braze alloy with the desirable attributes of a gold base alloy. A total of 22 different alloys were investigated; the final selection was Nicrobraz 30.

  12. Magnetically Multiplexed Heating of Single Domain Nanoparticles

    CERN Document Server

    Christiansen, Michael G; Anikeeva, Polina


    Selective hysteretic heating of multiple collocated sets of single domain magnetic nanoparticles (SDMNPs) by alternating magnetic fields (AMFs) may offer a useful tool for biomedical applications. The possibility of magnetothermal multiplexing has not yet been realized, in part due to prevalent use of linear response theory to model SDMNP heating in AMFs. Predictive successes of dynamic hysteresis (DH), a more generalized model for heat dissipation by SDMNPs, are observed experimentally with detailed calorimetry measurements performed at varied AMF amplitudes and frequencies. The DH model suggests that specific driving conditions play an underappreciated role in determining optimal material selection strategies for high heat dissipation. Motivated by this observation, magnetothermal multiplexing is theoretically predicted and empirically demonstrated for the first time by selecting SDMNPs with properties that suggest optimal hysteretic heat dissipation at dissimilar AMF driving conditions. This form of multip...

  13. Heat transfer with freezing in a scraped surface heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lakhdar, M.B. [LGL France Refrigerating Division, Genas (France); Cerecero, R.; Alvarez, G.; Guilpart, J. [Cemagref, Antony cedex (France). Food Process Engineering; Flick, D. [Institut National Agronomique, Paris (France); Lallemand, A. [Institut National des Sciences Appliquees de Lyon (France). Centre de Thermique


    An experimental study was carried out on a scraped surface heat exchanger used for freezing of water-ethanol mixture and aqueous sucrose solution. The influence of various parameters on heat transfer intensity was established: product type and composition, flow rate, blade rotation speed, distance between blades and wall. During starting (transient period) the solution is first supercooled, then ice crystals appear on the scraped surface (heterogeneous nucleation) and no more supercooling is observed. It seems that, when blades are 3 mm far from the surface, a constant ice layer is formed having this thickness and acting as a thermal resistance. But when the blades rotate at 1 mm from the surface, periodically all the ice layer is removed despite the surface is not really scraped. This could simplify ice generator technology. An internal heat transfer coefficient was defined; it depends mainly on rotation speed. Correlations were proposed for its prediction, which could be applied, at least as a first approach, for the most common freezing applications of scraped surface heat exchanger i.e. ice creams (which are derived from sucrose solutions) and two-phase secondary refrigerants (which are principally ethanol solutions). (author)

  14. Modular Forms and Weierstrass Mock Modular Forms

    Directory of Open Access Journals (Sweden)

    Amanda Clemm


    Full Text Available Alfes, Griffin, Ono, and Rolen have shown that the harmonic Maass forms arising from Weierstrass ζ-functions associated to modular elliptic curves “encode” the vanishing and nonvanishing for central values and derivatives of twisted Hasse-Weil L-functions for elliptic curves. Previously, Martin and Ono proved that there are exactly five weight 2 newforms with complex multiplication that are eta-quotients. In this paper, we construct a canonical harmonic Maass form for these five curves with complex multiplication. The holomorphic part of this harmonic Maass form arises from the Weierstrass ζ-function and is referred to as the Weierstrass mock modular form. We prove that the Weierstrass mock modular form for these five curves is itself an eta-quotient or a twist of one. Using this construction, we also obtain p-adic formulas for the corresponding weight 2 newform using Atkin’s U-operator.

  15. Isolated quantum heat engine. (United States)

    Fialko, O; Hallwood, D W


    We present a theoretical and numerical analysis of a quantum system that is capable of functioning as a heat engine. This system could be realized experimentally using cold bosonic atoms confined to a double well potential that is created by splitting a harmonic trap with a focused laser. The system shows thermalization, and can model a reversible heat engine cycle. This is the first demonstration of the operation of a heat engine with a finite quantum heat bath.

  16. Isolated quantum heat engine


    Fialko, O.; Hallwood, D.


    We present a theoretical and numerical analysis of a quantum system that is capable of functioning as a heat engine. This system could be realized experimentally using cold bosonic atoms confined to a double well potential that is created by splitting a harmonic trap with a focused laser. The system shows thermalization, and can model a reversible heat engine cycle. This is the first demonstration of the operation of a heat engine with a finite quantum heat bath.

  17. A scoping review of rapid review methods. (United States)

    Tricco, Andrea C; Antony, Jesmin; Zarin, Wasifa; Strifler, Lisa; Ghassemi, Marco; Ivory, John; Perrier, Laure; Hutton, Brian; Moher, David; Straus, Sharon E


    Rapid reviews are a form of knowledge synthesis in which components of the systematic review process are simplified or omitted to produce information in a timely manner. Although numerous centers are conducting rapid reviews internationally, few studies have examined the methodological characteristics of rapid reviews. We aimed to examine articles, books, and reports that evaluated, compared, used or described rapid reviews or methods through a scoping review. MEDLINE, EMBASE, the Cochrane Library, internet websites of rapid review producers, and reference lists were searched to identify articles for inclusion. Two reviewers independently screened literature search results and abstracted data from included studies. Descriptive analysis was conducted. We included 100 articles plus one companion report that were published between 1997 and 2013. The studies were categorized as 84 application papers, seven development papers, six impact papers, and four comparison papers (one was included in two categories). The rapid reviews were conducted between 1 and 12 months, predominantly in Europe (58 %) and North America (20 %). The included studies failed to report 6 % to 73 % of the specific systematic review steps examined. Fifty unique rapid review methods were identified; 16 methods occurred more than once. Streamlined methods that were used in the 82 rapid reviews included limiting the literature search to published literature (24 %) or one database (2 %), limiting inclusion criteria by date (68 %) or language (49 %), having one person screen and another verify or screen excluded studies (6 %), having one person abstract data and another verify (23 %), not conducting risk of bias/quality appraisal (7 %) or having only one reviewer conduct the quality appraisal (7 %), and presenting results as a narrative summary (78 %). Four case studies were identified that compared the results of rapid reviews to systematic reviews. Three studies found that the conclusions between

  18. Nanoparticle enhanced ionic liquid heat transfer fluids (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.


    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  19. Heat-Related Illnesses (United States)

    ... this! Home » Emergency 101 Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at Mercy Health System in Chesterfield, Missouri Heat-related illness can be caused by overexposure to the sun or any situation that involves extreme heat. Young children and the elderly are most at risk, ...

  20. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... this! Home » Emergency 101 Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at Mercy Health System in Chesterfield, Missouri Heat-related illness can be caused by overexposure to the sun or any situation that involves extreme heat. Young children and the elderly are most at risk, ...

  1. Heat roadmap China

    DEFF Research Database (Denmark)

    Xiong, Weiming; Wang, Yu; Mathiesen, Brian Vad


    District heating is regarded as a key element of energy saving actions in the Chinese national energy strategy, while space heating in China is currently still dominated by coal boilers. However, there is no existing quantitative study to analyse the future heat strategy for China. Therefore...

  2. Microwave processing heats up (United States)

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  3. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.


    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta...

  4. Champagne Heat Pump (United States)

    Jones, Jack A.


    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  5. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano


    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order...

  6. Effect of dry-heating with pectin on gelatinization properties of sweet ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of dry-heating with pectin at different dry heating temperatures, heating times and pH on the gelatinization properties of sweet potato starch. Methods: The gelatinization properties of sweet potato starch - pectin blend were analyzed using a rapid viscosity analyzer (RVA), differential scanning ...

  7. Analysis of in vivo binding of yeast heat shock factor to promoter DNA

    African Journals Online (AJOL)



    Apr 17, 2008 ... stresses, eukaryotic cells rapidly activate a preexisting heat shock factor (HSF) with its high-affinity binding to heat shock promoter domains called heat shock element. (HSE) to regulate expression of stress-inducible genes, therefore playing a central role in the control of many cellular processes (Morimoto ...

  8. Effect of heating method on NOx decomposition on H3PW12O40•6H2O

    Directory of Open Access Journals (Sweden)

    R. Wang


    Full Text Available The thermal decomposition of nitrogen oxides (NOx on phosphotungstic acid (H3PW12O40·6H2O or HPW by two different heating methods is compared. Infra-red (IR and X-ray diffraction (XRD measurements are conducted to investigate the decomposition mechanism. Both heating methods, i.e. heating from 30 °C to 450 °C at a rate of 150 °C/min (“rapid heating” and heating at a constant temperature of 450 °C (“constant-temperature heating” lead to an actual, considerably high heating rate. Compared with rapid heating, however, constant-temperature heating results in enhanced N2 conversion (21.8%. Furthermore, the catalyst can be reused after decomposition at constant-temperature heating, while its performance quickly degrades after decomposition via rapid heating.

  9. Heat pipes for industrial waste heat recovery (United States)

    Merrigan, M. A.


    Development work on the high temperature ceramic recuperator at Los Alamos National Laboratory is described and involved material investigations, fabrication methods development, compatibility tests, heat pipe operation, and the modeling of application conditions based on current industrial usage. Solid ceramic heat pipes, ceramic coated refractory pipes, and high-temperature oxide protected metallic pipes are investigated. Economic studies of the use of heat pipe based recuperators in industrial furnaces are conducted and payback periods determined as a function of material, fabrication, and installation cost.

  10. Geothermal heat in a heat pump use (United States)

    Pavlova, A.; Hansen, J.; Obermeyer, H.; Pavlova, I.


    The considered innovative technology proposes to use alternative energy sources for the process efficiency in low-height construction. The world economy depends on price rises for energy sources and the danger of environmental pollution increases. Geothermal energy is the basic resource saving and environmentally safe renewable heat source that is characterized by inexhaustibility, permanent all the-year-round use, universal prevalence of resources and the ability to replace considerable volumes of traditional energy carriers. The expediency and power efficiency to apply a heat pump with the use of geothermal heat is proved for low-height construction.

  11. Carbon-Fiber Brush Heat Exchangers (United States)

    Knowles, Timothy R.


    Velvetlike and brushlike pads of carbon fibers have been proposed for use as mechanically compliant, highly thermally conductive interfaces for transferring heat. A pad of this type would be formed by attaching short carbon fibers to either or both of two objects that one desires to place in thermal contact with each other. The purpose of using a thermal-contact pad of this or any other type is to reduce the thermal resistance of an interface between a heat source and a heat sink.

  12. Geothermal heating a handbook of engineering economics

    CERN Document Server

    Harrison, R; Smarason, O B


    To date all books on geothermics have emphasized its use for generating electricity, with applications of lower grade resources for direct heating meriting only a brief chapter. This book brings together research from a range of scientific journals and 'grey' literature to produce the first comprehensive text on geothermal heating. Economics form an important part of the book. It provides a step by step analysis of the various ways in which thermal waters can be used to provide space heating and of the advantages and disadvantages of different approaches. The final section of the book provides

  13. Indoor unit for electric heat pump (United States)

    Draper, Robert; Lackey, Robert S.; Fagan, Jr., Thomas J.; Veyo, Stephen E.; Humphrey, Joseph R.


    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.

  14. Intelligent urban heating

    Energy Technology Data Exchange (ETDEWEB)

    Dyrelund, A.


    In smart cities District heating is a precondition for large scale and cost effective integration of CHP and renewable energy for heating in urban areas. In particular, district heating systems combined with CHP, heat pumps, electric boilers and large thermal storages is important for efficient integration of fluctuating wind energy. In order to develop an intelligent and cost effective urban heating system it is important to integrate and optimize the total urban heating energy system including building envelope, heating installations, district heating networks, heat storages and renewable energy sources. Two examples: 1) the variable long term production cost is a basic parameter for the optimal building envelope. 2) efficient low temperature heating installations increases the efficiency of the district heating distribution network and all the low temperature heat sources. Besides, in districts with a cooling load, it is important to include the district cooling in the optimized energy system, both for production and end-use. In EU countries, the Renewable energy directive encourage all local authorities to plan for urban heating and cooling in order to provide the buildings with renewable energy for heating hot tap water and cooling via this infrastructure, whenever it is cost effective compared to individual solutions. Ramboll has in association with Aalborg University prepared an updated study of Heat Plan Denmark in 2010. The study demonstrates how the Danish Heating sector has reduced the fossil fuel consumption to 40% from 1980 to 2010 and how the sector can be independent of fossil fuels before 2030 in a cost effective way. The study concludes that it is necessary to optimize investments both at the supply and the demand side. It is estimated that an optimal combination could be 25 % additional heat demand reduction, further reduction of the return temperature in the building installations, expansion of district heating from 50 to 65 %, local heating up

  15. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)


    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  16. Heat Management Strategy Trade Study

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg; Steve Priebe; Dirk Gombert; Ted Bauer


    This Heat Management Trade Study was performed in 2008-2009 to expand on prior studies in continued efforts to analyze and evaluate options for cost-effectively managing SNF reprocessing wastes. The primary objective was to develop a simplified cost/benefit evaluation for spent nuclear fuel (SNF) reprocessing that combines the characteristics of the waste generated through reprocessing with the impacts of the waste on heating the repository. Under consideration were age of the SNF prior to reprocessing, plutonium and minor actinide (MA) separation from the spent fuel for recycle, fuel value of the recycled Pu and MA, age of the remaining spent fuel waste prior to emplacement in the repository, length of time that active ventilation is employed in the repository, and elemental concentration and heat limits for acceptable glass waste form durability. A secondary objective was to identify and qualitatively analyze remaining issues such as (a) impacts of aging SNF prior to reprocessing on the fuel value of the recovered fissile materials, and (b) impact of reprocessing on the dose risk as developed in the Yucca Mountain Total System Performance Assessment (TSPA). Results of this study can be used to evaluate different options for managing decay heat in waste streams from spent nuclear fuel.

  17. An introduction to heat transfer principles and calculations

    CERN Document Server

    Ede, A J; Ower, E


    An Introduction to Heat Transfer Principles and Calculations is an introductory text to the principles and calculations of heat transfer. The theory underlying heat transfer is described, and the principal results and formulae are presented. Available techniques for obtaining rapid, approximate solutions to complicated problems are also considered. This book is comprised of 12 chapters and begins with a brief account of some of the concepts, methods, nomenclature, and other relevant information about heat transfer. The reader is then introduced to radiation, conduction, convection, and boiling

  18. Heat pumps; Synergy of high efficiency and low carbon electricity

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Akio


    Heat pump is attracting wide attention for its high efficiency to utilize inexhaustible and renewable ambient heat in the environment. With its rapid innovation and efficiency improvement, this technology has a huge potential to reduce CO2 emissions by replacing currently widespread fossil fuel combustion systems to meet various heat demands from the residential, commercial and industrial sectors. Barriers to deployment such as low public awareness and a relatively long pay-back period do exist, so it is strongly recommended that each country implement policies to promote heat pumps as a renewable energy option and an effective method to combat global warming.

  19. Biophoton emission induced by heat shock.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Kobayashi

    Full Text Available Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock.

  20. Properties and rapid sintering of a nanostructured tetragonal zirconia composites (United States)

    Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae


    4YSZ is generally used as oxygen sensors, fuel cells, thermal barrier and hip and knee joint replacements as a result of these excellent properties with its high biocompatibility, low density, good resistance against corrosion, high ionic conductivity, hard phase and melting point. However, 4YTZ with coarse grain has low resistance to wear and abrasion because of low hardness and low fracture toughness at room temperature. The fracture toughness and hardness of a 4YTZ can be improved by forming nanostructured composites and addition of a second hard phase. In this study, nanostuctured 4YTZ-graphene composites with nearly full density were achieved using high-frequency induction heated sintering for one min at a pressure of 80 MPa. The rapid consolidation and addition of graphene to 4YTZ retained the nano-scale structure of the ceramic by inhibiting grain growth. The grain size of 4YTZ was reduced remarkably by the addition of graphene and the addition of graphene to 4YTZ greatly improved the fracture toughness without decrease of hardness.