WorldWideScience

Sample records for rapidly growing dark

  1. Rapidly Growing Thyroid Mass in an Immunocompromised Young Male Adult

    Directory of Open Access Journals (Sweden)

    Mónica Santiago

    2013-01-01

    Full Text Available We describe a 20-year-old man diagnosed with a myelodysplastic syndrome (MDS, admitted to our hospital due to pancytopenia and fever of undetermined origin after myelosuppression with chemotherapy. Disseminated aspergillosis (DIA was suspected when he developed skin and lung involvement. A rapidly growing mass was detected on the left neck area, during hospitalization. A thyroid ultrasound reported a 3.7×2.5×2.9 cm oval heterogeneous structure, suggestive of an abscess versus a hematoma. Fine needle aspiration of the thyroid revealed invasion of aspergillosis. Fungal thyroiditis is a rare occurrence. Thyroid fungal infection is difficult to diagnose; for this reason it is rarely diagnosed antemortem. To our knowledge, this is the 10th case reported in the literature in an adult where the diagnosis of fungal invasion to the thyroid was able to be corroborated antemortem by fine needle aspiration biopsy.

  2. In vitro activity of flomoxef against rapidly growing mycobacteria.

    Science.gov (United States)

    Tsai, Moan-Shane; Tang, Ya-Fen; Eng, Hock-Liew

    2008-06-01

    The aim of this study was to determine the in vitro sensitivity of rapidly growing mycobacteria (RGM) to flomoxef in respiratory secretions collected from 61 consecutive inpatients and outpatients at Chang Gung Memorial Hospital-Kaohsiung medical center between July and December, 2005. Minimal inhibitory concentrations (MIC) of flomoxef were determined by the broth dilution method for the 61 clinical isolates of RGMs. The MICs of flomoxef at which 90% of clinical isolates were inhibited was >128 microg/mL in 26 isolates of Mycobacterium abscessus and 4 microg/mL in 31 isolates of M. fortuitum. Three out of 4 clinical M. peregrinum isolates were inhibited by flomoxef at concentrations of 4 microg/mL or less. Although the numbers of the clinical isolates of RGMs were small, these preliminary in vitro results demonstrate the potential activity of flomoxef in the management of infections due to M. fortuitum, and probably M. peregrinum in humans.

  3. Rapidly growing mycobacteria in Singapore, 2006-2011.

    Science.gov (United States)

    Tang, S S; Lye, D C; Jureen, R; Sng, L-H; Hsu, L Y

    2015-03-01

    Nontuberculous mycobacteria infection is a growing global concern, but data from Asia are limited. This study aimed to describe the distribution and antibiotic susceptibility profiles of rapidly growing mycobacterium (RGM) isolates in Singapore. Clinical RGM isolates with antibiotic susceptibility tests performed between 2006 and 2011 were identified using microbiology laboratory databases and minimum inhibitory concentrations of amikacin, cefoxitin, clarithromycin, ciprofloxacin, doxycycline, imipenem, linezolid, moxifloxacin, sulfamethoxazole or trimethoprim-sulfamethoxazole, tigecycline and tobramycin were recorded. Regression analysis was performed to detect changes in antibiotic susceptibility patterns over time. A total of 427 isolates were included. Of these, 277 (65%) were from respiratory specimens, 42 (10%) were related to skin and soft tissue infections and 36 (8%) were recovered from blood specimens. The two most common species identified were Mycobacterium abscessus (73%) and Mycobacterium fortuitum group (22%), with amikacin and clarithromycin being most active against the former, and quinolones and trimethoprim-sulfamethoxazole against the latter. Decreases in susceptibility of M. abscessus to linezolid by 8.8% per year (p 0.001), M. fortuitum group to imipenem by 9.5% per year (p 0.023) and clarithromycin by 4.7% per year (p 0.033) were observed. M. abscessus in respiratory specimens is the most common RGM identified in Singapore. Antibiotic options for treatment of RGM infections are increasingly limited. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. Rapidly Growing Esophageal Carcinosarcoma Reduced by Neoadjuvant Radiotherapy Alone

    Directory of Open Access Journals (Sweden)

    Naotaka Ogasawara

    2014-06-01

    Full Text Available Esophageal carcinosarcoma is a rare malignant neoplasm consisting of both carcinomatous and sarcomatous components. It is generally treated by surgery, radiotherapy and chemotherapy according to the protocols used for other esophageal cancers. However, the treatment of esophageal carcinosarcoma by radiotherapy alone before surgery has not been previously described. We report a patient with a rapidly growing esophageal carcinosarcoma that was efficiently reduced by neoadjuvant radiotherapy alone. A previously healthy 69-year-old man was admitted with dysphagia. Initial esophagogastroduodenoscopy (EGD revealed a small nodular polypoid lesion of about 10 mm in the middle esophagus. A second EGD 1 month later showed that the tumor had expanded into a huge mass. A biopsy specimen revealed that the tumor comprised squamous cell carcinoma with spindle cell components, and the tumor was diagnosed as carcinosarcoma which was diagnosed as stage I (T1bN0M0. Due to renal dysfunction, the patient was treated with neoadjuvant radiotherapy (40 Gy without chemotherapy. A third EGD 1 month later revealed remarkable tumor reduction. He then underwent total esophagectomy with regional lymph node dissection (pStage 0, pT1aN0M0. After surgical operation, the patient was followed up without adjuvant therapy. Whole body computed tomography revealed lung metastasis 14 months after surgery, and the patient died 2 months later. The neoadjuvant radiotherapy for esophageal carcinosarcoma was considered to have contributed to the subsequent surgery and his prolonged survival time. Thus, radiotherapy alone might be a suitable neoadjuvant therapy for esophageal carcinosarcomas.

  5. Rapidly Evolving Transients in the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Pursiainen, M.; et al.

    2018-03-13

    We present the results of a search for rapidly evolving transients in the Dark Energy Survey Supernova Programme. These events are characterized by fast light curve evolution (rise to peak in $\\lesssim 10$ d and exponential decline in $\\lesssim30$ d after peak). We discovered 72 events, including 37 transients with a spectroscopic redshift from host galaxy spectral features. The 37 events increase the total number of rapid optical transients by more than factor of two. They are found at a wide range of redshifts ($0.05M_\\mathrm{g}>-22.25$). The multiband photometry is well fit by a blackbody up to few weeks after peak. The events appear to be hot ($T\\approx10000-30000$ K) and large ($R\\approx 10^{14}-2\\cdot10^{15}$ cm) at peak, and generally expand and cool in time, though some events show evidence for a receding photosphere with roughly constant temperature. Spectra taken around peak are dominated by a blue featureless continuum consistent with hot, optically thick ejecta. We compare our events with a previously suggested physical scenario involving shock breakout in an optically thick wind surrounding a core-collapse supernova (CCSNe), we conclude that current models for such a scenario might need an additional power source to describe the exponential decline. We find these transients tend to favor star-forming host galaxies, which could be consistent with a core-collapse origin. However, more detailed modeling of the light curves is necessary to determine their physical origin.

  6. E-cigarettes: a rapidly growing Internet phenomenon.

    Science.gov (United States)

    Yamin, Cyrus K; Bitton, Asaf; Bates, David W

    2010-11-02

    Electronic cigarettes (e-cigarettes) aerosolize nicotine and produce a vapor that emulates that of cigarettes but purportedly has fewer traditional toxins than secondhand smoke. Although e-cigarettes are widely sold online and by retailers, new research suggests that they may contain unexpected toxins and may provide unreliable nicotine delivery. Many countries have already banned or strictly regulated e-cigarettes. Currently in the United States, e-cigarettes are exempt from regulation as drug-delivery devices. Meanwhile, the presence of e-cigarettes on the Internet, including in Web searches, virtual user communities, and online stores where people sell e-cigarettes on commission, is increasing rapidly. Physicians should be aware of the popularity, questionable efficacy claims, and safety concerns of e-cigarettes so that they may counsel patients against use and advocate for research to inform an evidence-based regulatory approach.

  7. Rapidly growing ovarian endometrioid adenocarcinoma involving the vagina: A case report

    Directory of Open Access Journals (Sweden)

    Sunghun Na

    2011-12-01

    Conclusion: Epithelial ovarian cancer may grow very rapidly. The frequent measurement of tumor size by ultrasonography may provide important information on detection in a subset of ovarian carcinomas that develop from preexisting, detectable lesions.

  8. Structural analysis of biofilm formation by rapidly and slowly growing nontuberculous mycobacteria

    Science.gov (United States)

    Mycobacterium avium complex (MAC) and rapidly growing mycobacteria (RGM) such as M. abscessus, M. mucogenicum, M. chelonae and M. fortuitum, implicated in healthcare-associated infections, are often isolated from potable water supplies as part of the microbial flora. To understa...

  9. Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors.

    Directory of Open Access Journals (Sweden)

    Eleonora Sforza

    Full Text Available Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently.

  10. Effects of dark brooders and overhangs on free-range use and behaviour of slow-growing broilers.

    Science.gov (United States)

    Stadig, L M; Rodenburg, T B; Reubens, B; Ampe, B; Tuyttens, F A M

    2017-12-04

    , these results could not confirm the hypothesis that dark brooders would decrease fearfulness and thereby increase free-range use. Overhangs also did not improve free-range use, and neither brooders nor overhangs had considerable impact on behaviour of chickens outside. Chickens clearly preferred dense natural vegetation over AS and ranged farther in it, indicating that this type of shelter is more suitable for slow-growing free-range broilers.

  11. Response of needle dark respiration of Pinus koraiensis and Pinus sylvestriformis to elevated CO2 concentrations for four growing seasons' exposure

    Institute of Scientific and Technical Information of China (English)

    ZHOU YuMei; HAN ShiJie; ZHANG HaiSen; XIN LiHua; ZHENG JunQiang

    2007-01-01

    The long-term effect of elevated CO2 concentrations on needle dark respiration of two coniferous species-Pinus koraiensis and Pinus sylvestriformis on the Changbai Mountain was investigated using open-top chambers. P. Koraiensis and P. Sylvestriformis were exposed to 700,500μmol·mol-1 CO2 and ambient CO2(approx.350 μmol·mol-1)for four growing seasons. Needle dark respiration was measurd during the second, third and fourth growing seasons' exposure to elevated CO2.The results showed that needle dark respiration rate increased for P. Koraiensis and P. Sylvestriformis grown at elevated CO2 concentrations during the second growing season, could be attributed to the change of carbohydrate and/or nitrogen content of needles. Needle dark respiration of P. Koraiensis was stimulated and that of P. Sylvestriformis was inhibited by elevated CO2 concentrations during the third growing season. Different response of the two tree species to elevated CO2 mainly resulted from the difference in the growth rate. Elevated CO2 concentrations inhibited needle dark respiration of both P. Koraiensis and P. Sylvestriformis during the fourth growing season. There was consistent trend between the short-term effect and the long-term effect of elevated CO2 on needle dark respiration in P. Sylvestriformis during the third growing season by changing measurement CO2 concentrations. However, the short-term effect was different from the long-term effect for P. Koraiensis. Response of dark respiration of P. Koraiensis and P. Sylvestriformis to elevated CO2 concentrations was related to the treatment time of CO2 and the stage of growth and development of plant. The change of dark respiration for the two tree species was determined by the direct effect of CO2 and long-term acclimation. The prediction of the long-term response of needle dark respiration to elevated CO2 concentration based on the short-term response is in dispute.

  12. Clinical and Taxonomic Status of Pathogenic Nonpigmented or Late-Pigmenting Rapidly Growing Mycobacteria

    OpenAIRE

    Brown-Elliott, Barbara A.; Wallace, Richard J.

    2002-01-01

    The history, taxonomy, geographic distribution, clinical disease, and therapy of the pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria (RGM) are reviewed. Community-acquired disease and health care-associated disease are highlighted for each species. The latter grouping includes health care-associated outbreaks and pseudo-outbreaks as well as sporadic disease cases. Treatment recommendations for each species and type of disease are also described. Special emphasis is on ...

  13. Nosocomial rapidly growing mycobacterial infections following laparoscopic surgery: CT imaging findings.

    Science.gov (United States)

    Volpato, Richard; de Castro, Claudio Campi; Hadad, David Jamil; da Silva Souza Ribeiro, Flavya; Filho, Ezequiel Leal; Marcal, Leonardo P

    2015-09-01

    To identify the distribution and frequency of computed tomography (CT) findings in patients with nosocomial rapidly growing mycobacterial (RGM) infection after laparoscopic surgery. A descriptive retrospective study in patients with RGM infection after laparoscopic surgery who underwent CT imaging prior to initiation of therapy. The images were analyzed by two radiologists in consensus, who evaluated the skin/subcutaneous tissues, the abdominal wall, and intraperitoneal region separately. The patterns of involvement were tabulated as: densification, collections, nodules (≥1.0 cm), small nodules (<1.0 cm), pseudocavitated nodules, and small pseudocavitated nodules. Twenty-six patients met the established criteria. The subcutaneous findings were: densification (88.5%), small nodules (61.5%), small pseudocavitated nodules (23.1 %), nodules (38.5%), pseudocavitated nodules (15.4%), and collections (26.9%). The findings in the abdominal wall were: densification (61.5%), pseudocavitated nodules (3.8%), and collections (15.4%). The intraperitoneal findings were: densification (46.1%), small nodules (42.3%), nodules (15.4%), and collections (11.5%). Subcutaneous CT findings in descending order of frequency were: densification, small nodules, nodules, small pseudocavitated nodules, pseudocavitated nodules, and collections. The musculo-fascial plane CT findings were: densification, collections, and pseudocavitated nodules. The intraperitoneal CT findings were: densification, small nodules, nodules, and collections. • Rapidly growing mycobacterial infection may occur following laparoscopy. • Post-laparoscopy mycobacterial infection CT findings are densification, collection, and nodules. • Rapidly growing mycobacterial infection following laparoscopy may involve the peritoneal cavity. • Post-laparoscopy rapidly growing mycobacterial intraperitoneal infection is not associated with ascites or lymphadenopathy.

  14. Mycobacterium grossiae sp. nov., a rapidly growing, scotochromogenic species isolated from human clinical respiratory and blood culture specimens.

    Science.gov (United States)

    Paniz-Mondolfi, Alberto Enrique; Greninger, Alexander L; Ladutko, Lynn; Brown-Elliott, Barbara A; Vasireddy, Ravikiran; Jakubiec, Wesley; Vasireddy, Sruthi; Wallace, Richard J; Simmon, Keith E; Dunn, Bruce E; Jackoway, Gary; Vora, Surabhi B; Quinn, Kevin K; Qin, Xuan; Campbell, Sheldon

    2017-11-01

    A previously undescribed, rapidly growing, scotochromogenic species of the genus Mycobacterium (represented by strains PB739 T and GK) was isolated from two clinical sources - the sputum of a 76-year-old patient with severe chronic obstructive pulmonary disease, history of tuberculosis exposure and Mycobacterium avium complex isolated years prior; and the blood of a 15-year-old male with B-cell acute lymphoblastic leukaemia status post bone marrow transplant. The isolates grew as dark orange colonies at 25-37 °C after 5 days, sharing features in common with other closely related species. Analysis of the complete 16S rRNA gene sequence (1492 bp) of strain PB739 T demonstrated that the isolate shared 98.8 % relatedness with Mycobacterium wolinskyi. Partial 429 bp hsp65 and 744 bp rpoB region V sequence analyses revealed that the sequences of the novel isolate shared 94.8 and 92.1 % similarity with those of Mycobacterium neoaurum and Mycobacterium aurum, respectively. Biochemical profiling, antimicrobial susceptibility testing, HPLC/gas-liquid chromatography analyses and multilocus sequence typing support the taxonomic status of these isolates (PB739 T and GK) as representatives of a novel species. Both isolates were susceptible to the Clinical and Laboratory Standards Institute recommended antimicrobials for susceptibility testing of rapidly growing mycobacteria including amikacin, ciprofloxacin, moxifloxacin, doxycycline/minocycline, imipenem, linezolid, clarithromycin and trimethropin/sulfamethoxazole. Both isolates PB739 T and GK showed intermediate susceptibility to cefoxitin. We propose the name Mycobacterium grossiae sp. nov. for this novel species and have deposited the type strain in the DSMZ and CIP culture collections. The type strain is PB739 T (=DSM 104744 T =CIP 111318 T ).

  15. Rapidly Growing Chondroid Syringoma of the External Auditory Canal: Report of a Rare Case

    Science.gov (United States)

    Vasileiadis, Ioannis; Kapetanakis, Stylianos; Petousis, Aristotelis; Karakostas, Euthimios; Simantirakis, Christos

    2011-01-01

    Introduction. Chondroid syrinoma of the external auditory canal is an extremely rare benign neoplasm representing the cutaneous counterpart of pleomorphic adenoma of salivary glands. Less than 35 cases have been reported in the international literature. Case Presentation. We report a case of a 34-year-old male in whom a rapidly growing, well-circumscribed tumor arising from the external auditory canal was presented. Otoscopy revealed a smooth, nontender lesion covered by normal skin that almost obstructs the external auditory meatus. MRI was performed to define the extension of the lesion. It confirmed the presence of a 1.5 × 0.8 cm T2 high-signal intensity lesion in the superior and posterior wall of EAC without signs of bone erosion. The patient underwent complete resection of the tumor. The diagnosis was confirmed by histopathologic examination. Conclusion. Although chondroid syringoma is extremely rare, it should always be considered in the differential diagnosis of an aural polyp. Chondroid syringomas are usually asymptomatic, slow-growing, single benign tumors in subcutaneous or intradermal location. In our case, the new information is that this benign tumor could present also as a rapidly growing lesion, arising the suspicion for malignancy. PMID:21941560

  16. Rapidly Growing Chondroid Syringoma of the External Auditory Canal: Report of a Rare Case

    Directory of Open Access Journals (Sweden)

    Ioannis Vasileiadis

    2011-01-01

    Full Text Available Introduction. Chondroid syrinoma of the external auditory canal is an extremely rare benign neoplasm representing the cutaneous counterpart of pleomorphic adenoma of salivary glands. Less than 35 cases have been reported in the international literature. Case Presentation. We report a case of a 34-year-old male in whom a rapidly growing, well-circumscribed tumor arising from the external auditory canal was presented. Otoscopy revealed a smooth, nontender lesion covered by normal skin that almost obstructs the external auditory meatus. MRI was performed to define the extension of the lesion. It confirmed the presence of a 1.5×0.8 cm T2 high-signal intensity lesion in the superior and posterior wall of EAC without signs of bone erosion. The patient underwent complete resection of the tumor. The diagnosis was confirmed by histopathologic examination. Conclusion. Although chondroid syringoma is extremely rare, it should always be considered in the differential diagnosis of an aural polyp. Chondroid syringomas are usually asymptomatic, slow-growing, single benign tumors in subcutaneous or intradermal location. In our case, the new information is that this benign tumor could present also as a rapidly growing lesion, arising the suspicion for malignancy.

  17. Mycobacterium aquiterrae sp. nov., a rapidly growing bacterium isolated from groundwater.

    Science.gov (United States)

    Lee, Jae-Chan; Whang, Kyung-Sook

    2017-10-01

    A strain representing a rapidly growing, Gram-stain-positive, aerobic, rod-shaped, non-motile, non-sporulating and non-pigmented species of the genus Mycobacterium, designated strain S-I-6 T , was isolated from groundwater at Daejeon in Korea. The strain grew at temperatures between 10 and 37 °C (optimal growth at 25 °C), between pH 4.0 and 9.0 (optimal growth at pH 7.0) and at salinities of 0-5 % (w/v) NaCl, growing optimally with 2 % (w/v) NaCl. Phylogenetic analyses based on multilocus sequence analysis of the 16S rRNAgene, hsp65, rpoB and the 16S-23S internal transcribed spacer indicated that strain S-I-6 T belonged to the rapidly growing mycobacteria, being most closely related to Mycobacterium sphagni. On the basis of polyphasic taxonomic analysis, the bacterial strain was distinguished from its phylogenetic neighbours by chemotaxonomic properties and other biochemical characteristics. DNA-DNA relatedness among strain S-I-6 T and the closest phylogenetic neighbour strongly support the proposal that this strain represents a novel species within the genus Mycobacterium, for which the name Mycobacterium aquiterrae sp. nov. is proposed. The type strain is S-I-6 T (=KACC 17600 T =NBRC 109805 T =NCAIM B 02535 T ).

  18. Antimicrobial susceptibility testing of rapidly growing mycobacteria by microdilution - Experience of a tertiary care centre

    Directory of Open Access Journals (Sweden)

    Set R

    2010-01-01

    Full Text Available Purpose: The objective of the study was to perform antimicrobial susceptibility testing of rapidly growing mycobacteria (RGM isolated from various clinically suspected cases of extrapulmonary tuberculosis, from January 2007 to April 2008, at a tertiary care centre in Mumbai. Materials and Methods: The specimens were processed for microscopy and culture using the standard procedures. Minimum inhibitory concentrations (MIC were determined by broth microdilution, using Sensititre CA MHBT. Susceptibility testing was also carried out on Mueller Hinton agar by the Kirby Bauer disc diffusion method. Results: Of the 1062 specimens received for mycobacterial cultures, 104 (9.79% grew mycobacteria. Of the mycobacterial isolates, six (5.76% were rapid growers. M. abscessus and M. chelonae appeared to be resistant organisms, with M. chelonae showing intermediate resistance to amikacin and minocycline. However, all the six isolates showed sensitivity to vancomycin and gentamicin by the disc diffusion test. Also all three isolates of M. abscessus were sensitive to piperacillin and erythromycin. Further studies are required to test their sensitivity to these four antimicrobials by using the microbroth dilution test, before they can be prescribed to patients. Conclusions: We wish to emphasize that reporting of rapidly growing mycobacteria from clinical settings, along with their sensitivity patterns, is an absolute need of the hour.

  19. The impact of entrepreneurial capital and rapidly growing firms: the Canadian example

    DEFF Research Database (Denmark)

    Keen, Christian; Etemad, Hamid

    2011-01-01

    . It provides empirical evidence from small, young, high-growth enterprises that entrepreneurial capital contributes significantly to their growth through such augmentation. As emerging industries and regions face similar challenges as those of high and rapidly-growing smaller enterprises in increasingly more......World-class competitiveness is no longer an option for firms seeking growth and survival in the increasingly competitive, dynamic and interconnected world. This paper expands on the concept of entrepreneurial capital and formalizes it as a catalyst that augments other productive factors...

  20. Rapidly- growing firms and their main characteristics: a longitudinal study from United States

    DEFF Research Database (Denmark)

    Keen, Christian; Etemad, Hamid

    2011-01-01

    concerning the theoretical relations between high-growth and location, size and temporal characteristics of the high-growth enterprises. Using non parametric tests, we analyze a 21-year longitudinal database of privately held rapidly growing enterprises from the USA. This analysis indicates that these firms...... are relatively smaller enterprises and their high growth rates are not restricted to a particular location, industrial region, size or time period. The findings of this analysis point to a population of high-growth enterprises with diverse locations, sizes and times with important implications for scholarly...

  1. Clinical management of rapidly growing mycobacterial cutaneous infections in patients after mesotherapy.

    Science.gov (United States)

    Regnier, Stéphanie; Cambau, Emmanuelle; Meningaud, Jean-Paul; Guihot, Amelie; Deforges, Lionel; Carbonne, Anne; Bricaire, François; Caumes, Eric

    2009-11-01

    Increasing numbers of patients are expressing an interest in mesotherapy as a method of reducing body fat. Cutaneous infections due to rapidly growing mycobacteria are a common complication of such procedures. We followed up patients who had developed cutaneous infections after undergoing mesotherapy during the period October 2006-January 2007. Sixteen patients were infected after mesotherapy injections performed by the same physician. All patients presented with painful, erythematous, draining subcutaneous nodules at the injection sites. All patients were treated with surgical drainage. Microbiological examination was performed on specimens that were obtained before and during the surgical procedure. Direct examination of skin smears demonstrated acid-fast bacilli in 25% of the specimens that were obtained before the procedure and 37% of the specimens obtained during the procedure; culture results were positive in 75% of the patients. Mycobacterium chelonae was identified in 11 patients, and Mycobacterium frederiksbergense was identified in 2 patients. Fourteen patients were treated with antibiotics, 6 received triple therapy as first-line treatment (tigecycline, tobramycin, and clarithromycin), and 8 received dual therapy (clarithromycin and ciprofloxacin). The mean duration of treatment was 14 weeks (range, 1-24 weeks). All of the patients except 1 were fully recovered 2 years after the onset of infection, with the mean time to healing estimated at 6.2 months (range, 1-15 months). This series of rapidly growing mycobacterial cutaneous infections highlights the difficulties in treating such infections and suggests that in vitro susceptibility to antibiotics does not accurately predict their clinical efficacy.

  2. Rapidly growing ovarian endometrioid adenocarcinoma involving the vagina: a case report.

    Science.gov (United States)

    Na, Sunghun; Hwang, Jongyun; Lee, Hyangah; Lee, Jiyeon; Lee, Dongheon

    2011-12-01

    We present a rare case of a very rapidly growing stage IV ovarian endometrioid adenocarcinoma involving the uterine cervix and vagina without lymph node involvement. A 43-year-old woman visited the hospital with complaints of lower abdominal discomfort and vaginal bleeding over the previous 3 months. Serum levels of tumor marker CA 125 and SCC antigen (TA-4) were normal. On magnetic resonance imaging, a 7.9×9.7cm heterogeneous mass with intermediate signal intensity was observed in the posterior low body of the uterus. Two months ago, a computed tomography scan revealed an approximate 4.5×3.0cm heterogeneously enhanced subserosal mass with internal ill-defined hypodensities. A laparotomy, including a total abdominal hysterectomy with resection of the upper vagina, bilateral salpingo-oophorectomy, pelvic and para-aortic lymph node dissection, appendectomy, total omentectomy, and biopsy of rectal serosa was performed. A histological examination revealed poorly differentiated endometrioid ovarian adenocarcinoma with vaginal involvement. The patient had an uncomplicated post-operative course. After discharge, she completed six cycles of adjuvant chemotherapy with paclitaxel (175mg/m(2)) and carboplatin (300mg/m(2)) and has remained clinically disease-free until June 2010. Epithelial ovarian cancer may grow very rapidly. The frequent measurement of tumor size by ultrasonography may provide important information on detection in a subset of ovarian carcinomas that develop from preexisting, detectable lesions. Copyright © 2011. Published by Elsevier B.V.

  3. Surgical site infections due to rapidly growing mycobacteria in puducherry, India.

    Science.gov (United States)

    Kannaiyan, Kavitha; Ragunathan, Latha; Sakthivel, Sulochana; Sasidar, A R; Muralidaran; Venkatachalam, G K

    2015-03-01

    Rapidly growing Mycobacteria are increasingly recognized, nowadays as an important pathogen that can cause wide range of clinical syndromes in humans. We herein describe unrelated cases of surgical site infection caused by Rapidly growing Mycobacteria (RGM), seen during a period of 12 months. Nineteen patients underwent operations by different surgical teams located in diverse sections of Tamil Nadu, Pondicherry, Karnataka, India. All patients presented with painful, draining subcutaneous nodules at the infection sites. Purulent material specimens were sent to the microbiology laboratory. Gram stain and Ziehl-Neelsen staining methods were used for direct examination. Culture media included blood agar, chocolate agar, MacConkey agar, Sabourauds agar and Lowenstein-Jensen medium for Mycobacteria. Isolated microorganisms were identified and further tested for antimicrobial susceptibility by standard microbiologic procedures. Mycobacterium fortuitum and M.chelonae were isolated from the purulent drainage obtained from wounds by routine microbiological techniques from all the specimens. All isolates analyzed for antimicrobial susceptibility pattern were sensitive to clarithromycin, linezolid and amikacin but were variable to ciprofloxacin, rifampicin and tobramycin. Our case series highlights that a high level of clinical suspicion should be maintained for patients presenting with protracted soft tissue lesions with a history of trauma or surgery as these infections not only cause physical but also emotional distress that affects both the patients and the surgeon.

  4. Response of needle dark respiration of Pinus koraiensis and Pinus sylvestriformis to elevated CO2 concentra-tions for four growing seasons’ exposure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The long-term effect of elevated CO2 concentrations on needle dark respiration of two coniferous spe- cies—Pinus koraiensis and Pinus sylvestriformis on the Changbai Mountain was investigated using open-top chambers. P. koraiensis and P. sylvestriformis were exposed to 700, 500 μmol·mol-1 CO2 and ambient CO2 (approx. 350 μmol·mol-1) for four growing seasons. Needle dark respiration was meas- ured during the second, third and fourth growing seasons’ exposure to elevated CO2. The results showed that needle dark respiration rate increased for P. koraiensis and P. sylvestriformis grown at elevated CO2 concentrations during the second growing season, could be attributed to the change of carbohydrate and/or nitrogen content of needles. Needle dark respiration of P. koraiensis was stimu- lated and that of P. sylvestriformis was inhibited by elevated CO2 concentrations during the third growing season. Different response of the two tree species to elevated CO2 mainly resulted from the difference in the growth rate. Elevated CO2 concentrations inhibited needle dark respiration of both P. koraiensis and P. sylvestriformis during the fourth growing season. There was consistent trend be- tween the short-term effect and the long-term effect of elevated CO2 on needle dark respiration in P. sylvestriformis during the third growing season by changing measurement CO2 concentrations. How- ever, the short-term effect was different from the long-term effect for P. koraiensis. Response of dark respiration of P. koraiensis and P. sylvestriformis to elevated CO2 concentrations was related to the treatment time of CO2 and the stage of growth and development of plant. The change of dark respiration for the two tree species was determined by the direct effect of CO2 and long-term acclimation. The prediction of the long-term response of needle dark respiration to elevated CO2 concentration based on the short-term response is in dispute.

  5. Deep Rapid Optical Follow-Up of Gravitational Wave Sources with the Dark Energy Camera

    Science.gov (United States)

    Cowperthwaite, Philip

    2018-01-01

    The detection of an electromagnetic counterpart associated with a gravitational wave detection by the Advanced LIGO and VIRGO interferometers is one of the great observational challenges of our time. The large localization regions and potentially faint counterparts require the use of wide-field, large aperture telescopes. As a result, the Dark Energy Camera, a 3.3 sq deg CCD imager on the 4-m Blanco telescope at CTIO in Chile is the most powerful instrument for this task in the Southern Hemisphere. I will report on the results from our joint program between the community and members of the dark energy survey to conduct rapid and efficient follow-up of gravitational wave sources. This includes systematic searches for optical counterparts, as well as developing an understanding of contaminating sources on timescales not normally probed by traditional untargeted supernova surveys. I will additionally comment on the immense science gains to be made by a joint detection and discuss future prospects from the standpoint of both next generation wide-field telescopes and next generation gravitational wave detectors.

  6. Rapid urbanization and the growing threat of violence and conflict: a 21st century crisis.

    Science.gov (United States)

    Patel, Ronak B; Burkle, Frederick M

    2012-04-01

    As the global population is concentrated into complex environments, rapid urbanization increases the threat of conflict and insecurity. Many fast-growing cities create conditions of significant disparities in standards of living, which set up a natural environment for conflict over resources. As urban slums become a haven for criminal elements, youth gangs, and the arms trade, they also create insecurity for much of the population. Specific populations, such as women, migrants, and refugees, bear the brunt of this lack of security, with significant impacts on their livelihoods, health, and access to basic services. This lack of security and violence also has great costs to the general population, both economic and social. Cities have increasingly become the battlefield of recent conflicts as they serve as the seats of power and gateways to resources. International agencies, non-governmental organizations, and policy-makers must act to stem this tide of growing urban insecurity. Protecting urban populations and preventing future conflict will require better urban planning, investment in livelihood programs for youth, cooperation with local communities, enhanced policing, and strengthening the capacity of judicial systems.

  7. Aquaculture: a rapidly growing and significant source of sustainable food? Status, transitions and potential.

    Science.gov (United States)

    Little, D C; Newton, R W; Beveridge, M C M

    2016-08-01

    The status and potential of aquaculture is considered as part of a broader food landscape of wild aquatic and terrestrial food sources. The rationale and resource base required for the development of aquaculture are considered in the context of broader societal development, cultural preferences and human needs. Attention is drawn to the uneven development and current importance of aquaculture globally as well as its considerable heterogeneity of form and function compared with established terrestrial livestock production. The recent drivers of growth in demand and production are examined and the persistent linkages between exploitation of wild stocks, full life cycle culture and the various intermediate forms explored. An emergent trend for sourcing aquaculture feeds from alternatives to marine ingredients is described and the implications for the sector with rapidly growing feed needs discussed. The rise of non-conventional and innovative feed ingredients, often shared with terrestrial livestock, are considered, including aquaculture itself becoming a major source of marine ingredients. The implications for the continued expected growth of aquaculture are set in the context of sustainable intensification, with the challenges that conventional intensification and emergent integration within, and between, value chains explored. The review concludes with a consideration of the implications for dependent livelihoods and projections for various futures based on limited resources but growing demand.

  8. Familial cerebral cavernous haemangioma diagnosed in an infant with a rapidly growing cerebral lesion

    International Nuclear Information System (INIS)

    Ng, B.H.K.; Pereira, J.K.; Ghedia, S.; Pinner, J.; Mowat, D.; Vonau, M.

    2006-01-01

    Cavernous haemangiomas of the central nervous system are vascular malformations best imaged by MRI. They may present at any age, but to our knowledge only 39 cases in the first year of life have previously been reported. A familial form has been described and some of the underlying genetic mutations have recently been discovered. We present the clinical features and serial MRI findings of an 8-week-old boy who presented with subacute intracranial haemorrhage followed by rapid growth of a surgically proven cavernous haemangioma, mimicking a tumour. He also developed new lesions. A strong family history of neurological disease was elucidated. A familial form of cavernous haemangioma was confirmed by identification of a KRIT 1 gene mutation and cavernous haemangiomas in the patient and other family members. We stress the importance of considering cavernous haemangiomas in the context of intracerebral haemorrhage and in the differential diagnosis of rapidly growing lesions in this age group. The family history is also important in screening for familial disease

  9. [Rapidly-growing nodular pseudoangiomatous stromal hyperplasia of the breast: case report].

    Science.gov (United States)

    Elıyatkin, Nuket; Karasu, Başak; Selek, Elif; Keçecı, Yavuz; Postaci, Hakan

    2011-01-01

    Pseudoangiomatous stromal hyperplasia is a benign proliferative lesion of the mammary stroma that rarely presents as a localized mass. Pseudoangiomatous stromal hyperplasia is characterized by a dense, collagenous proliferation of the mammary stroma, associated with capillary-like spaces. Pseudoangiomatous stromal hyperplasia can be mistaken with fibroadenoma on radiological examination or with low-grade angiosarcoma on histological examination. Its main importance is its distinction from angiosarcoma. The presented case was a 40-year-old woman who was admitted with a rapidly growing breast tumor. Physical examination revealed an elastic-firm, well-defined, mobile and painless mass in her right breast. Mammograms revealed a 6.7 x 3.7 cm, lobulated, well-circumscribed mass in her right breast but no calcification. Sonographic examination showed a well-defined and homogenous mass, not including any cyst. Based on these findings, a provisional diagnosis of fibroadenoma was made. Considering the rapid growth history of the mass, tumor excision was performed. The excised tumor was well demarcated and had a smooth external surface. Histological examination revealed the tumor to be composed of markedly increased fibrous stroma and scattered epithelial components (cystic dilatation of the ducts, blunt duct adenosis). The fibrous stroma contained numerous anastomosing slit-like spaces. Isolated spindle cells appeared intermittently at the margins of the spaces resembled endothelial cells. Immunohistochemical staining showed that the spindle cells were positive for CD34 and negative for Factor VIII-related antigen. The lesion was diagnosed as nodular pseudoangiomatous stromal hyperplasia.

  10. ISOLATION AND ANTIBIOTIC SUSCEPTIBILITY TESTING OF RAPIDLY-GROWING MYCOBACTERIA FROM GRASSLAND SOILS

    Directory of Open Access Journals (Sweden)

    Martina Kyselková

    2013-08-01

    Full Text Available Rapidly growing mycobacteria (RGM are common soil saprophytes, but certain strains cause infections in human and animals. The infections due to RGM have been increasing in past decades and are often difficult to treat. The susceptibility to antibiotics is regularly evaluated in clinical isolates of RGM, but the data on soil RGM are missing. The objectives of this study was to isolate RGM from four grassland soils with different impact of manuring, and assess their resistance to antibiotics and the ability to grow at 37°C and 42°C. Since isolation of RGM from soil is a challenge, a conventional decontamination method (NaOH/malachite green/cycloheximide and a recent method based on olive oil/SDS demulsification were compared. The olive oil/SDS method was less efficient, mainly because of the emulsion instability and plate overgrowing with other bacteria. Altogether, 44 isolates were obtained and 23 representatives of different RGM genotypes were screened. The number of isolates per soil decreased with increasing soil pH, consistently with previous findings that mycobacteria were more abundant in low pH soils. Most of the isolates belonged to the Mycobacterium fortuitum group. The majority of isolates was resistant to 2-4 antibiotics. Multiresistant strains occurred also in a control soil that has a long history without the exposure to antibiotic-containing manure. Seven isolates grew at 37°C, including the species M. septicum and M. fortuitum known for infections in humans. This study shows that multiresistant RGM close to known human pathogens occur in grassland soils regardless the soil history of manuring.

  11. The spatial biology of transcription and translation in rapidly growing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Somenath eBakshi

    2015-07-01

    Full Text Available Single-molecule fluorescence provides high resolution spatial distributions of ribosomes and RNA polymerase (RNAP in live, rapidly growing E. coli. Ribosomes are more strongly segregated from the nucleoids (chromosomal DNA than previous widefield fluorescence studies suggested. While most transcription may be co-translational, the evidence indicates that most translation occurs on free mRNA copies that have diffused from the nucleoids to a ribosome-rich region. Analysis of time-resolved images of the nucleoid spatial distribution after treatment with the transcription-halting drug rifampicin and the translation-halting drug chloramphenicol shows that both drugs cause nucleoid contraction on the 0-3 min timescale. This is consistent with the transertion hypothesis. We suggest that the longer-term (20-30 min nucleoid expansion after Rif treatment arises from conversion of 70S-polysomes to 30S and 50S subunits, which readily penetrate the nucleoids. Monte Carlo simulations of a polymer bead model built to mimic the chromosomal DNA and ribosomes (either 70S-polysomes or 30S and 50S subunits explain spatial segregation or mixing of ribosomes and nucleoids in terms of excluded volume and entropic effects alone. A comprehensive model of the transcription-translation-transertion system incorporates this new information about the spatial organization of the E. coli cytoplasm. We propose that transertion, which radially expands the nucleoids, is essential for recycling of 30S and 50S subunits from ribosome-rich regions back into the nucleoids. There they initiate co-transcriptional translation, which is an important mechanism for maintaining RNAP forward progress and protecting the nascent mRNA chain. Segregation of 70S-polysomes from the nucleoid may facilitate rapid growth by shortening the search time for ribosomes to find free mRNA concentrated outside the nucleoid and the search time for RNAP concentrated within the nucleoid to find transcription

  12. Drug Susceptibility Testing of 31 Antimicrobial Agents on Rapidly Growing Mycobacteria Isolates from China.

    Science.gov (United States)

    Pang, Hui; Li, Guilian; Zhao, Xiuqin; Liu, Haican; Wan, Kanglin; Yu, Ping

    2015-01-01

    Several species of rapidly growing mycobacteria (RGM) are now recognized as human pathogens. However, limited data on effective drug treatments against these organisms exists. Here, we describe the species distribution and drug susceptibility profiles of RGM clinical isolates collected from four southern Chinese provinces from January 2005 to December 2012. Clinical isolates (73) were subjected to in vitro testing with 31 antimicrobial agents using the cation-adjusted Mueller-Hinton broth microdilution method. The isolates included 55 M. abscessus, 11 M. fortuitum, 3 M. chelonae, 2 M. neoaurum, and 2 M. septicum isolates. M. abscessus (75.34%) and M. fortuitum (15.07%), the most common species, exhibited greater antibiotic resistance than the other three species. The isolates had low resistance to amikacin, linezolid, and tigecycline, and high resistance to first-line antituberculous agents, amoxicillin-clavulanic acid, rifapentine, dapsone, thioacetazone, and pasiniazid. M. abscessus and M. fortuitum were highly resistant to ofloxacin and rifabutin, respectively. The isolates showed moderate resistance to the other antimicrobial agents. Our results suggest that tigecycline, linezolid, clofazimine, and cefmetazole are appropriate choices for M. abscessus infections. Capreomycin, sulfamethoxazole, tigecycline, clofazimine, and cefmetazole are potentially good choices for M. fortuitum infections. Our drug susceptibility data should be useful to clinicians.

  13. Nosocomial rapidly growing mycobacterial infections following laparoscopic surgery: CT imaging findings

    International Nuclear Information System (INIS)

    Volpato, Richard; Campi de Castro, Claudio; Hadad, David Jamil; Silva Souza Ribeiro, Flavya da; Filho, Ezequiel Leal; Marcal, Leonardo P.

    2015-01-01

    To identify the distribution and frequency of computed tomography (CT) findings in patients with nosocomial rapidly growing mycobacterial (RGM) infection after laparoscopic surgery. A descriptive retrospective study in patients with RGM infection after laparoscopic surgery who underwent CT imaging prior to initiation of therapy. The images were analyzed by two radiologists in consensus, who evaluated the skin/subcutaneous tissues, the abdominal wall, and intraperitoneal region separately. The patterns of involvement were tabulated as: densification, collections, nodules (≥1.0 cm), small nodules (<1.0 cm), pseudocavitated nodules, and small pseudocavitated nodules. Twenty-six patients met the established criteria. The subcutaneous findings were: densification (88.5 %), small nodules (61.5 %), small pseudocavitated nodules (23.1 %), nodules (38.5 %), pseudocavitated nodules (15.4 %), and collections (26.9 %). The findings in the abdominal wall were: densification (61.5 %), pseudocavitated nodules (3.8 %), and collections (15.4 %). The intraperitoneal findings were: densification (46.1 %), small nodules (42.3 %), nodules (15.4 %), and collections (11.5 %). Subcutaneous CT findings in descending order of frequency were: densification, small nodules, nodules, small pseudocavitated nodules, pseudocavitated nodules, and collections. The musculo-fascial plane CT findings were: densification, collections, and pseudocavitated nodules. The intraperitoneal CT findings were: densification, small nodules, nodules, and collections. (orig.)

  14. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria.

    Science.gov (United States)

    Brown-Elliott, Barbara A; Wallace, Richard J

    2002-10-01

    The history, taxonomy, geographic distribution, clinical disease, and therapy of the pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria (RGM) are reviewed. Community-acquired disease and health care-associated disease are highlighted for each species. The latter grouping includes health care-associated outbreaks and pseudo-outbreaks as well as sporadic disease cases. Treatment recommendations for each species and type of disease are also described. Special emphasis is on the Mycobacterium fortuitum group, including M. fortuitum, M. peregrinum, and the unnamed third biovariant complex with its recent taxonomic changes and newly recognized species (including M. septicum, M. mageritense, and proposed species M. houstonense and M. bonickei). The clinical and taxonomic status of M. chelonae, M. abscessus, and M. mucogenicum is also detailed, along with that of the closely related new species, M. immunogenum. Additionally, newly recognized species, M. wolinskyi and M. goodii, as well as M. smegmatis sensu stricto, are included in a discussion of the M. smegmatis group. Laboratory diagnosis of RGM using phenotypic methods such as biochemical testing and high-performance liquid chromatography and molecular methods of diagnosis are also discussed. The latter includes PCR-restriction fragment length polymorphism analysis, hybridization, ribotyping, and sequence analysis. Susceptibility testing and antibiotic susceptibility patterns of the RGM are also annotated, along with the current recommendations from the National Committee for Clinical Laboratory Standards (NCCLS) for mycobacterial susceptibility testing.

  15. Drug Susceptibility Testing of 31 Antimicrobial Agents on Rapidly Growing Mycobacteria Isolates from China

    Directory of Open Access Journals (Sweden)

    Hui Pang

    2015-01-01

    Full Text Available Objectives. Several species of rapidly growing mycobacteria (RGM are now recognized as human pathogens. However, limited data on effective drug treatments against these organisms exists. Here, we describe the species distribution and drug susceptibility profiles of RGM clinical isolates collected from four southern Chinese provinces from January 2005 to December 2012. Methods. Clinical isolates (73 were subjected to in vitro testing with 31 antimicrobial agents using the cation-adjusted Mueller-Hinton broth microdilution method. The isolates included 55 M. abscessus, 11 M. fortuitum, 3 M. chelonae, 2 M. neoaurum, and 2 M. septicum isolates. Results. M. abscessus (75.34% and M. fortuitum (15.07%, the most common species, exhibited greater antibiotic resistance than the other three species. The isolates had low resistance to amikacin, linezolid, and tigecycline, and high resistance to first-line antituberculous agents, amoxicillin-clavulanic acid, rifapentine, dapsone, thioacetazone, and pasiniazid. M. abscessus and M. fortuitum were highly resistant to ofloxacin and rifabutin, respectively. The isolates showed moderate resistance to the other antimicrobial agents. Conclusions. Our results suggest that tigecycline, linezolid, clofazimine, and cefmetazole are appropriate choices for M. abscessus infections. Capreomycin, sulfamethoxazole, tigecycline, clofazimine, and cefmetazole are potentially good choices for M. fortuitum infections. Our drug susceptibility data should be useful to clinicians.

  16. Nosocomial rapidly growing mycobacterial infections following laparoscopic surgery: CT imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Volpato, Richard [Cassiano Antonio de Moraes University Hospital, Department of Diagnostic Radiology, Vitoria, ES (Brazil); Campi de Castro, Claudio [University of Sao Paulo Medical School, Department of Radiology, Cerqueira Cesar, Sao Paulo (Brazil); Hadad, David Jamil [Cassiano Antonio de Moraes University Hospital, Nucleo de Doencas Infecciosas, Department of Internal Medicine, Vitoria, ES (Brazil); Silva Souza Ribeiro, Flavya da [Laboratorio de Patologia PAT, Department of Diagnostic Radiology, Unit 1473, Vitoria, ES (Brazil); Filho, Ezequiel Leal [UNIMED Diagnostico, Department of Diagnostic Radiology, Unit 1473, Vitoria, ES (Brazil); Marcal, Leonardo P. [The University of Texas M D Anderson Cancer Center, Department of Diagnostic Radiology, Unit 1473, Houston, TX (United States)

    2015-09-15

    To identify the distribution and frequency of computed tomography (CT) findings in patients with nosocomial rapidly growing mycobacterial (RGM) infection after laparoscopic surgery. A descriptive retrospective study in patients with RGM infection after laparoscopic surgery who underwent CT imaging prior to initiation of therapy. The images were analyzed by two radiologists in consensus, who evaluated the skin/subcutaneous tissues, the abdominal wall, and intraperitoneal region separately. The patterns of involvement were tabulated as: densification, collections, nodules (≥1.0 cm), small nodules (<1.0 cm), pseudocavitated nodules, and small pseudocavitated nodules. Twenty-six patients met the established criteria. The subcutaneous findings were: densification (88.5 %), small nodules (61.5 %), small pseudocavitated nodules (23.1 %), nodules (38.5 %), pseudocavitated nodules (15.4 %), and collections (26.9 %). The findings in the abdominal wall were: densification (61.5 %), pseudocavitated nodules (3.8 %), and collections (15.4 %). The intraperitoneal findings were: densification (46.1 %), small nodules (42.3 %), nodules (15.4 %), and collections (11.5 %). Subcutaneous CT findings in descending order of frequency were: densification, small nodules, nodules, small pseudocavitated nodules, pseudocavitated nodules, and collections. The musculo-fascial plane CT findings were: densification, collections, and pseudocavitated nodules. The intraperitoneal CT findings were: densification, small nodules, nodules, and collections. (orig.)

  17. Rapidly growing non-tuberculous mycobacteria infection of prosthetic knee joints: A report of two cases.

    Science.gov (United States)

    Kim, Manyoung; Ha, Chul-Won; Jang, Jae Won; Park, Yong-Beom

    2017-08-01

    Non-tuberculous mycobacteria (NTM) cause prosthetic knee joint infections in rare cases. Infections with rapidly growing non-tuberculous mycobacteria (RGNTM) are difficult to treat due to their aggressive clinical behavior and resistance to antibiotics. Infections of a prosthetic knee joint by RGNTM have rarely been reported. A standard of treatment has not yet been established because of the rarity of the condition. In previous reports, diagnoses of RGNTM infections in prosthetic knee joints took a long time to reach because the condition was not suspected, due to its rarity. In addition, it is difficult to identify RGNTM in the lab because special identification tests are needed. In previous reports, after treatment for RGNTM prosthetic infections, knee prostheses could not be re-implanted in all cases but one, resulting in arthrodesis or resection arthroplasty; this was most likely due to the aggressiveness of these organisms. In the present report, two cases of prosthetic knee joint infection caused by RGNTM (Mycobacterium abscessus) are described that were successfully treated, and in which prosthetic joints were finally reimplanted in two-stage revision surgery. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Rapidly-growing mycobacterial infection: a recognized cause of early-onset prosthetic joint infection.

    Science.gov (United States)

    Jitmuang, Anupop; Yuenyongviwat, Varah; Charoencholvanich, Keerati; Chayakulkeeree, Methee

    2017-12-28

    Prosthetic joint infection (PJI) is a major complication of total hip and total knee arthroplasty (THA, TKA). Although mycobacteria are rarely the causative pathogens, it is important to recognize and treat them differently from non-mycobacterial infections. This study aimed to compare the clinical characteristics, associated factors and long-term outcomes of mycobacterial and non-mycobacterial PJI. We conducted a retrospective case-control study of patients aged ≥18 years who were diagnosed with PJI of the hip or knee at Siriraj Hospital from January 2000 to December 2012. Patient characteristics, clinical data, treatments and outcomes were evaluated. A total of 178 patients were included, among whom 162 had non-mycobacterial PJI and 16 had mycobacterial PJI. Rapidly growing mycobacteria (RGM) (11) and M. tuberculosis (MTB) (5) were the causative pathogens of mycobacterial PJI. PJI duration and time until onset were significantly different between mycobacterial and non-mycobacterial PJI. Infection within 90 days of arthroplasty was significantly associated with RGM infection (OR 21.86; 95% CI 4.25-112.30; p infection. RGM were the major pathogens of early onset PJI after THA and TKA. Both a high clinical index of suspicion and mycobacterial cultures are recommended when medically managing PJI with negative cultures or non-response to antibiotics. Removal of infected implants was associated with favorable outcomes.

  19. Effects of dark brooders and overhangs on free-range use and behaviour of slow-growing broilers

    NARCIS (Netherlands)

    Stadig, L.M.; Rodenburg, T.B.; Reubens, B.; Ampe, B.; Tuyttens, F.A.M.

    2017-01-01

    Broiler chickens often make limited use of the free-range area. Range use is influenced by type of shelter available. Range use may possibly be improved by a more gradual transition from the house to the range and by using dark brooders (secluded warm, dark areas in the home pen) that mimic aspects

  20. Rapid-Growing Mycobacteria Infections in Medical Tourists: Our Experience and Literature Review.

    Science.gov (United States)

    Singh, Mansher; Dugdale, Caitlin M; Solomon, Isaac H; Huang, Anne; Montgomery, Mary W; Pomahac, Bohdan; Yawetz, Sigal; Maguire, James H; Talbot, Simon G

    2016-09-01

    "Medical tourism" has gained popularity over the past few decades. This is particularly common with patients seeking elective cosmetic surgery in the developing world. However, the risk of severe and unusual infectious complications appears to be higher than for patients undergoing similar procedures in the United States. The authors describe their experience with atypical mycobacterial infections in cosmetic surgical patients returning to the United States postoperatively. A review of patient medical records presenting with infectious complications after cosmetic surgery between January 2010 and July 2015 was performed. Patients presenting with mycobacterial infections following cosmetic surgery were reviewed in detail. An extensive literature review was performed for rapid-growing mycobacteria (RGM) related to cosmetic procedures. Between January 2010 and July 2015, three patients presented to our institution with culture-proven Mycobacterium abscessus at the sites of recent cosmetic surgery. All had surgery performed in the developing world. The mean age of these patients was 36 years (range, 29-44 years). There was a delay of up to 16 weeks between the initial presentation and correct diagnosis. All patients were treated with surgical drainage and combination antibiotics with complete resolution. We present series of patients with mycobacterial infections after cosmetic surgery in the developing world. This may be related to the endemic nature of these bacteria and/or inadequate sterilization or sterile technique. Due to low domestic incidence of these infections, diagnosis may be difficult and/or delayed. Consulting physicians should have a low threshold to consider atypical etiologies in such scenarios. 5 Therapeutic. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  1. Two novel species of rapidly growing mycobacteria: Mycobacterium lehmannii sp. nov. and Mycobacterium neumannii sp. nov.

    Science.gov (United States)

    Nouioui, Imen; Sangal, Vartul; Carro, Lorena; Teramoto, Kanae; Jando, Marlen; Montero-Calasanz, Maria Del Carmen; Igual, José Mariano; Sutcliffe, Iain; Goodfellow, Michael; Klenk, Hans-Peter

    2017-12-01

    Two rapidly growing mycobacteria with identical 16S rRNA gene sequences were the subject of a polyphasic taxonomic study. The strains formed a well-supported subclade in the mycobacterial 16S rRNA gene tree and were most closely associated with the type strain of Mycobacterium novocastrense. Single and multilocus sequence analyses based on hsp65, rpoB and 16S rRNA gene sequences showed that strains SN 1900 T and SN 1904 T are phylogenetically distinct but share several chemotaxonomic and phenotypic features that are are consistent with their classification in the genus Mycobacterium. The two strains were distinguished by their different fatty acid and mycolic acid profiles, and by a combination of phenotypic features. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values for strains SN 1900 T and SN 1904 T were 61.0 % and 94.7 %, respectively; in turn, the corresponding dDDH and ANI values with M. novocastrense DSM 44203 T were 41.4 % and 42.8 % and 89.3 % and 89.5 %, respectively. These results show that strains SN1900 T and SN 1904 T form new centres of taxonomic variation within the genus Mycobacterium. Consequently, strains SN 1900 T (40 T =CECT 8763 T =DSM 43219 T ) and SN 1904 T (2409 T =CECT 8766 T =DSM 43532 T ) are considered to represent novel species, for which the names Mycobacteriumlehmannii sp. nov. and Mycobacteriumneumannii sp. nov. are proposed. A strain designated as 'Mycobacteriumacapulsensis' was shown to be a bona fide member of the putative novel species, M. lehmannii.

  2. Urban cyclist exposure to fine particle pollution in a rapidly growing city

    Science.gov (United States)

    Luce, B. W.; Barrett, T. E.; Ponette-González, A.

    2017-12-01

    Urban cyclists are exposed to elevated atmospheric concentrations of fine particulate matter (particles vehicle exhaust, which is emitted directly into cyclists' "breathing zone." In cities, human exposure to PM2.5 is a concern because its small size allows it to be inhaled deeper into the lungs than most particles. The aim of this research is to determine "hotspots" (locations with high PM2.5 concentrations) within the Dallas-Fort Worth Metroplex, Texas, where urban cyclists are most exposed to fine particle pollution. Recent research indicates that common exposure hotspots include traffic signals, junctions, bus stations, parking lots, and inclined streets. To identify these and other hotspots, a bicycle equipped with a low-cost, portable, battery-powered particle counter (Dylos 1700) coupled with a Trimble Geo 5T handheld Global Positioning System (GPS; ≤1 m ± resolution) will be used to map and measure particle mass concentrations along predetermined routes. Measurements will be conducted during a consecutive four-month period (Sep-Dec) during morning and evening rush hours when PM2.5 levels are generally highest, as well as during non-rush hour times to determine background concentrations. PM2.5 concentrations will be calculated from particle counts using an equation developed by Steinle et al. (2015). In addition, traffic counts will be conducted along the routes coinciding with the mobile monitoring times. We will present results on identified "hotspots" of high fine particle concentrations and PM2.5 exposure in the City of Denton, where particle pollution puts urban commuters most at risk, as well as average traffic counts from monitoring times. These data can be used to determine pollution mitigation strategies in rapidly growing urban areas.

  3. Rare Rapidly Growing Thumb Lesion in a 12-Year-Old Male

    Directory of Open Access Journals (Sweden)

    Alana J Arnold, MD, MBA

    2018-04-01

    t amenable to surgery.4 Surgery is the mainstay of care. The first medical treatment, denosumab, was approved by the FDA for use in adults and skeletally mature adolescents with surgically unresectable lesions.5 It is critical to obtain definitive imaging and biopsy of any rapidly growing lesions in patients presenting with masses and no history of trauma or constitutional symptoms. The best imaging study is MRI, to assess for bony and tissue involvement and surgical approach. Computed tomography may be used; however, it doesn’t delineate the soft tissue and bony connections as well. Standard oncology labs should be drawn as well, including: CBC with differential, LDH, uric acid, CMP, ESR. The growth of the tumor is insidious and therefore imaging should be done based on clinical concern. In the ED setting, if close follow up can be ensured, imaging can be done as an out-patient. Annual surveillance is recommended for at least 5 years in most patients, even after total resection, according to some studies.3 Our patient underwent GCTB resection with plastics surgery of the distal phalanx of thumb. He was seen in follow-up in the oncology clinic. Pathology of the tumor had negative margins, and he was told to follow-up in six months with plastics. Per hematology, no further follow-up was needed. Topics: Pediatrics, giant cell tumor, thumb lesion

  4. Myofibroblastoma: An Unusual Rapidly Growing Benign Tumour in a Male Breast

    International Nuclear Information System (INIS)

    Rafique, A.; Arshad, A.

    2013-01-01

    Myofibroblastoma is an unusual benign tumour of the breast predominantly seen in men in their sixth to seventh decade. The gross appearance is that of a well circumscribed nodule, characteristically small, seldom exceeding 3 cm. We present a case of an unusually large myofibroblastoma, which mimicked a malignant breast tumour. A 40 years old male, known case of tetralogy of Fallot, was operated in infancy in abroad, presented with a rapid enlargement of right breast over 5 - 6 weeks. Examination revealed a firm 10 cm hemispherical lump occupying the whole of the right breast with normal overlying skin. Since core biopsy was inconclusive, a subcutaneous mastectomy was performed to remove the tumour, which weighed 500 gms. Histopathology and immunocytochemistry revealed a mixed classical and collagenised type of myofibroblastoma. The patient is well with no evidence of recurrence. (author)

  5. Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice.

    Directory of Open Access Journals (Sweden)

    Dawn H Loh

    Full Text Available BACKGROUND: Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Components of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/dark (LD cycle. Such "jet lag" treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as disrupt the synchrony between the multiple oscillators found within the body. METHODOLOGY/PRINCIPAL FINDINGS: We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to compensate for the reduced recall due to acute phase shifts. CONCLUSIONS/SIGNIFICANCE: Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that a synchronized circadian system may be broadly important for normal cognition and that the consolidation of memories may be particularly sensitive to disruptions of circadian timing.

  6. Mycobacterium oryzae sp. nov., a scotochromogenic, rapidly growing species is able to infect human macrophage cell line.

    Science.gov (United States)

    Ramaprasad, E V V; Rizvi, A; Banerjee, S; Sasikala, Ch; Ramana, Ch V

    2016-11-01

    Gram-stain-positive, acid-fast-positive, rapidly growing, rod-shaped bacteria (designated as strains JC290T, JC430 and JC431) were isolated from paddy cultivated soils on the Western Ghats of India. Phylogenetic analysis placed the three strains among the rapidly growing mycobacteria, being most closely related to Mycobacterium tokaiense 47503T (98.8 % 16S rRNA gene sequence similarity), Mycobacterium murale MA112/96T (98.8 %) and a few other Mycobacterium species. The level of DNA-DNA reassociation of the three strains with M. tokaiense DSM 44635T was 23.4±4 % (26.1±3 %, reciprocal analysis) and 21.4±2 % (22.1±4 %, reciprocal analysis). The three novel strains shared >99.9 % 16S rRNA gene sequence similarity and DNA-DNA reassociation values >85 %. Furthermore, phylogenetic analysis based on concatenated sequences (3071 bp) of four housekeeping genes (16S rRNA, hsp65, rpoB and sodA) revealed that strain JC290T is clearly distinct from all other Mycobacteriumspecies. The three strains had diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannosides, unidentified phospholipids, unidentified glycolipids and an unidentified lipid as polar lipids. The predominant isoprenoid quinone for all three strains was MK-9(H2). Fatty acids were C17 : 1ω7c, C16 : 0, C18 : 1ω9c, C16 : 1ω7c/C16 : 1ω6c and C19 : 1ω7c/C19 : 1ω6c for all the three strains. On the basis of phenotypic, chemotaxonomic and phylogenetic data, it was concluded that strains JC290T, JC430 and JC431 are members of a novel species within the genus Mycobacterium and for which the name Mycobacterium oryzae sp. nov. is proposed. The type strain is JC290T (=KCTC 39560T=LMG 28809T).

  7. Non-adiabatic perturbations in Ricci dark energy model

    International Nuclear Information System (INIS)

    Karwan, Khamphee; Thitapura, Thiti

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included

  8. Mycobacterium stephanolepidis sp. nov., a rapidly growing species related to Mycobacterium chelonae, isolated from marine teleost fish, Stephanolepis cirrhifer.

    Science.gov (United States)

    Fukano, Hanako; Wada, Shinpei; Kurata, Osamu; Katayama, Kinya; Fujiwara, Nagatoshi; Hoshino, Yoshihiko

    2017-08-01

    A previously undescribed rapidly growing, non-pigmented mycobacterium was identified based on biochemical and nucleic acid analyses, as well as growth characteristics. Seven isolates were cultured from samples collected from five thread-sail filefish (Stephanolepis cirrhifer) and two farmed black scraper (Thamnaconus modestus). Bacterial growth occurred at 15-35 °C on Middlebrook 7H11 agar. The bacteria were positive for catalase activity at 68 °C and urease activity, intermediate for iron uptake, and negative for Tween 80 hydrolysis, nitrate reduction, semi-quantitative catalase activity and arylsulfatase activity at day 3. No growth was observed on Middlebrook 7H11 agar supplemented with picric acid, and very little growth was observed in the presence of 5 % NaCl. α- and α'-mycolates were identified in the cell walls, and a unique profile of the fatty acid methyl esters and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiles of the protein and cell-wall lipids were acquired. Sequence analysis revealed that the seven isolates shared identical sequences for the 16S rRNA, rpoB, hsp65, recA and sodA genes. Phylogenetic analysis of the five gene sequences confirmed that the isolates were unique, but closely related to Mycobacterium chelonae. Antibiotic susceptibility testing revealed the minimum inhibitory concentration (MIC) of clarithromycin against this novel species was Mycobacterium salmoniphilum. The hsp65 PCR restriction enzyme analysis pattern differed from those of M. chelonae and M. salmoniphilum. Based on these findings, the name Mycobacterium stephanolepidis sp. nov. is proposed for this novel species, with the type strain being NJB0901 T (=JCM 31611 T =KCTC 39843 T ).

  9. Mycobacterium saopaulense sp. nov., a rapidly growing mycobacterium closely related to members of the Mycobacterium chelonae--Mycobacterium abscessus group.

    Science.gov (United States)

    Nogueira, Christiane Lourenço; Whipps, Christopher M; Matsumoto, Cristianne Kayoko; Chimara, Erica; Droz, Sara; Tortoli, Enrico; de Freitas, Denise; Cnockaert, Margo; Palomino, Juan Carlos; Martin, Anandi; Vandamme, Peter; Leão, Sylvia Cardoso

    2015-12-01

    Five isolates of non-pigmented, rapidly growing mycobacteria were isolated from three patients and,in an earlier study, from zebrafish. Phenotypic and molecular tests confirmed that these isolates belong to the Mycobacterium chelonae-Mycobacterium abscessus group, but they could not be confidently assigned to any known species of this group. Phenotypic analysis and biochemical tests were not helpful for distinguishing these isolates from other members of the M. chelonae–M.abscessus group. The isolates presented higher drug resistance in comparison with other members of the group, showing susceptibility only to clarithromycin. The five isolates showed a unique PCR restriction analysis pattern of the hsp65 gene, 100 % similarity in 16S rRNA gene and hsp65 sequences and 1-2 nt differences in rpoB and internal transcribed spacer (ITS) sequences.Phylogenetic analysis of a concatenated dataset including 16S rRNA gene, hsp65, and rpoB sequences from type strains of more closely related species placed the five isolates together, as a distinct lineage from previously described species, suggesting a sister relationship to a group consisting of M. chelonae, Mycobacterium salmoniphilum, Mycobacterium franklinii and Mycobacterium immunogenum. DNA–DNA hybridization values .70 % confirmed that the five isolates belong to the same species, while values ,70 % between one of the isolates and the type strains of M. chelonae and M. abscessus confirmed that the isolates belong to a distinct species. The polyphasic characterization of these isolates, supported by DNA–DNA hybridization results,demonstrated that they share characteristics with M. chelonae–M. abscessus members, butconstitute a different species, for which the name Mycobacterium saopaulense sp. nov. is proposed. The type strain is EPM10906T (5CCUG 66554T5LMG 28586T5INCQS 0733T).

  10. The economic case for low-carbon development in rapidly growing developing world cities: A case study of Palembang, Indonesia

    International Nuclear Information System (INIS)

    Colenbrander, Sarah; Gouldson, Andy; Sudmant, Andrew Heshedahl; Papargyropoulou, Effie

    2015-01-01

    Where costs or risks are higher, evidence is lacking or supporting institutions are less developed, policymakers can struggle to make the case for low-carbon investment. This is especially the case in developing world cities where decision-makers struggle to keep up with the pace and scale of change. Focusing on Palembang in Indonesia, this paper considers the economic case for proactive investment in low-carbon development. We find that a rapidly growing industrial city in a developing country can reduce emissions by 24.1% in 2025, relative to business as usual levels, with investments of USD405.6 million that would reduce energy expenditure in the city by USD436.8 million. Emissions from the regional grid could be reduced by 12.2% in 2025, relative to business as usual trends, with investments of USD2.9 billion that would generate annual savings of USD175 million. These estimates understate the savings from reduced expenditure on energy subsidies and energy infrastructure. The compelling economic case for mainstreaming climate mitigation in this developing country city suggests that the constraints on climate action can be political and institutional rather than economic. There is therefore a need for more effective energy governance to drive the transition to a low-carbon economy. - Highlights: • We evaluate the economic case for low carbon investment in a developing world city. • Cost-effective measures could reduce emissions by 24.1% relative to BAU levels. • These pay for themselves in <1 year and generate savings throughout their lifetime. • Further savings come from reduced expenditure on energy infrastructure, subsidies. • Limitations on climate action seem to be political/institutional – not economic

  11. Effects of landscape change on fish assemblage structure in a rapidly growing metropolitan area in North Carolina, USA

    Science.gov (United States)

    Kennen, J.G.; Chang, M.; Tracy, B.H.

    2005-01-01

    We evaluated a comprehensive set of natural and land-use attributes that represent the major facets of urban development at fish monitoring sites in the rapidly growing Raleigh-Durham, North Carolina metropolitan area. We used principal component and correlation analysis to obtain a nonredundant subset of variables that extracted most variation in the complete set. With this subset of variables, we assessed the effect of urban growth on fish assemblage structure. We evaluated variation in fish assemblage structure with nonmetric multidimensional scaling (NMDS). We used correlation analysis to identify the most important environmental and landscape variables associated with significant NMDS axes. The second NMDS axis is related to many indices of land-use/land-cover change and habitat. Significant correlations with proportion of largest forest patch to total patch size (r = -0.460, P < 0.01), diversity of patch types (r = 0.554, P < 0.001), and population density (r = 0.385, P < 0.05) helped identify NMDS axis 2 as a disturbance gradient. Positive and negative correlations between the abundance of redbreast sunfish Lepomis auritus and bluehead chub Nocomis leptocephalus, respectively, and NMDS axis 2 also were evident. The North Carolina index of biotic integrity and many of its component metrics were highly correlated with urbanization. These results indicate that aquatic ecosystem integrity would be optimized by a comprehensive integrated management strategy that includes the preservation of landscape function by maximizing the conservation of contiguous tracts of forested lands and vegetative cover in watersheds. ?? 2005 by the American Fisheries Society.

  12. Tetracycline resistance and presence of tetracycline resistance determinants .i.tet./i.(V) and .i.tap./i. in rapidly growing mycobacteria from agricultural soils and clinical isolates

    Czech Academy of Sciences Publication Activity Database

    Kyselková, Martina; Chroňáková, Alica; Volná, Lucie; Němec, Jan; Ulmann, V.; Scharfen, J.; Elhottová, Dana

    2012-01-01

    Roč. 27, č. 4 (2012), s. 413-422 ISSN 1342-6311 R&D Projects: GA ČR GAP504/10/2077; GA MŠk LC06066 Institutional support: RVO:60077344 Keywords : efflux pump * rapidly growing Mycobacterium * tetracycline resistance * tap * tet (V) Subject RIV: EH - Ecology, Behaviour Impact factor: 2.444, year: 2012

  13. Diversity, Community Composition, and Dynamics of Nonpigmented and Late-Pigmenting Rapidly Growing Mycobacteria in an Urban Tap Water Production and Distribution System

    OpenAIRE

    Dubrou, S.; Konjek, J.; Macheras, E.; Welté, B.; Guidicelli, L.; Chignon, E.; Joyeux, M.; Gaillard, J. L.; Heym, B.; Tully, T.; Sapriel, G.

    2013-01-01

    Nonpigmented and late-pigmenting rapidly growing mycobacteria (RGM) have been reported to commonly colonize water production and distribution systems. However, there is little information about the nature and distribution of RGM species within the different parts of such complex networks or about their clustering into specific RGM species communities. We conducted a large-scale survey between 2007 and 2009 in the Parisian urban tap water production and distribution system. We analyzed 1,418 w...

  14. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions

    International Nuclear Information System (INIS)

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang

    2015-01-01

    Highlights: • Molecularly imprinted polypyrrole-coated magnetic TiO 2 catalyst was prepared. • The catalyst degraded Congo red rapidly in dark at ambient conditions. • Degradation mechanism was proposed according to LC–MS analysis. • The catalyst can be easily recycled by a magnet. - Abstract: A novel molecularly imprinted polymer (MIP)-coated magnetic TiO 2 nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC–MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, “green” and low-cost degradation of CR in industrial printing and dyeing wastewater

  15. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO{sub 2} nanoparticles in dark at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang, E-mail: chiyanghe@hotmail.com

    2015-08-30

    Highlights: • Molecularly imprinted polypyrrole-coated magnetic TiO{sub 2} catalyst was prepared. • The catalyst degraded Congo red rapidly in dark at ambient conditions. • Degradation mechanism was proposed according to LC–MS analysis. • The catalyst can be easily recycled by a magnet. - Abstract: A novel molecularly imprinted polymer (MIP)-coated magnetic TiO{sub 2} nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC–MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, “green” and low-cost degradation of CR in industrial printing and dyeing wastewater.

  16. Do farmers rapidly adapt to past growing conditions by sowing different proportions of early and late maturing cereals and cultivars?

    Directory of Open Access Journals (Sweden)

    Pirjo Peltonen-Sainio

    2013-10-01

    Full Text Available In the short growing season of the northernmost European growing conditions, farmers are increasingly interested in expanding cultivation of later maturing crops at the expense of early maturing ones with lower yields. In this study we aimed to assess how the switching between spring cereals that differ in earliness was associated with different external factors. This was tested using unique datasets for regional cropping areas and cultivar use for the last 15 years. Early maturing barley was favored at the expense of later maturing wheat when a high number of days to crop maturity was required in the preceding year. In contrast, farmers reduced the barley area when a high number of cumulated degree days was required for a crop to mature in the previous year. A shift was recorded from early to late maturing cultivars. This study indicated that despite limited opportunities for farmers to alter land use, they readily responded to past conditions and used the knowledge gained for decision-making to reduce risk. This is a valuable operative model for studying adaptation to opportunities and constraints induced by climate change.

  17. Monitoring Annual Urban Changes in a Rapidly Growing Portion of Northwest Arkansas with a 20-Year Landsat Record

    Directory of Open Access Journals (Sweden)

    Ryan Reynolds

    2017-01-01

    Full Text Available Northwest Arkansas has undergone a significant urban transformation in the past several decades and is considered to be one of the fastest growing regions in the United States. The urban area expansion and the associated demographic increases bring unprecedented pressure to the environment and natural resources. To better understand the consequences of urbanization, accurate and long-term depiction on urban dynamics is critical. Although urban mapping activities using remote sensing have been widely conducted, long-term urban growth mapping at an annual pace is rare and the low accuracy of change detection remains a challenge. In this study, a time series Landsat stack covering the period from 1995 to 2015 was employed to detect the urban dynamics in Northwest Arkansas via a two-stage classification approach. A set of spectral indices that have been proven to be useful in urban area extraction together with the original Landsat spectral bands were used in the maximum likelihood classifier and random forest classifier to distinguish urban from non-urban pixels for each year. A temporal trajectory polishing method, involving temporal filtering and heuristic reasoning, was then applied to the sequence of classified urban maps for further improvement. Based on a set of validation samples selected for five distinct years, the average overall accuracy of the final polished maps was 91%, which improved the preliminary classifications by over 10%. Moreover, results from this study also indicated that the temporal trajectory polishing method was most effective with initial low accuracy classifications. The resulting urban dynamic map is expected to provide unprecedented details about the area, spatial configuration, and growing trends of urban land-cover in Northwest Arkansas.

  18. Universe reveals its dark side

    International Nuclear Information System (INIS)

    Araujo, Henrique

    2005-01-01

    Evidence for dark matter is growing, and so are our chances of directly detecting it. It may come as a surprise to many people but 95% of what makes up the universe is still a mystery to scientists. Until very recently, however, we had devoted at least that proportion of our effort to understanding the remaining 5% - the small fraction that seems to be made up of ordinary baryonic matter such as atoms. But most cosmologists now agree that there is five times as much 'dark matter' as ordinary matter. Moreover, the remaining 70% of the universe is thought to consist of an even more mysterious entity called dark energy, which is causing the universe to expand ever more rapidly. Dark matter may be invisible but it ranks among the hottest topics in modern physics. Without it, we cannot explain the gravitational pull that holds galaxies and clusters of galaxies together when they clearly have insufficient mass in the form of stars. This mass discrepancy was noted as long ago as the 1930s, but it is only in the last few years that precision observations of the cosmic microwave background, combined with other cosmological measurements, have allowed physicists to determine the abundance of dark matter more precisely. (U.K.)

  19. Carbon nanotubes growing on rapid thermal annealed Ni and their application to a triode-type field emission device

    International Nuclear Information System (INIS)

    Uh, Hyung Soo; Park, Sang Sik

    2006-01-01

    In this paper, we demonstrate a new triode-type field emitter arrays using carbon nanotubes (CNTs) as an electron emitter source. In the proposed structure, the gate electrode is located underneath the cathode electrode and the extractor electrode is surrounded by CNT emitters. CNTs were selectively grown on the patterned Ni catalyst layer by using plasma-enhanced chemical vapor deposition (PECVD). Vertically aligned CNTs were grown with gas mixture of acetylene and ammonia under external DC bias. Compared with a conventional under-gate structure, the proposed structure reduced the turn-on voltage by about 30%. In addition, with a view to controlling the density of CNTs, Ni catalyst thickness was varied and rapid thermal annealing (RTA) treatment was optionally adopted before CNT growth. With controlled Ni thickness and RTA condition, field emission efficiency was greatly improved by reducing the density of CNTs, which is due to the reduction of the electric field screening effect caused by dense CNTs

  20. News and Views: Life on Mars? Astronomical model is world's biggest; Prizes for identifying dark matter; NAM 2013: call for sessions; Paintballing to save the planet; Happy Birthday ESO; Dark sky park grows

    Science.gov (United States)

    2012-12-01

    The University of Edinburgh, crowdsourcing website Kaggle and Winton Capital Management have joined forces to launch a competition to identify dark matter haloes. The Scientific Organizing Committee of the RAS National Astronomy Meeting 2013, the UK Solar Physics and Magnetosphere, Ionosphere and Solar-Terrestrial meetings, are seeking nominations for parallel discussion session themes. A winner of the 2012 Move an Asteroid Technical Paper Competition suggests painting asteroids white in order to boost their albedo and take advantage of solar radiation pressure to alter their orbits.

  1. Compartmental analysis of roots in intact rapidly-growing Spergularia marina and Lactuca sativa: partial characterization of the symplasms functional in the radial transport of Na+ and K+

    International Nuclear Information System (INIS)

    Lazof, D.B.

    1987-01-01

    Techniques of compartmental analysis were adapted to the study of intact roots of rapidly-growing Spergularia marine and Lactuca sativa. Using large numbers of plants short time-courses of uptake and chase, 42 K + and 22 Na + transport could be resolved, even during a chase following a brief 10 minute labeling period. The use of intact plant systems allowed distinction of that portion of the isotope flux into the root, associated with the ion-conducting symplasms. A small compartment, which rapidly (t/sub .5/ + , accounting for the observed obtention of linear translocation rates within minutes of transferring to labeled solution. The ion contents of this compartment varied in proportion to the external ion concentration. When K + was at a high external concentration, labeled K + exchanged into this same symplasm, but chasing a short pulse indicated that K + transport to the xylem was not through a rapidly-exchanging compartment. At physiological concentrations of K + the evidence indicated that transport of K + across the root proceeded through a compartment which was not exchanging rapidly with the external medium. The rise to a linear rate of isotope translocation was gradual and translocation during a chase, following a brief pulse,was prolonged, indicating that this compartment retained its specific activity for a considerable period

  2. A Multi-Level Approach to Modeling Rapidly Growing Mega-Regions as a Coupled Human-Natural System

    Science.gov (United States)

    Koch, J. A.; Tang, W.; Meentemeyer, R. K.

    2013-12-01

    concept of our modeling approach and describe its strengths and weaknesses. We furthermore use empirical data for the states of North and South Carolina to demonstrate how the modeling framework can be applied to a large, heterogeneous study system with diverse decision-making agents. Grimm et al. (2005) Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology. Science 310, 987-991. Liu et al. (2013) Framing Sustainability in a Telecoupled World. Ecology and Society 18(2), 26. Meentemeyer et al. (2013) FUTURES: Multilevel Simulations of Merging Urban-Rural Landscape Structure Using a Stochastic Patch-Growing Algorithm. Annals of the Association of American Geographers 103(4), 785-807.

  3. A Framework Predicting Water Availability in a Rapidly Growing, Semi-Arid Region under Future Climate Change

    Science.gov (United States)

    Han, B.; Benner, S. G.; Glenn, N. F.; Lindquist, E.; Dahal, K. R.; Bolte, J.; Vache, K. B.; Flores, A. N.

    2014-12-01

    Climate change can lead to dramatic variations in hydrologic regime, affecting both surface water and groundwater supply. This effect is most significant in populated semi-arid regions where water availability are highly sensitive to climate-induced outcomes. However, predicting water availability at regional scales, while resolving some of the key internal variability and structure in semi-arid regions is difficult due to the highly non-linearity relationship between rainfall and runoff. In this study, we describe the development of a modeling framework to evaluate future water availability that captures elements of the coupled response of the biophysical system to climate change and human systems. The framework is built under the Envision multi-agent simulation tool, characterizing the spatial patterns of water demand in the semi-arid Treasure Valley area of Southwest Idaho - a rapidly developing socio-ecological system where urban growth is displacing agricultural production. The semi-conceptual HBV model, a population growth and allocation model (Target), a vegetation state and transition model (SSTM), and a statistically based fire disturbance model (SpatialAllocator) are integrated to simulate hydrology, population and land use. Six alternative scenarios are composed by combining two climate change scenarios (RCP4.5 and RCP8.5) with three population growth and allocation scenarios (Status Quo, Managed Growth, and Unconstrained Growth). Five-year calibration and validation performances are assessed with Nash-Sutcliffe efficiency. Irrigation activities are simulated using local water rights. Results show that in all scenarios, annual mean stream flow decreases as the projected rainfall increases because the projected warmer climate also enhances water losses to evapotranspiration. Seasonal maximum stream flow tends to occur earlier than in current conditions due to the earlier peak of snow melting. The aridity index and water deficit generally increase in the

  4. Safety dose of three commercially used growth promoters: nuricell- aqua, hepaprotect-aqua and rapid-grow on growth and survival of Thai pangas (Pangasianodon hypophthalmus

    Directory of Open Access Journals (Sweden)

    Md. Ariful Islam

    2014-02-01

    Full Text Available Objective: To optimize the dose of 3 commonly used growth promoters, viz., Nuricell-Aqua (composition: glucomannan complex and mannose polymer, Hepaprotect-Aqua (composition: β-glucan, mannose polymer and essential oil and Rapid-Grow (composition: organic acid and their salt, β-glucan, mannose oligosaccharide and essential oil, using Thai pangas (Pangasiandon hypophthalmus as cultured species. Methods: Thai pangas fingerlings with an average length and weight of 11 cm and 10 g were reared under laboratory condition and growth promoters were fed after incorporating them with a test diet at a ratio of 10% of their body weight for a period of 28 d. Estimation of data on growth such as weight gain (g, specific growth rate, survivability (% test in each aquarium were conducted and data were analyzed using statistical software. Results: After 28 d of feeding with Nutricell-Aqua, 10 mg/(20 g feed·day, which was the dose recommended by the manufacturer, was found better. When Hepaprotect-Aqua and Rapid-Grow were employed, performance was found to be better with the dose of 60 mg/(20 g feed·day which was 1.5 times higher than the dose recommended by the corresponding manufacturer. Conclusions: These results suggest that chemicals and feed additives marketed in Bangladesh Fish Feed Market need further testing under Bangladesh climatic condition before being marketed.

  5. Role of extrinsic noise in the sensitivity of the rod pathway: rapid dark adaptation of nocturnal vision in humans.

    Science.gov (United States)

    Reeves, Adam; Grayhem, Rebecca

    2016-03-01

    Rod-mediated 500 nm test spots were flashed in Maxwellian view at 5 deg eccentricity, both on steady 10.4 deg fields of intensities (I) from 0.00001 to 1.0 scotopic troland (sc td) and from 0.2 s to 1 s after extinguishing the field. On dim fields, thresholds of tiny (5') tests were proportional to √I (Rose-DeVries law), while thresholds after extinction fell within 0.6 s to the fully dark-adapted absolute threshold. Thresholds of large (1.3 deg) tests were proportional to I (Weber law) and extinction thresholds, to √I. rod thresholds are elevated by photon-driven noise from dim fields that disappears at field extinction; large spot thresholds are additionally elevated by neural light adaptation proportional to √I. At night, recovery from dimly lit fields is fast, not slow.

  6. Raffinose family oligosaccharides act as galactose stores in seeds and are required for rapid germination of Arabidopsis in the dark

    Directory of Open Access Journals (Sweden)

    Roman Gangl

    2016-07-01

    Full Text Available Raffinose synthase 5 (AtRS5, At5g40390 was characterized from Arabidopsis as a recombinant enzyme. It has a far higher affinity for the substrates galactinol and sucrose than any other raffinose synthase previously reported. In addition raffinose synthase 5 is also working as a galactosylhydrolase, degrading galactinol and raffinose under certain conditions. Together with raffinose synthase 4, which is predominantly a stachyose synthase, both enzymes contribute to the raffinose family oligosaccharide (RFO accumulation in seeds. A double knockout in raffinose synthase 4 and raffinose synthase 5 (ΔAtRS4,5 was generated, which is devoid of RFOs in seeds. Unstressed leaves of 4 week old ΔAtRS4,5 plants showed drastically 23.8-fold increased concentrations of galactinol. Unexpectedly, raffinose appeared again in drought stressed ΔAtRS4,5 plants, but not under other abiotic stress conditions. Drought stress leads to novel transcripts of raffinose synthase 6 suggesting that this isoform is a further stress inducible raffinose synthase in Arabidopsis. ΔAtRS4,5 seeds showed a 5 days delayed germination phenotype in darkness and an elevated expression of the transcription factor phytochrome interacting factor 1 (AtPIF1 target gene AtPIF6, being a repressor of germination. This prolonged dormancy is not seen during germination in the light. Exogenous galactose partially promotes germination of ΔAtRS4,5 seeds in the dark suggesting that RFOs act as a galactose store and repress AtPIF6 transcripts.

  7. Dark Dark Wood

    DEFF Research Database (Denmark)

    2017-01-01

    2017 student Bachelor film. Synopsis: Young princess Maria has had about enough of her royal life – it’s all lesson, responsibilities and duties on top of each other, every hour of every day. Overwhelmed Maria is swept away on an adventure into the monster-filled dark, dark woods. During 2017...

  8. Grow, Baby, Grow

    Science.gov (United States)

    Maybe you quit smoking during your pregnancy. Or maybe you struggled and weren’t able to stay quit. Now that your baby is here, trying to stay away from smoking is still important. That’s because the chemicals in smoke can make it harder for your baby to grow like he or she should.

  9. Dark group: dark energy and dark matter

    International Nuclear Information System (INIS)

    Macorra, A. de la

    2004-01-01

    We study the possibility that a dark group, a gauge group with particles interacting with the standard model particles only via gravity, is responsible for containing the dark energy and dark matter required by present day observations. We show that it is indeed possible and we determine the constrains for the dark group. The non-perturbative effects generated by a strong gauge coupling constant can de determined and a inverse power law scalar potential IPL for the dark meson fields is generated parameterizing the dark energy. On the other hand it is the massive particles, e.g., dark baryons, of the dark gauge group that give the corresponding dark matter. The mass of the dark particles is of the order of the condensation scale Λ c and the temperature is smaller then the photon's temperature. The dark matter is of the warm matter type. The only parameters of the model are the number of particles of the dark group. The allowed values of the different parameters are severely restricted. The dark group energy density at Λ c must be Ω DGc ≤0.17 and the evolution and acceptable values of dark matter and dark energy leads to a constrain of Λ c and the IPL parameter n giving Λ c =O(1-10 3 ) eV and 0.28≤n≤1.04

  10. Interactions between dark energy and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, Marco

    2009-03-20

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with {lambda}{sub CDM}. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the {lambda}{sub CDM} model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter

  11. Interactions between dark energy and dark matter

    International Nuclear Information System (INIS)

    Baldi, Marco

    2009-01-01

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with Λ CDM . Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the Λ CDM model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter space of such scenarios

  12. Effect of Rapid Maxillary Expansion on Glenoid Fossa and Condyle-Fossa Relationship in Growing Patients (MEGP): Study Protocol for a Controlled Clinical Trial

    Science.gov (United States)

    Ghoussoub, Mona Sayegh; Rifai, Khaldoun; Garcia, Robert; Sleilaty, Ghassan

    2018-01-01

    Aims and Objectives: Rapid maxillary expansion (RME) is an orthodontic nonsurgical procedure aiming at increasing the width of the maxilla by opening mainly the intermaxillary suture in patients presenting a transverse maxillary skeletal deficiency. The objectives of the current prospective controlled clinical and radiographic study are to evaluate the hypothesis that RME in growing patients will result in radiographic changes at the level of interglenoid fossa distance, condyle-fossa relationship, and nasal cavity widths compared to the group who received no treatment initially and served as untreated control. Materials and Methods: In this prospective controlled clinical and radiographic study, forty healthy growing patients selected from a school-based population following a large screening campaign, ranging in age between 8 and 13 years, presenting a maxillary constriction with bilateral crossbite, and candidates for RME are being recruited. The first group will include participants willing to undergo treatment (n = 25) and the other group will include those inclined to postpone (n = 15). Results: The primary outcome is to compare radiologically the interglenoid fossa distance and the condyle-fossa relationship; nasal cavity width will be a secondary outcome. A multivariable analysis of Covariance model will be used, with the assessment of the time by group interaction, using age as covariate. The project protocol was reviewed and approved by the Ethics Committee of the Lebanese University, National Institute in Lebanon (CUEMB process number 31/04/2015). The study is funded by the Lebanese University and Centre National de Recherche Scientifique, Lebanon (Number: 652 on 14/04/2016). Conclusion: This prospective controlled clinical trial will give information about the effect of RME on the glenoid fossa and condyle-fossa relationship and its impact on the nasal cavity width. Trial Registration: Retrospectively registered in BioMed Central (DOI10.1186/ISRCTN

  13. Do teachers and students get the Ed-Tech products they need: The challenges of Ed-Tech procurement in a rapidly growing market

    Directory of Open Access Journals (Sweden)

    Jennifer Morrison

    2015-03-01

    Full Text Available Ed-tech courseware products to support teaching and learning are being developed and made available for acquisition by school districts at a rapid rate. In this growing market, developers and providers face challenges with making their products visible to customers, while school district stakeholders must grapple with “discovering” which products of the many available best address their instructional needs. The present study presents the experiences with and perceptions about the procurement process from 47 superintendents representing diverse school districts in the U. S. Results indicate that, while improvements are desired in many aspects of the procurement process, the superintendents, overall, believe that, once desired products are identified, they are generally able to acquire them. Difficulties lie in tighter budgets, discovering products that are potentially the best choices, and evaluating the effectiveness of the products selected as options. These findings are presented and interpreted in relation to five major “Action Points” in the procurement process, and also with regard to implications for evaluating how educational technology impacts K-12 instruction.

  14. In Vitro Comparison of Ertapenem, Meropenem, and Imipenem against Isolates of Rapidly Growing Mycobacteria and Nocardia by Use of Broth Microdilution and Etest.

    Science.gov (United States)

    Brown-Elliott, Barbara A; Killingley, Jessica; Vasireddy, Sruthi; Bridge, Linda; Wallace, Richard J

    2016-06-01

    We compared the activities of the carbapenems ertapenem, meropenem, and imipenem against 180 isolates of rapidly growing mycobacteria (RGM) and 170 isolates of Nocardia using the Clinical and Laboratory Standards Institute (CLSI) guidelines. A subset of isolates was tested using the Etest. The rate of susceptibility to ertapenem and meropenem was limited and less than that to imipenem for the RGM. Analysis of major and minor discrepancies revealed that >90% of the isolates of Nocardia had higher MICs by the broth microdilution method than by Etest, in contrast to the lower broth microdilution MICs seen for >80% of the RGM. Imipenem remains the most active carbapenem against RGM, including Mycobacterium abscessus subsp. abscessus For Nocardia, imipenem was significantly more active only against Nocardia farcinica Although there may be utility in testing the activities of the newer carbapenems against Nocardia, their activities against the RGM should not be routinely tested. Testing by Etest is not recommended by the CLSI. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Proceedings of the Canadian Institute's 4. annual oil sands supply and infrastructure conference : maximizing opportunity and mitigating risks in a rapidly growing market

    International Nuclear Information System (INIS)

    2006-01-01

    This conference addressed the challenges facing oil sands development, with particular reference to supply and infrastructure issues. Updates on oil sands markets and opportunities were presented along with strategies for mitigating risks in a rapidly growing market. The best practices for supplying a demanding market through supply shortages and high prices were identified along with policies that should be implemented to help overcome labour shortages. Some presentations expressed how commodities pricing and trends can impact business. Others showed how markets in China and the United States are prepared for oilsands products. The views of other international companies on oil sands was also discussed along with proposed plans to eliminate the infrastructure congestion and risks caused by expanding oil sands development. The challenges and benefits of investing in Alberta's oil sands were reviewed along with strategies to enhance upgrading and refining capacity in the province. Economic drivers and the creation of new markets were examined, and various export opportunities were reviewed along with industry management challenges concerning human resources, labour supply, training and education. The conference featured 10 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs

  16. Diversity, community composition, and dynamics of nonpigmented and late-pigmenting rapidly growing mycobacteria in an urban tap water production and distribution system.

    Science.gov (United States)

    Dubrou, S; Konjek, J; Macheras, E; Welté, B; Guidicelli, L; Chignon, E; Joyeux, M; Gaillard, J L; Heym, B; Tully, T; Sapriel, G

    2013-09-01

    Nonpigmented and late-pigmenting rapidly growing mycobacteria (RGM) have been reported to commonly colonize water production and distribution systems. However, there is little information about the nature and distribution of RGM species within the different parts of such complex networks or about their clustering into specific RGM species communities. We conducted a large-scale survey between 2007 and 2009 in the Parisian urban tap water production and distribution system. We analyzed 1,418 water samples from 36 sites, covering all production units, water storage tanks, and distribution units; RGM isolates were identified by using rpoB gene sequencing. We detected 18 RGM species and putative new species, with most isolates being Mycobacterium chelonae and Mycobacterium llatzerense. Using hierarchical clustering and principal-component analysis, we found that RGM were organized into various communities correlating with water origin (groundwater or surface water) and location within the distribution network. Water treatment plants were more specifically associated with species of the Mycobacterium septicum group. On average, M. chelonae dominated network sites fed by surface water, and M. llatzerense dominated those fed by groundwater. Overall, the M. chelonae prevalence index increased along the distribution network and was associated with a correlative decrease in the prevalence index of M. llatzerense, suggesting competitive or niche exclusion between these two dominant species. Our data describe the great diversity and complexity of RGM species living in the interconnected environments that constitute the water production and distribution system of a large city and highlight the prevalence index of the potentially pathogenic species M. chelonae in the distribution network.

  17. Dark energy and dark matter

    International Nuclear Information System (INIS)

    Comelli, D.; Pietroni, M.; Riotto, A.

    2003-01-01

    It is a puzzle why the densities of dark matter and dark energy are nearly equal today when they scale so differently during the expansion of the universe. This conundrum may be solved if there is a coupling between the two dark sectors. In this Letter we assume that dark matter is made of cold relics with masses depending exponentially on the scalar field associated to dark energy. Since the dynamics of the system is dominated by an attractor solution, the dark matter particle mass is forced to change with time as to ensure that the ratio between the energy densities of dark matter and dark energy become a constant at late times and one readily realizes that the present-day dark matter abundance is not very sensitive to its value when dark matter particles decouple from the thermal bath. We show that the dependence of the present abundance of cold dark matter on the parameters of the model differs drastically from the familiar results where no connection between dark energy and dark matter is present. In particular, we analyze the case in which the cold dark matter particle is the lightest supersymmetric particle

  18. Better to light a candle than curse the darkness: illuminating spatial localization and temporal dynamics of rapid microbial growth in the rhizosphere

    Directory of Open Access Journals (Sweden)

    Patrick M Herron

    2013-09-01

    Full Text Available The rhizosphere is a hotbed of microbial activity in ecosystems, fueled by carbon compounds from plant roots. Basic questions about the location and dynamics of plant-spurred microbial growth in the rhizosphere are difficult to answer with standard, destructive soil assays mixing a multitude of microbe-scale microenvironments in a single, often sieved, sample. Soil microbial biosensors designed with the luxCDABE reporter genes fused to a promoter of interest enable continuous imaging of the microbial perception of (and response to environmental conditions in soil. We used the common soil bacterium Pseudomonas putida KT2440 as host to plasmid pZKH2 containing a fusion between the strong constituitive promoter nptII and luxCDABE (coding for light-emitting proteins from Vibrio fischeri. Experiments in liquid media demonstrated that high light production by KT2440/pZKH2 was associated with rapid microbial growth supported by high carbon availability. We applied the biosensors in microcosms filled with non-sterile soil in which corn (Zea mays L., black poplar (Populus nigra L. or tomato (Solanum lycopersicum L. was growing. We detected minimal light production from microbiosensors in the bulk soil, but biosensors reported continuously from around roots for as long as six days. For corn, peaks of luminescence were detected 1-4 and 20-35 mm along the root axis behind growing root tips, with the location of maximum light production moving farther back from the tip as root growth rate increased. For poplar, luminescence around mature roots increased and decreased on a coordinated diel rhythm, but was not bright near root tips. For tomato, luminescence was dynamic, but did not exhibit a diel rhythm, appearing in acropetal waves along roots. KT2440/pZKH2 revealed that root tips are not always the only, or even the dominant, hotspots for rhizosphere microbial growth, and carbon availability is highly variable in space and time around roots.

  19. Dark matters

    International Nuclear Information System (INIS)

    Silk, Joseph

    2010-01-01

    One of the greatest mysteries in the cosmos is that it is mostly dark. That is, not only is the night sky dark, but also most of the matter and the energy in the universe is dark. For every atom visible in planets, stars and galaxies today there exists at least five or six times as much 'Dark Matter' in the universe. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious but pervasive dark matter, which has profoundly influenced the formation of structure in the universe. Dark energy remains even more elusive, as we lack candidate fields that emerge from well established physics. I will describe various attempts to measure dark matter by direct and indirect means, and discuss the prospects for progress in unravelling dark energy.

  20. Dark Matter

    Directory of Open Access Journals (Sweden)

    Einasto J.

    2011-06-01

    Full Text Available I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic web.

  1. Dark stars

    DEFF Research Database (Denmark)

    Maselli, Andrea; Pnigouras, Pantelis; Nielsen, Niklas Grønlund

    2017-01-01

    to the formation of compact objects predominantly made of dark matter. Considering both fermionic and bosonic (scalar φ4) equations of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties and comparing them with baryonic neutron stars. We also show that these dark......Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead...... objects admit the I-Love-Q universal relations, which link their moments of inertia, tidal deformabilities, and quadrupole moments. Finally, we prove that stars built with a dark matter equation of state are not compact enough to mimic black holes in general relativity, thus making them distinguishable...

  2. Obesity reduces bone density through activation of PPAR gamma and suppression of Wnt/Beta-Catenin in rapidly growing male rats

    Science.gov (United States)

    The relationship between obesity and skeletal development remains largely ambiguous. In this report, total enteral nutrition (TEN) was used to feed growing male rats intragastrically, with a high 45% fat diet (HFD) to induce obesity. We found that fat mass was increased (P<0.05) compared to rats fed...

  3. Unified dark energy-dark matter model with inverse quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Ansoldi, Stefano [ICRA — International Center for Relativistic Astrophysics, INFN — Istituto Nazionale di Fisica Nucleare, and Dipartimento di Matematica e Informatica, Università degli Studi di Udine, via delle Scienze 206, I-33100 Udine (UD) (Italy); Guendelman, Eduardo I., E-mail: ansoldi@fulbrightmail.org, E-mail: guendel@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negeev, Beer-Sheva 84105 (Israel)

    2013-05-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.

  4. Unified dark energy-dark matter model with inverse quintessence

    International Nuclear Information System (INIS)

    Ansoldi, Stefano; Guendelman, Eduardo I.

    2013-01-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future

  5. Dark Matter

    International Nuclear Information System (INIS)

    Holt, S. S.; Bennett, C. L.

    1995-01-01

    These proceedings represent papers presented at the Astrophysics conference in Maryland, organized by NASA Goddard Space Flight Center and the University of Maryland. The topics covered included low mass stars as dark matter, dark matter in galaxies and clusters, cosmic microwave background anisotropy, cold and hot dark matter, and the large scale distribution and motions of galaxies. There were eighty five papers presented. Out of these, 10 have been abstracted for the Energy Science and Technology database

  6. Dark energy

    International Nuclear Information System (INIS)

    Wang, Yun

    2010-01-01

    Dark energy research aims to illuminate the mystery of the observed cosmic acceleration, one of the fundamental problems in physics and astronomy today. This book presents a systematic and detailed review of the current state of dark energy research, with the focus on the examination of the major observational techniques for probing dark energy. It can be used as a textbook to train students and others who wish to enter this extremely active field in cosmology.

  7. Dark Matter

    International Nuclear Information System (INIS)

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-01-01

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter

  8. Dark matter and dark radiation

    International Nuclear Information System (INIS)

    Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc

    2009-01-01

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant α-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on α-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies α-circumflex -3 for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.

  9. Dark Matter

    Indian Academy of Sciences (India)

    What You See Ain't What. You Got, Resonance, Vol.4,. No.9,1999. Dark Matter. 2. Dark Matter in the Universe. Bikram Phookun and Biman Nath. In Part 11 of this article we learnt that there are compelling evidences from dynamics of spiral galaxies, like our own, that there must be non-luminous matter in them. In this.

  10. Dark catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub, E-mail: prateekagrawal@fas.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: randall@physics.harvard.edu, E-mail: jscholtz@physics.harvard.edu [Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138 (United States)

    2017-08-01

    Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whose charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and X-bar , with a small asymmetric component made up of X and C . As the universe cools, it undergoes asymmetric recombination binding the free C s into ( XC ) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.

  11. Management of skeletal Class III malocclusion with unilateral crossbite on a growing patient using facemask-bonded rapid palatal expander and fixed appliances

    Directory of Open Access Journals (Sweden)

    Tinnie Effendy

    2015-01-01

    Full Text Available Facemask (FM and bonded rapid palatal expander (RPE are part of growth modification treatments for correcting skeletal Class III pattern with retrognathic maxilla. This orthopaedic treatment is usually preceded by fixed appliances to achieve aesthetic dental alignment and improve interdigitation. This case report reviews treatment of Class III malocclusion with unilateral crossbite in a 12-year-old boy using FM and bonded RPE, followed by fixed appliances. Choice of FM and bonded RPE was in line with indication which was mild Class III malocclusion with retrognathic maxilla. Execution of treatment was made considering treatment biomechanics and patient cooperation. This orthopaedic treatment was followed by orthodontic treatment specifically aimed to correct unilateral crossbite, canine relationship yet to reach Class I, lower midline shift, as well as unintended dental consequences of using bonded RPE, namely posterior open bite and deepening curve of spee. Posttreatment facial profile and smile are more esthetic. Occlusion is significantly improved both functionally and aesthetically.

  12. Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal beta-lactamase

    DEFF Research Database (Denmark)

    Bagge, N; Ciofu, O; Skovgaard, L T

    2000-01-01

    The aim of this study was to examine the development of resistance of biofilm-growing P. aeruginosa during treatment with ceftazidime. Biofilms were established in vitro using a modified Robbins device (MRD) and in vivo in the rat model of chronic lung infection. Three P. aeruginosa strains...... of ceftazidime to biofilms established in MDR, a statistically significant development of resistance to ceftazidime in PAO 579 or 19676A bacterial populations occurred. When ceftazidime was administered 4 h/day (200 mg/l) for 2 weeks, the frequency of resistant 19676A having MIC>25 mg/l was 4.4 10(-1) compared...... to 6.0-10(-5) in the control biofilm. The same trend was observed after continuous administration of ceftazidime. MICceftazidime of the more resistant variants was increased 500-fold for PAO 579 and 8-fold for 19676A, and the specific basal beta-lactamase activities from 19 to 1,400 units for PAO 579...

  13. Dark coupling

    International Nuclear Information System (INIS)

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S.

    2009-01-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed

  14. Thermalizing Sterile Neutrino Dark Matter.

    Science.gov (United States)

    Hansen, Rasmus S L; Vogl, Stefan

    2017-12-22

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  15. Thermalizing Sterile Neutrino Dark Matter

    Science.gov (United States)

    Hansen, Rasmus S. L.; Vogl, Stefan

    2017-12-01

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  16. Dark Matter

    Science.gov (United States)

    Lincoln, Don

    2013-01-01

    It's a dark, dark universe out there, and I don't mean because the night sky is black. After all, once you leave the shadow of the Earth and get out into space, you're surrounded by countless lights glittering everywhere you look. But for all of Sagan's billions and billions of stars and galaxies, it's a jaw-dropping fact that the ordinary kind of…

  17. Development of an in vitro Assay, based on the BioFilm Ring Test®, for Rapid Profiling of Biofilm-Growing Bacteria

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2016-09-01

    Full Text Available Microbial biofilm represents a major virulence factor associated with chronic and recurrent infections. Pathogenic bacteria embedded in biofilms are highly resistant to environmental and chemical agents, including antibiotics and therefore difficult to eradicate. Thus, reliable tests to assess biofilm formation by bacterial strains as well as the impact of chemicals or antibiotics on biofilm formation represent desirable tools for a most effective therapeutic management and microbiological risk control. Current methods to evaluate biofilm formation are usually time-consuming, costly, and hardly applicable in the clinical setting.The aim of the present study was to develop and assess a simple and reliable in vitro procedure for the characterization of biofilm-producing bacterial strains for future clinical applications based on the BioFilm Ring Test® (BRT technology. The procedure developed for clinical testing (cBRT can provide an accurate and timely (5 hours measurement of biofilm formation for the most common pathogenic bacteria seen in clinical practice. The results gathered by the cBRT assay were in agreement with the traditional crystal violet (CV staining test, according to the kappa coefficient test (kappa = 0.623. However, the cBRT assay showed higher levels of specificity (92.2% and accuracy (88.1% as compared to CV. The results indicate that this procedure offers an easy, rapid and robust assay to test microbial biofilm and a promising tool for clinical microbiology.

  18. Dark-Skies Awareness

    Science.gov (United States)

    Walker, Constance E.

    2009-05-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's natural heritage. More than one fifth of the world population, two thirds of the United States population and one half of the European Union population have already lost naked eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1. Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2. Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3. Organize events in the arts (e.g., a photography contest) 4. Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5. Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.

  19. The dark universe dark matter and dark energy

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    According to the standard cosmological model, 95% of the present mass density of the universe is dark: roughly 70% of the total in the form of dark energy and 25% in the form of dark matter. In a series of four lectures, I will begin by presenting a brief review of cosmology, and then I will review the observational evidence for dark matter and dark energy. I will discuss some of the proposals for dark matter and dark energy, and connect them to high-energy physics. I will also present an overview of an observational program to quantify the properties of dark energy.

  20. Current and future searches for dark matter

    International Nuclear Information System (INIS)

    Bauer, Daniel A.

    2005-01-01

    Recent experimental data confirms that approximately one quarter of the universe consists of cold dark matter. Particle theories provide natural candidates for this dark matter in the form of either Axions or Weakly Interacting Massive Particles (WIMPs). A growing body of experiments is aimed at direct or indirect detection of particle dark matter. I summarize the current status of these experiments and offer projections of their future sensitivity

  1. Dark Matter

    Indian Academy of Sciences (India)

    As if this was not enough, it turns out that if our knowledge of ... are thought to contain dark matter, although the evidences from them are the .... protons, electrons, neutrons ... ratio of protons to neutrons was close to unity then as they were in ...

  2. Dark Matter

    Indian Academy of Sciences (India)

    The study of gas clouds orbiting in the outer regions of spiral galaxies has revealed that their gravitational at- traction is much larger than the stars alone can provide. Over the last twenty years, astronomers have been forced to postulate the presence of large quantities of 'dark matter' to explain their observations. They are ...

  3. Dark Matter

    International Nuclear Information System (INIS)

    Audouze, J.; Tran Thanh Van, J.

    1988-01-01

    The book begins with the papers devoted to the experimental search of signatures of the dark matter which governs the evolution of the Universe as a whole. A series of contributions describe the presently considered experimental techniques (cryogenic detectors, supraconducting detectors...). A real dialogue concerning these techniques has been instaured between particle physicists and astrophysicists. After the progress report of the particle physicists, the book provides the reader with an updated situation concerning the research in cosmology. The second part of the book is devoted to the analysis of the backgrounds at different energies such as the possible role of the cooling flows in the constitution of massive galactic halos. Any search of dark matter implies necessarily the analysis of the spatial distributions of the large scale structures of the Universe. This report is followed by a series of statistical analyses of these distributions. These analyses concern mainly universes filled up with cold dark matter. The last paper of this third part concerns the search of clustering in the spatial distribution of QSOs. The presence of dark matter should affect the solar neighborhood and related to the existence of galactic haloes. The contributions are devoted to the search of such local dark matter. Primordial nucleosynthesis provides a very powerful tool to set up quite constraining limitations on the overall baryonic density. Even if on takes into account the inhomogeneities in density possibly induced by the Quark-Hadron transition, this baryonic density should be much lower than the overall density deduced from the dynamical models of Universe or the inflationary theories

  4. Growing Pains

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Heat expands and cold contracts: it’s a simple thermodynamic rule. But when temperatures swing from 300 K to near-absolute zero, this rule can mean a contraction of more than 80 metres across the LHC’s 27-km-long cryogenic system. Keeping this growth in check are compensators (a.k.a. bellows), which shrink and stretch in response to thermodynamic changes. Leak tests and X-rays now underway in the tunnel have revealed that these “joints” might be suffering from growing pains…   This 25-μm weld crack is thought to be the cause of the helium leaks. Prior to the LS1 warm-up, CERN’s cryogenic experts knew of two points in the machine’s cryogenic distribution system that were leaking helium. Fortunately, these leaks were sufficiently small, confined to known sub-sectors of the cryogenic line and – with help from the vacuum team (TE-VSC) – could easily be compensated for. But as the machine warmed up f...

  5. Gas industry construction expenditures to grow rapidly

    International Nuclear Information System (INIS)

    Quarles, W.R.

    1991-01-01

    Between 1991 and 1993, the natural gas industry will invest $28.297 billion to install additional facilities for natural gas production and storage, transmission, underground storage, gas distribution and for other general expenditures, estimates the American Gas Association as shown in the 1990 Gas Facts. This is a 38% investment increase from the forecasts in the 1989 Gas Facts. This issue forecasts investments of $13.303 billion for 1991 and $18.396 billion for 1992. This issue does not include investments for 1993. In 1989, (the last figures released) the gas industry invested $7,341 billion for new transmission lines, distribution mains, underground storage, production and storage and general facilities. Included in the 1989 expenditures are: $3.980 billion in distribution facilities; $2.081 billion in gas transmission systems and $159 million in underground storage facilities. Investment in new distribution facilities in 1991 and $4.550 billion in 1993. This is a steady increase for these three years. Investments in natural gas transmission facilities show a steady increase also. In 1991, pipe line operating companies will invest $9.391 billion for new facilities, $9.005 in 1992 and $9.901 billion in 1993

  6. Weak lensing: Dark Matter, Dark Energy and Dark Gravity

    International Nuclear Information System (INIS)

    Heavens, Alan

    2009-01-01

    In this non-specialist review I look at how weak lensing can provide information on the dark sector of the Universe. The review concentrates on what can be learned about Dark Matter, Dark Energy and Dark Gravity, and why. On Dark Matter, results on the confrontation of theoretical profiles with observation are reviewed, and measurements of neutrino masses discussed. On Dark Energy, the interest is whether this could be Einstein's cosmological constant, and prospects for high-precision studies of the equation of state are considered. On Dark Gravity, we consider the exciting prospects for future weak lensing surveys to distinguish General Relativity from extra-dimensional or other gravity theories.

  7. Three-Dimensional Evaluation of the Upper Airway Morphological Changes in Growing Patients with Skeletal Class III Malocclusion Treated by Protraction Headgear and Rapid Palatal Expansion: A Comparative Research.

    Directory of Open Access Journals (Sweden)

    Xueling Chen

    Full Text Available The aim of this study was to evaluate the morphological changes of upper airway after protraction headgear and rapid maxillary expansion (PE treatment in growing patients with Class III malocclusion and maxillary skeletal deficiency compared with untreated Class III patients by cone-beam computed tomography (CBCT.Thirty growing patients who have completed PE therapy were included in PE group. The control group (n = 30 was selected from the growing untreated patients with the same diagnosis. The CBCT scans of the pre-treatment (T1 and post-treatment (T2 of PE group and the control group were collected. Reconstruction and registration of the 3D models of T1 and T2 were completed. By comparing the data obtained from T1, T2 and control group, the morphological changes of the upper airway during the PE treatment were evaluated.Comparing with the data from T1 group, the subspinale (A of maxilla and the upper incisor (UI of the T2 group were moved in the anterior direction. The gnathion (Gn of mandible was moved in the posterior-inferior direction. The displacement of the hyoid bone as well as the length and width of dental arch showed significant difference. The volume and mean cross-sectional area of nasopharynx, velopharynx and glossopharynx region showed significant difference. The largest anteroposterior/the largest lateral (AP/LR ratios of the velopharynx and glossopharynx were increased, but the AP/LR ratio of the hypopharynx was decreased. In addition, the length and width of the maxillary dental arch, the displacement of the hyoid bone, the volume of nasopharynx and velopharynx, and the AP/LR ratio of the hypopharynx and velopharynx showed significant difference between the data from control and T2 group.The PE treatment of Class III malocclusion with maxillary skeletal hypoplasia leads to a significant increase in the volume of nasopharynx and velopharynx.

  8. Interacting agegraphic dark energy

    International Nuclear Information System (INIS)

    Wei, Hao; Cai, Rong-Gen

    2009-01-01

    A new dark energy model, named ''agegraphic dark energy'', has been proposed recently, based on the so-called Karolyhazy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed. (orig.)

  9. Dark Tourism

    OpenAIRE

    Bali-Hudáková, Lenka

    2008-01-01

    This thesis is focused on the variability of the demand and the development of new trends in the fields of the tourism industry. Special attention is devoted to a new arising trend of the Dark Tourism. This trend has appeared in the end of the 20th century and it has gained the attraction of media, tourists, tourism specialists and other stakeholders. First part of the thesis is concerned with the variety of the tourism industry and the ethic question of the tourism development. The other par...

  10. Dark Energy Found Stifling Growth in Universe

    Science.gov (United States)

    2008-12-01

    WASHINGTON -- For the first time, astronomers have clearly seen the effects of "dark energy" on the most massive collapsed objects in the universe using NASA's Chandra X-ray Observatory. By tracking how dark energy has stifled the growth of galaxy clusters and combining this with previous studies, scientists have obtained the best clues yet about what dark energy is and what the destiny of the universe could be. This work, which took years to complete, is separate from other methods of dark energy research such as supernovas. These new X-ray results provide a crucial independent test of dark energy, long sought by scientists, which depends on how gravity competes with accelerated expansion in the growth of cosmic structures. Techniques based on distance measurements, such as supernova work, do not have this special sensitivity. Scientists think dark energy is a form of repulsive gravity that now dominates the universe, although they have no clear picture of what it actually is. Understanding the nature of dark energy is one of the biggest problems in science. Possibilities include the cosmological constant, which is equivalent to the energy of empty space. Other possibilities include a modification in general relativity on the largest scales, or a more general physical field. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters Powerful Nearby Supernova Caught By Web Cassiopeia A Comes Alive Across Time and Space To help decide between these options, a new way of looking at dark energy is required. It is accomplished by observing how cosmic acceleration affects the growth of galaxy clusters over time. "This result could be described as 'arrested development of the universe'," said Alexey Vikhlinin of the Smithsonian Astrophysical Observatory in Cambridge, Mass., who led the research. "Whatever is forcing the expansion of the universe to speed up is also forcing its

  11. Decaying dark matter from dark instantons

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Erlich, Joshua; Primulando, Reinard

    2010-01-01

    We construct an explicit, TeV-scale model of decaying dark matter in which the approximate stability of the dark matter candidate is a consequence of a global symmetry that is broken only by instanton-induced operators generated by a non-Abelian dark gauge group. The dominant dark matter decay channels are to standard model leptons. Annihilation of the dark matter to standard model states occurs primarily through the Higgs portal. We show that the mass and lifetime of the dark matter candidate in this model can be chosen to be consistent with the values favored by fits to data from the PAMELA and Fermi-LAT experiments.

  12. Interacting Agegraphic Dark Energy

    OpenAIRE

    Wei, Hao; Cai, Rong-Gen

    2007-01-01

    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\\'{a}rolyh\\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegrap...

  13. Unification of dark energy and dark matter

    International Nuclear Information System (INIS)

    Takahashi, Fuminobu; Yanagida, T.T.

    2006-01-01

    We propose a scenario in which dark energy and dark matter are described in a unified manner. The ultralight pseudo-Nambu-Goldstone (pNG) boson, A, naturally explains the observed magnitude of dark energy, while the bosonic supersymmetry partner of the pNG boson, B, can be a dominant component of dark matter. The decay of B into a pair of electron and positron may explain the 511 keV γ ray from the Galactic Center

  14. Dark matter that can form dark stars

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Huh, Ji-Haeng; Kim, Hyung Do; Scopel, Stefano

    2010-01-01

    The first stars to form in the Universe may be powered by the annihilation of weakly interacting dark matter particles. These so-called dark stars, if observed, may give us a clue about the nature of dark matter. Here we examine which models for particle dark matter satisfy the conditions for the formation of dark stars. We find that in general models with thermal dark matter lead to the formation of dark stars, with few notable exceptions: heavy neutralinos in the presence of coannihilations, annihilations that are resonant at dark matter freeze-out but not in dark stars, some models of neutrinophilic dark matter annihilating into neutrinos only and lighter than about 50 GeV. In particular, we find that a thermal DM candidate in standard Cosmology always forms a dark star as long as its mass is heavier than ≅ 50 GeV and the thermal average of its annihilation cross section is the same at the decoupling temperature and during the dark star formation, as for instance in the case of an annihilation cross section with a non-vanishing s-wave contribution

  15. Mycobacterium lutetiense sp. nov., Mycobacterium montmartrense sp. nov. and Mycobacterium arcueilense sp. nov., members of a novel group of non-pigmented rapidly growing mycobacteria recovered from a water distribution system.

    Science.gov (United States)

    Konjek, Julie; Souded, Sabiha; Guerardel, Yann; Trivelli, Xavier; Bernut, Audrey; Kremer, Laurent; Welte, Benedicte; Joyeux, Michel; Dubrou, Sylvie; Euzeby, Jean-Paul; Gaillard, Jean-Louis; Sapriel, Guillaume; Heym, Beate

    2016-09-01

    From our recent survey of non-pigmented rapidly growing mycobacteria in the Parisian water system, three groups of isolates (taxons 1-3) corresponding to possible novel species were selected for taxonomic study. The three taxa each formed creamy white, rough colonies, had an optimal growth temperature of 30 °C, hydrolyzed Tween 80, were catalase-positive at 22 °C and expressed arylsulfatase activity. All three were susceptible to amikacin, ciprofloxacin and tigecycline. The three taxa produced specific sets of mycolic acids, including one family that has never previously been described, as determined by thin layer chromatography and nuclear magnetic resonance. The partial rpoB sequences (723 bp) showed 4-6 % divergence from each other and more than 5 % differences from the most similar species. Partial 16S rRNA gene sequences showed 99 % identity within each species. The most similar sequences for 16S rRNA genes (98-99 % identity over 1444-1461 bp) were found in the Mycobacterium fortuitum group, Mycobacterium septicum and Mycobacterium farcinogenes. The three taxa formed a new clade (bootstrap value, 99 %) on trees reconstructed from concatenated partial 16S rRNA, hsp65 and rpoB sequences. The above results led us to propose three novel species for the three groups of isolates, namely Mycobacterium lutetiense sp. nov. [type strain 071T=ParisRGMnew_1T (CIP 110656T=DSM 46713T)], Mycobacterium montmartrense sp. nov. [type strain 196T=ParisRGMnew_2T (CIP 110655T=DSM 46714T)] and Mycobacteriu marcueilense sp. nov. [type strain of 269T=ParisRGMnew_3T (CIP 110654T=DSM 46715T)].

  16. Cultural systems for growing potatoes in space

    Science.gov (United States)

    Tibbitts, T.; Bula, R.; Corey, R.; Morrow, R.

    1988-01-01

    Higher plants are being evaluated for life support to provide needed food, oxygen and water as well as removal of carbon dioxide from the atmosphere. The successful utilization of plants in space will require the development of not only highly productive growing systems but also highly efficient bioregenerative systems. It will be necessary to recycle all inedible plant parts and all human wastes so that the entire complement of elemental compounds can be reused. Potatoes have been proposed as one of the desirable crops because they are 1) extremely productive, yielding more than 100 metric tons per hectare from field plantings, 2) the edible tubers are high in digestible starch (70%) and protein (10%) on a dry weight basis, 3) up to 80% of the total plant production is in tubers and thus edible, 4) the plants are easily propagated either from tubers or from tissue culture plantlets, 5) the tubers can be utilized with a minimum of processing, and 6) potatoes can be prepared in a variety of different forms for the human diet (Tibbitts et al., 1982). However potatoes have a growth pattern that complicates the development of growing the plants in controlled systems. Tubers are borne on underground stems that are botanically termed 'rhizomes', but in common usage termed 'stolons'. The stolons must be maintained in a dark, moist area with sufficient provision for enlargement of tubers. Stems rapidly terminate in flowers forcing extensive branching and spreading of plants so that individual plants will cover 0.2 m2 or more area. Thus the growing system must be developed to provide an area that is darkened for tuber and root growth and of sufficient size for plant spread. A system developed for growing potatoes, or any plants, in space will have certain requirements that must be met to make them a useful part of a life support system. The system must 1) be constructed of materials, and involve media, that can be reused for many successive cycles of plant growth, 2

  17. Dark Tourism in Budapest

    OpenAIRE

    Shen, Cen; Li, Jin

    2011-01-01

    A new trend is developing in the tourism market nowadays – dark tourism. The main purpose of the study was to explore the marketing strategies of dark tourism sites in Budapest based on the theoretical overview of dark tourism and data gathering of quantitative research. The study started with a theoretical overview of dark tourism in Budapest. Then, the authors focused on the case study of House of Terror, one of the most important dark tourism sites in Budapest. Last, the research has ...

  18. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  19. Strategies for dark matter detection

    International Nuclear Information System (INIS)

    Silk, J.

    1988-01-01

    The present status of alternative forms of dark matter, both baryonic and nonbaryonic, is reviewed. Alternative arguments are presented for the predominance of either cold dark matter (CDM) or of baryonic dark matter (BDM). Strategies are described for dark matter detection, both for dark matter that consists of weakly interacting relic particles and for dark matter that consists of dark stellar remnants

  20. The Dark Side of Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2013-01-01

    We review severe constraints on asymmetric bosonic dark matter based on observations of old neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic WIMPs can be eectively trapped onto nearby neutron stars, where they can rapidly thermalize and concentrate...... in the core of the star. If some conditions are met, the WIMP population can collapse gravitationally and form a black hole that can eventually destroy the star. Based on the existence of old nearby neutron stars, we can exclude certain classes of dark matter candidates....

  1. Secretly asymmetric dark matter

    Science.gov (United States)

    Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia

    2017-01-01

    We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.

  2. Impeded Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-12

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  3. Impeded Dark Matter

    International Nuclear Information System (INIS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  4. EDITORIAL: Focus on Dark Matter and Particle Physics

    Science.gov (United States)

    Aprile, Elena; Profumo, Stefano

    2009-10-01

    The quest for the nature of dark matter has reached a historical point in time, with several different and complementary experiments on the verge of conclusively exploring large portions of the parameter space of the most theoretically compelling particle dark matter models. This focus issue on dark matter and particle physics brings together a broad selection of invited articles from the leading experimental and theoretical groups in the field. The leitmotif of the collection is the need for a multi-faceted search strategy that includes complementary experimental and theoretical techniques with the common goal of a sound understanding of the fundamental particle physical nature of dark matter. These include theoretical modelling, high-energy colliders and direct and indirect searches. We are confident that the works collected here present the state of the art of this rapidly changing field and will be of interest to both experts in the topic of dark matter as well as to those new to this exciting field. Focus on Dark Matter and Particle Physics Contents DARK MATTER AND ASTROPHYSICS Scintillator-based detectors for dark matter searches I S K Kim, H J Kim and Y D Kim Cosmology: small-scale issues Joel R Primack Big Bang nucleosynthesis and particle dark matter Karsten Jedamzik and Maxim Pospelov Particle models and the small-scale structure of dark matter Torsten Bringmann DARK MATTER AND COLLIDERS Dark matter in the MSSM R C Cotta, J S Gainer, J L Hewett and T G Rizzo The role of an e+e- linear collider in the study of cosmic dark matter M Battaglia Collider, direct and indirect detection of supersymmetric dark matter Howard Baer, Eun-Kyung Park and Xerxes Tata INDIRECT PARTICLE DARK MATTER SEARCHES:EXPERIMENTS PAMELA and indirect dark matter searches M Boezio et al An indirect search for dark matter using antideuterons: the GAPS experiment C J Hailey Perspectives for indirect dark matter search with AMS-2 using cosmic-ray electrons and positrons B Beischer, P von

  5. Growing media [Chapter 5

    Science.gov (United States)

    Douglass F. Jacobs; Thomas D. Landis; Tara Luna

    2009-01-01

    Selecting the proper growing medium is one of the most important considerations in nursery plant production. A growing medium can be defined as a substance through which roots grow and extract water and nutrients. In native plant nurseries, a growing medium can consist of native soil but is more commonly an "artificial soil" composed of materials such as peat...

  6. DarkSide search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D' Angelo, D.; Davini, S.; Vincenzi, M. De; Haas, E. De; Derbin, A.; Pietro, G. Di; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-11-22

    The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.

  7. Very heavy dark Skyrmions

    International Nuclear Information System (INIS)

    Dick, Rainer

    2017-01-01

    A dark sector with a solitonic component provides a means to circumvent the problem of generically low annihilation cross sections of very heavy dark matter particles. At the same time, enhanced annihilation cross sections are necessary for indirect detection of very heavy dark matter components beyond 100 TeV. Non-thermally produced dark matter in this mass range could therefore contribute to the cosmic γ-ray and neutrino flux above 100 TeV, and massive Skyrmions provide an interesting framework for the discussion of these scenarios. Therefore a Higgs portal and a neutrino portal for very heavy Skyrmion dark matter are discussed. The Higgs portal model demonstrates a dark mediator bottleneck, where limitations on particle annihilation cross sections will prevent a signal from the potentially large soliton annihilation cross sections. This problem can be avoided in models where the dark mediator decays. This is illustrated by the neutrino portal for Skyrmion dark matter. (orig.)

  8. Codecaying Dark Matter.

    Science.gov (United States)

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  9. Collapsed Dark Matter Structures.

    Science.gov (United States)

    Buckley, Matthew R; DiFranzo, Anthony

    2018-02-02

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  10. Collapsed Dark Matter Structures

    Science.gov (United States)

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-02-01

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  11. Baryonic Dark Matter

    OpenAIRE

    Silk, Joseph

    1994-01-01

    In the first two of these lectures, I present the evidence for baryonic dark matter and describe possible forms that it may take. The final lecture discusses formation of baryonic dark matter, and sets the cosmological context.

  12. Dark matter detectors

    International Nuclear Information System (INIS)

    Forster, G.

    1995-01-01

    A fundamental question of astrophysics and cosmology is the nature of dark matter. Astrophysical observations show clearly the existence of some kind of dark matter, though they cannot yet reveal its nature. Dark matter can consist of baryonic particles, or of other (known or unknown) elementary particles. Baryonic dark matter probably exists in the form of dust, gas, or small stars. Other elementary particles constituting the dark matter can possibly be measured in terrestrial experiments. Possibilities for dark matter particles are neutrinos, axions and weakly interacting massive particles (WIMPs). While a direct detection of relic neutrinos seems at the moment impossible, there are experiments looking for baryonic dark matter in the form of Massive Compact Halo Objects, and for particle dark matter in the form of axions and WIMPS. (orig.)

  13. Very heavy dark Skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Rainer [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, SK (Canada)

    2017-12-15

    A dark sector with a solitonic component provides a means to circumvent the problem of generically low annihilation cross sections of very heavy dark matter particles. At the same time, enhanced annihilation cross sections are necessary for indirect detection of very heavy dark matter components beyond 100 TeV. Non-thermally produced dark matter in this mass range could therefore contribute to the cosmic γ-ray and neutrino flux above 100 TeV, and massive Skyrmions provide an interesting framework for the discussion of these scenarios. Therefore a Higgs portal and a neutrino portal for very heavy Skyrmion dark matter are discussed. The Higgs portal model demonstrates a dark mediator bottleneck, where limitations on particle annihilation cross sections will prevent a signal from the potentially large soliton annihilation cross sections. This problem can be avoided in models where the dark mediator decays. This is illustrated by the neutrino portal for Skyrmion dark matter. (orig.)

  14. The dark side of cosmology: dark matter and dark energy.

    Science.gov (United States)

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  15. Did LIGO Detect Dark Matter?

    Science.gov (United States)

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D; Raccanelli, Alvise; Riess, Adam G

    2016-05-20

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20M_{⊙}≲M_{bh}≲100M_{⊙} where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2-53  Gpc^{-3} yr^{-1} rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests.

  16. Dark matter and dark energy from the solution of the strong CP problem.

    Science.gov (United States)

    Mainini, Roberto; Bonometto, Silvio A

    2004-09-17

    The Peccei-Quinn (PQ) solution of the strong CP problem requires the existence of axions, which are viable candidates for dark matter. If the Nambu-Goldstone potential of the PQ model is replaced by a potential V(|Phi|) admitting a tracker solution, the scalar field |Phi| can account for dark energy, while the phase of Phi yields axion dark matter. If V is a supergravity (SUGRA) potential, the model essentially depends on a single parameter, the energy scale Lambda. Once we set Lambda approximately equal to 10(10) GeV at the quark-hadron transition, |Phi| naturally passes through values suitable to solve the strong CP problem, later growing to values providing fair amounts of dark matter and dark energy.

  17. Dark Sky Education | CTIO

    Science.gov (United States)

    Calendar Activities NOAO-S EPO Programs CADIAS Astro Chile Hugo E. Schwarz Telescope Dark Sky Education ‹› You are here CTIO Home » Outreach » NOAO-S EPO Programs » Dark Sky Education Dark Sky Education Dark Sky Education (in progress) Is an EPO Program. It runs Globe at Night, an annual program to

  18. Dark Matter Effective Theory

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-01-01

    We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....

  19. Nonthermal Supermassive Dark Matter

    Science.gov (United States)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  20. Nonthermal Supermassive Dark Matter

    International Nuclear Information System (INIS)

    Chung, D.J.; Chung, D.J.; Kolb, E.W.; Kolb, E.W.; Riotto, A.

    1998-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well. copyright 1998 The American Physical Society

  1. Nonthermal Supermassive Dark Matter

    OpenAIRE

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1998-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  2. Dark Mass Creation During EWPT Via Dark Energy Interaction

    OpenAIRE

    Kisslinger, Leonard S.; Casper, Steven

    2013-01-01

    We add Dark Matter Dark Energy terms with a quintessence field interacting with a Dark Matter field to a MSSM EW Lagrangian previously used to calculate the magnetic field created during the EWPT. From the expectation value of the quintessence field we estimate the Dark Matter mass for parameters used in previous work on Dark Matter-Dark Energy interactions.

  3. How do normal faults grow?

    OpenAIRE

    Blækkan, Ingvild; Bell, Rebecca; Rotevatn, Atle; Jackson, Christopher; Tvedt, Anette

    2018-01-01

    Faults grow via a sympathetic increase in their displacement and length (isolated fault model), or by rapid length establishment and subsequent displacement accrual (constant-length fault model). To test the significance and applicability of these two models, we use time-series displacement (D) and length (L) data extracted for faults from nature and experiments. We document a range of fault behaviours, from sympathetic D-L fault growth (isolated growth) to sub-vertical D-L growth trajectorie...

  4. Dark Matter Caustics

    International Nuclear Information System (INIS)

    Natarajan, Aravind

    2010-01-01

    The continuous infall of dark matter with low velocity dispersion in galactic halos leads to the formation of high density structures called caustics. Dark matter caustics are of two kinds : outer and inner. Outer caustics are thin spherical shells surrounding galaxies while inner caustics have a more complicated structure that depends on the dark matter angular momentum distribution. The presence of a dark matter caustic in the plane of the galaxy modifies the gas density in its neighborhood which may lead to observable effects. Caustics are also relevant to direct and indirect dark matter searches.

  5. Dark Matter Searches

    International Nuclear Information System (INIS)

    Moriyama, Shigetaka

    2008-01-01

    Recent cosmological as well as historical observations of rotational curves of galaxies strongly suggest the existence of dark matter. It is also widely believed that dark matter consists of unknown elementary particles. However, astrophysical observations based on gravitational effects alone do not provide sufficient information on the properties of dark matter. In this study, the status of dark matter searches is investigated by observing high-energy neutrinos from the sun and the earth and by observing nuclear recoils in laboratory targets. The successful detection of dark matter by these methods facilitates systematic studies of its properties. Finally, the XMASS experiment, which is due to start at the Kamioka Observatory, is introduced

  6. Dark Matter in the Universe

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The question “What is the Universe made of?” is the longest outstanding problem in all of physics. Ordinary atoms only constitute 5% of the total, while the rest is of unknown composition. Already in 1933 Fritz Zwicky observed that the rapid motions of objects within clusters of galaxies were unexplained by the gravitation pull of luminous matter, and he postulated the existence of Dunkle Materie, or dark matter. A variety of dark matter candidates exist, including new fundamental particles already postulated in particle theories: axions and WIMPs (weakly interacting massive particles). Over the past 25 years, there has been a three pronged approach to WIMP detection: creating them at particle accelerators; searched for detection of astrophysical WIMPs scattering off of nuclei in underground detectors; and “indirect detection” of WIMP annihilation products (neutrinos, positrons, or photons). As yet the LHC has only placed bounds rather than finding discovery. For 13 years the DAMA experiment has proc...

  7. Hunting the dark Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael; Grohsjean, Alexander; Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwanenberger, Christian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Penning, Bjoern [Bristol Univ. (United Kingdom). H.H. Wills Physics Lab.

    2017-05-15

    We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of the particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.

  8. Hunting the dark Higgs

    International Nuclear Information System (INIS)

    Duerr, Michael; Grohsjean, Alexander; Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwanenberger, Christian; Penning, Bjoern

    2017-05-01

    We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of the particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.

  9. On the capture of dark matter by neutron stars

    International Nuclear Information System (INIS)

    Güver, Tolga; Erkoca, Arif Emre; Sarcevic, Ina; Reno, Mary Hall

    2014-01-01

    We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into account dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross section with the nucleons as well as dark matter self-interaction cross section, based on the observation of old neutron stars. We show that for a dark matter density of 10 3 GeV/cm 3 and dark matter mass m χ ∼< 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for m χ ∼ 10 GeV when the dark matter interaction cross section with the nucleons ranges from σ χn ∼ 10 −52 cm 2 to σ χn ∼ 10 −57 cm 2 , the dark matter self-interaction cross section limit is σ χχ ∼< 10 −33 cm 2 , which is about ten orders of magnitude stronger than the Bullet Cluster limit

  10. Dark nebulae, dark lanes, and dust belts

    CERN Document Server

    Cooke, Antony

    2012-01-01

    As probably the only book of its type, this work is aimed at the observer who wants to spend time with something less conventional than the usual fare. Because we usually see objects in space by means of illumination of one kind or another, it has become routine to see them only in these terms. However, part of almost everything that we see is the defining dimension of dark shading, or even the complete obscuration of entire regions in space. Thus this book is focused on everything dark in space: those dark voids in the stellar fabric that mystified astronomers of old; the dark lanes reported in many star clusters; the magical dust belts or dusty regions that have given so many galaxies their identities; the great swirling 'folds' that we associate with bright nebulae; the small dark feature detectable even in some planetary nebulae; and more. Many observers pay scant attention to dark objects and details. Perhaps they are insufficiently aware of them or of the viewing potential they hold, but also it may be...

  11. Hidden charged dark matter

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kaplinghat, Manoj; Tu, Huitzu; Yu, Hai-Bo

    2009-01-01

    Can dark matter be stabilized by charge conservation, just as the electron is in the standard model? We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact (\\rm U)(1) gauge symmetry of the hidden sector. Such candidates are predicted in WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many novel properties not shared by neutral dark matter: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may reduce its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ∼ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially impacting properties of the Bullet Cluster and the observed morphology of galactic halos. We analyze all of these effects in a WIMPless model in which the hidden sector is a simplified version of the minimal supersymmetric standard model and the dark matter is a hidden sector stau. We find that charged hidden dark matter is viable and consistent with the correct relic density for reasonable model parameters and dark matter masses in the range 1 GeV ∼ X ∼< 10 TeV. At the same time, in the preferred range of parameters, this model predicts cores in the dark matter halos of small galaxies and other halo properties that may be within the reach of future observations. These models therefore provide a viable and well-motivated framework for collisional dark matter with Sommerfeld enhancement, with novel implications for astrophysics and dark matter searches

  12. How fast do eels grow

    International Nuclear Information System (INIS)

    Hansen, H.J.M.

    1988-01-01

    Not so very much about the growth pattern of the eel is known yet. Eels move about nearly all the time. They are thus very difficult to follow and we do not, for examble, yet know how long it actually takes for them to grow to maturity in the wild. So far, a macroscopic analysis of the number of bright and dark areas (growth rings) in the 'earstones' has been used to determine eel age, but this method was recently challenged. Use of radioisotopes has been suggested previously for this purpose. For this present study the rare earth elements, europium-152 and europium-155 are used. When incubated in artificial sea water, a satisfactory final radioactive label was achieved. Two experiments were planned in collaboration with the Swedish Environmental Protection Agency. 2000 Elvers were set out in 1982, in the cooling water outlet of the Oskarshamn nuclear power plant, each marked with europium-155. In 1984 another 10 000 elvers labelled with europium-152 were set out under similar conditions. The idea was mainly to see how fast the eels would grow, and to compare their known age with that determined by examining the earstones. Results showed that there was no clear-cut correlation between actual eel age and the biological age determination used so far. During four years, only 10 of the original 1300 eels were recaptured. It is thus hard to say anything definite from our results on the viability of setting out elvers in the environment

  13. Dark discrete gauge symmetries

    International Nuclear Information System (INIS)

    Batell, Brian

    2011-01-01

    We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.

  14. Detecting dark matter

    International Nuclear Information System (INIS)

    Dixon, Roger L.

    2000-01-01

    Dark matter is one of the most pressing problems in modern cosmology and particle physic research. This talk will motivate the existence of dark matter by reviewing the main experimental evidence for its existence, the rotation curves of galaxies and the motions of galaxies about one another. It will then go on to review the corroborating theoretical motivations before combining all the supporting evidence to explore some of the possibilities for dark matter along with its expected properties. This will lay the ground work for dark matter detection. A number of differing techniques are being developed and used to detect dark matter. These will be briefly discussed before the focus turns to cryogenic detection techniques. Finally, some preliminary results and expectations will be given for the Cryogenic Dark Matter Search (CDMS) experiment

  15. Clumpy cold dark matter

    Science.gov (United States)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  16. Charming dark matter

    Science.gov (United States)

    Jubb, Thomas; Kirk, Matthew; Lenz, Alexander

    2017-12-01

    We have considered a model of Dark Minimal Flavour Violation (DMFV), in which a triplet of dark matter particles couple to right-handed up-type quarks via a heavy colour-charged scalar mediator. By studying a large spectrum of possible constraints, and assessing the entire parameter space using a Markov Chain Monte Carlo (MCMC), we can place strong restrictions on the allowed parameter space for dark matter models of this type.

  17. Interacting warm dark matter

    International Nuclear Information System (INIS)

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo

    2013-01-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ m α ρ e β form, where ρ m and ρ e are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w m and w e of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used

  18. Dark energy and extended dark matter halos

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  19. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  20. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  1. Metastable dark energy

    Directory of Open Access Journals (Sweden)

    Ricardo G. Landim

    2017-01-01

    Full Text Available We build a model of metastable dark energy, in which the observed vacuum energy is the value of the scalar potential at the false vacuum. The scalar potential is given by a sum of even self-interactions up to order six. The deviation from the Minkowski vacuum is due to a term suppressed by the Planck scale. The decay time of the metastable vacuum can easily accommodate a mean life time compatible with the age of the universe. The metastable dark energy is also embedded into a model with SU(2R symmetry. The dark energy doublet and the dark matter doublet naturally interact with each other. A three-body decay of the dark energy particle into (cold and warm dark matter can be as long as large fraction of the age of the universe, if the mediator is massive enough, the lower bound being at intermediate energy level some orders below the grand unification scale. Such a decay shows a different form of interaction between dark matter and dark energy, and the model opens a new window to investigate the dark sector from the point-of-view of particle physics.

  2. Hybrid Dark Matter

    OpenAIRE

    Chao, Wei

    2018-01-01

    Dark matter can be produced in the early universe via the freeze-in or freeze-out mechanisms. Both scenarios were investigated in references, but the production of dark matters via the combination of these two mechanisms are not addressed. In this paper we propose a hybrid dark matter model where dark matters have two components with one component produced thermally and the other one produced non-thermally. We present for the first time the analytical calculation for the relic abundance of th...

  3. Dark matter and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ''cold'' and ''hot'' non-baryonic candidates is shown to depend on the assumed ''seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed

  4. Dark U (1)

    International Nuclear Information System (INIS)

    Chang, Chia-Feng; Ma, Ernest; Yuan, Tzu-Chiang

    2015-01-01

    In this talk we will explore the possibility of adding a local U(1) dark sector to the standard model with the Higgs boson as a portal connecting the visible standard model sector and the dark one. We will discuss existing experimental constraint on the model parameters from the invisible width of Higgs decay. Implications of such a dark U(1) sector on phenomenology at the Large Hardon Collider will be addressed. In particular, detailed results for the non-standard signals of multi-lepton-jets that arise from this simple dark sector will be presented. (paper)

  5. Searching for dark matter

    Science.gov (United States)

    Mateo, Mario

    1994-01-01

    Three teams of astronomers believe they have independently found evidence for dark matter in our galaxy. A brief history of the search for dark matter is presented. The use of microlensing-event observation for spotting dark matter is described. The equipment required to observe microlensing events and three groups working on dark matter detection are discussed. The three groups are the Massive Compact Halo Objects (MACHO) Project team, the Experience de Recherche d'Objets Sombres (EROS) team, and the Optical Gravitational Lensing Experiment (OGLE) team. The first apparent detections of microlensing events by the three teams are briefly reported.

  6. Chaplygin dark star

    International Nuclear Information System (INIS)

    Bertolami, O.; Paramos, J.

    2005-01-01

    We study the general properties of a spherically symmetric body described through the generalized Chaplygin equation of state. We conclude that such an object, dubbed generalized Chaplygin dark star, should exist within the context of the generalized Chaplygin gas (GCG) model of unification of dark energy and dark matter, and derive expressions for its size and expansion velocity. A criteria for the survival of the perturbations in the GCG background that give origin to the dark star are developed, and its main features are analyzed

  7. Asymmetric Dark Matter and Dark Radiation

    International Nuclear Information System (INIS)

    Blennow, Mattias; Martinez, Enrique Fernandez; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum

  8. Dark gamma-ray bursts

    Science.gov (United States)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  9. Nonlinear spherical perturbations in quintessence models of dark energy

    Science.gov (United States)

    Pratap Rajvanshi, Manvendra; Bagla, J. S.

    2018-06-01

    Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from ‑1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.

  10. Asymmetric Dark Matter and Dark Radiation

    CERN Document Server

    Blennow, Mattias; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, pre...

  11. Dark Energy vs. Dark Matter: Towards a Unifying Scalar Field?

    OpenAIRE

    Arbey, A.

    2008-01-01

    The standard model of cosmology suggests the existence of two components, "dark matter" and "dark energy", which determine the fate of the Universe. Their nature is still under investigation, and no direct proof of their existences has emerged yet. There exist alternative models which reinterpret the cosmological observations, for example by replacing the dark energy/dark matter hypothesis by the existence of a unique dark component, the dark fluid, which is able to mimic the behaviour of bot...

  12. Dark energy and dark matter from hidden symmetry of gravity model with a non-Riemannian volume form

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, Eduardo [Ben-Gurion University of the Negev, Department of Physics, Beersheba (Israel); Nissimov, Emil; Pacheva, Svetlana [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2015-10-15

    We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by √(-g) (square root of the determinant of the pertinent Riemannian metric) and another non-Riemannian volume form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless ''dust'' fluid which we can identify with the dark matter completely decoupled from the dark energy. The form of both the dark energy and dark matter that results from the above class of models is insensitive to the specific form of the scalar field Lagrangian. By adding an appropriate perturbation, which breaks the above hidden symmetry and along with this couples dark matter and dark energy, we also suggest a way to obtain growing dark energy in the present universe's epoch without evolution pathologies. (orig.)

  13. Superball dark matter

    CERN Document Server

    Kusenko, A

    1999-01-01

    Supersymmetric models predict a natural dark-matter candidate, stable baryonic Q-balls. They could be copiously produced in the early Universe as a by-product of the Affleck-Dine baryogenesis. I review the cosmological and astrophysical implications, methods of detection, and the present limits on this form of dark matter.

  14. Baryonic Dark Matter

    OpenAIRE

    De Paolis, F.; Jetzer, Ph.; Ingrosso, G.; Roncadelli, M.

    1997-01-01

    Reasons supporting the idea that most of the dark matter in galaxies and clusters of galaxies is baryonic are discussed. Moreover, it is argued that most of the dark matter in galactic halos should be in the form of MACHOs and cold molecular clouds.

  15. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  16. The Dark Matter Problem

    NARCIS (Netherlands)

    Sanders, Robert H.

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters

  17. Asymmetric dark matter

    International Nuclear Information System (INIS)

    Kaplan, David E.; Luty, Markus A.; Zurek, Kathryn M.

    2009-01-01

    We consider a simple class of models in which the relic density of dark matter is determined by the baryon asymmetry of the Universe. In these models a B-L asymmetry generated at high temperatures is transferred to the dark matter, which is charged under B-L. The interactions that transfer the asymmetry decouple at temperatures above the dark matter mass, freezing in a dark matter asymmetry of order the baryon asymmetry. This explains the observed relation between the baryon and dark matter densities for the dark matter mass in the range 5-15 GeV. The symmetric component of the dark matter can annihilate efficiently to light pseudoscalar Higgs particles a or via t-channel exchange of new scalar doublets. The first possibility allows for h 0 →aa decays, while the second predicts a light charged Higgs-like scalar decaying to τν. Direct detection can arise from Higgs exchange in the first model or a nonzero magnetic moment in the second. In supersymmetric models, the would-be lightest supersymmetric partner can decay into pairs of dark matter particles plus standard model particles, possibly with displaced vertices.

  18. Resonant SIMP dark matter

    Directory of Open Access Journals (Sweden)

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  19. Sterile neutrino dark matter

    CERN Document Server

    Merle, Alexander

    2017-01-01

    This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.

  20. Macro Dark Matter

    CERN Document Server

    Jacobs, David M; Lynn, Bryan W.

    2015-01-01

    Dark matter is a vital component of the current best model of our universe, $\\Lambda$CDM. There are leading candidates for what the dark matter could be (e.g. weakly-interacting massive particles, or axions), but no compelling observational or experimental evidence exists to support these particular candidates, nor any beyond-the-Standard-Model physics that might produce such candidates. This suggests that other dark matter candidates, including ones that might arise in the Standard Model, should receive increased attention. Here we consider a general class of dark matter candidates with characteristic masses and interaction cross-sections characterized in units of grams and cm$^2$, respectively -- we therefore dub these macroscopic objects as Macros. Such dark matter candidates could potentially be assembled out of Standard Model particles (quarks and leptons) in the early universe. A combination of earth-based, astrophysical, and cosmological observations constrain a portion of the Macro parameter space; ho...

  1. Confronting the dark side of higher education

    DEFF Research Database (Denmark)

    Bengtsen, Søren Smedegaard; Barnett, Ronald

    2017-01-01

    within higher education is not a symptom we should fear and avoid. Having the ability and courage to face these darker educational aspects of everyday higher education practice will enable students and teachers to find renewed hope in the university as an institution for personal as well as professional......In this paper we philosophically explore the notion of darkness within higher education teaching and learning. Within the present-day discourse of how to make visible and to explicate teaching and learning strategies through alignment procedures and evidence-based intellectual leadership, we argue...... that dark spots and blind angles grow too. As we struggle to make visible and to evaluate, assess, manage and organise higher education, the darkness of the institution actually expands. We use the term ‘dark’ to comprehend challenges, situations, reactions, aims and goals, which cannot easily be understood...

  2. Dark energy with fine redshift sampling

    Science.gov (United States)

    Linder, Eric V.

    2007-03-01

    The cosmological constant and many other possible origins for acceleration of the cosmic expansion possess variations in the dark energy properties slow on the Hubble time scale. Given that models with more rapid variation, or even phase transitions, are possible though, we examine the fineness in redshift with which cosmological probes can realistically be employed, and what constraints this could impose on dark energy behavior. In particular, we discuss various aspects of baryon acoustic oscillations, and their use to measure the Hubble parameter H(z). We find that currently considered cosmological probes have an innate resolution no finer than Δz≈0.2 0.3.

  3. Dark energy with fine redshift sampling

    International Nuclear Information System (INIS)

    Linder, Eric V.

    2007-01-01

    The cosmological constant and many other possible origins for acceleration of the cosmic expansion possess variations in the dark energy properties slow on the Hubble time scale. Given that models with more rapid variation, or even phase transitions, are possible though, we examine the fineness in redshift with which cosmological probes can realistically be employed, and what constraints this could impose on dark energy behavior. In particular, we discuss various aspects of baryon acoustic oscillations, and their use to measure the Hubble parameter H(z). We find that currently considered cosmological probes have an innate resolution no finer than Δz≅0.2-0.3

  4. Dark matter: the astrophysical case

    International Nuclear Information System (INIS)

    Silk, J.

    2012-01-01

    The identification of dark matter is one of the most urgent problems in cosmology. I describe the astrophysical case for dark matter, from both an observational and a theoretical perspective. This overview will therefore focus on the observational motivations rather than the particle physics aspects of dark matter constraints on specific dark matter candidates. First, however, I summarize the astronomical evidence for dark matter, then I highlight the weaknesses of the standard cold dark matter model (LCDM) to provide a robust explanation of some observations. The greatest weakness in the dark matter saga is that we have not yet identified the nature of dark matter itself

  5. Exothermic dark matter

    International Nuclear Information System (INIS)

    Graham, Peter W.; Saraswat, Prashant; Harnik, Roni; Rajendran, Surjeet

    2010-01-01

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass ∼few GeV and splittings ∼5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state. In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100.

  6. Growing Safflower in Utah

    OpenAIRE

    Pace, M. G.; Israelsen, C. E.; Creech, E.; Allen, N.

    2015-01-01

    This fact sheet provides information on growing safflower in Utah. It has become popular on dryland farms in rotation with winter wheat. Safflower seed provides three products, oil, meal, and birdseed.

  7. Dark matter maps reveal cosmic scaffolding

    Energy Technology Data Exchange (ETDEWEB)

    Massey, R; Rhodes, J; Ellis, R; Scoville, N; Capak, P [CALTECH, Pasadena, CA 91125 (United States); Rhodes, J [CALTECH, Jet Prop Lab, Pasadena, CA 91109 (United States); Leauthaud, A; Kneib, J P [Lab Astrophys Marseille, F-13376 Marseille, (France); Finoguenov, A [Max Planck Inst Extraterr Phys, D-85748 Garching, (Germany); Bacon, D; Taylor, A [Inst Astron, Edinburgh EH9 3HJ, Midlothian, (United Kingdom); Aussel, H; Refregier, A [CNRS, CEA, Unite Mixte Rech, AIM, F-91191 Gif Sur Yvette, (France); Koekemoer, A; Mobasher, B [Univ Paris 07, CE Saclay, UMR 7158, F-91191 Gif Sur Yvette, (France); McCracken, H [Space Telescope Sci Inst, Baltimore, MD 21218 (United States); Pires, S; Starck, J L [Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, (France); Pires, S [Ctr Etud Saclay, CEA, DSM, DAPNIA, SEDI, F-91191 Gif Sur Yvette, (France); Sasaki, S; Taniguchi, Y [Ehime Univ, Dept Phys, Matsuyama, Ehime 7908577, (Japan); Taylor, J [Univ Waterloo, Dept Phys and Astron, Waterloo, ON N2L 3G1, (Canada)

    2007-07-01

    Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter - whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built. (authors)

  8. Dark matter maps reveal cosmic scaffolding

    International Nuclear Information System (INIS)

    Massey, R.; Rhodes, J.; Ellis, R.; Scoville, N.; Capak, P.; Rhodes, J.; Leauthaud, A.; Kneib, J.P.; Finoguenov, A.; Bacon, D.; Taylor, A.; Aussel, H.; Refregier, A.; Koekemoer, A.; Mobasher, B.; McCracken, H.; Pires, S.; Starck, J.L.; Pires, S.; Sasaki, S.; Taniguchi, Y.; Taylor, J.

    2007-01-01

    Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter - whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built. (authors)

  9. Dark matter maps reveal cosmic scaffolding.

    Science.gov (United States)

    Massey, Richard; Rhodes, Jason; Ellis, Richard; Scoville, Nick; Leauthaud, Alexie; Finoguenov, Alexis; Capak, Peter; Bacon, David; Aussel, Hervé; Kneib, Jean-Paul; Koekemoer, Anton; McCracken, Henry; Mobasher, Bahram; Pires, Sandrine; Refregier, Alexandre; Sasaki, Shunji; Starck, Jean-Luc; Taniguchi, Yoshi; Taylor, Andy; Taylor, James

    2007-01-18

    Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter--whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built.

  10. Review on Dark Photon

    Directory of Open Access Journals (Sweden)

    Curciarello Francesca

    2016-01-01

    Full Text Available e+e− collider experiments at the intensity frontier are naturally suited to probe the existence of a force beyond the Standard Model between WIMPs, the most viable dark matter candidates. The mediator of this new force, known as dark photon, should be a new vector gauge boson very weakly coupled to the Standard Model photon. No significant signal has been observed so far. I will report on current limits set on the coupling factor ε2 between the photon and the dark photon by e+e− collider experiments.

  11. Working the Dark Side

    DEFF Research Database (Denmark)

    Bjering, Jens Christian Borrebye

    A few days after the terror attacks of 9/11, then Vice President Dick Cheney appeared on television with a call for “working the dark side.” While still unclear what this expression entailed at the time, Cheney's comment appears in retrospect to almost have been prophetic for the years to come....... By analyzing official reports and testimonies from soldiers partaking in the War On Terror, the dissertation's second part—dark arts—focuses on the transformation of the dark side into a productive space in which “information” and the hunt for said information overshadowed all legal, ethical, or political...

  12. Films and dark room

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    After we know where the radiographic come from, then we must know about the film and also dark room. So, this chapter 5 discusses the two main components for radiography work that is film and dark room, places to process the film. Film are structured with three structured that are basic structured, emulsion and protection structured. So, this film can be classified either with their speed, screen and standard that used. The process to wash the film must be done in dark room otherwise the radiographer cannot get what are they inspected. The processing of film will be discussed briefly in next chapter.

  13. Auschwitz dark tourism -kohteena

    OpenAIRE

    Kuusimäki, Karita

    2015-01-01

    Dark tourism eli synkkä matkailu on matkustamista kohteisiin, jotka liittyvät jollain tavalla kuolemaan, kauhuun, kärsimykseen tai katastrofeihin. Dark tourism on ilmiönä suhteellisen tuore, mutta sen historia juontaa juurensa jo antiikin ajan gladiaattoritaisteluihin. Ilmiötä on tutkittu jonkin verran ja siitä on tehty muutamia opinnäytetöitä. Yksi tunnetuimmista ja eniten vierailluista dark tourism -kohteista on Auschwitzin keskitysleiri. Auschwitz aloitti toimintansa vuonna 1940 ja le...

  14. Fingerprinting dark energy. II. Weak lensing and galaxy clustering tests

    International Nuclear Information System (INIS)

    Sapone, Domenico; Kunz, Martin; Amendola, Luca

    2010-01-01

    The characterization of dark energy is a central task of cosmology. To go beyond a cosmological constant, we need to introduce at least an equation of state and a sound speed and consider observational tests that involve perturbations. If dark energy is not completely homogeneous on observable scales, then the Poisson equation is modified and dark matter clustering is directly affected. One can then search for observational effects of dark energy clustering using dark matter as a probe. In this paper we exploit an analytical approximate solution of the perturbation equations in a general dark energy cosmology to analyze the performance of next-decade large-scale surveys in constraining equation of state and sound speed. We find that tomographic weak lensing and galaxy redshift surveys can constrain the sound speed of the dark energy only if the latter is small, of the order of c s < or approx. 0.01 (in units of c). For larger sound speeds the error grows to 100% and more. We conclude that large-scale structure observations contain very little information about the perturbations in canonical scalar field models with a sound speed of unity. Nevertheless, they are able to detect the presence of cold dark energy, i.e. a dark energy with nonrelativistic speed of sound.

  15. Cold dark matter plus not-so-clumpy dark relics

    NARCIS (Netherlands)

    Diamanti, R.; Ando, S.; Gariazzo, S.; Mena, O.; Weniger, C.

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark

  16. Inflation, Dark Matter, and Dark Energy in the String Landscape

    OpenAIRE

    Liddle, Andrew R; Ureña-López, L Arturo

    2006-01-01

    We consider the conditions needed to unify the description of dark matter, dark energy and inflation in the context of the string landscape. We find that incomplete decay of the inflaton field gives the possibility that a single field is responsible for all three phenomena. By contrast, unifying dark matter and dark energy into a single field, separate from the inflaton, appears rather difficult.

  17. Little composite dark matter.

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-01-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T -parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T -parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling [Formula: see text], thus evading direct detection.

  18. Inelastic dark matter

    International Nuclear Information System (INIS)

    Smith, David; Weiner, Neal

    2001-01-01

    Many observations suggest that much of the matter of the universe is nonbaryonic. Recently, the DAMA NaI dark matter direct detection experiment reported an annual modulation in their event rate consistent with a WIMP relic. However, the Cryogenic Dark Matter Search (CDMS) Ge experiment excludes most of the region preferred by DAMA. We demonstrate that if the dark matter can only scatter by making a transition to a slightly heavier state (Δm∼100 keV), the experiments are no longer in conflict. Moreover, differences in the energy spectrum of nuclear recoil events could distinguish such a scenario from the standard WIMP scenario. Finally, we discuss the sneutrino as a candidate for inelastic dark matter in supersymmetric theories

  19. Inflatable Dark Matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  20. Dark matter search

    International Nuclear Information System (INIS)

    Bernabei, R.

    2003-01-01

    Some general arguments on the particle Dark Matter search are addressed. The WIMP direct detection technique is mainly considered and recent results obtained by exploiting the annual modulation signature are summarized. (author)

  1. Baryonic dark matter

    International Nuclear Information System (INIS)

    Uson, Juan M.

    2000-01-01

    Many searches for baryonic dark matter have been conducted but, so far, all have been unsuccessful. Indeed, no more than 1% of the dark matter can be in the form of hydrogen burning stars. It has recently been suggested that most of the baryons in the universe are still in the form of ionized gas so that it is possible that there is no baryonic dark matter. Although it is likely that a significant fraction of the dark matter in the Milky Way is in a halo of non-baryonic matter, the data do not exclude the possibility that a considerable amount, perhaps most of it, could be in a tenuous halo of diffuse ionized gas

  2. Lectures on dark matter

    International Nuclear Information System (INIS)

    Seljak, U.

    2001-01-01

    These lectures concentrate on evolution and generation of dark matter perturbations. The purpose of the lectures is to present, in a systematic way, a comprehensive review of the cosmological parameters that can lead to observable effects in the dark matter clustering properties. We begin by reviewing the relativistic linear perturbation theory formalism. We discuss the gauge issue and derive Einstein's and continuity equations for several popular gauge choices. We continue by developing fluid equations for cold dark matter and baryons and Boltzmann equations for photons, massive and massless neutrinos. We then discuss the generation of initial perturbations by the process of inflation and the parameters of that process that can be extracted from the observations. Finally we discuss evolution of perturbations in various regimes and the imprint of the evolution on the dark matter power spectrum both in the linear and in the nonlinear regime. (author)

  3. Lectures on dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Seljak, U [Department of Physics, Princeton University, Princeton, NJ (United States)

    2001-11-15

    These lectures concentrate on evolution and generation of dark matter perturbations. The purpose of the lectures is to present, in a systematic way, a comprehensive review of the cosmological parameters that can lead to observable effects in the dark matter clustering properties. We begin by reviewing the relativistic linear perturbation theory formalism. We discuss the gauge issue and derive Einstein's and continuity equations for several popular gauge choices. We continue by developing fluid equations for cold dark matter and baryons and Boltzmann equations for photons, massive and massless neutrinos. We then discuss the generation of initial perturbations by the process of inflation and the parameters of that process that can be extracted from the observations. Finally we discuss evolution of perturbations in various regimes and the imprint of the evolution on the dark matter power spectrum both in the linear and in the nonlinear regime. (author)

  4. Dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Bernabei, R [Dipto. di Fisica, Universita di Roma ' Tor Vergata' and INFN, sez. Roma2, Rome (Italy)

    2003-08-15

    Some general arguments on the particle Dark Matter search are addressed. The WIMP direct detection technique is mainly considered and recent results obtained by exploiting the annual modulation signature are summarized. (author)

  5. Gravity's dark side: Doing without dark matte

    International Nuclear Information System (INIS)

    Chalmers, M.

    2006-01-01

    Despite decades of searching, the 'dark matter' thought to hold galaxies together is still nowhere to be found. Matthew Chalmers describes how some physicists think it makes more sense to change our theory of gravity instead. Einstein's general theory of relativity is part of the bedrock of modern physics. It describes in elegant mathematical terms how matter causes space-time to curve, and therefore how objects move in a gravitational field. Since it was published in 1916, general relativity has passed every test asked of it with flying colours, and to many physicists the notion that it is wrong is sacrilege. But the motivation for developing an alternative theory of gravity is compelling. Over the last few years cosmologists have arrived at a simple yet extraordinarily successful model of universe. The trouble is that it requires most of the cosmos to be filled with mysterious stuff that we cannot see. In particular, general relativity - or rather its non-relativistic limit otherwise known as Newtonian gravity - can only correctly describe the dynamics of galaxies if we invoke huge quantities of 'dark matter'. Furthermore, an exotic entity called dark energy is necessary to account for the recent discovery that the expansion of the universe is accelerating. Indeed, in the standard model of cosmology, visible matter such as stars, planets and physics textbooks accounts for just 4% of the total universe. (U.K.)

  6. Dark matter universe

    Science.gov (United States)

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  7. Dark matter universe.

    Science.gov (United States)

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  8. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the open-quotes standard modelclose quotes of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for open-quotes new physics.close quotes The compelling candidates are a very light axion (10 -6 --10 -4 eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs

  9. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ''new physics.'' The compelling candidates are: a very light axion ( 10 -6 eV--10 -4 eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos

  10. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  11. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  12. Understanding Dark Energy

    Science.gov (United States)

    Greyber, Howard

    2009-11-01

    By careful analysis of the data from the WMAP satellite, scientists were surprised to determine that about 70% of the matter in our universe is in some unknown form, and labeled it Dark Energy. Earlier, in 1998, two separate international groups of astronomers studying Ia supernovae were even more surprised to be forced to conclude that an amazing smooth transition occurred, from the expected slowing down of the expansion of our universe (due to normal positive gravitation) to an accelerating expansion of the universe that began at at a big bang age of the universe of about nine billion years. In 1918 Albert Einstein stated that his Lambda term in his theory of general relativity was ees,``the energy of empty space,'' and represented a negative pressure and thus a negative gravity force. However my 2004 ``Strong'' Magnetic Field model (SMF) for the origin of magnetic fields at Combination Time (Astro-ph0509223 and 0509222) in our big bang universe produces a unique topology for Superclusters, having almost all the mass, visible and invisible, i.e. from clusters of galaxies down to particles with mass, on the surface of an ellipsoid surrounding a growing very high vacuum. If I hypothesize, with Einstein, that there exists a constant ees force per unit volume, then, gradually, as the universe expands from Combination Time, two effects occur (a) the volume of the central high vacuum region increases, and (b) the density of positive gravity particles in the central region of each Supercluster in our universe decreases dramatically. Thus eventually Einstein's general relativity theory's repulsive gravity of the central very high vacuum region becomes larger than the positive gravitational attraction of all the clusters of galaxies, galaxies, quasars, stars and plasma on the Supercluster shell, and the observed accelerating expansion of our universe occurs. This assumes that our universe is made up mostly of such Superclusters. It is conceivable that the high vacuum

  13. Dark Tourism and Destination Marketing

    OpenAIRE

    Jahnke, Daniela

    2013-01-01

    This thesis is about the dark tourism and destination marketing. The aim of the thesis is to display how these two terms can be combined. The term dark tourism is a relatively new research area; therefore the thesis will provide an outlook of the current situation of dark tourism. It starts with the beginning of dark tourism and continuous to the managerial aspects of dark tourism sites. The second part of the theoretical background is about destination marketing. It provides an overvie...

  14. Growing Plants and Minds

    Science.gov (United States)

    Presser, Ashley Lewis; Kamdar, Danae; Vidiksis, Regan; Goldstein, Marion; Dominguez, Ximena; Orr, Jillian

    2017-01-01

    Many preschool classrooms explore plant growth. However, because many plants take a long time to grow, it is often hard to facilitate engagement in some practices (i.e., since change is typically not observable from one day to another, children often forget their prior predictions or cannot recall what plants looked like days or weeks earlier).…

  15. Growing Backyard Textiles

    Science.gov (United States)

    Nelson, Eleanor Hall

    1975-01-01

    For those involved in creative work with textiles, the degree of control possible in texture, finish, and color of fiber by growing and processing one's own (perhaps with students' help) can make the experience rewarding. The author describes the processes for flax and nettles and gives tips on necessary equipment. (Author/AJ)

  16. Dark Skies Awareness Programs for the International Year of Astronomy

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2008-12-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also our environment in terms of ecology, health, safety, economics and energy conservation. For this reason, "Dark Skies are a Universal Resource" is a cornerstone project for the U.S. International Year of Astronomy (IYA) program in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. These programs focus on citizen-scientist sky-brightness monitoring programs, a planetarium show, podcasting, social networking, a digital photography contest, the Good Neighbor Lighting Program, Earth Hour, National Dark Skies Week, a traveling exhibit, a video tutorial, Dark Skies Discovery Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy, and a Quiet Skies program. Many similar programs are available internationally through the "Dark Skies Awareness" Global Cornerstone Project. Working groups for both the national and international dark skies cornerstone projects are being chaired by the National Optical Astronomy Observatory (NOAO). The presenters from NOAO will provide the "know-how" and the means for session participants to become community advocates in promoting Dark Skies programs as public events at their home institutions. Participants will be able to get information on jump-starting their education programs through the use of well-developed instructional materials and kits. For more information, visit http://astronomy2009.us/darkskies/ and http://www.darkskiesawareness.org/.

  17. Dark matter detection - II

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the mysterious missing mass of the universe has become one of the big challenges of today's particle physics and cosmology. Astronomical observations show that only 1% of the matter of the universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world-wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  18. Stable dark energy stars

    International Nuclear Information System (INIS)

    Lobo, Francisco S N

    2006-01-01

    The gravastar picture is an alternative model to the concept of a black hole, where there is an effective phase transition at or near where the event horizon is expected to form, and the interior is replaced by a de Sitter condensate. In this work a generalization of the gravastar picture is explored by considering matching of an interior solution governed by the dark energy equation of state, ω ≡ p/ρ < -1/3, to an exterior Schwarzschild vacuum solution at a junction interface. The motivation for implementing this generalization arises from the fact that recent observations have confirmed an accelerated cosmic expansion, for which dark energy is a possible candidate. Several relativistic dark energy stellar configurations are analysed by imposing specific choices for the mass function. The first case considered is that of a constant energy density, and the second choice that of a monotonic decreasing energy density in the star's interior. The dynamical stability of the transition layer of these dark energy stars to linearized spherically symmetric radial perturbations about static equilibrium solutions is also explored. It is found that large stability regions exist that are sufficiently close to where the event horizon is expected to form, so that it would be difficult to distinguish the exterior geometry of the dark energy stars, analysed in this work, from an astrophysical black hole

  19. Levitating dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Kaloper, Nemanja [Department of Physics, University of California, Davis, CA 95616 (United States); Padilla, Antonio, E-mail: kaloper@physics.ucdavis.edu, E-mail: antonio.padilla@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra 'antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < −1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger 'Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  20. Levitating dark matter

    Science.gov (United States)

    Kaloper, Nemanja; Padilla, Antonio

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  1. Dark matter detection - I

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the mysterious missing mass of the universe has become one of the big challenges of today's particle physics and cosmology. Astronomical observations show that only 1% of the matter of the universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world-wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  2. Dark matter detection - III

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the missing mass of the universe has become one of the big challenges of todays particle physics and cosmology. Astronomical observations show that only 1% of the matter of the Universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the Universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world- wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  3. Revival of the unified dark energy-dark matter model?

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Sen, A.A.

    2004-01-01

    We consider the generalized Chaplygin gas (GCG) proposal for unification of dark energy and dark matter and show that it admits an unique decomposition into dark energy and dark matter components once phantomlike dark energy is excluded. Within this framework, we study structure formation and show that difficulties associated to unphysical oscillations or blowup in the matter power spectrum can be circumvented. Furthermore, we show that the dominance of dark energy is related to the time when energy density fluctuations start deviating from the linear δ∼a behavior

  4. Dark matter as a weakly coupled dark baryon

    Science.gov (United States)

    Mitridate, Andrea; Redi, Michele; Smirnov, Juri; Strumia, Alessandro

    2017-10-01

    Dark Matter might be an accidentally stable baryon of a new confining gauge interaction. We extend previous studies exploring the possibility that the DM is made of dark quarks heavier than the dark confinement scale. The resulting phenomenology contains new unusual elements: a two-stage DM cosmology (freeze-out followed by dark condensation), a large DM annihilation cross section through recombination of dark quarks (allowing to fit the positron excess). Light dark glue-balls are relatively long lived and give extra cosmological effects; DM itself can remain radioactive.

  5. THE MAGIC OF DARK TOURISM

    Directory of Open Access Journals (Sweden)

    Erika KULCSÁR

    2015-10-01

    Full Text Available The dark tourism is a form of tourism that is not unanimously accepted by the whole society, but in spite of this fact, the practitioners of dark tourism is a viable segment. Indeed the concept that defines dark tourism is none other than death, and perhaps this is why it will always be a segment that will not be attracted by this form of tourism. Many questions about dark tourism arise. Among them: (1 is dark tourism an area of science attractive for researches? (2 which is the typology of dark tourism? (3 what are the motivating factors that determine practicing dark tourism? This paper provides a detailed analysis of publication behaviour in the field of dark tourism. The article also includes the main results obtained by achieving a quantitative marketing research among students of Sfantu Gheorghe University Extension in order to know their opinion, attitude towards dark tourism.

  6. Condensate cosmology: Dark energy from dark matter

    International Nuclear Information System (INIS)

    Bassett, Bruce A.; Parkinson, David; Kunz, Martin; Ungarelli, Carlo

    2003-01-01

    Imagine a scenario in which the dark energy forms via the condensation of dark matter at some low redshift. The Compton wavelength therefore changes from small to very large at the transition, unlike quintessence or metamorphosis. We study cosmic microwave background (CMB), large scale structure, supernova and radio galaxy constraints on condensation by performing a four parameter likelihood analysis over the Hubble constant and the three parameters associated with Q, the condensate field: Ω Q , w f and z t (energy density and equation of state today, and redshift of transition). Condensation roughly interpolates between ΛCDM (for large z t ) and SCDM (low z t ) and provides a slightly better fit to the data than ΛCDM. We confirm that there is no degeneracy in the CMB between H and z t and discuss the implications of late-time transitions for the Lyman-α forest. Finally we discuss the nonlinear phase of both condensation and metamorphosis, which is much more interesting than in standard quintessence models

  7. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  8. Asymmetric Higgsino dark matter.

    Science.gov (United States)

    Blum, Kfir; Efrati, Aielet; Grossman, Yuval; Nir, Yosef; Riotto, Antonio

    2012-08-03

    In the supersymmetric framework, prior to the electroweak phase transition, the existence of a baryon asymmetry implies the existence of a Higgsino asymmetry. We investigate whether the Higgsino could be a viable asymmetric dark matter candidate. We find that this is indeed possible. Thus, supersymmetry can provide the observed dark matter abundance and, furthermore, relate it with the baryon asymmetry, in which case the puzzle of why the baryonic and dark matter mass densities are similar would be explained. To accomplish this task, two conditions are required. First, the gauginos, squarks, and sleptons must all be very heavy, such that the only electroweak-scale superpartners are the Higgsinos. With this spectrum, supersymmetry does not solve the fine-tuning problem. Second, the temperature of the electroweak phase transition must be low, in the (1-10) GeV range. This condition requires an extension of the minimal supersymmetric standard model.

  9. Nearly Supersymmetric Dark Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Behbahani, Siavosh R.; Jankowiak, Martin; /SLAC /Stanford U., ITP; Rube, Tomas; /Stanford U., ITP; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2011-08-12

    Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.

  10. Periodically modulated dark states

    Science.gov (United States)

    Han, Yingying; Zhang, Jun; Zhang, Wenxian

    2018-04-01

    Phenomena of electromagnetically induced transparency (PEIT) may be interpreted by the Autler-Townes Splitting (ATS), where the coupled states are split by the coupling laser field, or by the quantum destructive interference (QDI), where the atomic phases caused by the coupling laser and the probe laser field cancel. We propose modulated experiments to explore the PEIT in an alternative way by periodically modulating the coupling and the probe fields in a Λ-type three-level system initially in a dark state. Our analytical and numerical results rule out the ATS interpretation and show that the QDI interpretation is more appropriate for the modulated experiments. Interestingly, dark state persists in the double-modulation situation where control and probe fields never occur simultaneously, which is significant difference from the traditional dark state condition. The proposed experiments are readily implemented in atomic gases, artificial atoms in superconducting quantum devices, or three-level meta-atoms in meta-materials.

  11. Dark Energy. What the ...?

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, Risa

    2007-10-30

    What is the Universe made of? This question has been asked as long as humans have been questioning, and astronomers and physicists are finally converging on an answer. The picture which has emerged from numerous complementary observations over the past decade is a surprising one: most of the matter in the Universe isn't visible, and most of the Universe isn't even made of matter. In this talk, I will explain what the rest of this stuff, known as 'Dark Energy' is, how it is related to the so-called 'Dark Matter', how it impacts the evolution of the Universe, and how we can study the dark universe using observations of light from current and future telescopes.

  12. Dark chocolate exacerbates acne.

    Science.gov (United States)

    Vongraviopap, Saivaree; Asawanonda, Pravit

    2016-05-01

    The effects of chocolate on acne exacerbations have recently been reevaluated. For so many years, it was thought that it had no role in worsening acne. To investigate whether 99% dark chocolate, when consumed in regular daily amounts, would cause acne to worsen in acne-prone male subjects, twenty-five acne prone male subjects were asked to consume 25 g of 99% dark chocolate daily for 4 weeks. Assessments which included Leeds revised acne scores as well as lesion counts took place weekly. Food frequency questionnaire was used, and daily activities were recorded. Statistically significant changes of acne scores and numbers of comedones and inflammatory papules were detected as early as 2 weeks into the study. At 4 weeks, the changes remained statistically significant compared to baseline. Dark chocolate when consumed in normal amounts for 4 weeks can exacerbate acne in male subjects with acne-prone skin. © 2015 The International Society of Dermatology.

  13. How to Grow Old

    Institute of Scientific and Technical Information of China (English)

    Bertrand Russell

    2008-01-01

    <正>1. In spite of the title, this article will really be on how not to grow old, which, at my time of life, is a much more important subject. My first advice would be to choose your ancestors carefully. Although both my parents died young, I have done well in this respect as regards my other ancestors. My maternal grandfather, it is true, was cut off in the flower of his youth at the age of sixty-seven,

  14. Geothermal Grows Up

    Science.gov (United States)

    Johnson, William C.; Kraemer, Steven; Ormond, Paul

    2011-01-01

    Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…

  15. Braneworlds and dark energy

    International Nuclear Information System (INIS)

    Neves, Rui; Vaz, Cenalo

    2006-01-01

    In the Randall-Sundrum scenario, we analyse the dynamics of an AdS 5 braneworld when conformal matter fields propagate in five dimensions. We show that conformal fields of weight -4 are associated with stable geometries which describe the dynamics of inhomogeneous dust, generalized dark radiation and homogeneous polytropic dark energy on a spherically symmetric 3-brane embedded in the compact AdS 5 orbifold. We discuss aspects of the radion stability conditions and of the localization of gravity in the vicinity of the brane

  16. Cosmology and Dark Matter

    CERN Document Server

    Tkachev, Igor

    2017-01-01

    This lecture course covers cosmology from the particle physicist perspective. Therefore, the emphasis will be on the evidence for the new physics in cosmological and astrophysical data together with minimal theoretical frameworks needed to understand and appreciate the evidence. I review the case for non-baryonic dark matter and describe popular models which incorporate it. In parallel, the story of dark energy will be developed, which includes accelerated expansion of the Universe today, the Universe origin in the Big Bang, and support for the Inflationary theory in CMBR data.

  17. Dark Side of the Universe

    CERN Document Server

    2016-01-01

    The Dark Side of the Universe (DSU) workshops bring together a wide range of theorists and experimentalists to discuss current ideas on models of the dark side, and relate them to current and future experiments. This year's DSU will take place in the colorful Norwegian city of Bergen. Topics include dark matter, dark energy, cosmology, and physics beyond the standard model. One of the goals of the workshop is to expose in particular students and young researchers to the fascinating topics of dark matter and dark energy, and to provide them with the opportunity to meet some of the best researchers in these areas .

  18. Dark matter and its detection

    International Nuclear Information System (INIS)

    Bi Xiaojun; Qin Bo

    2011-01-01

    We first explain the concept of dark matter,then review the history of its discovery and the evidence of its existence. We describe our understanding of the nature of dark matter particles, the popular dark matter models,and why the weakly interacting massive particles (called WIMPs) are the most attractive candidates for dark matter. Then we introduce the three methods of dark matter detection: colliders, direct detection and indirect detection. Finally, we review the recent development of dark matter detection, including the new results from DAMA, CoGent, PAMELA, ATIC and Fermi. (authors)

  19. Dark matter and dark energy: The critical questions

    International Nuclear Information System (INIS)

    Michael S. Turner

    2002-01-01

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% ± 1% baryons; 29% ± 4% cold dark matter; and 66% ± 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up

  20. Dark energy and dark matter in galaxy halos

    International Nuclear Information System (INIS)

    Tetradis, N.

    2006-01-01

    We consider the possibility that the dark matter is coupled through its mass to a scalar field associated with the dark energy of the Universe. In order for such a field to play a role at the present cosmological distances, it must be effectively massless at galactic length scales. We discuss the effect of the field on the distribution of dark matter in galaxy halos. We show that the profile of the distribution outside the galaxy core remains largely unaffected and the approximately flat rotation curves persist. The dispersion of the dark matter velocity is enhanced by a potentially large factor relative to the case of zero coupling between dark energy and dark matter. The counting rates in terrestrial dark matter detectors are similarly enhanced. Existing bounds on the properties of dark matter candidates can be extended to the coupled case, by taking into account the enhancement factor

  1. New interactions in the dark sector mediated by dark energy

    International Nuclear Information System (INIS)

    Brookfield, Anthony W.; Bruck, Carsten van de; Hall, Lisa M. H.

    2008-01-01

    Cosmological observations have revealed the existence of a dark matter sector, which is commonly assumed to be made up of one particle species only. However, this sector might be more complicated than we currently believe: there might be more than one dark matter species (for example, two components of cold dark matter or a mixture of hot and cold dark matter) and there may be new interactions between these particles. In this paper we study the possibility of multiple dark matter species and interactions mediated by a dark energy field. We study both the background and the perturbation evolution in these scenarios. We find that the background evolution of a system of multiple dark matter particles (with constant couplings) mimics a single fluid with a time-varying coupling parameter. However, this is no longer true on the perturbative level. We study the case of attractive and repulsive forces as well as a mixture of cold and hot dark matter particles

  2. Unified Description of Dark Energy and Dark Matter

    OpenAIRE

    Petry, Walter

    2008-01-01

    Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...

  3. Supplying Dark Energy from Scalar Field Dark Matter

    OpenAIRE

    Gogberashvili, Merab; Sakharov, Alexander S.

    2017-01-01

    We consider the hypothesis that dark matter and dark energy consists of ultra-light self-interacting scalar particles. It is found that the Klein-Gordon equation with only two free parameters (mass and self-coupling) on a Schwarzschild background, at the galactic length-scales has the solution which corresponds to Bose-Einstein condensate, behaving as dark matter, while the constant solution at supra-galactic scales can explain dark energy.

  4. Dark energy and dark matter from primordial QGP

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, Vaishali, E-mail: vaidvavaishali24@gmail.com; Upadhyaya, G. K., E-mail: gopalujiain@yahoo.co.in [School of Studies in Physics, Vikram University Ujjain (India)

    2015-07-31

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  5. Dark influences: imprints of dark satellites on dwarf galaxies

    NARCIS (Netherlands)

    Starkenburg, T. K.; Helmi, A.

    Context. In the context of the current Λ cold dark matter cosmological model small dark matter halos are abundant and satellites of dwarf galaxies are expected to be predominantly dark. Since low mass galaxies have smaller baryon fractions, interactions with these satellites may leave particularly

  6. Dark clouds in particle physics and cosmology: the issues of dark matter and dark energy

    International Nuclear Information System (INIS)

    Zhang Xinmin

    2011-01-01

    Unveiling the nature of dark matter and dark energy is one of the main tasks of particle physics and cosmology in the 21st century. We first present an overview of the history and current status of research in cosmology, at the same time emphasizing the new challenges in particle physics. Then we focus on the scientific issues of dark energy, dark matter and anti-matter, and review the recent progress made in these fields. Finally, we discuss the prospects for future research on the experimental probing of dark matter and dark energy in China. (authors)

  7. Little composite dark matter

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-02-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ _{ {DM}}˜ O(1%), thus evading direct detection.

  8. with dark matter

    Indian Academy of Sciences (India)

    2012-11-16

    Nov 16, 2012 ... November 2012 physics pp. 1271–1274. Radiative see-saw formula in ... on neutrino physics, dark matter and all fermion masses and mixings. ... as such, high-energy accelerators cannot directly test the underlying origin of ...

  9. Exceptional composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Universite Paris Saclay, CEA, CNRS, Institut de Physique Theorique, Gif-sur-Yvette (France); Carmona, Adrian [CERN, Theoretical Physics Department, Geneva (Switzerland); Chala, Mikael [Universitat de Valencia y IFIC, Universitat de Valencia-CSIC, Departament de Fisica Teorica, Burjassot, Valencia (Spain)

    2017-07-15

    We study the dark matter phenomenology of non-minimal composite Higgs models with SO(7) broken to the exceptional group G{sub 2}. In addition to the Higgs, three pseudo-Nambu-Goldstone bosons arise, one of which is electrically neutral. A parity symmetry is enough to ensure this resonance is stable. In fact, if the breaking of the Goldstone symmetry is driven by the fermion sector, this Z{sub 2} symmetry is automatically unbroken in the electroweak phase. In this case, the relic density, as well as the expected indirect, direct and collider signals are then uniquely determined by the value of the compositeness scale, f. Current experimental bounds allow one to account for a large fraction of the dark matter of the Universe if the dark matter particle is part of an electroweak triplet. The totality of the relic abundance can be accommodated if instead this particle is a composite singlet. In both cases, the scale f and the dark matter mass are of the order of a few TeV. (orig.)

  10. Simplified Dark Matter Models

    OpenAIRE

    Morgante, Enrico

    2018-01-01

    I review the construction of Simplified Models for Dark Matter searches. After discussing the philosophy and some simple examples, I turn the attention to the aspect of the theoretical consistency and to the implications of the necessary extensions of these models.

  11. Dark matter candidates

    International Nuclear Information System (INIS)

    Turner, M.S.

    1989-01-01

    One of the simplest, yet most profound, questions we can ask about the Universe is, how much stuff is in it, and further what is that stuff composed of? Needless to say, the answer to this question has very important implications for the evolution of the Universe, determining both the ultimate fate and the course of structure formation. Remarkably, at this late date in the history of the Universe we still do not have a definitive answer to this simplest of questions---although we have some very intriguing clues. It is known with certainty that most of the material in the Universe is dark, and we have the strong suspicion that the dominant component of material in the Cosmos is not baryons, but rather is exotic relic elementary particles left over from the earliest, very hot epoch of the Universe. If true, the Dark Matter question is a most fundamental one facing both particle physics and cosmology. The leading particle dark matter candidates are: the axion, the neutralino, and a light neutrino species. All three candidates are accessible to experimental tests, and experiments are now in progress. In addition, there are several dark horse, long shot, candidates, including the superheavy magnetic monopole and soliton stars. 13 refs

  12. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  13. Template Composite Dark Matter

    DEFF Research Database (Denmark)

    Drach, Vincent; Hietanen, Ari; Pica, Claudio

    2015-01-01

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon...

  14. Little composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Balkin, Reuven; Weiler, Andreas [Technische Universitaet Muenchen, First Physik-Department, Garching (Germany); Perez, Gilad [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel)

    2018-02-15

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ{sub DM} ∝ O(1%), thus evading direct detection. (orig.)

  15. Dark matter axions '96

    International Nuclear Information System (INIS)

    Sikivie, P.

    1996-01-01

    This report discusses why axions have been postulated to exist, what cosmology implies about their presence as cold dark matter in the galactic halo, how axions might be detected in cavities wherein strong magnetic fields stimulate their conversion into photons, and relations between axions' energy spectra and galactic halos' properties

  16. Composite Dark Sectors

    International Nuclear Information System (INIS)

    Carmona, Adrian

    2015-06-01

    We introduce a new paradigm in Composite Dark Sectors, where the full Standard Model (including the Higgs boson) is extended with a strongly-interacting composite sector with global symmetry group G spontaneously broken to H is contained in G. We show that, under well-motivated conditions, the lightest neutral pseudo Nambu-Goldstone bosons are natural dark matter candidates for they are protected by a parity symmetry not even broken in the electroweak phase. These models are characterized by only two free parameters, namely the typical coupling g D and the scale f D of the composite sector, and are therefore very predictive. We consider in detail two minimal scenarios, SU(3)/[SU(2) x U(1)] and [SU(2) 2 x U(1)]/[SU(2) x U(1)], which provide a dynamical realization of the Inert Doublet and Triplet models, respectively. We show that the radiatively-induced potential can be computed in a five-dimensional description with modified boundary conditions with respect to Composite Higgs models. Finally, the dark matter candidates are shown to be compatible, in a large region of the parameter space, with current bounds from dark matter searches as well as electroweak and collider constraints on new resonances.

  17. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    Schrempp, L.

    2008-02-01

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  18. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  19. Non-baryonic dark matter

    International Nuclear Information System (INIS)

    Berkes, I.

    1996-01-01

    This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low temperature bolometers are considered in some detail. (author)

  20. Welcome to the dark side

    CERN Multimedia

    Hogan, Jenny

    2007-01-01

    "Physicists says that 96% of the Universe is unseen, and appeal tot he ideas of "dark matter" and "dark energy" to make up the difference. In the first of two articles, jeanny hogan reports that attempts to identify the mysterious dark matter are on the verge of success. In the second, Geoff Brumfiel asks why dark energy, hailed as a breakthrough when discovered a decade ago, is proving more frustrating than ever tot he scientists who study it." (4,5 pages)

  1. Particle Dark Matter: An Overview

    International Nuclear Information System (INIS)

    Roszkowski, Leszek

    2009-01-01

    Dark matter in the Universe is likely to be made up of some new, hypothetical particle which would be a part of an extension of the Standard Model of particle physics. In this overview, I will first briefly review well motivated particle candidates for dark matter. Next I will focus my attention on the neutralino of supersymmetry which is the by far most popular dark matter candidate. I will discuss some recent progress and comment on prospects for dark matter detection.

  2. How dark chocolate is processed

    Science.gov (United States)

    This month’s column will continue the theme of “How Is It Processed?” The column will focus on dark chocolate. The botanical name for the cacao tree is Theobroma cacao, which literally means “food of the Gods.” Dark chocolate is both delicious and nutritious. Production of dark chocolate will be des...

  3. The DarkSide Program

    Directory of Open Access Journals (Sweden)

    Rossi B.

    2016-01-01

    Full Text Available DarkSide-50 at Gran Sasso underground laboratory (LNGS, Italy, is a direct dark matter search experiment based on a liquid argon TPC. DS-50 has completed its first dark matter run using atmospheric argon as target. The detector performances and the results of the first physics run are presented in this proceeding.

  4. Dark Matter Searches at LHC

    CERN Document Server

    Terashi, Koji; The ATLAS collaboration

    2017-01-01

    This talk will present dark matter searches at the LHC in the PIC2017 conference. The main emphasis is placed on the direct dark matter searches while the interpretation of searches for SUSY and invisible Higgs signals for the dark matter is also presented.

  5. Interacting dark matter disguised as warm dark matter

    International Nuclear Information System (INIS)

    Boehm, Celine; Riazuelo, Alain; Hansen, Steen H.; Schaeffer, Richard

    2002-01-01

    We explore some of the consequences of dark-matter-photon interactions on structure formation, focusing on the evolution of cosmological perturbations and performing both an analytical and a numerical study. We compute the cosmic microwave background anisotropies and matter power spectrum in this class of models. We find, as the main result, that when dark matter and photons are coupled, dark matter perturbations can experience a new damping regime in addition to the usual collisional Silk damping effect. Such dark matter particles (having quite large photon interactions) behave like cold dark matter or warm dark matter as far as the cosmic microwave background anisotropies or matter power spectrum are concerned, respectively. These dark-matter-photon interactions leave specific imprints at sufficiently small scales on both of these two spectra, which may allow us to put new constraints on the acceptable photon-dark-matter interactions. Under the conservative assumption that the abundance of 10 12 M · galaxies is correctly given by the cold dark matter, and without any knowledge of the abundance of smaller objects, we obtain the limit on the ratio of the dark-matter-photon cross section to the dark matter mass σ γ-DM /m DM -6 σ Th /(100 GeV)≅6x10 -33 cm 2 GeV -1

  6. Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies

    CERN Document Server

    D'Amico, Guido; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.

  7. Measuring the speed of dark: Detecting dark energy perturbations

    International Nuclear Information System (INIS)

    Putter, Roland de; Huterer, Dragan; Linder, Eric V.

    2010-01-01

    The nature of dark energy can be probed not only through its equation of state but also through its microphysics, characterized by the sound speed of perturbations to the dark energy density and pressure. As the sound speed drops below the speed of light, dark energy inhomogeneities increase, affecting both cosmic microwave background and matter power spectra. We show that current data can put no significant constraints on the value of the sound speed when dark energy is purely a recent phenomenon, but can begin to show more interesting results for early dark energy models. For example, the best fit model for current data has a slight preference for dynamics [w(a)≠-1], degrees of freedom distinct from quintessence (c s ≠1), and early presence of dark energy [Ω de (a<<1)≠0]. Future data may open a new window on dark energy by measuring its spatial as well as time variation.

  8. Growing a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Basu, N.; Pryor, R.J.

    1997-09-01

    This report presents a microsimulation model of a transition economy. Transition is defined as the process of moving from a state-enterprise economy to a market economy. The emphasis is on growing a market economy starting from basic microprinciples. The model described in this report extends and modifies the capabilities of Aspen, a new agent-based model that is being developed at Sandia National Laboratories on a massively parallel Paragon computer. Aspen is significantly different from traditional models of the economy. Aspen`s emphasis on disequilibrium growth paths, its analysis based on evolution and emergent behavior rather than on a mechanistic view of society, and its use of learning algorithms to simulate the behavior of some agents rather than an assumption of perfect rationality make this model well-suited for analyzing economic variables of interest from transition economies. Preliminary results from several runs of the model are included.

  9. The growing fibroadenoma

    International Nuclear Information System (INIS)

    Sanders, Linda M; Sara, Rana

    2015-01-01

    Fibroadenomas (FAs) are the most common tumors of the breast clinically and pathologically in adolescent and young women but may be discovered at any age. With increasing use of core biopsy rather than excision for diagnosis, it is now commonplace to follow these lesions with imaging. To assess the incidence of epithelial abnormalities (atypia, in situ or invasive, ductal or lobular malignancies) in FAs diagnosed by core biopsy and to re-evaluate the management paradigm for any growing FA. A retrospective review of the senior author’s pathology results over 19 years identified 2062 nodular FAs (biopsied by ultrasound or stereotactic guidance). Eighty-three core biopsied FAs were identified which subsequently enlarged. Twelve of 2062 of core biopsied nodules demonstrated atypia, in situ, or invasive malignancy (ductal or lobular) within or adjacent to the FA (0.58%). Eighty-three FAs enlarged and underwent either surgical excision (n = 65), repeat core biopsy (n = 9), or imaging follow-up (n = 9). The incidence of atypia, in situ or invasive malignancy was 0/83 (0%). Two enlarging FAs were subsequently surgically diagnosed as benign phyllodes tumors (PT). Malignancy in or adjacent to a core biopsied FA is rare. The risk of cancer in a growing FA is even rarer; none were present in our series. FAs with abnormal epithelial abnormalities require excision. Otherwise, FAs without epithelial abnormality diagnosed by core biopsy need no specific follow-up considering the negligible incidence of conversion to malignancy. The breast interventionalist must know how to manage discordant pathology results

  10. THE MAGIC OF DARK TOURISM

    OpenAIRE

    Erika KULCSÁR; PhD Rozalina Zsófia SIMON

    2015-01-01

    The dark tourism is a form of tourism that is not unanimously accepted by the whole society, but in spite of this fact, the practitioners of dark tourism is a viable segment. Indeed the concept that defines dark tourism is none other than death, and perhaps this is why it will always be a segment that will not be attracted by this form of tourism. Many questions about dark tourism arise. Among them: (1) is dark tourism an area of science attractive for researches? (2) which is the typology of...

  11. Dark matter in the universe

    International Nuclear Information System (INIS)

    Kormendy, J.; Knapp, G.R.

    1987-01-01

    Until recently little more was known than that dark matter appears to exist; there was little systematic information about its properties. Only in the past several years was progress made to the point where dark matter density distributions can be measured. For example, with accurate rotation curves extending over large ranges in radius, decomposing the effects of visible and dark matter to measure dark matter density profiles can be tried. Some regularities in dark matter behaviour have already turned up. This volume includes review and invited papers, poster papers, and the two general discussions. (Auth.)

  12. Dark Matter Detection: Current Status

    International Nuclear Information System (INIS)

    Akerib, Daniel S.

    2011-01-01

    Overwhelming observational evidence indicates that most of the matter in the Universe consists of non-baryonic dark matter. One possibility is that the dark matter is Weakly-Interacting Massive Particles (WIMPs) that were produced in the early Universe. These relics could comprise the Milky Way's dark halo and provide evidence for new particle physics, such as Supersymmetry. This talk focuses on the status of current efforts to detect dark matter by testing the hypothesis that WIMPs exist in the galactic halo. WIMP searches have begun to explore the region of parameter space where SUSY particles could provide dark matter candidates.

  13. Flipped dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Hagelin, J.S.; Kelley, S.; Nanopoulos, D.V.; Olive, K.A.

    1988-08-04

    We study candidates for dark matter in a minimal flipped SU(5) x U(1) supersymmetric GUT. Since the model has no R-parity, spin-1/2 supersymmetric partners of conventional particles mix with other neutral fermions including neutrinos, and can decay into them. The lighest particle which is predominantly a gaugino/higgsino mixture decays with a lifetime tau/sub chi/ approx. = 1-10/sup 9/ s. The model contains a scalar 'flaton' field whose coherent oscillations decay before cosmological nucleosynthesis, and whose pseudoscalar partner contributes negligibly to ..cap omega.. if it is light enough to survive to the present epoch. The fermionic 'flatino' partner of the flaton has a lifetime tau/sub PHI/ approx. = 10/sup 28/-10/sup 34/ yr and is a viable candiate for metastable dark matter with ..cap omega.. < or approx. 1.

  14. CN in dark clouds

    International Nuclear Information System (INIS)

    Churchwell, E.; Bieging, J.H.

    1983-01-01

    We have detected CN (N = 1--0) emission toward six locations in the Taurus dark cloud complex, but not toward L183 or B227. The two hyperfine components, F = 3/2--1/2 and F = 5/2--3/2 (of J = 3/2--1/2), have intensity ratios near unity toward four locations in Taurus, consistent with large line optical depths. CN column densities are found to be > or approx. =6 x 10 13 cm -2 in those directions where the hyperfine ratios are near unity. By comparing CN with NH 3 and C 18 O column densities, we find that the relative abundance of CN in the Taurus cloudlets is at least a factor of 10 greater than in L183. In this respect, CN fits the pattern of enhanced abundances of carbon-bearing molecules (in partricular the cyanopolyynes) in the Taurus cloudlets relative to similar dark clouds outside Taurus

  15. Dust of dark energy

    International Nuclear Information System (INIS)

    Lim, Eugene A.; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a novel class of field theories where energy always flows along timelike geodesics, mimicking in that respect dust, yet which possess non-zero pressure. This theory comprises two scalar fields, one of which is a Lagrange multiplier enforcing a constraint between the other's field value and derivative. We show that this system possesses no wave-like modes but retains a single dynamical degree of freedom. Thus, the sound speed is always identically zero on all backgrounds. In particular, cosmological perturbations reproduce the standard behaviour for hydrodynamics in the limit of vanishing sound speed. Using all these properties we propose a model unifying Dark Matter and Dark Energy in a single degree of freedom. In a certain limit this model exactly reproduces the evolution history of ΛCDM, while deviations away from the standard expansion history produce a potentially measurable difference in the evolution of structure

  16. Dark matter from unification

    DEFF Research Database (Denmark)

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2013-01-01

    We consider a minimal extension of the Standard Model (SM), which leads to unification of the SM coupling constants, breaks electroweak symmetry dynamically by a new strongly coupled sector and leads to novel dark matter candidates. In this model, the coupling constant unification requires...... eigenstates of this sector and determine the resulting relic density. The results are constrained by available data from colliders and direct and indirect dark matter experiments. We find the model viable and outline briefly future research directions....... the existence of electroweak triplet and doublet fermions singlet under QCD and new strong dynamics underlying the Higgs sector. Among these new matter fields and a new right handed neutrino, we consider the mass and mixing patterns of the neutral states. We argue for a symmetry stabilizing the lightest mass...

  17. Interacting hot dark matter

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Davidson, S.

    1997-01-01

    We discuss the viability of a light particle (∼30eV neutrino) with strong self-interactions as a dark matter candidate. The interaction prevents the neutrinos from free-streaming during the radiation-dominated regime so galaxy-sized density perturbations can survive. Smaller scale perturbations are damped due to neutrino diffusion. We calculate the power spectrum in the imperfect fluid approximation, and show that it is damped at the length scale one would estimate due to neutrino diffusion. The strength of the neutrino-neutrino coupling is only weakly constrained by observations, and could be chosen by fitting the power spectrum to the observed amplitude of matter density perturbations. The main shortcoming of our model is that interacting neutrinos cannot provide the dark matter in dwarf galaxies. copyright 1997 The American Physical Society

  18. Dark energy from the string axiverse.

    Science.gov (United States)

    Kamionkowski, Marc; Pradler, Josef; Walker, Devin G E

    2014-12-19

    String theories suggest the existence of a plethora of axionlike fields with masses spread over a huge number of decades. Here, we show that these ideas lend themselves to a model of quintessence with no super-Planckian field excursions and in which all dimensionless numbers are order unity. The scenario addresses the "Why now?" problem-i.e., Why has accelerated expansion begun only recently?-by suggesting that the onset of dark-energy domination occurs randomly with a slowly decreasing probability per unit logarithmic interval in cosmic time. The standard axion potential requires us to postulate a rapid decay of most of the axion fields that do not become dark energy. The need for these decays is averted, though, with the introduction of a slightly modified axion potential. In either case, a universe like ours arises in roughly 1 in 100 universes. The scenario may have a host of observable consequences.

  19. On dark energy isocurvature perturbation

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe

    2011-01-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data

  20. Dark matter wants Linear Collider

    International Nuclear Information System (INIS)

    Matsumoto, S.; Asano, M.; Fujii, K.; Takubo, Y.; Honda, T.; Saito, T.; Yamamoto, H.; Humdi, R.S.; Ito, H.; Kanemura, S; Nabeshima, T.; Okada, N.; Suehara, T.

    2011-01-01

    One of the main purposes of physics at the International Linear Collider (ILC) is to study the property of dark matter such as its mass, spin, quantum numbers, and interactions with particles of the standard model. We discuss how the property can or cannot be investigated at the ILC using two typical cases of dark matter scenario: 1) most of new particles predicted in physics beyond the standard model are heavy and only dark matter is accessible at the ILC, and 2) not only dark matter but also other new particles are accessible at the ILC. We find that, as can be easily imagined, dark matter can be detected without any difficulties in the latter case. In the former case, it is still possible to detect dark matter when the mass of dark matter is less than a half mass of the Higgs boson.

  1. A dark energy multiverse

    International Nuclear Information System (INIS)

    Robles-Perez, Salvador; Martin-Moruno, Prado; Rozas-Fernandez, Alberto; Gonzalez-Diaz, Pedro F

    2007-01-01

    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunches or big rips singularities. Classically these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe. (fast track communication)

  2. Baryonic dark matter

    Science.gov (United States)

    Silk, Joseph

    1991-01-01

    Both canonical primordial nucleosynthesis constraints and large-scale structure measurements, as well as observations of the fundamental cosmological parameters, appear to be consistent with the hypothesis that the universe predominantly consists of baryonic dark matter (BDM). The arguments for BDM to consist of compact objects that are either stellar relics or substellar objects are reviewed. Several techniques for searching for halo BDM are described.

  3. A dark energy multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Perez, Salvador; Martin-Moruno, Prado; Rozas-Fernandez, Alberto; Gonzalez-Diaz, Pedro F [Colina de los Chopos, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 121, 28006 Madrid (Spain)

    2007-05-21

    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunches or big rips singularities. Classically these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe. (fast track communication)

  4. DARK MATTER: Optical shears

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Evidence for dark matter continues to build up. Last year (December 1993, page 4) excitement rose when the French EROS (Experience de Recherche d'Objets Sombres) and the US/Australia MACHO collaborations reported hints that small inert 'brown dwarf stars could provide some of the Universe's missing matter. In the 1930s, astronomers first began to suspect that there is a lot more to the Universe than meets the eye

  5. Dark Energy in Practice

    CERN Document Server

    Sapone, Domenico

    2010-01-01

    In this paper we review a part of the approaches that have been considered to explain the extraordinary discovery of the late time acceleration of the Universe. We discuss the arguments that have led physicists and astronomers to accept dark energy as the current preferable candidate to explain the acceleration. We highlight the problems and the attempts to overcome the difficulties related to such a component. We also consider alternative theories capable of explaining the acceleration of the Universe, such as modification of gravity. We compare the two approaches and point out the observational consequences, reaching the sad but foresightful conclusion that we will not be able to distinguish between a Universe filled by dark energy or a Universe where gravity is different from General Relativity. We review the present observations and discuss the future experiments that will help us to learn more about our Universe. This is not intended to be a complete list of all the dark energy models but this paper shou...

  6. Comprehensive asymmetric dark matter model

    Science.gov (United States)

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-05-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical constraints. Importantly, it incorporates a deep reason for why the dark matter mass scale is related to the proton mass, a key consideration in ADM models. Our starting point is the idea of mirror matter, which offers an explanation for dark matter by duplicating the standard model with a dark sector related by a Z2 parity symmetry. However, the dark sector need not manifest as a symmetric copy of the standard model in the present day. By utilizing the mechanism of "asymmetric symmetry breaking" with two Higgs doublets in each sector, we develop a model of ADM where the mirror symmetry is spontaneously broken, leading to an electroweak scale in the dark sector that is significantly larger than that of the visible sector. The weak sensitivity of the ordinary and dark QCD confinement scales to their respective electroweak scales leads to the necessary connection between the dark matter and proton masses. The dark matter is composed of either dark neutrons or a mixture of dark neutrons and metastable dark hydrogen atoms. Lepton asymmetries are generated by the C P -violating decays of heavy Majorana neutrinos in both sectors. These are then converted by sphaleron processes to produce the observed ratio of visible to dark matter in the universe. The dynamics responsible for the kinetic decoupling of the two sectors emerges as an important issue that we only partially solve.

  7. Signatures of dark radiation in neutrino and dark matter detectors

    Science.gov (United States)

    Cui, Yanou; Pospelov, Maxim; Pradler, Josef

    2018-05-01

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of ˜30 MeV /c , both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a "neutrino floor" for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.

  8. Cold dark matter plus not-so-clumpy dark relics

    International Nuclear Information System (INIS)

    Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph; Gariazzo, Stefano; Mena, Olga

    2017-01-01

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f ncdm of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f ncdm ≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f ncdm ≤0.43 (0.45), respectively.

  9. Cold dark matter plus not-so-clumpy dark relics

    Energy Technology Data Exchange (ETDEWEB)

    Diamanti, Roberta; Ando, Shin' ichiro; Weniger, Christoph [GRAPPA, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Gariazzo, Stefano; Mena, Olga, E-mail: r.diamanti@uva.nl, E-mail: s.ando@uva.nl, E-mail: gariazzo@to.infn.it, E-mail: omena@ific.uv.es, E-mail: c.weniger@uva.nl [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de Valencia, Apartado de Correos 22085, E-46071, Valencia (Spain)

    2017-06-01

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f {sub ncdm} of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f {sub ncdm}≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f {sub ncdm}≤0.43 (0.45), respectively.

  10. Melting ice, growing trade?

    Directory of Open Access Journals (Sweden)

    Sami Bensassi

    2016-05-01

    Full Text Available Abstract Large reductions in Arctic sea ice, most notably in summer, coupled with growing interest in Arctic shipping and resource exploitation have renewed interest in the economic potential of the Northern Sea Route (NSR. Two key constraints on the future viability of the NSR pertain to bathymetry and the future evolution of the sea ice cover. Climate model projections of future sea ice conditions throughout the rest of the century suggest that even under the most “aggressive” emission scenario, increases in international trade between Europe and Asia will be very low. The large inter-annual variability of weather and sea ice conditions in the route, the Russian toll imposed for transiting the NSR, together with high insurance costs and scarce loading/unloading opportunities, limit the use of the NSR. We show that even if these obstacles are removed, the duration of the opening of the NSR over the course of the century is not long enough to offer a consequent boost to international trade at the macroeconomic level.

  11. Fostering and sustaining innovation in a Fast Growing Agile Company

    OpenAIRE

    Moe, NilsBrede; Barney, Sebastian; Aurum, Aybüe; Khurum, Mahvish; Wohlin, Claes; Barney, Hamish; Gorschek, Tony; Winata, Martha

    2012-01-01

    Sustaining innovation in a fast growing software development company is difficult. As organisations grow, peoples' focus often changes from the big picture of the product being developed to the specific role they fill. This paper presents two complementary approaches that were successfully used to support continued developer-driven innovation in a rapidly growing Australian agile software development company. The method "FedEx TM Day" gives developers one day to showcase a proof of concept th...

  12. Coupling q-Deformed Dark Energy to Dark Matter

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2016-01-01

    Full Text Available We propose a novel coupled dark energy model which is assumed to occur as a q-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider the q-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupled q-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.

  13. Adiabatic instability in coupled dark energy/dark matter models

    International Nuclear Information System (INIS)

    Bean, Rachel; Flanagan, Eanna E.; Trodden, Mark

    2008-01-01

    We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the Universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, which can also be thought of as a type of Jeans instability, is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid, and results in the exponential growth of small scale modes. We discuss the role of the instability in specific coupled cold dark matter and mass varying neutrino models of dark energy and clarify for these theories the regimes in which the instability can be evaded due to nonadiabaticity or weak coupling.

  14. Dark matter and dark energy a challenge for modern cosmology

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Matarrese, Sabino

    2011-01-01

    This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift su...

  15. Late forming dark matter in theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Das, Subinoy; Weiner, Neal

    2011-01-01

    We study the possibility of late forming dark matter, where a scalar field, previously trapped in a metastable state by thermal or finite density effects, goes through a phase transition near the era matter-radiation equality and begins to oscillate about its true minimum. Such a theory is motivated generally if the dark energy is of a similar form, but has not yet made the transition to dark matter, and, in particular, arises automatically in recently considered theories of neutrino dark energy. If such a field comprises the present dark matter, the matter power spectrum typically shows a sharp break at small, presently nonlinear scales, below which power is highly suppressed and previously contained acoustic oscillations. If, instead, such a field forms a subdominant component of the total dark matter, such acoustic oscillations may imprint themselves in the linear regime.

  16. Nonlocal astrophysics dark matter, dark energy and physical vacuum

    CERN Document Server

    Alexeev, Boris V

    2017-01-01

    Non-Local Astrophysics: Dark Matter, Dark Energy and Physical Vacuum highlights the most significant features of non-local theory, a highly effective tool for solving many physical problems in areas where classical local theory runs into difficulties. The book provides the fundamental science behind new non-local astrophysics, discussing non-local kinetic and generalized hydrodynamic equations, non-local parameters in several physical systems, dark matter, dark energy, black holes and gravitational waves. Devoted to the solution of astrophysical problems from the position of non-local physics Provides a solution for dark matter and dark energy Discusses cosmological aspects of the theory of non-local physics Includes a solution for the problem of the Hubble Universe expansion, and of the dependence of the orbital velocity from the center of gravity

  17. Dark Energy and Structure Formation

    International Nuclear Information System (INIS)

    Singh, Anupam

    2010-01-01

    We study the gravitational dynamics of dark energy configurations. We report on the time evolution of the dark energy field configurations as well as the time evolution of the energy density to demonstrate the gravitational collapse of dark energy field configurations. We live in a Universe which is dominated by Dark Energy. According to current estimates about 75% of the Energy Density is in the form of Dark Energy. Thus when we consider gravitational dynamics and Structure Formation we expect Dark Energy to play an important role. The most promising candidate for dark energy is the energy density of fields in curved space-time. It therefore become a pressing need to understand the gravitational dynamics of dark energy field configurations. We develop and describe the formalism to study the gravitational collapse of fields given any general potential for the fields. We apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting evolution equations which determine the time evolution of field configurations as well as the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our universe.

  18. Growing Galaxies Gently

    Science.gov (United States)

    2010-10-01

    New observations from ESO's Very Large Telescope have, for the first time, provided direct evidence that young galaxies can grow by sucking in the cool gas around them and using it as fuel for the formation of many new stars. In the first few billion years after the Big Bang the mass of a typical galaxy increased dramatically and understanding why this happened is one of the hottest problems in modern astrophysics. The results appear in the 14 October issue of the journal Nature. The first galaxies formed well before the Universe was one billion years old and were much smaller than the giant systems - including the Milky Way - that we see today. So somehow the average galaxy size has increased as the Universe has evolved. Galaxies often collide and then merge to form larger systems and this process is certainly an important growth mechanism. However, an additional, gentler way has been proposed. A European team of astronomers has used ESO's Very Large Telescope to test this very different idea - that young galaxies can also grow by sucking in cool streams of the hydrogen and helium gas that filled the early Universe and forming new stars from this primitive material. Just as a commercial company can expand either by merging with other companies, or by hiring more staff, young galaxies could perhaps also grow in two different ways - by merging with other galaxies or by accreting material. The team leader, Giovanni Cresci (Osservatorio Astrofisico di Arcetri) says: "The new results from the VLT are the first direct evidence that the accretion of pristine gas really happened and was enough to fuel vigorous star formation and the growth of massive galaxies in the young Universe." The discovery will have a major impact on our understanding of the evolution of the Universe from the Big Bang to the present day. Theories of galaxy formation and evolution may have to be re-written. The group began by selecting three very distant galaxies to see if they could find evidence

  19. Probes for dark matter physics

    Science.gov (United States)

    Khlopov, Maxim Yu.

    The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.

  20. Dark information of black hole radiation raised by dark energy

    Science.gov (United States)

    Ma, Yu-Han; Chen, Jin-Fu; Sun, Chang-Pu

    2018-06-01

    The "lost" information of black hole through the Hawking radiation was discovered being stored in the correlation among the non-thermally radiated particles (Parikh and Wilczek, 2000 [31], Zhang et al., 2009 [16]). This correlation information, which has not yet been proved locally observable in principle, is named by dark information. In this paper, we systematically study the influences of dark energy on black hole radiation, especially on the dark information. Calculating the radiation spectrum in the existence of dark energy by the approach of canonical typicality, which is reconfirmed by the quantum tunneling method, we find that the dark energy will effectively lower the Hawking temperature, and thus makes the black hole has longer life time. It is also discovered that the non-thermal effect of the black hole radiation is enhanced by dark energy so that the dark information of the radiation is increased. Our observation shows that, besides the mechanical effect (e.g., gravitational lensing effect), the dark energy rises the stored dark information, which could be probed by a non-local coincidence measurement similar to the coincidence counting of the Hanbury-Brown-Twiss experiment in quantum optics.

  1. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    OpenAIRE

    McDermott, Samuel D.

    2018-01-01

    We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than vn∼(10−(2−3))n, where n=1, 2 depends on local dark sector chemistry. The size of the dark-sector interaction cross...

  2. Sourcing dark matter and dark energy from α-attractors

    International Nuclear Information System (INIS)

    Mishra, Swagat S.; Sahni, Varun; Shtanov, Yuri

    2017-01-01

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m 2 φ 2 , while having none of its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m 2 φ 2 potential in describing dark matter.

  3. Sourcing dark matter and dark energy from α-attractors

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Swagat S.; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India); Shtanov, Yuri, E-mail: swagat@iucaa.in, E-mail: varun@iucaa.in, E-mail: shtanov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine)

    2017-06-01

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m {sup 2}φ{sup 2}, while having none of its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m {sup 2}φ{sup 2} potential in describing dark matter.

  4. Review of dark photon searches

    International Nuclear Information System (INIS)

    Denig, Achim

    2016-01-01

    Dark Photons are hypothetical extra-U(1) gauge bosons, which are motivated by a number of astrophysical anomalies as well as the presently seen deviation between the Standard Model prediction and the direct measurement of the anomalous magnetic moment of the muon, (g − 2)μ. The Dark Photon does not serve as the Dark Matter particle itself, but acts as a messenger particle of a hypothetical Dark Sector with residual interaction to the Standard Model. We review recent Dark Photon searches, which were carried out in a global effort at various hadron and particle physics facilities. We also comment on the perspectives for future invisble searches, which directly probe the existence of Light Dark Matter particles.

  5. Dark matter in the universe

    International Nuclear Information System (INIS)

    Opher, Reuven

    2001-01-01

    We treat here the problem of dark matter in galaxies. Recent articles seem to imply that we are entering into the precision era of cosmology, implying that all of the basic physics of cosmology is known. However, we show here that recent observations question the pillar of the standard model: the presence of nonbaryonic 'dark matter' in galaxies. Using Newton's law of gravitation, observations indicate that most of the matter in galaxies in invisible or dark. From the observed abundances of light elements, dark matter in galaxies must be primarily nonbaryonic. The standard model and its problems in explaining nonbaryonic dark matter will first be discussed. This will be followed by a discussion of a modification of Newton's law of gravitation to explain dark matter in galaxies. (author)

  6. Discrete dark matter

    CERN Document Server

    Hirsch, M; Peinado, E; Valle, J W F

    2010-01-01

    We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z2 subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while reactor angle equal to zero gives no CP violation in neutrino oscillations.

  7. Viscous Ricci dark energy

    International Nuclear Information System (INIS)

    Feng Chaojun; Li Xinzhou

    2009-01-01

    We investigate the viscous Ricci dark energy (RDE) model by assuming that there is bulk viscosity in the linear barotropic fluid and the RDE. In the RDE model without bulk viscosity, the universe is younger than some old objects at certain redshifts. Since the age of the universe should be longer than any objects living in the universe, the RDE model suffers the age problem, especially when we consider the object APM 08279+5255 at z=3.91 with age t=2.1 Gyr. In this Letter, we find that once the viscosity is taken into account, this age problem is alleviated.

  8. Frontiers of Dark Energy

    OpenAIRE

    Linder, Eric V.

    2010-01-01

    Cosmologists are just beginning to probe the properties of the cosmic vacuum and its role in reversing the attractive pull of gravity to cause an acceleration in the expansion of the cosmos. The cause of this acceleration is given the generic name of dark energy, whether it is due to a true vacuum, a false, temporary vacuum, or a new relation between the vacuum and the force of gravity. Despite the common name, the distinction between these origins is of utmost interest and physicists are act...

  9. The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves.

    Science.gov (United States)

    Keech, Olivier; Pesquet, Edouard; Ahad, Abdul; Askne, Anna; Nordvall, Dag; Vodnala, Sharvani Munender; Tuominen, Hannele; Hurry, Vaughan; Dizengremel, Pierre; Gardeström, Per

    2007-12-01

    Senescence is an active process allowing the reallocation of valuable nutrients from the senescing organ towards storage and/or growing tissues. Using Arabidopsis thaliana leaves from both whole darkened plants (DPs) and individually darkened leaves (IDLs), we investigated the fate of mitochondria and chloroplasts during dark-induced leaf senescence. Combining in vivo visualization of fates of the two organelles by three-dimensional reconstructions of abaxial parts of leaves with functional measurements of photosynthesis and respiration, we showed that the two experimental systems displayed major differences during 6 d of dark treatment. In whole DPs, organelles were largely retained in both epidermal and mesophyll cells. However, while the photosynthetic capacity was maintained, the capacity of mitochondrial respiration decreased. In contrast, IDLs showed a rapid decline in photosynthetic capacity while maintaining a high capacity for mitochondrial respiration throughout the treatment. In addition, we noticed an unequal degradation of organelles in the different cell types of the senescing leaf. From these data, we suggest that metabolism in leaves of the whole DPs enters a 'stand-by mode' to preserve the photosynthetic machinery for as long as possible. However, in IDLs, mitochondria actively provide energy and carbon skeletons for the degradation of cell constituents, facilitating the retrieval of nutrients. Finally, the heterogeneity of the degradation processes involved during senescence is discussed with regard to the fate of mitochondria and chloroplasts in the different cell types.

  10. Structure formation constraints on Sommerfeld-enhanced dark matter annihilation

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2012-01-01

    We study the growth of cosmic structure in a ΛCDM universe under the assumption that dark matter self-annihilates with an averaged cross section times relative velocity that grows with the scale factor, an increase known as Sommerfeld-enhancement. Such an evolution is expected in models in which a light force carrier in the dark sector enhances the annihilation cross section of dark matter particles, and has been invoked, for instance, to explain anomalies in cosmic ray spectra reported in the past. In order to make our results as general as possible, we assume that dark matter annihilates into a relativistic species that only interacts gravitationally with the standard model. This assumption also allows us to test whether the additional relativistic species mildly favored by cosmic-microwave background data could originate from dark matter annihilation. We do not find evidence for Sommerfeld-enhanced dark matter annihilation and derive the corresponding upper limits on the annihilation cross-section

  11. Direct search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  12. Baryonic dark matter and Machos

    International Nuclear Information System (INIS)

    Griest, K.

    2000-01-01

    A brief description of the status of baryons in the Universe is given, along with recent results from the MACHO collaboration and their meaning. A dark matter halo consisting of baryons in the form of Machos is ruled out, leaving an elementary particle as the prime candidate for the dark matter. The observed microlensing events may make up around 20% of the dark matter in the Milky Way, or may indicate an otherwise undetected component of the Large Magellanic Cloud

  13. Dark Matter in Quantum Gravity

    OpenAIRE

    Calmet, Xavier; Latosh, Boris

    2018-01-01

    We show that quantum gravity, whatever its ultra-violet completion might be, could account for dark matter. Indeed, besides the massless gravitational field recently observed in the form of gravitational waves, the spectrum of quantum gravity contains two massive fields respectively of spin 2 and spin 0. If these fields are long-lived, they could easily account for dark matter. In that case, dark matter would be very light and only gravitationally coupled to the standard model particles.

  14. Dark energy: myths and reality

    International Nuclear Information System (INIS)

    Lukash, V N; Rubakov, V A

    2008-01-01

    We discuss the questions related to dark energy in the Universe. We note that in spite of the effect of dark energy, large-scale structure is still being generated in the Universe and this will continue for about ten billion years. We also comment on some statements in the paper 'Dark energy and universal antigravitation' by A D Chernin, Physics-Uspekhi 51 (3) (2008). (physics of our days)

  15. Supersymmetric dark matter: Indirect detection

    International Nuclear Information System (INIS)

    Bergstroem, L.

    2000-01-01

    Dark matter detection experiments are improving to the point where they can detect or restrict the primary particle physics candidates for non baryonic dark matter. The methods for detection are usually categorized as direct, i.e., searching for signals caused by passage of dark matter particles in terrestrial detectors, or indirect. Indirect detection methods include searching for antimatter and gamma rays, in particular gamma ray lines, in cosmic rays and high-energy neutrinos from the centre of the Earth or Sun caused by accretion and annihilation of dark matter particles. A review is given of recent progress in indirect detection, both on the theoretical and experimental side

  16. Abnormally dark or light skin

    Science.gov (United States)

    Hyperpigmentation; Hypopigmentation; Skin - abnormally light or dark ... Normal skin contains cells called melanocytes. These cells produce melanin , the substance that gives skin its color. Skin with ...

  17. Dark spectroscopy at lepton colliders

    Science.gov (United States)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2018-03-01

    Rich and complex dark sectors are abundant in particle physics theories. Here, we propose performing spectroscopy of the mass structure of dark sectors via mono-photon searches at lepton colliders. The energy of the mono-photon tracks the invariant mass of the invisible system it recoils against, which enables studying the resonance structure of the dark sector. We demonstrate this idea with several well-motivated models of dark sectors. Such spectroscopy measurements could potentially be performed at Belle II, BES-III and future low-energy lepton colliders.

  18. Dark matter. A light move

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Muenchen Univ. (Germany). Arnold Sommerfeld Center; Max-Planck-Institut fuer Physik, Muenchen (Germany); Doebrich, Babette [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    This proceedings contribution reports from the workshop Dark Matter - a light move, held at DESY in Hamburg in June 2013. Dark Matter particle candidates span a huge parameter range. In particular, well motivated candidates exist also in the sub-eV mass region, for example the axion. Whilst a plethora of searches for rather heavy Dark Matter particles exists, there are only very few experiments aimed at direct detection of sub-eV Dark Matter to this date. The aim of our workshop was to discuss if and how this could be changed in the near future.

  19. Dark matter. A light move

    International Nuclear Information System (INIS)

    Redondo, Javier; Doebrich, Babette

    2013-11-01

    This proceedings contribution reports from the workshop Dark Matter - a light move, held at DESY in Hamburg in June 2013. Dark Matter particle candidates span a huge parameter range. In particular, well motivated candidates exist also in the sub-eV mass region, for example the axion. Whilst a plethora of searches for rather heavy Dark Matter particles exists, there are only very few experiments aimed at direct detection of sub-eV Dark Matter to this date. The aim of our workshop was to discuss if and how this could be changed in the near future.

  20. Searching dark matter at LHC

    International Nuclear Information System (INIS)

    Nojiri, Mihoko M.

    2007-01-01

    We now believe that the dark matter in our Universe must be an unknown elementary particle, which is charge neutral and weakly interacting. The standard model must be extended to include it. The dark matter was likely produced in the early universe from the high energy collisions of the particles. Now LHC experiment starting from 2008 will create such high energy collision to explore the nature of the dark matter. In this article we explain how dark matter and LHC physics will be connected in detail. (author)

  1. Dark Matter remains obscure

    CERN Multimedia

    Fabio Capello

    2011-01-01

    It is one of the hidden secrets that literally surround the Universe. Experiments have shown no result so far because trying to capture particles that do not seem to interact with ordinary matter is no trivial exercise. The OSQAR experiment at CERN is dedicated to the search for axions, one of the candidates for Dark Matter. For its difficult challenge, OSQAR counts on one of the world’s most powerful magnets borrowed from the LHC. In a recent publication, the OSQAR collaboration was able to confirm that no axion signal appears out of the background. In other words: the quest is still on.   The OSQAR experiment installed in the SM18 hall. (Photo by F. Capello) The OSQAR “Light Shining Through a Wall” experiment was officially launched in 2007 with the aim of detecting axions, that is, particles that might be the main components of Dark Matter. OSQAR uses the powerful LHC dipole magnet to intensify the predicted photon-axion conversions in the presence of strong m...

  2. Baryonic dark matter

    International Nuclear Information System (INIS)

    Lynden-Bell, D.; Gilmore, G.

    1990-01-01

    Dark matter, first definitely found in the large clusters of galaxies, is now known to be dominant mass in the outer parts of galaxies. All the mass definitely deduced could be made up of baryons, and this would fit well with the requirements of nucleosynthesis in a big bang of small Ω B . However, if inflation is the explanation of the expansion and large scale homogeneity of the universe and of baryon synthesis, and if the universe did not have an infinite extent at the big bang, then Ω should be minutely greater than unity. It is commonly hypothesized that most mass is composed of some unknown, non-baryonic form. This book first discusses the known forms, comets, planets, brown dwarfs, stars, gas, galaxies and Lyman α clouds in which baryons are known to exist. Limits on the amount of dark matter in baryonic form are discussed in the context of the big bang. Inhomogeneities of the right type alleviate the difficulties associated with Ω B = 1 cosmological nucleosynthesis

  3. Dark fluid: A complex scalar field to unify dark energy and dark matter

    International Nuclear Information System (INIS)

    Arbey, Alexandre

    2006-01-01

    In this article, we examine a model which proposes a common explanation for the presence of additional attractive gravitational effects - generally considered to be due to dark matter - in galaxies and in clusters, and for the presence of a repulsive effect at cosmological scales - generally taken as an indication of the presence of dark energy. We therefore consider the behavior of a so-called dark fluid based on a complex scalar field with a conserved U(1)-charge and associated to a specific potential, and show that it can at the same time account for dark matter in galaxies and in clusters, and agree with the cosmological observations and constraints on dark energy and dark matter

  4. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Samuel D.

    2017-11-02

    We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v^n ~ [10^{-(2-3)}]^n, where n=1,2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be sigma ~ 0.1-1 barn, moderately larger than for Standard Model deuteron fusion, indicating a dark nuclear scale Lambda ~ O(100 MeV). Dark fusion firmly predicts constant sigma v below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometer per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.

  5. Turning off the lights: How dark is dark matter?

    International Nuclear Information System (INIS)

    McDermott, Samuel D.; Yu Haibo; Zurek, Kathryn M.

    2011-01-01

    We consider current observational constraints on the electromagnetic charge of dark matter. The velocity dependence of the scattering cross section through the photon gives rise to qualitatively different constraints than standard dark matter scattering through massive force carriers. In particular, recombination epoch observations of dark matter density perturbations require that ε, the ratio of the dark matter to electronic charge, is less than 10 -6 for m X =1 GeV, rising to ε -4 for m X =10 TeV. Though naively one would expect that dark matter carrying a charge well below this constraint could still give rise to large scattering in current direct detection experiments, we show that charged dark matter particles that could be detected with upcoming experiments are expected to be evacuated from the Galactic disk by the Galactic magnetic fields and supernova shock waves and hence will not give rise to a signal. Thus dark matter with a small charge is likely not a source of a signal in current or upcoming dark matter direct detection experiments.

  6. Correlation between dark matter and dark radiation in string compactifications

    International Nuclear Information System (INIS)

    Allahverdi, Rouzbeh; Cicoli, Michele; Dutta, Bhaskar; Sinha, Kuver

    2014-01-01

    Reheating in string compactifications is generically driven by the decay of the lightest modulus which produces Standard Model particles, dark matter and light hidden sector degrees of freedom that behave as dark radiation. This common origin allows us to find an interesting correlation between dark matter and dark radiation. By combining present upper bounds on the effective number of neutrino species N eff with lower bounds on the reheating temperature as a function of the dark matter mass m DM from Fermi data, we obtain strong constraints on the (N eff , m DM )-plane. Most of the allowed region in this plane corresponds to non-thermal scenarios with Higgsino-like dark matter. Thermal dark matter can be allowed only if N eff tends to its Standard Model value. We show that the above situation is realised in models with perturbative moduli stabilisation where the production of dark radiation is unavoidable since bulk closed string axions remain light and do not get eaten up by anomalous U(1)s

  7. IRT analyses of the Swedish Dark Triad Dirty Dozen

    Directory of Open Access Journals (Sweden)

    Danilo Garcia

    2018-03-01

    Full Text Available Background: The Dark Triad (i.e., Machiavellianism, narcissism, and psychopathy can be captured quickly with 12 items using the Dark Triad Dirty Dozen (Jonason and Webster, 2010. Previous Item Response Theory (IRT analyses of the original English Dark Triad Dirty Dozen have shown that all three subscales adequately tap into the dark domains of personality. The aim of the present study was to analyze the Swedish version of the Dark Triad Dirty Dozen using IRT. Method: 570 individuals (nmales = 326, nfemales = 242, and 2 unreported, including university students and white-collar workers with an age range between 19 and 65 years, responded to the Swedish version of the Dark Triad Dirty Dozen (Garcia et al., 2017a,b. Results: Contrary to previous research, we found that the narcissism scale provided most information, followed by psychopathy, and finally Machiavellianism. Moreover, the psychopathy scale required a higher level of the latent trait for endorsement of its items than the narcissism and Machiavellianism scales. Overall, all items provided reasonable amounts of information and are thus effective for discriminating between individuals. The mean item discriminations (alphas were 1.92 for Machiavellianism, 2.31 for narcissism, and 1.99 for psychopathy. Conclusion: This is the first study to provide IRT analyses of the Swedish version of the Dark Triad Dirty Dozen. Our findings add to a growing literature on the Dark Triad Dirty Dozen scale in different cultures and highlight psychometric characteristics, which can be used for comparative studies. Items tapping into psychopathy showed higher thresholds for endorsement than the other two scales. Importantly, the narcissism scale seems to provide more information about a lack of narcissism, perhaps mirroring cultural conditions. Keywords: Psychology, Psychiatry, Clinical psychology

  8. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    International Nuclear Information System (INIS)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-01-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ -1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  9. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    Science.gov (United States)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-04-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ-1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  10. The interaction between dark energy and dark matter

    International Nuclear Information System (INIS)

    He Jianhua; Wang Bin

    2010-01-01

    In this review we first present a general formalism to study the growth of dark matter perturbations in the presence of interactions between dark matter(DM) and dark energy(DE). We also study the signature of such interaction on the temperature anisotropies of the large scale cosmic microwave background (CMB). We find that the effect of such interaction has significant signature on both the growth of dark matter structure and the late Integrated Sachs Wolfe effect(ISW). We further discuss the potential possibility to detect the coupling by cross-correlating CMB maps with tracers of the large scale structure. We finally confront this interacting model with WMAP 5-year data as well as other data sets. We find that in the 1σ range, the constrained coupling between dark sectors can solve the coincidence problem.

  11. Black holes in the presence of dark energy

    International Nuclear Information System (INIS)

    Babichev, E O; Dokuchaev, V I; Eroshenko, Yu N

    2013-01-01

    The new, rapidly developing field of theoretical research—studies of dark energy interacting with black holes (and, in particular, accreting onto black holes)–—is reviewed. The term 'dark energy' is meant to cover a wide range of field theory models, as well as perfect fluids with various equations of state, including cosmological dark energy. Various accretion models are analyzed in terms of the simplest test field approximation or by allowing back reaction on the black-hole metric. The behavior of various types of dark energy in the vicinity of Schwarzschild and electrically charged black holes is examined. Nontrivial effects due to the presence of dark energy in the black hole vicinity are discussed. In particular, a physical explanation is given of why the black hole mass decreases when phantom energy is being accreted, a process in which the basic energy conditions of the famous theorem of nondecreasing horizon area in classical black holes are violated. The theoretical possibility of a signal escaping from beneath the black hole event horizon is discussed for a number of dark energy models. Finally, the violation of the laws of thermodynamics by black holes in the presence of noncanonical fields is considered. (reviews of topical problems)

  12. Exponential Potential versus Dark Matter

    Science.gov (United States)

    1993-10-15

    scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the

  13. Make dark matter charged again

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub, E-mail: prateekagrawal@fas.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: randall@physics.harvard.edu, E-mail: jscholtz@physics.harvard.edu [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2017-05-01

    We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.

  14. Galactic searches for dark matter

    International Nuclear Information System (INIS)

    Strigari, Louis E.

    2013-01-01

    For nearly a century, more mass has been measured in galaxies than is contained in the luminous stars and gas. Through continual advances in observations and theory, it has become clear that the dark matter in galaxies is not comprised of known astronomical objects or baryonic matter, and that identification of it is certain to reveal a profound connection between astrophysics, cosmology, and fundamental physics. The best explanation for dark matter is that it is in the form of a yet undiscovered particle of nature, with experiments now gaining sensitivity to the most well-motivated particle dark matter candidates. In this article, I review measurements of dark matter in the Milky Way and its satellite galaxies and the status of Galactic searches for particle dark matter using a combination of terrestrial and space-based astroparticle detectors, and large scale astronomical surveys. I review the limits on the dark matter annihilation and scattering cross sections that can be extracted from both astroparticle experiments and astronomical observations, and explore the theoretical implications of these limits. I discuss methods to measure the properties of particle dark matter using future experiments, and conclude by highlighting the exciting potential for dark matter searches during the next decade, and beyond

  15. Indirect searches for dark matter

    Indian Academy of Sciences (India)

    The current status of indirect searches for dark matter has been reviewed in a schematic way here. The main relevant experimental results of the recent years have been listed and the excitements and disappointments that their phenomenological interpretations in terms of almost-standard annihilating dark matter have ...

  16. Plasma dark matter direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, J.D.; Foot, R., E-mail: j.clarke5@pgrad.unimelb.edu.au, E-mail: rfoot@unimelb.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, Victoria 3010 Australia (Australia)

    2016-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless 'dark photon' (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.

  17. Z2 SIMP dark matter

    International Nuclear Information System (INIS)

    Bernal, Nicolás; Chu, Xiaoyong

    2016-01-01

    Dark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N' processes, where N dark matter particles annihilate to N' of them. In the most common scenarios, where dark matter stability is guaranteed by a Z 2 symmetry, the seemingly leading annihilating channel, i.e. 3-to-2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, à la freeze-in. This scenario is exemplified in the context of the Singlet Scalar dark matter model

  18. A Light in the Darkness?

    DEFF Research Database (Denmark)

    Brudholm, Thomas

    2007-01-01

    The article considers the implications of how we remember and commemorate so-called "lights in the darkness," such as the rescue of the Jews in Denmark in 1943.......The article considers the implications of how we remember and commemorate so-called "lights in the darkness," such as the rescue of the Jews in Denmark in 1943....

  19. Hyperion's Dark Material: Rotational Variation

    Science.gov (United States)

    Jarvis, K. S.; Vilas, F.; Buratti, B. J.; Hicks, M. D.; Gaffey, M. J.

    2002-01-01

    We present two new dark material spectra of Hyperion compared with previously published dark material spectra of Hyperion and Iapetus. A 0.67-micron absorption feature is seen in one of the two new spectra. This suggests possible mineralogical differences across the surface of this Saturnian satellite. Additional information is contained in the original extended abstract.

  20. Superheavy dark matter

    CERN Document Server

    Riotto, Antonio

    2000-01-01

    It is usually thought that the present mass density of the Universe is dominated by a weakly interacting massive particle (WIMP), a fossil relic of the early Universe. Theoretical ideas and experimental efforts have focused mostly on production and detection of thermal relics, with mass typically in the range a few GeV to a hundred GeV. Here, we will review scenarios for production of nonthermal dark matter whose mass may be in the range 10/sup 12/ to 10/sup 19/ GeV, much larger than the mass of thermal wimpy WIMPS. We will also review recent related results in understanding the production of very heavy fermions through preheating after inflation. (19 refs).

  1. Through a glass, darkly.

    Science.gov (United States)

    Rittenberry, Ronnie

    2005-10-01

    The technology available in today's auto-darkening welding helmets was the stuff of science fiction to welders 30 years ago. A single lens capable of darkening automatically to a variable, preset shade level the instant an arc is struck would have sounded about as realistic as a "Star Trek"-style "transporter" or a cell phone that can take pictures. "It would have been complete and total science fiction," said Kevin Coughlin, president of Hoodlum Welding Gear, Minneapolis. "The technology really didn't exist, so it would be like me telling you your car will be flying in 20 years--you'd look at me and laugh. Even 25 years ago, if someone had told me [the lens] would go from clear to dark when you spark, I'd have said, 'Yeah, right, sure it does.' "

  2. Ultralight particle dark matter

    International Nuclear Information System (INIS)

    Ringwald, A.

    2013-10-01

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  3. Ultralight particle dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.

    2013-10-15

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  4. Measuring Dark Molecular Gas

    Science.gov (United States)

    Li, Di; Heiles, Carl E.

    2017-01-01

    It is now well known that a substantial fraction of Galactic molecular gas cannot be traced by CO emission. The thus dubbed CO dark molecular gas (DMG) occupy a large volume of ISM with intermediate extinction, where CO is either not self-shielded and/or subthermally excited. We explore the utilities of simple hydrides, such OH, CH, etc., in tracing DMG. We mapped and modeled the transition zone cross a cloud boundary and derived emperical OH abundance and DMG distribution formulae. We also obtained absorption measurements of various species using Arecibo, VLA, ATCA, and ALMA. The absorption technique has the potential to provide systematic quantification of DMG in the next few years.

  5. Fireworks in a dark universe

    CERN Document Server

    Levinson, Amir

    2018-01-01

    This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.

  6. Thermodynamical properties of dark energy

    International Nuclear Information System (INIS)

    Gong Yungui; Wang Bin; Wang Anzhong

    2007-01-01

    We have investigated the thermodynamical properties of dark energy. Assuming that the dark energy temperature T∼a -n and considering that the volume of the Universe enveloped by the apparent horizon relates to the temperature, we have derived the dark energy entropy. For dark energy with constant equation of state w>-1 and the generalized Chaplygin gas, the derived entropy can be positive and satisfy the entropy bound. The total entropy, including those of dark energy, the thermal radiation, and the apparent horizon, satisfies the generalized second law of thermodynamics. However, for the phantom with constant equation of state, the positivity of entropy, the entropy bound, and the generalized second law cannot be satisfied simultaneously

  7. Dark matter and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, A [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy); Pascoli, S [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy)

    2001-11-15

    Dark matter constitutes a key-problem at the interface between Particle Physics, Astrophysics and Cosmology. Indeed, the observational facts which have been accumulated in the last years on dark matter point to the existence of an amount of non-baryonic dark matter. Since the Standard Model of Particle Physics does not possess any candidate for such non-baryonic dark matter, this problem constitutes a major indication for new Physics beyond the Standard Model. We analyze the most important candidates for non-baryonic dark matter in the context of extensions of the Standard Model (in particular supersymmetric models). The recent hints for the presence of a large amount of unclustered 'vacuum' energy (cosmological constant?) is discussed from the Astrophysical and Particle Physics perspective. (author)

  8. In search of dark matter

    CERN Document Server

    Freeman, Kenneth C

    2006-01-01

    The dark matter problem is one of the most fundamental and profoundly difficult to solve problems in the history of science. Not knowing what makes up most of the known universe goes to the heart of our understanding of the Universe and our place in it. In Search of Dark Matter is the story of the emergence of the dark matter problem, from the initial erroneous ‘discovery’ of dark matter by Jan Oort to contemporary explanations for the nature of dark matter and its role in the origin and evolution of the Universe. Written for the educated non-scientist and scientist alike, it spans a variety of scientific disciplines, from observational astronomy to particle physics. Concepts that the reader will encounter along the way are at the cutting edge of scientific research. However the themes are explained in such a way that no prior understanding of science beyond a high school education is necessary.

  9. Avian dark cells

    Science.gov (United States)

    Hara, J.; Plymale, D. R.; Shepard, D. L.; Hara, H.; Garry, Robert F.; Yoshihara, T.; Zenner, Hans-Peter; Bolton, M.; Kalkeri, R.; Fermin, Cesar D.

    2002-01-01

    Dark cells (DCs) of mammalian and non-mammalian species help to maintain the homeostasis of the inner ear fluids in vivo. Although the avian cochlea is straight and the mammalian cochlea is coiled, no significant difference in the morphology and/or function of mammalian and avian DCs has been reported. The mammalian equivalent of avian DCs are marginal cells and are located in the stria vascularis along a bony sheet. Avian DCs hang free from the tegmentum vasculosum (TV) of the avian lagena between the perilymph and endolymph. Frame averaging was used to image the fluorescence emitted by several fluorochromes applied to freshly isolated dark cells (iDCs) from chickens (Gallus domesticus) inner ears. The viability of iDCs was monitored via trypan blue exclusion at each isolation step. Sodium Green, BCECF-AM, Rhodamine 123 and 9-anthroyl ouabain molecules were used to test iDC function. These fluorochromes label iDCs ionic transmembrane trafficking function, membrane electrogenic potentials and Na+/K+ ATPase pump's activity. Na+/K+ ATPase pump sites, were also evaluated by the p-nitrophenyl phosphatase reaction. These results suggest that iDCs remain viable for several hours after isolation without special culturing requirements and that the number and functional activity of Na+/K+ ATPase pumps in the iDCs were indistinguishable from in vivo DCs. Primary cultures of freshly iDCs were successfully maintained for 28 days in plastic dishes with RPMI 1640 culture medium. The preparation of iDCs overcomes the difficulty of DCs accessability in vivo and the unavoidable contamination that rupturing the inner ear microenvironments induces.

  10. Particle Dark Matter: Status and Searches

    OpenAIRE

    Sandick, Pearl

    2010-01-01

    A brief overview is given of the phenomenology of particle dark matter and the properties of some of the most widely studied dark matter candidates. Recent developments in direct and indirect dark matter searches are discussed.

  11. Gravitational wave from dark sector with dark pion

    Energy Technology Data Exchange (ETDEWEB)

    Tsumura, Koji [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Yamada, Masatoshi [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); Yamaguchi, Yuya, E-mail: ko2@gauge.scphys.kyoto-u.ac.jp, E-mail: m.yamada@thphys.uni-heidelberg.de, E-mail: yy@particle.sci.hokudai.ac.jp [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2017-07-01

    In this work, we investigate the spectra of gravitational waves produced by chiral symmetry breaking in dark quantum chromodynamics (dQCD) sector. The dark pion (π) can be a dark matter candidate as weakly interacting massive particle (WIMP) or strongly interacting massive particle (SIMP). For a WIMP scenario, we introduce the dQCD sector coupled to the standard model (SM) sector with classical scale invariance and investigate the annihilation process of the dark pion via the 2π → 2 SM process. For a SIMP scenario, we investigate the 3π → 2π annihilation process of the dark pion as a SIMP using chiral perturbation theory. We find that in the WIMP scenario the gravitational wave background spectra can be observed by future space gravitational wave antennas. On the other hand, when the dark pion is the SIMP dark matter with the constraints for the chiral perturbative limit and pion-pion scattering cross section, the chiral phase transition becomes crossover and then the gravitational waves are not produced.

  12. Dancing in the dark: darkness as a signal in plants.

    Science.gov (United States)

    Seluzicki, Adam; Burko, Yogev; Chory, Joanne

    2017-11-01

    Daily cycles of light and dark provide an organizing principle and temporal constraints under which life on Earth evolved. While light is often the focus of plant studies, it is only half the story. Plants continuously adjust to their surroundings, taking both dawn and dusk as cues to organize their growth, development and metabolism to appropriate times of day. In this review, we examine the effects of darkness on plant physiology and growth. We describe the similarities and differences between seedlings grown in the dark versus those grown in light-dark cycles, and the evolution of etiolated growth. We discuss the integration of the circadian clock into other processes, looking carefully at the points of contact between clock genes and growth-promoting gene-regulatory networks in temporal gating of growth. We also examine daily starch accumulation and degradation, and the possible contribution of dark-specific metabolic controls in regulating energy and growth. Examining these studies together reveals a complex and continuous balancing act, with many signals, dark included, contributing information and guiding the plant through its life cycle. The extraordinary interconnection between light and dark is manifest during cycles of day and night and during seedling emergence above versus below the soil surface. © 2017 John Wiley & Sons Ltd.

  13. Directly detecting isospin-violating dark matter

    OpenAIRE

    Kelso, Chris; Kumar, Jason; Marfatia, Danny; Sandick, Pearl

    2018-01-01

    We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z, or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon–...

  14. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye-Sung [W& M

    2014-11-01

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  15. Comparison of allergenicity and allergens between fish white and dark muscles.

    Science.gov (United States)

    Kobayashi, A; Tanaka, H; Hamada, Y; Ishizaki, S; Nagashima, Y; Shiomi, K

    2006-03-01

    Fish is one of the most frequent causes of immunoglobulin E (IgE)-mediated food allergy. Although the fish dark muscle is often ingested with the white muscle, no information about its allergenicity and allergens is available. Heated extracts were prepared from both white and dark muscles of five species of fish and examined for reactivity with IgE in fish-allergic patients by enzyme-linked immunosorbent assay (ELISA) and for allergens by immunoblotting. Cloning of cDNAs encoding parvalbumins was performed by rapid amplification cDNA ends. Parvalbumin contents in both white and dark muscles were determined by ELISA using antiserum against mackerel parvalbumin. Patient sera were less reactive to the heated extract from the dark muscle than to that from the white muscle. A prominent IgE-reactive protein of 12 kDa, which was detected in both white and dark muscles, was identified as parvalbumin. Molecular cloning experiments revealed that the same parvalbumin molecule is contained in both white and dark muscles of either horse mackerel or Pacific mackerel. Parvalbumin contents were four to eight times lower in the dark muscle than in the white muscle. The fish dark muscle is less allergenic than the white muscle, because the same allergen molecule (parvalbumin) is contained at much lower levels in the dark muscle than in the white muscle. Thus, the dark muscle is less implicated in fish allergy than the white muscle.

  16. Update on hidden sectors with dark forces and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah

    2012-11-15

    Recently there has been much interest in hidden sectors, especially in the context of dark matter and ''dark forces'', since they are a common feature of beyond standard model scenarios like string theory and SUSY and additionally exhibit interesting phenomenological aspects. Various laboratory experiments place limits on the so-called hidden photon and continuously further probe and constrain the parameter space; an updated overview is presented here. Furthermore, for several hidden sector models with light dark matter we study the viability with respect to the relic abundance and direct detection experiments.

  17. Extra Dimensions are Dark: II Fermionic Dark Matter

    OpenAIRE

    Rizzo, Thomas G.

    2018-01-01

    Extra dimensions can be very useful tools when constructing new physics models. Previously, we began investigating toy models for the 5-D analog of the kinetic mixing/vector portal scenario where the interactions of bulk dark matter with the brane-localized fields of the Standard Model are mediated by a massive $U(1)_D$ dark photon also living in the bulk. In that setup, where the dark matter was taken to be a complex scalar, a number of nice features were obtained such as $U(1)_D$ breaking b...

  18. Growing container seedlings: Three considerations

    Science.gov (United States)

    Kas Dumroese; Thomas D. Landis

    2015-01-01

    The science of growing reforestation and conservation plants in containers has continually evolved, and three simple observations may greatly improve seedling quality. First, retaining stock in its original container for more than one growing season should be avoided. Second, strongly taprooted species now being grown as bareroot stock may be good candidates...

  19. Tales from the dark side: Privacy dark strategies and privacy dark patterns

    DEFF Research Database (Denmark)

    Bösch, Christoph; Erb, Benjamin; Kargl, Frank

    2016-01-01

    Privacy strategies and privacy patterns are fundamental concepts of the privacy-by-design engineering approach. While they support a privacy-aware development process for IT systems, the concepts used by malicious, privacy-threatening parties are generally less understood and known. We argue...... that understanding the “dark side”, namely how personal data is abused, is of equal importance. In this paper, we introduce the concept of privacy dark strategies and privacy dark patterns and present a framework that collects, documents, and analyzes such malicious concepts. In addition, we investigate from...... a psychological perspective why privacy dark strategies are effective. The resulting framework allows for a better understanding of these dark concepts, fosters awareness, and supports the development of countermeasures. We aim to contribute to an easier detection and successive removal of such approaches from...

  20. The mystery of dark matter

    International Nuclear Information System (INIS)

    Khalatbari, Azar

    2015-01-01

    As only 0.5 per cent (the shining part) of the Universe is seen by telescopes, and corresponds to a tenth of ordinary matter or 5 per cent of the cosmos, astrophysicists postulated that the remaining 95 per cent are made of dark matter and dark energy. But always more researchers put the existence of this dark matter and energy into question again. They notably think of giving up Newton's law of universal gravitation, and also the basic assumption of cosmology, i.e. the homogeneous character of the Universe. The article recalls the emergence of the notion of dark matter to explain the fact that stars stay within a galaxy, whereas with their observed speed and the application of the gravitational theory they should escape their galaxy. Then, the issue has been to find evidence of the existence of dark matter. Neutrinos were supposed to be a clue, but only for a while. The notion of dark energy was introduced more recently by researchers who, by the observation of supernovae, noticed that the Universe expansion was accelerated in time. Then, after having discussed the issues raised by the possible existence of dark energy, the article explains how and why a new non homogeneous cosmology emerged. It also evokes current and future researches in this field. In an interview, an astrophysicist outlines why we should dare to modify Newton's law

  1. AMS-02 fits dark matter

    Science.gov (United States)

    Balázs, Csaba; Li, Tong

    2016-05-01

    In this work we perform a comprehensive statistical analysis of the AMS-02 electron, positron fluxes and the antiproton-to-proton ratio in the context of a simplified dark matter model. We include known, standard astrophysical sources and a dark matter component in the cosmic ray injection spectra. To predict the AMS-02 observables we use propagation parameters extracted from observed fluxes of heavier nuclei and the low energy part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple channels at once. The simultaneous presence of various annihilation channels provides the dark matter model with additional flexibility, and this enables us to simultaneously fit all cosmic ray spectra using a simple particle physics model and coherent astrophysical assumptions. Our results indicate that AMS-02 observations are not only consistent with the dark matter hypothesis within the uncertainties, but adding a dark matter contribution improves the fit to the data. Assuming, however, that dark matter is solely responsible for this improvement of the fit, it is difficult to evade the latest CMB limits in this model.

  2. Dynamics of teleparallel dark energy

    International Nuclear Information System (INIS)

    Wei Hao

    2012-01-01

    Recently, Geng et al. proposed to allow a non-minimal coupling between quintessence and gravity in the framework of teleparallel gravity, motivated by the similar one in the framework of General Relativity (GR). They found that this non-minimally coupled quintessence in the framework of teleparallel gravity has a richer structure, and named it “teleparallel dark energy”. In the present work, we note that there might be a deep and unknown connection between teleparallel dark energy and Elko spinor dark energy. Motivated by this observation and the previous results of Elko spinor dark energy, we try to study the dynamics of teleparallel dark energy. We find that there exist only some dark-energy-dominated de Sitter attractors. Unfortunately, no scaling attractor has been found, even when we allow the possible interaction between teleparallel dark energy and matter. However, we note that w at the critical points is in agreement with observations (in particular, the fact that w=−1 independently of ξ is a great advantage).

  3. Phases of cannibal dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marco [New High Energy Theory Center, Department of Physics, Rutgers University,136 Frelinghuisen Road, Piscataway, NJ 08854 (United States); Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele [Center for Cosmology and Particle Physics, Department of Physics, New York University,New York, NY 10003 (United States)

    2016-12-13

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  4. AMS-02 fits dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Balázs, Csaba; Li, Tong [ARC Centre of Excellence for Particle Physics at the Tera-scale,School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800 (Australia)

    2016-05-05

    In this work we perform a comprehensive statistical analysis of the AMS-02 electron, positron fluxes and the antiproton-to-proton ratio in the context of a simplified dark matter model. We include known, standard astrophysical sources and a dark matter component in the cosmic ray injection spectra. To predict the AMS-02 observables we use propagation parameters extracted from observed fluxes of heavier nuclei and the low energy part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple channels at once. The simultaneous presence of various annihilation channels provides the dark matter model with additional flexibility, and this enables us to simultaneously fit all cosmic ray spectra using a simple particle physics model and coherent astrophysical assumptions. Our results indicate that AMS-02 observations are not only consistent with the dark matter hypothesis within the uncertainties, but adding a dark matter contribution improves the fit to the data. Assuming, however, that dark matter is solely responsible for this improvement of the fit, it is difficult to evade the latest CMB limits in this model.

  5. The DarkSide experiment

    International Nuclear Information System (INIS)

    Bottino, B.; Aalseth, C.E.; Acconcia, G.

    2017-01-01

    DarkSide is a dark matter direct search experiment at Laboratori Nazionali del Gran Sasso (LNGS). DarkSide is based on the detection of rare nuclear recoils possibly induced by hypothetical dark matter particles, which are supposed to be neutral, massive (m > 10 GeV) and weakly interactive (Wimp). The dark matter detector is a two-phase time projection chamber (TPC) filled with ultra-pure liquid argon. The TPC is placed inside a muon and a neutron active vetoes to suppress the background. Using argon as active target has many advantages, the key features are the strong discriminant power between nuclear and electron recoils, the spatial reconstruction and easy scalability to multi-tons size. At the moment DarkSide-50 is filled with ultra-pure argon, extracted from underground sources, and from April 2015 it is taking data in its final configuration. When combined with the preceding search with an atmospheric argon target, it is possible to set a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 2.0×10"−"44 cm"2 for a WIMP mass of 100 GeV/c"2. The next phase of the experiment, DarkSide-20k, will be the construction of a new detector with an active mass of ∼ 20 tons.

  6. Phenomenology of ELDER dark matter

    Science.gov (United States)

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2017-08-01

    We explore the phenomenology of Elastically Decoupling Relic (ELDER) dark matter. ELDER is a thermal relic whose present density is determined primarily by the cross-section of its elastic scattering off Standard Model (SM) particles. Assuming that this scattering is mediated by a kinetically mixed dark photon, we argue that the ELDER scenario makes robust predictions for electron-recoil direct-detection experiments, as well as for dark photon searches. These predictions are independent of the details of interactions within the dark sector. Together with the closely related Strongly-Interacting Massive Particle (SIMP) scenario, the ELDER predictions provide a physically motivated, well-defined target region, which will be almost entirely accessible to the next generation of searches for sub-GeV dark matter and dark photons. We provide useful analytic approximations for various quantities of interest in the ELDER scenario, and discuss two simple renormalizable toy models which incorporate the required strong number-changing interactions among the ELDERs, as well as explicitly implement the coupling to electrons via the dark photon portal.

  7. Dark Matter "Collider" from Inelastic Boosted Dark Matter.

    Science.gov (United States)

    Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2017-10-20

    We propose a novel dark matter (DM) detection strategy for models with a nonminimal dark sector. The main ingredients in the underlying DM scenario are a boosted DM particle and a heavier dark sector state. The relativistic DM impinged on target material scatters off inelastically to the heavier state, which subsequently decays into DM along with lighter states including visible (standard model) particles. The expected signal event, therefore, accompanies a visible signature by the secondary cascade process associated with a recoiling of the target particle, differing from the typical neutrino signal not involving the secondary signature. We then discuss various kinematic features followed by DM detection prospects at large-volume neutrino detectors with a model framework where a dark gauge boson is the mediator between the standard model particles and DM.

  8. Leptogenesis, Dark Energy, Dark Matter and the neutrinos

    International Nuclear Information System (INIS)

    Sarkar, Utpal

    2007-01-01

    In this review we discuss how the models of neutrino masses can accommodate solutions to the problem of matter-antimatter asymmetry in the universe, dark energy or cosmological constant problem and dark matter candidates. The matter-antimatter asymmetry is explained by leptogenesis, originating from the lepton number violation associated with the neutrino masses. The dark energy problem is correlated with a mass varying neutrinos, which could originate from a pseudo-Nambu-Goldstone boson. In some radiative models of neutrino masses, there exists a Higgs doublet that does not acquire any vacuum expectation value. This field could be inert and the lightest inert particle could then be a dark matter candidate. We reviewed these scenarios in connection with models of neutrino masses with right-handed neutrinos and with triplet Higgs scalars

  9. The dark cube: dark and light character profiles

    Directory of Open Access Journals (Sweden)

    Danilo Garcia

    2016-02-01

    Full Text Available Background. Research addressing distinctions and similarities between people’s malevolent character traits (i.e., the Dark Triad: Machiavellianism, narcissism, and psychopathy has detected inconsistent linear associations to temperament traits. Additionally, these dark traits seem to have a common core expressed as uncooperativeness. Hence, some researchers suggest that the dark traits are best represented as one global construct (i.e., the unification argument rather than as ternary construct (i.e., the uniqueness argument. We put forward the dark cube (cf. Cloninger’s character cube comprising eight dark profiles that can be used to compare individuals who differ in one dark character trait while holding the other two constant. Our aim was to investigate in which circumstances individuals who are high in each one of the dark character traits differ in Cloninger’s “light” character traits: self-directedness, cooperativeness, and self-transcendence. We also investigated if people’s dark character profiles were associated to their light character profiles. Method. A total of 997 participants recruited from Amazon’s Mechanical Turk (MTurk responded to the Short Dark Triad and the Short Character Inventory. Participants were allocated to eight different dark profiles and eight light profiles based on their scores in each of the traits and any possible combination of high and low scores. We used three-way interaction regression analyses and t-tests to investigate differences in light character traits between individuals with different dark profiles. As a second step, we compared the individuals’ dark profile with her/his character profile using an exact cell-wise analysis conducted in the ROPstat software (http://www.ropstat.com. Results. Individuals who expressed high levels of Machiavellianism and those who expressed high levels of psychopathy also expressed low self-directedness and low cooperativeness. Individuals with high

  10. Cosmological Constraints on Decoupled Dark Photons and Dark Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joshua [Univ. of Wisconsin, Madison, WI (United States); Jedamzik, Karsten [Univ. Montpellier II (France). Lab. Univers. et Particules de Monpellier; Walker, Devin G.E. [Univ. of Washington, Seattle, WA (United States). Dept. of Physics

    2016-05-23

    Any neutral boson such as a dark photon or dark Higgs that is part of a non-standard sector of particles can mix with its standard model counterpart. When very weakly mixed with the Standard Model, these particles are produced in the early Universe via the freeze-in mechanism and subsequently decay back to standard model particles. In this work, we place constraints on such mediator decays by considering bounds from Big Bang nucleosynthesis and the cosmic microwave background radiation. We find both nucleosynthesis and CMB can constrain dark photons with a kinetic mixing parameter between log ϵ ~ -10 to -17 for masses between 1 MeV and 100 GeV. Similarly, the dark Higgs mixing angle ϵ with the Standard Model Higgs is constrained between log ϵ ~ -6 to -15. Dramatic improvement on the bounds from CMB spectral distortions can be achieved with proposed experiments such as PIXIE.

  11. Dark energy and dark matter perturbations in singular universes

    International Nuclear Information System (INIS)

    Denkiewicz, Tomasz

    2015-01-01

    We discuss the evolution of density perturbations of dark matter and dark energy in cosmological models which admit future singularities in a finite time. Up to now geometrical tests of the evolution of the universe do not differentiate between singular universes and ΛCDM scenario. We solve perturbation equations using the gauge invariant formalism. The analysis shows that the detailed reconstruction of the evolution of perturbations within singular cosmologies, in the dark sector, can exhibit important differences between the singular universes models and the ΛCDM cosmology. This is encouraging for further examination and gives hope for discriminating between those models with future galaxy weak lensing experiments like the Dark Energy Survey (DES) and Euclid or CMB observations like PRISM and CoRE

  12. Evaluating dark energy probes using multidimensional dark energy parameters

    International Nuclear Information System (INIS)

    Albrecht, Andreas; Bernstein, Gary

    2007-01-01

    We investigate the value of future dark-energy experiments by modeling their ability to constrain the dark-energy equation of state. Similar work was recently reported by the Dark Energy Task Force (DETF) using a two dimensional parameterization of the equation-of-state evolution. We examine constraints in a nine-dimensional dark-energy parameterization, and find that the best experiments constrain significantly more than two dimensions in our 9D space. Consequently the impact of these experiments is substantially beyond that revealed in the DETF analysis, and the estimated cost per 'impact' drops by about a factor of 10 as one moves to the very best experiments. The DETF conclusions about the relative value of different techniques and of the importance of combining techniques are unchanged by our analysis

  13. Cosmological constraints on decoupled dark photons and dark Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joshua [Physics Department, University of Wisconsin-Madison,1150 University Ave, Madison, WI 53706 (United States); Jedamzik, Karsten [Laboratoire Univers et Particules de Montpellier, UMR5299-CNRS,Université Montpellier II,Place Eugène Bataillon, CC 72, 34095 Montpellier Cédex 05 (France); Walker, Devin G.E. [Department of Physics and Astronomy, Dartmouth College,6127 Wilder Laboratory, Hanover, NH 03755 (United States); Department of Physics, University of Washington,Box 351560, Seattle, WA 98195 (United States)

    2016-11-16

    Any neutral boson such as a dark photon or dark Higgs that is part of a non-standard sector of particles can mix with its standard model counterpart. When very weakly mixed with the Standard Model, these particles are produced in the early Universe via the freeze-in mechanism and subsequently decay back to standard model particles. In this work, we place constraints on such mediator decays by considering bounds from Big Bang nucleosynthesis and the cosmic microwave background radiation. We find both nucleosynthesis and CMB can constrain dark photons with a kinetic mixing parameter between log ϵ∼−10 to −17 for masses between 1 MeV and 100 GeV. Similarly, the dark Higgs mixing angle ϵ with the Standard Model Higgs is constrained between log ϵ∼−6 to −15. Dramatic improvement on the bounds from CMB spectral distortions can be achieved with proposed experiments such as PIXIE.

  14. Alternative dark matter candidates. Axions

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2017-01-01

    The axion is arguably one of the best motivated candidates for dark matter. For a decay constant >or similar 10 9 GeV, axions are dominantly produced non-thermally in the early universe and hence are ''cold'', their velocity dispersion being small enough to fit to large scale structure. Moreover, such a large decay constant ensures the stability at cosmological time scales and its behaviour as a collisionless fluid at cosmological length scales. Here, we review the state of the art of axion dark matter predictions and of experimental efforts to search for axion dark matter in laboratory experiments.

  15. Capturing prokaryotic dark matter genomes.

    Science.gov (United States)

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Alternative dark matter candidates. Axions

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, Andreas

    2017-01-15

    The axion is arguably one of the best motivated candidates for dark matter. For a decay constant >or similar 10{sup 9} GeV, axions are dominantly produced non-thermally in the early universe and hence are ''cold'', their velocity dispersion being small enough to fit to large scale structure. Moreover, such a large decay constant ensures the stability at cosmological time scales and its behaviour as a collisionless fluid at cosmological length scales. Here, we review the state of the art of axion dark matter predictions and of experimental efforts to search for axion dark matter in laboratory experiments.

  17. Constraining Dark Matter with ATLAS

    CERN Document Server

    Czodrowski, Patrick; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  18. Indirect detection of dark matter

    International Nuclear Information System (INIS)

    Carr, J; Lamanna, G; Lavalle, J

    2006-01-01

    This article is an experimental review of the status and prospects of indirect searches for dark matter. Experiments observe secondary particles such as positrons, antiprotons, antideuterons, gamma-rays and neutrinos which could originate from annihilations of dark matter particles in various locations in the galaxy. Data exist from some experiments which have been interpreted as hints of evidence for dark matter. These data and their interpretations are reviewed together with the new experiments which are planned to resolve the puzzles and make new measurements which could give unambiguous results

  19. Sterile neutrinos as dark matter

    International Nuclear Information System (INIS)

    Dodelson, S.; Widrow, L.M.

    1994-01-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed (sterile) neutrinos. We consider a single generation of neutrinos with a Dirac mass μ and a Majorana mass M for the right-handed component. If M much-gt μ (standard hot dark matter corresponds to M=0), then sterile neutrinos are produced via oscillations in the early Universe with energy density independent of M. However, M is crucial in determining the large scale structure of the Universe; for M∼100 eV, sterile neutrinos make an excellent warm dark matter candidate

  20. Mixed dark matter from technicolor

    DEFF Research Database (Denmark)

    Belyaev, Alexander; T. Frandsen, Mads; Sannino, Francesco

    2011-01-01

    We study natural composite cold dark matter candidates which are pseudo Nambu-Goldstone bosons (pNGB) in models of dynamical electroweak symmetry breaking. Some of these can have a significant thermal relic abundance, while others must be mainly asymmetric dark matter. By considering the thermal...... abundance alone we find a lower bound of MW on the pNGB mass when the (composite) Higgs is heavier than 115 GeV. Being pNGBs, the dark matter candidates are in general light enough to be produced at the LHC....

  1. Dark coupling and gauge invariance

    International Nuclear Information System (INIS)

    Gavela, M.B.; Honorez, L. Lopez; Mena, O.; Rigolin, S.

    2010-01-01

    We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data

  2. Casting light on dark matter

    International Nuclear Information System (INIS)

    Ellis, John

    2012-01-01

    The prospects for detecting a candidate supersymmetric dark matter particle at the LHC are reviewed, and compared with the prospects for direct and indirect searches for astrophysical dark matter. The discussion is based on a frequentist analysis of the preferred regions of the Minimal supersymmetric extension of the Standard Model with universal soft supersymmetry breaking (the CMSSM). LHC searches may have good chances to observe supersymmetry in the near future - and so may direct searches for astrophysical dark matter particles, whereas indirect searches may require greater sensitivity, at least within the CMSSM.

  3. Dark Coupling and Gauge Invariance

    CERN Document Server

    Gavela, M B; Mena, O; Rigolin, S

    2010-01-01

    We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.

  4. Dark matter and particle physics

    International Nuclear Information System (INIS)

    Peskin, Michael E.

    2007-01-01

    Astrophysicists now know that 80% of the matter in the universe is 'dark matter', composed of neutral and weakly interacting elementary particles that are not part of the Standard Model of particle physics. I will summarize the evidence for dark matter. I will explain why I expect dark matter particles to be produced at the CERN LHC. We will then need to characterize the new weakly interacting particles and demonstrate that they the same particles that are found in the cosmos. I will describe how this might be done. (author)

  5. Dark matter, a hidden universe

    International Nuclear Information System (INIS)

    Trodden, M.; Feng, J.

    2011-01-01

    The main candidates to dark matter are particles called WIMPs for weakly interacting massive particles. 4 experiments (CDMS in Minnesota (Usa), DAMA at Gran Sasso (Italy), CoGeNT in Minnesota (Usa) and PAMELA onboard a Russian satellite) have claimed to have detected them. New clues suggest that it could exist new particles interacting via new forces. The observation that dwarf galaxies are systematically more spherical than massive galaxies might be a sign of the existence of new forces between dark matter components. Dark matter could not be as inert as previously thought. (A.C.)

  6. Dark Sky Protection and Education - Izera Dark Sky Park

    Science.gov (United States)

    Berlicki, Arkadiusz; Kolomanski, Sylwester; Mrozek, Tomasz; Zakowicz, Grzegorz

    2015-08-01

    Darkness of the night sky is a natural component of our environment and should be protected against negative effects of human activities. The night darkness is necessary for balanced life of plants, animals and people. Unfortunately, development of human civilization and technology has led to the substantial increase of the night-sky brightness and to situation where nights are no more dark in many areas of the World. This phenomenon is called "light pollution" and it can be rank among such problems as chemical pollution of air, water and soil. Besides the environment, the light pollution can also affect e.g. the scientific activities of astronomers - many observatories built in the past began to be located within the glow of city lights making the night observations difficult, or even impossible.In order to protect the natural darkness of nights many so-called "dark sky parks" were established, where the darkness is preserved, similar to typical nature reserves. The role of these parks is not only conservation but also education, supporting to make society aware of how serious the problem of the light pollution is.History of the dark sky areas in Europe began on November 4, 2009 in Jizerka - a small village situated in the Izera Mountains, when Izera Dark Sky Park (IDSP) was established - it was the first transboundary dark sky park in the World. The idea of establishing that dark sky park in the Izera Mountains originated from a need to give to the society in Poland and Czech Republic the knowledge about the light pollution. Izera Dark Sky Park is a part of the astro-tourism project "Astro Izery" that combines tourist attraction of Izera Valley and astronomical education under the wonderful starry Izera sky. Besides the IDSP, the project Astro Izery consists of the set of simple astronomical instruments (gnomon, sundial), natural educational trail "Solar System Model", and astronomical events for the public. In addition, twice a year we organize a 3-4 days

  7. Results from the DarkSide-50 Dark Matter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Alden [Univ. of California, Los Angeles, CA (United States)

    2016-01-01

    While there is tremendous astrophysical and cosmological evidence for dark matter, its precise nature is one of the most significant open questions in modern physics. Weakly interacting massive particles (WIMPs) are a particularly compelling class of dark matter candidates with masses of the order 100 GeV and couplings to ordinary matter at the weak scale. Direct detection experiments are aiming to observe the low energy (<100 keV) scattering of dark matter off normal matter. With the liquid noble technology leading the way in WIMP sensitivity, no conclusive signals have been observed yet. The DarkSide experiment is looking for WIMP dark matter using a liquid argon target in a dual-phase time projection chamber located deep underground at Gran Sasso National Laboratory (LNGS) in Italy. Currently filled with argon obtained from underground sources, which is greatly reduced in radioactive 39Ar, DarkSide-50 recently made the most sensitive measurement of the 39Ar activity in underground argon and used it to set the strongest WIMP dark matter limit using liquid argon to date. This work describes the full chain of analysis used to produce the recent dark matter limit, from reconstruction of raw data to evaluation of the final exclusion curve. The DarkSide- 50 apparatus is described in detail, followed by discussion of the low level reconstruction algorithms. The algorithms are then used to arrive at three broad analysis results: The electroluminescence signals in DarkSide-50 are used to perform a precision measurement of ii longitudinal electron diffusion in liquid argon. A search is performed on the underground argon data to identify the delayed coincidence signature of 85Kr decays to the 85mRb state, a crucial ingredient in the measurement of the 39Ar activity in the underground argon. Finally, a full description of the WIMP search is given, including development of cuts, efficiencies, energy scale, and exclusion

  8. Signatures of dark radiation in neutrino and dark matter detectors

    OpenAIRE

    Cui, Yanou; Pospelov, Maxim; Pradler, Josef

    2018-01-01

    We consider the generic possibility that the Universe’s energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particl...

  9. Cosmological implications of a dark matter self-interaction energy density

    International Nuclear Information System (INIS)

    Stiele, Rainer; Boeckel, Tillmann; Schaffner-Bielich, Juergen

    2010-01-01

    We investigate cosmological constraints on an energy density contribution of elastic dark matter self-interactions characterized by the mass of the exchange particle m SI and coupling constant α SI . Because of the expansion behavior in a Robertson-Walker metric we investigate self-interacting dark matter that is warm in the case of thermal relics. The scaling behavior of dark matter self-interaction energy density (ρ SI ∝a -6 ) shows that it can be the dominant contribution (only) in the very early universe. Thus its impact on primordial nucleosynthesis is used to restrict the interaction strength m SI /√(α SI ), which we find to be at least as strong as the strong interaction. Furthermore we explore dark matter decoupling in a self-interaction dominated universe, which is done for the self-interacting warm dark matter as well as for collisionless cold dark matter in a two component scenario. We find that strong dark matter self-interactions do not contradict superweak inelastic interactions between self-interacting dark matter and baryonic matter (σ A SIDM weak ) and that the natural scale of collisionless cold dark matter decoupling exceeds the weak scale (σ A CDM >σ weak ) and depends linearly on the particle mass. Finally structure formation analysis reveals a linear growing solution during self-interaction domination (δ∝a); however, only noncosmological scales are enhanced.

  10. Dark destinations – Visitor reflections from a holocaust memorial site

    OpenAIRE

    Liyanage, Sherry; Coca-Stefaniak, Andres; Powell, Raymond

    2015-01-01

    Abstract\\ud \\ud Purpose – Dark tourism and, more specifically, visitor experiences at Nazi concentration camp memorials are emerging fields of research in tourism studies and destination management. This paper builds on this growing body of knowledge and focuses on the World War II Nazi concentration camp at Dachau in Germany to explore the psychological impact of the site on its visitors as well as critical self-reflection processes triggered by this experience.\\ud \\ud Design/methodology/app...

  11. Imperfect Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Mirzagholi, Leila; Vikman, Alexander, E-mail: l.mirzagholi@physik.uni-muenchen.de, E-mail: alexander.vikman@lmu.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig Maximilian University Munich, Theresienstr. 37, Munich, D-80333 Germany (Germany)

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  12. The Other Dark Sky

    Science.gov (United States)

    Pazmino, John

    In previous demonstrations of New York's elimination of luminous graffiti from its skies, I focused attention on large-scale projects in the showcase districts of Manhattan. Although these works earned passionate respect in the dark sky movement, they by the same token were disheartening. New York was in some quarters of the movement regarded more as an unachievable Shangri-La than as a role model to emulate. This presentation focuses on scenes of light abatement efforts in parts of New York which resemble other towns in scale and density. I photographed these scenes along a certain bus route in Brooklyn on my way home from work during October 2001. This route circulates through various "bedroom communities," each similar to a mid-size to large town elsewhere in the United States. The sujbects included individual structures - stores, banks, schools - and streetscapes mimicking downtowns. The latter protrayed a mix of atrocious and excellent lighting practice, being that these streets are in transition by the routine process of replacement and renovation. The fixtures used - box lamps, fluted or Fresnel globes, subdued headsigns, indirect lighting - are casually obtainable by property managers at local outlets for lighting apparatus. They are routinely offered to the property managers by storefront designers, security services, contractors, and the community improvement or betterment councils.

  13. Imperfect Dark Matter

    International Nuclear Information System (INIS)

    Mirzagholi, Leila; Vikman, Alexander

    2015-01-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models

  14. Dipolar dark matter

    International Nuclear Information System (INIS)

    Masso, Eduard; Mohanty, Subhendra; Rao, Soumya

    2009-01-01

    If dark matter (DM) has nonzero direct or transition, electric or magnetic dipole moment then it can scatter nucleons electromagnetically in direct detection experiments. Using the results from experiments like XENON, CDMS, DAMA, and COGENT, we put bounds on the electric and magnetic dipole moments of DM. If DM consists of Dirac fermions with direct dipole moments, then DM of mass less than 10 GeV is consistent with the DAMA signal and with null results of other experiments. If on the other hand DM consists of Majorana fermions then they can have only nonzero transition moments between different mass eigenstates. We find that Majorana fermions with masses 38 χ < or approx. 100-200 GeV and mass splitting of the order of (150-200) keV can explain the DAMA signal and the null observations from other experiments and in addition give the observed relic density of DM by dipole-mediated annihilation. The absence of the heavier DM state in the present Universe can be explained by dipole-mediated radiative decay. This parameter space for the mass and for dipole moments is allowed by limits from L3 but may have observable signals at LHC.

  15. Post flashed darks

    Science.gov (United States)

    Anderson, Jay

    2013-10-01

    The goal of this program is to take the data that will allow a more current calibration for the ACS/WFC CTE correction. We will take data in a similar way that the WFC3/UVIS data are taken so that the same CTE code can be fit to both of them. Currently, the ACS code operates directly on FLT images, but the UVIS code operates on RAW images. Also, the UVIS code is constrained by means of datasets with short-long dark combinations, which allow a careful assessment of CTE losses under low-background conditions.This dataset will allow a similar procedure to be used to constrain the ACS/WFC correction as has been recently used for WFC3/UVIS. WFC3/UFVIS has a similar program this year, and PI-Anderson expects to develop up-to-date calibrations for both at the same time. Once an up-to-date model is constructed, it should be implemented in the pipeline, hopefully for both instruments.

  16. Imperfect Dark Matter

    Science.gov (United States)

    Mirzagholi, Leila; Vikman, Alexander

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  17. Why we need to see the dark matter to understand the dark energy

    OpenAIRE

    Kunz, Martin

    2007-01-01

    The cosmological concordance model contains two separate constituents which interact only gravitationally with themselves and everything else, the dark matter and the dark energy. In the standard dark energy models, the dark matter makes up some 20% of the total energy budget today, while the dark energy is responsible for about 75%. Here we show that these numbers are only robust for specific dark energy models and that in general we cannot measure the abundance of the dark constituents sepa...

  18. Gravitational lensing: a unique probe of dark matter and dark energy

    Science.gov (United States)

    Ellis, Richard S.

    2010-01-01

    I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe—the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects. PMID:20123743

  19. The Dark Matter of Biology.

    Science.gov (United States)

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Dark stars in Starobinsky's model

    Science.gov (United States)

    Panotopoulos, Grigoris; Lopes, Ilídio

    2018-01-01

    In the present work we study non-rotating dark stars in f (R ) modified theory of gravity. In particular, we have considered bosonic self-interacting dark matter modeled inside the star as a Bose-Einstein condensate, while as far as the modified theory of gravity is concerned we have assumed Starobinsky's model R +a R2. We solve the generalized structure equations numerically, and we obtain the mass-to-ratio relation for several different values of the parameter a , and for two different dark matter equation-of-states. Our results show that the dark matter stars become more compact in the R-squared gravity compared to general relativity, while at the same time the highest star mass is slightly increased in the modified gravitational theory. The numerical value of the highest star mass for each case has been reported.

  1. Dynamics of interacting dark energy

    International Nuclear Information System (INIS)

    Caldera-Cabral, Gabriela; Maartens, Roy; Urena-Lopez, L. Arturo

    2009-01-01

    Dark energy and dark matter are only indirectly measured via their gravitational effects. It is possible that there is an exchange of energy within the dark sector, and this offers an interesting alternative approach to the coincidence problem. We consider two broad classes of interacting models where the energy exchange is a linear combination of the dark sector densities. The first class has been previously investigated, but we define new variables and find a new exact solution, which allows for a more direct, transparent, and comprehensive analysis. The second class has not been investigated in general form before. We give general conditions on the parameters in both classes to avoid unphysical behavior (such as negative energy densities).

  2. Direct reconstruction of dark energy.

    Science.gov (United States)

    Clarkson, Chris; Zunckel, Caroline

    2010-05-28

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With so few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space. We present a new nonparametric method which can accurately reconstruct a wide variety of dark energy behavior with no prior assumptions about it. It is simple, quick and relatively accurate, and involves no expensive explorations of parameter space. The technique uses principal component analysis and a combination of information criteria to identify real features in the data, and tailors the fitting functions to pick up trends and smooth over noise. We find that we can constrain a large variety of w(z) models to within 10%-20% at redshifts z≲1 using just SNAP-quality data.

  3. Leader dark traits, workplace bullying, and employee depression: exploring mediation and the role of the dark core.

    OpenAIRE

    Tokarev, Alexandr; Phillips, Abigail; Hughes, David; Irwing, Paul

    2017-01-01

    A growing body of empirical evidence now supports a negative association between dark traits in leaders and the psychological health of employees. To date, such investigations have mostly focused on psychopathy, nonspecific measures of psychological wellbeing, and have not considered the mechanisms through which these relationships might operate. In the current study (N = 508), we utilized other-ratings of personality (employees rated leaders’ personality), psychometrically robust measures, a...

  4. Organization of growing random networks

    International Nuclear Information System (INIS)

    Krapivsky, P. L.; Redner, S.

    2001-01-01

    The organizational development of growing random networks is investigated. These growing networks are built by adding nodes successively, and linking each to an earlier node of degree k with an attachment probability A k . When A k grows more slowly than linearly with k, the number of nodes with k links, N k (t), decays faster than a power law in k, while for A k growing faster than linearly in k, a single node emerges which connects to nearly all other nodes. When A k is asymptotically linear, N k (t)∼tk -ν , with ν dependent on details of the attachment probability, but in the range 2 -2 power-law tail, where s is the component size. The out component has a typical size of order lnt, and it provides basic insights into the genealogy of the network

  5. Regge trajectories and Hagedorn behavior: Hadronic realizations of dynamical dark matter

    Science.gov (United States)

    Dienes, Keith R.; Huang, Fei; Su, Shufang; Thomas, Brooks

    2017-11-01

    Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the dark sector comprises a vast ensemble of particle species whose Standard-Model decay widths are balanced against their cosmological abundances. In this talk, we study the properties of a hitherto-unexplored class of DDM ensembles in which the ensemble constituents are the "hadronic" resonances associated with the confining phase of a strongly-coupled dark sector. Such ensembles exhibit masses lying along Regge trajectories and Hagedorn-like densities of states that grow exponentially with mass. We investigate the applicable constraints on such dark-"hadronic" DDM ensembles and find that these constraints permit a broad range of mass and confinement scales for these ensembles. We also find that the distribution of the total present-day abundance across the ensemble is highly correlated with the values of these scales. This talk reports on research originally presented in Ref. [1].

  6. The Dark Cube: dark character profiles and OCEAN

    Directory of Open Access Journals (Sweden)

    Danilo Garcia

    2017-09-01

    Full Text Available Background The Big Five traits (i.e., openness, conscientiousness, extraversion, agreeableness, and neuroticism: OCEAN have been suggested to provide a meaningful taxonomy for studying the Dark Triad: Machiavellianism, narcissism, and psychopathy. Nevertheless, current research consists of mixed and inconsistent associations between the Dark Triad and OCEAN. Here we used the Dark Cube (Garcia & Rosenberg, 2016, a model of malevolent character theoretically based on Cloninger’s biopsychosocial model of personality and in the assumption of a ternary structure of malevolent character. We use the dark cube profiles to investigate differences in OCEAN between individuals who differ in one dark character trait while holding the other two constant (i.e., conditional relationships. Method Participants (N = 330 responded to the Short Dark Triad Inventory and the Big Five Inventory and were grouped according to the eight possible combinations using their dark trait scores (M, high Machiavellianism; m, low Machiavellianism; N, high narcissism; n, low narcissism; P, high psychopathy; p, low psychopathy: MNP “maleficent”, MNp “manipulative narcissistic”, MnP “anti-social”, Mnp “Machiavellian”, mNP “psychopathic narcissistic”, mNp “narcissistic”, mnP “psychopathic”, and mnp “benevolent”. Results High narcissism-high extraversion and high psychopathy-low agreeableness were consistently associated across comparisons. The rest of the comparisons showed a complex interaction. For example, high Machiavellianism-high neuroticism only when both narcissism and psychopathy were low (Mnp vs. mnp, high narcissism-high conscientiousness only when both Machiavellianism and psychopathy were also high (MNP vs. MnP, and high psychopathy-high neuroticism only when Machiavellianism was low and narcissism was high (mNP vs. mNp. Conclusions We suggest that the Dark Cube is a useful tool in the investigation of a consistent Dark Triad Theory

  7. The Dark Cube: dark character profiles and OCEAN.

    Science.gov (United States)

    Garcia, Danilo; González Moraga, Fernando R

    2017-01-01

    The Big Five traits (i.e., openness, conscientiousness, extraversion, agreeableness, and neuroticism: OCEAN) have been suggested to provide a meaningful taxonomy for studying the Dark Triad: Machiavellianism, narcissism, and psychopathy. Nevertheless, current research consists of mixed and inconsistent associations between the Dark Triad and OCEAN. Here we used the Dark Cube (Garcia & Rosenberg, 2016), a model of malevolent character theoretically based on Cloninger's biopsychosocial model of personality and in the assumption of a ternary structure of malevolent character. We use the dark cube profiles to investigate differences in OCEAN between individuals who differ in one dark character trait while holding the other two constant (i.e., conditional relationships). Participants ( N  = 330) responded to the Short Dark Triad Inventory and the Big Five Inventory and were grouped according to the eight possible combinations using their dark trait scores (M, high Machiavellianism; m, low Machiavellianism; N, high narcissism; n, low narcissism; P, high psychopathy; p, low psychopathy): MNP "maleficent", MNp "manipulative narcissistic", MnP "anti-social", Mnp "Machiavellian", mNP "psychopathic narcissistic", mNp "narcissistic", mnP "psychopathic", and mnp "benevolent". High narcissism-high extraversion and high psychopathy-low agreeableness were consistently associated across comparisons. The rest of the comparisons showed a complex interaction. For example, high Machiavellianism-high neuroticism only when both narcissism and psychopathy were low (Mnp vs. mnp), high narcissism-high conscientiousness only when both Machiavellianism and psychopathy were also high (MNP vs. MnP), and high psychopathy-high neuroticism only when Machiavellianism was low and narcissism was high (mNP vs. mNp). We suggest that the Dark Cube is a useful tool in the investigation of a consistent Dark Triad Theory. This approach suggests that the only clear relationships were narcissism

  8. Fluoride-induced foliar injury in Solanum pseudo-capsicum: its induction in the dark and activation in the light

    Energy Technology Data Exchange (ETDEWEB)

    MacLean, D.C.; Schneider, R.C.; Weinstein, L.H.

    1982-09-01

    The differential responses of plants exposed to hydrogen fluoride (HF) in continuous light or darkness were investigated in Jerusalem cherry Solanum pseudo-capsicum L. Plants exposed to HF in the dark develop few, if any, foliar symptoms by the end of the exposure period, but severe foliar injury develops rapidly upon transfer to the light after exposure. The results suggest that light is required for the expression of responses induced by exposure to HF in the dark.

  9. Fluoride-induced foliar injury in Solanum pseudo-capsicum: its induction in the dark and activation in the light

    Energy Technology Data Exchange (ETDEWEB)

    MacLean, D.C.; Schneider, R.E.; Weinstein, L.H.

    1982-01-01

    The differential responses of plants exposed to hydrogen fluoride (HF) in continuous light or darkness were investigated in Jerusalem cherry Solanum pseudo-capsicum L. Plants exposed to HF in the dark develop few, if any, foliar symptoms by the end of the exposure period, but severe folia injury develops rapidly upon transfer to the light after exposure. The results suggest that light is required for the expression of responses induced by exposure to HF in the dark.

  10. Nonlocal gravity simulates dark matter

    OpenAIRE

    Hehl, Friedrich W.; Mashhoon, Bahram

    2009-01-01

    A nonlocal generalization of Einstein's theory of gravitation is constructed within the framework of the translational gauge theory of gravity. In the linear approximation, the nonlocal theory can be interpreted as linearized general relativity but in the presence of "dark matter" that can be simply expressed as an integral transform of matter. It is shown that this approach can accommodate the Tohline-Kuhn treatment of the astrophysical evidence for dark matter.

  11. Dark energy from gravitoelectromagnetic inflation?

    International Nuclear Information System (INIS)

    Membiela, A.; Bellini, M.

    2008-01-01

    Gravitoelectromagnetic Inflation (GI) was introduced to describe in a unified manner electromagnetic, gravitatory and inflation fields from a 5D vacuum state. On the other hand, the primordial origin and evolution of dark energy is today unknown. In this letter we show using GI that the zero modes of some redefined vector fields B i = A i /a produced during inflation could be the source of dark energy in the Universe.

  12. Dark energy from gravitoelectromagnetic inflation?

    Science.gov (United States)

    Membiela, F. A.; Bellini, M.

    2008-02-01

    Gravitoectromagnetic Inflation (GI) was introduced to describe in an unified manner, electromagnetic, gravitatory and inflaton fields from a 5D vacuum state. On the other hand, the primordial origin and evolution of dark energy is today unknown. In this letter we show using GI that the zero modes of some redefined vector fields $B_i=A_i/a$ produced during inflation, could be the source of dark energy in the universe.

  13. Comprehensive asymmetric dark matter model

    OpenAIRE

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-01-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical...

  14. A History of Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco [U. Amsterdam, GRAPPA; Hooper, Dan [Fermilab

    2016-05-16

    Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

  15. Dark matter and global symmetries

    Directory of Open Access Journals (Sweden)

    Yann Mambrini

    2016-09-01

    Full Text Available General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left–Right, Singlet Fermionic, Zee–Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i global symmetries are broken at the Planck scale, that (ii the non-renormalizable operators mediating dark matter decay have O(1 couplings, that (iii the dark matter is a singlet field, and that (iv the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV–TeV, including the WIMP regime.

  16. Self-Destructing Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Yuval [Cornell U., LEPP; Harnik, Roni [Fermilab; Telem, Ofri [Cornell U., LEPP; Zhang, Yue [Northwestern U.

    2017-12-01

    We present Self-Destructing Dark Matter (SDDM), a new class of dark matter models which are detectable in large neutrino detectors. In this class of models, a component of dark matter can transition from a long-lived state to a short-lived one by scattering off of a nucleus or an electron in the Earth. The short-lived state then decays to Standard Model particles, generating a dark matter signal with a visible energy of order the dark matter mass rather than just its recoil. This leads to striking signals in large detectors with high energy thresholds. We present a few examples of models which exhibit self destruction, all inspired by bound state dynamics in the Standard Model. The models under consideration exhibit a rich phenomenology, possibly featuring events with one, two, or even three lepton pairs, each with a fixed invariant mass and a fixed energy, as well as non-trivial directional distributions. This motivates dedicated searches for dark matter in large underground detectors such as Super-K, Borexino, SNO+, and DUNE.

  17. Direct detection with dark mediators

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, David; Surujon, Ze' ev [C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794 (United States); Tsai, Yuhsin [Physics Department, University of California Davis, Davis, CA 95616 (United States)

    2014-11-10

    We introduce dark mediator Dark Matter (dmDM) where the dark and visible sectors are connected by at least one light mediator ϕ carrying the same dark charge that stabilizes DM. ϕ is coupled to the Standard Model via an operator q{sup ¯}qϕϕ{sup ⁎}/Λ, and to dark matter via a Yukawa coupling y{sub χ}χ{sup c¯}χϕ. Direct detection is realized as the 2→3 process χN→χ{sup ¯}Nϕ at tree-level for m{sub ϕ}≲10 keV and small Yukawa coupling, or alternatively as a loop-induced 2→2 process χN→χN. We explore the direct-detection consequences of this scenario and find that a heavy O(100 GeV) dmDM candidate fakes different O(10 GeV) standard WIMPs in different experiments. Large portions of the dmDM parameter space are detectable above the irreducible neutrino background and not yet excluded by any bounds. Interestingly, for the m{sub ϕ} range leading to novel direct detection phenomenology, dmDM is also a form of Self-Interacting Dark Matter (SIDM), which resolves inconsistencies between dwarf galaxy observations and numerical simulations.

  18. Enlightening Students about Dark Matter

    Science.gov (United States)

    Hamilton, Kathleen; Barr, Alex; Eidelman, Dave

    2018-01-01

    Dark matter pervades the universe. While it is invisible to us, we can detect its influence on matter we can see. To illuminate this concept, we have created an interactive javascript program illustrating predictions made by six different models for dark matter distributions in galaxies. Students are able to match the predicted data with actual experimental results, drawn from several astronomy papers discussing dark matter’s impact on galactic rotation curves. Programming each new model requires integration of density equations with parameters determined by nonlinear curve-fitting using MATLAB scripts we developed. Using our javascript simulation, students can determine the most plausible dark matter models as well as the average percentage of dark matter lurking in galaxies, areas where the scientific community is still continuing to research. In that light, we strive to use the most up-to-date and accepted concepts: two of our dark matter models are the pseudo-isothermal halo and Navarro-Frenk-White, and we integrate out to each galaxy’s virial radius. Currently, our simulation includes NGC3198, NGC2403, and our own Milky Way.

  19. Forbidden Channels and SIMP Dark Matter

    OpenAIRE

    Choi Soo-Min; Kang Yoo-Jin; Lee Hyun Min

    2018-01-01

    In this review, we focus on dark matter production from thermal freeze-out with forbidden channels and SIMP processes. We show that forbidden channels can be dominant to produce dark matter depending on the dark photon and / or dark Higgs mass compared to SIMP.

  20. Dark matter search with XENON1T

    NARCIS (Netherlands)

    Aalbers, J.

    2018-01-01

    Most matter in the universe consists of 'dark matter' unknown to particle physics. Deep underground detectors such as XENON1T attempt to detect rare collisions of dark matter with ordinary atoms. This thesis describes the first dark matter search of XENON1T, how dark matter signals would appear in

  1. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes

  2. Voids and overdensities of coupled Dark Energy

    International Nuclear Information System (INIS)

    Mainini, Roberto

    2009-01-01

    We investigate the clustering properties of dynamical Dark Energy even in association of a possible coupling between Dark Energy and Dark Matter. We find that within matter inhomogeneities, Dark Energy migth form voids as well as overdensity depending on how its background energy density evolves. Consequently and contrarily to what expected, Dark Energy fluctuations are found to be slightly suppressed if a coupling with Dark Matter is permitted. When considering density contrasts and scales typical of superclusters, voids and supervoids, perturbations amplitudes range from |δ φ | ∼ O(10 −6 ) to |δ φ | ∼ O(10 −4 ) indicating an almost homogeneous Dark Energy component

  3. On dark degeneracy and interacting models

    International Nuclear Information System (INIS)

    Carneiro, S.; Borges, H.A.

    2014-01-01

    Cosmological background observations cannot fix the dark energy equation of state, which is related to a degeneracy in the definition of the dark sector components. Here we show that this degeneracy can be broken at perturbation level by imposing two observational properties on dark matter. First, dark matter is defined as the clustering component we observe in large scale structures. This definition is meaningful only if dark energy is unperturbed, which is achieved if we additionally assume, as a second condition, that dark matter is cold, i.e. non-relativistic. As a consequence, dark energy models with equation-of-state parameter −1 ≤ ω < 0 are reduced to two observationally distinguishable classes with ω = −1, equally competitive when tested against observations. The first comprises the ΛCDM model with constant dark energy density. The second consists of interacting models with an energy flux from dark energy to dark matter

  4. Probing the stability of superheavy dark matter particles with high-energy neutrinos

    International Nuclear Information System (INIS)

    Esmaili, Arman; Peres, O.L.G.

    2012-01-01

    Full text: There is currently mounting evidence for the existence of dark matter in our Universe from various astrophysical and cosmological observations, but the two of the most fundamental properties of the dark matter particle, the mass and the lifetime, are only weakly constrained by the astronomical and cosmological evidence of dark matter. We derive lower limits on the lifetime of dark matter particles with masses in the range 10 TeV - 10 18 GeV from the non-observation of ultrahigh energy neutrinos in the AMANDA, IceCube, Auger and ANITA experiments. All these experiments probe different energy windows and perfectly complement each other. For dark matter particles which produce neutrinos in a two body or a three body decay, we find that the dark matter lifetime must be longer than ∼ 10 26 s for masses between 10 TeV and the Grand Unification scale. We will consider various scenarios where the decay of the dark matter particle produces high energy neutrinos. Neutrinos travel in the Universe without suffering an appreciable attenuation, even for EeV neutrinos, in contrast to photons which rapidly lose their energy via pair production. This remarkable property makes neutrinos a very suitable messenger to constrain the lifetime of superheavy dark matter particles. Finally, we also calculate, for concrete particle physics scenarios, the limits on the strength of the interactions that induce the dark matter decay. (author)

  5. Production of Purely Gravitational Dark Matter

    OpenAIRE

    Ema, Yohei; Nakayama, Kazunori; Tang, Yong

    2018-01-01

    In the purely gravitational dark matter scenario, the dark matter particle does not have any interaction except for gravitational one. We study the gravitational particle production of dark matter particle in such a minimal setup and show that correct amount of dark matter can be produced depending on the inflation model and the dark matter mass. In particular, we carefully evaluate the particle production rate from the transition epoch to the inflaton oscillation epoch in a realistic inflati...

  6. Window in the dark matter exclusion limits

    International Nuclear Information System (INIS)

    Zaharijas, Gabrijela; Farrar, Glennys R.

    2005-01-01

    We consider the cross section limits for light dark matter cadnidates (m=0.4 to 10 GeV). We calculate the interaction of dark matter in the crust above underground dark matter detectors and find that in the intermediate cross section range, the energy loss of dark matter is sufficient to fall below the energy threshold of current underground experiments. This implies the existence of a window in the dark matter exclusion limits in the micro-barn range

  7. Probing the Dark Sector with Dark Matter Bound States.

    Science.gov (United States)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  8. Top-flavoured dark matter in Dark Minimal Flavour Violation

    Energy Technology Data Exchange (ETDEWEB)

    Blanke, Monika; Kast, Simon [Institut für Kernphysik, Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology,Engesserstraße 7, D-76128 Karlsruhe (Germany)

    2017-05-31

    We study a simplified model of top-flavoured dark matter in the framework of Dark Minimal Flavour Violation. In this setup the coupling of the dark matter flavour triplet to right-handed up-type quarks constitutes the only new source of flavour and CP violation. The parameter space of the model is restricted by LHC searches with missing energy final states, by neutral D meson mixing data, by the observed dark matter relic abundance, and by the absence of signal in direct detection experiments. We consider all of these constraints in turn, studying their implications for the allowed parameter space. Imposing the mass limits and coupling benchmarks from collider searches, we then conduct a combined analysis of all the other constraints, revealing their non-trivial interplay. Especially interesting is the combination of direct detection and relic abundance constraints, having a severe impact on the structure of the dark matter coupling matrix. We point out that future bounds from upcoming direct detection experiments, such as XENON1T, XENONnT, LUX-ZEPLIN, and DARWIN, will exclude a large part of the parameter space and push the DM mass to higher values.

  9. Modified dark matter: Relating dark energy, dark matter and baryonic matter

    Science.gov (United States)

    Edmonds, Douglas; Farrah, Duncan; Minic, Djordje; Ng, Y. Jack; Takeuchi, Tatsu

    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant (Λ), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.

  10. Dissipative hidden sector dark matter

    Science.gov (United States)

    Foot, R.; Vagnozzi, S.

    2015-01-01

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  11. Growing Oppression, Growing Resistance : LGBT Activism and Europeanisation in Macedonia

    NARCIS (Netherlands)

    Miškovska Kajevska, A.; Bilić, B.

    2016-01-01

    This chapter provides one of the first socio-historical overviews of the LGBT groups in Macedonia and argues that an important impetus for the proliferation of LGBT activities has been the growing state-endorsed homophobia starting from 2008. The homophobic rhetoric of the ruling parties was clearly

  12. Dark Skies Awareness Programs for the International Year of Astronomy

    Science.gov (United States)

    Walker, Constance E.; US IYA Dark Skies Working Group

    2009-05-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's cultural and natural heritage. More than 1/5 of the world population, 2/3 of the United States population and 1/2 of the European Union population have already lost naked-eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3) Organize events in the arts (e.g., a photography contest) 4) Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The poster will provide an update, describe how people can continue to participate, and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.

  13. Cheap heat grows in fields

    International Nuclear Information System (INIS)

    Haluza, I.

    2006-01-01

    Slovak farmers resemble the peasants from the film T he Magnificent Seven . They keep complaining about their fate but consider any innovation as an interference. And that is why they still have not started growing fast-growing wood although the number of heating plants processing bio-mass from forests and fields is growing. Natural gas is expensive and coal creates pollution. Energy from biomass is becoming a good business and also creates new business opportunities - growing the raw material it needs. Such heating plants usually use waste from wood processing companies and Slovak Forests (Lesy SR) has also started deliveries of chip wood from old forests. There are plantations of fast growing wood suitable for heat production of over 500-thousand hectares throughout the EU. This is about 10% of Slovakian's area where the first plantations are also already being set up. The first promising plantation project was launched this spring. And this is not a project launched and backed by a big company but a starting up businessman, Miroslav Forgac from Kosice. He founded his company, Forgim, last winter. Without big money involved and thank to a new business idea he managed to persuade farmers to set up the first plantations. He supplied the seedlings and the business has started with 75 ha of plantations around Trnava, Sala, Komarno, Lucenec, Poprad and Kosice. He is gradually signing contracts with other landowners and next year the area of plantations is set to grow by 1500 ha. Plantations of fast growing trees such as willow, poplar and acacia regenerate by new trees growing out of the roots of the old and from cut trees so from one seedling and one investment there can be several harvests. Swedish willows from Forgim regenerate 20 to 25 years after the first planting. And only then new seedlings have to be purchased. Using special machines that even cut the wood to wood chips the plantations can be 'harvested' every three years. Unlike crops, the fields do not

  14. The search for dark matter

    International Nuclear Information System (INIS)

    Smith, Nigel; Spooner, Neil

    2000-01-01

    Experiments housed deep underground are searching for new particles that could simultaneously solve one of the biggest mysteries in astrophysics and reveal what lies beyond the Standard Model of particle physics. Physicists are very particular about balancing budgets. Energy, charge and momentum all have to be conserved and often money as well. Astronomers were therefore surprised and disturbed to learn in the 1930s that our own Milky Way galaxy behaved as if it contained more matter than could be seen with telescopes. This puzzling non-luminous matter became known as ''dark matter'' and we now know that over 90% of the matter in the entire universe is dark. In later decades the search for this dark matter shifted from the heavens to the Earth. In fact, the search for dark matter went underground. Today there are experiments searching for dark matter hundreds and thousands of metres below ground in mines, road tunnels and other subterranean locations. These experiments are becoming more sensitive every year and are beginning to test various new models and theories in particle physics and cosmology. (UK)

  15. Dark Energy and Spacetime Symmetry

    Directory of Open Access Journals (Sweden)

    Irina Dymnikova

    2017-03-01

    Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.

  16. Cosmic Dark Radiation and Neutrinos

    Directory of Open Access Journals (Sweden)

    Maria Archidiacono

    2013-01-01

    Full Text Available New measurements of the cosmic microwave background (CMB by the Planck mission have greatly increased our knowledge about the universe. Dark radiation, a weakly interacting component of radiation, is one of the important ingredients in our cosmological model which is testable by Planck and other observational probes. At the moment, the possible existence of dark radiation is an unsolved question. For instance, the discrepancy between the value of the Hubble constant, H0, inferred from the Planck data and local measurements of H0 can to some extent be alleviated by enlarging the minimal ΛCDM model to include additional relativistic degrees of freedom. From a fundamental physics point of view, dark radiation is no less interesting. Indeed, it could well be one of the most accessible windows to physics beyond the standard model, for example, sterile neutrinos. Here, we review the most recent cosmological results including a complete investigation of the dark radiation sector in order to provide an overview of models that are still compatible with new cosmological observations. Furthermore, we update the cosmological constraints on neutrino physics and dark radiation properties focusing on tensions between data sets and degeneracies among parameters that can degrade our information or mimic the existence of extra species.

  17. Inflationary imprints on dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo, E-mail: sami.nurmi@helsinki.fi, E-mail: tommi.tenkanen@helsinki.fi, E-mail: kimmo.i.tuominen@helsinki.fi [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, University of Helsinki (Finland)

    2015-11-01

    We show that dark matter abundance and the inflationary scale H could be intimately related. Standard Model extensions with Higgs mediated couplings to new physics typically contain extra scalars displaced from vacuum during inflation. If their coupling to Standard Model is weak, they will not thermalize and may easily constitute too much dark matter reminiscent to the moduli problem. As an example we consider Standard Model extended by a Z{sub 2} symmetric singlet s coupled to the Standard Model Higgs Φ via λ Φ{sup †}Φ s{sup 2}. Dark matter relic density is generated non-thermally for λ ∼< 10{sup −7}. We show that the dark matter yield crucially depends on the inflationary scale. For H∼ 10{sup 10} GeV we find that the singlet self-coupling and mass should lie in the regime λ{sub s}∼> 10{sup −9} and m{sub s}∼< 50 GeV to avoid dark matter overproduction.

  18. Bouncing Cosmologies with Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Yi-Fu Cai

    2016-12-01

    Full Text Available We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence, could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.

  19. Dark matter and dark forces from a supersymmetric hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, S.; Goodsell, M.D.; Ringwald, A.

    2011-09-15

    We show that supersymmetric ''Dark Force'' models with gravity mediation are viable. To this end, we analyse a simple supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge boson with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct detection cross-sections to current experiments. (orig.)

  20. Continuous daylight in the high-Arctic summer supports high plankton respiration rates compared to those supported in the dark

    KAUST Repository

    Mesa, Elena; Delgado-Huertas, Antonio; Carrillo-de-Albornoz, Paloma; Garcí a-Corral, Lara S.; Sanz-Martí n, Marina; Wassmann, Paul; Reigstad, Marit; Sejr, Mikael; Dalsgaard, Tage; Duarte, Carlos M.

    2017-01-01

    Plankton respiration rate is a major component of global CO2 production and is forecasted to increase rapidly in the Arctic with warming. Yet, existing assessments in the Arctic evaluated plankton respiration in the dark. Evidence that plankton

  1. Light dark photon and fermionic dark radiation for the Hubble constant and the structure formation

    OpenAIRE

    Ko, P.; Tang, Yong

    2018-01-01

    Motivated by the tensions in the Hubble constant $H_0$ and the structure growth $\\sigma_8$ between $Planck$ results and other low redshift measurements, we discuss some cosmological effects of a dark sector model in which dark matter (DM) interacts with fermionic dark radiation (DR) through a light gauge boson (dark photon). Such kind of models are very generic in particle physics with a dark sector with dark gauge symmetries. The effective number of neutrinos is increased by $\\delta N_{eff} ...

  2. Inside charged black holes. II. Baryons plus dark matter

    International Nuclear Information System (INIS)

    Hamilton, Andrew J.S.; Pollack, Scott E.

    2005-01-01

    This is the second of two companion papers on the interior structure of self-similar accreting charged black holes. In the first paper, the black hole was allowed to accrete only a single fluid of charged baryons. In this second paper, the black hole is allowed to accrete in addition a neutral fluid of almost noninteracting dark matter. Relativistic streaming between outgoing baryons and ingoing dark matter leads to mass inflation near the inner horizon. When enough dark matter has been accreted that the center-of-mass frame near the inner horizon is ingoing, then mass inflation ceases and the fluid collapses to a central singularity. A null singularity does not form on the Cauchy horizon. Although the simultaneous presence of ingoing and outgoing fluids near the inner horizon is essential to mass inflation, reducing one or the other of the ingoing dark matter or outgoing baryonic streams to a trace relative to the other stream makes mass inflation more extreme, not the other way around as one might naively have expected. Consequently, if the dark matter has a finite cross section for being absorbed into the baryonic fluid, then the reduction of the amount of ingoing dark matter merely makes inflation more extreme, the interior mass exponentiating more rapidly and to a larger value before mass inflation ceases. However, if the dark matter absorption cross section is effectively infinite at high collision energy, so that the ingoing dark matter stream disappears completely, then the outgoing baryonic fluid can drop through the Cauchy horizon. In all cases, as the baryons and the dark matter voyage to their diverse fates inside the black hole, they only ever see a finite amount of time pass by in the outside universe. Thus the solutions do not depend on what happens in the infinite past or future. We discuss in some detail the physical mechanism that drives mass inflation. Although the gravitational force is inward, inward means opposite direction for ingoing and

  3. Exploring Classroom Hydroponics. Growing Ideas.

    Science.gov (United States)

    National Gardening Association, Burlington, VT.

    Growing Ideas, the National Gardening Association's series for elementary, middle, and junior high school educators, helps teachers engage students in using plants and gardens as contexts for developing a deeper, richer understanding of the world around them. This volume's focus is on hydroponics. It presents basic hydroponics information along…

  4. Organization of growing random networks

    Energy Technology Data Exchange (ETDEWEB)

    Krapivsky, P. L.; Redner, S.

    2001-06-01

    The organizational development of growing random networks is investigated. These growing networks are built by adding nodes successively, and linking each to an earlier node of degree k with an attachment probability A{sub k}. When A{sub k} grows more slowly than linearly with k, the number of nodes with k links, N{sub k}(t), decays faster than a power law in k, while for A{sub k} growing faster than linearly in k, a single node emerges which connects to nearly all other nodes. When A{sub k} is asymptotically linear, N{sub k}(t){similar_to}tk{sup {minus}{nu}}, with {nu} dependent on details of the attachment probability, but in the range 2{lt}{nu}{lt}{infinity}. The combined age and degree distribution of nodes shows that old nodes typically have a large degree. There is also a significant correlation in the degrees of neighboring nodes, so that nodes of similar degree are more likely to be connected. The size distributions of the in and out components of the network with respect to a given node{emdash}namely, its {open_quotes}descendants{close_quotes} and {open_quotes}ancestors{close_quotes}{emdash}are also determined. The in component exhibits a robust s{sup {minus}2} power-law tail, where s is the component size. The out component has a typical size of order lnt, and it provides basic insights into the genealogy of the network.

  5. Growing an Emerging Research University

    Science.gov (United States)

    Birx, Donald L.; Anderson-Fletcher, Elizabeth; Whitney, Elizabeth

    2013-01-01

    The emerging research college or university is one of the most formidable resources a region has to reinvent and grow its economy. This paper is the first of two that outlines a process of building research universities that enhance regional technology development and facilitate flexible networks of collaboration and resource sharing. Although the…

  6. Growing Crystals on the Ceiling.

    Science.gov (United States)

    Christman, Robert A.

    1980-01-01

    Described is a method of studying growing crystals in a classroom utilizing a carrousel projector standing vertically. A saturated salt solution is placed on a slide on the lens of the projector and the heat from the projector causes the water to evaporate and salt to crystalize. (Author/DS)

  7. Agglomerative clustering of growing squares

    NARCIS (Netherlands)

    Castermans, Thom; Speckmann, Bettina; Staals, Frank; Verbeek, Kevin; Bender, M.A.; Farach-Colton, M.; Mosteiro, M.A.

    2018-01-01

    We study an agglomerative clustering problem motivated by interactive glyphs in geo-visualization. Consider a set of disjoint square glyphs on an interactive map. When the user zooms out, the glyphs grow in size relative to the map, possibly with different speeds. When two glyphs intersect, we wish

  8. Inferences from growing trees backwards

    Science.gov (United States)

    David W. Green; Kent A. McDonald

    1997-01-01

    The objective of this paper is to illustrate how longitudinal stress wave techniques can be useful in tracking the future quality of a growing tree. Monitoring the quality of selected trees in a plantation forest could provide early input to decisions on the effectiveness of management practices, or future utilization options, for trees in a plantation. There will...

  9. COFFEE GROWING AREAS OF ETHIOPIA"

    African Journals Online (AJOL)

    accelerated economic growth, part of which is hoped to be achieved via increased ... at the Fifth International Conference on the Ethiopian Economy held at the United ... Samuel and Ludi: Agricultural commercialisation in coffee growing areas. ... Ethiopia produces and exports one of the best fighland coffees in the world.

  10. Laying bare Venus' dark secrets

    International Nuclear Information System (INIS)

    Allen, D.A.

    1987-01-01

    Ground-based IR observations of the dark side of Venus obtained in 1983 and 1985 with the Anglo-Australian Telescope are studied. An IR spectrum of Venus' dark side is analyzed. It is observed that the Venus atmosphere is composed of CO and radiation escapes only at 1.74 microns and 2.2 to 2.4 microns. The possible origin of the radiation, either due to absorbed sunlight or escaping thermal radiation, was investigated. These two hypotheses were eliminated, and it is proposed that the clouds of Venus are transparent and the radiation originates from the same stratum as the brighter portions but is weakened by the passage through the upper layer. The significance of the observed dark side markings is discussed

  11. The dark side of curvature

    International Nuclear Information System (INIS)

    Barenboim, Gabriela; Martínez, Enrique Fernández; Mena, Olga; Verde, Licia

    2010-01-01

    Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d A (z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Ω k in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d A (z) up to sufficiently high redshifts z ∼ 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z)−Ω k degeneracy

  12. Cardiovascular Benefits of Dark Chocolate?

    Science.gov (United States)

    Higginbotham, Erin; Taub, Pam R

    2015-12-01

    The use of cacao for health benefits dates back at least 3000 years. Our understanding of cacao has evolved with modern science. It is now felt based on extensive research the main health benefits of cacao stem from epicatechin, a flavanol found in cacao. The process of manufacturing dark chocolate retains epicatechin, whereas milk chocolate does not contain significant amounts of epicatechin. Thus, most of the current research studies are focused on dark chocolate. Both epidemiological and clinical studies suggest a beneficial effect of dark chocolate on blood pressure, lipids, and inflammation. Proposed mechanisms underlying these benefits include enhanced nitric oxide bioavailability and improved mitochondrial structure/function. Ultimately, further studies of this promising compound are needed to elucidate its potential for prevention and treatment of cardiovascular and metabolic diseases as well as other diseases that have underlying mechanisms of mitochondrial dysfunction and nitric oxide deficiency.

  13. Laboratory tests on dark energy

    International Nuclear Information System (INIS)

    Beck, Christian

    2006-01-01

    The physical nature of the currently observed dark energy in the universe is completely unclear, and many different theoretical models co-exist. Nevertheless, if dark energy is produced by vacuum fluctuations then there is a chance to probe some of its properties by simple laboratory tests based on Josephson junctions. These electronic devices can be used to perform 'vacuum fluctuation spectroscopy', by directly measuring a noise spectrum induced by vacuum fluctuations. One would expect to see a cutoff near 1.7 THz in the measured power spectrum, provided the new physics underlying dark energy couples to electric charge. The effect exploited by the Josephson junction is a subtile nonlinear mixing effect and has nothing to do with the Casimir effect or other effects based on van der Waals forces. A Josephson experiment of the suggested type will now be built, and we should know the result within the next 3 years

  14. Dark Matter searches at ATLAS

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2016-01-01

    If Dark Matter interacts weakly with the Standard Model it can be produced at the LHC. It can be identified via initial state radiation (ISR) of the incoming partons, leaving a signature in the detector of the ISR particle (jet, photon, Z or W) recoiling off of the invisible Dark Matter particles, resulting in a large momentum imbalance. Many signatures of large missing transverse momentum recoiling against jets, photons, heavy-flavor quarks, weak gauge bosons or Higgs bosons provide an interesting channel for Dark Matter searches. These LHC searches complement those from (in)direct detection experiments. Results of these searches with the ATLAS experiment, in both effective field theory and simplified models with pair WIMP production are discussed. Both 8TeV and 13TeV pp collision data has been used in these results.

  15. Dark Energy Camera for Blanco

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  16. Flavoured Dark Matter moving left

    Science.gov (United States)

    Blanke, Monika; Das, Satrajit; Kast, Simon

    2018-02-01

    We investigate the phenomenology of a simplified model of flavoured Dark Matter (DM), with a dark fermionic flavour triplet coupling to the left-handed SU(2) L quark doublets via a scalar mediator. The DM-quark coupling matrix is assumed to constitute the only new source of flavour and CP violation, following the hypothesis of Dark Minimal Flavour Violation. We analyse the constraints from LHC searches, from meson mixing data in the K, D, and B d,s meson systems, from thermal DM freeze-out, and from direct detection experiments. Our combined analysis shows that while the experimental constraints are similar to the DMFV models with DM coupling to right-handed quarks, the multitude of couplings between DM and the SM quark sector resulting from the SU(2) L structure implies a richer phenomenology and significantly alters the resulting impact on the viable parameter space.

  17. Dark energy and universal antigravitation

    International Nuclear Information System (INIS)

    Chernin, A D

    2008-01-01

    Universal antigravitation, a new physical phenomenon discovered astronomically at distances of 5 to 8 billion light years, manifests itself as cosmic repulsion that acts between distant galaxies and overcomes their gravitational attraction, resulting in the accelerating expansion of the Universe. The source of the antigravitation is not galaxies or any other bodies of nature but a previously unknown form of mass/energy that has been termed dark energy. Dark energy accounts for 70 to 80% of the total mass and energy of the Universe and, in macroscopic terms, is a kind of continuous medium that fills the entire space of the Universe and is characterized by positive density and negative pressure. With its physical nature and microscopic structure unknown, dark energy is among the most critical challenges fundamental science faces in the twenty-first century. (physics of our days)

  18. Dark matter in the universe

    CERN Document Server

    Seigar, Marc S

    2015-01-01

    The study of dark matter, in both astrophysics and particle physics, has emerged as one of the most active and exciting topics of research in recent years. This book reviews the history behind the discovery of missing mass (or unseen mass) in the universe, and ties this into the proposed extensions to the Standard Model of Particle Physics (such as Supersymmetry), which were being proposed within the same time frame. This book is written as an introduction to these problems at the forefront of astrophysics and particle physics, with the goal of conveying the physics of dark matter to beginning undergraduate majors in scientific fields. The book goes on to describe existing and upcoming experiments and techniques, which will be used to detect dark matter either directly or indirectly.

  19. Gravitational Waves and Dark Energy

    Directory of Open Access Journals (Sweden)

    Peter L. Biermann

    2014-12-01

    Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

  20. Dark matter searches at ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220289; The ATLAS collaboration

    2015-01-01

    The large excess of Dark Matter observed in the Universe and its particle nature is one of the key problems yet to be solved in particle physics. Despite the extensive success of the Standard Model, it is not able to explain this excess, which instead might be due to yet unknown particles, such as Weakly Interacting Massive Particles, that could be produced at the Large Hadron Collider. This contribution will give an overview of different approaches to finding evidence for Dark Matter with the ATLAS experiment in $\\sqrt{s}=8~\\mathrm{TeV}$ Run-1 data.

  1. Dark patterns in proxemic interactions

    DEFF Research Database (Denmark)

    Greenberg, Saul; Boring, Sebastian; Vermeulen, Jo

    2014-01-01

    to better facilitate seamless and natural interactions. To do so, both people and devices are tracked to determine their spatial relationships. While interest in proxemic interactions has increased over the last few years, it also has a dark side: knowledge of proxemics may (and likely will) be easily...... exploited to the detriment of the user. In this paper, we offer a critical perspective on proxemic interactions in the form of dark patterns: ways proxemic interactions can be misused. We discuss a series of these patterns and describe how they apply to these types of interactions. In addition, we identify...

  2. Indirect detection of dark matter

    International Nuclear Information System (INIS)

    Pieri, L.

    2008-01-01

    In the Cold Dark Matter scenario, the Dark Matter particle candidate may be a Weakly Interacting Massive Particle (Wimp). Annihilation of two Wimps in local or cosmological structures would result in the production of a number of standard model particles such as photons, leptons and baryons which could be observed with the presently available or future experiments such as the Pamela or Glast satellites or the Cherenkov Telescopes. In this work we review the status-of-the-art of the theoretical and phenomenological studies about the possibility of indirect detection of signals coming from Wimp annihilation.

  3. Dark matter in elliptical galaxies

    Science.gov (United States)

    Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.

    1995-01-01

    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.

  4. Dark energy from quantum matter

    International Nuclear Information System (INIS)

    Dappiaggi, Claudio; Hack, Thomas-Paul; Moeller, Jan; Pinamonti, Nicola

    2010-07-01

    We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)

  5. Dark Matter Searches at ATLAS

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The astrophysical evidence of dark matter provides some of the most compelling clues to the nature of physics beyond the Standard Model. From these clues, ATLAS has developed a broad and systematic search program for dark matter production in LHC collisions. These searches are now entering their prime, with the LHC now colliding protons at the increased 13 TeV centre-of-mass energy and set to deliver much larger datasets than ever before. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  6. Field Flows of Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, Robert N.; de Putter, Roland; Linder, Eric V.

    2008-07-08

    Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.

  7. Dark energy from quantum matter

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Moeller, Jan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Pinamonti, Nicola [Rome-2 Univ. (Italy). Dipt. di Matematica

    2010-07-15

    We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)

  8. Invisible Higgs and Dark Matter

    DEFF Research Database (Denmark)

    Heikinheimo, Matti; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2012-01-01

    We investigate the possibility that a massive weakly interacting fermion simultaneously provides for a dominant component of the dark matter relic density and an invisible decay width of the Higgs boson at the LHC. As a concrete model realizing such dynamics we consider the minimal walking...... technicolor, although our results apply more generally. Taking into account the constraints from the electroweak precision measurements and current direct searches for dark matter particles, we find that such scenario is heavily constrained, and large portions of the parameter space are excluded....

  9. Interacting dark sector with transversal interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chimento, Luis P.; Richarte, Martín G. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Pabellón I, Buenos Aires 1428 (Argentina)

    2015-03-26

    We investigate the interacting dark sector composed of dark matter, dark energy, and dark radiation for a spatially flat Friedmann-Robertson-Walker (FRW) background by introducing a three-dimensional internal space spanned by the interaction vector Q and solve the source equation for a linear transversal interaction. Then, we explore a realistic model with dark matter coupled to a scalar field plus a decoupled radiation term, analyze the amount of dark energy in the radiation era and find that our model is consistent with the recent measurements of cosmic microwave background anisotropy coming from Planck along with the future constraints achievable by CMBPol experiment.

  10. Ordinary Dark Matter versus Mysterious Dark Matter in Galactic Rotation

    Science.gov (United States)

    Gallo, C. F.; Feng, James

    2008-04-01

    To theoretically describe the measured rotational velocity curves of spiral galaxies, there are two different approaches and conclusions. (1) ORDINARY DARK MATTER. We assume Newtonian gravity/dynamics and successfully find (via computer) mass distributions in bulge/disk configurations that duplicate the measured rotational velocities. There is ordinary dark matter within the galactic disk towards the cooler periphery which has lower emissivity/opacity. There are no mysteries in this scenario based on verified physics. (2) MYSTERIOUS DARK MATTER. Others INaccurately assume the galactic mass distributions follow the measured light distributions, and then the measured rotational velocity curves are NOT duplicated. To alleviate this discrepancy, speculations are invoked re ``Massive Peripheral Spherical Halos of Mysterious Dark Matter.'' But NO matter has been detected in this UNtenable Halo configuration. Many UNverified ``Mysteries'' are invoked as necessary and convenient. CONCLUSION. The first approach utilizing Newtonian gravity/dynamics and searching for the ordinary mass distributions within the galactic disk simulates reality and agrees with data.

  11. Embrace the Dark Side: Advancing the Dark Energy Survey

    Science.gov (United States)

    Suchyta, Eric

    The Dark Energy Survey (DES) is an ongoing cosmological survey intended to study the properties of the accelerated expansion of the Universe. In this dissertation, I present work of mine that has advanced the progress of DES. First is an introduction, which explores the physics of the cosmos, as well as how DES intends to probe it. Attention is given to developing the theoretical framework cosmologists use to describe the Universe, and to explaining observational evidence which has furnished our current conception of the cosmos. Emphasis is placed on the dark sector - dark matter and dark energy - the content of the Universe not explained by the Standard Model of particle physics. As its name suggests, the Dark Energy Survey has been specially designed to measure the properties of dark energy. DES will use a combination of galaxy cluster, weak gravitational lensing, angular clustering, and supernovae measurements to derive its state of the art constraints, each of which is discussed in the text. The work described in this dissertation includes science measurements directly related to the first three of these probes. The dissertation presents my contributions to the readout and control system of the Dark Energy Camera (DECam); the name of this software is SISPI. SISPI uses client-server and publish-subscribe communication patterns to coordinate and command actions among the many hardware components of DECam - the survey instrument for DES, a 570 megapixel CCD camera, mounted at prime focus of the Blanco 4-m Telescope. The SISPI work I discuss includes coding applications for DECam's filter changer mechanism and hexapod, as well as developing the Scripts Editor, a GUI application for DECam users to edit and export observing sequence SISPI can load and execute. Next, the dissertation describes the processing of early DES data, which I contributed. This furnished the data products used in the first-completed DES science analysis, and contributed to improving the

  12. Dynamical friction for dark halo satellites: effects of tidal massloss and growing host potential

    OpenAIRE

    Zhao, HongSheng

    2004-01-01

    How fast a satellite decays its orbit depends on how slowly its mass is lost by tide. Motivated by inner halo satellite remnants like the Sgr and Omega Cen, we develop fully analytical models to study the orbital decay and tidal massloss of satellites. The orbital decay rate is often severely overestimated if applying the ChandraSekhar's formula without correcting for (a) the evaporation and tidal loss of the satellite and (b) the contraction of satellite orbits due to adiabatic growth of the...

  13. WEAKLY INTERACTING MASSIVE PARTICLE DARK MATTER AND FIRST STARS: SUPPRESSION OF FRAGMENTATION IN PRIMORDIAL STAR FORMATION

    International Nuclear Information System (INIS)

    Smith, Rowan J.; Glover, Simon C. O.; Klessen, Ralf S.; Iocco, Fabio; Schleicher, Dominik R. G.; Hirano, Shingo; Yoshida, Naoki

    2012-01-01

    We present the first three-dimensional simulations to include the effects of dark matter annihilation feedback during the collapse of primordial minihalos. We begin our simulations from cosmological initial conditions and account for dark matter annihilation in our treatment of the chemical and thermal evolution of the gas. The dark matter is modeled using an analytical density profile that responds to changes in the peak gas density. We find that the gas can collapse to high densities despite the additional energy input from the dark matter. No objects supported purely by dark matter annihilation heating are formed in our simulations. However, we find that dark matter annihilation heating has a large effect on the evolution of the gas following the formation of the first protostar. Previous simulations without dark matter annihilation found that protostellar disks around Population III stars rapidly fragmented, forming multiple protostars that underwent mergers or ejections. When dark matter annihilation is included, however, these disks become stable to radii of 1000 AU or more. In the cases where fragmentation does occur, it is a wide binary that is formed.

  14. Direct dark matter detection with the DarkSide-50 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pagani, Luca [Univ. of Genoa (Italy)

    2017-01-01

    The existence of dark matter is known because of its gravitational effects, and although its nature remains undisclosed, there is a growing indication that the galactic halo could be permeated by weakly interacting massive particles (WIMPs) with mass of the order of $100$\\,GeV/c$^2$ and coupling with ordinary matter at or below the weak scale. In this context, DarkSide-50 aims to direct observe WIMP-nucleon collisions in a liquid argon dual phase time-projection chamber located deep underground at Gran Sasso National Laboratory, in Italy. In this work a re-analysis of the data that led to the best limit on WIMP-nucleon cross section with an argon target is done. As starting point of the new approach, the energy reconstruction of events is considered: a new energy variable is developed where anti-correlation between ionization and scintillation produced by an interaction is taken into account. As first result, a better energy resolution is achieved. In this new energy framewor k, access is granted to micro-physics parameters fundamental to argon scintillation such as the recombination and quenching as a function of the energy. The improved knowledge of recombination and quenching allows to develop a new model for distinguish between events possibly due to WIMPs and backgrounds. In light of the new model, the final result of this work is a more stringent limit on spin independent WIMP-nucleon cross section with an argon target. This work was supervised by Marco Pallavicini and was completed in collaboration with members of the DarkSide collaboration.

  15. Stream Clustering of Growing Objects

    Science.gov (United States)

    Siddiqui, Zaigham Faraz; Spiliopoulou, Myra

    We study incremental clustering of objects that grow and accumulate over time. The objects come from a multi-table stream e.g. streams of Customer and Transaction. As the Transactions stream accumulates, the Customers’ profiles grow. First, we use an incremental propositionalisation to convert the multi-table stream into a single-table stream upon which we apply clustering. For this purpose, we develop an online version of K-Means algorithm that can handle these swelling objects and any new objects that arrive. The algorithm also monitors the quality of the model and performs re-clustering when it deteriorates. We evaluate our method on the PKDD Challenge 1999 dataset.

  16. Millennium bim managing growing demand

    OpenAIRE

    Lopes, Francisca Barbosa Malpique de Paiva

    2014-01-01

    Millennium bim, the Mozambican operation of Millennium bcp group, was the Company selected to serve as background for the development of a teaching case in Marketing. This case is followed by a teaching note, and is intended to be used as a pedagogical tool in undergraduate and/or graduate programs. Even though Mozambique is still characterized by high financial exclusion, the number of people entering within the banking industry has been growing at a fast pace. Actually, the demand for fi...

  17. Dark Skies: Local Success, Global Challenge

    Science.gov (United States)

    Lockwood, G. W.

    2009-01-01

    The Flagstaff, Arizona 1987 lighting code reduced the growth rate of man-made sky glow by a third. Components of the code include requirements for full cutoff lighting, lumens per acre limits in radial zones around observatories, and use of low-pressure sodium monochromatic lighting for roadways and parking lots. Broad public acceptance of Flagstaff's lighting code demonstrates that dark sky preservation has significant appeal and few visibility or public safety negatives. An inventory by C. Luginbuhl et al. of the light output and shielding of a sampling of various zoning categories (municipal, commercial, apartments, single-family residences, roadways, sports facilities, industrial, etc.), extrapolated over the entire city, yields a total output of 139 million lumens. Commercial and industrial sources account for 62% of the total. Outdoor sports lighting increases the total by 24% on summer evenings. Flagstaff's per capita lumen output is 2.5 times greater than the nominal 1,000 lumens per capita assumed by R. Garstang in his early sky glow modeling work. We resolved the discrepancy with respect to Flagstaff's measured sky glow using an improved model that includes substantial near ground attenuation by foliage and structures. A 2008 university study shows that astronomy contributes $250M annually to Arizona's economy. Another study showed that the application of lighting codes throughout Arizona could reduce energy consumption significantly. An ongoing effort led by observatory directors statewide will encourage lighting controls in currently unregulated metropolitan areas whose growing sky glow threatens observatory facilities more than 100 miles away. The national press (New York Times, the New Yorker, the Economist, USA Today, etc.) have publicized dark sky issues but frequent repetition of the essential message and vigorous action will be required to steer society toward darker skies and less egregious waste.

  18. The dark side of matter

    International Nuclear Information System (INIS)

    Cline, D.

    2003-01-01

    The number of baryons (protons and neutrons) of the universe can be deduced from the relative abundances of light elements (deuterium, helium and lithium) that were generated during the very first minutes of the cosmic history. This calculation has shown that the baryonic matter represents only 5% of the total mass of the universe. As for neutrinos (hot dark matter), their very low mass restraints their contribution to only 0,3%. The spinning movement of galaxies requires the existence of huge quantity of matter that seems invisible (black matter). Astrophysicists have recently discovered that the universal expansion is accelerating and that the space geometry is euclidean, from these 2 facts they have deduced a value of the mass-energy density that implies the existence of something different from dark matter called dark energy and that is expected to represent about 70% of the mass of the universe. Physicists face the challenge of detecting black matter and black energy. The first attempt for detecting black matter began in 1997 when the UKDMC detector entered into service. Now more than half a dozen of detectors are searching for dark matter but till now in vain. A new generation of detectors (CDMS-2, ZEPLIN-2, CRESST-2 and Edelweiss-2) combining detection, new methods of particle discrimination and the study of the evolution of the signal over very long periods of time are progressively entering into operation. (A.C.)

  19. Cosmic Visions Dark Energy. Science

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Heitmann, Katrin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hirata, Chris [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Roodman, Aaron [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seljak, Uroš [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Slosar, Anže [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Trodden, Mark [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-04-26

    Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiments, DESI and LSST, complete their surveys, there will still be much information left in the sky. This additional information will enable us to understand the physics underlying the dark universe at an even deeper level and, in case Stage IV surveys find hints for physics beyond the current Standard Model of Cosmology, to revolutionize our current view of the universe. There are many ideas for how best to supplement and aid DESI and LSST in order to access some of this remaining information and how surveys beyond Stage IV can fully exploit this regime. These ideas flow to potential projects that could start construction in the 2020's.

  20. Cosmic Visions Dark Energy: Science

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Slosar, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Heitmann, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hirata, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Honscheid, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roodman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seljak, U. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trodden, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-26

    Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiments, DESI and LSST, complete their surveys, there will still be much information left in the sky. This additional information will enable us to understand the physics underlying the dark universe at an even deeper level and, in case Stage IV surveys find hints for physics beyond the current Standard Model of Cosmology, to revolutionize our current view of the universe. There are many ideas for how best to supplement and aid DESI and LSST in order to access some of this remaining information and how surveys beyond Stage IV can fully exploit this regime. These ideas flow to potential projects that could start construction in the 2020's.

  1. A dark day for dinosaurs

    Science.gov (United States)

    Edwards, Pete

    2015-11-01

    On average, 91 people are killed by asteroids each year. In her book Dark Matter and the Dinosaurs, theoretical physicist Lisa Randall focuses on a novel question: how did a dinosaur-killing asteroid end up on its collision course with Earth in the first place?

  2. Interaction in the dark sector

    Science.gov (United States)

    del Campo, Sergio; Herrera, Ramón; Pavón, Diego

    2015-06-01

    It may well happen that the two main components of the dark sector of the Universe, dark matter and dark energy, do not evolve separately but interact nongravitationally with one another. However, given our current lack of knowledge of the microscopic nature of these two components, there is no clear theoretical path to determine their interaction. Yet, over the years, phenomenological interaction terms have been proposed on mathematical simplicity and heuristic arguments. In this paper, based on the likely evolution of the ratio between the energy densities of these dark components, we lay down reasonable criteria to obtain phenomenological, useful, expressions of the said term independent of any gravity theory. We illustrate this with different proposals which seem compatible with the known evolution of the Universe at the background level. Likewise, we show that two possible degeneracies with noninteracting models are only apparent as they can be readily broken at the background level. Further, we analyze some interaction terms that appear in the literature.

  3. Weak lensing and dark energy

    International Nuclear Information System (INIS)

    Huterer, Dragan

    2002-01-01

    We study the power of upcoming weak lensing surveys to probe dark energy. Dark energy modifies the distance-redshift relation as well as the matter power spectrum, both of which affect the weak lensing convergence power spectrum. Some dark-energy models predict additional clustering on very large scales, but this probably cannot be detected by weak lensing alone due to cosmic variance. With reasonable prior information on other cosmological parameters, we find that a survey covering 1000 sq deg down to a limiting magnitude of R=27 can impose constraints comparable to those expected from upcoming type Ia supernova and number-count surveys. This result, however, is contingent on the control of both observational and theoretical systematics. Concentrating on the latter, we find that the nonlinear power spectrum of matter perturbations and the redshift distribution of source galaxies both need to be determined accurately in order for weak lensing to achieve its full potential. Finally, we discuss the sensitivity of the three-point statistics to dark energy

  4. Non-baryonic dark matter

    OpenAIRE

    Berezinsky, Veniamin Sergeevich; Bottino, A; Mignola, G

    1996-01-01

    The best particle candidates for non--baryonic cold dark matter are reviewed, namely, neutralino, axion, axino and Majoron. These particles are considered in the context of cosmological models with the restrictions given by the observed mass spectrum of large scale structures, data on clusters of galaxies, age of the Universe etc.

  5. Modified gravity without dark matter

    NARCIS (Netherlands)

    Sanders, Robert; Papantonopoulos, L

    2007-01-01

    On an empirical level, the most successful alternative to dark matter in bound gravitational systems is the modified Newtonian dynamics, or MOND, proposed by Milgrom. Here I discuss the attempts to formulate MOND as a modification of General Relativity. I begin with a summary of the phenomenological

  6. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Albada, T.S. van; Sancisi, R.

    1986-01-01

    Mass models of spiral galaxies based on the observed light distribution, assuming constant M/L for bulge and disc, are able to reproduce the observed rotation curves in the inner regions, but fail to do so increasingly towards and beyond the edge of the visible material. The discrepancy in the outer region can be accounted for by invoking dark matter; some galaxies require at least four times as much dark matter as luminous matter. There is no evidence for a dependence on galaxy luminosity or morphological type. Various arguments support the idea that a distribution of visible matter with constant M/L is responsible for the circular velocity in the inner region, i.e. inside approximately 2.5 disc scalelengths. Luminous matter and dark matter seem to 'conspire' to produce the flat observed rotation curves in the outer region. It seems unlikely that this coupling between disc and halo results from the large-scale gravitational interaction between the two components. Attempts to determine the shape of dark halos have not yet produced convincing results. (author)

  7. Exploring a hidden fermionic dark sector

    Indian Academy of Sciences (India)

    Debasish Majumdar

    2017-10-09

    Oct 9, 2017 ... background radiation (CMBR) by Planck [1] satellite experiment suggests ... (SM) of particle physics also cannot explain the physics of dark matter. ... the dark sector also achieve mass from the spontaneous breaking of this ...

  8. Dark matter assimilation into the baryon asymmetry

    International Nuclear Information System (INIS)

    D'Eramo, Francesco; Fei, Lin; Thaler, Jesse

    2012-01-01

    Pure singlets are typically disfavored as dark matter candidates, since they generically have a thermal relic abundance larger than the observed value. In this paper, we propose a new dark matter mechanism called a ssimilation , which takes advantage of the baryon asymmetry of the universe to generate the correct relic abundance of singlet dark matter. Through assimilation, dark matter itself is efficiently destroyed, but dark matter number is stored in new quasi-stable heavy states which carry the baryon asymmetry. The subsequent annihilation and late-time decay of these heavy states yields (symmetric) dark matter as well as (asymmetric) standard model baryons. We study in detail the case of pure bino dark matter by augmenting the minimal supersymmetric standard model with vector-like chiral multiplets. In the parameter range where this mechanism is effective, the LHC can discover long-lived charged particles which were responsible for assimilating dark matter

  9. Self-interacting warm dark matter

    International Nuclear Information System (INIS)

    Hannestad, Steen; Scherrer, Robert J.

    2000-01-01

    It has been shown by many independent studies that the cold dark matter scenario produces singular galactic dark halos, in strong contrast with observations. Possible remedies are that either the dark matter is warm so that it has significant thermal motion or that the dark matter has strong self-interactions. We combine these ideas to calculate the linear mass power spectrum and the spectrum of cosmic microwave background (CMB) fluctuations for self-interacting warm dark matter. Our results indicate that such models have more power on small scales than is the case for the standard warm dark matter model, with a CMB fluctuation spectrum which is nearly indistinguishable from standard cold dark matter. This enhanced small-scale power may provide better agreement with the observations than does standard warm dark matter. (c) 2000 The American Physical Society

  10. Exploring the dark side of the Universe

    International Nuclear Information System (INIS)

    Das, Mala

    2014-01-01

    Astronomical observations show that about 95% of the energy density of the Universe cannot be accounted for in terms of mass and energy of which about 26.8% is considered to be dark matter. The detection of this dark matter is one of the major and interesting unsolved problems in Physics. There are many experiments running worldwide at different underground laboratories for the direct detection of dark matter, mainly WIMPs (Weakly Interacting Massive Particles), the most favoured candidate of dark matter. Direct detection experiments expect to detect the dark matter directly by measuring the small energy imparted to recoil nuclei in occasional dark matter interactions with detector, stationed at earth's laboratory. In the subsequent sections, the challenges of such experiments are discussed followed by the details on PICASSO/PICO dark matter search experiment at SNO Lab, activities related to this experiment at SINP and the future direction of dark matter experiments

  11. Dark matter axions and caustic rings

    International Nuclear Information System (INIS)

    Sikivie, P.

    1997-01-01

    This report contains discussions on the following topics: the strong CP problem; dark matter axions; the cavity detector of galactic halo axions; and caustic rings in the density distribution of cold dark matter halos

  12. Review of LHC dark matter searches

    International Nuclear Information System (INIS)

    Kahlhoefer, Felix

    2017-02-01

    This review discusses both experimental and theoretical aspects of searches for dark matter at the LHC. An overview of the various experimental search channels is given, followed by a summary of the different theoretical approaches for predicting dark matter signals. A special emphasis is placed on the interplay between LHC dark matter searches and other kinds of dark matter experiments, as well as among different types of LHC searches.

  13. Review of LHC dark matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Kahlhoefer, Felix

    2017-02-15

    This review discusses both experimental and theoretical aspects of searches for dark matter at the LHC. An overview of the various experimental search channels is given, followed by a summary of the different theoretical approaches for predicting dark matter signals. A special emphasis is placed on the interplay between LHC dark matter searches and other kinds of dark matter experiments, as well as among different types of LHC searches.

  14. Quantum mechanical theory behind "dark energy"?

    CERN Multimedia

    Colin Johnson, R

    2007-01-01

    "The mysterious increase in the acceleration of the universe, when intuition says it should be slowing down, is postulated to be caused by dark energy - "dark" because it is undetected. Now a group of scientists in the international collaboration Essence has suggested that a quantum mechanical interpretation of Einstein's proposed "cosmological constant" is the simplest explanation for dark energy. The group measured dark energy to within 10 percent." (1,5 page)

  15. New Spectral Features from Bound Dark Matter

    DEFF Research Database (Denmark)

    Catena, Riccardo; Kouvaris, Chris

    2016-01-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature we predict can provide the ultimate smoking gun for dark matter discovery for experiments...... with positive signal but unclear background. The new feature is universal, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section....

  16. Exponentially Light Dark Matter from Coannihilation

    OpenAIRE

    D'Agnolo, Raffaele Tito; Mondino, Cristina; Ruderman, Joshua T.; Wang, Po-Jen

    2018-01-01

    Dark matter may be a thermal relic whose abundance is set by mutual annihilations among multiple species. Traditionally, this coannihilation scenario has been applied to weak scale dark matter that is highly degenerate with other states. We show that coannihilation among states with split masses points to dark matter that is exponentially lighter than the weak scale, down to the keV scale. We highlight the regime where dark matter does not participate in the annihilations that dilute its numb...

  17. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  18. Big Bang synthesis of nuclear dark matter

    International Nuclear Information System (INIS)

    Hardy, Edward; Lasenby, Robert; March-Russell, John; West, Stephen M.

    2015-01-01

    We investigate the physics of dark matter models featuring composite bound states carrying a large conserved dark “nucleon” number. The properties of sufficiently large dark nuclei may obey simple scaling laws, and we find that this scaling can determine the number distribution of nuclei resulting from Big Bang Dark Nucleosynthesis. For plausible models of asymmetric dark matter, dark nuclei of large nucleon number, e.g. ≳10 8 , may be synthesised, with the number distribution taking one of two characteristic forms. If small-nucleon-number fusions are sufficiently fast, the distribution of dark nuclei takes on a logarithmically-peaked, universal form, independent of many details of the initial conditions and small-number interactions. In the case of a substantial bottleneck to nucleosynthesis for small dark nuclei, we find the surprising result that even larger nuclei, with size ≫10 8 , are often finally synthesised, again with a simple number distribution. We briefly discuss the constraints arising from the novel dark sector energetics, and the extended set of (often parametrically light) dark sector states that can occur in complete models of nuclear dark matter. The physics of the coherent enhancement of direct detection signals, the nature of the accompanying dark-sector form factors, and the possible modifications to astrophysical processes are discussed in detail in a companion paper.

  19. Indirect search for dark matter with AMS

    International Nuclear Information System (INIS)

    Goy, Corinne

    2006-01-01

    This document summarises the potential of AMS in the indirect search for Dark Matter. Observations and cosmology indicate that the Universe may include a large amount of Dark Matter of unknown nature. A good candidate is the Ligthest Supersymmetric Particle in R-Parity conserving models. AMS offers a unique opportunity to study Dark Matter indirect signature in three spectra: gamma, antiprotons and positrons

  20. Particle Dark Matter (1/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    I review the phenomenology of particle dark matter, including the process of thermal freeze-out in the early universe, and the direct and indirect detection of WIMPs. I also describe some of the most popular particle candidates for dark matter and summarize the current status of the quest to discover dark matter's particle identity.