WorldWideScience

Sample records for rapidly growing cells

  1. Mycobacterium oryzae sp. nov., a scotochromogenic, rapidly growing species is able to infect human macrophage cell line.

    Science.gov (United States)

    Ramaprasad, E V V; Rizvi, A; Banerjee, S; Sasikala, Ch; Ramana, Ch V

    2016-11-01

    Gram-stain-positive, acid-fast-positive, rapidly growing, rod-shaped bacteria (designated as strains JC290T, JC430 and JC431) were isolated from paddy cultivated soils on the Western Ghats of India. Phylogenetic analysis placed the three strains among the rapidly growing mycobacteria, being most closely related to Mycobacterium tokaiense 47503T (98.8 % 16S rRNA gene sequence similarity), Mycobacterium murale MA112/96T (98.8 %) and a few other Mycobacterium species. The level of DNA-DNA reassociation of the three strains with M. tokaiense DSM 44635T was 23.4±4 % (26.1±3 %, reciprocal analysis) and 21.4±2 % (22.1±4 %, reciprocal analysis). The three novel strains shared >99.9 % 16S rRNA gene sequence similarity and DNA-DNA reassociation values >85 %. Furthermore, phylogenetic analysis based on concatenated sequences (3071 bp) of four housekeeping genes (16S rRNA, hsp65, rpoB and sodA) revealed that strain JC290T is clearly distinct from all other Mycobacteriumspecies. The three strains had diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannosides, unidentified phospholipids, unidentified glycolipids and an unidentified lipid as polar lipids. The predominant isoprenoid quinone for all three strains was MK-9(H2). Fatty acids were C17 : 1ω7c, C16 : 0, C18 : 1ω9c, C16 : 1ω7c/C16 : 1ω6c and C19 : 1ω7c/C19 : 1ω6c for all the three strains. On the basis of phenotypic, chemotaxonomic and phylogenetic data, it was concluded that strains JC290T, JC430 and JC431 are members of a novel species within the genus Mycobacterium and for which the name Mycobacterium oryzae sp. nov. is proposed. The type strain is JC290T (=KCTC 39560T=LMG 28809T).

  2. Rapidly Growing Esophageal Carcinosarcoma Reduced by Neoadjuvant Radiotherapy Alone

    Directory of Open Access Journals (Sweden)

    Naotaka Ogasawara

    2014-06-01

    Full Text Available Esophageal carcinosarcoma is a rare malignant neoplasm consisting of both carcinomatous and sarcomatous components. It is generally treated by surgery, radiotherapy and chemotherapy according to the protocols used for other esophageal cancers. However, the treatment of esophageal carcinosarcoma by radiotherapy alone before surgery has not been previously described. We report a patient with a rapidly growing esophageal carcinosarcoma that was efficiently reduced by neoadjuvant radiotherapy alone. A previously healthy 69-year-old man was admitted with dysphagia. Initial esophagogastroduodenoscopy (EGD revealed a small nodular polypoid lesion of about 10 mm in the middle esophagus. A second EGD 1 month later showed that the tumor had expanded into a huge mass. A biopsy specimen revealed that the tumor comprised squamous cell carcinoma with spindle cell components, and the tumor was diagnosed as carcinosarcoma which was diagnosed as stage I (T1bN0M0. Due to renal dysfunction, the patient was treated with neoadjuvant radiotherapy (40 Gy without chemotherapy. A third EGD 1 month later revealed remarkable tumor reduction. He then underwent total esophagectomy with regional lymph node dissection (pStage 0, pT1aN0M0. After surgical operation, the patient was followed up without adjuvant therapy. Whole body computed tomography revealed lung metastasis 14 months after surgery, and the patient died 2 months later. The neoadjuvant radiotherapy for esophageal carcinosarcoma was considered to have contributed to the subsequent surgery and his prolonged survival time. Thus, radiotherapy alone might be a suitable neoadjuvant therapy for esophageal carcinosarcomas.

  3. Rapidly Growing Thyroid Mass in an Immunocompromised Young Male Adult

    Directory of Open Access Journals (Sweden)

    Mónica Santiago

    2013-01-01

    Full Text Available We describe a 20-year-old man diagnosed with a myelodysplastic syndrome (MDS, admitted to our hospital due to pancytopenia and fever of undetermined origin after myelosuppression with chemotherapy. Disseminated aspergillosis (DIA was suspected when he developed skin and lung involvement. A rapidly growing mass was detected on the left neck area, during hospitalization. A thyroid ultrasound reported a 3.7×2.5×2.9 cm oval heterogeneous structure, suggestive of an abscess versus a hematoma. Fine needle aspiration of the thyroid revealed invasion of aspergillosis. Fungal thyroiditis is a rare occurrence. Thyroid fungal infection is difficult to diagnose; for this reason it is rarely diagnosed antemortem. To our knowledge, this is the 10th case reported in the literature in an adult where the diagnosis of fungal invasion to the thyroid was able to be corroborated antemortem by fine needle aspiration biopsy.

  4. In vitro activity of flomoxef against rapidly growing mycobacteria.

    Science.gov (United States)

    Tsai, Moan-Shane; Tang, Ya-Fen; Eng, Hock-Liew

    2008-06-01

    The aim of this study was to determine the in vitro sensitivity of rapidly growing mycobacteria (RGM) to flomoxef in respiratory secretions collected from 61 consecutive inpatients and outpatients at Chang Gung Memorial Hospital-Kaohsiung medical center between July and December, 2005. Minimal inhibitory concentrations (MIC) of flomoxef were determined by the broth dilution method for the 61 clinical isolates of RGMs. The MICs of flomoxef at which 90% of clinical isolates were inhibited was >128 microg/mL in 26 isolates of Mycobacterium abscessus and 4 microg/mL in 31 isolates of M. fortuitum. Three out of 4 clinical M. peregrinum isolates were inhibited by flomoxef at concentrations of 4 microg/mL or less. Although the numbers of the clinical isolates of RGMs were small, these preliminary in vitro results demonstrate the potential activity of flomoxef in the management of infections due to M. fortuitum, and probably M. peregrinum in humans.

  5. Rapidly growing mycobacteria in Singapore, 2006-2011.

    Science.gov (United States)

    Tang, S S; Lye, D C; Jureen, R; Sng, L-H; Hsu, L Y

    2015-03-01

    Nontuberculous mycobacteria infection is a growing global concern, but data from Asia are limited. This study aimed to describe the distribution and antibiotic susceptibility profiles of rapidly growing mycobacterium (RGM) isolates in Singapore. Clinical RGM isolates with antibiotic susceptibility tests performed between 2006 and 2011 were identified using microbiology laboratory databases and minimum inhibitory concentrations of amikacin, cefoxitin, clarithromycin, ciprofloxacin, doxycycline, imipenem, linezolid, moxifloxacin, sulfamethoxazole or trimethoprim-sulfamethoxazole, tigecycline and tobramycin were recorded. Regression analysis was performed to detect changes in antibiotic susceptibility patterns over time. A total of 427 isolates were included. Of these, 277 (65%) were from respiratory specimens, 42 (10%) were related to skin and soft tissue infections and 36 (8%) were recovered from blood specimens. The two most common species identified were Mycobacterium abscessus (73%) and Mycobacterium fortuitum group (22%), with amikacin and clarithromycin being most active against the former, and quinolones and trimethoprim-sulfamethoxazole against the latter. Decreases in susceptibility of M. abscessus to linezolid by 8.8% per year (p 0.001), M. fortuitum group to imipenem by 9.5% per year (p 0.023) and clarithromycin by 4.7% per year (p 0.033) were observed. M. abscessus in respiratory specimens is the most common RGM identified in Singapore. Antibiotic options for treatment of RGM infections are increasingly limited. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Properties of acatalasic cells growing in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Krooth, R S; Howell, R R; Hamilton, H B

    1961-07-19

    Acatalasia, a disease due to homozygosity for a Mendelian gene, is characterized by the absence of the enzyme catalase from the tissues of the human body. Red cells from heterozygotes have enzyme activities about one-half normal. In this report, the development of cell lines from skin biopsies of an affected homozygote, a heterozygote and eight control patients is described. The cell type is the euploid fibroblast. It was found that acatalasic cells lacked the enzyme, even after growing for many months in a medium rich in catalase. The control lines all had mean catalase activity double or more that of the heterozygous line. Selection experiments, measuring growth of cells exposed for 20 minutes to varying concentrations of hydrogen peroxide, did not provide a system for preferentially eliminating acatalastic cells. Certain other experiments were performed bearing on the enzymatic defect in this disease. 23 references, 7 figures, 6 tables.

  7. E-cigarettes: a rapidly growing Internet phenomenon.

    Science.gov (United States)

    Yamin, Cyrus K; Bitton, Asaf; Bates, David W

    2010-11-02

    Electronic cigarettes (e-cigarettes) aerosolize nicotine and produce a vapor that emulates that of cigarettes but purportedly has fewer traditional toxins than secondhand smoke. Although e-cigarettes are widely sold online and by retailers, new research suggests that they may contain unexpected toxins and may provide unreliable nicotine delivery. Many countries have already banned or strictly regulated e-cigarettes. Currently in the United States, e-cigarettes are exempt from regulation as drug-delivery devices. Meanwhile, the presence of e-cigarettes on the Internet, including in Web searches, virtual user communities, and online stores where people sell e-cigarettes on commission, is increasing rapidly. Physicians should be aware of the popularity, questionable efficacy claims, and safety concerns of e-cigarettes so that they may counsel patients against use and advocate for research to inform an evidence-based regulatory approach.

  8. [Rapidly-growing nodular pseudoangiomatous stromal hyperplasia of the breast: case report].

    Science.gov (United States)

    Elıyatkin, Nuket; Karasu, Başak; Selek, Elif; Keçecı, Yavuz; Postaci, Hakan

    2011-01-01

    Pseudoangiomatous stromal hyperplasia is a benign proliferative lesion of the mammary stroma that rarely presents as a localized mass. Pseudoangiomatous stromal hyperplasia is characterized by a dense, collagenous proliferation of the mammary stroma, associated with capillary-like spaces. Pseudoangiomatous stromal hyperplasia can be mistaken with fibroadenoma on radiological examination or with low-grade angiosarcoma on histological examination. Its main importance is its distinction from angiosarcoma. The presented case was a 40-year-old woman who was admitted with a rapidly growing breast tumor. Physical examination revealed an elastic-firm, well-defined, mobile and painless mass in her right breast. Mammograms revealed a 6.7 x 3.7 cm, lobulated, well-circumscribed mass in her right breast but no calcification. Sonographic examination showed a well-defined and homogenous mass, not including any cyst. Based on these findings, a provisional diagnosis of fibroadenoma was made. Considering the rapid growth history of the mass, tumor excision was performed. The excised tumor was well demarcated and had a smooth external surface. Histological examination revealed the tumor to be composed of markedly increased fibrous stroma and scattered epithelial components (cystic dilatation of the ducts, blunt duct adenosis). The fibrous stroma contained numerous anastomosing slit-like spaces. Isolated spindle cells appeared intermittently at the margins of the spaces resembled endothelial cells. Immunohistochemical staining showed that the spindle cells were positive for CD34 and negative for Factor VIII-related antigen. The lesion was diagnosed as nodular pseudoangiomatous stromal hyperplasia.

  9. Rapidly growing ovarian endometrioid adenocarcinoma involving the vagina: A case report

    Directory of Open Access Journals (Sweden)

    Sunghun Na

    2011-12-01

    Conclusion: Epithelial ovarian cancer may grow very rapidly. The frequent measurement of tumor size by ultrasonography may provide important information on detection in a subset of ovarian carcinomas that develop from preexisting, detectable lesions.

  10. Polyamine metabolism in synchronously growing mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Heby, O.; Marton, L.J.; Gray, J.W.; Lindl, P.A.; Wilson, C.B.

    1976-03-02

    The times of synthesis of the polyamines putrescine, spermidine and spermine in relation to the cell cycle have been examined in Chinese hamster ovary (CHO) cells synchronized by selective detachment of mitotic cells. This technique produced cell populations with narrow age distributions. Following plating, the cells grew with high synchrony for more than one cell cycle in monolayer culture. At various times after plating, the distribution of cells among the G1, S and G2M phases of the cell cycle was calculated from DNA histograms obtained by flow microfluorometric analysis. At these same times L-ornithine decarboxylase assays and polyamine determinations showed that the synthesis of the polyamines was initiated in mid-G1 and that the polyamines started to accumulate towards the end of the G1 phase. Maximal rate of synthesis was obtained as the cells started to synthesize DNA and the highest polyamine content was obtained in the beginning of the S phase. Synthesis and accumulation of the polyamines decreased significantly during mid-S but towards the end of the S phase they increased again. The polyamine biosynthetic activity and the concentration of the polyamines reached a second maximum prior to cell division. The role of the polyamines in the traverse of the cell cycle and especially in the initiation or continuation of DNA synthesis is indicated also by the fact that fewer cells were found in the S phase when spermidine and spermine synthesis was inhibited by methylglyoxal-bis(guanylhydrazone).

  11. Structural analysis of biofilm formation by rapidly and slowly growing nontuberculous mycobacteria

    Science.gov (United States)

    Mycobacterium avium complex (MAC) and rapidly growing mycobacteria (RGM) such as M. abscessus, M. mucogenicum, M. chelonae and M. fortuitum, implicated in healthcare-associated infections, are often isolated from potable water supplies as part of the microbial flora. To understa...

  12. Growing cells push back under pressure.

    Science.gov (United States)

    Gibson, W T; Gibson, M C

    2012-04-13

    In both plants and animals, the interplay between mechanical force generation and mechanical sensing plays a stabilizing role in many developmental processes. Uyttewaal et al. now demonstrate that cells in the Arabidopsis shoot apical meristem respond to local mechanical stresses by reorienting their growth, thereby guiding morphogenesis. Notably, the mechanism underlying such guidance is amplification--not suppression--of growth-rate heterogeneity. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Cell wall integrity signaling in plants: "To grow or not to grow that's the question".

    Science.gov (United States)

    Voxeur, Aline; Höfte, Herman

    2016-09-01

    Plants, like yeast, have the ability to monitor alterations in the cell wall architecture that occur during normal growth or in changing environments and to trigger compensatory changes in the cell wall. We discuss how recent advances in our understanding of the cell wall architecture provide new insights into the role of cell wall integrity sensing in growth control. Next we review the properties of membrane receptor-like kinases that have roles in pH control, mechano-sensing and reactive oxygen species accumulation in growing cells and which may be the plant equivalents of the yeast cell wall integrity (CWI) sensors. Finally, we discuss recent findings showing an increasing role for CWI signaling in plant immunity and the adaptation to changes in the ionic environment of plant cells. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Clinical and Taxonomic Status of Pathogenic Nonpigmented or Late-Pigmenting Rapidly Growing Mycobacteria

    OpenAIRE

    Brown-Elliott, Barbara A.; Wallace, Richard J.

    2002-01-01

    The history, taxonomy, geographic distribution, clinical disease, and therapy of the pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria (RGM) are reviewed. Community-acquired disease and health care-associated disease are highlighted for each species. The latter grouping includes health care-associated outbreaks and pseudo-outbreaks as well as sporadic disease cases. Treatment recommendations for each species and type of disease are also described. Special emphasis is on ...

  15. Nosocomial rapidly growing mycobacterial infections following laparoscopic surgery: CT imaging findings.

    Science.gov (United States)

    Volpato, Richard; de Castro, Claudio Campi; Hadad, David Jamil; da Silva Souza Ribeiro, Flavya; Filho, Ezequiel Leal; Marcal, Leonardo P

    2015-09-01

    To identify the distribution and frequency of computed tomography (CT) findings in patients with nosocomial rapidly growing mycobacterial (RGM) infection after laparoscopic surgery. A descriptive retrospective study in patients with RGM infection after laparoscopic surgery who underwent CT imaging prior to initiation of therapy. The images were analyzed by two radiologists in consensus, who evaluated the skin/subcutaneous tissues, the abdominal wall, and intraperitoneal region separately. The patterns of involvement were tabulated as: densification, collections, nodules (≥1.0 cm), small nodules (<1.0 cm), pseudocavitated nodules, and small pseudocavitated nodules. Twenty-six patients met the established criteria. The subcutaneous findings were: densification (88.5%), small nodules (61.5%), small pseudocavitated nodules (23.1 %), nodules (38.5%), pseudocavitated nodules (15.4%), and collections (26.9%). The findings in the abdominal wall were: densification (61.5%), pseudocavitated nodules (3.8%), and collections (15.4%). The intraperitoneal findings were: densification (46.1%), small nodules (42.3%), nodules (15.4%), and collections (11.5%). Subcutaneous CT findings in descending order of frequency were: densification, small nodules, nodules, small pseudocavitated nodules, pseudocavitated nodules, and collections. The musculo-fascial plane CT findings were: densification, collections, and pseudocavitated nodules. The intraperitoneal CT findings were: densification, small nodules, nodules, and collections. • Rapidly growing mycobacterial infection may occur following laparoscopy. • Post-laparoscopy mycobacterial infection CT findings are densification, collection, and nodules. • Rapidly growing mycobacterial infection following laparoscopy may involve the peritoneal cavity. • Post-laparoscopy rapidly growing mycobacterial intraperitoneal infection is not associated with ascites or lymphadenopathy.

  16. Rare Rapidly Growing Thumb Lesion in a 12-Year-Old Male

    Directory of Open Access Journals (Sweden)

    Alana J Arnold, MD, MBA

    2018-04-01

    t amenable to surgery.4 Surgery is the mainstay of care. The first medical treatment, denosumab, was approved by the FDA for use in adults and skeletally mature adolescents with surgically unresectable lesions.5 It is critical to obtain definitive imaging and biopsy of any rapidly growing lesions in patients presenting with masses and no history of trauma or constitutional symptoms. The best imaging study is MRI, to assess for bony and tissue involvement and surgical approach. Computed tomography may be used; however, it doesn’t delineate the soft tissue and bony connections as well. Standard oncology labs should be drawn as well, including: CBC with differential, LDH, uric acid, CMP, ESR. The growth of the tumor is insidious and therefore imaging should be done based on clinical concern. In the ED setting, if close follow up can be ensured, imaging can be done as an out-patient. Annual surveillance is recommended for at least 5 years in most patients, even after total resection, according to some studies.3 Our patient underwent GCTB resection with plastics surgery of the distal phalanx of thumb. He was seen in follow-up in the oncology clinic. Pathology of the tumor had negative margins, and he was told to follow-up in six months with plastics. Per hematology, no further follow-up was needed. Topics: Pediatrics, giant cell tumor, thumb lesion

  17. Rapidly Growing Chondroid Syringoma of the External Auditory Canal: Report of a Rare Case

    Science.gov (United States)

    Vasileiadis, Ioannis; Kapetanakis, Stylianos; Petousis, Aristotelis; Karakostas, Euthimios; Simantirakis, Christos

    2011-01-01

    Introduction. Chondroid syrinoma of the external auditory canal is an extremely rare benign neoplasm representing the cutaneous counterpart of pleomorphic adenoma of salivary glands. Less than 35 cases have been reported in the international literature. Case Presentation. We report a case of a 34-year-old male in whom a rapidly growing, well-circumscribed tumor arising from the external auditory canal was presented. Otoscopy revealed a smooth, nontender lesion covered by normal skin that almost obstructs the external auditory meatus. MRI was performed to define the extension of the lesion. It confirmed the presence of a 1.5 × 0.8 cm T2 high-signal intensity lesion in the superior and posterior wall of EAC without signs of bone erosion. The patient underwent complete resection of the tumor. The diagnosis was confirmed by histopathologic examination. Conclusion. Although chondroid syringoma is extremely rare, it should always be considered in the differential diagnosis of an aural polyp. Chondroid syringomas are usually asymptomatic, slow-growing, single benign tumors in subcutaneous or intradermal location. In our case, the new information is that this benign tumor could present also as a rapidly growing lesion, arising the suspicion for malignancy. PMID:21941560

  18. Rapidly Growing Chondroid Syringoma of the External Auditory Canal: Report of a Rare Case

    Directory of Open Access Journals (Sweden)

    Ioannis Vasileiadis

    2011-01-01

    Full Text Available Introduction. Chondroid syrinoma of the external auditory canal is an extremely rare benign neoplasm representing the cutaneous counterpart of pleomorphic adenoma of salivary glands. Less than 35 cases have been reported in the international literature. Case Presentation. We report a case of a 34-year-old male in whom a rapidly growing, well-circumscribed tumor arising from the external auditory canal was presented. Otoscopy revealed a smooth, nontender lesion covered by normal skin that almost obstructs the external auditory meatus. MRI was performed to define the extension of the lesion. It confirmed the presence of a 1.5×0.8 cm T2 high-signal intensity lesion in the superior and posterior wall of EAC without signs of bone erosion. The patient underwent complete resection of the tumor. The diagnosis was confirmed by histopathologic examination. Conclusion. Although chondroid syringoma is extremely rare, it should always be considered in the differential diagnosis of an aural polyp. Chondroid syringomas are usually asymptomatic, slow-growing, single benign tumors in subcutaneous or intradermal location. In our case, the new information is that this benign tumor could present also as a rapidly growing lesion, arising the suspicion for malignancy.

  19. Mycobacterium aquiterrae sp. nov., a rapidly growing bacterium isolated from groundwater.

    Science.gov (United States)

    Lee, Jae-Chan; Whang, Kyung-Sook

    2017-10-01

    A strain representing a rapidly growing, Gram-stain-positive, aerobic, rod-shaped, non-motile, non-sporulating and non-pigmented species of the genus Mycobacterium, designated strain S-I-6 T , was isolated from groundwater at Daejeon in Korea. The strain grew at temperatures between 10 and 37 °C (optimal growth at 25 °C), between pH 4.0 and 9.0 (optimal growth at pH 7.0) and at salinities of 0-5 % (w/v) NaCl, growing optimally with 2 % (w/v) NaCl. Phylogenetic analyses based on multilocus sequence analysis of the 16S rRNAgene, hsp65, rpoB and the 16S-23S internal transcribed spacer indicated that strain S-I-6 T belonged to the rapidly growing mycobacteria, being most closely related to Mycobacterium sphagni. On the basis of polyphasic taxonomic analysis, the bacterial strain was distinguished from its phylogenetic neighbours by chemotaxonomic properties and other biochemical characteristics. DNA-DNA relatedness among strain S-I-6 T and the closest phylogenetic neighbour strongly support the proposal that this strain represents a novel species within the genus Mycobacterium, for which the name Mycobacterium aquiterrae sp. nov. is proposed. The type strain is S-I-6 T (=KACC 17600 T =NBRC 109805 T =NCAIM B 02535 T ).

  20. Antimicrobial susceptibility testing of rapidly growing mycobacteria by microdilution - Experience of a tertiary care centre

    Directory of Open Access Journals (Sweden)

    Set R

    2010-01-01

    Full Text Available Purpose: The objective of the study was to perform antimicrobial susceptibility testing of rapidly growing mycobacteria (RGM isolated from various clinically suspected cases of extrapulmonary tuberculosis, from January 2007 to April 2008, at a tertiary care centre in Mumbai. Materials and Methods: The specimens were processed for microscopy and culture using the standard procedures. Minimum inhibitory concentrations (MIC were determined by broth microdilution, using Sensititre CA MHBT. Susceptibility testing was also carried out on Mueller Hinton agar by the Kirby Bauer disc diffusion method. Results: Of the 1062 specimens received for mycobacterial cultures, 104 (9.79% grew mycobacteria. Of the mycobacterial isolates, six (5.76% were rapid growers. M. abscessus and M. chelonae appeared to be resistant organisms, with M. chelonae showing intermediate resistance to amikacin and minocycline. However, all the six isolates showed sensitivity to vancomycin and gentamicin by the disc diffusion test. Also all three isolates of M. abscessus were sensitive to piperacillin and erythromycin. Further studies are required to test their sensitivity to these four antimicrobials by using the microbroth dilution test, before they can be prescribed to patients. Conclusions: We wish to emphasize that reporting of rapidly growing mycobacteria from clinical settings, along with their sensitivity patterns, is an absolute need of the hour.

  1. The impact of entrepreneurial capital and rapidly growing firms: the Canadian example

    DEFF Research Database (Denmark)

    Keen, Christian; Etemad, Hamid

    2011-01-01

    . It provides empirical evidence from small, young, high-growth enterprises that entrepreneurial capital contributes significantly to their growth through such augmentation. As emerging industries and regions face similar challenges as those of high and rapidly-growing smaller enterprises in increasingly more......World-class competitiveness is no longer an option for firms seeking growth and survival in the increasingly competitive, dynamic and interconnected world. This paper expands on the concept of entrepreneurial capital and formalizes it as a catalyst that augments other productive factors...

  2. Rapidly- growing firms and their main characteristics: a longitudinal study from United States

    DEFF Research Database (Denmark)

    Keen, Christian; Etemad, Hamid

    2011-01-01

    concerning the theoretical relations between high-growth and location, size and temporal characteristics of the high-growth enterprises. Using non parametric tests, we analyze a 21-year longitudinal database of privately held rapidly growing enterprises from the USA. This analysis indicates that these firms...... are relatively smaller enterprises and their high growth rates are not restricted to a particular location, industrial region, size or time period. The findings of this analysis point to a population of high-growth enterprises with diverse locations, sizes and times with important implications for scholarly...

  3. Preparation of immobilized growing cells and enzymatic hydrolysis of sawdust

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    Trichoderma reesei cells were immobilized by radiation polymerization using porous materials such as non-woven material and sawdust, and the enzymatic hydrolysis of sawdust with the enzyme solution from the immobilized growing cells was studied. The filter paper activity, which shows the magnitude of cellulase production in the immobilized cells, was comparable with that in the intact cells. The filter paper activity was affected by addition concentration of monomer and porous materials. The cells in the immobilized cells grew to be adhered on the surface of the fibrous polymers. Sawdust, which was pretreated by irradiation technique, was effectively hydrolyzed with the enzyme solution resulting from the culture of the immobilized cells, in which the glucose yield increased increasing the culture time of the immobilized cells. (author)

  4. Clinical management of rapidly growing mycobacterial cutaneous infections in patients after mesotherapy.

    Science.gov (United States)

    Regnier, Stéphanie; Cambau, Emmanuelle; Meningaud, Jean-Paul; Guihot, Amelie; Deforges, Lionel; Carbonne, Anne; Bricaire, François; Caumes, Eric

    2009-11-01

    Increasing numbers of patients are expressing an interest in mesotherapy as a method of reducing body fat. Cutaneous infections due to rapidly growing mycobacteria are a common complication of such procedures. We followed up patients who had developed cutaneous infections after undergoing mesotherapy during the period October 2006-January 2007. Sixteen patients were infected after mesotherapy injections performed by the same physician. All patients presented with painful, erythematous, draining subcutaneous nodules at the injection sites. All patients were treated with surgical drainage. Microbiological examination was performed on specimens that were obtained before and during the surgical procedure. Direct examination of skin smears demonstrated acid-fast bacilli in 25% of the specimens that were obtained before the procedure and 37% of the specimens obtained during the procedure; culture results were positive in 75% of the patients. Mycobacterium chelonae was identified in 11 patients, and Mycobacterium frederiksbergense was identified in 2 patients. Fourteen patients were treated with antibiotics, 6 received triple therapy as first-line treatment (tigecycline, tobramycin, and clarithromycin), and 8 received dual therapy (clarithromycin and ciprofloxacin). The mean duration of treatment was 14 weeks (range, 1-24 weeks). All of the patients except 1 were fully recovered 2 years after the onset of infection, with the mean time to healing estimated at 6.2 months (range, 1-15 months). This series of rapidly growing mycobacterial cutaneous infections highlights the difficulties in treating such infections and suggests that in vitro susceptibility to antibiotics does not accurately predict their clinical efficacy.

  5. Rapidly growing ovarian endometrioid adenocarcinoma involving the vagina: a case report.

    Science.gov (United States)

    Na, Sunghun; Hwang, Jongyun; Lee, Hyangah; Lee, Jiyeon; Lee, Dongheon

    2011-12-01

    We present a rare case of a very rapidly growing stage IV ovarian endometrioid adenocarcinoma involving the uterine cervix and vagina without lymph node involvement. A 43-year-old woman visited the hospital with complaints of lower abdominal discomfort and vaginal bleeding over the previous 3 months. Serum levels of tumor marker CA 125 and SCC antigen (TA-4) were normal. On magnetic resonance imaging, a 7.9×9.7cm heterogeneous mass with intermediate signal intensity was observed in the posterior low body of the uterus. Two months ago, a computed tomography scan revealed an approximate 4.5×3.0cm heterogeneously enhanced subserosal mass with internal ill-defined hypodensities. A laparotomy, including a total abdominal hysterectomy with resection of the upper vagina, bilateral salpingo-oophorectomy, pelvic and para-aortic lymph node dissection, appendectomy, total omentectomy, and biopsy of rectal serosa was performed. A histological examination revealed poorly differentiated endometrioid ovarian adenocarcinoma with vaginal involvement. The patient had an uncomplicated post-operative course. After discharge, she completed six cycles of adjuvant chemotherapy with paclitaxel (175mg/m(2)) and carboplatin (300mg/m(2)) and has remained clinically disease-free until June 2010. Epithelial ovarian cancer may grow very rapidly. The frequent measurement of tumor size by ultrasonography may provide important information on detection in a subset of ovarian carcinomas that develop from preexisting, detectable lesions. Copyright © 2011. Published by Elsevier B.V.

  6. Surgical site infections due to rapidly growing mycobacteria in puducherry, India.

    Science.gov (United States)

    Kannaiyan, Kavitha; Ragunathan, Latha; Sakthivel, Sulochana; Sasidar, A R; Muralidaran; Venkatachalam, G K

    2015-03-01

    Rapidly growing Mycobacteria are increasingly recognized, nowadays as an important pathogen that can cause wide range of clinical syndromes in humans. We herein describe unrelated cases of surgical site infection caused by Rapidly growing Mycobacteria (RGM), seen during a period of 12 months. Nineteen patients underwent operations by different surgical teams located in diverse sections of Tamil Nadu, Pondicherry, Karnataka, India. All patients presented with painful, draining subcutaneous nodules at the infection sites. Purulent material specimens were sent to the microbiology laboratory. Gram stain and Ziehl-Neelsen staining methods were used for direct examination. Culture media included blood agar, chocolate agar, MacConkey agar, Sabourauds agar and Lowenstein-Jensen medium for Mycobacteria. Isolated microorganisms were identified and further tested for antimicrobial susceptibility by standard microbiologic procedures. Mycobacterium fortuitum and M.chelonae were isolated from the purulent drainage obtained from wounds by routine microbiological techniques from all the specimens. All isolates analyzed for antimicrobial susceptibility pattern were sensitive to clarithromycin, linezolid and amikacin but were variable to ciprofloxacin, rifampicin and tobramycin. Our case series highlights that a high level of clinical suspicion should be maintained for patients presenting with protracted soft tissue lesions with a history of trauma or surgery as these infections not only cause physical but also emotional distress that affects both the patients and the surgeon.

  7. Rapid urbanization and the growing threat of violence and conflict: a 21st century crisis.

    Science.gov (United States)

    Patel, Ronak B; Burkle, Frederick M

    2012-04-01

    As the global population is concentrated into complex environments, rapid urbanization increases the threat of conflict and insecurity. Many fast-growing cities create conditions of significant disparities in standards of living, which set up a natural environment for conflict over resources. As urban slums become a haven for criminal elements, youth gangs, and the arms trade, they also create insecurity for much of the population. Specific populations, such as women, migrants, and refugees, bear the brunt of this lack of security, with significant impacts on their livelihoods, health, and access to basic services. This lack of security and violence also has great costs to the general population, both economic and social. Cities have increasingly become the battlefield of recent conflicts as they serve as the seats of power and gateways to resources. International agencies, non-governmental organizations, and policy-makers must act to stem this tide of growing urban insecurity. Protecting urban populations and preventing future conflict will require better urban planning, investment in livelihood programs for youth, cooperation with local communities, enhanced policing, and strengthening the capacity of judicial systems.

  8. Aquaculture: a rapidly growing and significant source of sustainable food? Status, transitions and potential.

    Science.gov (United States)

    Little, D C; Newton, R W; Beveridge, M C M

    2016-08-01

    The status and potential of aquaculture is considered as part of a broader food landscape of wild aquatic and terrestrial food sources. The rationale and resource base required for the development of aquaculture are considered in the context of broader societal development, cultural preferences and human needs. Attention is drawn to the uneven development and current importance of aquaculture globally as well as its considerable heterogeneity of form and function compared with established terrestrial livestock production. The recent drivers of growth in demand and production are examined and the persistent linkages between exploitation of wild stocks, full life cycle culture and the various intermediate forms explored. An emergent trend for sourcing aquaculture feeds from alternatives to marine ingredients is described and the implications for the sector with rapidly growing feed needs discussed. The rise of non-conventional and innovative feed ingredients, often shared with terrestrial livestock, are considered, including aquaculture itself becoming a major source of marine ingredients. The implications for the continued expected growth of aquaculture are set in the context of sustainable intensification, with the challenges that conventional intensification and emergent integration within, and between, value chains explored. The review concludes with a consideration of the implications for dependent livelihoods and projections for various futures based on limited resources but growing demand.

  9. Familial cerebral cavernous haemangioma diagnosed in an infant with a rapidly growing cerebral lesion

    International Nuclear Information System (INIS)

    Ng, B.H.K.; Pereira, J.K.; Ghedia, S.; Pinner, J.; Mowat, D.; Vonau, M.

    2006-01-01

    Cavernous haemangiomas of the central nervous system are vascular malformations best imaged by MRI. They may present at any age, but to our knowledge only 39 cases in the first year of life have previously been reported. A familial form has been described and some of the underlying genetic mutations have recently been discovered. We present the clinical features and serial MRI findings of an 8-week-old boy who presented with subacute intracranial haemorrhage followed by rapid growth of a surgically proven cavernous haemangioma, mimicking a tumour. He also developed new lesions. A strong family history of neurological disease was elucidated. A familial form of cavernous haemangioma was confirmed by identification of a KRIT 1 gene mutation and cavernous haemangiomas in the patient and other family members. We stress the importance of considering cavernous haemangiomas in the context of intracerebral haemorrhage and in the differential diagnosis of rapidly growing lesions in this age group. The family history is also important in screening for familial disease

  10. ISOLATION AND ANTIBIOTIC SUSCEPTIBILITY TESTING OF RAPIDLY-GROWING MYCOBACTERIA FROM GRASSLAND SOILS

    Directory of Open Access Journals (Sweden)

    Martina Kyselková

    2013-08-01

    Full Text Available Rapidly growing mycobacteria (RGM are common soil saprophytes, but certain strains cause infections in human and animals. The infections due to RGM have been increasing in past decades and are often difficult to treat. The susceptibility to antibiotics is regularly evaluated in clinical isolates of RGM, but the data on soil RGM are missing. The objectives of this study was to isolate RGM from four grassland soils with different impact of manuring, and assess their resistance to antibiotics and the ability to grow at 37°C and 42°C. Since isolation of RGM from soil is a challenge, a conventional decontamination method (NaOH/malachite green/cycloheximide and a recent method based on olive oil/SDS demulsification were compared. The olive oil/SDS method was less efficient, mainly because of the emulsion instability and plate overgrowing with other bacteria. Altogether, 44 isolates were obtained and 23 representatives of different RGM genotypes were screened. The number of isolates per soil decreased with increasing soil pH, consistently with previous findings that mycobacteria were more abundant in low pH soils. Most of the isolates belonged to the Mycobacterium fortuitum group. The majority of isolates was resistant to 2-4 antibiotics. Multiresistant strains occurred also in a control soil that has a long history without the exposure to antibiotic-containing manure. Seven isolates grew at 37°C, including the species M. septicum and M. fortuitum known for infections in humans. This study shows that multiresistant RGM close to known human pathogens occur in grassland soils regardless the soil history of manuring.

  11. The spatial biology of transcription and translation in rapidly growing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Somenath eBakshi

    2015-07-01

    Full Text Available Single-molecule fluorescence provides high resolution spatial distributions of ribosomes and RNA polymerase (RNAP in live, rapidly growing E. coli. Ribosomes are more strongly segregated from the nucleoids (chromosomal DNA than previous widefield fluorescence studies suggested. While most transcription may be co-translational, the evidence indicates that most translation occurs on free mRNA copies that have diffused from the nucleoids to a ribosome-rich region. Analysis of time-resolved images of the nucleoid spatial distribution after treatment with the transcription-halting drug rifampicin and the translation-halting drug chloramphenicol shows that both drugs cause nucleoid contraction on the 0-3 min timescale. This is consistent with the transertion hypothesis. We suggest that the longer-term (20-30 min nucleoid expansion after Rif treatment arises from conversion of 70S-polysomes to 30S and 50S subunits, which readily penetrate the nucleoids. Monte Carlo simulations of a polymer bead model built to mimic the chromosomal DNA and ribosomes (either 70S-polysomes or 30S and 50S subunits explain spatial segregation or mixing of ribosomes and nucleoids in terms of excluded volume and entropic effects alone. A comprehensive model of the transcription-translation-transertion system incorporates this new information about the spatial organization of the E. coli cytoplasm. We propose that transertion, which radially expands the nucleoids, is essential for recycling of 30S and 50S subunits from ribosome-rich regions back into the nucleoids. There they initiate co-transcriptional translation, which is an important mechanism for maintaining RNAP forward progress and protecting the nascent mRNA chain. Segregation of 70S-polysomes from the nucleoid may facilitate rapid growth by shortening the search time for ribosomes to find free mRNA concentrated outside the nucleoid and the search time for RNAP concentrated within the nucleoid to find transcription

  12. Drug Susceptibility Testing of 31 Antimicrobial Agents on Rapidly Growing Mycobacteria Isolates from China.

    Science.gov (United States)

    Pang, Hui; Li, Guilian; Zhao, Xiuqin; Liu, Haican; Wan, Kanglin; Yu, Ping

    2015-01-01

    Several species of rapidly growing mycobacteria (RGM) are now recognized as human pathogens. However, limited data on effective drug treatments against these organisms exists. Here, we describe the species distribution and drug susceptibility profiles of RGM clinical isolates collected from four southern Chinese provinces from January 2005 to December 2012. Clinical isolates (73) were subjected to in vitro testing with 31 antimicrobial agents using the cation-adjusted Mueller-Hinton broth microdilution method. The isolates included 55 M. abscessus, 11 M. fortuitum, 3 M. chelonae, 2 M. neoaurum, and 2 M. septicum isolates. M. abscessus (75.34%) and M. fortuitum (15.07%), the most common species, exhibited greater antibiotic resistance than the other three species. The isolates had low resistance to amikacin, linezolid, and tigecycline, and high resistance to first-line antituberculous agents, amoxicillin-clavulanic acid, rifapentine, dapsone, thioacetazone, and pasiniazid. M. abscessus and M. fortuitum were highly resistant to ofloxacin and rifabutin, respectively. The isolates showed moderate resistance to the other antimicrobial agents. Our results suggest that tigecycline, linezolid, clofazimine, and cefmetazole are appropriate choices for M. abscessus infections. Capreomycin, sulfamethoxazole, tigecycline, clofazimine, and cefmetazole are potentially good choices for M. fortuitum infections. Our drug susceptibility data should be useful to clinicians.

  13. Nosocomial rapidly growing mycobacterial infections following laparoscopic surgery: CT imaging findings

    International Nuclear Information System (INIS)

    Volpato, Richard; Campi de Castro, Claudio; Hadad, David Jamil; Silva Souza Ribeiro, Flavya da; Filho, Ezequiel Leal; Marcal, Leonardo P.

    2015-01-01

    To identify the distribution and frequency of computed tomography (CT) findings in patients with nosocomial rapidly growing mycobacterial (RGM) infection after laparoscopic surgery. A descriptive retrospective study in patients with RGM infection after laparoscopic surgery who underwent CT imaging prior to initiation of therapy. The images were analyzed by two radiologists in consensus, who evaluated the skin/subcutaneous tissues, the abdominal wall, and intraperitoneal region separately. The patterns of involvement were tabulated as: densification, collections, nodules (≥1.0 cm), small nodules (<1.0 cm), pseudocavitated nodules, and small pseudocavitated nodules. Twenty-six patients met the established criteria. The subcutaneous findings were: densification (88.5 %), small nodules (61.5 %), small pseudocavitated nodules (23.1 %), nodules (38.5 %), pseudocavitated nodules (15.4 %), and collections (26.9 %). The findings in the abdominal wall were: densification (61.5 %), pseudocavitated nodules (3.8 %), and collections (15.4 %). The intraperitoneal findings were: densification (46.1 %), small nodules (42.3 %), nodules (15.4 %), and collections (11.5 %). Subcutaneous CT findings in descending order of frequency were: densification, small nodules, nodules, small pseudocavitated nodules, pseudocavitated nodules, and collections. The musculo-fascial plane CT findings were: densification, collections, and pseudocavitated nodules. The intraperitoneal CT findings were: densification, small nodules, nodules, and collections. (orig.)

  14. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria.

    Science.gov (United States)

    Brown-Elliott, Barbara A; Wallace, Richard J

    2002-10-01

    The history, taxonomy, geographic distribution, clinical disease, and therapy of the pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria (RGM) are reviewed. Community-acquired disease and health care-associated disease are highlighted for each species. The latter grouping includes health care-associated outbreaks and pseudo-outbreaks as well as sporadic disease cases. Treatment recommendations for each species and type of disease are also described. Special emphasis is on the Mycobacterium fortuitum group, including M. fortuitum, M. peregrinum, and the unnamed third biovariant complex with its recent taxonomic changes and newly recognized species (including M. septicum, M. mageritense, and proposed species M. houstonense and M. bonickei). The clinical and taxonomic status of M. chelonae, M. abscessus, and M. mucogenicum is also detailed, along with that of the closely related new species, M. immunogenum. Additionally, newly recognized species, M. wolinskyi and M. goodii, as well as M. smegmatis sensu stricto, are included in a discussion of the M. smegmatis group. Laboratory diagnosis of RGM using phenotypic methods such as biochemical testing and high-performance liquid chromatography and molecular methods of diagnosis are also discussed. The latter includes PCR-restriction fragment length polymorphism analysis, hybridization, ribotyping, and sequence analysis. Susceptibility testing and antibiotic susceptibility patterns of the RGM are also annotated, along with the current recommendations from the National Committee for Clinical Laboratory Standards (NCCLS) for mycobacterial susceptibility testing.

  15. Drug Susceptibility Testing of 31 Antimicrobial Agents on Rapidly Growing Mycobacteria Isolates from China

    Directory of Open Access Journals (Sweden)

    Hui Pang

    2015-01-01

    Full Text Available Objectives. Several species of rapidly growing mycobacteria (RGM are now recognized as human pathogens. However, limited data on effective drug treatments against these organisms exists. Here, we describe the species distribution and drug susceptibility profiles of RGM clinical isolates collected from four southern Chinese provinces from January 2005 to December 2012. Methods. Clinical isolates (73 were subjected to in vitro testing with 31 antimicrobial agents using the cation-adjusted Mueller-Hinton broth microdilution method. The isolates included 55 M. abscessus, 11 M. fortuitum, 3 M. chelonae, 2 M. neoaurum, and 2 M. septicum isolates. Results. M. abscessus (75.34% and M. fortuitum (15.07%, the most common species, exhibited greater antibiotic resistance than the other three species. The isolates had low resistance to amikacin, linezolid, and tigecycline, and high resistance to first-line antituberculous agents, amoxicillin-clavulanic acid, rifapentine, dapsone, thioacetazone, and pasiniazid. M. abscessus and M. fortuitum were highly resistant to ofloxacin and rifabutin, respectively. The isolates showed moderate resistance to the other antimicrobial agents. Conclusions. Our results suggest that tigecycline, linezolid, clofazimine, and cefmetazole are appropriate choices for M. abscessus infections. Capreomycin, sulfamethoxazole, tigecycline, clofazimine, and cefmetazole are potentially good choices for M. fortuitum infections. Our drug susceptibility data should be useful to clinicians.

  16. Nosocomial rapidly growing mycobacterial infections following laparoscopic surgery: CT imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Volpato, Richard [Cassiano Antonio de Moraes University Hospital, Department of Diagnostic Radiology, Vitoria, ES (Brazil); Campi de Castro, Claudio [University of Sao Paulo Medical School, Department of Radiology, Cerqueira Cesar, Sao Paulo (Brazil); Hadad, David Jamil [Cassiano Antonio de Moraes University Hospital, Nucleo de Doencas Infecciosas, Department of Internal Medicine, Vitoria, ES (Brazil); Silva Souza Ribeiro, Flavya da [Laboratorio de Patologia PAT, Department of Diagnostic Radiology, Unit 1473, Vitoria, ES (Brazil); Filho, Ezequiel Leal [UNIMED Diagnostico, Department of Diagnostic Radiology, Unit 1473, Vitoria, ES (Brazil); Marcal, Leonardo P. [The University of Texas M D Anderson Cancer Center, Department of Diagnostic Radiology, Unit 1473, Houston, TX (United States)

    2015-09-15

    To identify the distribution and frequency of computed tomography (CT) findings in patients with nosocomial rapidly growing mycobacterial (RGM) infection after laparoscopic surgery. A descriptive retrospective study in patients with RGM infection after laparoscopic surgery who underwent CT imaging prior to initiation of therapy. The images were analyzed by two radiologists in consensus, who evaluated the skin/subcutaneous tissues, the abdominal wall, and intraperitoneal region separately. The patterns of involvement were tabulated as: densification, collections, nodules (≥1.0 cm), small nodules (<1.0 cm), pseudocavitated nodules, and small pseudocavitated nodules. Twenty-six patients met the established criteria. The subcutaneous findings were: densification (88.5 %), small nodules (61.5 %), small pseudocavitated nodules (23.1 %), nodules (38.5 %), pseudocavitated nodules (15.4 %), and collections (26.9 %). The findings in the abdominal wall were: densification (61.5 %), pseudocavitated nodules (3.8 %), and collections (15.4 %). The intraperitoneal findings were: densification (46.1 %), small nodules (42.3 %), nodules (15.4 %), and collections (11.5 %). Subcutaneous CT findings in descending order of frequency were: densification, small nodules, nodules, small pseudocavitated nodules, pseudocavitated nodules, and collections. The musculo-fascial plane CT findings were: densification, collections, and pseudocavitated nodules. The intraperitoneal CT findings were: densification, small nodules, nodules, and collections. (orig.)

  17. Rapidly growing non-tuberculous mycobacteria infection of prosthetic knee joints: A report of two cases.

    Science.gov (United States)

    Kim, Manyoung; Ha, Chul-Won; Jang, Jae Won; Park, Yong-Beom

    2017-08-01

    Non-tuberculous mycobacteria (NTM) cause prosthetic knee joint infections in rare cases. Infections with rapidly growing non-tuberculous mycobacteria (RGNTM) are difficult to treat due to their aggressive clinical behavior and resistance to antibiotics. Infections of a prosthetic knee joint by RGNTM have rarely been reported. A standard of treatment has not yet been established because of the rarity of the condition. In previous reports, diagnoses of RGNTM infections in prosthetic knee joints took a long time to reach because the condition was not suspected, due to its rarity. In addition, it is difficult to identify RGNTM in the lab because special identification tests are needed. In previous reports, after treatment for RGNTM prosthetic infections, knee prostheses could not be re-implanted in all cases but one, resulting in arthrodesis or resection arthroplasty; this was most likely due to the aggressiveness of these organisms. In the present report, two cases of prosthetic knee joint infection caused by RGNTM (Mycobacterium abscessus) are described that were successfully treated, and in which prosthetic joints were finally reimplanted in two-stage revision surgery. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Rapidly-growing mycobacterial infection: a recognized cause of early-onset prosthetic joint infection.

    Science.gov (United States)

    Jitmuang, Anupop; Yuenyongviwat, Varah; Charoencholvanich, Keerati; Chayakulkeeree, Methee

    2017-12-28

    Prosthetic joint infection (PJI) is a major complication of total hip and total knee arthroplasty (THA, TKA). Although mycobacteria are rarely the causative pathogens, it is important to recognize and treat them differently from non-mycobacterial infections. This study aimed to compare the clinical characteristics, associated factors and long-term outcomes of mycobacterial and non-mycobacterial PJI. We conducted a retrospective case-control study of patients aged ≥18 years who were diagnosed with PJI of the hip or knee at Siriraj Hospital from January 2000 to December 2012. Patient characteristics, clinical data, treatments and outcomes were evaluated. A total of 178 patients were included, among whom 162 had non-mycobacterial PJI and 16 had mycobacterial PJI. Rapidly growing mycobacteria (RGM) (11) and M. tuberculosis (MTB) (5) were the causative pathogens of mycobacterial PJI. PJI duration and time until onset were significantly different between mycobacterial and non-mycobacterial PJI. Infection within 90 days of arthroplasty was significantly associated with RGM infection (OR 21.86; 95% CI 4.25-112.30; p infection. RGM were the major pathogens of early onset PJI after THA and TKA. Both a high clinical index of suspicion and mycobacterial cultures are recommended when medically managing PJI with negative cultures or non-response to antibiotics. Removal of infected implants was associated with favorable outcomes.

  19. Mycobacterium grossiae sp. nov., a rapidly growing, scotochromogenic species isolated from human clinical respiratory and blood culture specimens.

    Science.gov (United States)

    Paniz-Mondolfi, Alberto Enrique; Greninger, Alexander L; Ladutko, Lynn; Brown-Elliott, Barbara A; Vasireddy, Ravikiran; Jakubiec, Wesley; Vasireddy, Sruthi; Wallace, Richard J; Simmon, Keith E; Dunn, Bruce E; Jackoway, Gary; Vora, Surabhi B; Quinn, Kevin K; Qin, Xuan; Campbell, Sheldon

    2017-11-01

    A previously undescribed, rapidly growing, scotochromogenic species of the genus Mycobacterium (represented by strains PB739 T and GK) was isolated from two clinical sources - the sputum of a 76-year-old patient with severe chronic obstructive pulmonary disease, history of tuberculosis exposure and Mycobacterium avium complex isolated years prior; and the blood of a 15-year-old male with B-cell acute lymphoblastic leukaemia status post bone marrow transplant. The isolates grew as dark orange colonies at 25-37 °C after 5 days, sharing features in common with other closely related species. Analysis of the complete 16S rRNA gene sequence (1492 bp) of strain PB739 T demonstrated that the isolate shared 98.8 % relatedness with Mycobacterium wolinskyi. Partial 429 bp hsp65 and 744 bp rpoB region V sequence analyses revealed that the sequences of the novel isolate shared 94.8 and 92.1 % similarity with those of Mycobacterium neoaurum and Mycobacterium aurum, respectively. Biochemical profiling, antimicrobial susceptibility testing, HPLC/gas-liquid chromatography analyses and multilocus sequence typing support the taxonomic status of these isolates (PB739 T and GK) as representatives of a novel species. Both isolates were susceptible to the Clinical and Laboratory Standards Institute recommended antimicrobials for susceptibility testing of rapidly growing mycobacteria including amikacin, ciprofloxacin, moxifloxacin, doxycycline/minocycline, imipenem, linezolid, clarithromycin and trimethropin/sulfamethoxazole. Both isolates PB739 T and GK showed intermediate susceptibility to cefoxitin. We propose the name Mycobacterium grossiae sp. nov. for this novel species and have deposited the type strain in the DSMZ and CIP culture collections. The type strain is PB739 T (=DSM 104744 T =CIP 111318 T ).

  20. Rapid-Growing Mycobacteria Infections in Medical Tourists: Our Experience and Literature Review.

    Science.gov (United States)

    Singh, Mansher; Dugdale, Caitlin M; Solomon, Isaac H; Huang, Anne; Montgomery, Mary W; Pomahac, Bohdan; Yawetz, Sigal; Maguire, James H; Talbot, Simon G

    2016-09-01

    "Medical tourism" has gained popularity over the past few decades. This is particularly common with patients seeking elective cosmetic surgery in the developing world. However, the risk of severe and unusual infectious complications appears to be higher than for patients undergoing similar procedures in the United States. The authors describe their experience with atypical mycobacterial infections in cosmetic surgical patients returning to the United States postoperatively. A review of patient medical records presenting with infectious complications after cosmetic surgery between January 2010 and July 2015 was performed. Patients presenting with mycobacterial infections following cosmetic surgery were reviewed in detail. An extensive literature review was performed for rapid-growing mycobacteria (RGM) related to cosmetic procedures. Between January 2010 and July 2015, three patients presented to our institution with culture-proven Mycobacterium abscessus at the sites of recent cosmetic surgery. All had surgery performed in the developing world. The mean age of these patients was 36 years (range, 29-44 years). There was a delay of up to 16 weeks between the initial presentation and correct diagnosis. All patients were treated with surgical drainage and combination antibiotics with complete resolution. We present series of patients with mycobacterial infections after cosmetic surgery in the developing world. This may be related to the endemic nature of these bacteria and/or inadequate sterilization or sterile technique. Due to low domestic incidence of these infections, diagnosis may be difficult and/or delayed. Consulting physicians should have a low threshold to consider atypical etiologies in such scenarios. 5 Therapeutic. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  1. Two novel species of rapidly growing mycobacteria: Mycobacterium lehmannii sp. nov. and Mycobacterium neumannii sp. nov.

    Science.gov (United States)

    Nouioui, Imen; Sangal, Vartul; Carro, Lorena; Teramoto, Kanae; Jando, Marlen; Montero-Calasanz, Maria Del Carmen; Igual, José Mariano; Sutcliffe, Iain; Goodfellow, Michael; Klenk, Hans-Peter

    2017-12-01

    Two rapidly growing mycobacteria with identical 16S rRNA gene sequences were the subject of a polyphasic taxonomic study. The strains formed a well-supported subclade in the mycobacterial 16S rRNA gene tree and were most closely associated with the type strain of Mycobacterium novocastrense. Single and multilocus sequence analyses based on hsp65, rpoB and 16S rRNA gene sequences showed that strains SN 1900 T and SN 1904 T are phylogenetically distinct but share several chemotaxonomic and phenotypic features that are are consistent with their classification in the genus Mycobacterium. The two strains were distinguished by their different fatty acid and mycolic acid profiles, and by a combination of phenotypic features. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values for strains SN 1900 T and SN 1904 T were 61.0 % and 94.7 %, respectively; in turn, the corresponding dDDH and ANI values with M. novocastrense DSM 44203 T were 41.4 % and 42.8 % and 89.3 % and 89.5 %, respectively. These results show that strains SN1900 T and SN 1904 T form new centres of taxonomic variation within the genus Mycobacterium. Consequently, strains SN 1900 T (40 T =CECT 8763 T =DSM 43219 T ) and SN 1904 T (2409 T =CECT 8766 T =DSM 43532 T ) are considered to represent novel species, for which the names Mycobacteriumlehmannii sp. nov. and Mycobacteriumneumannii sp. nov. are proposed. A strain designated as 'Mycobacteriumacapulsensis' was shown to be a bona fide member of the putative novel species, M. lehmannii.

  2. Urban cyclist exposure to fine particle pollution in a rapidly growing city

    Science.gov (United States)

    Luce, B. W.; Barrett, T. E.; Ponette-González, A.

    2017-12-01

    Urban cyclists are exposed to elevated atmospheric concentrations of fine particulate matter (particles vehicle exhaust, which is emitted directly into cyclists' "breathing zone." In cities, human exposure to PM2.5 is a concern because its small size allows it to be inhaled deeper into the lungs than most particles. The aim of this research is to determine "hotspots" (locations with high PM2.5 concentrations) within the Dallas-Fort Worth Metroplex, Texas, where urban cyclists are most exposed to fine particle pollution. Recent research indicates that common exposure hotspots include traffic signals, junctions, bus stations, parking lots, and inclined streets. To identify these and other hotspots, a bicycle equipped with a low-cost, portable, battery-powered particle counter (Dylos 1700) coupled with a Trimble Geo 5T handheld Global Positioning System (GPS; ≤1 m ± resolution) will be used to map and measure particle mass concentrations along predetermined routes. Measurements will be conducted during a consecutive four-month period (Sep-Dec) during morning and evening rush hours when PM2.5 levels are generally highest, as well as during non-rush hour times to determine background concentrations. PM2.5 concentrations will be calculated from particle counts using an equation developed by Steinle et al. (2015). In addition, traffic counts will be conducted along the routes coinciding with the mobile monitoring times. We will present results on identified "hotspots" of high fine particle concentrations and PM2.5 exposure in the City of Denton, where particle pollution puts urban commuters most at risk, as well as average traffic counts from monitoring times. These data can be used to determine pollution mitigation strategies in rapidly growing urban areas.

  3. Discovering relevance knowledge in data: a growing cell structures approach.

    Science.gov (United States)

    Azuaje, F; Dubitzky, W; Black, N; Adamson, K

    2000-01-01

    Both information retrieval and case-based reasoning systems rely on effective and efficient selection of relevant data. Typically, relevance in such systems is approximated by similarity or indexing models. However, the definition of what makes data items similar or how they should be indexed is often nontrivial and time-consuming. Based on growing cell structure artificial neural networks, this paper presents a method that automatically constructs a case retrieval model from existing data. Within the case-based reasoning (CBR) framework, the method is evaluated for two medical prognosis tasks, namely, colorectal cancer survival and coronary heart disease risk prognosis. The results of the experiments suggest that the proposed method is effective and robust. To gain a deeper insight and understanding of the underlying mechanisms of the proposed model, a detailed empirical analysis of the models structural and behavioral properties is also provided.

  4. Accumulation of neutral mutations in growing cell colonies with competition.

    Science.gov (United States)

    Sorace, Ron; Komarova, Natalia L

    2012-12-07

    Neutral mutations play an important role in many biological processes including cancer initiation and progression, the generation of drug resistance in bacterial and viral diseases as well as cancers, and the development of organs in multicellular organisms. In this paper we study how neutral mutants are accumulated in nonlinearly growing colonies of cells subject to growth constraints such as crowding or lack of resources. We investigate different types of growth control which range from "division-controlled" to "death-controlled" growth (and various mixtures of both). In division-controlled growth, the burden of handling overcrowding lies with the process of cell-divisions, the divisions slow down as the carrying capacity is approached. In death-controlled growth, it is death rate that increases to slow down expansion. We show that division-controlled growth minimizes the number of accumulated mutations, and death-controlled growth corresponds to the maximum number of mutants. We check that these results hold in both deterministic and stochastic settings. We further develop a general (deterministic) theory of neutral mutations and achieve an analytical understanding of the mutant accumulation in colonies of a given size in the absence of back-mutations. The long-term dynamics of mutants in the presence of back-mutations is also addressed. In particular, with equal forward- and back-mutation rates, if division-controlled and a death-controlled types are competing for space and nutrients, cells obeying division-controlled growth will dominate the population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Mycobacterium stephanolepidis sp. nov., a rapidly growing species related to Mycobacterium chelonae, isolated from marine teleost fish, Stephanolepis cirrhifer.

    Science.gov (United States)

    Fukano, Hanako; Wada, Shinpei; Kurata, Osamu; Katayama, Kinya; Fujiwara, Nagatoshi; Hoshino, Yoshihiko

    2017-08-01

    A previously undescribed rapidly growing, non-pigmented mycobacterium was identified based on biochemical and nucleic acid analyses, as well as growth characteristics. Seven isolates were cultured from samples collected from five thread-sail filefish (Stephanolepis cirrhifer) and two farmed black scraper (Thamnaconus modestus). Bacterial growth occurred at 15-35 °C on Middlebrook 7H11 agar. The bacteria were positive for catalase activity at 68 °C and urease activity, intermediate for iron uptake, and negative for Tween 80 hydrolysis, nitrate reduction, semi-quantitative catalase activity and arylsulfatase activity at day 3. No growth was observed on Middlebrook 7H11 agar supplemented with picric acid, and very little growth was observed in the presence of 5 % NaCl. α- and α'-mycolates were identified in the cell walls, and a unique profile of the fatty acid methyl esters and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiles of the protein and cell-wall lipids were acquired. Sequence analysis revealed that the seven isolates shared identical sequences for the 16S rRNA, rpoB, hsp65, recA and sodA genes. Phylogenetic analysis of the five gene sequences confirmed that the isolates were unique, but closely related to Mycobacterium chelonae. Antibiotic susceptibility testing revealed the minimum inhibitory concentration (MIC) of clarithromycin against this novel species was Mycobacterium salmoniphilum. The hsp65 PCR restriction enzyme analysis pattern differed from those of M. chelonae and M. salmoniphilum. Based on these findings, the name Mycobacterium stephanolepidis sp. nov. is proposed for this novel species, with the type strain being NJB0901 T (=JCM 31611 T =KCTC 39843 T ).

  6. Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division

    Science.gov (United States)

    Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.

    2011-10-01

    Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.

  7. Cell dualism: presence of cells with alternative membrane potentials in growing populations of bacteria and yeasts.

    Science.gov (United States)

    Ivanov, Volodymyr; Rezaeinejad, Saeid; Chu, Jian

    2013-10-01

    It is considered that all growing cells, for exception of acidophilic bacteria, have negatively charged inside cytoplasmic membrane (Δψ⁻-cells). Here we show that growing populations of microbial cells contain a small portion of cells with positively charged inside cytoplasmic membrane (Δψ⁺-cells). These cells were detected after simultaneous application of the fluorescent probes for positive membrane potential (anionic dye DIBAC⁻) and membrane integrity (propidium iodide, PI). We found in exponentially growing cell populations of Escherichia coli and Saccharomyces cerevisiae that the content of live Δψ⁻-cells was 93.6 ± 1.8 % for bacteria and 90.4 ± 4.0 % for yeasts and the content of live Δψ⁺-cells was 0.9 ± 0.3 % for bacteria and 2.4 ± 0.7 % for yeasts. Hypothetically, existence of Δψ⁺-cells could be due to short-term, about 1 min for bacteria and 5 min for yeasts, change of membrane potential from negative to positive value during the cell cycle. This change has been shown by the reversions of K⁺, Na⁺, and Ca²⁺ ions fluxes across the cell membrane during synchronous yeast culture. The transformation of Δψ(⁻-cells to Δψ⁺-cells can be explained by slow influx of K⁺ ions into Δψ⁻-cell to the trigger level of K⁺ concentration ("compression of potassium spring"), which is forming "alternative" Δψ⁺-cell for a short period, following with fast efflux of K⁺ ions out of Δψ⁺-cell ("release of potassium spring") returning cell to normal Δψ⁻ state. We anticipate our results to be a starting point to reveal the biological role of cell dualism in form of Δψ⁻- and Δψ⁺- cells.

  8. Myofibroblastoma: An Unusual Rapidly Growing Benign Tumour in a Male Breast

    International Nuclear Information System (INIS)

    Rafique, A.; Arshad, A.

    2013-01-01

    Myofibroblastoma is an unusual benign tumour of the breast predominantly seen in men in their sixth to seventh decade. The gross appearance is that of a well circumscribed nodule, characteristically small, seldom exceeding 3 cm. We present a case of an unusually large myofibroblastoma, which mimicked a malignant breast tumour. A 40 years old male, known case of tetralogy of Fallot, was operated in infancy in abroad, presented with a rapid enlargement of right breast over 5 - 6 weeks. Examination revealed a firm 10 cm hemispherical lump occupying the whole of the right breast with normal overlying skin. Since core biopsy was inconclusive, a subcutaneous mastectomy was performed to remove the tumour, which weighed 500 gms. Histopathology and immunocytochemistry revealed a mixed classical and collagenised type of myofibroblastoma. The patient is well with no evidence of recurrence. (author)

  9. Cell physiology of plants growing in cold environments.

    Science.gov (United States)

    Lütz, Cornelius

    2010-08-01

    The life of plants growing in cold extreme environments has been well investigated in terms of morphological, anatomical, and ecophysiological adaptations. In contrast, long-term cellular or metabolic studies have been performed by only a few groups. Moreover, a number of single reports exist, which often represent just a glimpse of plant behavior. The review draws together the literature which has focused on tissue and cellular adaptations mainly to low temperatures and high light. Most studies have been done with European alpine plants; comparably well studied are only two phanerogams found in the coastal Antarctic. Plant adaptation in northern polar regions has always been of interest in terms of ecophysiology and plant propagation, but nowadays, this interest extends to the effects of global warming. More recently, metabolic and cellular investigations have included cold and UV resistance mechanisms. Low-temperature stress resistance in plants from cold environments reflects the climate conditions at the growth sites. It is now a matter of molecular analyses to find the induced genes and their products such as chaperones or dehydrins responsible for this resistance. Development of plants under snow or pollen tube growth at 0 degrees C shows that cell biology is needed to explain the stability and function of the cytoskeleton. Many results in this field are based on laboratory studies, but several publications show that it is not difficult to study cellular mechanisms with the plants adapted to a natural stress. Studies on high light and UV loads may be split in two parts. Many reports describe natural UV as harmful for the plants, but these studies were mainly conducted by shielding off natural UV (as controls). Other experiments apply additional UV in the field and have had practically no negative impact on metabolism. The latter group is supported by the observations that green overwintering plants increase their flavonoids under snow even in the absence of

  10. How cells grow and divide: mathematical analysis confirms demand for the cell cycle

    International Nuclear Information System (INIS)

    Kwon, Hyun Woong; Choi, M Y

    2012-01-01

    Eukaryotes usually grow through cell growth and division. How cells grow and divide is essential to life because too small or too large cells cannot function well. In order for an organism to survive even under a condition where cell growth and division processes are independent of each other, cells must have an appropriate growth factor, growth rate and division rate. To determine them, we derive a time evolution equation for the size distribution of cells from the master equation describing changes in the cell size due to growth and in the total number of cells due to division. It is found that long-time behaviors of moments of the size distribution divide the parameter space, consisting of the growth factor and the ratio of the division rate to the growth rate, into infinitely many regions. Examining the properties of each region, we conclude that growth with a small growth factor may be disastrous; this demonstrates the demand for the cell cycle consisting of coordinated growth and division processes. (paper)

  11. SnapShot : Growing Organoids from Stem Cells

    NARCIS (Netherlands)

    Sato, Toshiro; Clevers, Hans

    2015-01-01

    Tissue stem cells require unique niche microenvironments. In the presence of specific combinations of niche factors, mouse and human epithelial tissues from stomach, small intestine, colon, pancreas duct, and liver bile duct efficiently form stereotypic organoids. The platform of epitheloid

  12. [Case report: Rapidly growing abdominal wall giant desmoid tumour during pregnancy].

    Science.gov (United States)

    Palacios-Zertuche, Jorge Tadeo; Cardona-Huerta, Servando; Juárez-García, María Luisa; Valdés-Flores, Everardo; Muñoz-Maldonado, Gerardo Enrique

    Desmoid tumours are one of the rarest tumours worldwide, with an estimated yearly incidence of 2-4 new cases per million people. They are soft tissue monoclonal neoplasms that originate from mesenchymal stem cells. It seems that the hormonal and immunological changes occurring during pregnancy may play a role in the severity and course of the disease. The case is presented on 28-year-old female in her fifth week of gestation, in whom an abdominal wall tumour was found attached to left adnexa and uterus while performing a prenatal ultrasound. The patient was followed up under clinical and ultrasonographic surveillance. When she presented with abnormal uterine activity at 38.2 weeks of gestation, she was admitted and obstetrics decided to perform a caesarean section. Tumour biopsy was taken during the procedure. Histopathology reported a desmoid fibromatosis. A contrast enhanced abdominal computed tomography scan was performed, showing a tumour of 26×20.5×18cm, with well-defined borders in contact with the uterus, left adnexa, bladder and abdominal wall, with no evidence of infiltration to adjacent structures. A laparotomy, with tumour resection, hysterectomy and left salpingo-oophorectomy, components separation techniques, polypropylene mesh insertion, and drainage was performed. The final histopathology report was desmoid fibromatosis. There is no evidence of recurrence after 6 months follow-up. Desmoid tumours are locally aggressive and surgical resection with clear margins is the basis for the treatment of this disease, using radiotherapy, chemotherapy and hormone therapy as an adjunct in the treatment. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  13. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  14. Rapid cell separation with minimal manipulation for autologous cell therapies

    Science.gov (United States)

    Smith, Alban J.; O'Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-02-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.

  15. Cell cycle disturbances in slowly growing sublines isolated from X-irradiated L5178Y-S cell populations

    International Nuclear Information System (INIS)

    Beer, J.Z.; Bocian, E.; Budzicka, E.; Szumiel, I.; Ziemba-Zak, B.; Kopec, M.

    1974-01-01

    Cell cycle was analyzed autoradiographically in a test line of murine leukaemic lymphoblasts L5178Y-S and in two slowly growing sublines isolated from cell cultures irradiated with 300 rad of X-rays. It was found that prolongation of the cell cycle in the slowly growing sublines is connected primarily with delayed progression through G2 phase. This conclusion was further supported by results of determination of DNA content per cell in 13 slowly growing cell sublines and karyotype analysis of 18 sublines. No correlation was found between a sublines' mean doubling time and its chromosome number whereas DNA content per cell was clearly dependent on the growth rate. (author)

  16. Mycobacterium saopaulense sp. nov., a rapidly growing mycobacterium closely related to members of the Mycobacterium chelonae--Mycobacterium abscessus group.

    Science.gov (United States)

    Nogueira, Christiane Lourenço; Whipps, Christopher M; Matsumoto, Cristianne Kayoko; Chimara, Erica; Droz, Sara; Tortoli, Enrico; de Freitas, Denise; Cnockaert, Margo; Palomino, Juan Carlos; Martin, Anandi; Vandamme, Peter; Leão, Sylvia Cardoso

    2015-12-01

    Five isolates of non-pigmented, rapidly growing mycobacteria were isolated from three patients and,in an earlier study, from zebrafish. Phenotypic and molecular tests confirmed that these isolates belong to the Mycobacterium chelonae-Mycobacterium abscessus group, but they could not be confidently assigned to any known species of this group. Phenotypic analysis and biochemical tests were not helpful for distinguishing these isolates from other members of the M. chelonae–M.abscessus group. The isolates presented higher drug resistance in comparison with other members of the group, showing susceptibility only to clarithromycin. The five isolates showed a unique PCR restriction analysis pattern of the hsp65 gene, 100 % similarity in 16S rRNA gene and hsp65 sequences and 1-2 nt differences in rpoB and internal transcribed spacer (ITS) sequences.Phylogenetic analysis of a concatenated dataset including 16S rRNA gene, hsp65, and rpoB sequences from type strains of more closely related species placed the five isolates together, as a distinct lineage from previously described species, suggesting a sister relationship to a group consisting of M. chelonae, Mycobacterium salmoniphilum, Mycobacterium franklinii and Mycobacterium immunogenum. DNA–DNA hybridization values .70 % confirmed that the five isolates belong to the same species, while values ,70 % between one of the isolates and the type strains of M. chelonae and M. abscessus confirmed that the isolates belong to a distinct species. The polyphasic characterization of these isolates, supported by DNA–DNA hybridization results,demonstrated that they share characteristics with M. chelonae–M. abscessus members, butconstitute a different species, for which the name Mycobacterium saopaulense sp. nov. is proposed. The type strain is EPM10906T (5CCUG 66554T5LMG 28586T5INCQS 0733T).

  17. The economic case for low-carbon development in rapidly growing developing world cities: A case study of Palembang, Indonesia

    International Nuclear Information System (INIS)

    Colenbrander, Sarah; Gouldson, Andy; Sudmant, Andrew Heshedahl; Papargyropoulou, Effie

    2015-01-01

    Where costs or risks are higher, evidence is lacking or supporting institutions are less developed, policymakers can struggle to make the case for low-carbon investment. This is especially the case in developing world cities where decision-makers struggle to keep up with the pace and scale of change. Focusing on Palembang in Indonesia, this paper considers the economic case for proactive investment in low-carbon development. We find that a rapidly growing industrial city in a developing country can reduce emissions by 24.1% in 2025, relative to business as usual levels, with investments of USD405.6 million that would reduce energy expenditure in the city by USD436.8 million. Emissions from the regional grid could be reduced by 12.2% in 2025, relative to business as usual trends, with investments of USD2.9 billion that would generate annual savings of USD175 million. These estimates understate the savings from reduced expenditure on energy subsidies and energy infrastructure. The compelling economic case for mainstreaming climate mitigation in this developing country city suggests that the constraints on climate action can be political and institutional rather than economic. There is therefore a need for more effective energy governance to drive the transition to a low-carbon economy. - Highlights: • We evaluate the economic case for low carbon investment in a developing world city. • Cost-effective measures could reduce emissions by 24.1% relative to BAU levels. • These pay for themselves in <1 year and generate savings throughout their lifetime. • Further savings come from reduced expenditure on energy infrastructure, subsidies. • Limitations on climate action seem to be political/institutional – not economic

  18. Effects of landscape change on fish assemblage structure in a rapidly growing metropolitan area in North Carolina, USA

    Science.gov (United States)

    Kennen, J.G.; Chang, M.; Tracy, B.H.

    2005-01-01

    We evaluated a comprehensive set of natural and land-use attributes that represent the major facets of urban development at fish monitoring sites in the rapidly growing Raleigh-Durham, North Carolina metropolitan area. We used principal component and correlation analysis to obtain a nonredundant subset of variables that extracted most variation in the complete set. With this subset of variables, we assessed the effect of urban growth on fish assemblage structure. We evaluated variation in fish assemblage structure with nonmetric multidimensional scaling (NMDS). We used correlation analysis to identify the most important environmental and landscape variables associated with significant NMDS axes. The second NMDS axis is related to many indices of land-use/land-cover change and habitat. Significant correlations with proportion of largest forest patch to total patch size (r = -0.460, P < 0.01), diversity of patch types (r = 0.554, P < 0.001), and population density (r = 0.385, P < 0.05) helped identify NMDS axis 2 as a disturbance gradient. Positive and negative correlations between the abundance of redbreast sunfish Lepomis auritus and bluehead chub Nocomis leptocephalus, respectively, and NMDS axis 2 also were evident. The North Carolina index of biotic integrity and many of its component metrics were highly correlated with urbanization. These results indicate that aquatic ecosystem integrity would be optimized by a comprehensive integrated management strategy that includes the preservation of landscape function by maximizing the conservation of contiguous tracts of forested lands and vegetative cover in watersheds. ?? 2005 by the American Fisheries Society.

  19. Development of a grow-cell test facility for research into sustainable controlled-environment agriculture

    OpenAIRE

    Tsitsimpelis, Ioannis; Wolfenden, Ian; Taylor, C. James

    2016-01-01

    The grow-cell belongs to a relatively new category of plant factory in the horticultural industry, for which the motivation is the maximization of production and the minimization of energy consumption. This article takes a systems design approach to identify the engineering requirements of a new grow-cell facility, with the prototype based on a 12 m X 2.4 m X 2.5 m shipping container. Research contributions are made in respect to: (i) the design of a novel conveyor-irrigation system for mecha...

  20. Bone cell kinetics in the metaphysis of the growing long bone of the rat

    International Nuclear Information System (INIS)

    Kimmel, D.B.; Jee, W.S.

    1976-01-01

    The growing long bone metaphysis of rats was studied in a cell kinetic and morphometric analysis using tritiated thymidine as a tracer of cells. The results showed striking differences in the distribution and movements of osteoprogenitor and osteoblasts as compared to the osteoclasts. The results also showed a deficiency in cell production in the proliferating bone cells in the metaphysis. A new model of bone cell origin, proliferation, and movements in the metaphysis is proposed; osteoblasts and osteoprogenitor cells, the bone surface cells endemic to the metaphysis, are a continuum in adding bone forming cells and forming new bone on the calcified cartilage cores of the metaphysis. The osteoclasts, on the other hand, arise from mononuclear blood cells brought to the metaphysis through metaphyseal blood vessel spaces near the growth cartilage-metaphyseal junction

  1. Tetracycline resistance and presence of tetracycline resistance determinants .i.tet./i.(V) and .i.tap./i. in rapidly growing mycobacteria from agricultural soils and clinical isolates

    Czech Academy of Sciences Publication Activity Database

    Kyselková, Martina; Chroňáková, Alica; Volná, Lucie; Němec, Jan; Ulmann, V.; Scharfen, J.; Elhottová, Dana

    2012-01-01

    Roč. 27, č. 4 (2012), s. 413-422 ISSN 1342-6311 R&D Projects: GA ČR GAP504/10/2077; GA MŠk LC06066 Institutional support: RVO:60077344 Keywords : efflux pump * rapidly growing Mycobacterium * tetracycline resistance * tap * tet (V) Subject RIV: EH - Ecology, Behaviour Impact factor: 2.444, year: 2012

  2. A Strategy for Rapid Construction of Blood Vessel-Like Structures with Complex Cell Alignments.

    Science.gov (United States)

    Wang, Nuoxin; Peng, Yunhu; Zheng, Wenfu; Tang, Lixue; Cheng, Shiyu; Yang, Junchuan; Liu, Shaoqin; Zhang, Wei; Jiang, Xingyu

    2018-04-17

    A method is developed that can rapidly produce blood vessel-like structures by bonding cell-laden electrospinning (ES) films layer by layer using fibrin glue within 90 min. This strategy allows control of cell type, cell orientation, and material composition in separate layers. Furthermore, ES films with thicker fibers (polylactic-co-glycolic acid, fiber diameter: ≈3.7 µm) are used as cell-seeding layers to facilitate the cell in-growth; those with thinner fibers (polylactic acid, fiber diameter: ≈1.8 µm) are used as outer reinforcing layers to improve the mechanical strength and reduce the liquid leakage of the scaffold. Cells grow, proliferate, and migrate well in the multilayered structure. This design aims at a new type of blood vessel substitute with flexible control of parameters and implementation of functions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Multi-Level Approach to Modeling Rapidly Growing Mega-Regions as a Coupled Human-Natural System

    Science.gov (United States)

    Koch, J. A.; Tang, W.; Meentemeyer, R. K.

    2013-12-01

    The FUTure Urban-Regional Environment Simulation (FUTURES) integrates information on nonstationary drivers of land change (per capita land area demand, site suitability, and spatial structure of conversion events) into spatial-temporal projections of changes in landscape patterns (Meentemeyer et al., 2013). One striking feature of FUTURES is its patch-growth algorithm that includes feedback effects of former development events across several temporal and spatial scales: cell-level transition events are aggregated into patches of land change and their further growth is based on empirically derived parameters controlling its size, shape, and dispersion. Here, we augment the FUTURES modeling framework by expanding its multilevel structure and its representation of human decision making. The new modeling framework is hierarchically organized as nested subsystems including the latest theory on telecouplings in coupled human-natural systems (Liu et al., 2013). Each subsystem represents a specific level of spatial scale and embraces agents that have decision making authority at a particular level. The subsystems are characterized with regard to their spatial representation and are connected via flows of information (e.g. regulations and policies) or material (e.g. population migration). To provide a modeling framework that is applicable to a wide range of settings and geographical regions and to keep it computationally manageable, we implement a 'zooming factor' that allows to enable or disable subsystems (and hence the represented processes), based on the extent of the study region. The implementation of the FUTURES modeling framework for a specific case study follows the observational modeling approach described in Grimm et al. (2005), starting from the analysis of empirical data in order to capture the processes relevant for specific scales and to allow a rigorous calibration and validation of the model application. In this paper, we give an introduction to the basic

  4. Diversity, Community Composition, and Dynamics of Nonpigmented and Late-Pigmenting Rapidly Growing Mycobacteria in an Urban Tap Water Production and Distribution System

    OpenAIRE

    Dubrou, S.; Konjek, J.; Macheras, E.; Welté, B.; Guidicelli, L.; Chignon, E.; Joyeux, M.; Gaillard, J. L.; Heym, B.; Tully, T.; Sapriel, G.

    2013-01-01

    Nonpigmented and late-pigmenting rapidly growing mycobacteria (RGM) have been reported to commonly colonize water production and distribution systems. However, there is little information about the nature and distribution of RGM species within the different parts of such complex networks or about their clustering into specific RGM species communities. We conducted a large-scale survey between 2007 and 2009 in the Parisian urban tap water production and distribution system. We analyzed 1,418 w...

  5. Do farmers rapidly adapt to past growing conditions by sowing different proportions of early and late maturing cereals and cultivars?

    Directory of Open Access Journals (Sweden)

    Pirjo Peltonen-Sainio

    2013-10-01

    Full Text Available In the short growing season of the northernmost European growing conditions, farmers are increasingly interested in expanding cultivation of later maturing crops at the expense of early maturing ones with lower yields. In this study we aimed to assess how the switching between spring cereals that differ in earliness was associated with different external factors. This was tested using unique datasets for regional cropping areas and cultivar use for the last 15 years. Early maturing barley was favored at the expense of later maturing wheat when a high number of days to crop maturity was required in the preceding year. In contrast, farmers reduced the barley area when a high number of cumulated degree days was required for a crop to mature in the previous year. A shift was recorded from early to late maturing cultivars. This study indicated that despite limited opportunities for farmers to alter land use, they readily responded to past conditions and used the knowledge gained for decision-making to reduce risk. This is a valuable operative model for studying adaptation to opportunities and constraints induced by climate change.

  6. From Microscopic to Macroscopic Descriptions of Cell Migration on Growing Domains

    KAUST Repository

    Baker, Ruth E.

    2009-10-28

    Cell migration and growth are essential components of the development of multicellular organisms. The role of various cues in directing cell migration is widespread, in particular, the role of signals in the environment in the control of cell motility and directional guidance. In many cases, especially in developmental biology, growth of the domain also plays a large role in the distribution of cells and, in some cases, cell or signal distribution may actually drive domain growth. There is an almost ubiquitous use of partial differential equations (PDEs) for modelling the time evolution of cellular density and environmental cues. In the last 20 years, a lot of attention has been devoted to connecting macroscopic PDEs with more detailed microscopic models of cellular motility, including models of directional sensing and signal transduction pathways. However, domain growth is largely omitted in the literature. In this paper, individual-based models describing cell movement and domain growth are studied, and correspondence with a macroscopic-level PDE describing the evolution of cell density is demonstrated. The individual-based models are formulated in terms of random walkers on a lattice. Domain growth provides an extra mathematical challenge by making the lattice size variable over time. A reaction-diffusion master equation formalism is generalised to the case of growing lattices and used in the derivation of the macroscopic PDEs. © 2009 Society for Mathematical Biology.

  7. Monitoring Annual Urban Changes in a Rapidly Growing Portion of Northwest Arkansas with a 20-Year Landsat Record

    Directory of Open Access Journals (Sweden)

    Ryan Reynolds

    2017-01-01

    Full Text Available Northwest Arkansas has undergone a significant urban transformation in the past several decades and is considered to be one of the fastest growing regions in the United States. The urban area expansion and the associated demographic increases bring unprecedented pressure to the environment and natural resources. To better understand the consequences of urbanization, accurate and long-term depiction on urban dynamics is critical. Although urban mapping activities using remote sensing have been widely conducted, long-term urban growth mapping at an annual pace is rare and the low accuracy of change detection remains a challenge. In this study, a time series Landsat stack covering the period from 1995 to 2015 was employed to detect the urban dynamics in Northwest Arkansas via a two-stage classification approach. A set of spectral indices that have been proven to be useful in urban area extraction together with the original Landsat spectral bands were used in the maximum likelihood classifier and random forest classifier to distinguish urban from non-urban pixels for each year. A temporal trajectory polishing method, involving temporal filtering and heuristic reasoning, was then applied to the sequence of classified urban maps for further improvement. Based on a set of validation samples selected for five distinct years, the average overall accuracy of the final polished maps was 91%, which improved the preliminary classifications by over 10%. Moreover, results from this study also indicated that the temporal trajectory polishing method was most effective with initial low accuracy classifications. The resulting urban dynamic map is expected to provide unprecedented details about the area, spatial configuration, and growing trends of urban land-cover in Northwest Arkansas.

  8. When stem cells grow old: phenotypes and mechanisms of stem cell aging

    Science.gov (United States)

    Schultz, Michael B.; Sinclair, David A.

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. PMID:26732838

  9. High-resolution proteome maps of Bacillus licheniformis cells growing in minimal medium.

    Science.gov (United States)

    Voigt, Birgit; Albrecht, Dirk; Sievers, Susanne; Becher, Dörte; Bongaerts, Johannes; Evers, Stefan; Schweder, Thomas; Maurer, Karl-Heinz; Hecker, Michael

    2015-08-01

    Bacillus licheniformis is an important host for the industrial production of enzymes mainly because of its ability to secrete large amounts of protein. We analyzed the proteome of B. licheniformis cells growing in a minimal medium. Beside the cytosolic proteome, the membrane and the extracellular proteome were studied. We could identify 1470 proteins; 1168 proteins were classified as cytosolic proteins, 195 proteins with membrane-spanning domains were classified as membrane proteins, and 107 proteins, with either putative signals peptides or flagellin-like sequences, were classified as secreted proteins. The identified proteins were grouped into functional categories and used to reconstruct cellular functions and metabolic pathways of growing B. licheniformis cells. The largest group was proteins with functions in basic metabolic pathways such as carbon metabolism, amino acid and nucleotide synthesis and synthesis of fatty acids and cofactors. Many proteins detected were involved in DNA replication, transcription, and translation. Furthermore, a high number of proteins employed in the transport of a wide variety of compounds were found to be expressed in the cells. All MS data have been deposited in the ProteomeXchange with identifier PXD000791 (http://proteomecentral.proteomexchange.org/dataset/PXD000791). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Differences in gene expression of cells growing in conventional 2D versus 3D cell culture

    International Nuclear Information System (INIS)

    Zschenker, Oliver; Cordes, Nils; Streichert, Thomas

    2009-01-01

    Full text: Telomeres are DNA protein complexes on the ends of chromosomes that distinguish the ends of chromosomes from double strand breaks and prevent degradation or fusion by nonhomologous end-joining. The loss of telomeres is associated with a loss of heterochromatic features leading to a less compact chromatin structure which allows e.g. DNA repair proteins to get better access to the site of the DNA damage and facilitate chromosome fusions. Telomerase is an enzyme that can counteract the loss of telomeres by adding telomeric repeats on the ends of chromosomes. Since telomerase is active in most tumor cells, telomerase is suggested to be the reason for the unlimited number of cell divisions of cancer cells. TRF2 is one of the most important proteins of the Shelterin complex protecting the telomeres from shortening by inhibiting ATM which is up-stream of the DNA repair mechanisms. Thus, we are concentrating on TRF2 and telomerase to investigate the differences in DNA repair in telomeric (heterochromatic) versus euchromatic regions. Human cancer cells with differences in status of p53 and telomerase like A549, UT-SCC15 and FaDu cells are used. Without any treatment, FaDu cells express high levels of telomerase and TRF2 in conventional 2D cell culture which is in contrast to e.g. A549. We found that telomerase is even higher expressed in 3D than in 2D cell culture. To connect telomere associated processes to both repair of radiogenic DNA damage/lesions and to cell-extracellular matrix interactions, we performed whole genome microarray analysis. By comparing the differential expression of genes associated with these three cell functions, we intend to yield new molecular insight into radiotherapy relevant tumor characteristics, particularly radioresistance and DNA damage response network processing. (author)

  11. Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols.

    Science.gov (United States)

    Dettmer, Katja; Nürnberger, Nadine; Kaspar, Hannelore; Gruber, Michael A; Almstetter, Martin F; Oefner, Peter J

    2011-01-01

    Trypsin/ethylenediaminetetraacetic acid (EDTA) treatment and cell scraping in a buffer solution were compared for harvesting adherently growing mammalian SW480 cells for metabolomics studies. In addition, direct scraping with a solvent was tested. Trypsinated and scraped cell pellets were extracted using seven different extraction protocols including pure methanol, methanol/water, pure acetone, acetone/water, methanol/chloroform/water, methanol/isopropanol/water, and acid-base methanol. The extracts were analyzed by GC-MS after methoximation/silylation and derivatization with propyl chloroformate, respectively. The metabolic fingerprints were compared and 25 selected metabolites including amino acids and intermediates of energy metabolism were quantitatively determined. Moreover, the influence of freeze/thaw cycles, ultrasonication and homogenization using ceramic beads on extraction yield was tested. Pure acetone yielded the lowest extraction efficiency while methanol, methanol/water, methanol/isopropanol/water, and acid-base methanol recovered similar metabolite amounts with good reproducibility. Based on overall performance, methanol/water was chosen as a suitable extraction solvent. Repeated freeze/thaw cycles, ultrasonication and homogenization did not improve overall metabolite yield of the methanol/water extraction. Trypsin/EDTA treatment caused substantial metabolite leakage proving it inadequate for metabolomics studies. Gentle scraping of the cells in a buffer solution and subsequent extraction with methanol/water resulted on average in a sevenfold lower recovery of quantified metabolites compared with direct scraping using methanol/water, making the latter one the method of choice to harvest and extract metabolites from adherently growing mammalian SW480 cells.

  12. Carbon nanotubes growing on rapid thermal annealed Ni and their application to a triode-type field emission device

    International Nuclear Information System (INIS)

    Uh, Hyung Soo; Park, Sang Sik

    2006-01-01

    In this paper, we demonstrate a new triode-type field emitter arrays using carbon nanotubes (CNTs) as an electron emitter source. In the proposed structure, the gate electrode is located underneath the cathode electrode and the extractor electrode is surrounded by CNT emitters. CNTs were selectively grown on the patterned Ni catalyst layer by using plasma-enhanced chemical vapor deposition (PECVD). Vertically aligned CNTs were grown with gas mixture of acetylene and ammonia under external DC bias. Compared with a conventional under-gate structure, the proposed structure reduced the turn-on voltage by about 30%. In addition, with a view to controlling the density of CNTs, Ni catalyst thickness was varied and rapid thermal annealing (RTA) treatment was optionally adopted before CNT growth. With controlled Ni thickness and RTA condition, field emission efficiency was greatly improved by reducing the density of CNTs, which is due to the reduction of the electric field screening effect caused by dense CNTs

  13. Effect of 5-fluorouracil on the cell growth and cell cycle kinetics of a mouse ascites tumor growing in vivo

    International Nuclear Information System (INIS)

    Lewin, F.; Skog, S.; Tribukait, B.; Ringborg, U.; Karolinska Sjukhuset, Stockholm

    1987-01-01

    The effect of 12, 24 and 36 mg/kg body weight doses of fluoro-uracil (5-FU) on the Bp 8 ascites sarcoma growing in vivo was studied. From sequential studies of the total number of cells together with the composition of cells in the cell cycle, the cell cycle flow was calculated and correlated to the pharmacokinetics, which was determined by using 3 He-5-FU. The dose of 12 mg/kg 5-FU affected cell growth between 24 and 72 hours, while the effect of higher doses was immediate. An early block in outflow of cells from G 1 was followed by an increased outflow, indicating an early inhibition followed by an enhancement of the initiation of the DNA synthesis. This increased outflow from G 1 together with the decrease in outflow from the early S-phase, i.e. decreased DNA synthesis, resulted in an accumulation of cells in the early part of the S-phase. The prolonged effects on the cell growth and the cell cycle flow despite the very fast decline in the drug concentration both in the ascites fluid and within the cells, together with a constant level of the drug in the macromolecular fraction, suggest an interaction between 5-FU and RNA/DNA at later times rather than an inhibition of the thymidylate synthetase activity. (orig.)

  14. When stem cells grow old: phenotypes and mechanisms of stem cell aging.

    Science.gov (United States)

    Schultz, Michael B; Sinclair, David A

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. © 2016. Published by The Company of Biologists Ltd.

  15. Compartmental analysis of roots in intact rapidly-growing Spergularia marina and Lactuca sativa: partial characterization of the symplasms functional in the radial transport of Na+ and K+

    International Nuclear Information System (INIS)

    Lazof, D.B.

    1987-01-01

    Techniques of compartmental analysis were adapted to the study of intact roots of rapidly-growing Spergularia marine and Lactuca sativa. Using large numbers of plants short time-courses of uptake and chase, 42 K + and 22 Na + transport could be resolved, even during a chase following a brief 10 minute labeling period. The use of intact plant systems allowed distinction of that portion of the isotope flux into the root, associated with the ion-conducting symplasms. A small compartment, which rapidly (t/sub .5/ + , accounting for the observed obtention of linear translocation rates within minutes of transferring to labeled solution. The ion contents of this compartment varied in proportion to the external ion concentration. When K + was at a high external concentration, labeled K + exchanged into this same symplasm, but chasing a short pulse indicated that K + transport to the xylem was not through a rapidly-exchanging compartment. At physiological concentrations of K + the evidence indicated that transport of K + across the root proceeded through a compartment which was not exchanging rapidly with the external medium. The rise to a linear rate of isotope translocation was gradual and translocation during a chase, following a brief pulse,was prolonged, indicating that this compartment retained its specific activity for a considerable period

  16. Rapid internalization of the insulin receptor in rat hepatoma cells

    International Nuclear Information System (INIS)

    Backer, J.M.; White, M.F.; Kahn, C.R.

    1987-01-01

    The authors have studied the internalization of the insulin receptor (IR) in rat hepatoma cells (Fao). The cells were surface-iodinated at 4 0 C, stimulated with insulin at 37 0 C, and then cooled rapidly, trypsinized at 4 0 C and solubilized. The IR was immunoprecipitated with a specific antibody, and internalization of the IR was assessed by the appearance of trypsin-resistant bands on SDS-PAGE. Insulin induced the internalization of surface receptors with a t 1/2 of 9-10 mins; cells not exposed to insulin internalized less than 20% of the IR during 1 h at 37 0 C. Further experiments demonstrated that the accumulation of trypsin-resistant IR paralleled a loss of receptor from the cell surface. Insulin-stimulated cells were chilled and iodinated at 4 0 C, followed by solubilization, immunoprecipitation and SDS-PAGE; alternatively, insulin-stimulated cells were chilled, surface-bound ligand removed by washing the cells at pH 4.2, and specific [ 125 I]insulin binding measured at 4 0 C. Both techniques confirmed the disappearance of IR from the cell surface at rates comparable to the insulin-stimulated internalization described above. The total amount of phosphotyrosine-containing IR, as assessed by immunoprecipitation with an anti-phosphotyrosine antibody, remained constant during this time interval, suggesting that active kinase is translocated into the cell. In summary, the authors data indicate that insulin binding increases the rate of IR internalization of Fao cells. This relocation may facilitate the interaction of the activated tyrosine kinase in the IR with intracellular substrates, thus transmitting the insulin signal to metabolic pathways

  17. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen

    2015-01-01

    The presence of AT2 receptors in mitochondria and their role in NO generation and cell aging were recently demonstrated in various human and mouse non-tumour cells. We investigated the intracellular distribution of AT2 receptors including their presence in mitochondria and the role in the induction...... agonist, Compound 21 (C21) penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped from the cell death, displayed activation of the mitochondrial apoptotic pathway, i...

  18. A Framework Predicting Water Availability in a Rapidly Growing, Semi-Arid Region under Future Climate Change

    Science.gov (United States)

    Han, B.; Benner, S. G.; Glenn, N. F.; Lindquist, E.; Dahal, K. R.; Bolte, J.; Vache, K. B.; Flores, A. N.

    2014-12-01

    Climate change can lead to dramatic variations in hydrologic regime, affecting both surface water and groundwater supply. This effect is most significant in populated semi-arid regions where water availability are highly sensitive to climate-induced outcomes. However, predicting water availability at regional scales, while resolving some of the key internal variability and structure in semi-arid regions is difficult due to the highly non-linearity relationship between rainfall and runoff. In this study, we describe the development of a modeling framework to evaluate future water availability that captures elements of the coupled response of the biophysical system to climate change and human systems. The framework is built under the Envision multi-agent simulation tool, characterizing the spatial patterns of water demand in the semi-arid Treasure Valley area of Southwest Idaho - a rapidly developing socio-ecological system where urban growth is displacing agricultural production. The semi-conceptual HBV model, a population growth and allocation model (Target), a vegetation state and transition model (SSTM), and a statistically based fire disturbance model (SpatialAllocator) are integrated to simulate hydrology, population and land use. Six alternative scenarios are composed by combining two climate change scenarios (RCP4.5 and RCP8.5) with three population growth and allocation scenarios (Status Quo, Managed Growth, and Unconstrained Growth). Five-year calibration and validation performances are assessed with Nash-Sutcliffe efficiency. Irrigation activities are simulated using local water rights. Results show that in all scenarios, annual mean stream flow decreases as the projected rainfall increases because the projected warmer climate also enhances water losses to evapotranspiration. Seasonal maximum stream flow tends to occur earlier than in current conditions due to the earlier peak of snow melting. The aridity index and water deficit generally increase in the

  19. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    Directory of Open Access Journals (Sweden)

    Razmik Mirzayans

    2016-05-01

    Full Text Available It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and triggers growth arrest (e.g., through premature senescence in some genetic backgrounds; such growth arrested cells remain viable, secrete growth-promoting factors, and give rise to progeny with stem cell-like properties. In addition, caspase 3, which is best known for its role in the execution phase of apoptosis, has been recently reported to facilitate (rather than suppress DNA damage-induced genomic instability and carcinogenesis. This observation is consistent with an earlier report demonstrating that caspase 3 mediates secretion of the pro-survival factor prostaglandin E2, which in turn promotes enrichment of tumor repopulating cells. In this article, we review these and related discoveries and point out novel cancer therapeutic strategies. One of our objectives is to demonstrate the growing complexity of the DNA damage response beyond the conventional “repair and survive, or die” hypothesis.

  20. Safety dose of three commercially used growth promoters: nuricell- aqua, hepaprotect-aqua and rapid-grow on growth and survival of Thai pangas (Pangasianodon hypophthalmus

    Directory of Open Access Journals (Sweden)

    Md. Ariful Islam

    2014-02-01

    Full Text Available Objective: To optimize the dose of 3 commonly used growth promoters, viz., Nuricell-Aqua (composition: glucomannan complex and mannose polymer, Hepaprotect-Aqua (composition: β-glucan, mannose polymer and essential oil and Rapid-Grow (composition: organic acid and their salt, β-glucan, mannose oligosaccharide and essential oil, using Thai pangas (Pangasiandon hypophthalmus as cultured species. Methods: Thai pangas fingerlings with an average length and weight of 11 cm and 10 g were reared under laboratory condition and growth promoters were fed after incorporating them with a test diet at a ratio of 10% of their body weight for a period of 28 d. Estimation of data on growth such as weight gain (g, specific growth rate, survivability (% test in each aquarium were conducted and data were analyzed using statistical software. Results: After 28 d of feeding with Nutricell-Aqua, 10 mg/(20 g feed·day, which was the dose recommended by the manufacturer, was found better. When Hepaprotect-Aqua and Rapid-Grow were employed, performance was found to be better with the dose of 60 mg/(20 g feed·day which was 1.5 times higher than the dose recommended by the corresponding manufacturer. Conclusions: These results suggest that chemicals and feed additives marketed in Bangladesh Fish Feed Market need further testing under Bangladesh climatic condition before being marketed.

  1. Modeling the cost and benefit of proteome regulation in a growing bacterial cell

    Science.gov (United States)

    Sharma, Pooja; Pratim Pandey, Parth; Jain, Sanjay

    2018-07-01

    Escherichia coli cells differentially regulate the production of metabolic and ribosomal proteins in order to stay close to an optimal growth rate in different environments, and exhibit the bacterial growth laws as a consequence. We present a simple mathematical model of a growing-dividing cell in which an internal dynamical mechanism regulates the allocation of proteomic resources between different protein sectors. The model allows an endogenous determination of the growth rate of the cell as a function of cellular and environmental parameters, and reproduces the bacterial growth laws. We use the model and its variants to study the balance between the cost and benefit of regulation. A cost is incurred because cellular resources are diverted to produce the regulatory apparatus. We show that there is a window of environments or a ‘niche’ in which the unregulated cell has a higher fitness than the regulated cell. Outside this niche there is a large space of constant and time varying environments in which regulation is an advantage. A knowledge of the ‘niche boundaries’ allows one to gain an intuitive understanding of the class of environments in which regulation is an advantage for the organism and which would therefore favour the evolution of regulation. The model allows us to determine the ‘niche boundaries’ as a function of cellular parameters such as the size of the burden of the regulatory apparatus. This class of models may be useful in elucidating various tradeoffs in cells and in making in-silico predictions relevant for synthetic biology.

  2. Diclofenac in Arabidopsis cells: Rapid formation of conjugates.

    Science.gov (United States)

    Fu, Qiuguo; Ye, Qingfu; Zhang, Jianbo; Richards, Jaben; Borchardt, Dan; Gan, Jay

    2017-03-01

    Pharmaceutical and personal care products (PPCPs) are continuously introduced into the soil-plant system, through practices such as agronomic use of reclaimed water and biosolids containing these trace contaminants. Plants may accumulate PPCPs from soil, serving as a conduit for human exposure. Metabolism likely controls the final accumulation of PPCPs in plants, but is in general poorly understood for emerging contaminants. In this study, we used diclofenac as a model compound, and employed 14 C tracing, and time-of-flight (TOF) and triple quadruple (QqQ) mass spectrometers to unravel its metabolism pathways in Arabidopsis thaliana cells. We further validated the primary metabolites in Arabidopsis seedlings. Diclofenac was quickly taken up into A. thaliana cells. Phase I metabolism involved hydroxylation and successive oxidation and cyclization reactions. However, Phase I metabolites did not accumulate appreciably; they were instead rapidly conjugated with sulfate, glucose, and glutamic acid through Phase II metabolism. In particular, diclofenac parent was directly conjugated with glutamic acid, with acyl-glutamatyl-diclofenac accounting for >70% of the extractable metabolites after 120-h incubation. In addition, at the end of incubation, >40% of the spiked diclofenac was in the non-extractable form, suggesting extensive sequestration into cell matter. The rapid formation of non-extractable residue and dominance of diclofenac-glutamate conjugate uncover previously unknown metabolism pathways for diclofenac. In particular, the rapid conjugation of parent highlights the need to consider conjugates of emerging contaminants in higher plants, and their biological activity and human health implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment.

    Directory of Open Access Journals (Sweden)

    Patrick Kaiser

    2014-02-01

    Full Text Available In vivo, antibiotics are often much less efficient than ex vivo and relapses can occur. The reasons for poor in vivo activity are still not completely understood. We have studied the fluoroquinolone antibiotic ciprofloxacin in an animal model for complicated Salmonellosis. High-dose ciprofloxacin treatment efficiently reduced pathogen loads in feces and most organs. However, the cecum draining lymph node (cLN, the gut tissue, and the spleen retained surviving bacteria. In cLN, approximately 10%-20% of the bacteria remained viable. These phenotypically tolerant bacteria lodged mostly within CD103⁺CX₃CR1⁻CD11c⁺ dendritic cells, remained genetically susceptible to ciprofloxacin, were sufficient to reinitiate infection after the end of the therapy, and displayed an extremely slow growth rate, as shown by mathematical analysis of infections with mixed inocula and segregative plasmid experiments. The slow growth was sufficient to explain recalcitrance to antibiotics treatment. Therefore, slow-growing antibiotic-tolerant bacteria lodged within dendritic cells can explain poor in vivo antibiotic activity and relapse. Administration of LPS or CpG, known elicitors of innate immune defense, reduced the loads of tolerant bacteria. Thus, manipulating innate immunity may augment the in vivo activity of antibiotics.

  4. Grow, Baby, Grow

    Science.gov (United States)

    Maybe you quit smoking during your pregnancy. Or maybe you struggled and weren’t able to stay quit. Now that your baby is here, trying to stay away from smoking is still important. That’s because the chemicals in smoke can make it harder for your baby to grow like he or she should.

  5. The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants.

    Science.gov (United States)

    Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Champion, Clement; Hetherington, Alexander J; Kelly, Steve; Proust, Hélène; Saint-Marcoux, Denis; Prescott, Helen; Dolan, Liam

    2016-12-05

    To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Rapid cell cycle analysis by measurement of the radioactivity per cell in a narrow window in S phase (RCSsub(i))

    International Nuclear Information System (INIS)

    Gray, J.W.; Carver, J.H.; George, Y.S.; Mendelsohn, M.L.

    1977-01-01

    A new rapid method for the cell cycle analysis of asynchronously growing cells is presented. The new method is an alternative to the more time consuming and subjective fraction of labeled mitoses (FLM) method. Like the FLM method, all cells in the S phase of the cell cycle are marked by pulse labeling with a radioactive DNA precursor. The subsequent progress of the cohort of cells thus labeled is monitored through a narrow window in the cell cycle. The window is defined by a narrow range of DNA contents corresponding to cells in mid-S phase and is designated Ssub(i). The cellular DNA content is measured by flow cytometry and the cells in the window Ssub(i) are selected by electronic cell sorting. The radioactivity per cell in Ssub(i) (RCSsub(i)) is determined by liquid scintillation counting. The duration of S phase and of the total cycle and the dispersions therein are determined from the oscillation of the RCSsub(i) values with time. The complete cell cycle analysis can be accomplished in as little as 1 day following the collection of samples. Exponentially growing Chinese hamster ovary (CHO) cells were analyzed according to the RCSsub(i) method and the FLM method. It is demonstrated that the two techniques give essentially the same results. (author)

  7. Effect of Rapid Maxillary Expansion on Glenoid Fossa and Condyle-Fossa Relationship in Growing Patients (MEGP): Study Protocol for a Controlled Clinical Trial

    Science.gov (United States)

    Ghoussoub, Mona Sayegh; Rifai, Khaldoun; Garcia, Robert; Sleilaty, Ghassan

    2018-01-01

    Aims and Objectives: Rapid maxillary expansion (RME) is an orthodontic nonsurgical procedure aiming at increasing the width of the maxilla by opening mainly the intermaxillary suture in patients presenting a transverse maxillary skeletal deficiency. The objectives of the current prospective controlled clinical and radiographic study are to evaluate the hypothesis that RME in growing patients will result in radiographic changes at the level of interglenoid fossa distance, condyle-fossa relationship, and nasal cavity widths compared to the group who received no treatment initially and served as untreated control. Materials and Methods: In this prospective controlled clinical and radiographic study, forty healthy growing patients selected from a school-based population following a large screening campaign, ranging in age between 8 and 13 years, presenting a maxillary constriction with bilateral crossbite, and candidates for RME are being recruited. The first group will include participants willing to undergo treatment (n = 25) and the other group will include those inclined to postpone (n = 15). Results: The primary outcome is to compare radiologically the interglenoid fossa distance and the condyle-fossa relationship; nasal cavity width will be a secondary outcome. A multivariable analysis of Covariance model will be used, with the assessment of the time by group interaction, using age as covariate. The project protocol was reviewed and approved by the Ethics Committee of the Lebanese University, National Institute in Lebanon (CUEMB process number 31/04/2015). The study is funded by the Lebanese University and Centre National de Recherche Scientifique, Lebanon (Number: 652 on 14/04/2016). Conclusion: This prospective controlled clinical trial will give information about the effect of RME on the glenoid fossa and condyle-fossa relationship and its impact on the nasal cavity width. Trial Registration: Retrospectively registered in BioMed Central (DOI10.1186/ISRCTN

  8. Cellular Cultivation: Growing HeLa Cells Using Standard High School Laboratory Equipment.

    Science.gov (United States)

    Woloschak, Gayle; And Others

    1995-01-01

    Describes experiments to culture cells in a laboratory that provide students with hands-on experience in manipulating cells and a chance to observe cell growth characteristics first hand. Exposes students to sterile technique, cell culture, cell growth concepts, and eukaryotic cell structure. (JRH)

  9. Do teachers and students get the Ed-Tech products they need: The challenges of Ed-Tech procurement in a rapidly growing market

    Directory of Open Access Journals (Sweden)

    Jennifer Morrison

    2015-03-01

    Full Text Available Ed-tech courseware products to support teaching and learning are being developed and made available for acquisition by school districts at a rapid rate. In this growing market, developers and providers face challenges with making their products visible to customers, while school district stakeholders must grapple with “discovering” which products of the many available best address their instructional needs. The present study presents the experiences with and perceptions about the procurement process from 47 superintendents representing diverse school districts in the U. S. Results indicate that, while improvements are desired in many aspects of the procurement process, the superintendents, overall, believe that, once desired products are identified, they are generally able to acquire them. Difficulties lie in tighter budgets, discovering products that are potentially the best choices, and evaluating the effectiveness of the products selected as options. These findings are presented and interpreted in relation to five major “Action Points” in the procurement process, and also with regard to implications for evaluating how educational technology impacts K-12 instruction.

  10. In Vitro Comparison of Ertapenem, Meropenem, and Imipenem against Isolates of Rapidly Growing Mycobacteria and Nocardia by Use of Broth Microdilution and Etest.

    Science.gov (United States)

    Brown-Elliott, Barbara A; Killingley, Jessica; Vasireddy, Sruthi; Bridge, Linda; Wallace, Richard J

    2016-06-01

    We compared the activities of the carbapenems ertapenem, meropenem, and imipenem against 180 isolates of rapidly growing mycobacteria (RGM) and 170 isolates of Nocardia using the Clinical and Laboratory Standards Institute (CLSI) guidelines. A subset of isolates was tested using the Etest. The rate of susceptibility to ertapenem and meropenem was limited and less than that to imipenem for the RGM. Analysis of major and minor discrepancies revealed that >90% of the isolates of Nocardia had higher MICs by the broth microdilution method than by Etest, in contrast to the lower broth microdilution MICs seen for >80% of the RGM. Imipenem remains the most active carbapenem against RGM, including Mycobacterium abscessus subsp. abscessus For Nocardia, imipenem was significantly more active only against Nocardia farcinica Although there may be utility in testing the activities of the newer carbapenems against Nocardia, their activities against the RGM should not be routinely tested. Testing by Etest is not recommended by the CLSI. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Proceedings of the Canadian Institute's 4. annual oil sands supply and infrastructure conference : maximizing opportunity and mitigating risks in a rapidly growing market

    International Nuclear Information System (INIS)

    2006-01-01

    This conference addressed the challenges facing oil sands development, with particular reference to supply and infrastructure issues. Updates on oil sands markets and opportunities were presented along with strategies for mitigating risks in a rapidly growing market. The best practices for supplying a demanding market through supply shortages and high prices were identified along with policies that should be implemented to help overcome labour shortages. Some presentations expressed how commodities pricing and trends can impact business. Others showed how markets in China and the United States are prepared for oilsands products. The views of other international companies on oil sands was also discussed along with proposed plans to eliminate the infrastructure congestion and risks caused by expanding oil sands development. The challenges and benefits of investing in Alberta's oil sands were reviewed along with strategies to enhance upgrading and refining capacity in the province. Economic drivers and the creation of new markets were examined, and various export opportunities were reviewed along with industry management challenges concerning human resources, labour supply, training and education. The conference featured 10 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs

  12. Ovarian germ cell tumors with rhabdomyosarcomatous components and later development of growing teratoma syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Al-Jumaily Usama

    2012-01-01

    Full Text Available Abstract Introduction Development of a sarcomatous component in a germ cell tumor is an uncommon phenomenon. Most cases reported have a grim prognosis. Growing teratoma syndrome is also an uncommon phenomenon and occurs in approximately 2% to 7% of non seminomatous germ cell tumors and should be treated surgically. Case presentation We report the case of a 12-year-old Asian girl with an ovarian mixed germ cell tumor containing a rhabdomyosarcomatous component. She was treated with a germ cell tumor chemotherapy regimen and rhabdomyosarcoma-specific chemotherapy. Towards the end of her treatment, she developed a retroperitoneal mass that was increasing in size. It was completely resected, revealing a mature teratoma, consistent with growing teratoma syndrome. She is still in complete remission approximately three years after presentation. Conclusion The presence of rhabdomyosarcoma in a germ cell tumor should be treated by a combined chemotherapy regimen (for germ cell tumor and rhabdomyosarcoma. In addition, development of a mass during or after therapy with normal serum markers should raise the possibility of growing teratoma syndrome that should be treated surgically.

  13. Diversity, community composition, and dynamics of nonpigmented and late-pigmenting rapidly growing mycobacteria in an urban tap water production and distribution system.

    Science.gov (United States)

    Dubrou, S; Konjek, J; Macheras, E; Welté, B; Guidicelli, L; Chignon, E; Joyeux, M; Gaillard, J L; Heym, B; Tully, T; Sapriel, G

    2013-09-01

    Nonpigmented and late-pigmenting rapidly growing mycobacteria (RGM) have been reported to commonly colonize water production and distribution systems. However, there is little information about the nature and distribution of RGM species within the different parts of such complex networks or about their clustering into specific RGM species communities. We conducted a large-scale survey between 2007 and 2009 in the Parisian urban tap water production and distribution system. We analyzed 1,418 water samples from 36 sites, covering all production units, water storage tanks, and distribution units; RGM isolates were identified by using rpoB gene sequencing. We detected 18 RGM species and putative new species, with most isolates being Mycobacterium chelonae and Mycobacterium llatzerense. Using hierarchical clustering and principal-component analysis, we found that RGM were organized into various communities correlating with water origin (groundwater or surface water) and location within the distribution network. Water treatment plants were more specifically associated with species of the Mycobacterium septicum group. On average, M. chelonae dominated network sites fed by surface water, and M. llatzerense dominated those fed by groundwater. Overall, the M. chelonae prevalence index increased along the distribution network and was associated with a correlative decrease in the prevalence index of M. llatzerense, suggesting competitive or niche exclusion between these two dominant species. Our data describe the great diversity and complexity of RGM species living in the interconnected environments that constitute the water production and distribution system of a large city and highlight the prevalence index of the potentially pathogenic species M. chelonae in the distribution network.

  14. Super Life: how and why 'cell selection' leads to the fastest growing eukaryote.

    NARCIS (Netherlands)

    Groeneveld, P.; Stouthamer, A.H.; Westerhoff, H.V.

    2009-01-01

    What is the highest possible replication rate for living organisms? The cellular growth rate is controlled by a variety of processes. Therefore, it is unclear which metabolic process or group of processes should be activated to increase growth rate. An organism that is already growing fast may

  15. Simultaneous cell tracking and image alignment in 3D CLSM imagery of growing arabidopsis thaliana sepals

    NARCIS (Netherlands)

    Fick, R.H.J.; Fedorov, D.; Roeder, A.H.K.; Manjunath, B.S.

    2013-01-01

    In this research we propose a combined cell matching and image alignment method for tracking cells based on their nuclear locations in 3D fluorescent Confocal Laser Scanning Microscopy (CLSM) image sequences. We then apply it to study the cell division pattern in the developing sepal of the small

  16. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice.

    Science.gov (United States)

    Murach, Kevin A; White, Sarah H; Wen, Yuan; Ho, Angel; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2017-07-10

    Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Pax7 CreER -R26R DTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6-9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p overload (p overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice.

  17. Expression of beta-keratin mRNAs and proline uptake in epidermal cells of growing scales and pad lamellae of gecko lizards

    Science.gov (United States)

    Alibardi, Lorenzo; Toni, Mattia; Valle, Luisa Dalla

    2007-01-01

    Beta-keratins form a large part of the proteins contained in the hard beta layer of reptilian scales. The expression of genes encoding glycine–proline-rich beta-keratins in normal and regenerating epidermis of two species of gecko lizards has been studied by in situ hybridization. The probes localize mRNAs in differentiating oberhautchen and beta cells of growing scales and in modified scales, termed pad lamellae, on the digits of gecko lizards. In situ localization at the ultrastructural level shows clusters of gold particles in the cytoplasm among beta-keratin filaments of oberhautchen and beta cells. They are also present in the differentiating elongation or setae of oberhautchen cells present in pad lamellae. Setae allow geckos to adhere and climb vertical surfaces. Oberhautchen and beta cells also incorporate tritiated proline. The fine localization of the beta-keratin mRNAs and the uptake of proline confirms the biomolecular data that identified glycine–proline-rich beta-keratin in differentiating beta cells of gecko epidermis. The present study also shows the presence of differentiating and metabolically active cells in both inner and outer oberhautchen/beta cells at the base of the outer setae localized at the tip of pad lamellae. The addition of new beta and alpha cells to the corneous layer near the tip of the outer setae explains the anterior movement of the setae along the apical free-margin of pad lamellae. The rapid replacement of setae ensures the continuous usage of the gecko's adhesive devices, the pad lamellae, during most of their active life. PMID:17553098

  18. The "Growing" Reality of the Neurological Complications of Global "Stem Cell Tourism".

    Science.gov (United States)

    Julian, Katie; Yuhasz, Nick; Hollingsworth, Ethan; Imitola, Jaime

    2018-04-01

    "Stem cell tourism" is defined as the unethical practice of offering unproven cellular preparations to patients suffering from various medical conditions. This phenomenon is rising in the field of neurology as patients are requesting information and opportunities for treatment with stem cells for incurable conditions such as multiple sclerosis and amyotrophic lateral sclerosis, despite their clinical research and experimental designation. Here, we review the recent trends in "stem cell tourism" in both the United States and abroad, and discuss the recent reports of neurological complications from these activities. Finally, we frame critical questions for the field of neurology regarding training in the ethical, legal, and societal issues of the global "stem cell tourism," as well as suggest strategies to alleviate this problem. Although there are ongoing legitimate clinical trials with stem cells for neurological diseases, procedures offered by "stem cell clinics" cannot be defined as clinical research. They lack the experimental and state-of-the-art framework defined by peers and the FDA that focus on human research that safeguard the protection of human subjects against economical exploitation, unwanted side effects, and futility of unproven procedures. "Stem cell tourism" ultimately exploits therapeutic hope of patients and families with incurable neurological diseases and can put in danger the legitimacy of stem cell research as a whole. We posit that an improvement in education, regulation, legislation, and involvement of authorities in global health in neurology and neurosurgery is required. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. From Microscopic to Macroscopic Descriptions of Cell Migration on Growing Domains

    KAUST Repository

    Baker, Ruth E.; Yates, Christian A.; Erban, Radek

    2009-01-01

    are studied, and correspondence with a macroscopic-level PDE describing the evolution of cell density is demonstrated. The individual-based models are formulated in terms of random walkers on a lattice. Domain growth provides an extra mathematical challenge

  20. Growing Arabidopsis in vitro: cell suspensions, in vitro culture, and regeneration.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2014-01-01

    An understanding of basic methods in Arabidopsis tissue culture is beneficial for any laboratory working on this model plant. Tissue culture refers to the aseptic growth of cells, organs, or plants in a controlled environment, in which physical, nutrient, and hormonal conditions can all be easily manipulated and monitored. The methodology facilitates the production of a large number of plants that are genetically identical over a relatively short growth period. Techniques, including callus production, cell suspension cultures, and plant regeneration, are all indispensable tools for the study of cellular biochemical and molecular processes. Plant regeneration is a key technology for successful stable plant transformation, while cell suspension cultures can be exploited for metabolite profiling and mining. In this chapter we report methods for the successful and highly efficient in vitro regeneration of plants and production of stable cell suspension lines from leaf explants of both Arabidopsis thaliana and Arabidopsis halleri.

  1. Genome organization factor determines the few cells that make a tumor grow | Center for Cancer Research

    Science.gov (United States)

    In the September 30, 2016, issue of the journal Science, scientists led by former CCR postdoctoral fellow Paola Scaffidi report that an essential DNA-packing protein called linker histone H1.0 is present in varying levels in the cells of tumors, and plays an important role in determining which cells have the capacity to sustain the tumor’s growth.  Learn more...

  2. Automated Tracking of Cell Migration with Rapid Data Analysis.

    Science.gov (United States)

    DuChez, Brian J

    2017-09-01

    Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. Rapid white blood cell detection for peritonitis diagnosis

    Science.gov (United States)

    Wu, Tsung-Feng; Mei, Zhe; Chiu, Yu-Jui; Cho, Sung Hwan; Lo, Yu-Hwa

    2013-03-01

    A point-of-care and home-care lab-on-a-chip (LoC) system that integrates a microfluidic spiral device as a concentrator with an optical-coding device as a cell enumerator is demonstrated. The LoC system enumerates white blood cells from dialysis effluent of patients receiving peritoneal dialysis. The preliminary results show that the white blood cell counts from our system agree well with the results from commercial flow cytometers. The LoC system can potentially bring significant benefits to end stage renal disease (ESRD) patients that are on peritoneal dialysis (PD).

  4. Growing kidney tissue from stem cells: how far from ‘party trick’ to medical application?

    Science.gov (United States)

    Little, Melissa H

    2016-01-01

    The successful generation of kidney-like structures from human pluripotent stem cells, although slower to come than other tissue types, brings the hope of new therapies. While the demand for alternative treatments for kidney failure is acute, huge challenges remain to move these exciting but preliminary results towards clinical use. PMID:27257757

  5. The location of splenic NKT cells favours their rapid activation by blood-borne antigen.

    Science.gov (United States)

    Barral, Patricia; Sánchez-Niño, María Dolores; van Rooijen, Nico; Cerundolo, Vincenzo; Batista, Facundo D

    2012-05-16

    Natural killer T (NKT) cells play an important role in mounting protective responses to blood-borne infections. However, though the spleen is the largest blood filter in the body, the distribution and dynamics of NKT cells within this organ are not well characterized. Here we show that the majority of NKT cells patrol around the marginal zone (MZ) and red pulp (RP) of the spleen. In response to lipid antigen, these NKT cells become arrested and rapidly produce cytokines, while the small proportion of NKT cells located in the white pulp (WP) exhibit limited activation. Importantly, disruption of the splenic MZ by chemical or genetic approaches results in a severe reduction in NKT cell activation indicating the need of cooperation between both MZ macrophages and dendritic cells for efficient NKT cell responses. Thus, the location of splenic NKT cells in the MZ and RP facilitates their access to blood-borne antigen and enables the rapid initiation of protective immune responses.

  6. In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells

    Energy Technology Data Exchange (ETDEWEB)

    Brissot, C.; Rosso, M.; Chazalviel, J.N.; Lascaud, S.

    1999-12-01

    The authors report on three different in situ and ex situ concentration measurement methods in symmetric lithium/polymer-electrolyte/lithium cells. The results were examined on the basis of a simple calculation of ionic concentration within the electrolyte, in the case where no dendrite is observed, this calculation accounts quantitatively for all experimental results. In the case of dendritic growth, the authors can measure the concentration distribution around the dendrites; this permits correlation of the active parts of the electrodes and of the growing dendrites with local ionic depletion in the vicinity of these active parts.

  7. Rapid desensitization of adrenaline- and neuropeptide Y-stimulated Ca2+ mobilization in HEL-cells

    NARCIS (Netherlands)

    Michel, M. C.

    1994-01-01

    1. Desensitization of Gs-coupled receptors, the beta 2-adrenoceptor for example, involves rapid and slower components but little is known regarding the existence of rapid desensitization of Gi-coupled receptors and its possible mechanisms. In HEL-cells stimulation of alpha 2A-adrenoceptors by

  8. Growing Stem Cells: The Impact of Federal Funding Policy on the U.S. Scientific Frontier

    Science.gov (United States)

    Furman, Jeffrey L.; Murray, Fiona; Stern, Scott

    2012-01-01

    This paper articulates a citation-based approach to science policy evaluation and employs that approach to investigate the impact of the United States' 2001 policy regarding the federal funding of human embryonic stem cell (hESC) research. We evaluate the impact of the policy on the level of U.S. hESC research, the U.S. position at the knowledge…

  9. Establishment of imageable model of T-cell lymphoma growing in syngenic mice

    Czech Academy of Sciences Publication Activity Database

    Větvička, David; Hovorka, Ondřej; Kovář, Lubomír; Říhová, Blanka

    2009-01-01

    Roč. 29, č. 11 (2009), s. 4513-4518 ISSN 0250-7005 R&D Projects: GA AV ČR IAA400200702; GA AV ČR KAN200200651; GA ČR GD310/08/H077 Institutional research plan: CEZ:AV0Z50200510 Keywords : Imageable model * EL-4 T- cell lymphoma * whole body imaging Subject RIV: EC - Immunology Impact factor: 1.428, year: 2009

  10. IL-6 trans-Signaling-Dependent Rapid Development of Cytotoxic CD8+ T Cell Function

    Directory of Open Access Journals (Sweden)

    Jan P. Böttcher

    2014-09-01

    Full Text Available Immune control of infections with viruses or intracellular bacteria relies on cytotoxic CD8+ T cells that use granzyme B (GzmB for elimination of infected cells. During inflammation, mature antigen-presenting dendritic cells instruct naive T cells within lymphoid organs to develop into effector T cells. Here, we report a mechanistically distinct and more rapid process of effector T cell development occurring within 18 hr. Such rapid acquisition of effector T cell function occurred through cross-presenting liver sinusoidal endothelial cells (LSECs in the absence of innate immune stimulation and known costimulatory signaling. Rather, interleukin-6 (IL-6 trans-signaling was required and sufficient for rapid induction of GzmB expression in CD8+ T cells. Such LSEC-stimulated GzmB-expressing CD8+ T cells further responded to inflammatory cytokines, eliciting increased and protracted effector functions. Our findings identify a role for IL-6 trans-signaling in rapid generation of effector function in CD8+ T cells that may be beneficial for vaccination strategies.

  11. Rapid method for culturing embryonic neuron-glial cell cocultures

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Shan, Wei-Song; Colman, David R

    2003-01-01

    neurons is seen after 3 weeks (2 weeks in ascorbic acid), suggesting that basal lamina production is important even for glial ensheathment in the enteric nervous system. No overgrowth of fibroblasts or other nonneuronal cells was noted in any cultures, and myelination of the peripheral nervous system...

  12. Rapid prototyping methods for the manufacture of fuel cells

    Directory of Open Access Journals (Sweden)

    Dudek Piotr

    2016-01-01

    The potential for the application of this method for the manufacture of metallic bipolar plates (BPP for use in proton exchange membrane fuel cells (PEMFCs is presented and discussed. Special attention is paid to the fabrication of light elements for the construction of PEMFC stacks designed for mobile applications such as aviation technology and unmanned aerial vehicles (UAVs.

  13. Obesity reduces bone density through activation of PPAR gamma and suppression of Wnt/Beta-Catenin in rapidly growing male rats

    Science.gov (United States)

    The relationship between obesity and skeletal development remains largely ambiguous. In this report, total enteral nutrition (TEN) was used to feed growing male rats intragastrically, with a high 45% fat diet (HFD) to induce obesity. We found that fat mass was increased (P<0.05) compared to rats fed...

  14. Rapid kinetics of lysis in human natural cell-mediated cytotoxicity: some implications

    International Nuclear Information System (INIS)

    Bloom, E.T.; Babbitt, J.T.

    1983-01-01

    The entire lytic process of natural cell-mediated cytotoxicity against sensitive target cells can occur rapidly, within minutes. This was demonstrated by 51 chromium release and in single-cell assays. At the cellular level, most of the target cell lysis occurred within 15-30 min after binding to effector cells. The enriched natural killer cell subpopulation of lymphocytes obtained by Percoll density gradient centrifugation (containing greater than 70% large granular lymphocytes (LGL)) was the most rapidly lytic population by 51 chromium release. However, in the single-cell assay, the rate of lysis of bound target cells was quite similar for the LGL-enriched effector subpopulation and the higher density subpopulation of effector cells recognized previously. Both the light and dense effector cells contained similar numbers of target binding cells. Therefore, that the light subpopulation effected lysis more rapidly and to a greater extent than the dense subpopulation suggested that the low-density effector cells probably recycled more rapidly than those of higher density. This was corroborated by the finding that when conjugates were formed at 29 degrees C for the single-cell assay, a significant number of dead unconjugated targets could be observed only on the slides made with the LGL-enriched effector cells but not on those made with dense effector cell. Lysis continued to increase in the chromium-release assay probably because of recycling, recruitment, and/or heterogeneity of the effector cells, and/or because of heterogeneity or delayed death of the target cells

  15. Combined effect of pulse density and grid cell size on predicting and mapping aboveground carbon in fast-growing Eucalyptus forest plantation using airborne LiDAR data.

    Science.gov (United States)

    Silva, Carlos Alberto; Hudak, Andrew Thomas; Klauberg, Carine; Vierling, Lee Alexandre; Gonzalez-Benecke, Carlos; de Padua Chaves Carvalho, Samuel; Rodriguez, Luiz Carlos Estraviz; Cardil, Adrián

    2017-12-01

    LiDAR remote sensing is a rapidly evolving technology for quantifying a variety of forest attributes, including aboveground carbon (AGC). Pulse density influences the acquisition cost of LiDAR, and grid cell size influences AGC prediction using plot-based methods; however, little work has evaluated the effects of LiDAR pulse density and cell size for predicting and mapping AGC in fast-growing Eucalyptus forest plantations. The aim of this study was to evaluate the effect of LiDAR pulse density and grid cell size on AGC prediction accuracy at plot and stand-levels using airborne LiDAR and field data. We used the Random Forest (RF) machine learning algorithm to model AGC using LiDAR-derived metrics from LiDAR collections of 5 and 10 pulses m -2 (RF5 and RF10) and grid cell sizes of 5, 10, 15 and 20 m. The results show that LiDAR pulse density of 5 pulses m -2 provides metrics with similar prediction accuracy for AGC as when using a dataset with 10 pulses m -2 in these fast-growing plantations. Relative root mean square errors (RMSEs) for the RF5 and RF10 were 6.14 and 6.01%, respectively. Equivalence tests showed that the predicted AGC from the training and validation models were equivalent to the observed AGC measurements. The grid cell sizes for mapping ranging from 5 to 20 also did not significantly affect the prediction accuracy of AGC at stand level in this system. LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m -2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations and assist in decision making towards more cost effective and efficient forest inventory.

  16. Impact of overall treatment time on local control of slow growing human GL squamous cell carcinoma in nude mice treated by fractionated irradiation

    International Nuclear Information System (INIS)

    Baumann, M.; Petersen, C.; Schulz, P.; Baisch, H.

    1999-01-01

    Background and purpose: The impact of overall treatment time of fractionated irradiation on local control of slow growing human GL squamous cell carcinoma (SCC) was determined. Materials and methods: Moderately well differentiated and keratinizing human GL SCC with a volume doubling time of 8 days were transplanted subcutaneously into the right hindleg of NMRI (nu/nu) mice and irradiated with 30 fractions under ambient conditions over 2, 3, 4.5, 6 and 10 weeks. Endpoint of the experiments was local tumor control at day 180 after end of treatment.Results: The tumor control dose 50% (TCD 50) increased from 40 to 57 Gy when the treatment time was extended from 2 to 10 weeks. The data can be well described by a linear increase in TCD 50 with time. The recovered dose per day (D r ) was 0.28 Gy (95% confidence interval 0.06; 0.48). The fit to the data was not significantly improved by assuming a biphasic (dog-leg) time course with constant TCD 50 values in the initial part of treatment followed by a more rapid increase of TCD 50 thereafter.Conclusions: D r in GL SCC was significantly less than the value of 1.0 Gy (0.7; 1.3 ) previously reported for poorly differentiated, non-keratinizing and fast growing human FaDu SCC (Baumann M, Liertz C, Baisch H, Wiegel T, Lorenzen J, Arps H. Impact of overall treatment time of fractionated irradiation on local control of human FaDu squamous cell carcinoma in nude mice. Radiother. Oncol. 1994;32:137-143), indicating important heterogeneity of the time factor between different tumors of the same histological type. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity.

    Science.gov (United States)

    Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R

    2018-02-27

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.

  18. Inferring Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells from Spatial-Temporal Image Data.

    Science.gov (United States)

    Jagiella, Nick; Müller, Benedikt; Müller, Margareta; Vignon-Clementel, Irene E; Drasdo, Dirk

    2016-02-01

    We develop a quantitative single cell-based mathematical model for multi-cellular tumor spheroids (MCTS) of SK-MES-1 cells, a non-small cell lung cancer (NSCLC) cell line, growing under various nutrient conditions: we confront the simulations performed with this model with data on the growth kinetics and spatial labeling patterns for cell proliferation, extracellular matrix (ECM), cell distribution and cell death. We start with a simple model capturing part of the experimental observations. We then show, by performing a sensitivity analysis at each development stage of the model that its complexity needs to be stepwise increased to account for further experimental growth conditions. We thus ultimately arrive at a model that mimics the MCTS growth under multiple conditions to a great extent. Interestingly, the final model, is a minimal model capable of explaining all data simultaneously in the sense, that the number of mechanisms it contains is sufficient to explain the data and missing out any of its mechanisms did not permit fit between all data and the model within physiological parameter ranges. Nevertheless, compared to earlier models it is quite complex i.e., it includes a wide range of mechanisms discussed in biological literature. In this model, the cells lacking oxygen switch from aerobe to anaerobe glycolysis and produce lactate. Too high concentrations of lactate or too low concentrations of ATP promote cell death. Only if the extracellular matrix density overcomes a certain threshold, cells are able to enter the cell cycle. Dying cells produce a diffusive growth inhibitor. Missing out the spatial information would not permit to infer the mechanisms at work. Our findings suggest that this iterative data integration together with intermediate model sensitivity analysis at each model development stage, provide a promising strategy to infer predictive yet minimal (in the above sense) quantitative models of tumor growth, as prospectively of other tissue

  19. Human papilloma virus positive oropharyngeal squamous cell carcinoma: a growing epidemic.

    Science.gov (United States)

    Panwar, Aru; Batra, Rishi; Lydiatt, William M; Ganti, Apar Kishor

    2014-03-01

    The incidence of oropharyngeal squamous cell carcinoma (OPSCC) is increasing despite a decrease in tobacco use. Almost 20-30% of patients with OPSCC do not have the traditional risk factors of smoking and alcohol use and in a vast majority of these patients, the human papilloma virus (HPV) appears to drive the malignant transformation. HPV induced malignant transformation is attributed to two viral oncogenes and their non-structural protein products (E6 and E7). These two proteins appear to affect carcinogenesis by their inhibitory effects on p53 and retinoblastoma proteins (Rb). Patients with HPV mediated OPSCC seem to have a better prognosis compared to their non-HPV counterparts. However, in the absence of strong evidence, standard of care at this time for OPSCC does not differ based on HPV status. Current research is focused on the role of de-escalation of treatment and elucidation of prognostic markers in this unique population. This review focuses on the pathogenesis of HPV mediated OPSCC and details the current evidence in the management of these patients. Published by Elsevier Ltd.

  20. Observation of reversible, rapid changes in drug susceptibility of hypoxic tumor cells in a microfluidic device

    Energy Technology Data Exchange (ETDEWEB)

    Germain, Todd; Ansari, Megan; Pappas, Dimitri, E-mail: d.pappas@ttu.edu

    2016-09-14

    Hypoxia is a major stimulus for increased drug resistance and for survival of tumor cells. Work from our group and others has shown that hypoxia increases resistance to anti-cancer compounds, radiation, and other damage-pathway cytotoxic agents. In this work we utilize a microfluidic culture system capable of rapid switching of local oxygen concentrations to determine changes in drug resistance in prostate cancer cells. We observed rapid adaptation to hypoxia, with drug resistance to 2 μM staurosporine established within 30 min of hypoxia. Annexin-V/Sytox Green apoptosis assays over 9 h showed 78.0% viability, compared to 84.5% viability in control cells (normoxic cells with no staurosporine). Normoxic cells exposed to the same staurosporine concentration had a viability of 48.6% after 9 h. Hypoxia adaptation was rapid and reversible, with Hypoxic cells treated with 20% oxygen for 30 min responding to staurosporine with 51.6% viability after drug treatment for 9 h. Induction of apoptosis through the receptor-mediated pathway, which bypasses anti-apoptosis mechanisms induced by hypoxia, resulted in 39.4 ± 7% cell viability. The rapid reversibility indicates co-treatment of oxygen with anti-cancer compounds may be a potential therapeutic target. - Highlights: • Microfluidic system switches rapidly between normoxia and hypoxia (5 min). • Observation of rapid adaptation of PC3 cells to hypoxia and normoxia (30 min). • Drug susceptibility in tumor cells restored after chip switched to normoxia for 30 min.

  1. Effects of low dose rate γ-rays on cell proliferation and survival in exponentially growing and plateau phase cultures of normal rat kidney cells

    International Nuclear Information System (INIS)

    Tsuboi, A.

    1982-01-01

    The effects of 60 Co γ-rays on cell clonogenicity and cell proliferation were examined in NRK cells in exponential and plateau growth phases during and after irradiation at various dose rates. The typical dese rate effect for the survival responses was observed between acute irradiation and continuous irradiation at dose rates of 9.6-44 rads/h. Similar dose rate effect for the perturbation of the proliferation was observed in exponentially growing cells during irradiation. Some differences were found in survival when the cells were exposed to γ-rays at 9.6 rads/h or at 13.7 rads/h. The survival curves of exponential phase cells irradiated at these dose rates showed a shape different from that observed in plateau phase cells. Namely, a steady state of survival appeared around an accumulated dose of 1000 rads (dose-rate of 9.6 rads/h) and an accumulated dose of 1500 rads (dose-rate of 13.7 rads/h) in the exponential phase cells, while such a steady state of survival was not detected in plateau phase cells after similar conditions of irradiation. Moreover, the extrapolation number of the survival curve was much larger at the lower dose rate in exponential phase cells, in contrast to a value of the unity oberved in plateau phase cells, The radiosensitivity of plateau phase cells was somewhat lower compared to exponential phase cells over the range of accumulated doses at the dose rates used. These differences in cellular responses to the radiation between the two phases could be explained by changes in cell proliferation, the redistribution of the cell cycle compartments and the repair capacity of cellular damage during irradiation. (author)

  2. Enhanced effect of geldanamycin nanocomposite against breast cancer cells growing in vitro and as xenograft with vanquished normal cell toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Suma [Department of Radiation Biology and Toxicology, School of Life Sciences, Manipal University, Manipal 576 104, Karnataka (India); Ananthanarayanan, Preeta; Aziz, Sajida Kannangar [Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576 104, Karnataka (India); Rai, Sharada [Department of Pathology, Kasturba Medical College, Mangalore Campus, Manipal University, Mangalore 575 001, Karnataka (India); Mutalik, Srinivas [Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576 104, Karnataka (India); Sadashiva, Satish Rao Bola, E-mail: rao.satish@manipal.edu [Department of Radiation Biology and Toxicology, School of Life Sciences, Manipal University, Manipal 576 104, Karnataka (India)

    2017-04-01

    Despite enormous advances in remedies developed for breast cancer, an effective therapeutic strategy by targeting malignant cells with the least normal tissue toxicity is yet to be developed. Hsp90 is considered to be an important therapeutic target to inhibit cell proliferation. Geldanamycin (GDM), a potent inhibitor of Hsp90 was withdrawn from clinical trials due to its undesirable hepatotoxicity. We report a superparamagnetic iron oxide (SPION) based polymeric nanocomposite of GDM augmenting anticancer competence with decreased hepatic toxicity. The particle size of nanocomposite was ascertained to be 76 ± 10 nm with acceptable stability. A comparative dose dependent in vitro validation of cytotoxicity showed an enhanced cellular damage and necrosis in breast cancer (MCF-7) cell line at a low dose of 5.49 nM (in GDM nanocomposite) in contrast to 20 nM of pure GDM, while normal breast epithelial cells (MCF-10A) were least affected. Besides, in vivo study (in breast cancer xenografts) substantiated 2.7 fold delay in tumor progression mediated by redundancy in the downstream functions of p-Akt and MAPK-Erk leading to apoptosis with negligible hepatotoxicity. Pure GDM disrupted the function and morphology of liver with lesser therapeutic efficacy than the GDM nanocomposite. These findings deduce that GDM based polymeric magnetite nanocomposite play a vital role in efficacious therapy while vanquishing normal cells and hepatic toxicity and thereby promising it to be reinstated in clinics. - Highlights: • GDM nanocomposite shows selective cell kill of cancerous breast cells. • Nanocomposite delays the growth of tumor in comparison to pure GDM treatment. • GDM promotes apoptosis by down-regulation of p-Akt and MAPK-Erk. • GDM nanocomposite nullifies the hepatotoxicity generally exhibited by pure GDM.

  3. Development of a qPCR method to rapidly assess the function of NKT cells.

    Science.gov (United States)

    Sohn, Silke; Tiper, Irina; Japp, Emily; Sun, Wenji; Tkaczuk, Katherine; Webb, Tonya J

    2014-05-01

    NKT cells comprise a rare, but important subset of T cells which account for ~0.2% of the total circulating T cell population. NKT cells are known to have anti-tumor functions and rapidly produce high levels of cytokines following activation. Several clinical trials have sought to exploit the effector functions of NKT cells. While some studies have shown promise, NKT cells are approximately 50% lower in cancer patients compared to healthy donors of the same age and gender, thus limiting their therapeutic efficacy. These studies indicate that baseline levels of activation should be assessed before initiating an NKT cell based immunotherapeutic strategy. The goal of this study was to develop a sensitive method to rapidly assess NKT cell function. We utilized artificial antigen presenting cells in combination with qPCR in order to determine NKT cell function in peripheral blood mononuclear cells from healthy donors and breast cancer patients. We found that NKT cell activation can be detected by qPCR, but not by ELISA, in healthy donors as well as in breast cancer patients following four hour stimulation. This method utilizing CD1d-expressing aAPCs will enhance our knowledge of NKT cell biology and could potentially be used as a novel tool in adoptive immunotherapeutic strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Observation of reversible, rapid changes in drug susceptibility of hypoxic tumor cells in a microfluidic device.

    Science.gov (United States)

    Germain, Todd; Ansari, Megan; Pappas, Dimitri

    2016-09-14

    Hypoxia is a major stimulus for increased drug resistance and for survival of tumor cells. Work from our group and others has shown that hypoxia increases resistance to anti-cancer compounds, radiation, and other damage-pathway cytotoxic agents. In this work we utilize a microfluidic culture system capable of rapid switching of local oxygen concentrations to determine changes in drug resistance in prostate cancer cells. We observed rapid adaptation to hypoxia, with drug resistance to 2 μM staurosporine established within 30 min of hypoxia. Annexin-V/Sytox Green apoptosis assays over 9 h showed 78.0% viability, compared to 84.5% viability in control cells (normoxic cells with no staurosporine). Normoxic cells exposed to the same staurosporine concentration had a viability of 48.6% after 9 h. Hypoxia adaptation was rapid and reversible, with Hypoxic cells treated with 20% oxygen for 30 min responding to staurosporine with 51.6% viability after drug treatment for 9 h. Induction of apoptosis through the receptor-mediated pathway, which bypasses anti-apoptosis mechanisms induced by hypoxia, resulted in 39.4 ± 7% cell viability. The rapid reversibility indicates co-treatment of oxygen with anti-cancer compounds may be a potential therapeutic target. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Water fluxes through aquaporin-9 prime epithelial cells for rapid wound healing

    DEFF Research Database (Denmark)

    Karlsson, T.; Lagerholm, B. C.; Vikstrom, E.

    2013-01-01

    Cells move along surfaces both as single cells and multi-cellular units. Recent research points toward pivotal roles for water flux through aquaporins (AQPs) in single cell migration. Their expression is known to facilitate this process by promoting rapid shape changes. However, little is known...... wound healing based on AQP-induced swelling and expansion of the monolayer. (C) 2012 Elsevier Inc. All rights reserved....

  6. Polymer based biosensor for rapid electrochemical detection of virus infection of human cells

    DEFF Research Database (Denmark)

    Kiilerich-Pedersen, Katrine; Poulsen, Claus R.; Jain, Titoo

    2011-01-01

    The demand in the field of medical diagnostics for simple, cost efficient and disposable devices is growing. Here, we present a label free, all-polymer electrochemical biosensor for detection of acute viral disease. The dynamics of a viral infection in human cell culture was investigated in a mic...

  7. Rapid transcriptional pulsing dynamics of high expressing retroviral transgenes in embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Mandy Y M Lo

    Full Text Available Single cell imaging studies suggest that transcription is not continuous and occurs as discrete pulses of gene activity. To study mechanisms by which retroviral transgenes can transcribe to high levels, we used the MS2 system to visualize transcriptional dynamics of high expressing proviral integration sites in embryonic stem (ES cells. We established two ES cell lines each bearing a single copy, self-inactivating retroviral vector with a strong ubiquitous human EF1α gene promoter directing expression of mRFP fused to an MS2-stem-loop array. Transfection of MS2-EGFP generated EGFP focal dots bound to the mRFP-MS2 stem loop mRNA. These transcription foci colocalized with the transgene integration site detected by immunoFISH. Live tracking of single cells for 20 minutes detected EGFP focal dots that displayed frequent and rapid fluctuations in transcription over periods as short as 25 seconds. Similarly rapid fluctuations were detected from focal doublet signals that colocalized with replicated proviral integration sites by immunoFISH, consistent with transcriptional pulses from sister chromatids. We concluded that retroviral transgenes experience rapid transcriptional pulses in clonal ES cell lines that exhibit high level expression. These events are directed by a constitutive housekeeping gene promoter and may provide precedence for rapid transcriptional pulsing at endogenous genes in mammalian stem cells.

  8. Hyperkalemia caused by rapid red cell transfusion and the potassium absorption filter

    Directory of Open Access Journals (Sweden)

    Yasuhiko Imashuku

    2017-01-01

    Full Text Available We report a case of transient hyperkalemia during hysterectomy after cesarean section, due to preoperatively undiagnosed placenta accreta that caused unforeseen massive hemorrhage and required rapid red cell transfusion. Hyperkalemia-induced by rapid red cell transfusion is a well-known severe complication of transfusion; however, in patients with sudden massive hemorrhage, rapid red cell transfusion is necessary to save their life. In such cases, it is extremely important to monitor serum potassium levels. For an emergency situation, a system should be developed to ensure sufficient preparation for immediate transfusion and laboratory tests. Furthermore, sufficient stock of preparations to treat hyperkalemia, such as calcium preparations, diuretics, glucose, and insulin is required. Moreover, a transfusion filter that absorbs potassium has been developed and is now available for clinical use in Japan. The filter is easy to use and beneficial, and should be prepared when it is available.

  9. Hyperkalemia caused by rapid red cell transfusion and the potassium absorption filter

    Science.gov (United States)

    Imashuku, Yasuhiko; Kitagawa, Hirotoshi; Mizuno, Takayoshi; Fukushima, Yutaka

    2017-01-01

    We report a case of transient hyperkalemia during hysterectomy after cesarean section, due to preoperatively undiagnosed placenta accreta that caused unforeseen massive hemorrhage and required rapid red cell transfusion. Hyperkalemia-induced by rapid red cell transfusion is a well-known severe complication of transfusion; however, in patients with sudden massive hemorrhage, rapid red cell transfusion is necessary to save their life. In such cases, it is extremely important to monitor serum potassium levels. For an emergency situation, a system should be developed to ensure sufficient preparation for immediate transfusion and laboratory tests. Furthermore, sufficient stock of preparations to treat hyperkalemia, such as calcium preparations, diuretics, glucose, and insulin is required. Moreover, a transfusion filter that absorbs potassium has been developed and is now available for clinical use in Japan. The filter is easy to use and beneficial, and should be prepared when it is available. PMID:28217070

  10. Quantitative analysis of topoisomerase IIα to rapidly evaluate cell proliferation in brain tumors

    International Nuclear Information System (INIS)

    Oda, Masashi; Arakawa, Yoshiki; Kano, Hideyuki; Kawabata, Yasuhiro; Katsuki, Takahisa; Shirahata, Mitsuaki; Ono, Makoto; Yamana, Norikazu; Hashimoto, Nobuo; Takahashi, Jun A.

    2005-01-01

    Immunohistochemical cell proliferation analyses have come into wide use for evaluation of tumor malignancy. Topoisomerase IIα (topo IIα), an essential nuclear enzyme, has been known to have cell cycle coupled expression. We here show the usefulness of quantitative analysis of topo IIα mRNA to rapidly evaluate cell proliferation in brain tumors. A protocol to quantify topo IIα mRNA was developed with a real-time RT-PCR. It took only 3 h to quantify from a specimen. A total of 28 brain tumors were analyzed, and the level of topo IIα mRNA was significantly correlated with its immuno-staining index (p < 0.0001, r = 0.9077). Furthermore, it sharply detected that topo IIα mRNA decreased in growth-inhibited glioma cell. These results support that topo IIα mRNA may be a good and rapid indicator to evaluate cell proliferate potential in brain tumors

  11. Rapid and non-enzymatic in vitro retrieval of tumour cells from surgical specimens.

    Directory of Open Access Journals (Sweden)

    Brigitte Mack

    Full Text Available The study of tumourigenesis commonly involves the use of established cell lines or single cell suspensions of primary tumours. Standard methods for the generation of short-term tumour cell cultures include the disintegration of tissue based on enzymatic and mechanical stress. Here, we describe a simple and rapid method for the preparation of single cells from primary carcinomas, which is independent of enzymatic treatment and feeder cells. Tumour biopsies are processed to 1 mm(3 cubes termed explants, which are cultured 1-3 days on agarose-coated well plates in specified medium. Through incisions generated in the explants, single cells are retrieved and collected from the culture supernatant and can be used for further analysis including in vitro and in vivo studies. Collected cells retain tumour-forming capacity in xenotransplantation assays, mimic the phenotype of the primary tumour, and facilitate the generation of cell lines.

  12. Management of skeletal Class III malocclusion with unilateral crossbite on a growing patient using facemask-bonded rapid palatal expander and fixed appliances

    Directory of Open Access Journals (Sweden)

    Tinnie Effendy

    2015-01-01

    Full Text Available Facemask (FM and bonded rapid palatal expander (RPE are part of growth modification treatments for correcting skeletal Class III pattern with retrognathic maxilla. This orthopaedic treatment is usually preceded by fixed appliances to achieve aesthetic dental alignment and improve interdigitation. This case report reviews treatment of Class III malocclusion with unilateral crossbite in a 12-year-old boy using FM and bonded RPE, followed by fixed appliances. Choice of FM and bonded RPE was in line with indication which was mild Class III malocclusion with retrognathic maxilla. Execution of treatment was made considering treatment biomechanics and patient cooperation. This orthopaedic treatment was followed by orthodontic treatment specifically aimed to correct unilateral crossbite, canine relationship yet to reach Class I, lower midline shift, as well as unintended dental consequences of using bonded RPE, namely posterior open bite and deepening curve of spee. Posttreatment facial profile and smile are more esthetic. Occlusion is significantly improved both functionally and aesthetically.

  13. Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal beta-lactamase

    DEFF Research Database (Denmark)

    Bagge, N; Ciofu, O; Skovgaard, L T

    2000-01-01

    The aim of this study was to examine the development of resistance of biofilm-growing P. aeruginosa during treatment with ceftazidime. Biofilms were established in vitro using a modified Robbins device (MRD) and in vivo in the rat model of chronic lung infection. Three P. aeruginosa strains...... of ceftazidime to biofilms established in MDR, a statistically significant development of resistance to ceftazidime in PAO 579 or 19676A bacterial populations occurred. When ceftazidime was administered 4 h/day (200 mg/l) for 2 weeks, the frequency of resistant 19676A having MIC>25 mg/l was 4.4 10(-1) compared...... to 6.0-10(-5) in the control biofilm. The same trend was observed after continuous administration of ceftazidime. MICceftazidime of the more resistant variants was increased 500-fold for PAO 579 and 8-fold for 19676A, and the specific basal beta-lactamase activities from 19 to 1,400 units for PAO 579...

  14. Studies on Rapidly Frozen Suspensions of Yeast Cells by Differential Thermal Analysis and Conductometry

    Science.gov (United States)

    Mazur, Peter

    1963-01-01

    Few, if any, yeast cells survived rapid cooling to -196°C and subsequent slow warming. After rapid freezing, the suspensions absorbed latent heat of fusion between -15° and 0°C during warming, and the relation between the amount of heat absorbed and the concentration of cells was the same as that in equivalent KCl solutions, indicating that frozen suspensions behave thermally like frozen solutions. The amount of heat absorbed was such that more than 80 per cent of the intracellular solution had to be frozen. The conductometric behavior of frozen suspensions showed that cell solutes were still inside the cells and surrounded by an intact cell membrane at the time heat was being absorbed. Two models are consistent with these findings. The first assumes that intracellular freezing has taken place; the second that all freezable water has left the cells and frozen externally. The latter model is ruled out because rapidly cooled cells do not shrink by an amount equal to the volume of water that would have to be withdrawn to prevent internal freezing. PMID:13934216

  15. Differences in inhibition by beta-arabinofuranosyladenine (araA) of radiation induced DNA damage repair in exponentially growing and plateau-phase CHO-cells

    International Nuclear Information System (INIS)

    Iliakis, G.; Seaner, R.

    1988-01-01

    The effect of beta-arabinofuranosyladenine (araA) on the repair of radiation induced DNA damage, as measured by the DNA unwinding technique, was studied in exponentially growing and plateau-phase CHO-cells after exposure to X-rays. Induction of DNA damage by radiation was found to be similar in exponentially growing and plateau-phase cells. In the absence of araA, repair of radiation induced DNA damage proceeded with similar kinetics in exponentially growing and plateau-phase cells. AraA at concentrations between 0-1500 μM inhibited DNA repair both in exponentially growing and in plateau-phase cells. However, the degree of inhibition was significantly higher (by a factor of 3) in plateau-phase cells. A similar degree of repair inhibition by araA was observed in plateau-phase cells treated in their conditioned medium, as well as in plateau-phase cells that were transferred in fresh growth medium just before treatment initiation. These results indicate the importance of biochemical parameters associated with alterations in the growth state of the cells for the inhibitory effect of araA and may help in the elucidation of the molecular mechanism(s) underlying repair inhibition by inhibitors of DNA replication. (orig.)

  16. Interaction of estradiol and high density lipoproteins on proliferation of the human breast cancer cell line MCF-7 adapted to grow in serum free conditions

    International Nuclear Information System (INIS)

    Jozan, S.; Faye, J.C.; Tournier, J.F.; Tauber, J.P.; David, J.F.; Bayard, F.

    1985-01-01

    The responsiveness of the human mammary carcinoma cell line MCF-7 to estradiol and tamoxifen treatment has been studied in different culture conditions. Cells from exponentially growing cultures were compared with cells in their initial cycles after replating from confluent cultures (''confluent-log'' cells). It has been observed that estradiol stimulation of tritiated thymidine incorporation decreases with cell density and that ''confluent-log'' cells are estrogen unresponsive for a period of four cell cycles in serum-free medium conditions. On the other hand, growth of cells replated from exponentially growing, as well as from confluent cultures, can be inhibited by tamoxifen or a combined treatment with tamoxifen and the progestin levonorgestrel. This growth inhibitory effect can be rescued by estradiol when cells are replated from exponentially growing cultures. The growth inhibitory effect cannot be rescued by estradiol alone (10(-10) to 10(-8) M) when cells are replated from confluent cultures. In this condition, the addition of steroid depleted serum is necessary to reverse the state of estradiol unresponsiveness. Serum can be replaced by high density lipoproteins but not by low density lipoproteins or lipoprotein deficient serum. The present data show that estradiol and HDL interact in the control of MCF-7 cell proliferation

  17. Rapid characterization of the biomechanical properties of drug-treated cells in a microfluidic device

    International Nuclear Information System (INIS)

    Zhang, Xiaofei; Zhang, Yang; Bai, Guohua; Tan, Qiulin; Sun, Dong; Chu, Henry K; Wang, Kaiqun

    2015-01-01

    Cell mechanics is closely related to many cell functions. Recent studies have suggested that the deformability of cells can be an effective biomarker to indicate the onset and progression of diseases. In this paper, a microfluidic chip is designed for rapid characterization of the mechanics of drug-treated cells through stretching with dielectrophoresis (DEP) force. This chip was fabricated using PDMS and micro-electrodes were integrated and patterned on the ITO layer of the chip. Leukemia NB4 cells were considered and the effect of all-trans retinoic acid (ATRA) drug on NB4 cells were examined via the microfluidic chip. To induce a DEP force onto the cell, a relatively weak ac voltage was utilized to immobilize a cell at one side of the electrodes. The applied voltage was then increased to 3.5 V pp and the cell started to be stretched along the applied electric field lines. The elongation of the cell was observed using an optical microscope and the results showed that both types of cells were deformed by the induced DEP force. The strain of the NB4 cell without the drug treatment was recorded to be about 0.08 (time t = 180 s) and the drug-treated NB4 cell was about 0.21 (time t = 180 s), indicating a decrease in the stiffness after drug treatment. The elastic modulus of the cell was also evaluated and the modulus changed from 140 Pa to 41 Pa after drug treatment. This microfluidic chip can provide a simple and rapid platform for measuring the change in the biomechanical properties of cells and can potentially be used as the tool to determine the biomechanical effects of different drug treatments for drug discovery and development applications. (paper)

  18. Development of an in vitro Assay, based on the BioFilm Ring Test®, for Rapid Profiling of Biofilm-Growing Bacteria

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2016-09-01

    Full Text Available Microbial biofilm represents a major virulence factor associated with chronic and recurrent infections. Pathogenic bacteria embedded in biofilms are highly resistant to environmental and chemical agents, including antibiotics and therefore difficult to eradicate. Thus, reliable tests to assess biofilm formation by bacterial strains as well as the impact of chemicals or antibiotics on biofilm formation represent desirable tools for a most effective therapeutic management and microbiological risk control. Current methods to evaluate biofilm formation are usually time-consuming, costly, and hardly applicable in the clinical setting.The aim of the present study was to develop and assess a simple and reliable in vitro procedure for the characterization of biofilm-producing bacterial strains for future clinical applications based on the BioFilm Ring Test® (BRT technology. The procedure developed for clinical testing (cBRT can provide an accurate and timely (5 hours measurement of biofilm formation for the most common pathogenic bacteria seen in clinical practice. The results gathered by the cBRT assay were in agreement with the traditional crystal violet (CV staining test, according to the kappa coefficient test (kappa = 0.623. However, the cBRT assay showed higher levels of specificity (92.2% and accuracy (88.1% as compared to CV. The results indicate that this procedure offers an easy, rapid and robust assay to test microbial biofilm and a promising tool for clinical microbiology.

  19. A rapid and sensitive method for measuring N-acetylglucosaminidase activity in cultured cells.

    Directory of Open Access Journals (Sweden)

    Victor Mauri

    Full Text Available A rapid and sensitive method to quantitatively assess N-acetylglucosaminidase (NAG activity in cultured cells is highly desirable for both basic research and clinical studies. NAG activity is deficient in cells from patients with Mucopolysaccharidosis type IIIB (MPS IIIB due to mutations in NAGLU, the gene that encodes NAG. Currently available techniques for measuring NAG activity in patient-derived cell lines include chromogenic and fluorogenic assays and provide a biochemical method for the diagnosis of MPS IIIB. However, standard protocols require large amounts of cells, cell disruption by sonication or freeze-thawing, and normalization to the cellular protein content, resulting in an error-prone procedure that is material- and time-consuming and that produces highly variable results. Here we report a new procedure for measuring NAG activity in cultured cells. This procedure is based on the use of the fluorogenic NAG substrate, 4-Methylumbelliferyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (MUG, in a one-step cell assay that does not require cell disruption or post-assay normalization and that employs a low number of cells in 96-well plate format. We show that the NAG one-step cell assay greatly discriminates between wild-type and MPS IIIB patient-derived fibroblasts, thus providing a rapid method for the detection of deficiencies in NAG activity. We also show that the assay is sensitive to changes in NAG activity due to increases in NAGLU expression achieved by either overexpressing the transcription factor EB (TFEB, a master regulator of lysosomal function, or by inducing TFEB activation chemically. Because of its small format, rapidity, sensitivity and reproducibility, the NAG one-step cell assay is suitable for multiple procedures, including the high-throughput screening of chemical libraries to identify modulators of NAG expression, folding and activity, and the investigation of candidate molecules and constructs for applications in

  20. Rapid and label-free separation of Burkitt's lymphoma cells from red blood cells by optically-induced electrokinetics.

    Directory of Open Access Journals (Sweden)

    Wenfeng Liang

    Full Text Available Early stage detection of lymphoma cells is invaluable for providing reliable prognosis to patients. However, the purity of lymphoma cells in extracted samples from human patients' marrow is typically low. To address this issue, we report here our work on using optically-induced dielectrophoresis (ODEP force to rapidly purify Raji cells' (a type of Burkitt's lymphoma cell sample from red blood cells (RBCs with a label-free process. This method utilizes dynamically moving virtual electrodes to induce negative ODEP force of varying magnitudes on the Raji cells and RBCs in an optically-induced electrokinetics (OEK chip. Polarization models for the two types of cells that reflect their discriminate electrical properties were established. Then, the cells' differential velocities caused by a specific ODEP force field were obtained by a finite element simulation model, thereby established the theoretical basis that the two types of cells could be separated using an ODEP force field. To ensure that the ODEP force dominated the separation process, a comparison of the ODEP force with other significant electrokinetics forces was conducted using numerical results. Furthermore, the performance of the ODEP-based approach for separating Raji cells from RBCs was experimentally investigated. The results showed that these two types of cells, with different concentration ratios, could be separated rapidly using externally-applied electrical field at a driven frequency of 50 kHz at 20 Vpp. In addition, we have found that in order to facilitate ODEP-based cell separation, Raji cells' adhesion to the OEK chip's substrate should be minimized. This paper also presents our experimental results of finding the appropriate bovine serum albumin concentration in an isotonic solution to reduce cell adhesion, while maintaining suitable medium conductivity for electrokinetics-based cell separation. In short, we have demonstrated that OEK technology could be a promising tool for

  1. Rapid Evaluation of Power Degradation in Series Connection of Single Feeding Microsized Microbial Fuel Cells

    KAUST Repository

    Rojas, Jhonathan Prieto; Alqarni, Wejdan Mohammed Mofleh; Hussain, Muhammad Mustafa

    2014-01-01

    We have developed a sustainable, single feeding, microsized, air-cathode and membrane-free microbial fuel cells with a volume of 40 mu L each, which we have used for rapid evaluation of power generation and viability of a series array of three cells seeking higher voltage levels. Contrary to expectations, the achieved power density was modest (45 mWm(-3)), limited due to non-uniformities in assembly and the single-channel feeding system.

  2. Rapid Column-Free Enrichment of Mononuclear Cells from Solid Tissues

    Science.gov (United States)

    Scoville, Steven D.; Keller, Karen A.; Cheng, Stephanie; Zhang, Michael; Zhang, Xiaoli; Caligiuri, Michael A.; Freud, Aharon G.

    2015-01-01

    We have developed a rapid negative selection method to enrich rare mononuclear cells from human tissues. Unwanted and antibody-tethered cells are selectively depleted during a Ficoll separation step, and there is no need for magnetic-based reagents and equipment. The new method is fast, customizable, inexpensive, remarkably efficient, and easy to perform, and per sample the overall cost is less than one-tenth the cost associated with a magnetic column-based method. PMID:26223896

  3. Prion strain discrimination based on rapid in vivo amplification and analysis by the cell panel assay.

    Directory of Open Access Journals (Sweden)

    Yervand Eduard Karapetyan

    Full Text Available Prion strain identification has been hitherto achieved using time-consuming incubation time determinations in one or more mouse lines and elaborate neuropathological assessment. In the present work, we make a detailed study of the properties of PrP-overproducing Tga20 mice. We show that in these mice the four prion strains examined are rapidly and faithfully amplified and can subsequently be discriminated by a cell-based procedure, the Cell Panel Assay.

  4. Rapid Evaluation of Power Degradation in Series Connection of Single Feeding Microsized Microbial Fuel Cells

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-07-08

    We have developed a sustainable, single feeding, microsized, air-cathode and membrane-free microbial fuel cells with a volume of 40 mu L each, which we have used for rapid evaluation of power generation and viability of a series array of three cells seeking higher voltage levels. Contrary to expectations, the achieved power density was modest (45 mWm(-3)), limited due to non-uniformities in assembly and the single-channel feeding system.

  5. The location of splenic NKT cells favours their rapid activation by blood-borne antigen

    Science.gov (United States)

    Barral, Patricia; Sánchez-Niño, María Dolores; van Rooijen, Nico; Cerundolo, Vincenzo; Batista, Facundo D

    2012-01-01

    Natural killer T (NKT) cells play an important role in mounting protective responses to blood-borne infections. However, though the spleen is the largest blood filter in the body, the distribution and dynamics of NKT cells within this organ are not well characterized. Here we show that the majority of NKT cells patrol around the marginal zone (MZ) and red pulp (RP) of the spleen. In response to lipid antigen, these NKT cells become arrested and rapidly produce cytokines, while the small proportion of NKT cells located in the white pulp (WP) exhibit limited activation. Importantly, disruption of the splenic MZ by chemical or genetic approaches results in a severe reduction in NKT cell activation indicating the need of cooperation between both MZ macrophages and dendritic cells for efficient NKT cell responses. Thus, the location of splenic NKT cells in the MZ and RP facilitates their access to blood-borne antigen and enables the rapid initiation of protective immune responses. PMID:22505026

  6. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Mumps viruses show diverse cytopathic effects (CPEs of infected cells and viral plaque formation (no CPE or no plaque formation in some cases depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac, was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study, even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  7. Rapid lentiviral transduction preserves the engraftment potential of Fanca(-/-) hematopoietic stem cells.

    Science.gov (United States)

    Müller, Lars U W; Milsom, Michael D; Kim, Mi-Ok; Schambach, Axel; Schuesler, Todd; Williams, David A

    2008-06-01

    Fanconi anemia (FA) is a rare recessive syndrome, characterized by congenital anomalies, bone marrow failure, and predisposition to cancer. Two earlier clinical trials utilizing gamma-retroviral vectors for the transduction of autologous FA hematopoietic stem cells (HSCs) required extensive in vitro manipulation and failed to achieve detectable long-term engraftment of transduced HSCs. As a strategy for minimizing ex vivo manipulation, we investigated the use of a "rapid" lentiviral transduction protocol in a murine Fanca(-/-) model. Importantly, while this and most murine models of FA fail to completely mimic the human hematopoietic phenotype, we observed a high incidence of HSC transplant engraftment failure and low donor chimerism after conventional transduction (CT) of Fanca(-/-) donor cells. In contrast, rapid transduction (RT) of Fanca(-/-) HSCs preserved engraftment to the level achieved in wild-type cells, resulting in long-term multilineage engraftment of gene-modified cells. We also demonstrate the correction of the characteristic hypersensitivity of FA cells against the cross-linking agent mitomycin C (MMC), and provide evidence for the advantage of using pharmacoselection as a means of further increasing gene-modified cells after RT. Collectively, these data support the use of rapid lentiviral transduction for gene therapy in FA.

  8. Haemolysis following rapid experimental red blood cell transfusion--an evaluation of two infusion pumps

    DEFF Research Database (Denmark)

    Hansen, Tom Giedsing; Sprogøe-Jakobsen, U; Pedersen, C M

    1998-01-01

    The vast majority of infusion pumps used for rapid transfusion of large amounts of blood have never been properly examined regarding their influence on the quality of the red blood cells (RBCs) infused. In this study, we evaluated the effect of two different infusion pumps on the degree of RBC...

  9. A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.

    Science.gov (United States)

    Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A

    2018-01-23

    A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.

  10. Obesity reduces bone density associated with activation of PPARγ and suppression of Wnt/β-catenin in rapidly growing male rats.

    Directory of Open Access Journals (Sweden)

    Jin-Ran Chen

    Full Text Available BACKGROUND: It is well established that excessive consumption of a high fat diet (HFD results in obesity; however, the consequences of obesity on postnatal skeletal development have not been well studied. METHODOLOGY AND PRINCIPAL FINDINGS: Total enteral nutrition (TEN was used to feed postnatal day 27 male rats intragastrically with a high 45% fat diet (HFD for four weeks to induce obesity. Fat mass was increased compared to rats fed TEN diets containing 25% fat (medium fat diet, MFD or a chow diet (low fat diet, LFD fed ad libitum with matched body weight gains. Serum leptin and total non-esterified fatty acids (NEFA were elevated in HFD rats, which also had reduced bone mass compared to LFD-fed animals. This was accompanied by decreases in bone formation, but increases in the bone resorption. Bone marrow adiposity and expression of adipogenic genes, PPARγ and aP2 were increased, whereas osteoblastogenic markers osteocalcin and Runx2 were decreased, in bone in HFD rats compared to LFD controls. The diversion of stromal cell differentiation in response to HFD stemmed from down-regulation of the key canonical Wnt signaling molecule β-catenin protein and reciprocal up-regulation of nuclear PPARγ expression in bone. In a set of in vitro studies using pluripotent ST2 bone marrow mesenchymal stromal cells treated with serum from rats on the different diets or using the free fatty acid composition of NEFA quantified in rat serum from HFD-fed animals by GC-MS, we were able to recapitulate our in vivo findings. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that increased NEFA in serum from rats made obese by HFD-feeding impaired bone formation due to stimulation of bone marrow adipogenesis. These effects of obesity on bone in early life may result in impaired attainment of peak bone mass and therefore increase the prevalence of osteoporosis later on in life.

  11. Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding

    NARCIS (Netherlands)

    Goeij, de J.M.; Kluijver, de A.; Duyl, van F.C.; Vacelet, J.; Wijffels, R.H.; Goeij, de A.F.P.M.; Cleutjens, J.P.M.; Schutte, B.

    2009-01-01

    This study reveals the peculiar in vivo cell kinetics and cell turnover of the marine sponge Halisarca caerulea under steady-state conditions. The tropical coral reef sponge shows an extremely high proliferation activity, a short cell cycle duration and massive cell shedding. Cell turnover is

  12. An Evo-Devo perspective on ever-growing teeth in mammals and dental stem cell maintenance

    Directory of Open Access Journals (Sweden)

    Elodie eRenvoisé

    2014-08-01

    Full Text Available A major challenge for current evolutionary and developmental biology research is to understand the evolution of morphogenesis and the mechanisms involved. Teeth are well suited for the investigation of developmental processes. In addition, since teeth are composed of hard-mineralized tissues, primarily apatite, that are readily preserved, the evolution of mammals is well documented through their teeth in the fossil record. Hypsodonty, high crowned teeth with shallow roots, and hypselodonty, ever-growing teeth, are convergent innovations that have appeared multiple times since the mammalian radiation 65 million years ago, in all tooth categories (incisors, canines, premolars and molars. A shift to hypsodonty, or hypselodonty, during mammalian evolution is often, but not necessarily, associated with increasingly abrasive diet during important environmental change events. Although the evolution of hypsodonty and hypselodonty is considered to be the result of heterochrony of development, little has been known about the exact developmental mechanisms at the origin of these morphological traits. Developmental biologists have been intrigued by the mechanism of hypselodonty since it requires the maintenance of continuous crown formation during development via stem cell niche activity. Understanding this mechanism may allow bioengineered tooth formation in humans. Hypsodonty and hypselodonty are thus examples of phenotypic features of teeth that have both impacts in understanding the evolution of mammals and holds promise for human tooth bioengineering.

  13. Metabolism of tRNAs in growing cells of Escherichia coli illuminated with near-ultraviolet light

    International Nuclear Information System (INIS)

    Hajnsdorf, E.; Favre, A.

    1986-01-01

    The tRNA metabolism which accompanies illumination of growing E. coli cells has been examined in conditions that led to growth delay. The in vivo formation of the 8-13 link was followed by a fluorimetric procedure and revealed pseudo-first order kinetics very close to those obtained in vitro under the same illumination conditions. Comparison of these kinetics with published radiochromatographic data suggests the transient formation during illumination of a new RNase-T 2 -resistant dinucleotide in tRNA distinct from the 8-13 link. Under illumination some tRNA molecules lack one or more bases in a specific position in the sequence. During the growth lag, uracil incorporation into nucleic acids occurs at between 4-8% of the rate normally observed during exponential growth. However, the pyrimidine ribonucleoside triphosphate pools are strongly perturbed after illumination. Comparison of exogenous [ 3 H]uracil incorporation into two strains proficient or deficient in uracil biosynthesis suggests a derepression of the endogenous path after light treatment. In addition, the UTP-to-CTP conversion is inhibited. In spite of preferential incorporation of exogenously labelled uracil in tRNA after illumination, a possible pyrimidine base turnover cannot be proved. (author)

  14. Cost-effective and rapid blood analysis on a cell-phone.

    Science.gov (United States)

    Zhu, Hongying; Sencan, Ikbal; Wong, Justin; Dimitrov, Stoyan; Tseng, Derek; Nagashima, Keita; Ozcan, Aydogan

    2013-04-07

    We demonstrate a compact and cost-effective imaging cytometry platform installed on a cell-phone for the measurement of the density of red and white blood cells as well as hemoglobin concentration in human blood samples. Fluorescent and bright-field images of blood samples are captured using separate optical attachments to the cell-phone and are rapidly processed through a custom-developed smart application running on the phone for counting of blood cells and determining hemoglobin density. We evaluated the performance of this cell-phone based blood analysis platform using anonymous human blood samples and achieved comparable results to a standard bench-top hematology analyser. Test results can either be stored on the cell-phone memory or be transmitted to a central server, providing remote diagnosis opportunities even in field settings.

  15. A Rapid Culture Technique Produces Functional Dendritic-Like Cells from Human Acute Myeloid Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Jian Ning

    2011-01-01

    Full Text Available Most anti-cancer immunotherapeutic strategies involving dendritic cells (DC as vaccines rely upon the adoptive transfer of DC loaded with exogenous tumour-peptides. This study utilized human acute myeloid leukemia (AML cells as progenitors from which functional dendritic-like antigen presenting cells (DLC were generated, that constitutively express tumour antigens for recognition by CD8+ T cells. DLC were generated from AML cell lines KG-1 and MUTZ-3 using rapid culture techniques and appropriate cytokines. DLC were evaluated for their cell-surface phenotype, antigen uptake and ability to stimulate allogeneic responder cell proliferation, and production of IFN-γ; compared with DC derived from normal human PBMC donors. KG-1 and MUTZ-3 DLC increased expression of CD80, CD83, CD86, and HLA-DR, and MUTZ-3 DLC downregulated CD14 and expressed CD1a. Importantly, both KG-1 and MUTZ-3-derived DLC promoted proliferation of allogeneic responder cells more efficiently than unmodified cells; neither cells incorporated FITC-labeled dextran, but both stimulated IFN-γ production from responding allogeneic CD8+ T cells. Control DC produced from PBMC using the FastDC culture also expressed high levels of critical cell surface ligands and demonstrated good APC function. This paper indicates that functional DLC can be cultured from the AML cell lines KG-1 and MUTZ-3, and FastDC culture generates functional KG-1 DLC.

  16. Early depletion of proliferating B cells of germinal center in rapidly progressive simian immunodeficiency virus infection

    International Nuclear Information System (INIS)

    Zhang Zhiqiang; Casimiro, Danilo R.; Schleif, William A.; Chen, Minchun; Citron, Michael; Davies, Mary-Ellen; Burns, Janine; Liang, Xiaoping; Fu, Tong-Ming; Handt, Larry; Emini, Emilio A.; Shiver, John W.

    2007-01-01

    Lack of virus specific antibody response is commonly observed in both HIV-1-infected humans and SIV-infected monkeys with rapid disease progression. However, the mechanisms underlying this important observation still remain unclear. In a titration study of a SIVmac239 viral stock, three out of six animals with viral inoculation rapidly progressed to AIDS within 5 months. Unexpectedly, there was no obvious depletion of CD4 + T cells in both peripheral and lymph node (LN) compartments in these animals. Instead, progressive depletion of proliferating B cells and disruption of the follicular dendritic cell (FDC) network in germinal centers (GC) was evident in the samples collected at as early as 20 days after viral challenge. This coincided with undetectable, or weak and transient, virus-specific antibody responses over the course of infection. In situ hybridization of SIV RNA in the LN samples revealed a high frequency of SIV productively infected cells and large amounts of accumulated viral RNA in the GCs in these animals. Early severe depletion of GC proliferating B cells and disruption of the FDC network may thus result in an inability to mount a virus-specific antibody response in rapid progressors, which has been shown to contribute to accelerated disease progression of SIV infection

  17. Role of glutathione metabolism status in the definition of some cellular parameters and oxidative stress tolerance of Saccharomyces cerevisiae cells growing as biofilms.

    Science.gov (United States)

    Gales, Grégoire; Penninckx, Michel; Block, Jean-Claude; Leroy, Pierre

    2008-08-01

    The resistance of Saccharomyces cerevisiae to oxidative stress (H(2)O(2) and Cd(2+)) was compared in biofilms and planktonic cells, with the help of yeast mutants deleted of genes related to glutathione metabolism and oxidative stress. Biofilm-forming cells were found predominantly in the G1 stage of the cell cycle. This might explain their higher tolerance to oxidative stress and the young replicative age of these cells in an old culture. The reduced glutathione status of S. cerevisiae was affected by the growth phase and apparently plays an important role in oxidative stress tolerance in cells growing as a biofilm.

  18. Rapid desensitization induces internalization of antigen-specific IgE on mouse mast cells.

    Science.gov (United States)

    Oka, Tatsuya; Rios, Eon J; Tsai, Mindy; Kalesnikoff, Janet; Galli, Stephen J

    2013-10-01

    Rapid desensitization transiently prevents severe allergic reactions, allowing administration of life-saving therapies in previously sensitized patients. However, the mechanisms underlying successful rapid desensitization are not fully understood. We sought to investigate whether the mast cell (MC) is an important target of rapid desensitization in mice sensitized to exhibit IgE-dependent passive systemic anaphylaxis in vivo and to investigate the antigen specificity and underlying mechanisms of rapid desensitization in our mouse model. C57BL/6 mice (in vivo) or primary isolated C57BL/6 mouse peritoneal mast cells (PMCs; in vitro) were passively sensitized with antigen-specific anti-2,4-dinitrophenyl IgE, anti-ovalbumin IgE, or both. MCs were exposed over a short period of time to increasing amounts of antigen (2,4-dinitrophenyl-human serum albumin or ovalbumin) in the presence of extracellular calcium in vitro or by means of intravenous administration to sensitized mice in vivo before challenging the mice with or exposing the PMCs to optimal amounts of specific or irrelevant antigen. Rapidly exposing mice or PMCs to progressively increasing amounts of specific antigen inhibited the development of antigen-induced hypothermia in sensitized mice in vivo and inhibited antigen-induced PMC degranulation and prostaglandin D2 synthesis in vitro. Such MC hyporesponsiveness was induced antigen-specifically and was associated with a significant reduction in antigen-specific IgE levels on MC surfaces. Rapidly exposing MCs to progressively increasing amounts of antigen can both enhance the internalization of antigen-specific IgE on the MC surface and also desensitize these cells in an antigen-specific manner in vivo and in vitro. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  19. An improved out-cell to in-cell rapid transfer system at the HFEF/South

    International Nuclear Information System (INIS)

    Bacca, J.P.; Sherman, E.K.

    1991-01-01

    This paper reports on Argonne National Laboratory's Fuel Cycle Facility (FCF) (formerly named Hot Fuel Examination Facility-South) (HFEF/South) which is currently being refurbished and upgraded in preparation for demonstrating remote, fast reactor metal-fuel reprocessing and refabrication, as part of the Integral Fast Reactor (IFR) Program. Among the FCF hot-cell system upgrades being provided is a newly fabricated, direct, out-of-cell to in-cell, small-item transfer system for the FCF argon cell. This system will enable the rapid transfer of selected small items from the hot cell exterior into the argon cell (argon-gas atmosphere) of the facility, without necessitating the use of formerly employed, very time-consuming, and quite laborious procedures. The new system will be especially valuable for the rapid insertion of IFR fuel processing makeup materials and small tools into the argon cell, and for use in argon cell and overall FCF radioactive contamination-control activities

  20. Rapid Elimination of the Persistent Synergid through a Cell Fusion Mechanism

    KAUST Repository

    Maruyama, Daisuke

    2015-05-01

    In flowering plants, fertilization-dependent degeneration of the persistent synergid cell ensures one-on-one pairings of male and female gametes. Here, we report that the fusion of the persistent synergid cell and the endosperm selectively inactivates the persistent synergid cell in Arabidopsis thaliana. The synergid-endosperm fusion causes rapid dilution of pre-secreted pollen tube attractant in the persistent synergid cell and selective disorganization of the synergid nucleus during the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling, an inducer of the synergid nuclear disorganization. Therefore, two female gametes (the egg and the central cell) control independent pathways yet coordinately accomplish the elimination of the persistent synergid cell by double fertilization. Two female gametes (the egg cell and the central cell) in flowering plants coordinately prevent attractions of excess number of pollen tubes via two mechanisms to inactivate persistent synergid cell. © 2015 Elsevier Inc.

  1. Rapid assay for cell age response to radiation by electronic volume flow cell sorting

    International Nuclear Information System (INIS)

    Freyer, J.P.; Wilder, M.E.; Raju, M.R.

    1987-01-01

    A new technique is described for measuring cell survival as a function of cell cycle position using flow cytometric cell sorting on the basis of electronic volume signals. Sorting of cells into different cell age compartments is demonstrated for three different cell lines commonly used in radiobiological research. Using flow cytometric DNA content analysis and [ 3 H]thymidine autoradiography of the sorted cell populations, it is demonstrated that resolution of the age compartment separation is as good as or better than that reported for other cell synchronizing techniques. Variation in cell survival as a function of position in the cell cycle after a single dose of radiation as measured by volume cell sorting is similar to that determined by other cell synchrony techniques. Advantages of this method include: (1) no treatment of the cells is required, thus, this method is noncytotoxic; (2) no cell cycle progression is needed to obtain different cell age compartments; (3) the cell population can be held in complete growth medium at any desired temperature during sorting; (4) a complete radiation age - response assay can be plated in 2 h. Applications of this method are discussed, along with some technical limitations. (author)

  2. An optimized rapid bisulfite conversion method with high recovery of cell-free DNA.

    Science.gov (United States)

    Yi, Shaohua; Long, Fei; Cheng, Juanbo; Huang, Daixin

    2017-12-19

    Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA. We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods. The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.

  3. The rapid evolution of CT findings in pulmonary langerhans cell histiocytosis: a case report

    International Nuclear Information System (INIS)

    Kang, Tae Wook; Lee, Kyung Soo; Cho, Eun Yoon

    2007-01-01

    Imaging findings of pulmonary Langerhans cell histiocytosis (PLCH) demonstrate evolving changes over time, and the radiological transitions shown by imaging tools may allow a prediction of histopathological activity in PLCH. However, there are no reports describing how rapidly CT findings change with time. We describe a case of PLCH that showed a rapid evolutional change of the pulmonary lesions in a 48-year-old man, in which the nodular lesions showed cystic changes within two-month follow-up periods on chest CT scans

  4. Successful autologous hematopoietic stem cell transplantation for a patient with rapidly progressive localized scleroderma.

    Science.gov (United States)

    Nair, Velu; Sharma, Ajay; Sharma, Sanjeevan; Das, Satyaranjan; Bhakuni, Darshan S; Narayanan, Krishnan; Nair, Vivek; Shankar, Subramanian

    2015-03-01

    Autologous hematopoietic stem cell transplant (HSCT) for rapidly progressive disease has not been reported in localized scleroderma. Our patient, a 16-year-old girl had an aggressive variant of localized scleroderma, mixed subtype (linear-generalized) with Parry Romberg syndrome, with no internal organ involvement, that was unresponsive to immunosuppressive therapy and was causing rapid disfigurement. She was administered autologous HSCT in June 2011 and has maintained drug-free remission with excellent functional status at almost 3.5 years of follow-up. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  5. ER Alpha Rapid Signaling Is Required for Estrogen Induced Proliferation and Migration of Vascular Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Qing Lu

    Full Text Available Estrogen promotes the proliferation and migration of vascular endothelial cells (ECs, which likely underlies its ability to accelerate re-endothelialization and reduce adverse remodeling after vascular injury. In previous studies, we have shown that the protective effects of E2 (the active endogenous form of estrogen in vascular injury require the estrogen receptor alpha (ERα. ERα transduces the effects of estrogen via a classical DNA binding, "genomic" signaling pathway and via a more recently-described "rapid" signaling pathway that is mediated by a subset of ERα localized to the cell membrane. However, which of these pathways mediates the effects of estrogen on endothelial cells is poorly understood. Here we identify a triple point mutant version of ERα (KRR ERα that is specifically defective in rapid signaling, but is competent to regulate transcription through the "genomic" pathway. We find that in ECs expressing wild type ERα, E2 regulates many genes involved in cell migration and proliferation, promotes EC migration and proliferation, and also blocks the adhesion of monocytes to ECs. ECs expressing KRR mutant ERα, however, lack all of these responses. These observations establish KRR ERα as a novel tool that could greatly facilitate future studies into the vascular and non-vascular functions of ERα rapid signaling. Further, they support that rapid signaling through ERα is essential for many of the transcriptional and physiological responses of ECs to E2, and that ERα rapid signaling in ECs, in vivo, may be critical for the vasculoprotective and anti-inflammatory effects of estrogen.

  6. An improved out-cell to in-cell rapid transfer system at the HFEF-south

    International Nuclear Information System (INIS)

    Bacca, J.P.; Sherman, E.K.

    1990-01-01

    The Argonne National Laboratory (ANL) Hot Fuel Examination Facility-South (HFEF-S), located at the ANL-West site of the Idaho National Engineering Laboratory, is currently undergoing extensive refurbishment and modifications in preparation for its use, beginning in 1991, in demonstrating remote recycling of fast reactor, metal-alloy fuel as part of the US Department of Energy liquid-metal reactor, Integral Fast Reactor (IFR) program. Included in these improvements to HFEF-S is a new, small-item, rapid transfer system (RTS). When installed, this system will enable the rapid transfer of small items from the hot-cell exterior into the argon cell (argon-gas atmosphere) of the facility without necessitating the use of time-consuming and laborious procedures. The new RTS will also provide another important function associated with HFEF-S hot-cell operation in the IFR Fuel Recycle Program; namely, the rapid insertion of clean, radioactive contamination-measuring smear paper specimens into the hot cells for area surveys, and the expedited removal of these contaminated (including alpha as well as beta/gamma contamination) smears from the argon cell for transfer to an adjacent health physics field laboratory in the facility for nuclear contamination/radiation counting

  7. Rapid fabrication of detachable three-dimensional tissues by layering of cell sheets with heating centrifuge.

    Science.gov (United States)

    Haraguchi, Yuji; Kagawa, Yuki; Hasegawa, Akiyuki; Kubo, Hirotsugu; Shimizu, Tatsuya

    2018-01-18

    Confluent cultured cells on a temperature-responsive culture dish can be harvested as an intact cell sheet by decreasing temperature below 32°C. A three-dimensional (3-D) tissue can be fabricated by the layering of cell sheets. A resulting 3-D multilayered cell sheet-tissue on a temperature-responsive culture dish can be also harvested without any damage by only temperature decreasing. For shortening the fabrication time of the 3-D multilayered constructs, we attempted to layer cell sheets on a temperature-responsive culture dish with centrifugation. However, when a cell sheet was attached to the culture surface with a conventional centrifuge at 22-23°C, the cell sheet hardly adhere to the surface due to its noncell adhesiveness. Therefore, in this study, we have developed a heating centrifuge. In centrifugation (55g) at 36-37°C, the cell sheet adhered tightly within 5 min to the dish without significant cell damage. Additionally, centrifugation accelerated the cell sheet-layering process. The heating centrifugation shortened the fabrication time by one-fifth compared to a multilayer tissue fabrication without centrifugation. Furthermore, the multilayered constructs were finally detached from the dishes by decreasing temperature. This rapid tissue-fabrication method will be used as a valuable tool in the field of tissue engineering and regenerative therapy. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  8. Mechano-chemical signaling maintains the rapid movement of Dictyostelium cells

    International Nuclear Information System (INIS)

    Lombardi, M.L.; Knecht, D.A.; Lee, J.

    2008-01-01

    The survival of Dictyostelium cells depends on their ability to efficiently chemotax, either towards food or to form multicellular aggregates. Although the involvement of Ca 2+ signaling during chemotaxis is well known, it is not clear how this regulates cell movement. Previously, fish epithelial keratocytes have been shown to display transient increases in intracellular calcium ([Ca 2+ ] i ) that are mediated by stretch-activated calcium channels (SACs), which play a role in retraction of the cell body [J. Lee, A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson, Regulation of cell movement is mediated by stretch-activated calcium channels. Nature, 1999. 400(6742): p. 382-6.]. To investigate the involvement of SACs in Dictyostelium movement we performed high resolution calcium imaging in wild-type (NC4A2) Dictyostelium cells to detect changes in [Ca 2+ ] i . We observed small, brief, Ca 2+ transients in randomly moving wild-type cells that were dependent on both intracellular and extracellular sources of calcium. Treatment of cells with the SAC blocker gadolinium (Gd 3+ ) inhibited transients and decreased cell speed, consistent with the involvement of SACs in regulating Dictyostelium motility. Additional support for SAC activity was given by the increase in frequency of Ca 2+ transients when Dictyostelium cells were moving on a more adhesive substratum or when they were mechanically stretched. We conclude that mechano-chemical signaling via SACs plays a major role in maintaining the rapid movement of Dictyostelium cells

  9. Rapid and serial quantification of adhesion forces of yeast and Mammalian cells.

    Directory of Open Access Journals (Sweden)

    Eva Potthoff

    Full Text Available Cell adhesion to surfaces represents the basis for niche colonization and survival. Here we establish serial quantification of adhesion forces of different cell types using a single probe. The pace of single-cell force-spectroscopy was accelerated to up to 200 yeast and 20 mammalian cells per probe when replacing the conventional cell trapping cantilever chemistry of atomic force microscopy by underpressure immobilization with fluidic force microscopy (FluidFM. In consequence, statistically relevant data could be recorded in a rapid manner, the spectrum of examinable cells was enlarged, and the cell physiology preserved until approached for force spectroscopy. Adhesion forces of Candida albicans increased from below 4 up to 16 nN at 37°C on hydrophobic surfaces, whereas a Δhgc1-mutant showed forces consistently below 4 nN. Monitoring adhesion of mammalian cells revealed mean adhesion forces of 600 nN of HeLa cells on fibronectin and were one order of magnitude higher than those observed for HEK cells.

  10. A microfluidics-based technique for automated and rapid labeling of cells for flow cytometry

    International Nuclear Information System (INIS)

    Patibandla, Phani K; Estrada, Rosendo; Kannan, Manasaa; Sethu, Palaniappan

    2014-01-01

    Flow cytometry is a powerful technique capable of simultaneous multi-parametric analysis of heterogeneous cell populations for research and clinical applications. In recent years, the flow cytometer has been miniaturized and made portable for application in clinical- and resource-limited settings. The sample preparation procedure, i.e. labeling of cells with antibodies conjugated to fluorescent labels, is a time consuming (∼45 min) and labor-intensive procedure. Microfluidics provides enabling technologies to accomplish rapid and automated sample preparation. Using an integrated microfluidic device consisting of a labeling and washing module, we demonstrate a new protocol that can eliminate sample handling and accomplish sample and reagent metering, high-efficiency mixing, labeling and washing in rapid automated fashion. The labeling module consists of a long microfluidic channel with an integrated chaotic mixer. Samples and reagents are precisely metered into this device to accomplish rapid and high-efficiency mixing. The mixed sample and reagents are collected in a holding syringe and held for up to 8 min following which the mixture is introduced into an inertial washing module to obtain ‘analysis-ready’ samples. The washing module consists of a high aspect ratio channel capable of focusing cells to equilibrium positions close to the channel walls. By introducing the cells and labeling reagents in a narrow stream at the center of the channel flanked on both sides by a wash buffer, the elution of cells into the wash buffer away from the free unbound antibodies is accomplished. After initial calibration experiments to determine appropriate ‘holding time’ to allow antibody binding, both modules were used in conjunction to label MOLT-3 cells (T lymphoblast cell line) with three different antibodies simultaneously. Results confirm no significant difference in mean fluorescence intensity values for all three antibodies labels (p < 0.01) between the

  11. Growing Pains

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Heat expands and cold contracts: it’s a simple thermodynamic rule. But when temperatures swing from 300 K to near-absolute zero, this rule can mean a contraction of more than 80 metres across the LHC’s 27-km-long cryogenic system. Keeping this growth in check are compensators (a.k.a. bellows), which shrink and stretch in response to thermodynamic changes. Leak tests and X-rays now underway in the tunnel have revealed that these “joints” might be suffering from growing pains…   This 25-μm weld crack is thought to be the cause of the helium leaks. Prior to the LS1 warm-up, CERN’s cryogenic experts knew of two points in the machine’s cryogenic distribution system that were leaking helium. Fortunately, these leaks were sufficiently small, confined to known sub-sectors of the cryogenic line and – with help from the vacuum team (TE-VSC) – could easily be compensated for. But as the machine warmed up f...

  12. Rapid expansion of T cells: Effects of culture and cryopreservation and importance of short-term cell recovery.

    Science.gov (United States)

    Sadeghi, Arian; Ullenhag, Gustav; Wagenius, Gunnar; Tötterman, Thomas H; Eriksson, Fredrik

    2013-06-01

    Successful cell therapy relies on the identification and mass expansion of functional cells for infusion. Cryopreservation of cells is an inevitable step in most cell therapies which also entails consequences for the frozen cells. This study assessed the impact of cryopreservation and the widely used protocol for rapid expansion of T lymphocytes. The effects on cell viability, immunocompetence and the impact on apoptotic and immunosuppressive marker expression were analyzed using validated assays. Cryopreservation of lymphocytes during the rapid expansion protocol did not affect cell viability. Lymphocytes that underwent mass expansion or culture in high dose IL-2 were unable to respond to PHA stimulation by intracellular ATP production immediately after thawing (ATP = 16 ± 11 ng/ml). However, their reactivity to PHA was regained within 48 hours of recovery (ATP = 356 ± 61 ng/ml). Analysis of mRNA levels revealed downregulation of TGF-β and IL-10 at all time points. Culture in high dose IL-2 led to upregulation of p73 and BCL-2 mRNA levels while FoxP3 expression was elevated after culture in IL-2 and artificial TCR stimuli. FoxP3 levels decreased after short-term recovery without IL-2 or stimulation. Antigen specificity, as determined by IFNγ secretion, was unaffected by cryopreservation but was completely lost after addition of high dose IL-2 and artificial TCR stimuli. In conclusion, allowing short-time recovery of mass expanded and cryopreserved cells before reinfusion could enhance the outcome of adoptive cell therapy as the cells regain immune competence and specificity.

  13. Rapid metabolism of exogenous angiotensin II by catecholaminergic neuronal cells in culture media.

    Science.gov (United States)

    Basu, Urmi; Seravalli, Javier; Madayiputhiya, Nandakumar; Adamec, Jiri; Case, Adam J; Zimmerman, Matthew C

    2015-02-01

    Angiotensin II (AngII) acts on central neurons to increase neuronal firing and induce sympathoexcitation, which contribute to the pathogenesis of cardiovascular diseases including hypertension and heart failure. Numerous studies have examined the precise AngII-induced intraneuronal signaling mechanism in an attempt to identify new therapeutic targets for these diseases. Considering the technical challenges in studying specific intraneuronal signaling pathways in vivo, especially in the cardiovascular control brain regions, most studies have relied on neuronal cell culture models. However, there are numerous limitations in using cell culture models to study AngII intraneuronal signaling, including the lack of evidence indicating the stability of AngII in culture media. Herein, we tested the hypothesis that exogenous AngII is rapidly metabolized in neuronal cell culture media. Using liquid chromatography-tandem mass spectrometry, we measured levels of AngII and its metabolites, Ang III, Ang IV, and Ang-1-7, in neuronal cell culture media after administration of exogenous AngII (100 nmol/L) to a neuronal cell culture model (CATH.a neurons). AngII levels rapidly declined in the media, returning to near baseline levels within 3 h of administration. Additionally, levels of Ang III and Ang-1-7 acutely increased, while levels of Ang IV remained unchanged. Replenishing the media with exogenous AngII every 3 h for 24 h resulted in a consistent and significant increase in AngII levels for the duration of the treatment period. These data indicate that AngII is rapidly metabolized in neuronal cell culture media, and replenishing the media at least every 3 h is needed to sustain chronically elevated levels. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  14. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    OpenAIRE

    Lee, Youngseok; Oh, Woongkyo; Dao, Vinh Ai; Hussain, Shahzada Qamar; Yi, Junsin

    2012-01-01

    It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT) solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO) process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0) which improves the efficie...

  15. Rapid degradation of abnormal proteins in vacuoles from Acer pseudoplatanus L. cells

    International Nuclear Information System (INIS)

    Canut, H.; Alibert, G.; Carrasco, A.; Boudet, A.M.

    1986-01-01

    In Acer pseudoplatanus cells, the proteins synthesized in the presence of an amino acid analog ([ 14 C]p-fluorophenylalanine), were degraded more rapidly than normal ones ([ 14 C]phenylalanine as precursor). The degradation of an important part of these abnormal proteins occurred inside the vacuoles. The degradation process was not apparently associated to a specific proteolytic system but was related to a preferential transfer of these aberrant proteins from the cytoplasm to the vacuole

  16. Gas industry construction expenditures to grow rapidly

    International Nuclear Information System (INIS)

    Quarles, W.R.

    1991-01-01

    Between 1991 and 1993, the natural gas industry will invest $28.297 billion to install additional facilities for natural gas production and storage, transmission, underground storage, gas distribution and for other general expenditures, estimates the American Gas Association as shown in the 1990 Gas Facts. This is a 38% investment increase from the forecasts in the 1989 Gas Facts. This issue forecasts investments of $13.303 billion for 1991 and $18.396 billion for 1992. This issue does not include investments for 1993. In 1989, (the last figures released) the gas industry invested $7,341 billion for new transmission lines, distribution mains, underground storage, production and storage and general facilities. Included in the 1989 expenditures are: $3.980 billion in distribution facilities; $2.081 billion in gas transmission systems and $159 million in underground storage facilities. Investment in new distribution facilities in 1991 and $4.550 billion in 1993. This is a steady increase for these three years. Investments in natural gas transmission facilities show a steady increase also. In 1991, pipe line operating companies will invest $9.391 billion for new facilities, $9.005 in 1992 and $9.901 billion in 1993

  17. Advanced diffusion system for low contamination in-line rapid thermal processing of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Biro, D.; Preu, R.; Schultz, O.; Peters, S.; Huljic, D.M.; Zickermann, D.; Schindler, R.; Luedemann, R.; Willeke, G. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    2002-10-01

    A novel diffusion system for in-line rapid thermal diffusion is presented. The lamp-heated furnace has a low thermal mass and a metal free transport system based on the walking beam principle. The furnace has been used to process first solar cells with lightly and highly doped emitters respectively. Solar cells with shallow lightly doped emitters show that the emitters processed in the new device can be well passivated. Shallow emitters with sheet resistances of up to 40/sq. have been contacted successfully by means of screen printing and firing through a SiN{sub x} antireflection coating. (author)

  18. Rapid-mixing studies on the time-scale of radiation damage in cells

    International Nuclear Information System (INIS)

    Adams, G.E.; Michael, B.D.; Asquith, J.C.; Shenoy, M.A.; Watts, M.E.; Whillans, D.W.

    1975-01-01

    Rapid mixing studies were performed to determine the time scale of radiation damage in cells. There is evidence that the sensitizing effects of oxygen and other chemical dose-modifying agents on the response of cells to ionizing radiation involve fast free-radical processes. Fast response technique studies in bacterial systems have shown that extremely fast processes occur when the bacteria are exposed to oxygen or other dose-modifying agents during irradiation. The time scales observed were consistent with the involvement of fast free-radical reactions in the expression of these effects

  19. Rapid Fatal Outcome from Pulmonary Arteries Compression in Transitional Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ioannis A. Voutsadakis

    2009-01-01

    Full Text Available Transitional cell carcinoma of the urinary bladder is a malignancy that metastasizes frequently to lymph nodes including the mediastinal lymph nodes. This occurrence may produce symptoms due to compression of adjacent structures such as the superior vena cava syndrome or dysphagia from esophageal compression. We report the case of a 59-year-old man with metastatic transitional cell carcinoma for whom mediastinal lymphadenopathy led to pulmonary artery compression and a rapidly fatal outcome. This rare occurrence has to be distinguished from pulmonary embolism, a much more frequent event in cancer patients, in order that proper and prompt treatment be initiated.

  20. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology.

    Science.gov (United States)

    Sundaram, S K; Sacksteder, Colette A; Weber, Thomas J; Riley, Brian J; Addleman, R Shane; Harrer, Bruce J; Peterman, John W

    2013-01-01

    A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live cells interact with an external stimulus, such as a nanosized particle, and the toxicity and broad risk associated with these stimuli. It is difficult to capture the complexity and dynamics of these interactions by following omics-based approaches exclusively, which can be expensive and time-consuming. Attenuated total reflectance-Fourier transform infrared spectroscopy is well suited to provide noninvasive live-cell monitoring of cellular responses to potentially toxic nanosized particles or other stimuli. This alternative approach provides the ability to carry out rapid toxicity screenings and nondisruptive monitoring of live-cell cultures. We review the technical basis of the approach, the instrument configuration and interface with the biological media, the various effects that impact the data, subsequent data analysis and toxicity, and present some preliminary results on live-cell monitoring.

  1. Application of rapid thermal processing on SiNx thin film to solar cells

    Institute of Scientific and Technical Information of China (English)

    Youjie LI; Peiqing LUO; Zhibin ZHOU; Rongqiang CUI; Jianhua HUANG; Jingxiao WANG

    2008-01-01

    Rapid thermal processing (RTP) of SiNx thin films from PECVD with low temperature was investigated. A special processing condition of this technique which could greatly increase the minority lifetime was found in the experiments. The processing mechanism and the application of the technique to silicon solar cells fabrication were dis-cussed. A main achievement is an increase of the minority lifetime in silicon wafer with SiNx thin film by about 200% after the RTP was reached. PC-1D simulation results exhibit an enhancement of the efficiency of the solar cell by 0.42% coming from the minority lifetime improvement. The same experiment was also conducted with P-diffusion silicon wafers, but the increment of minority lifetime is just about 55%. It could be expected to improve the solar cell efficiency if it would be used in silicon solar cells fabrication with the combination of laser firing contact technique.

  2. Rapid detection of bacterial contamination in cell or tissue cultures based on Raman spectroscopy

    Science.gov (United States)

    Bolwien, Carsten; Sulz, Gerd; Becker, Sebastian; Thielecke, Hagen; Mertsching, Heike; Koch, Steffen

    2008-02-01

    Monitoring the sterility of cell or tissue cultures is an essential task, particularly in the fields of regenerative medicine and tissue engineering when implanting cells into the human body. We present a system based on a commercially available microscope equipped with a microfluidic cell that prepares the particles found in the solution for analysis, a Raman-spectrometer attachment optimized for non-destructive, rapid recording of Raman spectra, and a data acquisition and analysis tool for identification of the particles. In contrast to conventional sterility testing in which samples are incubated over weeks, our system is able to analyze milliliters of supernatant or cell suspension within hours by filtering relevant particles and placing them on a Raman-friendly substrate in the microfluidic cell. Identification of critical particles via microscopic imaging and subsequent image analysis is carried out before micro-Raman analysis of those particles is then carried out with an excitation wavelength of 785 nm. The potential of this setup is demonstrated by results of artificial contamination of samples with a pool of bacteria, fungi, and spores: single-channel spectra of the critical particles are automatically baseline-corrected without using background data and classified via hierarchical cluster analysis, showing great promise for accurate and rapid detection and identification of contaminants.

  3. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity

    Directory of Open Access Journals (Sweden)

    Thiel Cora S

    2012-01-01

    Full Text Available Abstract In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.

  4. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications.

    Directory of Open Access Journals (Sweden)

    Sarah E Kelly

    2010-04-01

    Full Text Available Cancer stem cells (CSCs are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133+] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB (Celdyne, Houston, TX. For comparison, another bioreactor, the rotary cell culture system (RCCS manufactured by Synthecon (Houston, TX was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133+ cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a +15-fold proliferation of the CD133+ cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (-4.8-fold decrease in the CD133+cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133+ cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.

  5. Rapid, Directed Differentiation of Retinal Pigment Epithelial Cells from Human Embryonic or Induced Pluripotent Stem Cells

    OpenAIRE

    Foltz, LP; Clegg, DO

    2017-01-01

    We describe a robust method to direct the differentiation of pluripotent stem cells into retinal pigment epithelial cells (RPE). The purpose of providing a detailed and thorough protocol is to clearly demonstrate each step and to make this readily available to researchers in the field. This protocol results in a homogenous layer of RPE with minimal or no manual dissection needed. The method presented here has been shown to be effective for induced pluripotent stem cells (iPSC) and human embry...

  6. A Rapid Cell Expansion Process for Production of Engineered Autologous CAR-T Cell Therapies.

    Science.gov (United States)

    Lu, Tangying Lily; Pugach, Omar; Somerville, Robert; Rosenberg, Steven A; Kochenderfer, James N; Better, Marc; Feldman, Steven A

    2016-12-01

    The treatment of B-cell malignancies by adoptive cell transfer (ACT) of anti-CD19 chimeric antigen receptor T cells (CD19 CAR-T) has proven to be a highly successful therapeutic modality in several clinical trials. 1-6 The anti-CD19 CAR-T cell production method used to support initial trials relied on numerous manual, open process steps, human serum, and 10 days of cell culture to achieve a clinical dose. 7 This approach limited the ability to support large multicenter clinical trials, as well as scale up for commercial cell production. Therefore, studies were completed to streamline and optimize the original National Cancer Institute production process by removing human serum from the process in order to minimize the risk of viral contamination, moving process steps from an open system to functionally closed system operations in order to minimize the risk of microbial contamination, and standardizing additional process steps in order to maximize process consistency. This study reports a procedure for generating CD19 CAR-T cells in 6 days, using a functionally closed manufacturing process and defined, serum-free medium. This method is able to produce CD19 CAR-T cells that are phenotypically and functionally indistinguishable from cells produced for clinical trials by the previously described production process.

  7. Three-Dimensional Evaluation of the Upper Airway Morphological Changes in Growing Patients with Skeletal Class III Malocclusion Treated by Protraction Headgear and Rapid Palatal Expansion: A Comparative Research.

    Directory of Open Access Journals (Sweden)

    Xueling Chen

    Full Text Available The aim of this study was to evaluate the morphological changes of upper airway after protraction headgear and rapid maxillary expansion (PE treatment in growing patients with Class III malocclusion and maxillary skeletal deficiency compared with untreated Class III patients by cone-beam computed tomography (CBCT.Thirty growing patients who have completed PE therapy were included in PE group. The control group (n = 30 was selected from the growing untreated patients with the same diagnosis. The CBCT scans of the pre-treatment (T1 and post-treatment (T2 of PE group and the control group were collected. Reconstruction and registration of the 3D models of T1 and T2 were completed. By comparing the data obtained from T1, T2 and control group, the morphological changes of the upper airway during the PE treatment were evaluated.Comparing with the data from T1 group, the subspinale (A of maxilla and the upper incisor (UI of the T2 group were moved in the anterior direction. The gnathion (Gn of mandible was moved in the posterior-inferior direction. The displacement of the hyoid bone as well as the length and width of dental arch showed significant difference. The volume and mean cross-sectional area of nasopharynx, velopharynx and glossopharynx region showed significant difference. The largest anteroposterior/the largest lateral (AP/LR ratios of the velopharynx and glossopharynx were increased, but the AP/LR ratio of the hypopharynx was decreased. In addition, the length and width of the maxillary dental arch, the displacement of the hyoid bone, the volume of nasopharynx and velopharynx, and the AP/LR ratio of the hypopharynx and velopharynx showed significant difference between the data from control and T2 group.The PE treatment of Class III malocclusion with maxillary skeletal hypoplasia leads to a significant increase in the volume of nasopharynx and velopharynx.

  8. Cell cultures in uterine leiomyomas: rapid disappearance of cells carrying MED12 mutations.

    Science.gov (United States)

    Nadine Markowski, Dominique; Tadayyon, Mahboobeh; Bartnitzke, Sabine; Belge, Gazanfer; Maria Helmke, Burkhard; Bullerdiek, Jörn

    2014-04-01

    Uterine leiomyomas (UL) are the most frequent symptomatic human tumors. Nevertheless, their molecular pathogenesis is not yet fully understood. To learn more about the biology of these common neoplasms and their response to treatment, cell cultures derived from UL are a frequently used model system, but until recently appropriate genetic markers confirming their origin from the tumor cell population were lacking for most UL, i.e., those not displaying karyotypic abnormalities. The identification of MED12 mutations in the majority of UL makes it possible to trace the tumor cell population during in vitro passaging in the absence of cytogenetic abnormalities. The present study is addressing the in vitro survival of cells carrying MED12 mutations and its association with karyotypic alterations. The results challenge numerous in vitro studies into the biology and behavior of leiomyomas. Cells of one genetic subtype of UL, i.e., those with rearrangements of the high mobility AT-hook 2 protein gene (HMGA2), seem to be able to proliferate in vitro for many passages whereas tumor cells from the much more frequent MED12-mutated lesions barely survive even the first passages. Apparently, for the most frequent type of human UL no good in vitro model seems to exist because cells do not survive culturing. On the other hand, this inability may point to an Achilles' heel of this type of UL. Copyright © 2014 Wiley Periodicals, Inc.

  9. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology

    Directory of Open Access Journals (Sweden)

    Lihong Jiang

    2018-06-01

    Full Text Available Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade. However, due to complexity of cellular metabolism, the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering. Recently, cell-free protein synthesis system (CFPS has been emerging as an enabling alternative to address challenges in biomanufacturing. This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits (biosensors to speed up design-build-test (DBT cycles of metabolic engineering and synthetic biology. Keywords: Cell-free protein synthesis, Metabolic pathway optimization, Genetic circuits, Metabolic engineering, Synthetic biology

  10. Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium

    International Nuclear Information System (INIS)

    Liu Zhiwei; Yu Xinyuan; Shaikh, Zahir A.

    2008-01-01

    Cadmium (Cd), an endocrine disruptor, can induce a variety of signaling events including the activation of ERK1/2 and AKT. In this study, the involvement of estrogen receptors (ER) in these events was evaluated in three human breast caner cell lines, MCF-7, MDA-MB-231, and SK-BR-3. The Cd-induced signal activation patterns in the three cell lines mimicked those exhibited in response to 17β-estradiol. Specifically, treatment of MCF-7 cells, that express ERα, ERβ and GPR30, to 0.5-10 μM Cd for only 2.5 min resulted in transient phosphorylation of ERK1/2. Cd also triggered a gradual increase and sustained activation of AKT during the 60 min treatment period. In SK-BR-3 cells, that express only GPR30, Cd also caused a transient activation of ERK1/2, but not of AKT. In contrast, in MDA-MB-231 cells, that express only ERβ, Cd was unable to cause rapid activation of either ERK1/2 or AKT. A transient phosphorylation of ERα was also observed within 2.5 min of Cd exposure in the MCF-7 cells. While the estrogen receptor antagonist, ICI 182,780, did not prevent the effect of Cd on these signals, specific siRNA against hERα significantly reduced Cd-induced activation of ERK1/2 and completely blocked the activation of AKT. It is concluded that Cd, like estradiol, can cause rapid activation of ERK1/2 and AKT and that these signaling events are mediated by possible interaction with membrane ERα and GPR30, but not ERβ

  11. Rapid hydrogen charging on metal hydride negative electrode of Fuel Cell/Battery (FCB) systems

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bokkyu; Lee, Sunmook; Kawai, Hiroyuki; Fushimi, Chihiro; Tsutsumi, Atsushi [Collaborative Research Center for Energy Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2009-02-15

    The characteristics of rapid gaseous H{sub 2} charging/electrochemical discharging of the metal hydride negative electrode were investigated for the application in Fuel Cell/Battery (FCB) systems. They were evaluated with the H{sub 2} gas absorption, followed by the subsequent electrochemical discharging in the electrolyte solution (6M KOH). Then, the cyclability of charge-discharge was also examined. It was observed that more than 70% of the theoretical capacity was charged within 10 min with 0.3 MPa and 0.5 MPa of the initial H{sub 2} pressures. The electrochemical discharge curve showed that more than 86% of the absorbed H{sub 2} was discharged. Furthermore, the cycled charge-discharge process indicated that the H{sub 2} gas charge and electrochemical discharge process is an effective way to rapidly charge and activate the metal hydride without degeneration. (author)

  12. A distinct hematopoietic stem cell population for rapid multilineage engraftment in nonhuman primates.

    Science.gov (United States)

    Radtke, Stefan; Adair, Jennifer E; Giese, Morgan A; Chan, Yan-Yi; Norgaard, Zachary K; Enstrom, Mark; Haworth, Kevin G; Schefter, Lauren E; Kiem, Hans-Peter

    2017-11-01

    Hematopoietic reconstitution after bone marrow transplantation is thought to be driven by committed multipotent progenitor cells followed by long-term engrafting hematopoietic stem cells (HSCs). We observed a population of early-engrafting cells displaying HSC-like behavior, which persisted long-term in vivo in an autologous myeloablative transplant model in nonhuman primates. To identify this population, we characterized the phenotype and function of defined nonhuman primate hematopoietic stem and progenitor cell (HSPC) subsets and compared these to human HSPCs. We demonstrated that the CD34 + CD45RA - CD90 + cell phenotype is highly enriched for HSCs. This population fully supported rapid short-term recovery and robust multilineage hematopoiesis in the nonhuman primate transplant model and quantitatively predicted transplant success and time to neutrophil and platelet recovery. Application of this cell population has potential in the setting of HSC transplantation and gene therapy/editing approaches. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    Science.gov (United States)

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment.

  14. Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury.

    Science.gov (United States)

    Kim, Dae-Sung; Jung, Se Jung; Lee, Jae Souk; Lim, Bo Young; Kim, Hyun Ah; Yoo, Jeong-Eun; Kim, Dong-Wook; Leem, Joong Woo

    2017-07-28

    Remyelination via the transplantation of oligodendrocyte precursor cells (OPCs) has been considered as a strategy to improve the locomotor deficits caused by traumatic spinal cord injury (SCI). To date, enormous efforts have been made to derive OPCs from human pluripotent stem cells (hPSCs), and significant progress in the transplantation of such cells in SCI animal models has been reported. The current methods generally require a long period of time (>2 months) to obtain transplantable OPCs, which hampers their clinical utility for patients with SCI. Here we demonstrate a rapid and efficient method to differentiate hPSCs into neural progenitors that retain the features of OPCs (referred to as OPC-like cells). We used cell sorting to select A2B5-positive cells from hPSC-derived neural rosettes and cultured the selected cells in the presence of signaling cues, including sonic hedgehog, PDGF and insulin-like growth factor-1. This method robustly generated neural cells positive for platelet-derived growth factor receptor-α (PDGFRα) and NG2 (~90%) after 4 weeks of differentiation. Behavioral tests revealed that the transplantation of the OPC-like cells into the spinal cords of rats with contusive SCI at the thoracic level significantly improved hindlimb locomotor function. Electrophysiological assessment revealed enhanced neural conduction through the injury site. Histological examination showed increased numbers of axon with myelination at the injury site and graft-derived myelin formation with no evidence of tumor formation. Our method provides a cell source from hPSCs that has the potential to recover motor function following SCI.

  15. Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor

    OpenAIRE

    Obata, Fumiaki; Tanaka, Shiho; Kashio, Soshiro; Tsujimura, Hidenobu; Sato, Ryoichi; Miura, Masayuki

    2015-01-01

    Background Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Results Herein, we established a method for inducing rapid and selective cell necrosis by...

  16. Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae

    International Nuclear Information System (INIS)

    Edwards, J.E. Jr.; Rotrosen, D.; Fontaine, J.W.; Haudenschild, C.C.; Diamond, R.D.

    1987-01-01

    Interactions were studied between human neutrophils and cultured human umbilical vein endothelial cells invaded by Candida albicans. In the absence of neutrophils, progressive Candida germination and hyphal growth extensively damaged endothelial cell monolayers over a period of 4 to 6 hours, as determined both by morphological changes and release of 51 Cr from radiolabeled endothelial cells. Monolayers were completely destroyed and replaced by hyphae after 18 hours of incubation. In contrast, when added 2 hours after the monolayers had been infected with Candida, neutrophils selectively migrated toward and attached to hyphae at points of hyphal penetration into individual endothelial cells (observed by time-lapse video-microscopy). Attached neutrophils spread over hyphal surfaces both within and beneath the endothelial cells; neutrophil recruitment to initial sites of leukocyte-Candida-endothelial cell interactions continued throughout the first 60 minutes of observation. Neutrophil spreading and stasis were observed only along Candida hyphae and at sites of Candida-endothelial cell interactions. These events resulted in 58.0% killing of Candida at 2 hours and subsequent clearance of Candida from endothelial cell monolayers, as determined by microcolony counts and morphological observation. On introduction of additional neutrophils to yield higher ratios of neutrophils to endothelial cells (10 neutrophils:1 endothelial cell), neutrophil migration toward hyphal elements continued. Despite retraction or displacement of occasional endothelial cells by invading Candida and neutrophils, most endothelial cells remained intact, viable, and motile as verified both by morphological observations and measurement of 51 Cr release from radiolabeled monolayers

  17. Measurement of the Extracellular pH of Adherently Growing Mammalian Cells with High Spatial Resolution Using a Voltammetric pH Microsensor.

    Science.gov (United States)

    Munteanu, Raluca-Elena; Stǎnicǎ, Luciana; Gheorghiu, Mihaela; Gáspár, Szilveszter

    2018-05-15

    There are only a few tools suitable for measuring the extracellular pH of adherently growing mammalian cells with high spatial resolution, and none of them is widely used in laboratories around the world. Cell biologists very often limit themselves to measuring the intracellular pH with commercially available fluorescent probes. Therefore, we built a voltammetric pH microsensor and investigated its suitability for monitoring the extracellular pH of adherently growing mammalian cells. The voltammetric pH microsensor consisted of a 37 μm diameter carbon fiber microelectrode modified with reduced graphene oxide and syringaldazine. While graphene oxide was used to increase the electrochemically active surface area of our sensor, syringaldazine facilitated pH sensing through its pH-dependent electrochemical oxidation and reduction. The good sensitivity (60 ± 2.5 mV/pH unit), reproducibility (coefficient of variation ≤3% for the same pH measured with 5 different microsensors), and stability (pH drift around 0.05 units in 3 h) of the built voltammetric pH sensors were successfully used to investigate the acidification of the extracellular space of both cancer cells and normal cells. The results indicate that the developed pH microsensor and the perfected experimental protocol based on scanning electrochemical microscopy can reveal details of the pH regulation of cells not attainable with pH sensors lacking spatial resolution or which cannot be reproducibly positioned in the extracellular space.

  18. Electromechanical transducer for rapid detection, discrimination and quantification of lung cancer cells

    International Nuclear Information System (INIS)

    Ali, Waqas; Raza, Muhammad Usman; Iqbal, Samir M; Moghaddam, Fatemeh Jalvhei; Bui, Loan; Sayles, Bailey; Kim, Young-Tae

    2016-01-01

    Tumor cells are malignant derivatives of normal cells. There are characteristic differences in the mechanophysical properties of normal and tumor cells, and these differences stem from the changes that occur in the cell cytoskeleton during cancer progression. There is a need for viable whole blood processing techniques for rapid and reliable tumor cell detection that do not require tagging. Micropore biosensors have previously been used to differentiate tumor cells from normal cells and we have used a micropore-based electromechanical transducer to differentiate one type of tumor cells from the other types. This device generated electrical signals that were characteristic of the cell properties. Three non-small cell lung cancer (NSCLC) cell lines, NCl-H1155, A549 and NCI-H460, were successfully differentiated. NCI-H1155, due to their comparatively smaller size, were found to be the quickest in translocating through the micropore. Their translocation through a 15 μm micropore caused electrical pulses with an average translocation time of 101 ± 9.4 μs and an average peak amplitude of 3.71 ± 0.42 μA, whereas translocation of A549 and NCI-H460 caused pulses with average translocation times of 126 ± 17.9 μs and 148 ± 13.7 μs and average peak amplitudes of 4.58 ± 0.61 μA and 5.27 ± 0.66 μA, respectively. This transformation of the differences in cell properties into differences in the electrical profiles (i.e. the differences in peak amplitudes and translocation times) with this electromechanical transducer is a quantitative way to differentiate these lung cancer cells. The solid-state micropore device processed whole biological samples without any pre-processing requirements and is thus ideal for point-of-care applications. (paper)

  19. Design and implementation of a rapid-mixer flow cell for time-resolved infrared microspectroscopy

    International Nuclear Information System (INIS)

    Marinkovic, Nebojsa S.; Adzic, Aleksandar R.; Sullivan, Michael; Kovacs, Kevin; Miller, Lisa M.; Rousseau, Denis L.; Yeh, Syun-Ru; Chance, Mark R.

    2000-01-01

    A rapid mixer for the analysis of reactions in the millisecond and submillisecond time domains by Fourier-transform infrared microspectroscopy has been constructed. The cell was tested by examination of cytochrome-c folding kinetics. The device allows collection of full infrared spectral data on millisecond and faster time scales subsequent to chemical jump reaction initiation. The data quality is sufficiently good such that spectral fitting techniques could be applied to analysis of the data. Thus, this method provides an advantage over kinetic measurements at single wavelengths using infrared laser or diode sources, particularly where band overlap exists

  20. Use of Growing Cells of Pseudomonas aeruginosa for Synthesis of the Natural Vanillin via Conversion of Isoeugenol

    OpenAIRE

    Ashengroph, Morahem; Nahvi, Iraj; Zarkesh-Esfahani, Hamid; Momenbeik, Fariborz

    2011-01-01

    The great demand of people for consumption of natural additives resulted in producing natural vanillin. There are plant sources and chemical procedures for vanillin production but microbial bioconversions are being sought as a suitable alternative. In the present work, the ability to produce vanillin from isoeugenol was screened using growing cultures of various bacteria. Among the 56 strains of bacteria isolated from the soil environments of Iran, a Gram-negative rod designated as strain ISP...

  1. Rapid preparation of a noncultured skin cell suspension that promotes wound healing.

    Science.gov (United States)

    Yoon, Cheonjae; Lee, Jungsuk; Jeong, Hyosun; Lee, Sungjun; Sohn, Taesik; Chung, Sungphil

    2017-06-01

    Autologous skin cell suspensions have been used for wound healing in patients with burns and against normal pigmentation in vitiligo. To separate cells and the extracellular matrix from skin tissue, most researchers use enzymatic digestion. Therefore, this process is difficult to perform during a routine surgical procedure. We aimed to prepare a suspension of noncultured autologous skin cells (NCSCs) using a tissue homogenizer as a new method instead of harsh biochemical reagents. The potential clinical applicability of NCSCs was analyzed using a nude-rat model of burn healing. After optimization of the homogenizer settings, cell viability ranged from 52 to 89%. Scanning electron microscopy showed evidence of keratinocyte-like cell morphology, and several growth factors, including epidermal growth factor and basic fibroblast growth factor, were present in the NCSCs. The rat model revealed that NCSCs accelerated skin regeneration. NCSCs could be generated using a tissue homogenizer for enhancement of wound healing in vivo. In the NCSC group of wounds, on day 7 of epithelialization, granulation was observed, whereas on day 14, there was a significant increase in skin adnexa regeneration as compared to the control group (PBS treatment; p study suggests that the proposed process is rapid and does not require the use of biochemical agents. Thus, we recommend a combination of surgical treatment with the new therapy for a burn as an effective method.

  2. Late post-irradiation phenomena in mammalian cell populations. Pt. 3. Characteristics of the slowly growing clones isolated from X-irradiated L5178Y-S cell cultures

    International Nuclear Information System (INIS)

    Beer, J.Z.; Szumiel, I.

    1975-01-01

    Populations of murine leukaemic lymphoblasts L5178Y-S irradiated with 300 rads of X-rays in vitro were analysed by serial clonings. It was found that the latent radiation-induced heritable lesions can be revealed by this technique. Approximately 100 slowly growing cell sublines with doubling times varying from 12 to 25 h, obtained by cloning, were assayed for: viability, cloning efficiency, mitotic index, labelling index (1 h and 24 h exposure to 3 H-thymidine), 3 H-thymidine incorporation rate, histone Fl phosphorous content, radiosensitivity, cell cycle disturbances, DNA per cell content, karyotype changes. The slowly-growing clones show normal or almost normal viability but have reduced cloning efficiencies. No correlations were found between the subline's doubling time or time interval between its isolation and determination, on one hand, and mitotic index or 1 h labelling index, on the other hand. 3 H-thymidine incorporation rate and histone Fl phosphorylation degree were inversely related to the subline's doubling time. Increased radiosensitivity of the slowly growing sublines, observed soon after their isolation, indicates that the heritable lesions in the cells studied are radiation-induced rather than selected. Autoradiographic analysis of the cell cycle indicates: heterogeneity of the slowly growing cell lines, occurence of cells with prolonged G2 phase and a possibility that in more severely damaged cells S phase is also affected. (author)

  3. Rapid Sequential in Situ Multiplexing with DNA Exchange Imaging in Neuronal Cells and Tissues.

    Science.gov (United States)

    Wang, Yu; Woehrstein, Johannes B; Donoghue, Noah; Dai, Mingjie; Avendaño, Maier S; Schackmann, Ron C J; Zoeller, Jason J; Wang, Shan Shan H; Tillberg, Paul W; Park, Demian; Lapan, Sylvain W; Boyden, Edward S; Brugge, Joan S; Kaeser, Pascal S; Church, George M; Agasti, Sarit S; Jungmann, Ralf; Yin, Peng

    2017-10-11

    To decipher the molecular mechanisms of biological function, it is critical to map the molecular composition of individual cells or even more importantly tissue samples in the context of their biological environment in situ. Immunofluorescence (IF) provides specific labeling for molecular profiling. However, conventional IF methods have finite multiplexing capabilities due to spectral overlap of the fluorophores. Various sequential imaging methods have been developed to circumvent this spectral limit but are not widely adopted due to the common limitation of requiring multirounds of slow (typically over 2 h at room temperature to overnight at 4 °C in practice) immunostaining. We present here a practical and robust method, which we call DNA Exchange Imaging (DEI), for rapid in situ spectrally unlimited multiplexing. This technique overcomes speed restrictions by allowing for single-round immunostaining with DNA-barcoded antibodies, followed by rapid (less than 10 min) buffer exchange of fluorophore-bearing DNA imager strands. The programmability of DEI allows us to apply it to diverse microscopy platforms (with Exchange Confocal, Exchange-SIM, Exchange-STED, and Exchange-PAINT demonstrated here) at multiple desired resolution scales (from ∼300 nm down to sub-20 nm). We optimized and validated the use of DEI in complex biological samples, including primary neuron cultures and tissue sections. These results collectively suggest DNA exchange as a versatile, practical platform for rapid, highly multiplexed in situ imaging, potentially enabling new applications ranging from basic science, to drug discovery, and to clinical pathology.

  4. Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.

    Science.gov (United States)

    Erickson, John J; Lu, Pengcheng; Wen, Sherry; Hastings, Andrew K; Gilchuk, Pavlo; Joyce, Sebastian; Shyr, Yu; Williams, John V

    2015-11-01

    Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors. Copyright © 2015 by The American Association of Immunologists, Inc.

  5. Heterotrophic Bioleaching of Sulfur, Iron, and Silicon Impurities from Coal by Fusarium oxysporum FE and Exophiala spinifera FM with Growing and Resting Cells.

    Science.gov (United States)

    Etemadzadeh, Shekoofeh Sadat; Emtiazi, Giti; Etemadifar, Zahra

    2016-06-01

    Coal is the most abundant fossil fuel containing sulfur and other elements which promote environmental pollution after burning. Also the silicon impurities make the transportation of coal expensive. In this research, two isolated fungi from oil contaminated soil with accessory number KF554100 (Fusarium oxysporum FE) and KC925672 (Exophiala spinifera FM) were used for heterotrophic biological leaching of coal. The leaching were detected by FTIR, CHNS, XRF analyzer and compared with iron and sulfate released in the supernatant. The results showed that E. spinifera FM produced more acidic metabolites in growing cells, promoting the iron and sulfate ions removal while resting cells of F. oxysporum FE enhanced the removal of aromatic sulfur. XRF analysis showed that the resting cells of E. spinifera FM proceeded maximum leaching for iron and silicon (48.8, 43.2 %, respectively). CHNS analysis demonstrated that 34.21 % of sulfur leaching was due to the activities of resting cells of F. oxysporum FE. Also F. oxysporum FE removed organic sulfur more than E. spinifera FM in both growing and resting cells. FTIR data showed that both fungi had the ability to remove pyrite and quartz from coal. These data indicated that inoculations of these fungi to the coal are cheap and impurity removals were faster than autotrophic bacteria. Also due to the removal of dibenzothiophene, pyrite, and quartz, we speculated that they are excellent candidates for bioleaching of coal, oil, and gas.

  6. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases.

    Science.gov (United States)

    Barrett, P Noel; Terpening, Sara J; Snow, Doris; Cobb, Ronald R; Kistner, Otfried

    2017-09-01

    Rapid development and production of vaccines against emerging diseases requires well established, validated, robust technologies to allow industrial scale production and accelerated licensure of products. Areas covered: A versatile Vero cell platform has been developed and utilized to deliver a wide range of candidate and licensed vaccines against emerging viral diseases. This platform builds on the 35 years' experience and safety record with inactivated whole virus vaccines such as polio vaccine. The current platform has been optimized to include a novel double inactivation procedure in order to ensure a highly robust inactivation procedure for novel emerging viruses. The utility of this platform in rapidly developing inactivated whole virus vaccines against pandemic (-like) influenza viruses and other emerging viruses such as West Nile, Chikungunya, Ross River and SARS is reviewed. The potential of the platform for development of vaccines against other emerging viruses such as Zika virus is described. Expert commentary: Use of this platform can substantially accelerate process development and facilitate licensure because of the substantial existing data set available for the cell matrix. However, programs to provide vaccines against emerging diseases must allow alternative clinical development paths to licensure, without the requirement to carry out large scale field efficacy studies.

  7. Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells.

    Science.gov (United States)

    Babica, Pavel; Zurabian, Rimma; Kumar, Esha R; Chopra, Rajus; Mianecki, Maxwell J; Park, Joon-Suk; Jaša, Libor; Trosko, James E; Upham, Brad L

    2016-09-01

    Methoxychlor (MXC) and vinclozolin (VIN) are well-recognized endocrine disrupting chemicals known to alter epigenetic regulations and transgenerational inheritance; however, non-endocrine disruption endpoints are also important. Thus, we determined the effects of MXC and VIN on the dysregulation of gap junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) in WB-F344 rat liver epithelial cells. Both chemicals induced a rapid dysregulation of GJIC at non-cytotoxic doses, with 30 min EC50 values for GJIC inhibition being 10 µM for MXC and 126 µM for VIN. MXC inhibited GJIC for at least 24 h, while VIN effects were transient and GJIC recovered after 4 h. VIN induced rapid hyperphosphorylation and internalization of gap junction protein connexin43, and both chemicals also activated MAPK ERK1/2 and p38. Effects on GJIC were not prevented by MEK1/2 inhibitor, but by an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), resveratrol, and in the case of VIN, also, by a p38 inhibitor. Estrogen (ER) and androgen receptor (AR) modulators (estradiol, ICI 182,780, HPTE, testosterone, flutamide, VIN M2) did not attenuate MXC or VIN effects on GJIC. Our data also indicate that the effects were elicited by the parental compounds of MXC and VIN. Our study provides new evidence that MXC and VIN dysregulate GJIC via mechanisms involving rapid activation of PC-PLC occurring independently of ER- or AR-dependent genomic signaling. Such alterations of rapid intercellular and intracellular signaling events involved in regulations of gene expression, tissue development, function and homeostasis, could also contribute to transgenerational epigenetic effects of endocrine disruptors. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection.

    Science.gov (United States)

    Almeida, F F; Belz, G T

    2016-09-01

    Innate lymphoid cells (ILCs) have stormed onto the immune landscape as "newly discovered" cell types. These tissue-resident sentinels are enriched at mucosal surfaces and engage in complex cross talk with elements of the adaptive immune system and microenvironment to orchestrate immune homeostasis. Many parallels exist between innate cells and T cells leading to the initial partitioning of ILCs into rather rigid subsets that reflect their "adaptive-like" effector cytokines profiles. ILCs themselves, however, have unique attributes that are only just beginning to be elucidated. These features result in complementarity with, rather than complete duplication of, functions of the adaptive immune system. Key transcription factors determine the pathway of differentiation of progenitors towards an ILC1, ILC2, or ILC3 subset. Once formed, flexibility in the responses of these subsets to stimuli unexpectedly allows transdifferentation between the different subsets and the acquisition of altered phenotypes and function. This provides a mechanism for rapid innate immune responsiveness. Here, we discuss the models of differentiation for maintenance and activation of tissue-resident ILCs in maintaining immune homeostasis and protection.

  9. Integration of nanoparticle cell lysis and microchip PCR for one-step rapid detection of bacteria.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2012-04-01

    This paper describes an integrated microchip system as an efficient and cost-effective solution involving Nanotechnology and Lab-on-a-Chip technology for the rapid detection of bacteria. The system is based on using surface-modified gold nanoparticles for efficient cell lysis followed by microchip PCR without having to remove the nanoparticles from the PCR solution. Poly(quaternary ammonium) modified gold nanoparticles are used to provide a novel and efficient cell lysis method without the need to go through time-consuming, expensive and complicated microfabrication processes as most of current cell lysis methods for Lab-on-a-Chip applications do. It also facilitates the integration of cell lysis and PCR by sharing the same reaction chamber as PCR uses. It is integrated with a prototype microchip PCR system consisting of a physical microchip PCR device and an automated temperature control mechanism. The research work explores solutions for the problem of PCR inhibition caused by gold nanoparticles as well as for the problem of non-specific PCR amplification in the integrated microchip system. It also explores the possibility of greatly reducing PCR cycling time to achieve the same result compared to the protocol for a regular PCR machine. The simplicity of the setup makes it easy to be integrated with other Lab-on-a-Chip functional modules to create customized solutions for target applications.

  10. A rapid chemical method for lysing Arabidopsis cells for protein analysis

    Directory of Open Access Journals (Sweden)

    Takano Tetsuo

    2011-07-01

    Full Text Available Abstract Background Protein extraction is a frequent procedure in biological research. For preparation of plant cell extracts, plant materials usually have to be ground and homogenized to physically break the robust cell wall, but this step is laborious and time-consuming when a large number of samples are handled at once. Results We developed a chemical method for lysing Arabidopsis cells without grinding. In this method, plants are boiled for just 10 minutes in a solution containing a Ca2+ chelator and detergent. Cell extracts prepared by this method were suitable for SDS-PAGE and immunoblot analysis. This method was also applicable to genomic DNA extraction for PCR analysis. Our method was applied to many other plant species, and worked well for some of them. Conclusions Our method is rapid and economical, and allows many samples to be prepared simultaneously for protein analysis. Our method is useful not only for Arabidopsis research but also research on certain other species.

  11. [Effects of allitridum on rapidly delayed rectifier potassium current in HEK293 cell line].

    Science.gov (United States)

    Zhang, Jiancheng; Lin, Kun; Wei, Zhixiong; Chen, Qian; Liu, Li; Zhao, Xiaojing; Zhao, Ying; Xu, Bin; Chen, Xi; Li, Yang

    2015-08-01

    To study the effect of allitridum on rapidly delayed rectifier potassium current (IKr) in HEK293 cell line. HEK293 cells were transiently transfected with HERG channel cDNA plasmid pcDNA3.1 via Lipofectamine. Allitridum was added to the extracellular solution by partial perfusion after giga seal at the final concentration of 30 µmol/L. Whole-cell patch clamp technique was used to record the HERG currents and gating kinetics before and after allitridum exposure at room temperature. The amplitude and density of IHERG were both suppressed by allitridum in a voltage-dependent manner. In the presence of allitridum, the peak current of IHERG was reduced from 73.5∓4.3 pA/pF to 42.1∓3.6 pA/pF at the test potential of +50 mV (P<0.01). Allitridum also concentration-dependently decreased the density of the IHERG. The IC50 of allitridum was 34.74 µmol/L with a Hill coefficient of 1.01. Allitridum at 30 µmol/L caused a significant positive shift of the steady-state activation curve of IHERG and a markedly negative shift of the steady-state inactivation of IHERG, and significantly shortened the slow time constants of IHERG deactivation. Allitridum can potently block IHERG in HEK293 cells, which might be the electrophysiological basis for its anti-arrhythmic action.

  12. Rapid onset of squamous cell carcinoma in a thin skin graft donor site.

    Science.gov (United States)

    Herard, C; Arnaud, D; Goga, D; Rousseau, P; Potier, B

    2016-01-01

    Squamous cell carcinomas are malignant tumours of epithelial origin that can appear on sites subjected to chronic inflammation after a period of several years. The rapid development of squamous cell carcinoma at the donor site for a thin skin graft is a rare and poorly understood situation. We report the case of a patient undergoing thin skin grafting to cover the area of removal of a vertex squamous cell carcinoma and in whom squamous cell carcinoma appeared at the donor site within 9 weeks. In our case, we ruled out intraoperative contamination because two sets of surgical instruments were used. Given the number of cases reported in the literature, a chance event seems unlikely. The hypothesis of an acute inflammatory process caused by scarring of the thin skin graft site appears to us the most convincing. Development of cancer at the graft donor site may thus be added to the list of complications of thin skin grafting. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Rapid bioelectric reaction of elodea leaf cells to the UV radiation

    International Nuclear Information System (INIS)

    Aliev, D.A.; Mamedov, T.G.; Akhmedov, I.S.; Khalilov, R.I.

    1984-01-01

    It has been established that changes of membrane potential (MP) of elodea leaf cells in the UV radiation are manifested in a form of rapid response reaction, which is similar to an action potential. At present a lot of new data confirming the existence of electrogenic proton pump on plasmalemma plant cells is making their appearance. The plant cell membrane potential consists of two components: equilibrium( passive) potential and potential created by an electrogenic proton pump. A contribution of the second component to the elodea leaf cell MP is considerable and constitutes more than a half of the total MP. Constant values of membrane conductivity and intracell electric bonds in the process of depolarization development and after MP recovery testify to the fact, that UV radiation does not effect upon the MP passive component. High degree of depolarization and its strong dependence on medium pH and also the observed effect independence on potassium and sodium ions presence in the external medium testify to the fact that UV radiation ingenuously inactivates electrogenic proton pumps

  14. A microfluidic chip for direct and rapid trapping of white blood cells from whole blood

    Science.gov (United States)

    Chen, Jingdong; Chen, Di; Yuan, Tao; Xie, Yao; Chen, Xiang

    2013-01-01

    Blood analysis plays a major role in medical and science applications and white blood cells (WBCs) are an important target of analysis. We proposed an integrated microfluidic chip for direct and rapid trapping WBCs from whole blood. The microfluidic chip consists of two basic functional units: a winding channel to mix and arrays of two-layer trapping structures to trap WBCs. Red blood cells (RBCs) were eliminated through moving the winding channel and then WBCs were trapped by the arrays of trapping structures. We fabricated the PDMS (polydimethylsiloxane) chip using soft lithography and determined the critical flow velocities of tartrazine and brilliant blue water mixing and whole blood and red blood cell lysis buffer mixing in the winding channel. They are 0.25 μl/min and 0.05 μl/min, respectively. The critical flow velocity of the whole blood and red blood cell lysis buffer is lower due to larger volume of the RBCs and higher kinematic viscosity of the whole blood. The time taken for complete lysis of whole blood was about 85 s under the flow velocity 0.05 μl/min. The RBCs were lysed completely by mixing and the WBCs were trapped by the trapping structures. The chip trapped about 2.0 × 103 from 3.3 × 103 WBCs. PMID:24404026

  15. Use of Growing Cells of Pseudomonas aeruginosa for Synthesis of the Natural Vanillin via Conversion of Isoeugenol.

    Science.gov (United States)

    Ashengroph, Morahem; Nahvi, Iraj; Zarkesh-Esfahani, Hamid; Momenbeik, Fariborz

    2011-01-01

    The great demand of people for consumption of natural additives resulted in producing natural vanillin. There are plant sources and chemical procedures for vanillin production but microbial bioconversions are being sought as a suitable alternative. In the present work, the ability to produce vanillin from isoeugenol was screened using growing cultures of various bacteria. Among the 56 strains of bacteria isolated from the soil environments of Iran, a Gram-negative rod designated as strain ISPC2 showed the capability of promoting the formation of high amounts of vanillin when grown in the presence of isoeugenol. On the basis of morphological and physiochemical characteristics and 16S ribosomal ribonucleic acid (rRNA) gene sequence analysis, the isolate was identified as Pseudomonas aeruginosa ISPC2. Vanillin formation was analyzed by GC/FID. In the presence of isoeugenol, a growing culture of P. aeruginosa ISPC2 produced 1.62 g/L vanillin (molar yield of 17.3%) after a 72 h reaction at 30°C and 200 rpm. This proposed procedure is an alternative approach to obtain vanillin in an environmentally friendly way. Further studies for standardization and optimization for higher yield of vanillin production, needs to be investigated.

  16. Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion.

    Science.gov (United States)

    Che, Nanying; Yang, Xinting; Liu, Zichen; Li, Kun; Chen, Xiaoyou

    2017-05-01

    Tuberculous pleurisy is one of the most common types of extrapulmonary tuberculosis, but its diagnosis remains difficult. In this study, we report for the first time on the detection of cell-free Mycobacterium tuberculosis DNA in pleural effusion and an evaluation of a newly developed molecular assay for the detection of cell-free Mycobacterium tuberculosis DNA. A total of 78 patients with pleural effusion, 60 patients with tuberculous pleurisy, and 18 patients with alternative diseases were included in this study. Mycobacterial culture, the Xpert MTB/RIF assay, the adenosine deaminase assay, the T-SPOT.TB assay, and the cell-free Mycobacterium tuberculosis DNA assay were performed on all the pleural effusion samples. The cell-free Mycobacterium tuberculosis DNA assay and adenosine deaminase assay showed significantly higher sensitivities of 75.0% and 68.3%, respectively, than mycobacterial culture and the Xpert MTB/RIF assay, which had sensitivities of 26.7% and 20.0%, respectively ( P pleural effusion showed the highest sensitivity of 95.0% but the lowest specificity of 38.9%. The cell-free Mycobacterium tuberculosis DNA assay detected as few as 1.25 copies of IS 6110 per ml of pleural effusion and showed good accordance of the results between repeated tests ( r = 0.978, P = 2.84 × 10 -10 ). These data suggest that the cell-free Mycobacterium tuberculosis DNA assay is a rapid and accurate molecular test which provides direct evidence of Mycobacterium tuberculosis etiology. Copyright © 2017 American Society for Microbiology.

  17. Cancer cells growing on perfused 3D collagen model produced higher reactive oxygen species level and were more resistant to cisplatin compared to the 2D model.

    Science.gov (United States)

    Liu, Qingxi; Zhang, Zijiang; Liu, Yupeng; Cui, Zhanfeng; Zhang, Tongcun; Li, Zhaohui; Ma, Wenjian

    2018-03-01

    Three-dimensional (3D) collagen scaffold models, due to their ability to mimic the tissue and organ structure in vivo, have received increasing interest in drug discovery and toxicity evaluation. In this study, we developed a perfused 3D model and studied cellular response to cytotoxic drugs in comparison with traditional 2D cell cultures as evaluated by cancer drug cisplatin. Cancer cells grown in perfused 3D environments showed increased levels of reactive oxygen species (ROS) production compared to the 2D culture. As determined by growth analysis, cells in the 3D culture, after forming a spheroid, were more resistant to the cancer drug cisplatin compared to that of the 2D cell culture. In addition, 3D culturing cells showed elevated level of ROS, indicating a physiological change or the formation of a microenvironment that resembles tumor cells in vivo. These data revealed that cellular response to drugs for cells growing in 3D environments are dramatically different from that of 2D cultured cells. Thus, the perfused 3D collagen scaffold model we report here might be a potentially very useful tool for drug analysis.

  18. Two-Step Production of Phenylpyruvic Acid from L-Phenylalanine by Growing and Resting Cells of Engineered Escherichia coli: Process Optimization and Kinetics Modeling.

    Directory of Open Access Journals (Sweden)

    Ying Hou

    Full Text Available Phenylpyruvic acid (PPA is widely used in the pharmaceutical, food, and chemical industries. Here, a two-step bioconversion process, involving growing and resting cells, was established to produce PPA from l-phenylalanine using the engineered Escherichia coli constructed previously. First, the biotransformation conditions for growing cells were optimized (l-phenylalanine concentration 20.0 g·L-1, temperature 35°C and a two-stage temperature control strategy (keep 20°C for 12 h and increase the temperature to 35°C until the end of biotransformation was performed. The biotransformation conditions for resting cells were then optimized in 3-L bioreactor and the optimized conditions were as follows: agitation speed 500 rpm, aeration rate 1.5 vvm, and l-phenylalanine concentration 30 g·L-1. The total maximal production (mass conversion rate reached 29.8 ± 2.1 g·L-1 (99.3% and 75.1 ± 2.5 g·L-1 (93.9% in the flask and 3-L bioreactor, respectively. Finally, a kinetic model was established, and it was revealed that the substrate and product inhibition were the main limiting factors for resting cell biotransformation.

  19. Two-Step Production of Phenylpyruvic Acid from L-Phenylalanine by Growing and Resting Cells of Engineered Escherichia coli: Process Optimization and Kinetics Modeling.

    Science.gov (United States)

    Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2016-01-01

    Phenylpyruvic acid (PPA) is widely used in the pharmaceutical, food, and chemical industries. Here, a two-step bioconversion process, involving growing and resting cells, was established to produce PPA from l-phenylalanine using the engineered Escherichia coli constructed previously. First, the biotransformation conditions for growing cells were optimized (l-phenylalanine concentration 20.0 g·L-1, temperature 35°C) and a two-stage temperature control strategy (keep 20°C for 12 h and increase the temperature to 35°C until the end of biotransformation) was performed. The biotransformation conditions for resting cells were then optimized in 3-L bioreactor and the optimized conditions were as follows: agitation speed 500 rpm, aeration rate 1.5 vvm, and l-phenylalanine concentration 30 g·L-1. The total maximal production (mass conversion rate) reached 29.8 ± 2.1 g·L-1 (99.3%) and 75.1 ± 2.5 g·L-1 (93.9%) in the flask and 3-L bioreactor, respectively. Finally, a kinetic model was established, and it was revealed that the substrate and product inhibition were the main limiting factors for resting cell biotransformation.

  20. Two-Step Production of Phenylpyruvic Acid from L-Phenylalanine by Growing and Resting Cells of Engineered Escherichia coli: Process Optimization and Kinetics Modeling

    Science.gov (United States)

    Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Liu, Long; Du, Guocheng; Chen, Jian

    2016-01-01

    Phenylpyruvic acid (PPA) is widely used in the pharmaceutical, food, and chemical industries. Here, a two-step bioconversion process, involving growing and resting cells, was established to produce PPA from l-phenylalanine using the engineered Escherichia coli constructed previously. First, the biotransformation conditions for growing cells were optimized (l-phenylalanine concentration 20.0 g·L−1, temperature 35°C) and a two-stage temperature control strategy (keep 20°C for 12 h and increase the temperature to 35°C until the end of biotransformation) was performed. The biotransformation conditions for resting cells were then optimized in 3-L bioreactor and the optimized conditions were as follows: agitation speed 500 rpm, aeration rate 1.5 vvm, and l-phenylalanine concentration 30 g·L−1. The total maximal production (mass conversion rate) reached 29.8 ± 2.1 g·L−1 (99.3%) and 75.1 ± 2.5 g·L−1 (93.9%) in the flask and 3-L bioreactor, respectively. Finally, a kinetic model was established, and it was revealed that the substrate and product inhibition were the main limiting factors for resting cell biotransformation. PMID:27851793

  1. Improving the Power Conversion Efficiency of Carbon Quantum Dot-Sensitized Solar Cells by Growing the Dots on a TiO2 Photoanode In Situ

    Directory of Open Access Journals (Sweden)

    Quanxin Zhang

    2017-05-01

    Full Text Available Dye-sensitized solar cells (DSSCs are highly promising since they can potentially solve global energy issues. The development of new photosensitizers is the key to fully realizing perspectives proposed to DSSCs. Being cheap and nontoxic, carbon quantum dots (CQDs have emerged as attractive candidates for this purpose. However, current methodologies to build up CQD-sensitized solar cells (CQDSCs result in an imperfect apparatus with extremely low power conversion efficiencies (PCEs. Herein, we present a simple strategy of growing carbon quantum dots (CQDs onto TiO2 surfaces in situ. The CQDs/TiO2 hybridized photoanode was then used to construct solar cell with an improved PCE of 0.87%, which is higher than all of the reported CQDSCs adopting the simple post-adsorption method. This result indicates that an in situ growing strategy has great advantages in terms of optimizing the performance of CQDSCs. In addition, we have also found that the mechanisms dominating the performance of CQDSCs are different from those behind the solar cells using inorganic semiconductor quantum dots (ISQDs as the photosensitizers, which re-confirms the conclusion that the characteristics of CQDs differ from those of ISQDs.

  2. Memory phenotype CD4 T cells undergoing rapid, nonburst-like, cytokine-driven proliferation can be distinguished from antigen-experienced memory cells.

    Directory of Open Access Journals (Sweden)

    Souheil-Antoine Younes

    2011-10-01

    Full Text Available Memory phenotype (CD44(bright, CD25(negative CD4 spleen and lymph node T cells (MP cells proliferate rapidly in normal or germ-free donors, with BrdU uptake rates of 6% to 10% per day and Ki-67 positivity of 18% to 35%. The rapid proliferation of MP cells stands in contrast to the much slower proliferation of lymphocytic choriomeningitis virus (LCMV-specific memory cells that divide at rates ranging from <1% to 2% per day over the period from 15 to 60 days after LCMV infection. Anti-MHC class II antibodies fail to inhibit the in situ proliferation of MP cells, implying a non-T-cell receptor (TCR-driven proliferation. Such proliferation is partially inhibited by anti-IL-7Rα antibody. The sequence diversity of TCRβ CDR3 gene segments is comparable among the proliferating and quiescent MP cells from conventional and germ-free mice, implying that the majority of proliferating MP cells have not recently derived from a small cohort of cells that expand through multiple continuous rounds of cell division. We propose that MP cells constitute a diverse cell population, containing a subpopulation of slowly dividing authentic antigen-primed memory cells and a majority population of rapidly proliferating cells that did not arise from naïve cells through conventional antigen-driven clonal expansion.

  3. Rapid Treatment of Leukostasis in Leukemic Mantle Cell Lymphoma Using Therapeutic Leukapheresis: A Case Report

    Directory of Open Access Journals (Sweden)

    Xuan Duc Nguyen

    2011-01-01

    Full Text Available We describe a case of severe leukocytosis caused by leukemic mantle cell lymphoma (MCL, complicated by leukostasis with myocardial infarction in which leukapheresis was used in the initial management. A 73-year-old male presented to the emergency department because of fatigue and thoracic pain. Blood count revealed 630 × 109/L WBC (white blood cells. The electrocardiogram showed ST-elevation with an increase of troponin and creatinine kinase. The diagnosis was ST-elevation myocardial infarction (STEMI induced and complicated by leukostasis. Immunophenotyping, morphology, cytogenetic and fluorescence-in-situ-hybridization analysis revealed the diagnosis of a blastoid variant of MCL. To remove leukocytes rapidly, leukapheresis was performed in the intensive care unit. Based on the differential blood count with 95% blasts, which were assigned to the lymphocyte population by the automatic hematology analyzer, leukapheresis procedures were then performed with the mononuclear cell standard program on the Spectra cell separator. The patient was treated with daily leukapheresis for 3 days. The WBC count decreased to 174 × 109/L after the third leukapheresis, with a 72% reduction. After the second apheresis, treatment with vincristine, cyclophosphamide, and prednisolone was started. The patient fully recovered in the further course of the treatment. To the best of our knowledge, this is the first report on blastoid MCL with leukostasis associated with a STEMI that was successfully treated by leukapheresis. Effective harvest of circulating lymphoma cells by leukapheresis requires adaptation of instrument settings based on the results of the differential blood count prior to apheresis.

  4. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Youngseok Lee

    2012-01-01

    Full Text Available It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0 which improves the efficiency of HIT solar cell. The ultrathin thermal passivation silicon oxide (SiO2 layer was deposited by RTO system in the temperature range 500–950°C for 2 to 6 minutes. The thickness of the silicon oxide layer was affected by RTO annealing temperature and treatment time. The best value of surface recombination velocity was recorded for the sample treated at a temperature of 850°C for 6 minutes at O2 flow rate of 3 Lpm. A surface recombination velocity below 25 cm/s was obtained for the silicon oxide layer of 4 nm thickness. This ultrathin SiO2 layer was employed for the fabrication of HIT solar cell structure instead of a-Si:H, (i layer and the passivation and tunneling effects of the silicon oxide layer were exploited. The photocurrent was decreased with the increase of illumination intensity and SiO2 thickness.

  5. A platform for rapid prototyping of synthetic gene networks in mammalian cells

    Science.gov (United States)

    Duportet, Xavier; Wroblewska, Liliana; Guye, Patrick; Li, Yinqing; Eyquem, Justin; Rieders, Julianne; Rimchala, Tharathorn; Batt, Gregory; Weiss, Ron

    2014-01-01

    Mammalian synthetic biology may provide novel therapeutic strategies, help decipher new paths for drug discovery and facilitate synthesis of valuable molecules. Yet, our capacity to genetically program cells is currently hampered by the lack of efficient approaches to streamline the design, construction and screening of synthetic gene networks. To address this problem, here we present a framework for modular and combinatorial assembly of functional (multi)gene expression vectors and their efficient and specific targeted integration into a well-defined chromosomal context in mammalian cells. We demonstrate the potential of this framework by assembling and integrating different functional mammalian regulatory networks including the largest gene circuit built and chromosomally integrated to date (6 transcription units, 27kb) encoding an inducible memory device. Using a library of 18 different circuits as a proof of concept, we also demonstrate that our method enables one-pot/single-flask chromosomal integration and screening of circuit libraries. This rapid and powerful prototyping platform is well suited for comparative studies of genetic regulatory elements, genes and multi-gene circuits as well as facile development of libraries of isogenic engineered cell lines. PMID:25378321

  6. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis.

    Directory of Open Access Journals (Sweden)

    Nitzan Krinsky

    Full Text Available Cell-free protein synthesis (CFPS systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3 and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa. This system was able to produce 40-150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins.

  7. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis

    Science.gov (United States)

    Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40–150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins. PMID:27768741

  8. Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay

    Energy Technology Data Exchange (ETDEWEB)

    Hondroulis, Evangelia; Liu Chang; Li Chenzhong, E-mail: licz@fiu.edu [Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 (United States)

    2010-08-06

    A whole cell based biosensor for rapid real-time testing of human and environmental toxicity of nanoscale materials is reported. Recent studies measuring nanoparticle cytotoxicity in vitro provide a final measurement of toxicity to a cell culture overlooking the ongoing cytotoxic effects of the nanoparticles over the desired timeframe. An array biosensor capable of performing multiple cytotoxicity assays simultaneously was designed to address the need for a consistent method to measure real-time assessments of toxicity. The impedimetric response of human lung fibroblasts (CCL-153) and rainbow trout gill epithelial cells (RTgill-W1) when exposed to gold and silver nanoparticles (AuNPs, AgNPs), single walled carbon nanotubes (SWCNTs) and cadmium oxide (CdO) was tested. Exposure to CdO particles exhibited the fastest rate of cytotoxicity and demonstrated the biosensor's ability to monitor toxicity instantaneously in real time. Advantages of the present method include shorter run times, easier usage, and multi-sample analysis leading to a method that can monitor the kinetic effects of nanoparticle toxicity continuously over a desired timeframe.

  9. Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay

    Science.gov (United States)

    Hondroulis, Evangelia; Liu, Chang; Li, Chen-Zhong

    2010-08-01

    A whole cell based biosensor for rapid real-time testing of human and environmental toxicity of nanoscale materials is reported. Recent studies measuring nanoparticle cytotoxicity in vitro provide a final measurement of toxicity to a cell culture overlooking the ongoing cytotoxic effects of the nanoparticles over the desired timeframe. An array biosensor capable of performing multiple cytotoxicity assays simultaneously was designed to address the need for a consistent method to measure real-time assessments of toxicity. The impedimetric response of human lung fibroblasts (CCL-153) and rainbow trout gill epithelial cells (RTgill-W1) when exposed to gold and silver nanoparticles (AuNPs, AgNPs), single walled carbon nanotubes (SWCNTs) and cadmium oxide (CdO) was tested. Exposure to CdO particles exhibited the fastest rate of cytotoxicity and demonstrated the biosensor's ability to monitor toxicity instantaneously in real time. Advantages of the present method include shorter run times, easier usage, and multi-sample analysis leading to a method that can monitor the kinetic effects of nanoparticle toxicity continuously over a desired timeframe.

  10. Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay

    International Nuclear Information System (INIS)

    Hondroulis, Evangelia; Liu Chang; Li Chenzhong

    2010-01-01

    A whole cell based biosensor for rapid real-time testing of human and environmental toxicity of nanoscale materials is reported. Recent studies measuring nanoparticle cytotoxicity in vitro provide a final measurement of toxicity to a cell culture overlooking the ongoing cytotoxic effects of the nanoparticles over the desired timeframe. An array biosensor capable of performing multiple cytotoxicity assays simultaneously was designed to address the need for a consistent method to measure real-time assessments of toxicity. The impedimetric response of human lung fibroblasts (CCL-153) and rainbow trout gill epithelial cells (RTgill-W1) when exposed to gold and silver nanoparticles (AuNPs, AgNPs), single walled carbon nanotubes (SWCNTs) and cadmium oxide (CdO) was tested. Exposure to CdO particles exhibited the fastest rate of cytotoxicity and demonstrated the biosensor's ability to monitor toxicity instantaneously in real time. Advantages of the present method include shorter run times, easier usage, and multi-sample analysis leading to a method that can monitor the kinetic effects of nanoparticle toxicity continuously over a desired timeframe.

  11. Semi-automated, occupationally safe immunofluorescence microtip sensor for rapid detection of Mycobacterium cells in sputum.

    Directory of Open Access Journals (Sweden)

    Shinnosuke Inoue

    Full Text Available An occupationally safe (biosafe sputum liquefaction protocol was developed for use with a semi-automated antibody-based microtip immunofluorescence sensor. The protocol effectively liquefied sputum and inactivated microorganisms including Mycobacterium tuberculosis, while preserving the antibody-binding activity of Mycobacterium cell surface antigens. Sputum was treated with a synergistic chemical-thermal protocol that included moderate concentrations of NaOH and detergent at 60°C for 5 to 10 min. Samples spiked with M. tuberculosis complex cells showed approximately 10(6-fold inactivation of the pathogen after treatment. Antibody binding was retained post-treatment, as determined by analysis with a microtip immunosensor. The sensor correctly distinguished between Mycobacterium species and other cell types naturally present in biosafe-treated sputum, with a detection limit of 100 CFU/mL for M. tuberculosis, in a 30-minute sample-to-result process. The microtip device was also semi-automated and shown to be compatible with low-cost, LED-powered fluorescence microscopy. The device and biosafe sputum liquefaction method opens the door to rapid detection of tuberculosis in settings with limited laboratory infrastructure.

  12. Fluorescent in situ folding control for rapid optimization of cell-free membrane protein synthesis.

    Directory of Open Access Journals (Sweden)

    Annika Müller-Lucks

    Full Text Available Cell-free synthesis is an open and powerful tool for high-yield protein production in small reaction volumes predestined for high-throughput structural and functional analysis. Membrane proteins require addition of detergents for solubilization, liposomes, or nanodiscs. Hence, the number of parameters to be tested is significantly higher than with soluble proteins. Optimization is commonly done with respect to protein yield, yet without knowledge of the protein folding status. This approach contains a large inherent risk of ending up with non-functional protein. We show that fluorophore formation in C-terminal fusions with green fluorescent protein (GFP indicates the folding state of a membrane protein in situ, i.e. within the cell-free reaction mixture, as confirmed by circular dichroism (CD, proteoliposome reconstitution and functional assays. Quantification of protein yield and in-gel fluorescence intensity imply suitability of the method for membrane proteins of bacterial, protozoan, plant, and mammalian origin, representing vacuolar and plasma membrane localization, as well as intra- and extracellular positioning of the C-terminus. We conclude that GFP-fusions provide an extension to cell-free protein synthesis systems eliminating the need for experimental folding control and, thus, enabling rapid optimization towards membrane protein quality.

  13. Cutting edge: Rapid recovery of NKT cells upon institution of highly active antiretroviral therapy for HIV-1 infection

    NARCIS (Netherlands)

    van der Vliet, Hans J. J.; van Vonderen, Marit G. A.; Molling, Johan W.; Bontkes, Hetty J.; Reijm, Martine; Reiss, Peter; van Agtmael, Michiel A.; Danner, Sven A.; van den Eertwegh, Alfons J. M.; von Blomberg, B. Mary E.; Scheper, Rik J.

    2006-01-01

    CD1d-restricted NKT cells play important regulatory roles in various immune responses and are rapidly and selectively depleted upon infection with HIV-1. The cause of this selective depletion is incompletely understood, although it is in part due to the high susceptibility of CD4+ NKT cells to

  14. Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor.

    Science.gov (United States)

    Obata, Fumiaki; Tanaka, Shiho; Kashio, Soshiro; Tsujimura, Hidenobu; Sato, Ryoichi; Miura, Masayuki

    2015-07-08

    Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Herein, we established a method for inducing rapid and selective cell necrosis by the pore-forming bacterial toxin Cry1Aa, which is specifically active in cells expressing the Cry1Aa receptor (CryR) derived from the silkworm Bombyx mori. We demonstrated that overexpressing CryR in Drosophila melanogaster tissues induced rapid cell death of CryR-expressing cells only, in the presence of Cry1Aa toxin. Cry/CryR system was effective against both proliferating cells in imaginal discs and polyploid postmitotic cells in the fat body. Live imaging analysis of cell ablation revealed swelling and subsequent osmotic lysis of CryR-positive cells after 30 min of incubation with Cry1Aa toxin. Osmotic cell lysis was still triggered when apoptosis, JNK activation, or autophagy was inhibited, suggesting that Cry1Aa-induced necrotic cell death occurred independently of these cellular signaling pathways. Injection of Cry1Aa into the body cavity resulted in specific ablation of CryR-expressing cells, indicating the usefulness of this method for in vivo cell ablation. With Cry toxins from Bacillus thuringiensis, we developed a novel method for genetic induction of cell necrosis. Our system provides a "proteinous drill" for killing target cells through physical injury of the cell membrane, which can potentially be used to ablate any cell type in any organisms, even those that are resistant to apoptosis or JNK-dependent programmed cell death.

  15. An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture.

    Science.gov (United States)

    Doherty, Margaret; Bones, Jonathan; McLoughlin, Niaobh; Telford, Jayne E; Harmon, Bryan; DeFelippis, Michael R; Rudd, Pauline M

    2013-11-01

    Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Glyphosate resistance in Ambrosia trifida: Part 1. Novel rapid cell death response to glyphosate.

    Science.gov (United States)

    Van Horn, Christopher R; Moretti, Marcelo L; Robertson, Renae R; Segobye, Kabelo; Weller, Stephen C; Young, Bryan G; Johnson, William G; Schulz, Burkhard; Green, Amanda C; Jeffery, Taylor; Lespérance, Mackenzie A; Tardif, François J; Sikkema, Peter H; Hall, J Christopher; McLean, Michael D; Lawton, Mark B; Sammons, R Douglas; Wang, Dafu; Westra, Philip; Gaines, Todd A

    2018-05-01

    Glyphosate-resistant (GR) Ambrosia trifida is now present in the midwestern United States and in southwestern Ontario, Canada. Two distinct GR phenotypes are known, including a rapid response (GR RR) phenotype, which exhibits cell death within hours after treatment, and a non-rapid response (GR NRR) phenotype. The mechanisms of resistance in both GR RR and GR NRR remain unknown. Here, we present a description of the RR phenotype and an investigation of target-site mechanisms on multiple A. trifida accessions. Glyphosate resistance was confirmed in several accessions, and whole-plant levels of resistance ranged from 2.3- to 7.5-fold compared with glyphosate-susceptible (GS) accessions. The two GR phenotypes displayed similar levels of resistance, despite having dramatically different phenotypic responses to glyphosate. Glyphosate resistance was not associated with mutations in EPSPS sequence, increased EPSPS copy number, EPSPS quantity, or EPSPS activity. These encompassing results suggest that resistance to glyphosate in these GR RR A. trifida accessions is not conferred by a target-site resistance mechanism. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing

    Directory of Open Access Journals (Sweden)

    Samuel C. Kim

    2015-10-01

    Full Text Available Effective treatment of bacterial infection relies on timely diagnosis and proper prescription of antibiotic drugs. The antimicrobial susceptibility test (AST is one of the most crucial experimental procedures, providing the baseline information for choosing effective antibiotic agents and their dosages. Conventional methods, however, require long incubation times or significant instrumentation costs to obtain test results. We propose a lab-on-a-chip approach to perform AST in a simple, economic, and rapid manner. Our assay platform miniaturizes the standard broth microdilution method on a microfluidic device (20 × 20 mm that generates an antibiotic concentration gradient and delivers antibiotic-containing culture media to eight 30-nL chambers for cell culture. When tested with 20 μL samples of a model bacterial strain (E. coli ATCC 25922 treated with ampicillin or streptomycin, our method allows for the determination of minimum inhibitory concentrations consistent with the microdilution test in three hours, which is almost a factor of ten more rapid than the standard method.

  18. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles.

    Science.gov (United States)

    Chang, Yi-Chung; Yang, Chia-Ying; Sun, Ruei-Lin; Cheng, Yi-Feng; Kao, Wei-Chen; Yang, Pan-Chyr

    2013-01-01

    Staphylococcus aureus is one of the most important human pathogens, causing more than 500,000 infections in the United States each year. Traditional methods for bacterial culture and identification take several days, wasting precious time for patients who are suffering severe bacterial infections. Numerous nucleic acid-based detection methods have been introduced to address this deficiency; however, the costs and requirement for expensive equipment may limit the widespread use of such technologies. Thus, there is an unmet demand of new platform technology to improve the bacterial detection and identification in clinical practice. In this study, we developed a rapid, ultra-sensitive, low cost, and non-polymerase chain reaction (PCR)-based method for bacterial identification. Using this method, which measures the resonance light-scattering signal of aptamer-conjugated gold nanoparticles, we successfully detected single S. aureus cell within 1.5 hours. This new platform technology may have potential to develop a rapid and sensitive bacterial testing at point-of-care.

  19. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis.

    Science.gov (United States)

    Mucci, Maíra; Noyma, Natalia Pessoa; de Magalhães, Leonardo; Miranda, Marcela; van Oosterhout, Frank; Guedes, Iamê Alves; Huszar, Vera L M; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-07-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show that chitosan may rapidly compromise membrane integrity and kill certain cyanobacteria leading to release of cell contents in the water. A strain of Cylindrospermopsis raciborskii and one strain of Planktothrix agardhii were most sensitive. A 1.3 h exposure to a low dose of 0.5 mg l -1 chitosan already almost completely killed these cultures resulting in release of cell contents. After 24 h, reductions in PSII efficiencies of all cyanobacteria tested were observed. EC50 values varied from around 0.5 mg l -1 chitosan for the two sensitive strains, via about 5 mg l -1 chitosan for an Aphanizomenon flos-aquae strain, a toxic P. agardhii strain and two Anabaena cylindrica cultures, to more than 8 mg l -1 chitosan for a Microcystis aeruginosa strain and another A. flos-aquae strain. Differences in sensitivity to chitosan might be related to polymeric substances that surround cyanobacteria. Rapid lysis of toxic strains is likely and when chitosan flocking and sinking of cyanobacteria is considered in lake restoration, flocculation efficacy studies should be complemented with investigation on the effects of chitosan on the cyanobacteria assemblage being targeted. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Mycobacterium lutetiense sp. nov., Mycobacterium montmartrense sp. nov. and Mycobacterium arcueilense sp. nov., members of a novel group of non-pigmented rapidly growing mycobacteria recovered from a water distribution system.

    Science.gov (United States)

    Konjek, Julie; Souded, Sabiha; Guerardel, Yann; Trivelli, Xavier; Bernut, Audrey; Kremer, Laurent; Welte, Benedicte; Joyeux, Michel; Dubrou, Sylvie; Euzeby, Jean-Paul; Gaillard, Jean-Louis; Sapriel, Guillaume; Heym, Beate

    2016-09-01

    From our recent survey of non-pigmented rapidly growing mycobacteria in the Parisian water system, three groups of isolates (taxons 1-3) corresponding to possible novel species were selected for taxonomic study. The three taxa each formed creamy white, rough colonies, had an optimal growth temperature of 30 °C, hydrolyzed Tween 80, were catalase-positive at 22 °C and expressed arylsulfatase activity. All three were susceptible to amikacin, ciprofloxacin and tigecycline. The three taxa produced specific sets of mycolic acids, including one family that has never previously been described, as determined by thin layer chromatography and nuclear magnetic resonance. The partial rpoB sequences (723 bp) showed 4-6 % divergence from each other and more than 5 % differences from the most similar species. Partial 16S rRNA gene sequences showed 99 % identity within each species. The most similar sequences for 16S rRNA genes (98-99 % identity over 1444-1461 bp) were found in the Mycobacterium fortuitum group, Mycobacterium septicum and Mycobacterium farcinogenes. The three taxa formed a new clade (bootstrap value, 99 %) on trees reconstructed from concatenated partial 16S rRNA, hsp65 and rpoB sequences. The above results led us to propose three novel species for the three groups of isolates, namely Mycobacterium lutetiense sp. nov. [type strain 071T=ParisRGMnew_1T (CIP 110656T=DSM 46713T)], Mycobacterium montmartrense sp. nov. [type strain 196T=ParisRGMnew_2T (CIP 110655T=DSM 46714T)] and Mycobacteriu marcueilense sp. nov. [type strain of 269T=ParisRGMnew_3T (CIP 110654T=DSM 46715T)].

  1. Rapid activation of Rac GTPase in living cells by force is independent of Src.

    Directory of Open Access Journals (Sweden)

    Yeh-Chuin Poh

    2009-11-01

    Full Text Available It is well known that mechanical forces are crucial in regulating functions of every tissue and organ in a human body. However, it remains unclear how mechanical forces are transduced into biochemical activities and biological responses at the cellular and molecular level. Using the magnetic twisting cytometry technique, we applied local mechanical stresses to living human airway smooth muscle cells with a magnetic bead bound to the cell surface via transmembrane adhesion molecule integrins. The temporal and spatial activation of Rac, a small guanosine triphosphatase, was quantified using a fluorescent resonance energy transfer (FRET method that measures changes in Rac activity in response to mechanical stresses by quantifying intensity ratios of ECFP (enhanced cyan fluorescent protein as a donor and YPet (a variant yellow fluorescent protein as an acceptor of the Rac biosensor. The applied stress induced rapid activation (less than 300 ms of Rac at the cell periphery. In contrast, platelet derived growth factor (PDGF induced Rac activation at a much later time (>30 sec. There was no stress-induced Rac activation when a mutant form of the Rac biosensor (RacN17 was transfected or when the magnetic bead was coated with transferrin or with poly-L-lysine. It is known that PDGF-induced Rac activation depends on Src activity. Surprisingly, pre-treatment of the cells with specific Src inhibitor PP1 or knocking-out Src gene had no effects on stress-induced Rac activation. In addition, eliminating lipid rafts through extraction of cholesterol from the plasma membrane did not prevent stress-induced Rac activation, suggesting a raft-independent mechanism in governing the Rac activation upon mechanical stimulation. Further evidence indicates that Rac activation by stress depends on the magnitudes of the applied stress and cytoskeletal integrity. Our results suggest that Rac activation by mechanical forces is rapid, direct and does not depend on Src

  2. Rapid and simple purification of elastin-like polypeptides directly from whole cells and cell lysates by organic solvent extraction.

    Science.gov (United States)

    VerHeul, Ross; Sweet, Craig; Thompson, David H

    2018-03-26

    Elastin-like polypeptides (ELP) are a well-known class of proteins that are being increasingly utilized in a variety of biomedical applications, due to their beneficial physicochemical properties. A unifying feature of ELP is their demonstration of a sequence tunable inverse transition temperature (Tt) that enables purification using a simple, straightforward process called inverse transition cycling (ITC). Despite the utility of ITC, the process is inherently limited to ELP with an experimentally accessible Tt. Since the underlying basis for the ELP Tt is related to its high overall hydrophobicity, we anticipated that ELP would be excellent candidates for purification by organic extraction. We report the first method for rapidly purifying ELP directly from whole E. coli cells or clarified lysates using pure organic solvents and solvent mixtures, followed by aqueous back extraction. Our results show that small ELP and a large ELP-fusion protein can be isolated in high yield from whole cells or cell lysates with greater than 95% purity in less than 30 min and with very low levels of LPS and DNA contamination.

  3. Rapid labeling of intracellular His-tagged proteins in living cells.

    Science.gov (United States)

    Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe

    2015-03-10

    Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni(2+)-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni(2+)-NTA-based probes. Unfortunately, previous Ni-NTA-based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni(2+) ions. The probe, driven by Ni(2+)-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells.

  4. Model-Based Generation of Synthetic 3D Time-Lapse Sequences of Motile Cells with Growing Filopodia

    OpenAIRE

    Sorokin , Dmitry ,; Peterlik , Igor; Ulman , Vladimír ,; Svoboda , David; Maška , Martin

    2017-01-01

    International audience; The existence of benchmark datasets is essential to objectively evaluate various image analysis methods. Nevertheless, manual annotations of fluorescence microscopy image data are very laborious and not often practicable, especially in the case of 3D+t experiments. In this work, we propose a simulation system capable of generating 3D time-lapse sequences of single motile cells with filopodial protrusions, accompanied by inherently generated ground truth. The system con...

  5. Scaling of volume to surface ratio and doubling time in growing unicellular organisms: Do cells appear quantum-mechanical systems?

    International Nuclear Information System (INIS)

    Atanasov, Atanas Todorov

    2014-01-01

    The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S −1 (m) of organisms is proportional to their generation time T gt (s) via growth rate v (m s −1 ): V×S −1  = v gr ×T r . The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m 3 ), minimum and maximum doubling time T dt (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program ‘Statistics’ is used for calculations. In result i) the analytical relationship from type: V×S −1  = 4.46⋅10 −11 ×T dt was found, where v gr  = 4.46×10 −11 m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate v gr satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×v gr >h/2π and T dt ×M×v gr 2 >h/2π are valid, where h= 6.626×10 −34 J⋅s is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?

  6. Scaling of volume to surface ratio and doubling time in growing unicellular organisms: Do cells appear quantum-mechanical systems?

    Science.gov (United States)

    Atanasov, Atanas Todorov

    2014-10-01

    The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S-1 (m) of organisms is proportional to their generation time Tgt(s) via growth rate v (m s-1): V×S-1 = vgr×Tr. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m3), minimum and maximum doubling time Tdt (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program `Statistics' is used for calculations. In result i) the analytical relationship from type: V×S-1 = 4.46ṡ10-11×Tdt was found, where vgr = 4.46×10-11 m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate vgr satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×vgr>h/2π and Tdt×M×vgr2>h/2π are valid, where h= 6.626×10-34 Jṡs is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?

  7. Scaling of volume to surface ratio and doubling time in growing unicellular organisms: Do cells appear quantum-mechanical systems?

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Atanas Todorov, E-mail: atanastod@abv.bg [Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Stara Zagora (Bulgaria)

    2014-10-06

    The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S{sup −1} (m) of organisms is proportional to their generation time T{sub gt}(s) via growth rate v (m s{sup −1}): V×S{sup −1} = v{sub gr}×T{sup r}. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m{sup 3}), minimum and maximum doubling time T{sub dt} (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program ‘Statistics’ is used for calculations. In result i) the analytical relationship from type: V×S{sup −1} = 4.46⋅10{sup −11}×T{sub dt} was found, where v{sub gr} = 4.46×10{sup −11} m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate v{sub gr} satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×v{sub gr}>h/2π and T{sub dt}×M×v{sub gr}{sup 2}>h/2π are valid, where h= 6.626×10{sup −34} J⋅s is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?.

  8. Rapid acquisition and model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria

    Science.gov (United States)

    Wienecke, Sarah; Ishwarbhai, Alka; Tsipa, Argyro; Aw, Rochelle; Kylilis, Nicolas; Bell, David J.; McClymont, David W.; Jensen, Kirsten; Biedendieck, Rebekka

    2018-01-01

    Native cell-free transcription–translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription–translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription–translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications. PMID:29666238

  9. Combinatorial Approaches to Controlling Cell Behaviour and Tissue Formation in 3D via Rapid-Prototyping and Smart Scaffold Design

    NARCIS (Netherlands)

    Woodfield, T.B.F.; Moroni, Lorenzo; Malda, Jos

    2009-01-01

    The understanding of fundamental phenomena involved in tissue engineering and regenerative medicine is continuously growing and leads to the demand for three-dimensional (3D) models that better represent tissue architecture and direct cells into the proper lineage for specific tissue repair. Porous

  10. Rapid fabricating technique for multi-layered human hepatic cell sheets by forceful contraction of the fibroblast monolayer.

    Directory of Open Access Journals (Sweden)

    Yusuke Sakai

    Full Text Available Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered human hepatocyte sheets from cells with limited proliferation potential, and the engineered cell sheet could be used for cell transplantation with highly specific functions.

  11. A rapid selection strategy for an anodophilic consortium for microbial fuel cells

    KAUST Repository

    Wang, Aijie

    2010-07-01

    A rapid selection method was developed to enrich for a stable and efficient anodophilic consortium (AC) for microbial fuel cells (MFCs). A biofilm sample from a microbial electrolysis cell was serially diluted up to 10-9 in anaerobic phosphate buffer solution and incubated in an Fe(III)-acetate medium, and an Fe(III)-reducing AC was obtained for dilutions up to 10-6. The activity of MFC inoculated with the enrichment AC was compared with those inoculated with original biofilm or activated sludge. The power densities and Coulombic efficiencies of the AC (226 mW/m2, 34%) were higher than those of the original biofilm (209 mW/m2, 23%) and activated sludge (192 mW/m2, 19%). The start-up period of the AC (60 h) was also shorter than those obtained with the other inocula (biofilm, 95 h; activated sludge, 300 h). This indicated that such a strategy is highly efficient for obtaining an anodophilic consortium for improving the performance of an MFC. © 2010 Elsevier Ltd.

  12. Human papillomavirus (HPV) and Oropharyngeal Squamous Cell Carcinoma (OP-SCC) of the Head and Neck: a Growing Epidemic

    Science.gov (United States)

    Bauman, Jessica; Wirth, Lori

    2015-01-01

    Human papillomavirus (HPV) is now considered a major causative agent in oropharyngeal squamous cell carcinoma (OP-SCC). The incidence of HPV+ OP-SCC is increasing dramatically, is higher in men, and is now more common than cervical cancer in the United States. HPV+ OPSCCs usually present as locally advanced, stage IV cancers, requiring intensive treatment with surgery, chemotherapy, and/or radiation that can cause tremendous morbidity. HPV vaccination is predicted to prevent HPV+ OP-SCC because over 90% are caused by vaccine-type HPV. However, current vaccination rates are not yet high enough to be effective at preventing HPV-associated malignancies at a population level. PMID:27132327

  13. Chronic action of gamma-radiation on growing cell population of the yeast Saccharomyces cerevisiae at various dose rates

    International Nuclear Information System (INIS)

    Zyuzikov, N.A.; Petin, V.G.

    1996-01-01

    Experimental data on the processes of division and death of haploid and diploid yeast Saccharomyces cerevisiae of wild type and of their radiosensitive mutants exposed under optimal for reproduction conditions to chronic gamma-radiation at various dose rates are presented. It is shown that the dependence of the integral division/death process in time was exponential for all the studied strains. With dose rate increasing, the duration of the lag period and the probability of cell inactivation increased, while the multiplication rate decreased. These processes, for equal dose rates, were more expressed for the radiosensitive mutants

  14. Discrete nuclear structures in actively growing neuroblastoma cells are revealed by antibodies raised against phosphorylated neurofilament proteins

    Directory of Open Access Journals (Sweden)

    Raabe Timothy D

    2003-04-01

    Full Text Available Abstract Background Nuclear objects that have in common the property of being recognized by monoclonal antibodies specific for phosphoprotein epitopes and cytoplasmic intermediate filaments (in particular, SMI-31 and RT-97 have been reported in glial and neuronal cells, in situ and in vitro. Since neurofilament and glial filaments are generally considered to be restricted to the cytoplasm, we were interested in exploring the identity of the structures labeled in the nucleus as well as the conditions under which they could be found there. Results Using confocal microscopy and western analysis techniques, we determined 1 the immunolabeled structures are truly within the nucleus; 2 the phosphoepitope labeled by SMI-31 and RT-97 is not specific to neurofilaments (NFs and it can be identified on other intermediate filament proteins (IFs in other cell types; and 3 there is a close relationship between DNA synthesis and the amount of nuclear staining by these antibodies thought to be specific for cytoplasmic proteins. Searches of protein data bases for putative phosphorylation motifs revealed that lamins, NF-H, and GFAP each contain a single tyrosine phosphorylation motif with nearly identical amino acid sequence. Conclusion We therefore suggest that this sequence may be the epitope recognized by SMI-31 and RT-97 mABs, and that the nuclear structures previously reported and shown here are likely phosphorylated lamin intermediate filaments, while the cytoplasmic labeling revealed by the same mABs indicates phosphorylated NFs in neurons or GFAP in glia.

  15. Essential Function of Dicer in Resolving DNA Damage in the Rapidly Dividing Cells of the Developing and Malignant Cerebellum

    Directory of Open Access Journals (Sweden)

    Vijay Swahari

    2016-01-01

    Full Text Available Maintenance of genomic integrity is critical during neurodevelopment, particularly in rapidly dividing cerebellar granule neuronal precursors that experience constitutive replication-associated DNA damage. As Dicer was recently recognized to have an unexpected function in the DNA damage response, we examined whether Dicer was important for preserving genomic integrity in the developing brain. We report that deletion of Dicer in the developing mouse cerebellum resulted in the accumulation of DNA damage leading to cerebellar progenitor degeneration, which was rescued with p53 deficiency; deletion of DGCR8 also resulted in similar DNA damage and cerebellar degeneration. Dicer deficiency also resulted in DNA damage and death in other rapidly dividing cells including embryonic stem cells and the malignant cerebellar progenitors in a mouse model of medulloblastoma. Together, these results identify an essential function of Dicer in resolving the spontaneous DNA damage that occurs during the rapid proliferation of developmental progenitors and malignant cells.

  16. Amoebal endosymbiont Parachlamydia acanthamoebae Bn9 can grow in immortal human epithelial HEp-2 cells at low temperature; an in vitro model system to study chlamydial evolution.

    Science.gov (United States)

    Yamane, Chikayo; Yamazaki, Tomohiro; Nakamura, Shinji; Matsuo, Junji; Ishida, Kasumi; Yamazaki, Sumire; Oguri, Satoshi; Shouji, Natsumi; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Yimin; Yamaguchi, Hiroyuki

    2015-01-01

    Ancient chlamydiae diverged into pathogenic and environmental chlamydiae 0.7-1.4 billion years ago. However, how pathogenic chlamydiae adapted to mammalian cells that provide a stable niche at approximately 37 °C, remains unknown, although environmental chlamydiae have evolved as endosymbionts of lower eukaryotes in harsh niches of relatively low temperatures. Hence, we assessed whether an environmental chlamydia, Parachlamydia Bn9, could grow in human HEp-2 cells at a low culture temperature of 30 °C. The assessment of inclusion formation by quantitative RT-PCR revealed that the numbers of bacterial inclusion bodies and the transcription level of 16SrRNA significantly increased after culture at 30 °C compared to at 37 °C. Confocal microscopy showed that the bacteria were located close to HEp-2 nuclei and were actively replicative. Transmission electron microscopy also revealed replicating bacteria consisting of reticular bodies, but with a few elementary bodies. Cytochalasin D and rifampicin inhibited inclusion formation. Lactacystin slightly inhibited bacterial inclusion formation. KEGG analysis using a draft genome sequence of the bacteria revealed that it possesses metabolic pathways almost identical to those of pathogenic chlamydia. Interestingly, comparative genomic analysis with pathogenic chlamydia revealed that the Parachlamydia similarly possess the genes encoding Type III secretion system, but lacking genes encoding inclusion membrane proteins (IncA to G) required for inclusion maturation. Taken together, we conclude that ancient chlamydiae had the potential to grow in human cells, but overcoming the thermal gap was a critical event for chlamydial adaptation to human cells.

  17. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification.

    Science.gov (United States)

    Eguiara, Arrate; Holgado, Olaia; Beloqui, Izaskun; Abalde, Leire; Sanchez, Yolanda; Callol, Carles; Martin, Angel G

    2011-11-01

    The cancer stem cell is defined by its capacity to self-renew, the potential to differentiate into all cells of the tumor and the ability to proliferate and drive the expansion of the tumor. Thus, targeting these cells may provide novel anti-cancer treatment strategies. Breast cancer stem cells have been isolated according to surface marker expression, ability to efflux fluorescent dyes, increased activity of aldehyde dehydrogenase or the capacity to form spheres in non-adherent culture conditions. In order to test novel drugs directed towards modulating self-renewal of cancer stem cells, rapid, easy and inexpensive assays must be developed. Using 2 days-post-fertilization (dpf) zebrafish embryos as transplant recipients, we show that cells grown in mammospheres from breast carcinoma cell lines migrate to the tail of the embryo and form masses with a significantly higher frequency than parental monolayer populations. When stem-like self-renewal was targeted in the parental population by the use of the dietary supplement curcumin, cell migration and mass formation were reduced, indicating that these effects were associated with stem-like cell content. This is a proof of principle report that proposes a rapid and inexpensive assay to target in vivo cancer stem-like cells, which may be used to unravel basic cancer stem cell biology and for drug screening.

  18. Intrapancreatic Parenchymal Injection of Cells as a Useful Tool for Allowing a Small Number of Proliferative Cells to Grow In Vivo

    Directory of Open Access Journals (Sweden)

    Masahiro Sato

    2017-08-01

    Full Text Available In vivo inoculation of cells such as tumor cells and induced pluripotent stem (iPS/embryonic stem (ES cells into immunocompromised mice has been considered as a powerful technique to evaluate their potential to proliferate or differentiate into various cell types originating from three germ cell layers. Subcutaneous grafting and grafting under the kidney capsule have been widely used for this purpose, but there are some demerits such as the requirement of a large number of tumor cells for inoculation and frequent failure of tumorigenesis. Therefore, grafting into other sites has been explored, including intratesticular or intramuscular grafting as well as grafting into the cochleae, liver, or salivary glands. In this study, we found that intrapancreatic parenchymal injection of cells is useful for allowing a small number of cells (~15 × 103 cells or ~30 cell clumps μL−1·site−1 to proliferate and sometimes differentiate into various types of cells. It requires only surgical exposure of the pancreas over the dorsal skin and subsequent injection of cells towards the pancreatic parenchyma under dissecting microscope-based observation using a mouthpiece-controlled glass micropipette. We now name this technology “intrapancreatic parenchymal cell transplantation (IPPCT”, which will be useful, especially when only a small number of cells or colonies are available.

  19. Continuous treatment process of mercury removal from aqueous solution by growing recombinant E. coli cells and modeling study

    International Nuclear Information System (INIS)

    Deng, X.; Hu, Z.L.; Yi, X.E.

    2008-01-01

    A continuous treatment process was developed to investigate the capability of genetically engineered E. coli to simultaneously accumulate mercuric ions and reproduce itself in a continuous stirred tank reactor (CSTR) system. The influence of dilution rate and initial Hg 2+ concentration on continuous process was evaluated. Results indicated that the recombinant E. coli could effectively accumulate Hg 2+ from aqueous solution with Hg 2+ removal ratio up to about 90%, and propagate its cells at the same time in the continuous treatment system under suitable operational conditions. A kinetic model based on mass balance of Hg 2+ was proposed to simulate the continuous process. The modeling results were in good agreement with the experimental data

  20. Unexpected features of exponentially growing Tobacco Bright Yellow-2 cell suspension culture in relation to excreted extracellular polysaccharides and cell wall composition.

    Science.gov (United States)

    Issawi, Mohammad; Muhieddine, Mohammad; Girard, Celine; Sol, Vincent; Riou, Catherine

    2017-10-01

    This article presents a new insight about TBY-2 cells; from extracellular polysaccharides secretion to cell wall composition during cell suspension culture. In the medium of cells taken 2 days after dilution (end of lag phase), a two unit pH decrease from 5.38 to 3.45 was observed and linked to a high uronic acid (UA) amount secretion (47.8%) while, in 4 and 7 day-old spent media, pH increased and UA amounts decreased 35.6 and 42.3% UA, respectively. To attain deeper knowledge of the putative link between extracellular polysaccharide excretion and cell wall composition, we determined cell wall UA and neutral sugar composition of cells from D2 to D12 cultures. While cell walls from D2 and D3 cells contained a large amount of uronic acid (twice as much as the other analysed cell walls), similar amounts of neutral sugar were detected in cells from lag to end of exponential phase cells suggesting an enriched pectin network in young cultures. Indeed, monosaccharide composition analysis leads to an estimated percentage of pectins of 56% for D3 cell wall against 45% D7 cell walls indicating that the cells at the mid-exponential growth phase re-organized their cell wall linked to a decrease in secreted UA that finally led to a stabilization of the spent medium pH to 5.4. In conclusion, TBY-2 cell suspension from lag to stationary phase showed cell wall remodeling that could be of interest in drug interaction and internalization study.

  1. A simple and rapid Hepatitis A Virus (HAV titration assay based on antibiotic resistance of infected cells: evaluation of the HAV neutralization potency of human immune globulin preparations

    Directory of Open Access Journals (Sweden)

    Kaplan Gerardo G

    2008-12-01

    Full Text Available Abstract Background Hepatitis A virus (HAV, the causative agent of acute hepatitis in humans, is an atypical Picornaviridae that grows poorly in cell culture. HAV titrations are laborious and time-consuming because the virus in general does not cause cytopathic effect and is detected by immunochemical or molecular probes. Simple HAV titration assays could be developed using currently available viral construct containing selectable markers. Results We developed an antibiotic resistance titration assay (ARTA based on the infection of human hepatoma cells with a wild type HAV construct containing a blasticidin (Bsd resistance gene. Human hepatoma cells infected with the HAV-Bsd construct survived selection with 2 μg/ml of blasticidin whereas uninfected cells died within a few days. At 8 days postinfection, the color of the pH indicator phenol red in cell culture media correlated with the presence of HAV-Bsd-infected blasticidin-resistant cells: an orange-to-yellow color indicated the presence of growing cells whereas a pink-to-purple color indicated that the cells were dead. HAV-Bsd titers were determined by an endpoint dilution assay based on the color of the cell culture medium scoring orange-to-yellow wells as positive and pink-to-purple wells as negative for HAV. As a proof-of-concept, we used the ARTA to evaluate the HAV neutralization potency of two commercially available human immune globulin (IG preparations and a WHO International Standard for anti-HAV. The three IG preparations contained comparable levels of anti-HAV antibodies that neutralized approximately 1.5 log of HAV-Bsd. Similar neutralization results were obtained in the absence of blasticidin by an endpoint dilution ELISA at 2 weeks postinfection. Conclusion The ARTA is a simple and rapid method to determine HAV titers without using HAV-specific probes. We determined the HAV neutralization potency of human IG preparations in 8 days by ARTA compared to the 14 days required by the

  2. A rapid microassay for detecting antibodies against poliovirus based on [14C]thymidine uptake of treated cell cultures

    International Nuclear Information System (INIS)

    Hilfenhaus, J.; Damm, H.; Ziegelmaier, R.; Gruschkau, H.

    1977-01-01

    DNA synthesis of mammalian cells propagated in microplates can easily be measured if cell cultures incubated with [ 14 C]thymidine are harvested on to glass fibre filters by a semiautomatic harvesting technique. Soon after infection with poliovirus, [ 14 C]thymidine uptake of U cells (established, human amniotic cell line) is inhibited. This inhibition can be prevented by previous virus neutralization with antibody. Based on this effect a rapid, precise assay method was set up to determine neutralizing antibody titres against poliovirus. There was a good correlation between titres obtained by this assay and those obtained by 50% endpoint titrations in cytopathogenic effect inhibition assays

  3. Effects of rapid thermal annealing on the optical properties of strain-free quantum ring solar cells

    Science.gov (United States)

    2013-01-01

    Strain-free GaAs/Al0.33Ga0.67As quantum rings are fabricated by droplet epitaxy. Both photoresponse and photoluminescence spectra confirm optical transitions in quantum rings, suggesting that droplet epitaxial nanomaterials are applicable to intermediate band solar cells. The effects of post-growth annealing on the quantum ring solar cells are investigated, and the optical properties of the solar cells with and without thermal treatment are characterized by photoluminescence technique. Rapid thermal annealing treatment has resulted in the significant improvement of material quality, which can be served as a standard process for quantum structure solar cells grown by droplet epitaxy. PMID:23281811

  4. Tissue spray ionization mass spectrometry for rapid recognition of human lung squamous cell carcinoma

    Science.gov (United States)

    Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen

    2015-05-01

    Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 - 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery.

  5. Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea.

    Directory of Open Access Journals (Sweden)

    Djida Ghoubay-Benallaoua

    Full Text Available Epithelial and stromal stem cells are required to maintain corneal transparency. The aim of the study was to develop a new method to isolate and grow both corneal stromal (SSC and epithelial limbal (LSC stem cells from small human limbal biopsies under culture conditions in accordance with safety requirements mandatory for clinical use in humans. Superficial limbal explants were retrieved from human donor corneo-scleral rims. Human limbal cells were dissociated by digestion with collagenase A, either after epithelial scraping or with no scraping. Isolated cells were cultured with Essential 8 medium (E8, E8 supplemented with EGF (E8+ or Green's medium with 3T3 feeder-layers. Cells were characterized by immunostaining, RT-qPCR, colony forming efficiency, sphere formation, population doubling, second harmonic generation microscopy and differentiation potentials. LSC were obtained from unscraped explants in E8, E8+ and Green's media and were characterized by colony formation and expression of PAX6, ΔNP63α, Bmi1, ABCG2, SOX9, CK14, CK15 and vimentin, with a few cells positive for CK3. LSC underwent 28 population doublings still forming colonies. SSC were obtained from both scraped and unscraped explants in E8 and E8+ media and were characterized by sphere formation, expression of PAX6, SOX2, BMI1, NESTIN, ABCG2, KERATOCAN, VIMENTIN, SOX9, SOX10 and HNK1, production of collagen fibrils and differentiation into keratocytes, fibroblasts, myofibroblasts, neurons, adipocytes, chondrocytes and osteocytes. SSC underwent 48 population doublings still forming spheres, Thus, this new method allows both SSC and LSC to be isolated from small superficial limbal biopsies and to be primary cultured in feeder-free and xeno-free conditions, which will be useful for clinical purposes.

  6. Investigation of Near-Surface Defects Induced by Spike Rapid Thermal Annealing in c-SILICON Solar Cells

    Science.gov (United States)

    Liu, Guodong; Ren, Pan; Zhang, Dayong; Wang, Weiping; Li, Jianfeng

    2016-01-01

    The defects induced by a spike rapid thermal annealing (RTA) process in crystalline silicon (c-Si) solar cells were investigated by the photoluminescence (PL) technique and the transmission electron microscopy (TEM), respectively. Dislocation defects were found to form in the near-surface junction region of the monocrystalline Si solar cell after a spike RTA process was performed at 1100∘C. Photo J-V characteristics were measured on the Si solar cell before and after the spike RTA treatments to reveal the effects of defects on the Si cell performances. In addition, the Silvaco device simulation program was used to study the effects of defects density on the cell performances by fitting the experimental data of RTA-treated cells. The results demonstrate that there was an obvious degradation in the Si solar cell performances when the defect density after the spike RTA treatment was above 1×1013cm-3.

  7. Rapid Extraction of Genomic DNA from Medically Important Yeasts and Filamentous Fungi by High-Speed Cell Disruption

    OpenAIRE

    Müller, Frank-Michael C.; Werner, Katherine E.; Kasai, Miki; Francesconi, Andrea; Chanock, Stephen J.; Walsh, Thomas J.

    1998-01-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolatio...

  8. A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells.

    Science.gov (United States)

    Abdolahad, Mohammad; Taghinejad, Mohammad; Taghinejad, Hossein; Janmaleki, Mohsen; Mohajerzadeh, Shams

    2012-03-21

    A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.

  9. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells.

    Science.gov (United States)

    Park, Sungjin; Szumlanski, Amy L; Gu, Fangwei; Guo, Feng; Nielsen, Erik

    2011-07-17

    In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP-CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.

  10. Selective oxidation of trimethylolpropane to 2,2-bis(hydroxymethyl)butyric acid using growing cells of Corynebacterium sp. ATCC 21245.

    Science.gov (United States)

    Sayed, Mahmoud; Dishisha, Tarek; Sayed, Waiel F; Salem, Wesam M; Temerk, Hanan A; Pyo, Sang-Hyun

    2016-03-10

    Multifunctional chemicals including hydroxycarboxylic acids are gaining increasing interest due to their growing applications in the polymer industry. One approach for their production is a biological selective oxidation of polyols, which is difficult to achieve by conventional chemical catalysis. In the present study, trimethylolpropane (TMP), a trihydric alcohol, was subjected to selective oxidation using growing cells of Corynebacterium sp. ATCC 21245 as a biocatalyst and yielding the dihydroxy-monocarboxylic acid, 2,2-bis(hydroxymethyl)butyric acid (BHMB). The study revealed that co-substrates are crucial for this reaction. Among the different evaluated co-substrates, a mixture of glucose, xylose and acetate at a ratio of 5:5:2 was found optimum. The optimal conditions for biotransformation were pH 8, 1v/v/m airflow and 500rpm stirring speed. In batch mode of operation, 70.6% of 5g/l TMP was converted to BHMB in 10 days. For recovery of the product the adsorption pattern of BHMB to the anion exchange resin, Ambersep(®) 900 (OH(-)), was investigated in batch and column experiments giving maximum static and dynamic binding capacities of 135 and 144mg/g resin, respectively. BHMB was separated with 89.7% of recovery yield from the fermentation broth. The approach is applicable for selective oxidation of other highly branched polyols by biotransformation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Use of the micronucleus assay for the selective detection of radiosensitivity in BUdR-unincorporated cells after pulse-labelling of exponentially growing tumour cells

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, S.; Ono, K.; Fushiki, M.; Abe, M. (Kyoto Univ. (Japan). Faculty of Medicine); Wandl, E.O. (Vienna Univ. (Austria). Klinik fuer Strahlentherapie und Strahlenbiologie)

    1990-08-01

    To determine the radiosensitivity of non S-phase tumour cells in vitro, survival curves of SCC VII tumour cells were obtained after a short block with hydroxyurea. Dose-response curves of micronucleus (MN) frequency appearing in non-S-phase cells were also determined by excluding S-phase cells with immunofluorescence staining to 5-bromo-2'-deoxyuridine (BUdR). Both the dose response curves of MN frequency and survival curves were analysed by a linear-quadratic model (surviving fraction =exp (-{alpha}D-{beta}D{sup 2}), MN frequency =aD+bD{sup 2}+c). A good correlation between the {alpha}/{beta} and a/b ratios was observed. In both BUdR-unincorporated and asynchronous cell cultures, the regression lines between the surviving fraction and micronucleus frequency were statistically identical. (author).

  12. Quantitative and qualitative characteristics of cell wall components and prenyl lipids in the leaves of Tilia x euchlora trees growing under salt stress.

    Science.gov (United States)

    Milewska-Hendel, Anna; Baczewska, Aneta H; Sala, Katarzyna; Dmuchowski, Wojciech; Brągoszewska, Paulina; Gozdowski, Dariusz; Jozwiak, Adam; Chojnacki, Tadeusz; Swiezewska, Ewa; Kurczynska, Ewa

    2017-01-01

    The study was focused on assessing the presence of arabinogalactan proteins (AGPs) and pectins within the cell walls as well as prenyl lipids, sodium and chlorine content in leaves of Tilia x euchlora trees. The leaves that were analyzed were collected from trees with and without signs of damage that were all growing in the same salt stress conditions. The reason for undertaking these investigations was the observations over many years that indicated that there are trees that present a healthy appearance and trees that have visible symptoms of decay in the same habitat. Leaf samples were collected from trees growing in the median strip between roadways that have been intensively salted during the winter season for many years. The sodium content was determined using atomic spectrophotometry, chloride using potentiometric titration and poly-isoprenoids using HPLC/UV. AGPs and pectins were determined using immunohistochemistry methods. The immunohistochemical analysis showed that rhamnogalacturonans I (RG-I) and homogalacturonans were differentially distributed in leaves from healthy trees in contrast to leaves from injured trees. In the case of AGPs, the most visible difference was the presence of the JIM16 epitope. Chemical analyses of sodium and chloride showed that in the leaves from injured trees, the level of these ions was higher than in the leaves from healthy trees. Based on chromatographic analysis, four poly-isoprenoid alcohols were identified in the leaves of T. x euchlora. The levels of these lipids were higher in the leaves from healthy trees. The results suggest that the differences that were detected in the apoplast and symplasm may be part of the defensive strategy of T. x euchlora trees to salt stress, which rely on changes in the chemical composition of the cell wall with respect to the pectic and AGP epitopes and an increased synthesis of prenyl lipids.

  13. Growing media [Chapter 5

    Science.gov (United States)

    Douglass F. Jacobs; Thomas D. Landis; Tara Luna

    2009-01-01

    Selecting the proper growing medium is one of the most important considerations in nursery plant production. A growing medium can be defined as a substance through which roots grow and extract water and nutrients. In native plant nurseries, a growing medium can consist of native soil but is more commonly an "artificial soil" composed of materials such as peat...

  14. Rapid selection of escape mutants by the first CD8 T cell responses in acute HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette Tina Marie [Los Alamos National Laboratory

    2008-01-01

    The recent failure of a vaccine that primes T cell responses to control primary HIV-1 infection has raised doubts about the role of CD8+ T cells in early HIV-1 infection. We studied four patients who were identified shortly after HIV-1 infection and before seroconversion. In each patient there was very rapid selection of multiple HIV-1 escape mutants in the transmitted virus by CD8 T cells, including examples of complete fixation of non-synonymous substitutions within 2 weeks. Sequencing by single genome amplification suggested that the high rate of virus replication in acute infection gave a selective advantage to virus molecules that contained simultaneous and gained sequential T cell escape mutations. These observations show that whilst early HIV-1 specific CD8 T cells can act against virus, rapid escape means that these T cell responses are unlikely to benefit the patient and may in part explain why current HIV-1 T cell vaccines may not be protective.

  15. How do normal faults grow?

    OpenAIRE

    Blækkan, Ingvild; Bell, Rebecca; Rotevatn, Atle; Jackson, Christopher; Tvedt, Anette

    2018-01-01

    Faults grow via a sympathetic increase in their displacement and length (isolated fault model), or by rapid length establishment and subsequent displacement accrual (constant-length fault model). To test the significance and applicability of these two models, we use time-series displacement (D) and length (L) data extracted for faults from nature and experiments. We document a range of fault behaviours, from sympathetic D-L fault growth (isolated growth) to sub-vertical D-L growth trajectorie...

  16. Flavonoid supplementation affects the expression of genes involved in cell wall formation and lignification metabolism and increases sugar content and saccharification in the fast-growing eucalyptus hybrid E. urophylla x E. grandis.

    Science.gov (United States)

    Lepikson-Neto, Jorge; Nascimento, Leandro C; Salazar, Marcela M; Camargo, Eduardo L O; Cairo, João P F; Teixeira, Paulo J; Marques, Wesley L; Squina, Fabio M; Mieczkowski, Piotr; Deckmann, Ana C; Pereira, Gonçalo A G

    2014-11-19

    Eucalyptus species are the most widely planted hardwood species in the world and are renowned for their rapid growth and adaptability. In Brazil, one of the most widely grown Eucalyptus cultivars is the fast-growing Eucalyptus urophylla x Eucalyptus grandis hybrid. In a previous study, we described a chemical characterization of these hybrids when subjected to flavonoid supplementation on 2 distinct timetables, and our results revealed marked differences between the wood composition of the treated and untreated trees. In this work, we report the transcriptional responses occurring in these trees that may be related to the observed chemical differences. Gene expression was analysed through mRNA-sequencing, and notably, compared to control trees, the treated trees display differential down-regulation of cell wall formation pathways such as phenylpropanoid metabolism as well as differential expression of genes involved in sucrose, starch and minor CHO metabolism and genes that play a role in several stress and environmental responses. We also performed enzymatic hydrolysis of wood samples from the different treatments, and the results indicated higher sugar contents and glucose yields in the flavonoid-treated plants. Our results further illustrate the potential use of flavonoids as a nutritional complement for modifying Eucalyptus wood, since, supplementation with flavonoids alters its chemical composition, gene expression and increases saccharification probably as part of a stress response.

  17. Transient gene expression in serum-free suspension-growing mammalian cells for the production of foot-and-mouth disease virus empty capsids.

    Directory of Open Access Journals (Sweden)

    Ana Clara Mignaqui

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of cloven-hoofed animals. It produces severe economic losses in the livestock industry. Currently available vaccines are based on inactivated FMD virus (FMDV. The use of empty capsids as a subunit vaccine has been reported to be a promising candidate because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. In this report, we explored transient gene expression (TGE in serum-free suspension-growing mammalian cells for the production of FMDV recombinant empty capsids as a subunit vaccine. The recombinant proteins produced, assembled into empty capsids and induced protective immune response against viral challenge in mice. Furthermore, they were recognized by anti-FMDV bovine sera. By using this technology, we were able to achieve expression levels that are compatible with the development of a vaccine. Thus, TGE of mammalian cells is an easy to perform, scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.

  18. Estradiol attenuates EGF-induced rapid uPAR mobilization and cell migration via the G-protein-coupled receptor 30 in ovarian cancer cells

    DEFF Research Database (Denmark)

    Henic, Emir; Noskova, Vera; Høyer-Hansen, Gunilla

    2009-01-01

    : rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression...... for ERalpha, and quantitative polymerase chain reaction. Estradiol attenuates the stimulatory effect of EGF on cell migration and uPAR expression. Specifically, E(2) reduces the very rapid increase of detergent extractable uPAR, which occurs within minutes of EGF stimulation and probably represents...... agonist G1, mimicked the effect of E(2) on uPAR expression and cell migration. OVCAR-3 cells express mRNA for GPR30.Estradiol attenuates EGF-induced mobilization of ligated uPAR from detergent-resistant domains and subsequent migration in ovarian cancer cells. The response to various ER ligands indicates...

  19. ERK/CANP rapid signaling mediates 17β-estradiol-induced proliferation of human breast cancer cell line MCF-7 cells.

    Science.gov (United States)

    Wang, Guo-Sheng; Huang, Yan-Gang; Li, Huan; Bi, Shi-Jie; Zhao, Jin-Long

    2014-01-01

    17β-estradiol (E2) exerts its functions through both genomic and non-genomic signaling pathways. Because E2 is important in breast cancer development, we investigated whether its actions in promoting breast cancer cell proliferation occur through the non-genomic signaling pathway via extracellular signal-regulated kinase 1/2 (ERK1/2)/calcium-activated neutral protease (CANP). MCF-7 breast cancer cells were treated with ERKl/2 inhibitor (PD98059) or CANP inhibitor (calpeptin) before exposure to 1×10(-8) M E2. MTT colorimetry and flow cytometry were used to analyze effects on cell proliferation and cell cycle progression, respectively. Expression of phosphorylated-ERK (p-ERK), total ERK, and Capn4 proteins were assessed by Western blotting. Cell proliferation increased in cells treated with E2 for 24 h (P<0.05), and the proportion of cells in G0/G1 was decreased, accompanied by accelerated G1/S. Calpeptin pre-treatment significantly inhibited the E2-induced proliferation of MCF-7 cells (P<0.05), while also ameliorating the effects of E2 on cell cycle progression. Further, expression of p-ERK was rapidly up-regulated (after 10 min) by E2 (P<0.05), an effect that persisted 16 h after E2 exposure but which was significantly inhibited by PD98059 (P<0.05). Finally, expression of Capn4 protein was rapidly up-regulated in E2-exposed cells (P<0.05), but this change was significantly inhibited by PD98059 or calpeptin (P<0.05) pre-treatment. Thus, the rapid, non-genomic ERK/CANP signaling pathway mediates E2-induced proliferation of human breast cancer cells.

  20. Rapid blockade of telomerase activity and tumor cell growth by the DPL lipofection of ribbon antisense to hTR.

    Science.gov (United States)

    Bajpai, Arun K; Park, Jeong-Hoh; Moon, Ik-Jae; Kang, Hyungu; Lee, Yun-Han; Doh, Kyung-Oh; Suh, Seong-Il; Chang, Byeong-Churl; Park, Jong-Gu

    2005-09-29

    Ribbon antisense (RiAS) to the hTR RNA, a component of the telomerase complex, was employed to inhibit telomerase activity and cancer cell growth. The antisense molecule, hTR-RiAS, combined with enhanced cellular uptake was shown to effectively inhibit telomerase activity and cause rapid cell death in various cancer cell lines. When cancer cells were treated with hTR-RiAS, the level of hTR RNA was reduced by more than 90% accompanied with reduction in telomerase activity. When checked for cancer cell viability, cancer cell lines treated with hTR-RiAS using DNA+Peptide+Lipid complex showed 70-80% growth inhibition in 3 days. The reduced cell viability was due to apoptosis as the percentage of cells exhibiting the sub-G0 arrest and DNA fragmentation increased after antisense treatment. Further, when subcutaneous tumors of a colon cancer cell line (SW480) were treated intratumorally with hTR-RiAS, tumor growth was markedly suppressed with almost total ablation of hTR RNA in the tumor tissue. Cells in the tumor tissue were also found to undergo apoptosis after hTR-RiAS treatment. These results suggest that hTR-RiAS is an effective anticancer reagent, with a potential for broad efficacy to diverse malignant tumors.

  1. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong-Ak; Han, Jongyoon [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Batista, Candy [Roxbury Community College, 1234 Columbus Ave., Roxbury Crossing, MA 02120 (United States); Sarpeshkar, Rahul [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2008-09-01

    In this paper we demonstrate a simple and rapid fabrication method for a microfluidic polymer electrolyte membrane (PEM) fuel cell using polydimethylsiloxane (PDMS), which has become the de facto standard material in BioMEMS. Instead of integrating a Nafion sheet film between two layers of a PDMS device in a traditional ''sandwich format,'' we pattern a perfluorinated ion-exchange resin such as a Nafion resin on a glass substrate using a reversibly bonded PDMS microchannel to generate an ion-selective membrane between the fuel-cell electrodes. After this patterning step, the assembly of the microfluidic fuel cell is accomplished by simple oxygen plasma bonding between the PDMS chip and the glass substrate. In an example implementation, the planar PEM microfluidic fuel cell generates an open circuit voltage of 600-800 mV and delivers a maximum current output of nearly 4 {mu}A. To enhance the power output of the fuel cell we utilize self-assembled colloidal arrays as a support matrix for the Nafion resin. Such arrays allow us to increase the thickness of the ion-selective membrane to 20 {mu}m and increase the current output by 166%. Our novel fabrication method enables rapid prototyping of microfluidic fuel cells to study various ion-exchange resins for the polymer electrolyte membrane. Our work will facilitate the development of miniature, implantable, on-chip power sources for biomedical applications. (author)

  2. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells.

    Science.gov (United States)

    Léguillier, Teddy; Vandormael-Pournin, Sandrine; Artus, Jérôme; Houlard, Martin; Picard, Christel; Bernex, Florence; Robine, Sylvie; Cohen-Tannoudji, Michel

    2012-07-15

    Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.

  3. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Teddy Léguillier

    2012-05-01

    Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.

  4. Aptamer-Based Dual-Functional Probe for Rapid and Specific Counting and Imaging of MCF-7 Cells.

    Science.gov (United States)

    Yang, Bin; Chen, Beibei; He, Man; Yin, Xiao; Xu, Chi; Hu, Bin

    2018-02-06

    Development of multimodal detection technologies for accurate diagnosis of cancer at early stages is in great demand. In this work, we report a novel approach using an aptamer-based dual-functional probe for rapid, sensitive, and specific counting and visualization of MCF-7 cells by inductively coupled plasma-mass spectrometry (ICP-MS) and fluorescence imaging. The probe consists of a recognition unit of aptamer to catch cancer cells specifically, a fluorescent dye (FAM) moiety for fluorescence resonance energy transfer (FRET)-based "off-on" fluorescence imaging as well as gold nanoparticles (Au NPs) tag for both ICP-MS quantification and fluorescence quenching. Due to the signal amplification effect and low spectral interference of Au NPs in ICP-MS, an excellent linearity and sensitivity were achieved. Accordingly, a limit of detection of 81 MCF-7 cells and a relative standard deviation of 5.6% (800 cells, n = 7) were obtained. The dynamic linear range was 2 × 10 2 to 1.2 × 10 4 cells, and the recoveries in human whole blood were in the range of 98-110%. Overall, the established method provides quantitative and visualized information on MCF-7 cells with a simple and rapid process and paves the way for a promising strategy for biomedical research and clinical diagnostics.

  5. In vivo targeting of surface-modified liposomes to metastatically growing colon carcinoma cells and sinusoidal endothelial cells in the rat liver.

    NARCIS (Netherlands)

    Scherphof, GL; Kamps, JAAM; Koning, GA

    1997-01-01

    We prepared immunoliposomes by covalent coupling of a randomly thiolated monoclonal antibody against the rat colon adenocarcinoma cell line CC531 to MPB-PE on the outer surface of conventional as well as PEGylated liposomes of about 100-nm diameter. We attempted to target these immunoliposomes in

  6. Laser flow microphotometry for rapid analysis and sorting of mammalian cells

    International Nuclear Information System (INIS)

    Mullaney, P.F.; Steinkamp, J.A.; Crissman, H.A.; Cram, L.S.; Crowell, J.M.; Salzman, G.C.; Martin, J.C.; Price, B.

    1976-01-01

    Quantitative precision measurements can be made of the optical properties of individual mammalian cells using flow microphotometry. Suspended cells pass through a special flow chamber where they are lined up for exposure to blue light from an argon-ion laser. As each cell crosses the laser beam, it produces one or more optical pulses of a duration equal to cell transit time across the beam. These pulses are detected, amplified, and analyzed using the techniques of gamma ray spectroscopy. Quantitative DNA distributions made it possible to distinguish tumor cells from normal cells as well as to assay for radiation effects on tumor cells subjected to x and gamma radiation

  7. Laser flow microphotometry for rapid analysis and sorting of mammalian cells. [X and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mullaney, P.F.; Steinkamp, J.A.; Crissman, H.A.; Cram, L.S.; Crowell, J.M.; Salzman, G.C.; Martin, J.C.; Price, B.

    1976-01-01

    Quantitative precision measurements can be made of the optical properties of individual mammalian cells using flow microphotometry. Suspended cells pass through a special flow chamber where they are lined up for exposure to blue light from an argon-ion laser. As each cell crosses the laser beam, it produces one or more optical pulses of a duration equal to cell transit time across the beam. These pulses are detected, amplified, and analyzed using the techniques of gamma ray spectroscopy. Quantitative DNA distributions made it possible to distinguish tumor cells from normal cells as well as to assay for radiation effects on tumor cells subjected to x and gamma radiation. (HLW)

  8. Sensitivity tests of combination treatment with interleukin-2 and radiation against renal cell carcinoma using in vivo like growing culture system

    International Nuclear Information System (INIS)

    Onishi, Tetsuro; Machida, Toyohei; Asano, Kouji; Hatano, Takashi; Sawada, Takuko.

    1992-01-01

    We studied the effect of the combined therapy with interleukin-2 (IL-2) and radiation on renal cell carcinoma using an in vivo like growing culture system. We tested renal cell carcinoma obtained at surgery. After tumors were sliced into 2-mm square specimens, they were placed on a collagen gel-matrix filled with medium, and cultured for 7 days. 5 and 10 Gy were irradiated 3 days after the beginning of cell cultures. We also tested 100 JRU/ml of IL-2 added to each culture medium. The killing activity of each treatment was measured by the rate of 3 H-thymidine uptake. In the 5 Gy groups (n=9), we observed a significant effect in one treated with radiation alone (11.1%) and in 4 treated with the combined therapy (44.4%). Of these 4 having a significant effect with the combined therapy, one also had it with either radiation alone or combined therapy. The combined therapy was significantly effective compared with radiation alone. One had a significant effect with the combined therapy, and the remaining 2 had a significant effect by either combined therapy or radiation alone. In the 10 Gy group (n=12), a significant effect was seen in one with IL-2 treatment alone (8.3%), one with radiation alone (8.3%), and 4 with the combined therapy (33.3%). Of these 4 cases having a significant effects with the combined therapy, one had it by either radiation alone or the combined therapy, and the combined therapy was more effective than radiation alone. Two cases had a significant effect by the combined therapy, and the remaining one had it by either the combined therapy or radiation alone. We conclude that the combined therapy with IL-2 and radiation is effective for renal carcinoma, especially in the group irradiated with 5 Gy. (J.P.N.)

  9. Digital Image Analysis of Yeast Single Cells Growing in Two Different Oxygen Concentrations to Analyze the Population Growth and to Assist Individual-Based Modeling.

    Science.gov (United States)

    Ginovart, Marta; Carbó, Rosa; Blanco, Mónica; Portell, Xavier

    2017-01-01

    Nowadays control of the growth of Saccharomyces to obtain biomass or cellular wall components is crucial for specific industrial applications. The general aim of this contribution is to deal with experimental data obtained from yeast cells and from yeast cultures to attempt the integration of the two levels of information, individual and population, to progress in the control of yeast biotechnological processes by means of the overall analysis of this set of experimental data, and to assist in the improvement of an individual-based model, namely, INDISIM- Saccha . Populations of S. cerevisiae growing in liquid batch culture, in aerobic and microaerophilic conditions, were studied. A set of digital images was taken during the population growth, and a protocol for the treatment and analyses of the images obtained was established. The piecewise linear model of Buchanan was adjusted to the temporal evolutions of the yeast populations to determine the kinetic parameters and changes of growth phases. In parallel, for all the yeast cells analyzed, values of direct morphological parameters, such as area, perimeter, major diameter, minor diameter, and derived ones, such as circularity and elongation, were obtained. Graphical and numerical methods from descriptive statistics were applied to these data to characterize the growth phases and the budding state of the yeast cells in both experimental conditions, and inferential statistical methods were used to compare the diverse groups of data achieved. Oxidative metabolism of yeast in a medium with oxygen available and low initial sugar concentration can be taken into account in order to obtain a greater number of cells or larger cells. Morphological parameters were analyzed statistically to identify which were the most useful for the discrimination of the different states, according to budding and/or growth phase, in aerobic and microaerophilic conditions. The use of the experimental data for subsequent modeling work was then

  10. Rapid effects of 17beta-estradiol on epithelial TRPV6 Ca2+ channel in human T84 colonic cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2008-11-01

    The control of calcium homeostasis is essential for cell survival and is of crucial importance for several physiological functions. The discovery of the epithelial calcium channel Transient Receptor Potential Vaniloid (TRPV6) in intestine has uncovered important Ca(2+) absorptive pathways involved in the regulation of whole body Ca(2+) homeostasis. The role of steroid hormone 17beta-estradiol (E(2)), in [Ca(2+)](i) regulation involving TRPV6 has been only limited at the protein expression levels in over-expressing heterologous systems. In the present study, using a combination of calcium-imaging, whole-cell patch-clamp techniques and siRNA technology to specifically knockdown TRPV6 protein expression, we were able to (i) show that TRPV6 is natively, rather than exogenously, expressed at mRNA and protein levels in human T84 colonic cells, (ii) characterize functional TRPV6 channels and (iii) demonstrate, for the first time, the rapid effects of E(2) in [Ca(2+)](i) regulation involving directly TRPV6 channels in T84 cells. Treatment with E(2) rapidly (<5 min) enhanced [Ca(2+)](i) and this increase was partially but significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV6 protein expression. These results indicate that when cells are stimulated by E(2), Ca(2+) enters the cell through TRPV6 channels. TRPV6 channels in T84 cells contribute to the Ca(2+) entry\\/signalling pathway that is sensitive to 17beta-estradiol.

  11. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun

    2014-11-24

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  12. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun; Lee, Kunwoo; Murthy, Niren; Pisano, Albert P

    2014-01-01

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  13. Platform for Rapid Delivery of Biologics and Drugs to Ocular Cells and Tissues Following Combat Associated Trauma

    Science.gov (United States)

    2013-09-01

    death pathways such as apoptosis subsequent to acute trauma as soon as possible, ideally by self- administration of a drug or a biologic that can be... Drugs to Ocular Tissues Including Retina and Cornea . Mol Ther, 2007;16(1):107- 14. 3. Read SP, Cashman SM, and Kumar-Singh R: POD...1 AD_________________ Award Number: W81XWH-12-1-0374 TITLE: Platform for Rapid Delivery of Biologics and Drugs to Ocular Cells

  14. Ultrasound-mediated method for rapid delivery of nano-particles into cells for intracellular surface-enhanced Raman spectroscopy and cancer cell screening

    International Nuclear Information System (INIS)

    Feng, Shangyuan; Li, Zhihua; Chen, Guannan; Huang, Shaohua; Huang, Zufang; Li, Yongzeng; Lin, Juqiang; Chen, Rong; Lin, Duo; Zeng, Haishan

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful technology for providing finger-printing information of cells. A big challenge has been the long time duration and inefficient uptake of metal nano-particles into living cells as substrate for SERS analysis. Herein, a simple method (based on ultrasound) for the rapid transfer of silver nanoparticles (NPs) into living cells for intracellular SERS spectroscopy was presented. In this study, the ultrasound-mediated method for NP delivery overcame the shortcoming of ‘passive uptake’, and achieved quick acquisition of reproducible SERS spectra from living human nasopharyngeal carcinoma cell lines (C666 and CNE1) and normal nasopharyngeal cell line (NP69). Tentative assignment of the Raman bands in the measured SERS spectra showed cancer cell specific biomolecular differences, including significantly lower DNA concentrations and higher protein concentrations in cancerous nasopharyngeal cells as compared to those of normal cells. Combined with PCA–LDA multivariate analysis, ultrasound-mediated cell SERS spectroscopy differentiated the cancerous cells from the normal nasopharyngeal cells with high diagnostic accuracy (98.7%), demonstrating great potential for high-throughput cancer cell screening applications. (paper)

  15. Rapid progression of mediastinal tumor within a few days: A case report of T cell lymphoblastic lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae Ran; Lee, Young Kyung; Jun, Hyun Jung; Jung, Eun Ah; Son, Jin Sung [Seoul Medical Center, Seoul (Korea, Republic of)

    2016-05-15

    T-cell lymphoblastic lymphoma is a highly aggressive tumor derived from lymphocyte of the thymus, which accounts for 2% of non-Hodgkin's lymphoma. The disease occurs most commonly in adolescent and young adult males. It often results in respiratory emergency because of high proliferation rate. In this case, we confirmed the rapid progression of T-cell lymphoblastic lymphoma through the chest CT scan with one week interval. Three days of empirical chemotherapy resulted in substantial reduction of mediastinal mass, pleural thickening and pleural effusion.

  16. Rapid modifications of peripheral T-cell subsets that express CD127 in macaques treated with recombinant IL-7.

    Science.gov (United States)

    Dereuddre-Bosquet, Nathalie; Vaslin, Bruno; Delache, Benoit; Brochard, Patricia; Clayette, Pascal; Aubenque, Céline; Morre, Michel; Assouline, Brigitte; Le Grand, Roger

    2007-08-01

    Interleukin-7 (IL-7) is a key regulator of thymopoiesis and T-cell homeostasis, which increases blood T-cell number by enhancing thymic output of naive cells and peripheral proliferation. We explored the effects of unglycosylated recombinant simian IL-7 (rsIL-7) administration on peripheral T-cell subpopulations in healthy macaques. RsIL-7 was well tolerated. Mean half-life ranged between 9.3 and 13.9 hours. Blood CD3(+)CD4(+) and CD3(+)CD8(+) lymphocyte counts decreased rapidly after each rsIL-7 administration, the duration of these effects being dependent on the frequency of administration. At treatment completion, the increased of CD3(+) lymphocytes was marked at 100 microg/kg every 2 days. CD3(+) lymphocytes that harbour the alpha chain of IL-7 receptor (CD127) and CD3(+)CD8(+) lymphocytes that expressed the proliferation marker Ki-67 exhibited a similar initial profile. The expression of the anti-apoptotic marker Bcl-2 increased in CD3(+) lymphocytes during the treatment and post-treatment period in a dose/frequency dependent manner. RsIL-7 was well tolerated in macaques and induces rapid modifications of T-cells that express CD127.

  17. Rapid Elimination of the Persistent Synergid through a Cell Fusion Mechanism

    KAUST Repository

    Maruyama, Daisuke; Volz, Ronny; Takeuchi, Hidenori; Mori, Toshiyuki; Igawa, Tomoko; Kurihara, Daisuke; Kawashima, Tomokazu; Ueda, Minako; Ito, Masaki; Umeda, Masaaki; Nishikawa, Shuhichi; Groß -Hardt, Rita; Higashiyama, Tetsuya

    2015-01-01

    the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling

  18. Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons.

    Science.gov (United States)

    Tong, Ling; Strong, Melissa K; Kaur, Tejbeer; Juiz, Jose M; Oesterle, Elizabeth C; Hume, Clifford; Warchol, Mark E; Palmiter, Richard D; Rubel, Edwin W

    2015-05-20

    During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival. Copyright © 2015 the authors 0270-6474/15/357878-14$15.00/0.

  19. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors

    Czech Academy of Sciences Publication Activity Database

    Mikyšková, Romana; Indrová, Marie; Polláková, Veronika; Bieblová, Jana; Šímová, Jana; Reiniš, Milan

    2012-01-01

    Roč. 35, č. 5 (2012), s. 374-384 ISSN 1524-9557 R&D Projects: GA ČR(CZ) GPP301/11/P220; GA ČR GA301/09/1024; GA ČR GA301/07/1410 EU Projects: European Commission(XE) 18933 - CLINIGENE Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : myeloid-derived suppressor cells * cyclophosphamide * all-trans-retinoic acid * IL-12 * HPV16 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.463, year: 2012

  20. Rapid development of Leydig cell tumors in a Wistar rat substrain

    NARCIS (Netherlands)

    Teerds, K. J.; de rooij, D. G.; de Jong, F. H.; Rommerts, F. F.

    1991-01-01

    In 78% of the Wistar rats (substrain U) studied, spontaneous Leydig cell tumors developed between the ages of 12 and 30 months. The first signs of tumor development, in the form of nodules of Leydig cells, were already apparent in 1-month-old U-rats. These nodules of Leydig cells were found in all

  1. Measurement of cell proliferation in microculture using Hoechst 33342 for the rapid semiautomated microfluorimetric determination of chromatin DNA.

    Science.gov (United States)

    Richards, W L; Song, M K; Krutzsch, H; Evarts, R P; Marsden, E; Thorgeirsson, S S

    1985-07-01

    We report the development and characterization of a semiautomated method for measurement of cell proliferation in microculture using Hoechst 33342, a non-toxic specific vital stain for DNA. In this assay, fluorescence resulting from interaction of cell chromatin DNA with Hoechst 33342 dye was measured by an instrument that automatically reads the fluorescence of each well of a 96-well microtiter plate within 1 min. Each cell line examined was shown to require different Hoechst 33342 concentrations and time of incubation with the dye to attain optimum fluorescence in the assay. In all cell lines, cell chromatin-enhanced Hoechst 33342 fluorescence was shown to be a linear function of the number of cells or cell nuclei per well when optimum assay conditions were employed. Because of this linear relation, equivalent cell doubling times were calculated from growth curves based on changes in cell counts or changes in Hoechst/DNA fluorescence and the fluorimetric assay was shown to be useful for the direct assay of the influence of growth factors on cell proliferation. The fluorimetric assay also provided a means for normalizing the incorporation of tritiated thymidine ( [3H] TdR) into DNA; normalized values of DPM per fluorescence unit closely paralleled values of percent 3H-labelled nuclei when DNA synthesis was studied as a function of the concentration of rat serum in the medium. In summary, the chromatin-enhanced Hoechst 33342 fluorimetric assay provides a rapid, simple, and reproducible means for estimating cell proliferation by direct measurement of changes in cell fluorescence or by measurement of changes in the normalized incorporation of thymidine into DNA.

  2. A magnetic micropore chip for rapid (<1 hour) unbiased circulating tumor cell isolation and in situ RNA analysis.

    Science.gov (United States)

    Ko, Jina; Bhagwat, Neha; Yee, Stephanie S; Black, Taylor; Redlinger, Colleen; Romeo, Janae; O'Hara, Mark; Raj, Arjun; Carpenter, Erica L; Stanger, Ben Z; Issadore, David

    2017-09-12

    The use of microtechnology for the highly selective isolation and sensitive detection of circulating tumor cells has shown enormous promise. One challenge for this technology is that the small feature sizes - which are the key to this technology's performance - can result in low sample throughput and susceptibility to clogging. Additionally, conventional molecular analysis of CTCs often requires cells to be taken off-chip for sample preparation and purification before analysis, leading to the loss of rare cells. To address these challenges, we have developed a microchip platform that combines fast, magnetic micropore based negative immunomagnetic selection (>10 mL h -1 ) with rapid on-chip in situ RNA profiling (>100× faster than conventional RNA labeling). This integrated chip can isolate both rare circulating cells and cell clusters directly from whole blood and allow individual cells to be profiled for multiple RNA cancer biomarkers, achieving sample-to-answer in less than 1 hour for 10 mL of whole blood. To demonstrate the power of this approach, we applied our device to the circulating tumor cell based diagnosis of pancreatic cancer. We used a genetically engineered lineage-labeled mouse model of pancreatic cancer (KPCY) to validate the performance of our chip. We show that in a cohort of patient samples (N = 25) that this device can detect and perform in situ RNA analysis on circulating tumor cells in patients with pancreatic cancer, even in those with extremely sparse CTCs (<1 CTC mL -1 of whole blood).

  3. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting, E-mail: BTZhu@kumc.edu

    2012-07-15

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K{sub 3}) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of

  4. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    International Nuclear Information System (INIS)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2012-01-01

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K 3 ) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of ATP

  5. Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses

    Directory of Open Access Journals (Sweden)

    Kathrin Davari

    2017-04-01

    Full Text Available Summary: Activation of immune cells results in rapid functional changes, but how such fast changes are accomplished remains enigmatic. By combining time courses of 4sU-seq, RNA-seq, ribosome profiling (RP, and RNA polymerase II (RNA Pol II ChIP-seq during T cell activation, we illustrate genome-wide temporal dynamics for ∼10,000 genes. This approach reveals not only immediate-early and posttranscriptionally regulated genes but also coupled changes in transcription and translation for >90% of genes. Recruitment, rather than release of paused RNA Pol II, primarily mediates transcriptional changes. This coincides with a genome-wide temporary slowdown in cotranscriptional splicing, even for polyadenylated mRNAs that are localized at the chromatin. Subsequent splicing optimization correlates with increasing Ser-2 phosphorylation of the RNA Pol II carboxy-terminal domain (CTD and activation of the positive transcription elongation factor (pTEFb. Thus, rapid de novo recruitment of RNA Pol II dictates the course of events during T cell activation, particularly transcription, splicing, and consequently translation. : Davari et al. visualize global changes in RNA Pol II binding, transcription, splicing, and translation. T cells change their functional program by rapid de novo recruitment of RNA Pol II and coupled changes in transcription and translation. This coincides with fluctuations in RNA Pol II phosphorylation and a temporary reduction in cotranscriptional splicing. Keywords: RNA Pol II, cotranscriptional splicing, T cell activation, ribosome profiling, 4sU, H3K36, Ser-5 RNA Pol II, Ser-2 RNA Pol II, immune response, immediate-early genes

  6. Rapid and dynamic arginylation of the leading edge β-actin is required for cell migration.

    Science.gov (United States)

    Pavlyk, Iuliia; Leu, Nicolae A; Vedula, Pavan; Kurosaka, Satoshi; Kashina, Anna

    2018-04-01

    β-actin plays key roles in cell migration. Our previous work demonstrated that β-actin in migratory non-muscle cells is N-terminally arginylated and that this arginylation is required for normal lamellipodia extension. Here, we examined the function of β-actin arginylation in cell migration. We found that arginylated β-actin is concentrated at the leading edge of lamellipodia and that this enrichment is abolished after serum starvation as well as in contact-inhibited cells in confluent cultures, suggesting that arginylated β-actin at the cell leading edge is coupled to active migration. Arginylated actin levels exhibit dynamic changes in response to cell stimuli, lowered after serum starvation and dramatically elevating within minutes after cell stimulation by readdition of serum or lysophosphatidic acid. These dynamic changes require active translation and are not seen in confluent contact-inhibited cell cultures. Microinjection of arginylated actin antibodies into cells severely and specifically inhibits their migration rates. Together, these data strongly suggest that arginylation of β-actin is a tightly regulated dynamic process that occurs at the leading edge of locomoting cells in response to stimuli and is integral to the signaling network that regulates cell migration. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Transmitted/Founder Viruses Rapidly Escape from CD8+ T Cell Responses in Acute Hepatitis C Virus Infection.

    Science.gov (United States)

    Bull, Rowena A; Leung, Preston; Gaudieri, Silvana; Deshpande, Pooja; Cameron, Barbara; Walker, Melanie; Chopra, Abha; Lloyd, Andrew R; Luciani, Fabio

    2015-05-01

    The interaction between hepatitis C virus (HCV) and cellular immune responses during very early infection is critical for disease outcome. To date, the impact of antigen-specific cellular immune responses on the evolution of the viral population establishing infection and on potential escape has not been studied. Understanding these early host-virus dynamics is important for the development of a preventative vaccine. Three subjects who were followed longitudinally from the detection of viremia preseroconversion until disease outcome were analyzed. The evolution of transmitted/founder (T/F) viruses was undertaken using deep sequencing. CD8(+) T cell responses were measured via enzyme-linked immunosorbent spot (ELISpot) assay using HLA class I-restricted T/F epitopes. T/F viruses were rapidly extinguished in all subjects associated with either viral clearance (n = 1) or replacement with viral variants leading to establishment of chronic infection (n = 2). CD8(+) T cell responses against 11 T/F epitopes were detectable by 33 to 44 days postinfection, and 5 of these epitopes had not previously been reported. These responses declined rapidly in those who became chronically infected and were maintained in the subject who cleared infection. Higher-magnitude CD8(+) T cell responses were associated with rapid development of immune escape variants at a rate of up to 0.1 per day. Rapid escape from CD8(+) T cell responses has been quantified for the first time in the early phase of primary HCV infection. These rapid escape dynamics were associated with higher-magnitude CD8(+) T cell responses. These findings raise questions regarding optimal selection of immunogens for HCV vaccine development and suggest that detailed analysis of individual epitopes may be required. A major limitation in our detailed understanding of the role of immune response in HCV clearance has been the lack of data on very early primary infection when the transmitted viral variants successfully establish

  8. The Rapid Detection of Single Bacterial Cells by Deep UV Micro Raman Spectroscopy.

    Science.gov (United States)

    1992-04-01

    Saltzman and C.T. Gregg, Appl. Environ. Microbiol. 44, 1081 (1982). 14. D.’. Mc Greggor, W.K. Grace and G.C. Salzman, in "Rapid Methods and...was used by Dr. Marcus Peter of the Dana -Farber Cancer Institute. During that period he came to our laboratories weekly to study GTP- binding

  9. Inhibition of exportin-1 function results in rapid cell cycle-associated DNA damage in cancer cells.

    Science.gov (United States)

    Burke, Russell T; Marcus, Joshua M; Orth, James D

    2017-06-13

    Selective inhibitors of nuclear export (SINE) are small molecules in development as anti-cancer agents. The first-in-class SINE, selinexor, is in clinical trials for blood and solid cancers. Selinexor forms a covalent bond with exportin-1 at cysteine-528, and blocks its ability to export cargos. Previous work has shown strong cell cycle effects and drug-induced cell death across many different cancer-derived cell lines. Here, we report strong cell cycle-associated DNA double-stranded break formation upon the treatment of cancer cells with SINE. In multiple cell models, selinexor treatment results in the formation of clustered DNA damage foci in 30-40% of cells within 8 hours that is dependent upon cysteine-528. DNA damage strongly correlates with G1/S-phase and decreased DNA replication. Live cell microscopy reveals an association between DNA damage and cell fate. Cells that form damage in G1-phase more often die or arrest, while those damaged in S/G2-phase frequently progress to cell division. Up to half of all treated cells form damage foci, and most cells that die after being damaged, were damaged in G1-phase. By comparison, non-transformed cell lines show strong cell cycle effects but little DNA damage and less death than cancer cells. Significant drug combination effects occur when selinexor is paired with different classes of agents that either cause DNA damage or that diminish DNA damage repair. These data present a novel effect of exportin-1 inhibition and provide a strong rationale for multiple combination treatments of selinexor with agents that are currently in use for the treatment of different solid cancers.

  10. Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells

    OpenAIRE

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C.

    2013-01-01

    This study developed a highly efficient serum-free pluripotent stem cell (PSC) neural induction medium that can induce human PSCs into primitive neural stem cells (NSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. This method of primitive NSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  11. Rapid effects of 17beta-estradiol on TRPV5 epithelial Ca2+ channels in rat renal cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2009-08-01

    The renal distal tubules and collecting ducts play a key role in the control of electrolyte and fluid homeostasis. The discovery of highly calcium selective channels, Transient Receptor Potential Vanilloid 5 (TRPV5) of the TRP superfamily, has clarified the nature of the calcium entry channels. It has been proposed that this channel mediates the critical Ca(2+) entry step in transcellular Ca(2+) re-absorption in the kidney. The regulation of transmembrane Ca(2+) flux through TRPV5 is of particular importance for whole body calcium homeostasis.In this study, we provide evidence that the TRPV5 channel is present in rat cortical collecting duct (RCCD(2)) cells at mRNA and protein levels. We demonstrate that 17beta-estradiol (E(2)) is involved in the regulation of Ca(2+) influx in these cells via the epithelial Ca(2+) channels TRPV5. By combining whole-cell patch-clamp and Ca(2+)-imaging techniques, we have characterized the electrophysiological properties of the TRPV5 channel and showed that treatment with 20-50nM E(2) rapidly (<5min) induced a transient increase in inward whole-cell currents and intracellular Ca(2+) via TRPV5 channels. This rise was significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV5.These data demonstrate for the first time, a novel rapid modulation of endogenously expressed TRPV5 channels by E(2) in kidney cells. Furthermore, the results suggest calcitropic effects of E(2). The results are discussed in relation to present concepts of non-genomic actions of E(2) in Ca(2+) homeostasis.

  12. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents.

    Science.gov (United States)

    Mukhey, Dev; Phillips, James B; Daniels, Julie T; Kureshi, Alvena K

    2018-02-01

    The architecture of the human corneal stroma consists of a highly organized extracellular matrix (ECM) interspersed with keratocytes. Their progenitor cells; corneal stromal stem cells (CSSC) are located at the periphery, in the limbal stroma. A highly organized corneal ECM is critical for effective transmission of light but this structure may be compromised during injury or disease, resulting in loss of vision. Re-creating normal organization in engineered tissue equivalents for transplantation often involves lengthy culture times that are inappropriate for clinical use or utilisation of synthetic substrates that bring complications such as corneal melting. CSSC have great therapeutic potential owing to their ability to reorganize a disorganized matrix, restoring transparency in scarred corneas. We examined CSSC contractile behavior to assess whether this property could be exploited to rapidly generate cell and ECM organization in Real Architecture For 3D Tissues (RAFT) tissue equivalents (TE) for transplantation. Free-floating collagen gels were characterized to assess contractile behavior of CSSC and establish optimum cell density and culture times. To mediate cell and collagen organization, tethered collagen gels seeded with CSSC were cultured and subsequently stabilized with the RAFT process. We demonstrated rapid creation of biomimetic RAFT TE with tunable structural properties. These displayed three distinct regions of varying degrees of cellular and collagen organization. Interestingly, increased organization coincided with a dramatic loss of PAX6 expression in CSSC, indicating rapid differentiation into keratocytes. The organized RAFT TE system could be a useful bioengineering tool to rapidly create an organized ECM while simultaneously controlling cell phenotype. For the first time, we have demonstrated that human CSSC exhibit the phenomenon of cellular self-alignment in tethered collagen gels. We found this mediated rapid co-alignment of collagen fibrils

  13. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens

    DEFF Research Database (Denmark)

    Holst, Peter J; Bartholdy, Christina; Buus, Anette Stryhn

    2007-01-01

    -linked lymphocytic choriomeningitis virus (LCMV)-derived epitopes was long-lived and protective. Notably, in contrast to full-length protein, the response elicited with the beta(2)-microglobulin-linked LCMV-derived epitope was CD4(+) T-cell independent. Furthermore, virus-specific CD8(+) T cells primed...... in the absence of CD4(+) T-cell help were sustained in the long term and able to expand and control a secondary challenge with LCMV. Our results demonstrate that modifications to the antigen used in adenovirus vaccines may be used to improve the induced T-cell response. Such a strategy for CD4(+) T-cell...... to that elicited with an adenovirus-encoded minimal epitope covalently linked to beta(2)-microglobulin. We demonstrate that the beta(2)-microglobulin-linked epitope induced an accelerated and augmented CD8(+) T-cell response. Furthermore, the immunity conferred by vaccination with beta(2)-microglobulin...

  14. Thin-film culturing technique allowing rapid gas-liquid equilibration (6 sec) with no toxicity to mammalian cells

    International Nuclear Information System (INIS)

    Koch, C.J.

    1984-01-01

    A method is described for inoculating mammalian cells onto the central area of glass petri dishes. The medium depth above the cells is only 100 μm for an added medium volume of 1 ml and increases linearly and rapidly with additional medium. The theoretical time constant for equilibration of the medium with the gas is related to the square of the medium depth. The experimental time constant was measured in two different ways for large and small medium depths, giving excellent agreement with the theoretical values. Although the time constant is only 6 sec for the case of 1 ml of added medium, there is no drying out of the medium or toxicity to the cells because of a large reservoir of medium in the meniscus at the periphery of the dish

  15. Rapid allergen-induced interleukin-17 and interferon-γ secretion by skin-resident memory CD8(+) T cells

    DEFF Research Database (Denmark)

    Schmidt, Jonas D; Ahlström, Malin G; Johansen, Jeanne D

    2017-01-01

    , the mechanisms whereby TRM cells induce rapid recall responses need further investigation. OBJECTIVES: To study whether contact allergens induce local and/or global memory, and to determine the mechanisms involved in memory responses in the skin. METHODS: To address these questions, we analysed responses......BACKGROUND: Skin-resident memory T (TRM ) cells are associated with immunological memory in the skin. Whether immunological memory responses to allergens in the skin are solely localized to previously allergen-exposed sites or are present globally in the skin is not clear. Furthermore......, long-lasting local memory and a weaker, temporary global immunological memory response to the allergen that is mediated by IL-17A-producing and IFN-γ-producing CD8(+) TRM cells....

  16. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth

    Science.gov (United States)

    Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan

    2016-05-01

    The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ~1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.The development of novel biomaterials that deliver precise regulatory signals to

  17. A role for α-galactosidase in the degradation of the endosperm cell walls of lettuce seeds, cv. Grand Rapids.

    Science.gov (United States)

    Leung, D W; Bewley, J D

    1983-04-01

    Isolated endosperms of Grand Rapids lettuce (Lactuca sativa L.) seeds undergo extensive cell-wall degradation and sugars are released into the surrounding incubation medium. One sugar so released is galactose. α-Galactosidase (EC 3.2.122) is present at the same level in both dry and imbibed isolated endosperms and is responsible for the release of galactose. However, this enzyme does not act upon the native endosperm cell wall, but requires first its partial hydrolysis and the production of oligomers by the action of endo-β-mannanase (EC 3.2.1.787). Galactose is then cleaved from these oligomers, allowing their further subsequent hydrolysis by endo-β-mannanase. Thus α-galactosidase and endo-β-mannanase act cooperatively to effect the hydrolysis of the lettuce endosperm cell walls.

  18. A Rapid Embryonic Stem Cell-Based Mouse Model for B-cell Lymphomas Driven by Epstein-Barr Virus Protein LMP1.

    Science.gov (United States)

    Ba, Zhaoqing; Meng, Fei-Long; Gostissa, Monica; Huang, Pei-Yi; Ke, Qiang; Wang, Zhe; Dao, Mai N; Fujiwara, Yuko; Rajewsky, Klaus; Zhang, Baochun; Alt, Frederick W

    2015-06-01

    The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) contributes to oncogenic human B-cell transformation. Mouse B cells conditionally expressing LMP1 are not predisposed to B-cell malignancies, as LMP1-expressing B cells are eliminated by T cells. However, mice with conditional B-cell LMP1 expression and genetic elimination of α/β and γ/δ T cells ("CLT" mice) die early in association with B-cell lymphoproliferation and lymphomagenesis. Generation of CLT mice involves in-breeding multiple independently segregating alleles. Thus, although introduction of additional activating or knockout mutations into the CLT model is desirable for further B-cell expansion and immunosurveillance studies, doing such experiments by germline breeding is time-consuming, expensive, and sometimes unfeasible. To generate a more tractable model, we generated clonal CLT embryonic stem (ES) cells from CLT embryos and injected them into RAG2-deficient blastocysts to generate chimeric mice, which, like germline CLT mice, harbor splenic CLT B cells and lack T cells. CLT chimeric mice generated by this RAG2-deficient blastocyst complementation ("RDBC") approach die rapidly in association with B-cell lymphoproliferation and lymphoma. Because CLT lymphomas routinely express the activation-induced cytidine deaminase (AID) antibody diversifier, we tested potential AID roles by eliminating the AID gene in CLT ES cells and testing them via RDBC. We found that CLT and AID-deficient CLT ES chimeras had indistinguishable phenotypes, showing that AID is not essential for LMP1-induced lymphomagenesis. Beyond expanding accessibility and utility of CLT mice as a cancer immunotherapy model, our studies provide a new approach for facilitating generation of genetically complex mouse cancer models. ©2015 American Association for Cancer Research.

  19. Plasma Cell Alloantigen 1 and IL-10 Secretion Define Two Distinct Peritoneal B1a B Cell Subsets With Opposite Functions, PC1high Cells Being Protective and PC1low Cells Harmful for the Growing Fetus

    Directory of Open Access Journals (Sweden)

    Anne Schumacher

    2018-05-01

    Full Text Available B cells possess various immuno regulatory functions. However, research about their participation in tolerance induction toward the fetus is just emerging. Accumulating evidence supports the idea that B cells can play seemingly conflicting roles during pregnancy, either protecting or harming the fetus. Previous findings indicated the presence of two different peritoneal B cell subsets, defined by the expression of the plasma cell alloantigen 1 (PC1 and with distinct immune modulatory functions. Here, we aimed to study the participation of these two B cell subsets, on pregnancy outcome in a murine model of disturbed fetal tolerance. The frequencies and cell numbers of peritoneal and splenic CD19+IL-10+ and CD19+CD5+IL-10+PC1+ cells were assessed in virgin as well as normal pregnant (NP and abortion-prone (AP females during the course of gestation. Peritoneal PC1low or PC1high B1a B cells were sorted, analyzed for their ability to secrete IL-10 and adoptively transferred into NP or AP females. On gestation day (gd 12, the abortion rate as well as the frequencies and cell numbers of regulatory T cells, TH1 and TH17 cells were determined in spleens and decidua. In addition, mRNA expression of IL-10, TGF-β, IFN-γ, and TNF-α was analyzed in decidual tissue. Peritoneal CD19+IL-10+ and CD19+CD5+IL-10+PC1+ frequencies fluctuated during the progression of normal pregnancies while no significant changes were observed in spleen. AP females showed significantly reduced frequencies of both B cell populations and exhibited an altered peritoneal PC1high/PC1low ratio at gd10. Adoptive transfers of PC1low B1a B cells into NP females increased the abortion rate in association with a reduced splenic regulatory T/TH17 ratio. By contrast, the transfer of PC1high B1a B cells into AP females significantly diminished the fetal rejection rate and significantly reduced the numbers of splenic TH17 cells. Our results suggest that the peritoneum harbors two distinct B1a B

  20. Development of a Rapid and Sensitive Test for the Detection of Prions in Cultured Cells

    National Research Council Canada - National Science Library

    Taraboulos, Albert

    2004-01-01

    .... Increase the level of prion/Prp(exp SC) amplification in the infected cells. 4. Design better ways to detect prion infection in cells, either by increasing the formation of PrP(exp SC) or by devising new, non-PrP(exp SC) surrogate' markers.

  1. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating.

    Science.gov (United States)

    Ghanizadeh Tabriz, Atabak; Mills, Christopher G; Mullins, John J; Davies, Jamie A; Shu, Wenmiao

    2017-01-01

    Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 µm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells).

  2. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth.

    Science.gov (United States)

    Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan

    2016-05-21

    The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ∼1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.

  3. Rapid isolation of bone marrow mesenchymal stromal cells using integrated centrifuge-based technology.

    Science.gov (United States)

    Meppelink, Amanda M; Wang, Xing-Hua; Bradica, Gino; Barron, Kathryn; Hiltz, Kathleen; Liu, Xiang-Hong; Goldman, Scott M; Vacanti, Joseph P; Keating, Armand; Hoganson, David M

    2016-06-01

    The use of bone marrow-derived mesenchymal stromal cells (MSCs) in cell-based therapies is currently being developed for a number of diseases. Thus far, the clinical results have been inconclusive and variable, in part because of the variety of cell isolation procedures and culture conditions used in each study. A new isolation technique that streamlines the method of concentration and demands less time and attention could provide clinical and economic advantages compared with current methodologies. In this study, we evaluated the concentrating capability of an integrated centrifuge-based technology compared with standard Ficoll isolation. MSCs were concentrated from bone marrow aspirate using the new device and the Ficoll method. The isolation capabilities of the device and the growth characteristics, secretome production, and differentiation capacity of the derived cells were determined. The new MSC isolation device concentrated the bone marrow in 90 seconds and resulted in a mononuclear cell yield 10-fold higher and with a twofold increase in cell retention compared with Ficoll. The cells isolated using the device were shown to exhibit similar morphology and functional activity as assessed by growth curves and secretome production compared to the Ficoll-isolated cells. The surface marker and trilineage differentiation profile of the device-isolated cells was consistent with the known profile of MSCs. The faster time to isolation and greater cell yield of the integrated centrifuge-based technology may make this an improved approach for MSC isolation from bone marrow aspirates. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Mycobacterium tuberculosis specific CD8(+ T cells rapidly decline with antituberculosis treatment.

    Directory of Open Access Journals (Sweden)

    Melissa R Nyendak

    Full Text Available Biomarkers associated with response to therapy in tuberculosis could have broad clinical utility. We postulated that the frequency of Mycobacterium tuberculosis (Mtb specific CD8(+ T cells, by virtue of detecting intracellular infection, could be a surrogate marker of response to therapy and would decrease during effective antituberculosis treatment.We sought to determine the relationship of Mtb specific CD4(+ T cells and CD8(+ T cells with duration of antituberculosis treatment.We performed a prospective cohort study, enrolling between June 2008 and August 2010, of HIV-uninfected Ugandan adults (n = 50 with acid-fast bacillus smear-positive, culture confirmed pulmonary TB at the onset of antituberculosis treatment and the Mtb specific CD4(+ and CD8(+ T cell responses to ESAT-6 and CFP-10 were measured by IFN-γ ELISPOT at enrollment, week 8 and 24.There was a significant difference in the Mtb specific CD8(+ T response, but not the CD4(+ T cell response, over 24 weeks of antituberculosis treatment (p<0.0001, with an early difference observed at 8 weeks of therapy (p = 0.023. At 24 weeks, the estimated Mtb specific CD8(+ T cell response decreased by 58%. In contrast, there was no significant difference in the Mtb specific CD4(+ T cell during the treatment. The Mtb specific CD4(+ T cell response, but not the CD8(+ response, was negatively impacted by the body mass index.Our data provide evidence that the Mtb specific CD8(+ T cell response declines with antituberculosis treatment and could be a surrogate marker of response to therapy. Additional research is needed to determine if the Mtb specific CD8(+ T cell response can detect early treatment failure, relapse, or to predict disease progression.

  5. Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS.

    Directory of Open Access Journals (Sweden)

    Sung Sun Yim

    Full Text Available Antibodies and their derivatives are the most important agents in therapeutics and diagnostics. Even after the significant progress in the technology for antibody screening from huge libraries, it takes a long time to isolate an antibody, which prevents a prompt action against the spread of a disease. Here, we report a new strategy for isolating desired antibodies from a combinatorial library in one day by repeated fluorescence-activated cell sorting (FACS. First, we constructed a library of synthetic human antibody in which single-chain variable fragment (scFv was expressed in the periplasm of Escherichia coli. After labeling the cells with fluorescent antigen probes, the highly fluorescent cells were sorted by using a high-speed cell sorter, and these cells were reused without regeneration in the next round of sorting. After repeating this sorting, the positive clones were completely enriched in several hours. Thus, we screened the library against three viral antigens, including the H1N1 influenza virus, Hepatitis B virus, and Foot-and-mouth disease virus. Finally, the potential antibody candidates, which show K(D values between 10 and 100 nM against the target antigens, could be successfully isolated even though the library was relatively small (∼ 10(6. These results show that repeated FACS screening without regeneration of the sorted cells can be a powerful method when a rapid response to a spreading disease is required.

  6. A Portable Cell Maintenance System for Rapid Toxicity Monitoring Final Report CRADA No. TC-02081-04

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhou, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    The Phase I STTR research project was targeted at meeting the objectives and requirements stated in STTR solicitation A04-T028 for a Portable Cell Maintenance System for Rapid Toxicity Monitoring. In accordance with the requirements for STTR programs, collaboration was formed between a small business, Kionix, Inc., and The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL). The collaboration included CytoDiscovery, Inc. (CDI) which, in collaboration with Kionix, provided access to membrane chip technology and provided program support and coordination. The objective of the overall program (excerpted from the original solicitation) was: “To develop a small, portable cell maintenance system for the transport, storage, and monitoring of viable vertebrate cells and tissues.” The goal of the Phase I project was to demonstrate the feasibility of achieving the program objectives utilizing a system comprised of a small-size, microfluidic chip-based cell maintenance cartridge (CMC) and a portable cell maintenance system (CMS) capable of housing a minimum of four CMCs. The system was designed to be capable of optimally maintaining multiple vertebrate cell types while supporting a wide variety of cellular assays.

  7. A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra

    International Nuclear Information System (INIS)

    Chen LiMei; Carpita, N.C.; Reiter, W.D.; Wilson, R.H.; Jeffries, C.; McCann, M.C.

    1998-01-01

    We have developed a rapid method to screen large numbers of mutant plants for a broad range of cell wall phenotypes using Fourier transform infrared (FTIR) microspectroscopy of leaves. We established and validated a model that can discriminate between the leaves of wild-type and a previously defined set of cell-wall mutants of Arabidopsis. Exploratory principal component analysis indicated that mutants deficient in different cell-wall sugars can be distinguished from each other. Discrimination of cell-wall mutants from wild-type was independent of variability in starch content or additional unrelated mutations that might be present in a heavily mutagenised population. We then developed an analysis of FTIR spectra of leaves obtained from over 1000 mutagenised flax plants, and selected 59 plants whose spectral variation from wild-type was significantly out of the range of a wild-type population, determined by Mahalanobis distance. Cell wall sugars from the leaves of selected putative mutants were assayed by gas chromatography-mass spectrometry and 42 showed significant differences in neutral sugar composition. The FTIR spectra indicated that six of the remaining 17 plants have altered ester or protein content. We conclude that linear discriminant analysis of FTIR spectra is a robust method to identify a broad range of structural and architectural alterations in cell walls, appearing as a consequence of developmental regulation, environmental adaptation or genetic modification. (author)

  8. Primary bovine skeletal muscle cells enters apoptosis rapidly via the intrinsic pathway when available oxygen is removed.

    Directory of Open Access Journals (Sweden)

    Sissel Beate Rønning

    Full Text Available Muscle cells undergo changes post-mortem during the process of converting muscle into meat, and this complex process is far from revealed. Recent reports have suggested programmed cell death (apoptosis to be important in the very early period of converting muscle into meat. The dynamic balance that occurs between anti-apoptotic members, such as Bcl-2, and pro-apoptotic members (Bid, Bim helps determine whether the cell initiates apoptosis. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to investigate if apoptosis is induced when oxygen is removed from the growth medium. Primary bovine muscle cells were differentiated to form myotubes, and anoxia was induced for 6h. The anoxic conditions significantly increased (P<0.05 the relative gene expression of anti- and pro-apoptotic markers (Aif, Bcl-2, Bid and Bim, and the PARK7 (P<0.05 and Grp75 (Hsp70 protein expressions were transiently increased. The anoxic conditions also led to a loss of mitochondrial membrane potential, which is an early apoptotic event, as well as cytochrome c release from the mitochondria. Finally, reorganization and degradation of cytoskeletal filaments occurred. These results suggest that muscle cells enters apoptosis via the intrinsic pathway rapidly when available oxygen in the muscle diminishes post-mortem.

  9. Paraffin oil as a "methane vector" for rapid and high cell density cultivation of Methylosinus trichosporium OB3b.

    Science.gov (United States)

    Han, Bing; Su, Tao; Wu, Hao; Gou, Zhongxuan; Xing, Xin-Hui; Jiang, Hao; Chen, Yin; Li, Xin; Murrell, J Colin

    2009-06-01

    Slow growth and relatively low cell densities of methanotrophs have limited their uses in industrial applications. In this study, a novel method for rapid cultivation of Methylosinus trichosporium OB3b was studied by adding a water-immiscible organic solvent in the medium. Paraffin oil was the most effective at enhancing cell growth and final cell density. This is at least partially due to the increase of methane gas transfer between gas and medium phases since methane solubility is higher in paraffin than in water/nitrate minimal salt medium. During cultivation with paraffin oil at 5% (v/v) in the medium, M. trichosporium OB3b cells also showed higher concentrations of the intermediary metabolites, such as formic acid and pyruvic acid, and consumed more methane compared with the control. Paraffin as methane vector to improve methanotroph growth was further studied in a 5-L fermentor at three concentrations (i.e., 2.5%, 5%, and 10%). Cell density reached about 14 g dry weight per liter with 5% paraffin, around seven times higher than that of the control (without paraffin). Cells cultivated with paraffin tended to accumulate around the interface between oil droplets and the water phase and could exist in oil phase in the case of 10% (v/v) paraffin. These results indicated that paraffin could enhance methanotroph growth, which is potentially useful in cultivation of methanotrophs in large scale in industry.

  10. Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Chao, Ching-Hsun; Chang, Chi-Lung; Chan, Chien-Hung; Lien, Shui-Yang; Weng, Ko-Wei; Yao, Kuo-Shan

    2010-01-01

    TiO 2 nano-particles with an anchored ZnO nano-rod structure were synthesized using the hydrothermal method to grow ZnO nano-rods and coated TiO 2 nano-particles on ZnO nano-rods using the rapid thermal annealing method on ITO conducting glass pre-coated with nano porous TiO 2 film. The XRD study showed that there was little difference in crystal composition for various types of TiO 2 nano-particles anchored to ZnO nano-rods. The as-prepared architecture was characterized using field-emission scanning electron microscopy (FE-SEM). Films with TiO 2 nano-particles anchored to ZnO nano-rods were used as electrode materials to fabricate dye sensitized solar cells (DSSCs). The best solar energy conversion efficiency of 2.397% was obtained by modified electrode material, under AM 1.5 illumination, achieved up to J sc = 15.382 mA/cm 2 , V oc = 0.479 V and fill factor = 32.8%.

  11. Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells.

    Science.gov (United States)

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C

    2013-11-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  12. A rapid, efficient, and economic device and method for the isolation and purification of mouse islet cells.

    Directory of Open Access Journals (Sweden)

    Yin Zongyi

    Full Text Available Rapid, efficient, and economic method for the isolation and purification of islets has been pursued by numerous islet-related researchers. In this study, we compared the advantages and disadvantages of our developed patented method with those of commonly used conventional methods (Ficoll-400, 1077, and handpicking methods. Cell viability was assayed using Trypan blue, cell purity and yield were assayed using diphenylthiocarbazone, and islet function was assayed using acridine orange/ethidium bromide staining and enzyme-linked immunosorbent assay-glucose stimulation testing 4 days after cultivation. The results showed that our islet isolation and purification method required 12 ± 3 min, which was significantly shorter than the time required in Ficoll-400, 1077, and HPU groups (34 ± 3, 41 ± 4, and 30 ± 4 min, respectively; P 1000 islets. In summary, the MCT method is a rapid, efficient, and economic method for isolating and purifying murine islet cell clumps. This method overcomes some of the shortcomings of conventional methods, showing a relatively higher quality and yield of islets within a shorter duration at a lower cost. Therefore, the current method provides researchers with an alternative option for islet isolation and should be widely generalized.

  13. Rapid-mix studies on the anomalous radiosensitization of mammalian cells by 5-chloro-1-methyl-4-nitroimidazole

    International Nuclear Information System (INIS)

    Watts, M.E.; Hodgkiss, R.J.; Sehmi, D.S.; Woodcock, M.

    1980-01-01

    It has been suggested that the anomalously high radiosensitization shown by 5-chloro-1-methyl-4-nitroimidazole (CMNI) arises from dissociation of the CMNI radical-anion, yielding Cl - and an arylating free radical, and that the importance of this dehalogenation process could be investigated by irradiating hypoxic mammalian cells in vitro in the presence of CMNI, followed by the rapid addition of oxygen to prevent the dehalogenation process. 0.1 mmol dm -3 CMNI gave a sensitizer enhancement ratio (SER) of 1.7 when irradiated under steady-state conditions with 250 kVp X-rays (dose rate 3.93 Gymin -1 ) using V79 379A cells. Irradiation with 2.5 MeV electrons in the rapid-mix apparatus with 0.15 mmol dm -3 CMNI flowing through both tubes gave a slightly lower value, SER=1.5, in hypoxia. When air- or oxygen saturated 0.15 mmol dm -3 CMNI in Eagle's MEM were added to cells irradiated in hypoxic 0.15 mmol dm -3 CMNI solution 17 ms after irradiation, no change in SER was observed. Control experiments without CMNI also confirmed that the addition of oxygen at this time has no influence on radiosensitization. It was concluded that since a significant reduction in SER was not observed, the elimination of the ortho-substituted 'leaving group' is not responsible for the anomalously high radiosensitization efficiency. (U.K.)

  14. Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro

    NARCIS (Netherlands)

    Jones, CA; Fernandez, M; Herc, K; Bosnjak, L; Miranda-Saksena, M; Boadle, RA; Cunningham, A

    2003-01-01

    Dendritic cells (DC) are critical for stimulation of naive T cells. Little is known about the effect of herpes simplex virus type 2 (HSV-2) infection on DC structure or function or if the observed effects of HSV-1 on human DC are reproduced in murine DC. Here, we demonstrate that by 12 h

  15. Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by high-speed cell disruption.

    Science.gov (United States)

    Müller, F M; Werner, K E; Kasai, M; Francesconi, A; Chanock, S J; Walsh, T J

    1998-06-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolation of DNA from three medically important yeasts (Candida albicans, Cryptococcus neoformans, and Trichosporon beigelii) and two filamentous fungi (Aspergillus fumigatus and Fusarium solani). Additional extractions by HSCD were performed on Saccharomyces cerevisiae, Pseudallescheria boydii, and Rhizopus arrhizus. Two different inocula (10(8) and 10(7) CFU) were compared for optimization of obtained yields. The entire extraction procedure was performed on as many as 12 samples within 1 h compared to 6 h for PC extraction. In comparison to the PC procedure, HSCD DNA extraction demonstrated significantly greater yields for 10(8) CFU of C. albicans, T. beigelii, A. fumigatus, and F. solani (P extraction and PC extraction. For 10(7) CFU of T. beigelii, PC extraction resulted in a greater yield than did HSCD (P fungi than for yeasts by the HSCD extraction procedure (P extraction procedure, differences were not significant. For all eight organisms, the rapid extraction procedure resulted in good yield, integrity, and quality of DNA as demonstrated by restriction fragment length polymorphism, PCR, and random amplified polymorphic DNA. We conclude that mechanical disruption of fungal cells by HSCD is a safe, rapid, and efficient procedure for extracting genomic DNA from medically important yeasts and especially from filamentous fungi.

  16. Rapid changes in plasma membrane protein phosphorylation during initiation of cell wall digestion

    International Nuclear Information System (INIS)

    Blowers, D.P.; Boss, W.F.; Trewavas, A.J.

    1988-01-01

    Plasma membrane vesicles from wild carrot cells grown in suspension culture were isolated by aqueous two-phase partitioning, and ATP-dependent phosphorylation was measured with [γ- 32 P]ATP in the presence and absence of calcium. Treatment of the carrot cells with the cell wall digestion enzymes, driselase, in a sorbitol osmoticum for 1.5 min altered the protein phosphorylation pattern compared to that of cells treated with sorbitol alone. Driselase treatment resulted in decreased phosphorylation of a band of M r 80,000 which showed almost complete calcium dependence in the osmoticum treated cells; decreased phosphorylation of a band of M r 15,000 which showed little calcium activation, and appearance of a new band of calcium-dependent phosphorylation at M r 22,000. However, protein phosphorylation was decreased. Adding driselase to the in vitro reaction mixture caused a general decrease in the membrane protein phosphorylation either in the presence or absence of calcium which did not mimic the in vivo response. Cells labeled in vivo with inorganic 32 P also showed a response to the Driselase treatment. An enzymically active driselas preparation was required for the observed responses

  17. Fluorescent protein-tagged Vpr dissociates from HIV-1 core after viral fusion and rapidly enters the cell nucleus.

    Science.gov (United States)

    Desai, Tanay M; Marin, Mariana; Sood, Chetan; Shi, Jiong; Nawaz, Fatima; Aiken, Christopher; Melikyan, Gregory B

    2015-10-29

    HIV-1 Vpr is recruited into virions during assembly and appears to remain associated with the viral core after the reverse transcription and uncoating steps of entry. This feature has prompted the use of fluorescently labeled Vpr to visualize viral particles and to follow trafficking of post-fusion HIV-1 cores in the cytoplasm. Here, we tracked single pseudovirus entry and fusion and observed that fluorescently tagged Vpr gradually dissociates from post-fusion viral cores over the course of several minutes and accumulates in the nucleus. Kinetics measurements showed that fluorescent Vpr released from the cores very rapidly entered the cell nucleus. More than 10,000 Vpr molecules can be delivered into the cell nucleus within 45 min of infection by HIV-1 particles pseudotyped with the avian sarcoma and leukosis virus envelope glycoprotein. The fraction of Vpr from cell-bound viruses that accumulated in the nucleus was proportional to the extent of virus-cell fusion and was fully blocked by viral fusion inhibitors. Entry of virus-derived Vpr into the nucleus occurred independently of envelope glycoproteins or target cells. Fluorescence correlation spectroscopy revealed two forms of nuclear Vpr-monomers and very large complexes, likely involving host factors. The kinetics of viral Vpr entering the nucleus after fusion was not affected by point mutations in the capsid protein that alter the stability of the viral core. The independence of Vpr shedding of capsid stability and its relatively rapid dissociation from post-fusion cores suggest that this process may precede capsid uncoating, which appears to occur on a slower time scale. Our results thus demonstrate that a bulk of fluorescently labeled Vpr incorporated into HIV-1 particles is released shortly after fusion. Future studies will address the question whether the quick and efficient nuclear delivery of Vpr derived from incoming viruses can regulate subsequent steps of HIV-1 infection.

  18. Study of small-cell lung cancer cell-based sensor and its applications in chemotherapy effects rapid evaluation for anticancer drugs.

    Science.gov (United States)

    Guohua, Hui; Hongyang, Lu; Zhiming, Jiang; Danhua, Zhu; Haifang, Wan

    2017-11-15

    Small cell lung cancer (SCLC) is a smoking-related cancer disease. Despite improvement in clinical survival, SCLC outcome remains extremely poor. Cisplatin (DDP) is the first-line chemotherapy drug for SCLC, but the choice of second-line chemotherapy drugs is not clear. In this paper, a SCLC cell-based sensor was proposed, and its applications in chemotherapy effects rapid evaluation for anticancer drugs were investigated. SCLC cell lines lung adenocarcinoma cell (LTEP-P) and DDP-resistant lung adenocarcinoma cell (LTEP-P/DDP-1.0) are cultured on carbon screen-printed electrode (CSPE) to fabricate integrated cell-based sensor. Several chemotherapy anticancer drugs, including cisplatin, ifosmamide, gemcitabine, paclitaxel, docetaxel, vinorelbine, etoposide, camptothecin, and topotecan, are selected as experimental chemicals. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests are conducted to evaluate chemotherapy drug effects on LTEP-P and LTEP-P/DDP-1.0 cell lines. Electrical cell-substrate impedance sensing (ECIS) responses to anti-tumor chemicals are measured and processed by double-layered cascaded stochastic resonance (DCSR). Cisplatin solutions in different concentrations measurement results demonstrate that LTEP-P cell-based sensor presents quantitative analysis abilities for cisplatin and topotecan. Cisplatin and its mixtures can also be discriminated. Results demonstrate that LTEP-P cell-based sensor sensitively evaluates chemotherapy drugs' apoptosis function to SCLC cells. LTEP-P/DDP-1.0 cell-based sensor responses demonstrate that gemcitabine, vinorelbine, and camptothecin are ideal second-line drugs for clinical post-cisplatin therapy than other drugs according to MTT test results. This work provides a novel way for SCLC second-line clinical chemotherapy drug screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A novel, rapid and automated conductometric method to evaluate surfactant-cells interactions by means of critical micellar concentration analysis.

    Science.gov (United States)

    Tiecco, Matteo; Corte, Laura; Roscini, Luca; Colabella, Claudia; Germani, Raimondo; Cardinali, Gianluigi

    2014-07-25

    Conductometry is widely used to determine critical micellar concentration and micellar aggregates surface properties of amphiphiles. Current conductivity experiments of surfactant solutions are typically carried out by manual pipetting, yielding some tens reading points within a couple of hours. In order to study the properties of surfactant-cells interactions, each amphiphile must be tested in different conditions against several types of cells. This calls for complex experimental designs making the application of current methods seriously time consuming, especially because long experiments risk to determine alterations of cells, independently of the surfactant action. In this paper we present a novel, accurate and rapid automated procedure to obtain conductometric curves with several hundreds reading points within tens of minutes. The method was validated with surfactant solutions alone and in combination with Saccharomyces cerevisiae cells. An easy-to use R script, calculates conductometric parameters and their statistical significance with a graphic interface to visualize data and results. The validations showed that indeed the procedure works in the same manner with surfactant alone or in combination with cells, yielding around 1000 reading points within 20 min and with high accuracy, as determined by the regression analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Human Adipose-Derived Stem Cells on Rapid Prototyped Three-Dimensional Hydroxyapatite/Beta-Tricalcium Phosphate Scaffold.

    Science.gov (United States)

    Canciani, Elena; Dellavia, Claudia; Ferreira, Lorena Maria; Giannasi, Chiara; Carmagnola, Daniela; Carrassi, Antonio; Brini, Anna Teresa

    2016-05-01

    In the study, we assess a rapid prototyped scaffold composed of 30/70 hydroxyapatite (HA) and beta-tricalcium-phosphate (β-TCP) loaded with human adipose-derived stem cells (hASCs) to determine cell proliferation, differentiation toward osteogenic lineage, adhesion and penetration on/into the scaffold.In this in vitro study, hASCs isolated from fat tissue discarded after plastic surgery were expanded, characterized, and then loaded onto the scaffold. Cells were tested for: viability assay (Alamar Blue at days 3, 7 and Live/Dead at day 32), differentiation index (alkaline phosphatase activity at day 14), scaffold adhesion (standard error of the mean analysis at days 5 and 18), and penetration (ground sections at day 32).All the hASC populations displayed stemness markers and the ability to differentiate toward adipogenic and osteogenic lineages.Cellular vitality increased between 3 and 7 days, and no inhibitory effect by HA/β-TCP was observed. Under osteogenic stimuli, scaffold increased alkaline phosphatase activity of +243% compared with undifferentiated samples. Human adipose-derived stem cells adhered on HA/β-TCP surface through citoplasmatic extensions that occupied the macropores and built networks among them. Human adipose derived stem cells were observed in the core of HA/β-TCP. The current combination of hASCs and HA/β-TCP scaffold provided encouraging results. If authors' data will be confirmed in preclinical models, the present engineering approach could represent an interesting tool in treating large bone defects.

  1. Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields.

    Directory of Open Access Journals (Sweden)

    Robart Babona-Pilipos

    Full Text Available BACKGROUND: The existence of neural stem and progenitor cells (together termed neural precursor cells in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. METHODS AND FINDINGS: With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. CONCLUSIONS: These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.

  2. Rapid and Sensitive Detection of Breast Cancer Cells in Patient Blood with Nuclease-Activated Probe Technology

    Directory of Open Access Journals (Sweden)

    Sven Kruspe

    2017-09-01

    Full Text Available A challenge for circulating tumor cell (CTC-based diagnostics is the development of simple and inexpensive methods that reliably detect the diverse cells that make up CTCs. CTC-derived nucleases are one category of proteins that could be exploited to meet this challenge. Advantages of nucleases as CTC biomarkers include: (1 their elevated expression in many cancer cells, including cells implicated in metastasis that have undergone epithelial-to-mesenchymal transition; and (2 their enzymatic activity, which can be exploited for signal amplification in detection methods. Here, we describe a diagnostic assay based on quenched fluorescent nucleic acid probes that detect breast cancer CTCs via their nuclease activity. This assay exhibited robust performance in distinguishing breast cancer patients from healthy controls, and it is rapid, inexpensive, and easy to implement in most clinical labs. Given its broad applicability, this technology has the potential to have a substantive impact on the diagnosis and treatment of many cancers. Keywords: cancer, circulating tumor cells, diagnostic nucleic acids, nucleases, diagnostic markers, breast cancer, liquid biopsy

  3. A portable cell-based optical detection device for rapid detection of Listeria and Bacillus toxins

    Science.gov (United States)

    Banerjee, Pratik; Banada, Padmapriya P.; Rickus, Jenna L.; Morgan, Mark T.; Bhunia, Arun K.

    2005-11-01

    A mammalian cell-based optical biosensor was built to detect pathogenic Listeria and Bacillus species. This sensor measures the ability of the pathogens to infect and induce cytotoxicity on hybrid lymphocyte cell line (Ped-2E9) resulting in the release of alkaline phosphatase (ALP) that can be detected optically using a portable spectrophotometer. The Ped-2E9 cells were encapsulated in collagen gel matrices and grown in 48-well plates or in specially designed filtration tube units. Toxin preparations or bacterial cells were introduced and ALP release was assayed after 3-5 h. Pathogenic L. monocytogenes strains or the listeriolysin toxins preparation showed cytotoxicity ranging from 55% - 92%. Toxin preparations (~20 μg/ml) from B. cereus strains showed 24 - 98% cytotoxicity. In contrast, a non-pathogenic L. innocua (F4247) and a B. substilis induced only 2% and 8% cytotoxicity, respectively. This cell-based detection device demonstrates its ability to detect the presence of pathogenic Listeria and Bacillus species and can potentially be used onsite for food safety or in biosecurity application.

  4. A Label Free Disposable Device for Rapid Isolation of Rare Tumor Cells from Blood by Ultrasounds

    Directory of Open Access Journals (Sweden)

    Itziar González

    2018-03-01

    Full Text Available The use of blood samples as liquid biopsy is a label-free method for cancer diagnosis that offers benefits over traditional invasive biopsy techniques. Cell sorting by acoustic waves offers a means to separate rare cells from blood samples based on their physical properties in a label-free, contactless and biocompatible manner. Herein, we describe a flow-through separation approach that provides an efficient separation of tumor cells (TCs from white blood cells (WBCs in a microfluidic device, “THINUS-Chip” (Thin-Ultrasonic-Separator-Chip, actuated by ultrasounds. We introduce for the first time the concept of plate acoustic waves (PAW applied to acoustophoresis as a new strategy. It lies in the geometrical chip design: different to other microseparators based on either bulk acoustic waves (BAW or surface waves (SAW, SSAW and tSAW, it allows the use of polymeric materials without restrictions in the frequency of work. We demonstrate its ability to perform high-throughput isolation of TCs from WBCs, allowing a recovery rate of 84% ± 8% of TCs with a purity higher than 80% and combined viability of 85% at a flow rate of 80 μL/min (4.8 mL/h. The THINUS-Chip performs cell fractionation with low-cost manufacturing processes, opening the door to possible easy printing fabrication.

  5. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning

    KAUST Repository

    Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan

    2016-01-01

    and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm2. This lens

  6. A rapid crosstalk of human gammadelta T cells and monocytes drives the acute inflammation in bacterial infections.

    Directory of Open Access Journals (Sweden)

    Matthias Eberl

    2009-02-01

    Full Text Available Vgamma9/Vdelta2 T cells are a minor subset of T cells in human blood and differ from other T cells by their immediate responsiveness to microbes. We previously demonstrated that the primary target for Vgamma9/Vdelta2 T cells is (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, an essential metabolite produced by a large range of pathogens. Here we wished to study the consequence of this unique responsiveness in microbial infection. The majority of peripheral Vgamma9/Vdelta2 T cells shares migration properties with circulating monocytes, which explains the presence of these two distinct blood cell types in the inflammatory infiltrate at sites of infection and suggests that they synergize in anti-microbial immune responses. Our present findings demonstrate a rapid and HMB-PP-dependent crosstalk between Vgamma9/Vdelta2 T cells and autologous monocytes that results in the immediate production of inflammatory mediators including the cytokines interleukin (IL-6, interferon (IFN-gamma, tumor necrosis factor (TNF-alpha, and oncostatin M (OSM; the chemokines CCL2, CXCL8, and CXCL10; and TNF-related apoptosis-inducing ligand (TRAIL. Moreover, under these co-culture conditions monocytes differentiate within 18 hours into inflammatory dendritic cells (DCs with antigen-presenting functions. Addition of further microbial stimuli (lipopolysaccharide, peptidoglycan induces CCR7 and enables these inflammatory DCs to trigger the generation of CD4(+ effector alphabeta T cells expressing IFN-gamma and/or IL-17. Importantly, our in vitro model replicates the responsiveness to microbes of effluent cells from peritoneal dialysis (PD patients and translates directly to episodes of acute PD-associated bacterial peritonitis, where Vgamma9/Vdelta2 T cell numbers and soluble inflammatory mediators are elevated in patients infected with HMB-PP-producing pathogens. Collectively, these findings suggest a direct link between invading pathogens, microbe

  7. Simultaneous point-of-care detection of anemia and sickle cell disease in Tanzania: the RAPID study.

    Science.gov (United States)

    Smart, Luke R; Ambrose, Emmanuela E; Raphael, Kevin C; Hokororo, Adolfine; Kamugisha, Erasmus; Tyburski, Erika A; Lam, Wilbur A; Ware, Russell E; McGann, Patrick T

    2018-02-01

    Both anemia and sickle cell disease (SCD) are highly prevalent across sub-Saharan Africa, and limited resources exist to diagnose these conditions quickly and accurately. The development of simple, inexpensive, and accurate point-of-care (POC) assays represents an important advance for global hematology, one that could facilitate timely and life-saving medical interventions. In this prospective study, Robust Assays for Point-of-care Identification of Disease (RAPID), we simultaneously evaluated a POC immunoassay (Sickle SCAN™) to diagnose SCD and a first-generation POC color-based assay to detect anemia. Performed at Bugando Medical Center in Mwanza, Tanzania, RAPID tested 752 participants (age 1 day to 20 years) in four busy clinical locations. With minimally trained medical staff, the SCD POC assay diagnosed SCD with 98.1% sensitivity and 91.1% specificity. The hemoglobin POC assay had 83.2% sensitivity and 74.5% specificity for detection of severe anemia (Hb ≤ 7 g/dL). Interobserver agreement was excellent for both POC assays (r = 0.95-0.96). Results for the hemoglobin POC assay have informed the second-generation assay design to be more suitable for low-resource settings. RAPID provides practical feasibility data regarding two novel POC assays for the diagnosis of anemia and SCD in real-world field evaluations and documents the utility and potential impact of these POC assays for sub-Saharan Africa.

  8. Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity

    Science.gov (United States)

    2016-03-07

    109 | e53555 | Page 1 of 8 Video Article Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of...www.jove.com/ video /53555 DOI: doi:10.3791/53555 Keywords: Environmental Sciences, Issue 109, Fish cells, impedance, sensors, biochip, water toxicity...sensitivity to cholinesterase-inhibiting pesticides . Applications for this toxicity detector are for rapid field-portable testing of drinking water

  9. Rapid and Sensitive Assessment of Globin Chains for Gene and Cell Therapy of Hemoglobinopathies

    NARCIS (Netherlands)

    Loucari, C.C. (Constantinos C.); Patsali, P. (Petros); T.B. van Dijk (Thamar); Stephanou, C. (Coralea); Papasavva, P. (Panayiota); Zanti, M. (Maria); Kurita, R. (Ryo); Nakamura, Y. (Yukio); S. Christou (Soteroula); Sitarou, M. (Maria); J.N.J. Philipsen (Sjaak); C.W. Lederer (Carsten); M. Kleanthous (Marina)

    2018-01-01

    textabstractThe β-hemoglobinopathies sickle cell anemia and β-thalassemia are the focus of many gene-therapy studies. A key disease parameter is the abundance of globin chains because it indicates the level of anemia, likely toxicity of excess or aberrant globins, and therapeutic potential of

  10. Tissue-resident adult stem cell populations of rapidly self-renewing organs

    NARCIS (Netherlands)

    Barker, N.; Bartfeld, S.; Clevers, H.

    2010-01-01

    The epithelial lining of the intestine, stomach, and skin is continuously exposed to environmental assault, imposing a requirement for regular self-renewal. Resident adult stem cell populations drive this renewal, and much effort has been invested in revealing their identity. Reliable adult stem

  11. Leptin rapidly activates PPARs in C2C12 muscle cells

    International Nuclear Information System (INIS)

    Bendinelli, Paola; Piccoletti, Roberta; Maroni, Paola

    2005-01-01

    Experimental evidence suggests that leptin operates on the tissues, including skeletal muscle, also by modulating gene expression. Using electrophoretic mobility shift assays, we have shown that physiological doses of leptin promptly increase the binding of C2C12 cell nuclear extracts to peroxisome proliferator-activated receptor (PPAR) response elements in oligonucleotide probes and that all three PPAR isoforms participate in DNA-binding complexes. We pre-treated C2C12 cells with AACOCF 3 , a specific inhibitor of cytosolic phospholipase A 2 (cPLA 2 ), an enzyme that supplies ligands to PPARs, and found that it abrogates leptin-induced PPAR DNA-binding activity. Leptin treatment significantly increased cPLA 2 activity, evaluated as the release of [ 3 H]arachidonic acid from pre-labelled C2C12 cells, as well as phosphorylation. Further, using MEK1 inhibitor PD-98059 we showed that leptin activates cPLA 2 through ERK induction. These results support a direct effect of leptin on skeletal muscle cells, and suggest that the hormone may modulate muscle transcription also by precocious activation of PPARs through ERK-cPLA 2 pathway

  12. Rapid diagnosis of primary ciliary dyskinesia: cell culture and soft computing analysis.

    Science.gov (United States)

    Pifferi, Massimo; Bush, Andrew; Montemurro, Francesca; Pioggia, Giovanni; Piras, Martina; Tartarisco, Gennaro; Di Cicco, Maria; Chinellato, Iolanda; Cangiotti, Angela M; Boner, Attilio L

    2013-04-01

    Diagnosis of primary ciliary dyskinesia (PCD) sometimes requires repeated nasal brushing to exclude secondary ciliary alterations. Our aim was to evaluate whether the use of a new method of nasal epithelial cell culture can speed PCD diagnosis in doubtful cases and to identify which are the most informative parameters by means of a multilayer artificial neural network (ANN). A cross-sectional study was performed in patients with suspected PCD. All patients underwent nasal brushing for ciliary motion analysis, ultrastructural assessment and evaluation of ciliary function after ciliogenesis in culture by ANN. 151 subjects were studied. A diagnostic suspension cell culture was obtained in 117 nasal brushings. A diagnosis of PCD was made in 36 subjects (29 of whom were children). In nine out of the 36 patients the diagnosis was made only after a second brushing, because of equivocal results of both tests at first examination. In each of these subjects diagnosis of PCD was confirmed by cell culture results. Cell culture in suspension evaluated by means of ANN allows the separation of PCD from secondary ciliary dyskinesia patients after only 5 days of culture and allows diagnosis to be reached in doubtful cases, thus avoiding the necessity of a second sample.

  13. Hypercytotoxicity and rapid loss of NKp44+ innate lymphoid cells during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Haiying Li

    2014-12-01

    Full Text Available HIV/SIV infections break down the integrity of the gastrointestinal mucosa and lead to chronic immune activation and associated disease progression. Innate lymphoid cells (ILCs, distinguishable by high expression of NKp44 and RORγt, play key roles in mucosal defense and homeostasis, but are depleted from gastrointestinal (GI tract large bowel during chronic SIV infection. However, less is known about the kinetics of ILC loss, or if it occurs systemically. In acute SIV infection, we found a massive, up to 8-fold, loss of NKp44+ILCs in all mucosae as early as day 6 post-infection, which was sustained through chronic disease. Interestingly, no loss of ILCs was observed in mucosa-draining lymph nodes. In contrast, classical NK cells were not depleted either from gut or draining lymph nodes. Both ILCs and NK cells exhibited significantly increased levels of apoptosis as measured by increased Annexin-V expression, but while classical NK cells also showed increased proliferation, ILCs did not. Interestingly, ILCs, which are normally noncytolytic, dramatically upregulated cytotoxic functions in acute and chronic infection and acquired a polyfunctional phenotype secreting IFN-γ, MIP1-β, and TNF-α, but decreased production of the prototypical cytokine, IL-17. Classical NK cells had less dramatic functional change, but upregulated perforin expression and increased cytotoxic potential. Finally, we show that numerical and functional loss of ILCs was due to increased apoptosis and ROR γt suppression induced by inflammatory cytokines in the gut milieu. Herein we demonstrate the first evidence for acute, systemic, and permanent loss of mucosal ILCs during SIV infection associated with reduction of IL-17. The massive reduction of ILCs involves apoptosis without compensatory de novo development/proliferation, but the full mechanism of depletion and the impact of functional change so early in infection remain unclear.

  14. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch.

    Science.gov (United States)

    Poulain, Adeline; Perret, Sylvie; Malenfant, Félix; Mullick, Alaka; Massie, Bernard; Durocher, Yves

    2017-08-10

    To rapidly produce large amounts of recombinant proteins, the generation of stable Chinese Hamster Ovary (CHO) cell pools represents a useful alternative to large-scale transient gene expression (TGE). We have developed a cell line (CHO BRI/rcTA ) allowing the inducible expression of recombinant proteins, based on the cumate gene switch. After the identification of optimal plasmid DNA topology (supercoiled vs linearized plasmid) for PEIpro™ mediated transfection and of optimal conditions for methionine sulfoximine (MSX) selection, we were able to generate CHO BRI/rcTA pools producing high levels of recombinant proteins. Volumetric productivities of up to 900mg/L were reproducibly achieved for a Fc fusion protein and up to 350mg/L for an antibody after 14days post-induction in non-optimized fed-batch cultures. In addition, we show that CHO pool volumetric productivities are not affected by a freeze-thaw cycle or following maintenance in culture for over one month in the presence of MSX. Finally, we demonstrate that volumetric protein production with the CR5 cumate-inducible promoter is three- to four-fold higher than with the human CMV or hybrid EF1α-HTLV constitutive promoters. These results suggest that the cumate-inducible CHO BRI/rcTA stable pool platform is a powerful and robust system for the rapid production of gram amounts of recombinant proteins. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  15. Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology

    Science.gov (United States)

    Austin, Robert; Lee, Sanghyuk; Park, Sungsu

    We have developed a microfluidic device consisting of approximately 500 hexagonal micro-compartments which provides a complex ecology with wide ranges of drug and nutrient gradients and local populations. This ecology of a fragmented metapopulation induced the drug resistance in stage IV U87 glioblastoma cells to doxorubicin in seven days. Exome and transcriptome sequencing of the resistant cells identified mutations and differentially expressed genes. Gene ontology and pathway analyses of the genes identified showed that they were functionally relevant with the established mechanisms of doxorubicin action. Functional experiments support the in silico analyses and together demonstrate the effects of these genetic changes. Our findings suggest that given the rapid evolution of resistance and the focused response, this technology could act as a rapid screening modality for genetic aberrations leading to resistance to chemotherapy as well as counter-selection of drugs unlikely to be successful ultimately. Technology Innovation Program of the Ministry of Trade, Industry and Energy, Republic of Korea (10050154 to S.L. and S.P.), the National Research Foundation of Korea (NRF-2014M3C9A3065221 to S.L., NRF-2015K1A4A3047851 to J.K. and S.L.) funded by the Minis.

  16. Growing Safflower in Utah

    OpenAIRE

    Pace, M. G.; Israelsen, C. E.; Creech, E.; Allen, N.

    2015-01-01

    This fact sheet provides information on growing safflower in Utah. It has become popular on dryland farms in rotation with winter wheat. Safflower seed provides three products, oil, meal, and birdseed.

  17. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis☆

    Science.gov (United States)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2013-01-01

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K3) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ~12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. PMID:22575170

  18. Water deficit modulates gene expression in growing zones of soybean seedlings. Analysis of differentially expressed cDNAs, a new beta-tubulin gene, and expression of genes encoding cell wall proteins.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1991-10-01

    Transfer of soybean seedlings to low-water-potential vermiculite (psi w = -0.3 MPa) results in a reversible decrease in hypocotyl growth and modulation of several polysomal mRNAs (Plant Physiol 92: 205-214). We report here the isolation of two cDNA clones (pGE16 and pGE95) which correspond to genes whose mRNA levels are increased, and one cDNA clone (pGE23) which corresponds to a gene whose mRNA level is decreased in the hypocotyl zone of cell elongation by water deficit. In well-watered seedlings mRNAs hybridizing to pGE16 and pGE95 are most abundant in mature regions of the seedling, but in water-deficient seedlings mRNA levels are reduced in mature regions and enhanced in elongating regions. RNA corresponding to soybean proline-rich protein 1 (sbPRP1) shows a similar tissue distribution and response to water deficit. In contrast, in well-watered seedlings, the gene corresponding to pGE23 was highly expressed in the hypocotyl and root growing zones. Transfer of seedlings to low-water-potential vermiculite caused a rapid decrease in mRNA hybridizing to pGE23. Sequence analysis revealed that pGE23 has high homology with beta-tubulin. Water deficit also reduced the level of mRNA hybridizing to JCW1, an auxin-modulated gene, although with different kinetics. Furthermore, mRNA encoding actin, glycine-rich proteins (GRPs), and hydroxyproline-rich glycoproteins (HRGPs) were down-regulated in the hypocotyl zone of elongation of seedlings exposed to water deficit. No effect of water deficit was observed on the expression of chalcone synthase. Decreased expression of beta-tubulin, actin, JCW1, HRGP and GRP and increased expression of sbPRP1, pGE95 and pGE16 in the hypocotyl zone of cell elongation could participate in the reversible growth inhibition observed in water-deficient soybean seedlings.

  19. An atypical cause of rapidly progressing breast lump with abscess formation: Pure squamous cell carcinoma of the breast.

    Science.gov (United States)

    Cilekar, Murat; Erkasap, Serdar; Oner, Ulku; Akici, Murat; Ciftci, Evrim; Dizen, Hayrettin; Turel, Serkan; Kavak, Ozgu I; Yilmaz, Sezgin

    2015-01-01

    Squamous cell carcinoma (SCC) is a rare type of breast malignancy and little is known about long-term outcome. In the present report, the clinical features, histopathologic findings and postoperative course of a patient with squamous cell carcinoma are described. We have treated a 47-years-old woman who admitted for right breast mass without any discharge, bleeding and pain. The tumor was, 3 × 2 × 1.5 cm in size with central abscess formation. The result of surgical biopsy revealed large cell keratinizing type of SCC. The metastatic work-up studies ruled out any other probable sources of primary tumor. The patient was performed modified radical mastectomy and axillary dissection and received two cycles of chemotherapy. Squamous cell carcinoma of the breast (SCCB) is a rare entity and should be considered in patients with rapidly progressing breast mass. It should also be considered in breast lesions with abscess formation. The initial therapeutic approach should be surgical excision after histopathological diagnosis.

  20. A system for applying rapid warming or cooling stimuli to cells during patch clamp recording or ion imaging.

    Science.gov (United States)

    Reid, G; Amuzescu, B; Zech, E; Flonta, M L

    2001-10-15

    We describe a system for superfusing small groups of cells at a precisely controlled and rapidly adjustable local temperature. Before being applied to the cell or cells under study, solutions are heated or cooled in a chamber of small volume ( approximately 150 microl) and large surface area, sandwiched between four small Peltier elements. The current through the Peltier elements is controlled by a microprocessor using a PID (proportional-integral-derivative) feedback algorithm. The chamber can be heated to at least 60 degrees C and cooled to 0 degrees C, changing its temperature at a maximum rate of about 7 degrees C per second; temperature ramps can be followed under feedback control at up to 4 degrees C per second. Temperature commands can be applied from the digital-to-analogue converter of any laboratory interface or generated digitally by the microprocessor. The peak-to-peak noise contributed by the system does not exceed that contributed by a patch pipette, holder and headstage, making it suitable for single channel as well as whole cell recordings.

  1. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi; Nishiyama, Masahiko

    2010-01-01

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor γ agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-β1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  2. High annealing temperature induced rapid grain coarsening for efficient perovskite solar cells.

    Science.gov (United States)

    Cao, Xiaobing; Zhi, Lili; Jia, Yi; Li, Yahui; Cui, Xian; Zhao, Ke; Ci, Lijie; Ding, Kongxian; Wei, Jinquan

    2018-08-15

    Thermal annealing plays multiple roles in fabricating high quality perovskite films. Generally, it might result in large perovskite grains by elevating annealing temperature, but might also lead to decomposition of perovskite. Here, we study the effects of annealing temperature on the coarsening of perovskite grains in a temperature range from 100 to 250 °C, and find that the coarsening rate of the perovskite grain increase significantly with the annealing temperature. Compared with the perovskite films annealed at 100 °C, high quality perovskite films with large columnar grains are obtained by annealing perovskite precursor films at 250 °C for only 10 s. As a result, the power conversion efficiency of best solar cell increased from 12.35% to 16.35% due to its low recombination rate and high efficient charge transportation in solar cells. Copyright © 2018. Published by Elsevier Inc.

  3. Rapid and Sensitive Assessment of Globin Chains for Gene and Cell Therapy of Hemoglobinopathies

    Science.gov (United States)

    Loucari, Constantinos C.; Patsali, Petros; van Dijk, Thamar B.; Stephanou, Coralea; Papasavva, Panayiota; Zanti, Maria; Kurita, Ryo; Nakamura, Yukio; Christou, Soteroulla; Sitarou, Maria; Philipsen, Sjaak; Lederer, Carsten W.; Kleanthous, Marina

    2018-01-01

    The β-hemoglobinopathies sickle cell anemia and β-thalassemia are the focus of many gene-therapy studies. A key disease parameter is the abundance of globin chains because it indicates the level of anemia, likely toxicity of excess or aberrant globins, and therapeutic potential of induced or exogenous β-like globins. Reversed-phase high-performance liquid chromatography (HPLC) allows versatile and inexpensive globin quantification, but commonly applied protocols suffer from long run times, high sample requirements, or inability to separate murine from human β-globin chains. The latter point is problematic for in vivo studies with gene-addition vectors in murine disease models and mouse/human chimeras. This study demonstrates HPLC-based measurements of globin expression (1) after differentiation of the commonly applied human umbilical cord blood–derived erythroid progenitor-2 cell line, (2) in erythroid progeny of CD34+ cells for the analysis of clustered regularly interspaced short palindromic repeats/Cas9-mediated disruption of the globin regulator BCL11A, and (3) of transgenic mice holding the human β-globin locus. At run times of 8 min for separation of murine and human β-globin chains as well as of human γ-globin chains, and with routine measurement of globin-chain ratios for 12 nL of blood (tested for down to 0.75 nL) or of 300,000 in vitro differentiated cells, the methods presented here and any variant-specific adaptations thereof will greatly facilitate evaluation of novel therapy applications for β-hemoglobinopathies. PMID:29325430

  4. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells

    Science.gov (United States)

    Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H.; Watkins, Scott E.; Kim, Dong-Yu; Vak, Doojin

    2016-01-01

    We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%. PMID:26853266

  5. Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Dana M. Cairns

    2016-09-01

    Full Text Available Limited availability of human neurons poses a significant barrier to progress in biological and preclinical studies of the human nervous system. Current stem cell-based approaches of neuron generation are still hindered by prolonged culture requirements, protocol complexity, and variability in neuronal differentiation. Here we establish stable human induced neural stem cell (hiNSC lines through the direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells. These hiNSCs can be passaged indefinitely and cryopreserved as colonies. Independently of media composition, hiNSCs robustly differentiate into TUJ1-positive neurons within 4 days, making them ideal for innervated co-cultures. In vivo, hiNSCs migrate, engraft, and contribute to both central and peripheral nervous systems. Lastly, we demonstrate utility of hiNSCs in a 3D human brain model. This method provides a valuable interdisciplinary tool that could be used to develop drug screening applications as well as patient-specific disease models related to disorders of innervation and the brain.

  6. Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity.

    Science.gov (United States)

    Kaya, Mine; Hajimirza, Shima

    2018-05-25

    This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.

  7. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells.

    Science.gov (United States)

    Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H; Watkins, Scott E; Kim, Dong-Yu; Vak, Doojin

    2016-02-08

    We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%.

  8. A system for the rapid detection of bacterial contamination in cell-based therapeutica

    Science.gov (United States)

    Bolwien, Carsten; Erhardt, Christian; Sulz, Gerd; Thielecke, Hagen; Johann, Robert; Pudlas, Marieke; Mertsching, Heike; Koch, Steffen

    2010-02-01

    Monitoring the sterility of cell or tissue cultures is of major concern, particularly in the fields of regenerative medicine and tissue engineering when implanting cells into the human body. Our sterility-control system is based on a Raman micro-spectrometer and is able to perform fast sterility testing on microliters of liquid samples. In conventional sterility control, samples are incubated for weeks to proliferate the contaminants to concentrations above the detection limit of conventional analysis. By contrast, our system filters particles from the liquid sample. The filter chip fabricated in microsystem technology comprises a silicon nitride membrane with millions of sub-micrometer holes to retain particles of critical sizes and is embedded in a microfluidic cell specially suited for concomitant microscopic observation. After filtration, identification is carried out on the single particle level: image processing detects possible contaminants and prepares them for Raman spectroscopic analysis. A custom-built Raman-spectrometer-attachment coupled to the commercial microscope uses 532nm or 785nm Raman excitation and records spectra up to 3400cm-1. In the final step, the recorded spectrum of a single particle is compared to an extensive library of GMP-relevant organisms, and classification is carried out based on a support vector machine.

  9. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Bihua; Luo, Xueshi; Li, Zhiwen [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Zhuang, Caiping [Department of Anesthesiology, Huizhou Central People' s Hospital, Huizhou 516001 (China); Li, Lihua, E-mail: tlihuali@jnu.edu.cn [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Lu, Lu; Ding, Shan; Tian, Jinhuan [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China)

    2016-11-01

    Collagen biomineralization is regulated by complicated interactions between the collagen matrix and non-collagenous extracellular proteins. Here, the use of sodium tripolyphosphate to simulate the templating functional motif of the C-terminal fragment of non-collagenous proteins is reported, and a low molecular weight polyacrylic acid served as a sequestration agent to stabilize amorphous calcium phosphate into nanoprecursors. Self-assembled collagen fibrils served as a fixed template for achieving rapid biomimetic mineralization in vitro. Results demonstrated that, during the mineralization process, intrafibrillar and extrafibrillar hydroxyapatite mineral with collagen fibrils formed and did so via bottom-up nanoparticle assembly based on the non-classical crystallization approach in the presence of these dual biomimetic functional analogues. In vitro human umbilical cord mesenchymal stem cell (hUCMSC) culture found that the mineralized scaffolds have a better cytocompatibility in terms of cell viability, adhesion, proliferation, and differentiation into osteoblasts. A rabbit femoral condyle defect model was established to confirm the ability of the n-HA/collagen scaffolds to facilitate bone regeneration and repair. The images of gross anatomy, MRI, CT and histomorphology taken 6 and 12 weeks after surgery showed that the biomimetic mineralized collagen scaffolds with hUCMSCs can promote the healing speed of bone defects in vivo, and both of the scaffolds groups performing better than the bone defect control group. As new bone tissue formed, the scaffolds degraded and were gradually absorbed. All these results demonstrated that both of the scaffolds and cells have better histocompatibility. - Highlights: • A rapid and facile biomimetic mineralization approach is proposed. • Intrafibrillar and extrafibrillar mineralization of collagen fibrils was achieved. • HA/COL scaffolds promote hUCMSCs adhesion, proliferation, and differentiation. • Feasibility of h

  10. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing

    International Nuclear Information System (INIS)

    Ye, Bihua; Luo, Xueshi; Li, Zhiwen; Zhuang, Caiping; Li, Lihua; Lu, Lu; Ding, Shan; Tian, Jinhuan; Zhou, Changren

    2016-01-01

    Collagen biomineralization is regulated by complicated interactions between the collagen matrix and non-collagenous extracellular proteins. Here, the use of sodium tripolyphosphate to simulate the templating functional motif of the C-terminal fragment of non-collagenous proteins is reported, and a low molecular weight polyacrylic acid served as a sequestration agent to stabilize amorphous calcium phosphate into nanoprecursors. Self-assembled collagen fibrils served as a fixed template for achieving rapid biomimetic mineralization in vitro. Results demonstrated that, during the mineralization process, intrafibrillar and extrafibrillar hydroxyapatite mineral with collagen fibrils formed and did so via bottom-up nanoparticle assembly based on the non-classical crystallization approach in the presence of these dual biomimetic functional analogues. In vitro human umbilical cord mesenchymal stem cell (hUCMSC) culture found that the mineralized scaffolds have a better cytocompatibility in terms of cell viability, adhesion, proliferation, and differentiation into osteoblasts. A rabbit femoral condyle defect model was established to confirm the ability of the n-HA/collagen scaffolds to facilitate bone regeneration and repair. The images of gross anatomy, MRI, CT and histomorphology taken 6 and 12 weeks after surgery showed that the biomimetic mineralized collagen scaffolds with hUCMSCs can promote the healing speed of bone defects in vivo, and both of the scaffolds groups performing better than the bone defect control group. As new bone tissue formed, the scaffolds degraded and were gradually absorbed. All these results demonstrated that both of the scaffolds and cells have better histocompatibility. - Highlights: • A rapid and facile biomimetic mineralization approach is proposed. • Intrafibrillar and extrafibrillar mineralization of collagen fibrils was achieved. • HA/COL scaffolds promote hUCMSCs adhesion, proliferation, and differentiation. • Feasibility of h

  11. Rapid green synthesis of ZnO nanoparticles using a hydroelectric cell without an electrolyte

    Science.gov (United States)

    Shah, Jyoti; Kumar Kotnala, Ravinder

    2017-09-01

    In this study, zinc oxide (ZnO) nanoparticles were synthesized using a novel environmentally friendly hydroelectric cell without an electrolyte or external current source. The hydroelectric cell comprised a nanoporous Li substituted magnesium ferrite pellet in contact with two electrodes, with zinc as the anode and silver as an inert cathode. The surface unsaturated cations and oxygen vacancies in the nanoporous ferrite dissociated water molecules into hydronium and hydroxide ions when the hydroelectric cell was dipped into deionized water. Hydroxide ions migrated toward the zinc electrode to form zinc hydroxide and the hydronium ions were evolved as H2 gas at the silver electrode. The zinc hydroxide collected as anode mud was converted into ZnO nanoparticles by heating at 250 °C. Structural analysis using Raman spectroscopy indicated the good crystallinity of the ZnO nanoparticles according to the presence of a high intensity E2-(high) mode. The nanoparticle size distribution was 5-20 nm according to high resolution transmission electron microscopy. An indirect band gap of 2.75 eV was determined based on the Tauc plot, which indicated the existence of an interstitial cation level in ZnO. Near band edge and blue emissions were detected in photoluminescence spectral studies. The blue emissions obtained from the ZnO nanoparticles could potentially have applications in blue lasers and LEDs. The ZnO nanoparticles synthesized using this method had a high dielectric constant value of 5 at a frequency of 1 MHz, which could be useful for fabricating nano-oscillators. This facile, clean, and cost-effective method obtained a significant yield of 0.017 g for ZnO nanoparticles without applying an external current source.

  12. Survival of plant tissue at super-low temperatures v. An electron microscope study of ice in cortical cells cooled rapidly.

    Science.gov (United States)

    Sakai, A; Otsuka, K

    1967-12-01

    Experiments were carried out with cortical cells in twig bark of mulberry trees in winter in order to clarify the mechanism of survival at super-low temperatures with rapid cooling and rewarming. Attention was given to the relation between the existence of intracellular ice crystals and survival.Cortical cells were cooled rapidly by direct immersion into liquid nitrogen or isopentane cooled at various temperatures. After immersion, they were freeze-substituted with absolute ethanol at -78 degrees . They were then embedded, sectioned and examined under the electron microscope for the presence and distribution of cavities left after ice removal.Cells were found to remain alive and contain no ice cavities when immersed rapidly into isopentane baths kept below -60 degrees . Those cells at intermediate temperatures from -20 degrees to -45 degrees , were almost all destroyed. It was also observed that many ice cavities were contained in the cells immersed rapidly into isopentane baths at -30 degrees . The data seem to indicate that no ice crystals were formed when cooled rapidly by direct immersion into isopentane baths below -60 degrees or into liquid nitrogen.The tissue sections immersed in liquid nitrogen were rapidly transferred to isopentane baths at temperatures ranging from -70 degrees to -10 degrees before rapid rewarming. There was little damage when samples were held at temperatures below -50 degrees for 10 minutes or below -60 degrees for 16 hours. No cavities were found in these cells. Above -45 degrees , and especially at -30 degrees , however, all cells were completely destroyed even when exposed only for 1 minute. Many ice cavities were observed throughout these cells. The results obtained may be explained in terms of the growth rate of intracellular ice crystals.

  13. Rapid prototyping of microbial cell factories via genome-scale engineering.

    Science.gov (United States)

    Si, Tong; Xiao, Han; Zhao, Huimin

    2015-11-15

    Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Rapid Prototyping of Microbial Cell Factories via Genome-scale Engineering

    Science.gov (United States)

    Si, Tong; Xiao, Han; Zhao, Huimin

    2014-01-01

    Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. PMID:25450192

  15. Rapid detection of defects in fuel-cell electrodes using infrared reactive-flow-through technique

    Science.gov (United States)

    Das, Prodip K.; Weber, Adam Z.; Bender, Guido; Manak, Austin; Bittinat, Daniel; Herring, Andrew M.; Ulsh, Michael

    2014-09-01

    As fuel cells become more prominent, new manufacturing and production methods will need to be developed to deal efficiently and effectively with increased demand. One necessary component of this industrial growth is the accurate measurement of the variability in the manufacturing process. In this study, we present a diagnostic system that combines infrared thermography with a reactive-flow-through technique to detect catalyst-loading defects in fuel-cell gas-diffusion electrodes accurately with high spatial and temporal resolutions. Experimental results are compared with model predictions of thermal response with good agreement. Data analysis, operating-condition impacts, and detection limits are explored using both experiments and simulation. Overall, the results demonstrate the potential of this technique to measure defects on the millimeter length scale with temporal resolutions appropriate for use on a web-line. Thus we present the first development stage of a next-generation non-destructive diagnostic tool, which may be amenable to eventual use on roll-to-roll manufacturing lines.

  16. A comparison of cryopreservation methods: Slow-cooling vs. rapid-cooling based on cell viability, oxidative stress, apoptosis, and CD34+ enumeration of human umbilical cord blood mononucleated cells

    Directory of Open Access Journals (Sweden)

    Sandra Ferry

    2011-09-01

    Full Text Available Abstract Background The finding of human umbilical cord blood as one of the most likely sources of hematopoietic stem cells offers a less invasive alternative for the need of hematopoietic stem cell transplantation. Due to the once-in-a-life time chance of collecting it, an optimum cryopreservation method that can preserve the life and function of the cells contained is critically needed. Methods Until now, slow-cooling has been the routine method of cryopreservation; however, rapid-cooling offers a simple, efficient, and harmless method for preserving the life and function of the desired cells. Therefore, this study was conducted to compare the effectiveness of slow- and rapid-cooling to preserve umbilical cord blood of mononucleated cells suspected of containing hematopoietic stem cells. The parameters used in this study were differences in cell viability, malondialdehyde content, and apoptosis level. The identification of hematopoietic stem cells themselves was carried out by enumerating CD34+ in a flow cytometer. Results Our results showed that mononucleated cell viability after rapid-cooling (91.9% was significantly higher than that after slow-cooling (75.5%, with a p value = 0.003. Interestingly, the malondialdehyde level in the mononucleated cell population after rapid-cooling (56.45 μM was also significantly higher than that after slow-cooling (33.25 μM, with a p value p value = 0.138. However, CD34+ enumeration was much higher in the population that underwent slow-cooling (23.32 cell/μl than in the one that underwent rapid-cooling (2.47 cell/μl, with a p value = 0.001. Conclusions Rapid-cooling is a potential cryopreservation method to be used to preserve the umbilical cord blood of mononucleated cells, although further optimization of the number of CD34+ cells after rapid-cooling is critically needed.

  17. Rapid and coordinated processing of global motion images by local clusters of retinal ganglion cells.

    Science.gov (United States)

    Matsumoto, Akihiro; Tachibana, Masao

    2017-01-01

    Even when the body is stationary, the whole retinal image is always in motion by fixational eye movements and saccades that move the eye between fixation points. Accumulating evidence indicates that the brain is equipped with specific mechanisms for compensating for the global motion induced by these eye movements. However, it is not yet fully understood how the retina processes global motion images during eye movements. Here we show that global motion images evoke novel coordinated firing in retinal ganglion cells (GCs). We simultaneously recorded the firing of GCs in the goldfish isolated retina using a multi-electrode array, and classified each GC based on the temporal profile of its receptive field (RF). A moving target that accompanied the global motion (simulating a saccade following a period of fixational eye movements) modulated the RF properties and evoked synchronized and correlated firing among local clusters of the specific GCs. Our findings provide a novel concept for retinal information processing during eye movements.

  18. Fluorescence excitation-emission matrix (EEM) spectroscopy for rapid identification and quality evaluation of cell culture media components.

    Science.gov (United States)

    Li, Boyan; Ryan, Paul W; Shanahan, Michael; Leister, Kirk J; Ryder, Alan G

    2011-11-01

    The application of fluorescence excitation-emission matrix (EEM) spectroscopy to the quantitative analysis of complex, aqueous solutions of cell culture media components was investigated. These components, yeastolate, phytone, recombinant human insulin, eRDF basal medium, and four different chemically defined (CD) media, are used for the formulation of basal and feed media employed in the production of recombinant proteins using a Chinese Hamster Ovary (CHO) cell based process. The comprehensive analysis (either identification or quality assessment) of these materials using chromatographic methods is time consuming and expensive and is not suitable for high-throughput quality control. The use of EEM in conjunction with multiway chemometric methods provided a rapid, nondestructive analytical method suitable for the screening of large numbers of samples. Here we used multiway robust principal component analysis (MROBPCA) in conjunction with n-way partial least squares discriminant analysis (NPLS-DA) to develop a robust routine for both the identification and quality evaluation of these important cell culture materials. These methods are applicable to a wide range of complex mixtures because they do not rely on any predetermined compositional or property information, thus making them potentially very useful for sample handling, tracking, and quality assessment in biopharmaceutical industries.

  19. Angiogenin activates phospholipase C and elicits a rapid incorporation of fatty acid into cholesterol esters in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Moore, F.; Riordan, J.F.

    1990-01-01

    Angiogenin activates the phosphoinositide-specific phospholipase C (PLC) in cultured rat aortic smooth muscle cells to yield a transient (30 s) peak of 1,2-diacylglycerol (DG) and inositol trisphosphate. Within 1 min, the DG level falls below that of the control and remains so for at least 20 min. A transient increase in monoacylglycerol indicates that depletion of DG may be the consequence of hydrolysis by DG lipase. In addition to these changes in second messengers, a rapid increase in incorporating of radiolabeled tracer into cellular cholesterol esters is observed. Stimulated cholesterol ester labeling is inhibited by preincubation with either the DG lipase inhibitor RHC 80267 or the acyl coenzyme A:cholesterol acyltransferase inhibitor Sandoz 58035. Cells prelabeled with [ 3 H]arachidonate show a sustained increase in labeling of cholesterol esters following exposure to angiogenin. In contrast, cells prelabeled with [ 3 H]oleate show only a transient elevation that returns to the basal level by 5 min. This suggests initial cholesterol esterification by oleate followed by arachidonate that is released by stimulation of the PLC/DG lipase pathway

  20. Radiosensitization of hypoxic bacterial cells by nitroimidazoles of low lipophilicity: steady-state and rapid-mix studies

    International Nuclear Information System (INIS)

    Anderson, R.F.; Patel, K.B.; Sehmi, D.S.

    1981-01-01

    Radiosensitization of hypoxic bacterial cells by five 2-nitroimidazoles, with similar reduction potentials to misonidazole but having lower lipophilicites, has been measured in Escherichia coli AB 1157 and Streptococcus lactis 712. Sensitization efficiency progressively decreased with decreasing lepophilicity in E. coli but not in S. lactis. This difference is discussed in terms of the differing membrane properties of the two bacteria; E. coli resembled a multicompartment model, as would also be expected with mammalian cells. Rapid-mix experiments are described which show that the radiosensitization observed after experiments are described which show that the radiosensitization observed after preirradiation contact times between ca. 3 and 30 msec is dependent on the lipophilicity of the sensitizer, higher lipophilicity resulting in a lower contact time being required for radiosensitization. This result and the observation that a highly lipophilic compound affects only half the full oxygen enhancement level after short contact times suggest that part of the sensitization process occurs in a lipophilic compartment of the cell

  1. Optical Aptamer Probes of Fluorescent Imaging to Rapid Monitoring of Circulating Tumor Cell

    Directory of Open Access Journals (Sweden)

    Ji Yeon Hwang

    2016-11-01

    Full Text Available Fluorescence detecting of exogenous EpCAM (epithelial cell adhesion molecule or muc1 (mucin1 expression correlated to cancer metastasis using nanoparticles provides pivotal information on CTC (circulating tumor cell occurrence in a noninvasive tool. In this study, we study a new skill to detect extracellular EpCAM/muc1 using quantum dot-based aptamer beacon (QD-EpCAM/muc1 ALB (aptamer linker beacon. The QD-EpCAM/muc1 ALB was designed using QDs (quantum dots and probe. The EpCAM/muc1-targeting aptamer contains a Ep-CAM/muc1 binding sequence and BHQ1 (black hole quencher 1 or BHQ2 (black hole quencher2. In the absence of target EpCAM/muc1, the QD-EpCAM/muc1 ALB forms a partial duplex loop-like aptamer beacon and remained in quenched state because the BHQ1/2 quenches the fluorescence signal-on of the QD-EpCAM/muc1 ALB. The binding of EpCAM/muc1 of CTC to the EpCAM/muc1 binding aptamer sequence of the EpCAM/muc1-targeting oligonucleotide triggered the dissociation of the BHQ1/2 quencher and subsequent signal-on of a green/red fluorescence signal. Furthermore, acute inflammation was stimulated by trigger such as caerulein in vivo, which resulted in increased fluorescent signal of the cy5.5-EpCAM/muc1 ALB during cancer metastasis due to exogenous expression of EpCAM/muc1 in Panc02-implanted mouse model.

  2. Cobalamin C Deficiency Shows a Rapidly Progressing Maculopathy With Severe Photoreceptor and Ganglion Cell Loss

    Science.gov (United States)

    Bonafede, Lucas; Ficicioglu, Can H.; Serrano, Leona; Han, Grace; Morgan, Jessica I. W.; Mills, Monte D.; Forbes, Brian J.; Davidson, Stefanie L.; Binenbaum, Gil; Kaplan, Paige B.; Nichols, Charles W.; Verloo, Patrick; Leroy, Bart P.; Maguire, Albert M.; Aleman, Tomas S.

    2015-01-01

    Purpose To describe in detail the retinal structure and function of a group of patients with cobalamin C (cblC) disease. Methods Patients (n = 11, age 4 months to 15 years) with cblC disease (9/11, early onset) diagnosed by newborn screening underwent complete ophthalmic examinations, fundus photography, near-infrared reflectance imaging, and spectral-domain optical coherence tomography (SD-OCT). Electroretinograms (ERGs) were performed in a subset of patients. Results Patients carried homozygous or compound heterozygote mutations in the methylmalonic aciduria and homocystinuria type C (MMACHC) gene. Late-onset patients had a normal exam. All early-onset patients showed a maculopathy; older subjects had a retina-wide degeneration (n = 4; >7 years of age). In general, retinal changes were first observed before 1 year of age and progressed within months to a well-established maculopathy. Pseudocolobomas were documented in three patients. Measurable visual acuities ranged from 20/200 to 20/540. Nystagmus was present in 8/11 patients; 5/6 patients had normal ERGs; 1/6 had reduced rod-mediated responses. Spectral-domain OCT showed macular thinning, with severe ganglion cell layer (GCL) and outer nuclear layer (ONL) loss. Inner retinal thickening was observed in areas of total GCL/ONL loss. A normal lamination pattern in the peripapillary nasal retina was often seen despite severe central and/or retina-wide disease. Conclusions Patients with early-onset cblC and MMACHC mutations showed an early-onset, unusually fast-progressing maculopathy with severe central ONL and GCL loss. An abnormally thickened inner retina supports a remodeling response to both photoreceptor and ganglion cell degeneration and/or an interference with normal development in early-onset cblC. PMID:26658511

  3. Neuronal injury external to the retina rapidly activates retinal glia, followed by elevation of markers for cell cycle re-entry and death in retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Alba Galan

    Full Text Available Retinal ganglion cells (RGCs are neurons that relay visual signals from the retina to the brain. The RGC cell bodies reside in the retina and their fibers form the optic nerve. Full transection (axotomy of the optic nerve is an extra-retinal injury model of RGC degeneration. Optic nerve transection permits time-kinetic studies of neurodegenerative mechanisms in neurons and resident glia of the retina, the early events of which are reported here. One day after injury, and before atrophy of RGC cell bodies was apparent, glia had increased levels of phospho-Akt, phospho-S6, and phospho-ERK1/2; however, these signals were not detected in injured RGCs. Three days after injury there were increased levels of phospho-Rb and cyclin A proteins detected in RGCs, whereas these signals were not detected in glia. DNA hyperploidy was also detected in RGCs, indicative of cell cycle re-entry by these post-mitotic neurons. These events culminated in RGC death, which is delayed by pharmacological inhibition of the MAPK/ERK pathway. Our data show that a remote injury to RGC axons rapidly conveys a signal that activates retinal glia, followed by RGC cell cycle re-entry, DNA hyperploidy, and neuronal death that is delayed by preventing glial MAPK/ERK activation. These results demonstrate that complex and variable neuro-glia interactions regulate healthy and injured states in the adult mammalian retina.

  4. A rapid-mix study on the effect of lipophilicity of nitroimidazoles on the radiosensitization of mammalian cells in vitro

    International Nuclear Information System (INIS)

    Watts, M.E.; Hodgkiss, R.J.; Jones, N.R.; Sehmi, D.S.; Woodcock, M.

    1983-01-01

    A liquid flow rapid-mixing apparatus has been used to study the role of lipophilicity (octanol: water partition coefficient, P) in the sensitization of hypoxic V79 cells by nitroimidazoles. Sensitization by seven neutral 2-nitroimidazoles of similar reduction potential but widely differing partition (0.11-77) and one basic 2-nitroimidazole (pKsub(a) = 8.9; p = 8.5 (of free base)) was studied as a function of pre-irradiated contact time ca. 3-40 ms. With increasing P, sensitization occurs at increasingly shorter pre-irradiated contact times. The results suggest that even though factors other than passive diffusion control the sensitization observed with the base Ro 03-8799 it is able to diffuse to the target site faster than misonidazole. (author)

  5. Substance P induces rapid and transient membrane blebbing in U373MG cells in a p21-activated kinase-dependent manner.

    Directory of Open Access Journals (Sweden)

    John Meshki

    Full Text Available U373MG astrocytoma cells endogenously express the full-length neurokinin 1 receptor (NK1R. Substance P (SP, the natural ligand for NK1R, triggers rapid and transient membrane blebbing and we report that these morphological changes have different dynamics and intracellular signaling as compared to the changes that we have previously described in HEK293-NK1R cells. In both cell lines, the SP-induced morphological changes are Gq-independent, and they require the Rho, Rho-associated coiled-coil kinase (ROCK signaling pathway. Using confocal microscopy we have demonstrated that tubulin is phosphorylated subsequent to cell stimulation with SP and that tubulin accumulates inside the blebs. Colchicine, a tubulin polymerization inhibitor, blocked SP-induced blebbing in U373MG but not in HEK293-NK1R cells. Although p21-activated kinase (PAK is expressed in both cell lines, SP induced rapid phosphorylation of PAK in U373MG, but failed to phosphorylate PAK in HEK293-NK1R cells. The cell-permeable Rho inhibitor C3 transferase inhibited SP-induced PAK phosphorylation, but the ROCK inhibitor Y27632 had no effect on PAK phosphorylation, suggesting that Rho activates PAK in a ROCK-independent manner. Our study demonstrates that SP triggers rapid changes in cell morphology mediated by distinct intracellular signaling mechanisms in U373MG versus HEK293-NK1R cells.

  6. Rapid and specific purification of Argonaute-small RNA complexes from crude cell lysates.

    Science.gov (United States)

    Flores-Jasso, C Fabián; Salomon, William E; Zamore, Phillip D

    2013-02-01

    Small interfering RNAs (siRNAs) direct Argonaute proteins, the core components of the RNA-induced silencing complex (RISC), to cleave complementary target RNAs. Here, we describe a method to purify active RISC containing a single, unique small RNA guide sequence. We begin by capturing RISC using a complementary 2'-O-methyl oligonucleotide tethered to beads. Unlike other methods that capture RISC but do not allow its recovery, our strategy purifies active, soluble RISC in good yield. The method takes advantage of the finding that RISC partially paired to a target through its siRNA guide dissociates more than 300 times faster than a fully paired siRNA in RISC. We use this strategy to purify fly Ago1- and Ago2-RISC, as well as mouse AGO2-RISC. The method can discriminate among RISCs programmed with different guide strands, making it possible to deplete and recover specific RISC populations. Endogenous microRNA:Argonaute complexes can also be purified from cell lysates. Our method scales readily and takes less than a day to complete.

  7. Growing Plants and Minds

    Science.gov (United States)

    Presser, Ashley Lewis; Kamdar, Danae; Vidiksis, Regan; Goldstein, Marion; Dominguez, Ximena; Orr, Jillian

    2017-01-01

    Many preschool classrooms explore plant growth. However, because many plants take a long time to grow, it is often hard to facilitate engagement in some practices (i.e., since change is typically not observable from one day to another, children often forget their prior predictions or cannot recall what plants looked like days or weeks earlier).…

  8. Growing Backyard Textiles

    Science.gov (United States)

    Nelson, Eleanor Hall

    1975-01-01

    For those involved in creative work with textiles, the degree of control possible in texture, finish, and color of fiber by growing and processing one's own (perhaps with students' help) can make the experience rewarding. The author describes the processes for flax and nettles and gives tips on necessary equipment. (Author/AJ)

  9. Rapid Disease Progression With Delay in Treatment of Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Mohammed, Nasiruddin; Kestin, Larry Llyn; Grills, Inga Siiner; Battu, Madhu; Fitch, Dwight Lamar; Wong, Ching-yee Oliver; Margolis, Jeffrey Harold; Chmielewski, Gary William; Welsh, Robert James

    2011-01-01

    Purpose: To assess rate of disease progression from diagnosis to initiation of treatment for Stage I-IIIB non-small-cell lung cancer (NSCLC). Methods and Materials: Forty patients with NSCLC underwent at least two sets of computed tomography (CT) and 18-fluorodeoxyglucose positron emission tomography (PET) scans at various time intervals before treatment. Progression was defined as development of any new lymph node involvement, site of disease, or stage change. Results: Median time interval between first and second CT scans was 13.4 weeks, and between first and second PET scans was 9.0 weeks. Median initial primary maximum tumor dimension (MTD) was 3.5 cm (0.6-8.5 cm) with a median standardized uptake value (SUV) of 13.0 (1.7-38.5). The median MTD increased by a median of 1.0 cm (mean, 1.6 cm) between scans for a median relative MTD increase of 35% (mean, 59%). Nineteen patients (48%) progressed between scans. Rate of any progression was 13%, 31%, and 46% at 4, 8, and 16 weeks, respectively. Upstaging occurred in 3%, 13%, and 21% at these intervals. Distant metastasis became evident in 3%, 13%, and 13% after 4, 8, and 16 weeks, respectively. T and N stage were associated with progression, whereas histology, grade, sex, age, and maximum SUV were not. At 3 years, overall survival for Stage III patients with vs. without progression was 18% vs. 67%, p = 0.05. Conclusions: With NSCLC, treatment delay can lead to disease progression. Diagnosis, staging, and treatment initiation should be expedited. After 4-8 weeks of delay, complete restaging should be strongly considered.

  10. Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells

    Science.gov (United States)

    Hadi, Aseel; Alhabradi, Mansour; Chen, Qian; Liu, Hong; Guo, Wei; Curioni, Michele; Cernik, Robert; Liu, Zhu

    2018-01-01

    In this paper we demonstrate for the first time that a fibre laser with a wavelength of 1070 nm and a pulse width of milliseconds can be applied to generate mesoporous nanocrystalline (nc) TiO2 thin films on ITO coated glass in ambient atmosphere, by complete vaporisation of organic binder and inter-connection of TiO2 nanoparticles, without thermally damaging the ITO layer and the glass substrate. The fabrication of the mesoporous TiO2 thin films was achieved by stationary laser beam irradiation of 1 min. The dye sensitized solar cell (DSSC) with the laser-sintered TiO2 photoanode reached higher power conversion efficiency (PCE) of 3.20% for the TiO2 film thickness of 6 μm compared with 2.99% for the furnace-sintered. Electrochemical impedance spectroscopy studies revealed that the laser sintering under the optimised condition effectively decreased charge transfer resistance and increased electron lifetime of the TiO2 thin films. The use of the fibre laser with over 40% wall-plug efficiency offers an economically-feasible, industrial viable solution to the major challenge of rapid fabrication of large scale, mass production of mesoporous metal oxide thin film based solar energy systems, potentially for perovskite and monolithic tandem solar cells, in the future.

  11. Rapid Thermal Annealing and Hydrogen Passivation of Polycrystalline Silicon Thin-Film Solar Cells on Low-Temperature Glass

    Directory of Open Access Journals (Sweden)

    Mason L. Terry

    2007-01-01

    Full Text Available The changes in open-circuit voltage (Voc, short-circuit current density (Jsc, and internal quantum efficiency (IQE of aLuminum induced crystallization, ion-assisted deposition (ALICIA polycrystalline silicon thin-film solar cells on low-temperature glass substrates due to rapid thermal anneal (RTA treatment and subsequent remote microwave hydrogen plasma passivation (hydrogenation are examined. Voc improvements from 130 mV to 430 mV, Jsc improvements from 1.2 mA/cm2 to 11.3 mA/cm2, and peak IQE improvements from 16% to > 70% are achieved. A 1-second RTA plateau at 1000°C followed by hydrogenation increases the Jsc by a factor of 5.5. Secondary ion mass spectroscopy measurements are used to determine the concentration profiles of dopants, impurities, and hydrogen. Computer modeling based on simulations of the measured IQE data reveals that the minority carrier lifetime in the absorber region increases by 3 orders of magnitude to about 1 nanosecond (corresponding to a diffusion length of at least 1 μm due to RTA and subsequent hydrogenation. The evaluation of the changes in the quantum efficiency and Voc due to RTA and hydrogenation with computer modeling significantly improves the understanding of the limiting factors to cell performance.

  12. How to Grow Old

    Institute of Scientific and Technical Information of China (English)

    Bertrand Russell

    2008-01-01

    <正>1. In spite of the title, this article will really be on how not to grow old, which, at my time of life, is a much more important subject. My first advice would be to choose your ancestors carefully. Although both my parents died young, I have done well in this respect as regards my other ancestors. My maternal grandfather, it is true, was cut off in the flower of his youth at the age of sixty-seven,

  13. Geothermal Grows Up

    Science.gov (United States)

    Johnson, William C.; Kraemer, Steven; Ormond, Paul

    2011-01-01

    Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…

  14. Synthetic virus-like particles target dendritic cell lipid rafts for rapid endocytosis primarily but not exclusively by macropinocytosis.

    Directory of Open Access Journals (Sweden)

    Rajni Sharma

    Full Text Available DC employ several endocytic routes for processing antigens, driving forward adaptive immunity. Recent advances in synthetic biology have created small (20-30 nm virus-like particles based on lipopeptides containing a virus-derived coiled coil sequence coupled to synthetic B- and T-cell epitope mimetics. These self-assembling SVLP efficiently induce adaptive immunity without requirement for adjuvant. We hypothesized that the characteristics of DC interaction with SVLP would elaborate on the roles of cell membrane and intracellular compartments in the handling of a virus-like entity known for its efficacy as a vaccine. DC rapidly bind SVLP within min, co-localised with CTB and CD9, but not caveolin-1. In contrast, internalisation is a relatively slow process, delivering SVLP into the cell periphery where they are maintained for a number of hrs in association with microtubules. Although there is early association with clathrin, this is no longer seen after 10 min. Association with EEA-1(+ early endosomes is also early, but proteolytic processing appears slow, the SVLP-vesicles remaining peripheral. Association with transferrin occurs rarely, and only in the periphery, possibly signifying translocation of some SVLP for delivery to B-lymphocytes. Most SVLP co-localise with high molecular weight dextran. Uptake of both is impaired with mature DC, but there remains a residual uptake of SVLP. These results imply that DC use multiple endocytic routes for SVLP uptake, dominated by caveolin-independent, lipid raft-mediated macropinocytosis. With most SVLP-containing vesicles being retained in the periphery, not always interacting with early endosomes, this relates to slow proteolytic degradation and antigen retention by DC. The present characterization allows for a definition of how DC handle virus-like particles showing efficacious immunogenicity, elements valuable for novel vaccine design in the future.

  15. Synthetic Virus-Like Particles Target Dendritic Cell Lipid Rafts for Rapid Endocytosis Primarily but Not Exclusively by Macropinocytosis

    Science.gov (United States)

    Sharma, Rajni; Ghasparian, Arin; Robinson, John A.; McCullough, Kenneth C.

    2012-01-01

    DC employ several endocytic routes for processing antigens, driving forward adaptive immunity. Recent advances in synthetic biology have created small (20–30 nm) virus-like particles based on lipopeptides containing a virus-derived coiled coil sequence coupled to synthetic B- and T-cell epitope mimetics. These self-assembling SVLP efficiently induce adaptive immunity without requirement for adjuvant. We hypothesized that the characteristics of DC interaction with SVLP would elaborate on the roles of cell membrane and intracellular compartments in the handling of a virus-like entity known for its efficacy as a vaccine. DC rapidly bind SVLP within min, co-localised with CTB and CD9, but not caveolin-1. In contrast, internalisation is a relatively slow process, delivering SVLP into the cell periphery where they are maintained for a number of hrs in association with microtubules. Although there is early association with clathrin, this is no longer seen after 10 min. Association with EEA-1+ early endosomes is also early, but proteolytic processing appears slow, the SVLP-vesicles remaining peripheral. Association with transferrin occurs rarely, and only in the periphery, possibly signifying translocation of some SVLP for delivery to B-lymphocytes. Most SVLP co-localise with high molecular weight dextran. Uptake of both is impaired with mature DC, but there remains a residual uptake of SVLP. These results imply that DC use multiple endocytic routes for SVLP uptake, dominated by caveolin-independent, lipid raft-mediated macropinocytosis. With most SVLP-containing vesicles being retained in the periphery, not always interacting with early endosomes, this relates to slow proteolytic degradation and antigen retention by DC. The present characterization allows for a definition of how DC handle virus-like particles showing efficacious immunogenicity, elements valuable for novel vaccine design in the future. PMID:22905240

  16. Thymic irradiation inhibits the rapid recovery of TH1 but not TH2-like functions of CD4+ T cells after total lymphoid irradiation

    International Nuclear Information System (INIS)

    Bass, H.; Adkins, B.; Strober, S.

    1991-01-01

    Four to six weeks after total lymphoid irradiation (TLI), there is a selective deficit in the CD4+ T cells which secrete IL-2, proliferate in the MLR, and induce GVHD (Th1-like functions). A similar deficit in CD4+ T cells which secrete IL-4 and help antibody responses (Th2-like functions) is not observed. In the present study, shielding of the thymus with lead during TLI increased the Th1-like functions of CD4+ cells. Mice without thymus shields showed a marked selective reduction in the medullary stromal cells identified with the monoclonal antibody, MD1, and the severe reduction was prevented with thymus shields. Thus, shielding the thymus prevents the depletion of thymic medullary stromal cells and allows for a rapid recovery of Th1-like functions in the mouse spleen after TLI. Th2-like functions recover rapidly after TLI whether or not the thymus is irradiated

  17. Growth performance, haematology and cost benefit of growing ...

    African Journals Online (AJOL)

    Growing rabbits on 24-h feed access time (control) recorded a higher (p0.05) across the feed access time and restriction duration. White blood cell was higher in growing rabbits on 2-h feed access ...

  18. Rapid agonist-induced loss of sup 125 I-. beta. -endorphin opioid receptor sites in NG108-15, but not SK-N-SH neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cone, R.I.; Lameh, J.; Sadee, W. (Univ. of California, San Francisco (United States))

    1991-01-01

    The authors have measured {mu} and {delta} opioid receptor sites on intact SK-N-SH and NG108-15 neuroblastoma cells, respectively, in culture. Use of {sup 125}I-{beta}-endorphin ({beta}E) as a tracer, together with {beta}E(6-31) to block high-affinity non-opioid binding in both cell lines, permitted the measurement of cell surface {mu} and {delta} opioid receptor sites. Labeling was at {delta} sites in NG108-15 cells and predominantly at {mu} sites in SK-N-SH cells. Pretreatment with the {mu} and {delta} agonist, DADLE, caused a rapid loss of cell surface {delta} receptor sites in NG108-15 cells, but failed to reduce significantly {mu} receptor density in SK-N-SH cells.

  19. An oligogalacturonide-derived molecular probe demonstrates the dynamics of calcium-mediated pectin complexation in cell walls of tip-growing structures

    DEFF Research Database (Denmark)

    Mravec, Jozef; Kracun, Stjepan Kresimir; Rydahl, Maja Gro

    2017-01-01

    walls and in mediating cell-to-cell adhesion. Current immunological methods enable only steady-state detection of egg box formation in situ. Here we present a tool for efficient real-time visualisation of available sites for HG crosslinking within cell wall microdomains. Our approach is based on calcium-mediated...... thermodynamic model. Using defined carbohydrate microarrays, we show that the long OG probe binds exclusively to HG that has a very low degree of esterification and in the presence of divalent ions. We used this probe to study real-time dynamics of HG during elongation of Arabidopsis pollen tubes and root hairs...

  20. Rapid method for detecting base damage in DNA of mammalian cells: assay of U. V. -induced pyrimidine dimers in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, P E [Hammersmith Hospital, London (UK). M.R.C. Cyclotron Unit; Jansson, G; Ahnstroem, G

    1978-11-01

    Simple and rapid techniques are described for the detection of pyrimidine dimers in DNA. Human cells derived from embryonic lung tissue were UV-irradiated and subjected to either an osmotic shock procedure or detergent lysis, then treated with UV-endonuclease from Micrococcus luteus and the DNA partially denatured by treatment with weak alkali. Brief sonication reduced the molecular weight of the DNA, and the single- and double-stranded DNA could then be separated by hydroxylapatite chromatography. Approximately 40% of the expected number of pyrimidine dimers were detected by the enzyme treatment technique. The mean value of numbers of strand breaks per 10/sup 9/ dalton per J/m/sup 2/ was approximately 50% of the expected value. The method has advantages of speed and reproducibility and a large reduction in the quantities of materials used, particularly at the scintillation-counting stage.

  1. Female human pluripotent stem cells rapidly lose X chromosome inactivation marks and progress to a skewed methylation pattern during culture.

    Science.gov (United States)

    Geens, M; Seriola, A; Barbé, L; Santalo, J; Veiga, A; Dée, K; Van Haute, L; Sermon, K; Spits, C

    2016-04-01

    Does a preferential X chromosome inactivation (XCI) pattern exist in female human pluripotent stem cells (hPSCs) and does the pattern change during long-term culture or upon differentiation? We identified two independent phenomena that lead to aberrant XCI patterns in female hPSC: a rapid loss of histone H3 lysine 27 trimethylation (H3K27me3) and long non-coding X-inactive specific transcript (XIST) expression during culture, often accompanied by erosion of XCI-specific methylation, and a frequent loss of random XCI in the cultures. Variable XCI patterns have been reported in female hPSC, not only between different hPSC lines, but also between sub-passages of the same cell line, however the reasons for this variability remain unknown. Moreover, while non-random XCI-linked DNA methylation patterns have been previously reported, their origin and extent have not been investigated. We investigated the XCI patterns in 23 human pluripotent stem cell (hPSC) lines, during long-term culture and after differentiation, by gene expression analysis, histone modification assessment and study of DNA methylation. The presence and location of H3K27me3 was studied by immunofluorescence, XIST expression by real-time PCR, and mono- or bi-allelic expression of X-linked genes was studied by sequencing of cDNA. XCI-specific DNA methylation was analysed using methylation-sensitive restriction and PCR, and more in depth by massive parallel bisulphite sequencing. All hPSC lines showed XCI, but we found a rapid loss of XCI marks during the early stages of in vitro culture. While this loss of XCI marks was accompanied in several cases by an extensive erosion of XCI-specific methylation, it did not result in X chromosome reactivation. Moreover, lines without strong erosion of methylation frequently displayed non-random DNA methylation, which occurred independently from the loss of XCI marks. This bias in X chromosome DNA methylation did not appear as a passenger event driven by clonal culture

  2. A detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum.

    Science.gov (United States)

    Cheng, Mengzhu; Wang, Lihong; Yang, Qing; Huang, Xiaohua

    2018-08-30

    The pollution of rare earth elements (REEs) in ecosystem is becoming more and more serious, so it is urgent to establish methods for monitoring the pollution of REEs. Monitoring environmental pollution via the response of plants to pollutants has become the most stable and accurate method compared with traditional methods, but scientists still need to find the primary response of plants to pollutants to improve the sensitivity and speed of this method. Based on the facts that the initiation of endocytosis is the primary cellular response of the plant leaf cells to REEs and the detection of endocytosis is complex and expensive, we constructed a detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum [La(III), a representative of REEs] by designing a new immuno-electrochemical method for detecting the content change in extracellular vitronectin-like protein (VN) that are closely related to endocytosis. Results showed that when 30 μM La(III) initiated a small amount of endocytosis, the content of extracellular VN increased by 5.46 times, but the structure and function of plasma membrane were not interfered by La(III); when 80 μM La(III) strongly initiated a large amount of endocytosis, the content of extracellular VN increased by 119 times, meanwhile, the structure and function of plasma membrane were damaged. In summary, the detection method can reflect the response of plants to La(III) via detecting the content change in extracellular VN, which provides an effective and convenient way to monitor the response of plants to exogenous REEs. Copyright © 2018. Published by Elsevier Inc.

  3. Tc-99m red blood cells for the study of rapid hemolytic processes associated with heterologous blood transfusions

    International Nuclear Information System (INIS)

    Benedetto, A.R.; Harrison, C.R.; Blumhardt, R.; Trow, L.L.

    1984-01-01

    Chromium-51 labeled erythrocytes (Cr-51 RBC) are suitable for the study of hematologic disorders which involve relatively slow destruction of circulating erythrocytes, taking several days to several weeks. However, Cr-51 RBC are not suitable for investigating rapid hemolytic processes which occur within a matter of a few hours due to the variable and unpredictable elution of Cr-51 from the erythrocytes during the first 24 hours or so. Imaging, which could be useful in identifying organ systems involved in the hemolytic process, cannot be performed with Cr-51 RBC because of the high dose commitment caused by the low yield of gamma rays from Cr-51 (2). A method of labeling RBC with Tc-99m, which results in a radiopharmaceutical that combines the excellent dosimetric and imaging qualities of Tc-99m with an extremely stable bond between the Tc-99m and the RBC, is reported. The successful application of this technique in providing red cell support for a cancer patient with an unusual history of intravascular hemolytic transfusion reactions is also reported

  4. Development of a rapid thermal annealing process for polycrystalline silicon thin-film solar cells on glass

    Energy Technology Data Exchange (ETDEWEB)

    Rau, B. [Helmholtz Centre Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin (Germany)], E-mail: bjoern.rau@helmholtz-berlin.de; Weber, T.; Gorka, B.; Dogan, P.; Fenske, F.; Lee, K.Y.; Gall, S.; Rech, B. [Helmholtz Centre Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin (Germany)

    2009-03-15

    In this report, we discuss the influence of rapid thermal annealing (RTA) on the performance of polycrystalline Si (poly-Si) thin-film solar cells on glass where the poly-Si layers are differently prepared. The first part presents a comprehensive study of RTA treatments on poly-Si thin-films made by solid phase crystallization (SPC) (standard material of CSG Solar AG, Thalheim). By varying both plateau temperature (up to 1050 deg. C) and duration (up to 1000 s) of the annealing profile, we determined the parameters for a maximum open-circuit voltage (V{sub OC}). In addition, we applied our standard plasma hydrogenation treatment in order to passivate the remaining intra-grain defects and grain boundaries by atomic hydrogen resulting in a further increase of V{sub OC}. We found, that the preceding RTA treatment increases the effect of hydrogenation already at comparable low RTA temperatures. The effect on hydrogenation increases significantly with RTA temperature. In a second step we investigated the effect of the RTA and hydrogenation on large-grained poly-Si films based on the epitaxial thickening of poly-Si seed layers.

  5. Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection

    NARCIS (Netherlands)

    Hazenberg, Mette D.; Borleffs, J.C.C.; Otto, S.A.; Cohen Stuart, J.W.T. (James Willem Theodoor); Verschuren, M.C.M. (Martie); Boucher, C.A.B.; Coutinho, R.A.; Lange, Joep M.A.; Rinke de Wit, T.F. (Tobias); Tsegaye, A. (Aster); Dongen, J.J.M. (Jaques) van; Hamann, D. (Dörte); Boer, R.J. de; Miedema, F.

    2000-01-01

    Recent thymic emigrants can be identified by T cell receptor excision circles (TRECs) formed during T-cell receptor rearrangement. Decreasing numbers of TRECs have been observed with aging and in human immunodeficiency virus (HIV)-1 infected individuals, suggesting for thymic impairment. Here,

  6. The Small Colony Variant Of Listeria Monocytogenes Is More Tolerant To Antibiotics And Grows Better Within Caco-2 Epithelial Cells Than The Wild Type

    DEFF Research Database (Denmark)

    Curtis, Thomas; Gram, Lone; Knudsen, Gitte Maegaard

    2015-01-01

    to sublethal concentration of triclosan, and in this study, we characterized their tolerance to antibiotics and ability to invade and survive in host cells. Results: Complementation assays showed that SCV E18 phenotype is caused by a mutation in the heme biosynthesis pathway. Although no difference in MIC...... intracellular environment....

  7. How Does a SILAR CdSe Film Grow? Tuning the Deposition Steps to Suppress Interfacial Charge Recombination in Solar Cells.

    Science.gov (United States)

    Becker, Matthew A; Radich, James G; Bunker, Bruce A; Kamat, Prashant V

    2014-05-01

    Successive ionic layer adsorption and reaction (SILAR) is a popular method of depositing the metal chalcogenide semiconductor layer on the mesoscopic metal oxide films for designing quantum-dot-sensitized solar cells (QDSSCs) or extremely thin absorber (ETA) solar cells. While this deposition method exhibits higher loading of the light-absorbing semiconductor layer than direct adsorption of presynthesized colloidal quantum dots, the chemical identity of these nanostructures and the evolution of interfacial structure are poorly understood. We have now analyzed step-by-step SILAR deposition of CdSe films on mesoscopic TiO2 nanoparticle films using X-ray absorption near-edge structure analysis and probed the interfacial structure of these films. The film characteristics interestingly show dependence on the order in which the Cd and Se are deposited, and the CdSe-TiO2 interface is affected only during the first few cycles of deposition. Development of a SeO2 passivation layer in the SILAR-prepared films to form a TiO2/SeO2/CdSe junction facilitates an increase in photocurrents and power conversion efficiencies of quantum dot solar cells when these films are integrated as photoanodes in a photoelectrochemical solar cell.

  8. Transcriptional regulation of the gltA and tlc genes in Rickettsia prowazekii growing in a respiration-deficient host cell

    International Nuclear Information System (INIS)

    Cai, J.; Winkler, H.H.

    1997-01-01

    The regulation of the citrate synthase (gltA) and ATP/ADP translocase (tlc) genes of the obligate intracellular bacterium, Rickettsia prowazekii, was analyzed in rickettsia-infected respiration-deficient G14 cells. The level of the gltA mRNAII and the tlc mRNA was much lower in the total RNA isolated from the infected G 14 cells grown in 1 g/1 glucose (low glucose, GL) medium than in that from infected G 14 cells grown in 4.5 g/l glucose (high glucose, GH) medium. However, the level of the gltA mRNAI relative to 16 S rRNA was the same in GL and GH media. An increase in the level of the gltA mRNAII and the tlc mRNA could be observed as early as 2 hrs after shifting from GL to GH medium. We conclude that, under these experimental conditions, the tlc promoter and the gltA promoter P2, but not gltA promoter P1, were transcriptionally regulated. Key words: Rickettsia prowazekii; gltA gene; tlC gene; transcriptional regulation; G 14 cells (authors)

  9. Growing a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Basu, N.; Pryor, R.J.

    1997-09-01

    This report presents a microsimulation model of a transition economy. Transition is defined as the process of moving from a state-enterprise economy to a market economy. The emphasis is on growing a market economy starting from basic microprinciples. The model described in this report extends and modifies the capabilities of Aspen, a new agent-based model that is being developed at Sandia National Laboratories on a massively parallel Paragon computer. Aspen is significantly different from traditional models of the economy. Aspen`s emphasis on disequilibrium growth paths, its analysis based on evolution and emergent behavior rather than on a mechanistic view of society, and its use of learning algorithms to simulate the behavior of some agents rather than an assumption of perfect rationality make this model well-suited for analyzing economic variables of interest from transition economies. Preliminary results from several runs of the model are included.

  10. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    International Nuclear Information System (INIS)

    Pham, Anh; Bortolazzo, Anthony; White, J. Brandon

    2012-01-01

    Highlights: ► Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. ► Quercetin forms a heterodimer through oxidation in media with serum. ► The quercetin heterodimer does not kill MDA-MB-231 cells. ► Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. ► Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin’s ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.

  11. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Anh; Bortolazzo, Anthony [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States); White, J. Brandon, E-mail: Brandon.White@sjsu.edu [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. Black-Right-Pointing-Pointer Quercetin forms a heterodimer through oxidation in media with serum. Black-Right-Pointing-Pointer The quercetin heterodimer does not kill MDA-MB-231 cells. Black-Right-Pointing-Pointer Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. Black-Right-Pointing-Pointer Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.

  12. The growing fibroadenoma

    International Nuclear Information System (INIS)

    Sanders, Linda M; Sara, Rana

    2015-01-01

    Fibroadenomas (FAs) are the most common tumors of the breast clinically and pathologically in adolescent and young women but may be discovered at any age. With increasing use of core biopsy rather than excision for diagnosis, it is now commonplace to follow these lesions with imaging. To assess the incidence of epithelial abnormalities (atypia, in situ or invasive, ductal or lobular malignancies) in FAs diagnosed by core biopsy and to re-evaluate the management paradigm for any growing FA. A retrospective review of the senior author’s pathology results over 19 years identified 2062 nodular FAs (biopsied by ultrasound or stereotactic guidance). Eighty-three core biopsied FAs were identified which subsequently enlarged. Twelve of 2062 of core biopsied nodules demonstrated atypia, in situ, or invasive malignancy (ductal or lobular) within or adjacent to the FA (0.58%). Eighty-three FAs enlarged and underwent either surgical excision (n = 65), repeat core biopsy (n = 9), or imaging follow-up (n = 9). The incidence of atypia, in situ or invasive malignancy was 0/83 (0%). Two enlarging FAs were subsequently surgically diagnosed as benign phyllodes tumors (PT). Malignancy in or adjacent to a core biopsied FA is rare. The risk of cancer in a growing FA is even rarer; none were present in our series. FAs with abnormal epithelial abnormalities require excision. Otherwise, FAs without epithelial abnormality diagnosed by core biopsy need no specific follow-up considering the negligible incidence of conversion to malignancy. The breast interventionalist must know how to manage discordant pathology results

  13. Use of high throughput qPCR screening to rapidly clone low frequency tumour specific T-cells from peripheral blood for adoptive immunotherapy

    Directory of Open Access Journals (Sweden)

    Serrano Oscar K

    2008-10-01

    Full Text Available Abstract Background The adoptive transfer of autologous tumor reactive lymphocytes can mediate significant tumor regression in some patients with refractory metastatic cancer. However, a significant obstacle for this promising therapy has been the availability of highly efficient methods to rapidly isolate and expand a variety of potentially rare tumor reactive lymphocytes from the natural repertoire of cancer patients. Methods We developed a novel in vitro T cell cloning methodology using high throughput quantitative RT-PCR (qPCR assay as a rapid functional screen to detect and facilitate the limiting dilution cloning of a variety of low frequency T cells from bulk PBMC. In preclinical studies, this strategy was applied to the isolation and expansion of gp100 specific CD8+ T cell clones from the peripheral blood of melanoma patients. Results In optimization studies, the qPCR assay could detect the reactivity of 1 antigen specific T cell in 100,000 background cells. When applied to short term sensitized PBMC microcultures, this assay could detect T cell reactivity against a variety of known melanoma tumor epitopes. This screening was combined with early limiting dilution cloning to rapidly isolate gp100154–162 reactive CD8+ T cell clones. These clones were highly avid against peptide pulsed targets and melanoma tumor lines. They had an effector memory phenotype and showed significant proliferative capacity to reach cell numbers appropriate for adoptive transfer trials (~1010 cells. Conclusion This report describes a novel high efficiency strategy to clone tumor reactive T cells from peripheral blood for use in adoptive immunotherapy.

  14. Synthetic biology approaches to engineer T cells.

    Science.gov (United States)

    Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A

    2015-08-01

    There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Cultured bovine granulosa cells rapidly lose important features of their identity and functionality but partially recover under long-term culture conditions.

    Science.gov (United States)

    Yenuganti, Vengala Rao; Vanselow, Jens

    2017-05-01

    Cell culture models are essential for the detailed study of molecular processes. We analyze the dynamics of changes in a culture model of bovine granulosa cells. The cells were cultured for up to 8 days and analyzed for steroid production and gene expression. According to the expression of the marker genes CDH1, CDH2 and VIM, the cells maintained their mesenchymal character throughout the time of culture. In contrast, the levels of functionally important transcripts and of estradiol and progesterone production were rapidly down-regulated but showed a substantial up-regulation from day 4. FOXL2, a marker for granulosa cell identity, was also rapidly down-regulated after plating but completely recovered towards the end of culture. In contrast, expression of the Sertoli cell marker SOX9 and the lesion/inflammation marker PTGS2 increased during the first 2 days after plating but gradually decreased later on. We conclude that only long-term culture conditions (>4 days) allow the cells to recover from plating stress and to re-acquire characteristic granulosa cell features.

  16. Collagen gel contraction serves to rapidly distinguish epithelial- and mesenchymal-derived cells irrespective of alpha-smooth muscle actin expression

    DEFF Research Database (Denmark)

    Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, René

    2004-01-01

    Mesenchymal-like cells in the stroma of breast cancer may arise as a consequence of plasticity within the epithelial compartment, also referred to as epithelial-mesenchymal transition, or by recruitment of genuine mesenchymal cells from the peritumoral stroma. Cells of both the epithelial...... compartment and the stromal compartment express alpha smooth muscle actin (alpha-sm actin) as part of a myoepithelial or a myofibroblastic differentiation program, respectively. Moreover, because both epithelial- and mesenchymal-derived cells are nontumorigenic, other means of discrimination are warranted....... Here, we describe the contraction of hydrated collagen gels as a rapid functional assay for the distinction between epithelial- and mesenchymal-derived stromal-like cells irrespective of the status of alpha-sm actin expression. Three epithelial-derived cell lines and three genuine mesenchymal...

  17. An insert-based enzymatic cell culture system to rapidly and reversibly induce hypoxia: investigations of hypoxia-induced cell damage, protein expression and phosphorylation in neuronal IMR-32 cells

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2013-11-01

    Ischemia-reperfusion injury and tissue hypoxia are of high clinical relevance because they are associated with various pathophysiological conditions such as myocardial infarction and stroke. Nevertheless, the underlying mechanisms causing cell damage are still not fully understood, which is at least partially due to the lack of cell culture systems for the induction of rapid and transient hypoxic conditions. The aim of the study was to establish a model that is suitable for the investigation of cellular and molecular effects associated with transient and long-term hypoxia and to gain insights into hypoxia-mediated mechanisms employing a neuronal culture system. A semipermeable membrane insert system in combination with the hypoxia-inducing enzymes glucose oxidase and catalase was employed to rapidly and reversibly generate hypoxic conditions in the culture medium. Hydrogen peroxide assays, glucose measurements and western blotting were performed to validate the system and to evaluate the effects of the generated hypoxia on neuronal IMR-32 cells. Using the insert-based two-enzyme model, hypoxic conditions were rapidly induced in the culture medium. Glucose concentrations gradually decreased, whereas levels of hydrogen peroxide were not altered. Moreover, a rapid and reversible (onoff generation of hypoxia could be performed by the addition and subsequent removal of the enzyme-containing inserts. Employing neuronal IMR-32 cells, we showed that 3 hours of hypoxia led to morphological signs of cellular damage and significantly increased levels of lactate dehydrogenase (a biochemical marker of cell damage. Hypoxic conditions also increased the amounts of cellular procaspase-3 and catalase as well as phosphorylation of the pro-survival kinase Akt, but not Erk1/2 or STAT5. In summary, we present a novel framework for investigating hypoxia-mediated mechanisms at the cellular level. We claim that the model, the first of its kind, enables researchers to rapidly and

  18. Large volume unresectable locally advanced non-small cell lung cancer: acute toxicity and initial outcome results with rapid arc

    Directory of Open Access Journals (Sweden)

    Fogliata Antonella

    2010-10-01

    Full Text Available Abstract Background To report acute toxicity, initial outcome results and planning therapeutic parameters in radiation treatment of advanced lung cancer (stage III with volumetric modulated arcs using RapidArc (RA. Methods Twenty-four consecutive patients were treated with RA. All showed locally advanced non-small cell lung cancer with stage IIIA-IIIB and with large volumes (GTV:299 ± 175 cm3, PTV:818 ± 206 cm3. Dose prescription was 66Gy in 33 fractions to mean PTV. Delivery was performed with two partial arcs with a 6 MV photon beam. Results From a dosimetric point of view, RA allowed us to respect most planning objectives on target volumes and organs at risk. In particular: for GTV D1% = 105.6 ± 1.7%, D99% = 96.7 ± 1.8%, D5%-D95% = 6.3 ± 1.4%; contra-lateral lung mean dose resulted in 13.7 ± 3.9Gy, for spinal cord D1% = 39.5 ± 4.0Gy, for heart V45Gy = 9.0 ± 7.0Gy, for esophagus D1% = 67.4 ± 2.2Gy. Delivery time was 133 ± 7s. At three months partial remission > 50% was observed in 56% of patients. Acute toxicities at 3 months showed 91% with grade 1 and 9% with grade 2 esophageal toxicity; 18% presented grade 1 and 9% with grade 2 pneumonia; no grade 3 acute toxicity was observed. The short follow-up does not allow assessment of local control and progression free survival. Conclusions RA proved to be a safe and advantageous treatment modality for NSCLC with large volumes. Long term observation of patients is needed to assess outcome and late toxicity.

  19. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface

    Czech Academy of Sciences Publication Activity Database

    Čejková, Jitka; Trošan, Peter; Čejka, Čestmír; Lencová, A.; Zajícová, Alena; Javorková, Eliška; Kubinová, Šárka; Syková, Eva; Holáň, Vladimír

    2013-01-01

    Roč. 116, Nov. (2013), s. 312-323 ISSN 0014-4835 R&D Projects: GA ČR GAP304/11/0653; GA ČR(CZ) GAP301/11/1568 Grant - others:GA UK(CZ) 668012; GA MŠk(CZ) SVV 265211 Institutional research plan: CEZ:AV0Z50390512 Institutional support: RVO:68378041 Keywords : corneal oxidative injury * mesenchymal stem cells * nanofiber scaffolds Subject RIV: FF - HEENT, Dentistry Impact factor: 3.017, year: 2013

  20. Melting ice, growing trade?

    Directory of Open Access Journals (Sweden)

    Sami Bensassi

    2016-05-01

    Full Text Available Abstract Large reductions in Arctic sea ice, most notably in summer, coupled with growing interest in Arctic shipping and resource exploitation have renewed interest in the economic potential of the Northern Sea Route (NSR. Two key constraints on the future viability of the NSR pertain to bathymetry and the future evolution of the sea ice cover. Climate model projections of future sea ice conditions throughout the rest of the century suggest that even under the most “aggressive” emission scenario, increases in international trade between Europe and Asia will be very low. The large inter-annual variability of weather and sea ice conditions in the route, the Russian toll imposed for transiting the NSR, together with high insurance costs and scarce loading/unloading opportunities, limit the use of the NSR. We show that even if these obstacles are removed, the duration of the opening of the NSR over the course of the century is not long enough to offer a consequent boost to international trade at the macroeconomic level.

  1. Fostering and sustaining innovation in a Fast Growing Agile Company

    OpenAIRE

    Moe, NilsBrede; Barney, Sebastian; Aurum, Aybüe; Khurum, Mahvish; Wohlin, Claes; Barney, Hamish; Gorschek, Tony; Winata, Martha

    2012-01-01

    Sustaining innovation in a fast growing software development company is difficult. As organisations grow, peoples' focus often changes from the big picture of the product being developed to the specific role they fill. This paper presents two complementary approaches that were successfully used to support continued developer-driven innovation in a rapidly growing Australian agile software development company. The method "FedEx TM Day" gives developers one day to showcase a proof of concept th...

  2. Combination of hypothiocyanite and lactoferrin (ALX-109) enhances the ability of tobramycin and aztreonam to eliminate Pseudomonas aeruginosa biofilms growing on cystic fibrosis airway epithelial cells.

    Science.gov (United States)

    Moreau-Marquis, Sophie; Coutermarsh, Bonita; Stanton, Bruce A

    2015-01-01

    Chelating iron may be a promising new therapy to eliminate Pseudomonas aeruginosa biofilms in the lungs of cystic fibrosis (CF) patients. Here, we investigate whether ALX-109 [a defined combination of an investigational drug containing lactoferrin (an iron-binding glycoprotein) and hypothiocyanite (a bactericidal agent)], alone and in combination with tobramycin or aztreonam, reduces P. aeruginosa biofilms grown on human CF airway epithelial cells. P. aeruginosa (PAO1 and six clinical isolates of Pseudomonas) biofilms grown at the apical surface of confluent monolayers of CF airway epithelial cells were treated with ALX-109, either alone or in combination with tobramycin or aztreonam. Bacterial cfu remaining after treatment were determined by plate counting. ALX-109 alone reduced PAO1 biofilm formation, but had no effect on established biofilms. ALX-109 enhanced the ability of tobramycin and aztreonam to inhibit PAO1 biofilm formation and to reduce established PAO1 biofilms. ALX-109 and tobramycin were additive in disrupting established biofilms formed by six clinical isolates of P. aeruginosa obtained from the sputum of CF patients. Mucoid P. aeruginosa isolates were most susceptible to the combination of ALX-109 and tobramycin. In addition, ALX-109 also enhanced the ability of aztreonam to reduce established PAO1 biofilms. Inhalation therapy combining hypothiocyanite and lactoferrin with TOBI(®) (tobramycin) or Cayston(®) (aztreonam) may be beneficial to CF patients by decreasing the airway bacterial burden of P. aeruginosa. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. DisA and c-di-AMP act at the intersection between DNA-damage response and stress homeostasis in exponentially growing Bacillus subtilis cells.

    Science.gov (United States)

    Gándara, Carolina; Alonso, Juan C

    2015-03-01

    Bacillus subtilis contains two vegetative diadenylate cyclases, DisA and CdaA, which produce cyclic di-AMP (c-di-AMP), and one phosphodiesterase, GdpP, that degrades it into a linear di-AMP. We report here that DisA and CdaA contribute to elicit repair of DNA damage generated by alkyl groups and H2O2, respectively, during vegetative growth. disA forms an operon with radA (also termed sms) that encodes a protein distantly related to RecA. Among different DNA damage agents tested, only methyl methane sulfonate (MMS) affected disA null strain viability, while radA showed sensitivity to all of them. A strain lacking both disA and radA was as sensitive to MMS as the most sensitive single parent (epistasis). Low c-di-AMP levels (e.g. by over-expressing GdpP) decreased the ability of cells to repair DNA damage caused by MMS and in less extent by H2O2, while high levels of c-di-AMP (absence of GdpP or expression of sporulation-specific diadenylate cyclase, CdaS) increased cell survival. Taken together, our results support the idea that c-di-AMP is a crucial signalling molecule involved in DNA repair with DisA and CdaA contributing to modulate different DNA damage responses during exponential growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Growing Galaxies Gently

    Science.gov (United States)

    2010-10-01

    New observations from ESO's Very Large Telescope have, for the first time, provided direct evidence that young galaxies can grow by sucking in the cool gas around them and using it as fuel for the formation of many new stars. In the first few billion years after the Big Bang the mass of a typical galaxy increased dramatically and understanding why this happened is one of the hottest problems in modern astrophysics. The results appear in the 14 October issue of the journal Nature. The first galaxies formed well before the Universe was one billion years old and were much smaller than the giant systems - including the Milky Way - that we see today. So somehow the average galaxy size has increased as the Universe has evolved. Galaxies often collide and then merge to form larger systems and this process is certainly an important growth mechanism. However, an additional, gentler way has been proposed. A European team of astronomers has used ESO's Very Large Telescope to test this very different idea - that young galaxies can also grow by sucking in cool streams of the hydrogen and helium gas that filled the early Universe and forming new stars from this primitive material. Just as a commercial company can expand either by merging with other companies, or by hiring more staff, young galaxies could perhaps also grow in two different ways - by merging with other galaxies or by accreting material. The team leader, Giovanni Cresci (Osservatorio Astrofisico di Arcetri) says: "The new results from the VLT are the first direct evidence that the accretion of pristine gas really happened and was enough to fuel vigorous star formation and the growth of massive galaxies in the young Universe." The discovery will have a major impact on our understanding of the evolution of the Universe from the Big Bang to the present day. Theories of galaxy formation and evolution may have to be re-written. The group began by selecting three very distant galaxies to see if they could find evidence

  5. Rapid Recovery of CD3+CD8+ T Cells on Day 90 Predicts Superior Survival after Unmanipulated Haploidentical Blood and Marrow Transplantation.

    Directory of Open Access Journals (Sweden)

    Deng-Mei Tian

    Full Text Available Rapid immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT is significantly associated with lower infection, relapse and possibly secondary malignancy rates. The aim of this study was to investigate the role of peripheral lymphocyte subsets, especially CD3+CD8+ cytotoxic T cell recovery, in predicting transplant outcomes, including the overall survival (OS and non-relapse mortality (NRM rates after unmanipulated haploidentical blood and marrow transplantation (HBMT.Peripheral blood samples were obtained from 214 HBMT recipients with hematological malignancies. The peripheral lymphocyte subsets (CD3+ T cells, CD3+CD4+ helper T cells, CD3+CD8+ cytotoxic T cells, and CD19+ B cells were analyzed by flow cytometry at days 30, 60, 90, 180, 270 and 360 after HBMT.The CD3+CD8+ cytotoxic T cell recovery at day 90 (CD3+CD8+-90 was correlated with bacterial infection (P = 0.001, NRM (P = 0.001, leukemia-free survival (LFS, P = 0.005, and OS (P = 0.001 at a cutoff value of 375 cells/μL CD3+CD8+ T cells. The incidence of bacterial infection in patients with the CD3+CD8+-90 at ≥375 cells/μL was significantly lower than that of cases with the CD3+CD8+-90 at <375 cells/μL after HBMT (14.6% versus 41.6%, P<0.001. Multivariate analysis showed the rapid recovery of CD3+CD8+ T cells at day 90 after HBMT was strongly associated with a lower incidence of NRM (HR = 0.30; 95% CI: 0.15-0.60; P = 0.000 and superior LFS (HR = 0.51; 95% CI: 0.32-0.82; P = 0.005 and OS (HR = 0.38; 95% CI: 0.23-0.63; P = 0.000.The results suggest that the rapid recovery of CD3+CD8+ cytotoxic T cells at day 90 following HBMT could predict superior transplant outcomes.

  6. The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions.

    Science.gov (United States)

    Smith, Eric E; Malik, Harmit S

    2009-05-01

    Apolipoprotein L1 (APOL1) is a human protein that confers immunity to Trypanosoma brucei infections but can be countered by a trypanosome-encoded antagonist SRA. APOL1 belongs to a family of programmed cell death genes whose proteins can initiate host apoptosis or autophagic death. We report here that all six members of the APOL gene family (APOL1-6) present in humans have rapidly evolved in simian primates. APOL6, furthermore, shows evidence of an adaptive sweep during recent human evolution. In each APOL gene tested, we found rapidly evolving codons in or adjacent to the SRA-interacting protein domain (SID), which is the domain of APOL1 that interacts with SRA. In APOL6, we also found a rapidly changing 13-amino-acid cluster in the membrane-addressing domain (MAD), which putatively functions as a pH sensor and regulator of cell death. We predict that APOL genes are antagonized by pathogens by at least two distinct mechanisms: SID antagonists, which include SRA, that interact with the SID of various APOL proteins, and MAD antagonists that interact with the MAD hinge base of APOL6. These antagonists either block or prematurely cause APOL-mediated programmed cell death of host cells to benefit the infecting pathogen. These putative interactions must occur inside host cells, in contrast to secreted APOL1 that trafficks to the trypanosome lysosome. Hence, the dynamic APOL gene family appears to be an important link between programmed cell death of host cells and immunity to pathogens.

  7. Improving the Efficiency of Dye-Sensitized Solar Cells by Growing Longer ZnO Nanorods on TiO2 Photoanodes

    Directory of Open Access Journals (Sweden)

    Bao-gai Zhai

    2017-01-01

    Full Text Available By increasing the temperature of hydrothermal reactions from 70 to 100°C, vertically aligned ZnO nanorods were grown on the TiO2 thin film in the photoanode of dye-sensitized solar cells (DSSCs as the blocking layer to reduce the electron back recombinations at the TiO2/electrolyte interfaces. The length effects of ZnO nanorods on the photovoltaic performances of TiO2 based DSSCs were investigated by means of scanning electron microscope, X-ray diffractometer, photoluminescence spectrophotometer, and the photocurrent-voltage measurement. Under the illumination of 100 mW/cm2, the power conversion efficiency of DSSC with ZnO nanorods decorated TiO2 thin film as its photoanode can be increased nearly fourfold from 0.27% to 1.30% as the length of ZnO nanorods increases from 300 to 1600 nm. The enhanced efficiency of DSSC with ZnO nanorods decorated TiO2 thin film as the photoanode can be attributed to the larger surface area and the lower defect density in longer ZnO nanorods, which are in favor of more dye adsorption and more efficient transport in the photoanode.

  8. The use of fluorescence microscopy and image analysis for rapid detection of non-producing revertant cells of Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002.

    Science.gov (United States)

    Schulze, Katja; Lang, Imke; Enke, Heike; Grohme, Diana; Frohme, Marcus

    2015-04-17

    Ethanol production via genetically engineered cyanobacteria is a promising solution for the production of biofuels. Through the introduction of a pyruvate decarboxylase and alcohol dehydrogenase direct ethanol production becomes possible within the cells. However, during cultivation genetic instability can lead to mutations and thus loss of ethanol production. Cells then revert back to the wild type phenotype. A method for a rapid and simple detection of these non-producing revertant cells in an ethanol producing cell population is an important quality control measure in order to predict genetic stability and the longevity of a producing culture. Several comparable cultivation experiments revealed a difference in the pigmentation for non-producing and producing cells: the accessory pigment phycocyanin (PC) is reduced in case of the ethanol producer, resulting in a yellowish appearance of the culture. Microarray and western blot studies of Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002 confirmed this PC reduction on the level of RNA and protein. Based on these findings we developed a method for fluorescence microscopy in order to distinguish producing and non-producing cells with respect to their pigmentation phenotype. By applying a specific filter set the emitted fluorescence of a producer cell with a reduced PC content appeared orange. The emitted fluorescence of a non-producing cell with a wt pigmentation phenotype was detected in red, and dead cells in green. In an automated process multiple images of each sample were taken and analyzed with a plugin for the image analysis software ImageJ to identify dead (green), non-producing (red) and producing (orange) cells. The results of the presented validation experiments revealed a good identification with 98 % red cells in the wt sample and 90 % orange cells in the producer sample. The detected wt pigmentation phenotype (red cells) in the producer sample were either not fully induced yet (in 48 h induced

  9. Evidence from a mouse model that epithelial cell migration and mesenchymal-epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation.

    Science.gov (United States)

    Cousins, Fiona L; Murray, Alison; Esnal, Arantza; Gibson, Douglas A; Critchley, Hilary O D; Saunders, Philippa T K

    2014-01-01

    In women dynamic changes in uterine tissue architecture occur during each menstrual cycle. Menses, characterised by the shedding of the upper functional layer of the endometrium, is the culmination of a cascade of irreversible changes in tissue function including stromal decidualisation, inflammation and production of degradative enzymes. The molecular mechanisms that contribute to the rapid restoration of tissue homeostasis at time of menses are poorly understood. A modified mouse model of menses was developed to focus on the events occurring within the uterine lining during endometrial shedding/repair. Decidualisation, vaginal bleeding, tissue architecture and cell proliferation were evaluated at 4, 8, 12, and 24 hours after progesterone (P4) withdrawal; mice received a single injection of bromodeoxyuridine (BrdU) 90 mins before culling. Expression of genes implicated in the regulation of mesenchymal to epithelial transition (MET) was determined using a RT2 PCR profiler array, qRTPCR and bioinformatic analysis. Mice exhibited vaginal bleeding between 4 and 12 hours after P4 withdrawal, concomitant with detachment of the decidualised cell mass from the basal portion of the endometrial lining. Immunostaining for BrdU and pan cytokeratin revealed evidence of epithelial cell proliferation and migration. Cells that appeared to be in transition from a mesenchymal to an epithelial cell identity were identified within the stromal compartment. Analysis of mRNAs encoding genes expressed exclusively in the epithelial or stromal compartments, or implicated in MET, revealed dynamic changes in expression, consistent with a role for reprogramming of mesenchymal cells so that they could contribute to re-epithelialisation. These studies have provided novel insights into the cellular processes that contribute to re-epithelialisation post-menses implicating both epithelial cell migration and mesenchymal cell differentiation in restoration of an intact epithelial cell layer. These

  10. The microRNA bantam regulates a developmental transition in epithelial cells that restricts sensory dendrite growth

    OpenAIRE

    Jiang, Nan; Soba, Peter; Parker, Edward; Kim, Charles C.; Parrish, Jay Z.

    2014-01-01

    As animals grow, many early born structures grow by cell expansion rather than cell addition; thus growth of distinct structures must be coordinated to maintain proportionality. This phenomenon is particularly widespread in the nervous system, with dendrite arbors of many neurons expanding in concert with their substrate to sustain connectivity and maintain receptive field coverage as animals grow. After rapidly growing to establish body wall coverage, dendrites of Drosophila class IV dendrit...

  11. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning

    KAUST Repository

    Feizi, Alborz

    2016-09-24

    Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm2. This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP\\'s performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 105 to 1.4 × 106 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.

  12. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning.

    Science.gov (United States)

    Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan

    2016-11-01

    Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm 2 . This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP's performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 10 5 to 1.4 × 10 6 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.

  13. Rapid Preparation of a Plasma Membrane Fraction: Western Blot Detection of Translocated Glucose Transporter 4 from Plasma Membrane of Muscle and Adipose Cells and Tissues.

    Science.gov (United States)

    Yamamoto, Norio; Yamashita, Yoko; Yoshioka, Yasukiyo; Nishiumi, Shin; Ashida, Hitoshi

    2016-08-01

    Membrane proteins account for 70% to 80% of all pharmaceutical targets, indicating their clinical relevance and underscoring the importance of identifying differentially expressed membrane proteins that reflect distinct disease properties. The translocation of proteins from the bulk of the cytosol to the plasma membrane is a critical step in the transfer of information from membrane-embedded receptors or transporters to the cell interior. To understand how membrane proteins work, it is important to separate the membrane fraction of cells. This unit provides a protocol for rapidly obtaining plasma membrane fractions for western blot analysis. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  14. Flow cytometry as a rapid test for detection of penicillin resistance directly in bacterial cells in Enterococcus faecalis and Staphylococcus aureus.

    Science.gov (United States)

    Jarzembowski, T; Wiśniewska, K; Józwik, A; Bryl, E; Witkowski, J

    2008-08-01

    We studied the usefulness of flow cytometry for detection of penicillin resistance in E. faecalis and S. aureus by direct binding of commercially available fluorescent penicillin, Bocillin FL, to cells obtained from culture. There were significantly lower percentages of fluorescent cells and median and mean fluorescence values per particle in penicillin-resistant than in penicillin-sensitive strains of both species observed. The method allows rapid detection of penicillin resistance in S. aureus and E. faecalis. The results encourage further investigations on the detection of antibiotic resistance in bacteria using flow cytometry.

  15. Rehabilitation of the nose using CAD/CAM and rapid prototyping technology after ablative surgery of squamous cell carcinoma: a pilot clinical report.

    Science.gov (United States)

    Ciocca, Leonardo; De Crescenzio, Francesca; Fantini, Massimiliano; Scotti, Roberto

    2010-01-01

    Restoration of a nasal defect after ablative surgery for squamous cell carcinoma necessitates replacing the missing volume and anchoring a prosthesis to the patient's face. This report describes the failure of plastic reconstructive surgery after ablation of a squamous cell cancer of the nose and the esthetic and functional restoration of the patient with a nasal prosthesis. The process of making an implant-supported prosthesis using digital technology, including digitized anatomic models from a "nose library," and the rapid prototyping of the mesiostructure for bar anchorage and of the mold for silicone processing are presented.

  16. Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity.

    Science.gov (United States)

    Brennan, Linda M; Widder, Mark W; McAleer, Michael K; Mayo, Michael W; Greis, Alex P; van der Schalie, William H

    2016-03-07

    This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities.

  17. Measurement of Rapid Amiloride-Dependent pH Changes at the Cell Surface Using a Proton-Sensitive Field-Effect Transistor.

    Science.gov (United States)

    Schaffhauser, Daniel; Fine, Michael; Tabata, Miyuki; Goda, Tatsuro; Miyahara, Yuji

    2016-03-30

    We present a novel method for the rapid measurement of pH fluxes at close proximity to the surface of the plasma membrane in mammalian cells using an ion-sensitive field-effect transistor (ISFET). In conjuction with an efficient continuous superfusion system, the ISFET sensor was capable of recording rapid changes in pH at the cells' surface induced by intervals of ammonia loading and unloading, even when using highly buffered solutions. Furthermore, the system was able to isolate physiologically relevant signals by not only detecting the transients caused by ammonia loading and unloading, but display steady-state signals as would be expected by a proton transport-mediated influence on the extracellular proton-gradient. Proof of concept was demonstrated through the use of 5-(N-ethyl-N-isopropyl)amiloride (EIPA), a small molecule inhibitor of sodium/hydrogen exchangers (NHE). As the primary transporter responsible for proton balance during cellular regulation of pH, non-electrogenic NHE transport is notoriously difficult to detect with traditional methods. Using the NHE positive cell lines, Chinese hamster ovary (CHO) cells and NHE3-reconstituted mouse skin fibroblasts (MSF), the sensor exhibited a significant response to EIPA inhibition, whereas NHE-deficient MSF cells were unaffected by application of the inhibitor.

  18. Rapid Diminution in the Level and Activity of DNA-Dependent Protein Kinase in Cancer Cells by a Reactive Nitro-Benzoxadiazole Compound

    Directory of Open Access Journals (Sweden)

    Viviane A. O. Silva

    2016-05-01

    Full Text Available The expression and activity of DNA-dependent protein kinase (DNA-PK is related to DNA repair status in the response of cells to exogenous and endogenous factors. Recent studies indicate that Epidermal Growth Factor Receptor (EGFR is involved in modulating DNA-PK. It has been shown that a compound 4-nitro-7-[(1-oxidopyridin-2-ylsulfanyl]-2,1,3-benzoxadiazole (NSC, bearing a nitro-benzoxadiazole (NBD scaffold, enhances tyrosine phosphorylation of EGFR and triggers downstream signaling pathways. Here, we studied the behavior of DNA-PK and other DNA repair proteins in prostate cancer cells exposed to compound NSC. We showed that both the expression and activity of DNA-PKcs (catalytic subunit of DNA-PK rapidly decreased upon exposure of cells to the compound. The decline in DNA-PKcs was associated with enhanced protein ubiquitination, indicating the activation of cellular proteasome. However, pretreatment of cells with thioglycerol abolished the action of compound NSC and restored the level of DNA-PKcs. Moreover, the decreased level of DNA-PKcs was associated with the production of intracellular hydrogen peroxide by stable dimeric forms of Cu/Zn SOD1 induced by NSC. Our findings indicate that reactive oxygen species and electrophilic intermediates, generated and accumulated during the redox transformation of NBD compounds, are primarily responsible for the rapid modulation of DNA-PKcs functions in cancer cells.

  19. Characterisation of vaccine-induced, broadly cross-reactive IFN-γ secreting T cell responses that correlate with rapid protection against classical swine fever virus.

    Science.gov (United States)

    Graham, Simon P; Haines, Felicity J; Johns, Helen L; Sosan, Olubukola; La Rocca, S Anna; Lamp, Benjamin; Rümenapf, Till; Everett, Helen E; Crooke, Helen R

    2012-04-05

    Live attenuated C-strain classical swine fever viruses (CSFV) provide a rapid onset of protection, but the lack of a serological test that can differentiate vaccinated from infected animals limits their application in CSF outbreaks. Since immunity may precede antibody responses, we examined the kinetics and specificity of peripheral blood T cell responses from pigs vaccinated with a C-strain vaccine and challenged after five days with a genotypically divergent CSFV isolate. Vaccinated animals displayed virus-specific IFN-γ responses from day 3 post-challenge, whereas, unvaccinated challenge control animals failed to mount a detectable response. Both CD4(+) and cytotoxic CD8(+) T cells were identified as the cellular source of IFN-γ. IFN-γ responses showed extensive cross-reactivity when T cells were stimulated with CSFV isolates spanning the major genotypes. To determine the specificity of these responses, T cells were stimulated with recombinant CSFV proteins and a proteome-wide peptide library from a related virus, BVDV. Major cross-reactive peptides were mapped on the E2 and NS3 proteins. Finally, IFN-γ was shown to exert potent antiviral effects on CSFV in vitro. These data support the involvement of broadly cross-reactive T cell IFN-γ responses in the rapid protection conferred by the C-strain vaccine and this information should aid the development of the next generation of CSFV vaccines. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Sex and estrous cycle-dependent rapid protein kinase signaling actions of estrogen in distal colonic cells.

    LENUS (Irish Health Repository)

    O'Mahony, Fiona

    2008-10-01

    Previous studies from our laboratory demonstrated that 17beta-estradiol (E2) rapidly inhibits Cl(-) secretion in rat and human distal colonic epithelium. The inhibition has been shown to occur via targeting of a basolateral K(+) channel identified as the KCNQ1 (KvLQT1) channel. E2 indirectly modulates the channel activity via a cascade of second messengers which are rapidly phosphorylated in response to E2. The anti-secretory mechanism may be the manner by which E2 induces fluid retention in the intestine during periods of high circulating plasma E2. Here we review the sex-dependent and estrous cycle regulation of this novel rapid response to E2. The inhibition of KCNQ1 channel activity and Cl(-) secretion will be of interest in the future in the investigation of the retentive effects of estrogen in female tissue and also in the study of secretory disorders and drugable targets of the intestine.

  1. EXPLANTATION OF MESANGIAL CELL HILLOCKS - A METHOD FOR OBTAINING HUMAN MESANGIAL CELLS IN CULTURE

    NARCIS (Netherlands)

    MULLER, EW; KIM, Y; MICHAEL, AF; VERNIER, RL; VANDERHEM, GK; VANDERWOUDE, FJ

    A simple method is presented for selective cell culture of human mesangial cells using explanatation of mesangial cell hillocks. Glomeruli which had been incubated with collagenase were explanted on plastic tissue culture flasks. Three to 6 weeks after explantation, a rapidly growing multilayer of

  2. Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells

    Directory of Open Access Journals (Sweden)

    Müller Sylke

    2009-05-01

    Full Text Available Abstract Background Plasmodium falciparum-parasitized red blood cells (RBCs are equipped with protective antioxidant enzymes and heat shock proteins (HSPs. The latter are only considered to protect against thermal stress. Important issues are poorly explored: first, it is insufficiently known how both systems are expressed in relation to the parasite developmental stage; secondly, it is unknown whether P. falciparum HSPs are redox-responsive, in view of redox sensitivity of HSP in eukaryotic cells; thirdly, it is poorly known how the antioxidant defense machinery would respond to increased oxidative stress or inhibited antioxidant defense. Those issues are interesting as several antimalarials increase the oxidative stress or block antioxidant defense in the parasitized RBC. In addition, numerous inhibitors of HSPs are currently developed for cancer therapy and might be tested as anti-malarials. Thus, the joint disruption of the parasite antioxidant enzymes/HSP system would interfere with parasite growth and open new perspectives for anti-malaria therapy. Methods Stage-dependent mRNA expression of ten representative P. falciparum antioxidant enzymes and hsp60/70–2/70–3/75/90 was studied by quantitative real-time RT-PCR in parasites growing in normal RBCs, in RBCs oxidatively-stressed by moderate H2O2 generation and in G6PD-deficient RBCs. Protein expression of antioxidant enzymes was assayed by Western blotting. The pentosephosphate-pathway flux was measured in isolated parasites after Sendai-virus lysis of RBC membrane. Results In parasites growing in normal RBCs, mRNA expression of antioxidant enzymes and HSPs displayed co-ordinated stage-dependent modulation, being low at ring, highest at early trophozoite and again very low at schizont stage. Additional exogenous oxidative stress or growth in antioxidant blunted G6PD-deficient RBCs indicated remarkable flexibility of both systems, manifested by enhanced, co-ordinated mRNA expression of

  3. Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells.

    Science.gov (United States)

    Akide-Ndunge, Oscar Bate; Tambini, Elisa; Giribaldi, Giuliana; McMillan, Paul J; Müller, Sylke; Arese, Paolo; Turrini, Francesco

    2009-05-29

    Plasmodium falciparum-parasitized red blood cells (RBCs) are equipped with protective antioxidant enzymes and heat shock proteins (HSPs). The latter are only considered to protect against thermal stress. Important issues are poorly explored: first, it is insufficiently known how both systems are expressed in relation to the parasite developmental stage; secondly, it is unknown whether P. falciparum HSPs are redox-responsive, in view of redox sensitivity of HSP in eukaryotic cells; thirdly, it is poorly known how the antioxidant defense machinery would respond to increased oxidative stress or inhibited antioxidant defense. Those issues are interesting as several antimalarials increase the oxidative stress or block antioxidant defense in the parasitized RBC. In addition, numerous inhibitors of HSPs are currently developed for cancer therapy and might be tested as anti-malarials. Thus, the joint disruption of the parasite antioxidant enzymes/HSP system would interfere with parasite growth and open new perspectives for anti-malaria therapy. Stage-dependent mRNA expression of ten representative P. falciparum antioxidant enzymes and hsp60/70-2/70-3/75/90 was studied by quantitative real-time RT-PCR in parasites growing in normal RBCs, in RBCs oxidatively-stressed by moderate H2O2 generation and in G6PD-deficient RBCs. Protein expression of antioxidant enzymes was assayed by Western blotting. The pentosephosphate-pathway flux was measured in isolated parasites after Sendai-virus lysis of RBC membrane. In parasites growing in normal RBCs, mRNA expression of antioxidant enzymes and HSPs displayed co-ordinated stage-dependent modulation, being low at ring, highest at early trophozoite and again very low at schizont stage. Additional exogenous oxidative stress or growth in antioxidant blunted G6PD-deficient RBCs indicated remarkable flexibility of both systems, manifested by enhanced, co-ordinated mRNA expression of antioxidant enzymes and HSPs. Protein expression of

  4. Rapid establishment of the European Bank for induced Pluripotent Stem Cells (EBiSC - the Hot Start experience

    Directory of Open Access Journals (Sweden)

    Paul A. De Sousa

    2017-04-01

    eTOC: The report focuses on the EBiSC experience of rapidly establishing an operational capacity to procure, bank and distribute a foundational collection of established hiPSC lines. It validates the feasibility and defines the challenges of harnessing and integrating the capability and productivity of centres across Europe using commonly available resources currently in the field.

  5. Recruitment of cells in the small intestine into rapid cell cycle by small doses of external γ or internal β-radiation

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Potten, C.S.

    1985-01-01

    Epithelial cell recruitment was examined in mouse ileum after external γ-irradiation (50 cGy) or internal β-irradiation (0.148 MBq/g of [ 3 H]thymidine), using the per cent-labelled-mitoses method and by analysing the distribution of mitotic cells in the crypts. In the presumptive stem cell zone at the lower cell positions of the crypt, the slowly cycling cells decreased their cell cycle 6 or 12 hours after a dose of 50 cGy. In the higher cell positions, a slight shortening of the cell cycle was also observed. After administration of a high dose of [ 3 H]thymidine, dormant (G 0 ) cells also entered the cell cycle in the lower cell positions. The results suggest that stem cells in the crypt may react to irradiation in two ways: first, by shortening the cell cycle in cycling cells; secondly, by an entry into the cell cycle by other dormant cells. There was destruction of some cycling stem cells before any recruitment. The data support the idea that the stem cell population in the crypt is heterogeneous. (author)

  6. Rapid and efficient CRISPR/Cas9 gene inactivation in human neurons during human pluripotent stem cell differentiation and direct reprogramming.

    Science.gov (United States)

    Rubio, Alicia; Luoni, Mirko; Giannelli, Serena G; Radice, Isabella; Iannielli, Angelo; Cancellieri, Cinzia; Di Berardino, Claudia; Regalia, Giulia; Lazzari, Giovanna; Menegon, Andrea; Taverna, Stefano; Broccoli, Vania

    2016-11-18

    The CRISPR/Cas9 system is a rapid and customizable tool for gene editing in mammalian cells. In particular, this approach has widely opened new opportunities for genetic studies in neurological disease. Human neurons can be differentiated in vitro from hPSC (human Pluripotent Stem Cells), hNPCs (human Neural Precursor Cells) or even directly reprogrammed from fibroblasts. Here, we described a new platform which enables, rapid and efficient CRISPR/Cas9-mediated genome targeting simultaneously with three different paradigms for in vitro generation of neurons. This system was employed to inactivate two genes associated with neurological disorder (TSC2 and KCNQ2) and achieved up to 85% efficiency of gene targeting in the differentiated cells. In particular, we devised a protocol that, combining the expression of the CRISPR components with neurogenic factors, generated functional human neurons highly enriched for the desired genome modification in only 5 weeks. This new approach is easy, fast and that does not require the generation of stable isogenic clones, practice that is time consuming and for some genes not feasible.

  7. Rapid point-of-care testing for epidermal growth factor receptor gene mutations in patients with lung cancer using cell-free DNA from cytology specimen supernatants.

    Science.gov (United States)

    Asaka, Shiho; Yoshizawa, Akihiko; Saito, Kazusa; Kobayashi, Yukihiro; Yamamoto, Hiroshi; Negishi, Tatsuya; Nakata, Rie; Matsuda, Kazuyuki; Yamaguchi, Akemi; Honda, Takayuki

    2018-06-01

    Epidermal growth factor receptor (EGFR) mutations are associated with responses to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small-cell lung cancer (NSCLC). Our previous study revealed a rapid point-of-care system for detecting EGFR mutations. This system analyzes cell pellets from cytology specimens using droplet-polymerase chain reaction (d-PCR), and has a reaction time of 10 min. The present study aimed to validate the performance of the EGFR d-PCR assay using cell-free DNA (cfDNA) from supernatants obtained from cytology specimens. Assay results from cfDNA supernatant analyses were compared with those from cell pellets for 90 patients who were clinically diagnosed with, or suspected of having, lung cancer (80 bronchial lavage fluid samples, nine pleural effusion samples and one spinal fluid sample). EGFR mutations were identified in 12 and 15 cases using cfDNA supernatants and cell pellets, respectively. The concordance rates between cfDNA-supernatant and cell‑pellet assay results were 96.7% [kappa coefficient (K)=0.87], 98.9% (K=0.94), 98.9% (K=0.79) and 98.9% (K=0.79) for total EGFR mutations, L858R, E746_A750del and T790M, respectively. All 15 patients with EGFR mutation-positive results, as determined by EGFR d-PCR assay using cfDNA supernatants or cell pellets, also displayed positive results by conventional EGFR assays using tumor tissue or cytology specimens. Notably, EGFR mutations were even detected in five cfDNA supernatants for which the cytological diagnoses of the corresponding cell pellets were 'suspicious for malignancy', 'atypical' or 'negative for malignancy.' In conclusion, this rapid point-of-care system may be considered a promising novel screening method that may enable patients with NSCLC to receive EGFR-TKI therapy more rapidly, whilst also reserving cell pellets for additional morphological and molecular analyses.

  8. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35.

    Science.gov (United States)

    Zhao, Menglin; Wang, Jiaxian; Luo, Manyu; Luo, Han; Zhao, Meiqi; Han, Lei; Zhang, Mengxiao; Yang, Hui; Xie, Yueqing; Jiang, Hua; Feng, Lei; Lu, Huili; Zhu, Jianwei

    2018-07-01

    Chinese hamster ovary (CHO) cells are the most widely used mammalian hosts for recombinant protein production. However, by conventional random integration strategy, development of a high-expressing and stable recombinant CHO cell line has always been a difficult task due to the heterogenic insertion and its caused requirement of multiple rounds of selection. Site-specific integration of transgenes into CHO hot spots is an ideal strategy to overcome these challenges since it can generate isogenic cell lines with consistent productivity and stability. In this study, we investigated three sites with potential high transcriptional activities: C12orf35, HPRT, and GRIK1, to determine the possible transcriptional hot spots in CHO cells, and further construct a reliable site-specific integration strategy to develop recombinant cell lines efficiently. Genes encoding representative proteins mCherry and anti-PD1 monoclonal antibody were targeted into these three loci respectively through CRISPR/Cas9 technology. Stable cell lines were generated successfully after a single round of selection. In comparison with a random integration control, all the targeted integration cell lines showed higher productivity, among which C12orf35 locus was the most advantageous in both productivity and cell line stability. Binding affinity and N-glycan analysis of the antibody revealed that all batches of product were of similar quality independent on integrated sites. Deep sequencing demonstrated that there was low level of off-target mutations caused by CRISPR/Cas9, but none of them contributed to the development process of transgene cell lines. Our results demonstrated the feasibility of C12orf35 as the target site for exogenous gene integration, and strongly suggested that C12orf35 targeted integration mediated by CRISPR/Cas9 is a reliable strategy for the rapid development of recombinant CHO cell lines.

  9. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    International Nuclear Information System (INIS)

    Semaan, Sheila J; Nickells, Robert W

    2010-01-01

    Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116 BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. HCT116 BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of BAX aggregation at sub-saturation levels suggests that the

  10. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    Directory of Open Access Journals (Sweden)

    Semaan Sheila J

    2010-10-01

    Full Text Available Abstract Background Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Methods Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. Results HCT116BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Conclusion Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of

  11. A simple and rapid micromethod for genomic DNA extraction from jugal epithelial cells. Application to human lymphocyte antigen typing in one large family of atopic/asthmatic probands.

    Science.gov (United States)

    Aron, Y; Swierczewski, E; Lockhart, A

    1994-10-01

    We describe a rapid and reliable micromethod for DNA isolation from buccal epithelial cells from the interior mouth mucosa. This convenient, noninvasive method could be applied to genetic typing in a small number of cells (about 2000 cells per cheek). We have shown that DNA released by this method is suitable for further amplification by polymerase chain reaction (PCR). Using this protocol, coupled with the PCR-RFLP (restriction fragment length polymorphism) method, we analyzed the allelic sequence diversity of the human lymphocyte antigen (HLA) class II genes in an extended family of 33 persons containing 14 asthmatic or atopic members. Six of eight DQA1 alleles, and 11 DQB1, 20 DPB1, and 10 DR haplotypes could be identified in a single DNA sample. Our results suggest that the DR53 group haplotype is frequently associated with allergic asthma and atopy. The micromethod described here may be useful in genetic epidemiology, especially in family studies involving small children.

  12. Growing container seedlings: Three considerations

    Science.gov (United States)

    Kas Dumroese; Thomas D. Landis

    2015-01-01

    The science of growing reforestation and conservation plants in containers has continually evolved, and three simple observations may greatly improve seedling quality. First, retaining stock in its original container for more than one growing season should be avoided. Second, strongly taprooted species now being grown as bareroot stock may be good candidates...

  13. Rapid transport of CCL11 across the blood-brain barrier: regional variation and importance of blood cells.

    Science.gov (United States)

    Erickson, Michelle A; Morofuji, Yoichi; Owen, Joshua B; Banks, William A

    2014-06-01

    Increased blood levels of the eotaxin chemokine C-C motif ligand 11 (CCL11) in aging were recently shown to negatively regulate adult hippocampal neurogenesis. How circulating CCL11 could affect the central nervous system (CNS) is not clear, but one possibility is that it can cross the blood-brain barrier (BBB). Here, we show that CCL11 undergoes bidirectional transport across the BBB. Transport of CCL11 from blood into whole brain (influx) showed biphasic kinetics, with a slow phase preceding a rapid phase of uptake. We found that the slow phase was explained by binding of CCL11 to cellular components in blood, whereas the rapid uptake phase was mediated by direct interactions with the BBB. CCL11, even at high doses, did not cause BBB disruption. All brain regions except striatum showed a delayed rapid-uptake phase. Striatum had only an early rapid-uptake phase, which was the fastest of any brain region. We also observed a slow but saturable transport system for CCL11 from brain to blood. C-C motif ligand 3 (CCR3), an important receptor for CCL11, did not facilitate CCL11 transport across the BBB, although high concentrations of a CCR3 inhibitor increased brain uptake without causing BBB disruption. Our results indicate that CCL11 in the circulation can access many regions of the brain outside of the neurogenic niche via transport across the BBB. This suggests that blood-borne CCL11 may have important physiologic functions in the CNS and implicates the BBB as an important regulator of physiologic versus pathologic effects of this chemokine.

  14. Investigation of novel bioactive rapidly resorbable bone substitute materials and their influence on osteoblastic cell differentiation in vivo

    OpenAIRE

    Jonscher, Sebastian

    2010-01-01

    Among the various techniques to reconstruct or enlarge a deficient alveolar ridge, the concept of guided bone regeneration (GBR) has become a predictable and well-documented surgical approach. At present, autogenous bone grafts are preferably combined with barrier membranes. Using synthetic biodegradable bone substitute materials, however, is advantageous, since it avoids second-site surgery for autograft harvesting. A bone substitute for alveolar ridge augmentation must be rapidly resorbable...

  15. Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor

    Directory of Open Access Journals (Sweden)

    Jordan S. Leyton-Mange

    2014-02-01

    Full Text Available In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity.

  16. A rapid [3H]glucose incorporation assay for determination of lymphoid cell-mediated inhibition of Candida albicans growth

    International Nuclear Information System (INIS)

    Djeu, J.Y.; Parapanissios, A.; Halkias, D.; Friedman, H.

    1986-01-01

    [ 3 H]glucose uptake by Candida albicans after interaction with lymphoid effector cells was used to provide a quick, accurate and objective assessment of the growth inhibitory potential of lymphoid cells on candida. After 18 h coincubation of effector cells with candida, [ 3 H]glucose was added for 3 h and the amount of radiolabel incorporated into residual candida was measured. The results showed that [ 3 H]glucose uptake was proportional to the number of candida organisms left in the microwell and is dose dependent on the effector/target (E/T) ratio. At an E/T ratio of 300/1, complete inhibition of candida was seen, with significant inhibition still present at 30/1. In addition, monocytes and polymorphonuclear cells were found to be the primary cells responsible for eliminating candida. (Auth.)

  17. Infra-red laser ablative micromachining of parylene-C on SiO2 substrates for rapid prototyping, high yield, human neuronal cell patterning

    International Nuclear Information System (INIS)

    Raos, B J; Unsworth, C P; Costa, J L; Rohde, C A; Simpson, M C; Doyle, C S; Dickinson, M E; Bunting, A S; Murray, A F; Delivopoulos, E; Graham, E S

    2013-01-01

    Cell patterning commonly employs photolithographic methods for the micro fabrication of structures on silicon chips. These require expensive photo-mask development and complex photolithographic processing. Laser based patterning of cells has been studied in vitro and laser ablation of polymers is an active area of research promising high aspect ratios. This paper disseminates how 800 nm femtosecond infrared (IR) laser radiation can be successfully used to perform laser ablative micromachining of parylene-C on SiO 2 substrates for the patterning of human hNT astrocytes (derived from the human teratocarcinoma cell line (hNT)) whilst 248 nm nanosecond ultra-violet laser radiation produces photo-oxidization of the parylene-C and destroys cell patterning. In this work, we report the laser ablation methods used and the ablation characteristics of parylene-C for IR pulse fluences. Results follow that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells. We disseminate the variation in yield of patterned hNT astrocytes on parylene-C with laser pulse spacing, pulse number, pulse fluence and parylene-C strip width. The findings demonstrate how laser ablative micromachining of parylene-C on SiO 2 substrates can offer an accessible alternative for rapid prototyping, high yield cell patterning with broad application to multi-electrode arrays, cellular micro-arrays and microfluidics. (paper)

  18. Rapid bioreduction of trivalent aurum using banana stem powder and its cytotoxicity against MCF-7 and HEK-293 cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Arunkumar, Pichaimani [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India); Vedagiri, Hemamalini [Bharathidasan University, Department of Biotechnology (India); Premkumar, Kumpati, E-mail: pkumpati@hotmail.com [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India)

    2013-03-15

    Bioreduction of metal ions for the synthesis of nanoparticles of well-defined shape and size has been a great challenge in the field of nanotechnology. In this study, we explored the reduction potential of banana stem powder (BSP) for the synthesis of gold nanoparticles (GNP). The kinetics of GNP synthesis was monitored using UV-Vis spectroscopy. The synthesized GNP was characterized using dynamic light scattering (DLS), transmission electron microscopy, and fourier transform infrared spectroscopy. In addition, the cytotoxic potential of the synthesized GNP was investigated using human breast cancer (MCF-7) and normal human embryonic kidney (HEK-293) cell lines, as evaluated by changes in cell morphology, cell viability (MTT), and metabolic activity. BSP exhibited a strong reduction of Au(III) to Au (0) at room temperature within 5 min of reaction time. The synthesized GNP was found to be spherical with an average diameter of 30 nm by DLS analysis. The cytotoxicity analysis reveals a direct dose-response relationship, indicating that the cytotoxicity increases with increasing concentrations of the GNP. Significant cytotoxicity was observed in cancer cells (MCF-7) compared to normal cells (HEK-293). Also the cellular uptake of GNP was more pronounced in MCF-7 cells than HEK-293 cells as evidenced by zeta potential, implicating the possible reason for differential cytotoxicity. Thus the present study demonstrates the importance of these unique, less time-consuming, and stable BSP-mediated GNP as potential drug delivery vehicles in the application of anticancer therapy.

  19. A rapid fluorometric method for semiautomated determination of cytotoxicity and cellular proliferation of human tumor cell lines in microculture.

    Science.gov (United States)

    Larsson, R; Nygren, P

    1989-01-01

    A fluorometric method for the determination of cellular growth and cytotoxicity of human tumor cell lines in 96-well microculture plates is described. The assay is based on the combined use of the DNA-binding dye Hoechst 33342 and the fluorogenic substrate fluorescein diacetate (FDA). Hoechst 33342 undergoes a dramatic enhancement of fluorescence when specifically intercalated with cellular DNA, whereas the FDA fluorescence is dependent on cellular hydrolysis of the non-fluorescent substrate into its fluorescent product. Fluorescence from both dyes was linearly related to the density of freshly seeded cells (6 x 10(3)-1 x 10(5)/well) and correlated well with physical cell count of cells under normal culture conditions as well as in response to the vinca alkaloid vincristine. However, the amount of FDA fluorescence produces and retained by the cultures was clearly dependent on the fraction of intact and viable cells, whereas the fluorescence reported by Hoechst 33342 was not. The assay was found to be simple, reliable and many samples could be analysed in a short period of time with minimal waste of cells and biological reagents. Apart from giving an estimate of cell density, the protocol described also provides a separate index of viability which in certain situations may be of importance for distinguishing between cytocidal and cytostatic drug actions. The method may be well suited for several applications, including the large scale screening for antitumor activity of compounds with potential cytocidal or cytostatic actions.

  20. Germ cell transplantation using sexually competent fish: an approach for rapid propagation of endangered and valuable germlines.

    Directory of Open Access Journals (Sweden)

    Sullip K Majhi

    Full Text Available The transplantation of germ cells into adult recipient gonads is a tool with wide applications in animal breeding and conservation of valuable and/or endangered species; it also provides a means for basic studies involving germ cell (GC proliferation and differentiation. Here we describe the establishment of a working model for xenogeneic germ cell transplantation (GCT in sexually competent fish. Spermatogonial cells isolated from juveniles of one species, the pejerrey Odontesthes bonariensis (Atherinopsidae, were surgically transplanted into the gonads of sexually mature Patagonian pejerrey O. hatcheri, which have been partially depleted of endogenous GCs by a combination of Busulfan (40 mg/kg and high water temperature (25 degrees C treatments. The observation of the donor cells' behavior showed that transplanted spermatogonial cells were able to recolonize the recipients' gonads and resume spermatogenesis within 6 months from the GCT. The presence of donor-derived gametes was confirmed by PCR in 20% of the surrogate O. hatcheri fathers at 6 months and crosses with O. bonariensis mothers produced hybrids and pure O. bonariensis, with donor-derived germline transmission rates of 1.2-13.3%. These findings indicate that transplantation of spermatogonial cells into sexually competent fish can shorten considerably the production time of donor-derived gametes and offspring and could play a vital role in germline conservation and propagation of valued and/or endangered fish species.

  1. Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack

    Directory of Open Access Journals (Sweden)

    Takemoto Daigo

    2008-06-01

    Full Text Available Abstract Background Plant cells respond to the presence of potential fungal or oomycete pathogens by mounting a basal defence response that involves aggregation of cytoplasm, reorganization of cytoskeletal, endomembrane and other cell components and development of cell wall appositions beneath the infection site. This response is induced by non-adapted, avirulent and virulent pathogens alike, and in the majority of cases achieves penetration resistance against the microorganism on the plant surface. To explore the nature of signals that trigger this subcellular response and to determine the timing of its induction, we have monitored the reorganization of GFP-tagged actin, microtubules, endoplasmic reticulum (ER and peroxisomes in Arabidopsis plants – after touching the epidermal surface with a microneedle. Results Within 3 to 5 minutes of touching the surface of Arabidopsis cotyledon epidermal cells with fine glass or tungsten needles, actin microfilaments, ER and peroxisomes began to accumulate beneath the point of contact with the needle. Formation of a dense patch of actin was followed by focusing of actin cables on the site of contact. Touching the cell surface induced localized depolymerization of microtubules to form a microtubule-depleted zone surrounding a dense patch of GFP-tubulin beneath the needle tip. The concentration of actin, GFP-tubulin, ER and peroxisomes remained focused on the contact site as the needle moved across the cell surface and quickly dispersed when the needle was removed. Conclusion Our results show that plant cells can detect the gentle pressure of a microneedle on the epidermal cell surface and respond by reorganizing subcellular components in a manner similar to that induced during attack by potential fungal or oomycete pathogens. The results of our study indicate that during plant-pathogen interactions, the basal defence response may be induced by the plant's perception of the physical force exerted by the

  2. Metagenomics and single-cell genomics reveal high abundance of comammox Nitrospira in a rapid gravity sand filter treating groundwater

    DEFF Research Database (Denmark)

    Palomo, Alejandro; Fowler, Jane; Gülay, Arda

    genus was recovered harboring metabolic capacity for complete ammonia oxidation. We developed a cell extraction strategy that enables the disruption of Nitrospira cell clusters attached to the mineral coating of the sand. Individual cells were identified via fluorescent in situ hybridization (FISH...... taxonomic differences with the recently described comammox Nitrospira genomes. The high abundance of comammox Nitrospira spp. together with the low abundance of canonical ammonia oxidizing prokaryotes in the investigated RSF system suggests the essential role of this novel comammox Nitrospira in the RSFs...

  3. The random co-polymer glatiramer acetate rapidly kills primary human leukocytes through sialic-acid-dependent cell membrane damage

    DEFF Research Database (Denmark)

    Christiansen, Stig Hill; Zhang, Xianwei; Juul-Madsen, Kristian

    2017-01-01

    in innate immunity. It shares the positive charge and amphipathic character of GA, and, as shown here, also the ability to kill human leukocyte. The cytotoxicity of both compounds depends on sialic acid in the cell membrane. The killing was associated with the generation of CD45 + debris, derived from cell...... membrane deformation. Nanoparticle tracking analysis confirmed the formation of such debris, even at low GA concentrations. Electric cell-substrate impedance sensing measurements also recorded stable alterations in T lymphocytes following such treatment. LL-37 forms oligomers through weak hydrophobic...

  4. Rapid increase of inositol 1,4,5-trisphosphate in the HeLa cells after hypergravity exposure

    Science.gov (United States)

    Kumei, Yasuhiro; Whitson, Peggy A.; Cintron, Nitza M.; Sato, Atsushige

    1990-01-01

    The IP3 level in HeLa cells has been elevated through the application in hypergravity in a time-dependent manner. The data obtained for the hydrolytic products of PIP2, IP3, and DG are noted to modulate c-myc gene expression. It is also established that the cAMP accumulation by the IBMX in hypergravity-exposed cells was suppressed relative to the control. In light of IP3 increase and cAMP decrease results, a single GTP-binding protein may play a role in the hypergravity signal transduction of HeLa cells by stimulating PLC while inhibiting adenylate cyclase.

  5. New techniques for growing anaerobic bacteria: experiments with Clostridium butyricum and Clostridium acetobutylicum

    International Nuclear Information System (INIS)

    Adler, H.I.; Crow, W.D.; Hadden, C.T.; Hall, J.; Machanoff, R.

    1983-01-01

    Stable membrane fragments derived from Escherichia coli produce and maintain strict anaerobic conditions when added to liquid or solid bacteriological media. Techniques for growing Clostridium butyricum and Clostridium acetobutylicum in membrane-containing media are described. Liquid cultures initiated by very small inocula can be grown in direct contact with air. In solid media, colonies develop rapidly from individual cells even without incubation in anaerobic jars or similar devices. Observations on growth rates, spontaneous mutations, radiation, and oxygen sensitivity of anaerobic bacteria have been made using these new techniques

  6. Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice

    International Nuclear Information System (INIS)

    Jenkins, Darlene E; Hornig, Yvette S; Oei, Yoko; Dusich, Joan; Purchio, Tony

    2005-01-01

    Our goal was to generate xenograft mouse models of human breast cancer based on luciferase-expressing MDA-MB-231 tumor cells that would provide rapid mammary tumor growth; produce metastasis to clinically relevant tissues such as lymph nodes, lung, and bone; and permit sensitive in vivo detection of both primary and secondary tumor sites by bioluminescent imaging. Two clonal cell sublines of human MDA-MB-231 cells that stably expressed firefly luciferase were isolated following transfection of the parental cells with luciferase cDNA. Each subline was passaged once or twice in vivo to enhance primary tumor growth and to increase metastasis. The resulting luciferase-expressing D3H1 and D3H2LN cells were analyzed for long-term bioluminescent stability, primary tumor growth, and distal metastasis to lymph nodes, lungs, bone and soft tissues by bioluminescent imaging. Cells were injected into the mammary fat pad of nude and nude-beige mice or were delivered systemically via intracardiac injection. Metastasis was also evaluated by ex vivo imaging and histologic analysis postmortem. The D3H1 and D3H2LN cell lines exhibited long-term stable luciferase expression for up to 4–6 months of accumulative tumor growth time in vivo. Bioluminescent imaging quantified primary mammary fat pad tumor development and detected early spontaneous lymph node metastasis in vivo. Increased frequency of spontaneous lymph node metastasis was observed with D3H2LN tumors as compared with D3H1 tumors. With postmortem ex vivo imaging, we detected additional lung micrometastasis in mice with D3H2LN mammary tumors. Subsequent histologic evaluation of tissue sections from lymph nodes and lung lobes confirmed spontaneous tumor metastasis at these sites. Following intracardiac injection of the MDA-MB-231-luc tumor cells, early metastasis to skeletal tissues, lymph nodes, brain and various visceral organs was detected. Weekly in vivo imaging data permitted longitudinal analysis of metastasis at

  7. Evidence from a mouse model that epithelial cell migration and mesenchymal-epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation.

    Directory of Open Access Journals (Sweden)

    Fiona L Cousins

    Full Text Available BACKGROUND: In women dynamic changes in uterine tissue architecture occur during each menstrual cycle. Menses, characterised by the shedding of the upper functional layer of the endometrium, is the culmination of a cascade of irreversible changes in tissue function including stromal decidualisation, inflammation and production of degradative enzymes. The molecular mechanisms that contribute to the rapid restoration of tissue homeostasis at time of menses are poorly understood. METHODOLOGY: A modified mouse model of menses was developed to focus on the events occurring within the uterine lining during endometrial shedding/repair. Decidualisation, vaginal bleeding, tissue architecture and cell proliferation were evaluated at 4, 8, 12, and 24 hours after progesterone (P4 withdrawal; mice received a single injection of bromodeoxyuridine (BrdU 90 mins before culling. Expression of genes implicated in the regulation of mesenchymal to epithelial transition (MET was determined using a RT2 PCR profiler array, qRTPCR and bioinformatic analysis. PRINCIPAL FINDINGS: Mice exhibited vaginal bleeding between 4 and 12 hours after P4 withdrawal, concomitant with detachment of the decidualised cell mass from the basal portion of the endometrial lining. Immunostaining for BrdU and pan cytokeratin revealed evidence of epithelial cell proliferation and migration. Cells that appeared to be in transition from a mesenchymal to an epithelial cell identity were identified within the stromal compartment. Analysis of mRNAs encoding genes expressed exclusively in the epithelial or stromal compartments, or implicated in MET, revealed dynamic changes in expression, consistent with a role for reprogramming of mesenchymal cells so that they could contribute to re-epithelialisation. CONCLUSIONS/SIGNIFICANCE: These studies have provided novel insights into the cellular processes that contribute to re-epithelialisation post-menses implicating both epithelial cell migration and

  8. Sub-minute kinetics of human red cell fumarase: 1 H spin-echo NMR spectroscopy and 13 C rapid-dissolution dynamic nuclear polarization.

    Science.gov (United States)

    Shishmarev, Dmitry; Wright, Alan J; Rodrigues, Tiago B; Pileio, Giuseppe; Stevanato, Gabriele; Brindle, Kevin M; Kuchel, Philip W

    2018-03-01

    Fumarate is an important probe of metabolism in hyperpolarized magnetic resonance imaging and spectroscopy. It is used to detect the release of fumarase in cancer tissues, which is associated with necrosis and drug treatment. Nevertheless, there are limited reports describing the detailed kinetic studies of this enzyme in various cells and tissues. Thus, we aimed to evaluate the sub-minute kinetics of human red blood cell fumarase using nuclear magnetic resonance (NMR) spectroscopy, and to provide a quantitative description of the enzyme that is relevant to the use of fumarate as a probe of cell rupture. The fumarase reaction was studied using time courses of 1 H spin-echo and 13 C-NMR spectra. 1 H-NMR experiments showed that the fumarase reaction in hemolysates is sufficiently rapid to make its kinetics amenable to study in a period of approximately 3 min, a timescale characteristic of hyperpolarized 13 C-NMR spectroscopy. The rapid-dissolution dynamic nuclear polarization (RD-DNP) technique was used to hyperpolarize [1,4- 13 C]fumarate, which was injected into concentrated hemolysates. The kinetic data were analyzed using recently developed FmR α analysis and modeling of the enzymatic reaction using Michaelis-Menten equations. In RD-DNP experiments, the decline in the 13 C-NMR signal from fumarate, and the concurrent rise and fall of that from malate, were captured with high spectral resolution and signal-to-noise ratio, which allowed the robust quantification of fumarase kinetics. The kinetic parameters obtained indicate the potential contribution of hemolysis to the overall rate of the fumarase reaction when 13 C-NMR RD-DNP is used to detect necrosis in animal models of implanted tumors. The analytical procedures developed will be applicable to studies of other rapid enzymatic reactions using conventional and hyperpolarized substrate NMR spectroscopy. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Rapid detection of DNA-interstrand and DNA-protein cross-links in mammalian cells by gravity-flow alkaline elution

    International Nuclear Information System (INIS)

    Hincks, J.R.; Coulombe, R.A. Jr.

    1989-01-01

    Alkaline elution is a sensitive and commonly used technique to detect cellular DNA damage in the form of DNA strand breaks and DNA cross-links. Conventional alkaline elution procedures have extensive equipment requirements and are tedious to perform. Our laboratory recently presented a rapid, simplified, and sensitive modification of the alkaline elution technique to detect carcinogen-induced DNA strand breaks. In the present study, we have further modified this technique to enable the rapid characterization of chemically induced DNA-interstrand and DNA-protein associated cross-links in cultured epithelial cells. Cells were exposed to three known DNA cross-linking agents, nitrogen mustard (HN 2 ), mitomycin C (MMC), or ultraviolet irradiation (UV). One hour exposures of HN 2 at 0.25, 1.0, and 4.0 microM or of MMC at 20, 40, and 60 microM produced a dose-dependent induction of total DNA cross-links by these agents. Digestion with proteinase K revealed that HN 2 and MMC induced both DNA-protein cross-links and DNA-interstrand cross-links. Ultraviolet irradiation induced both DNA cross-links and DNA strand breaks, the latter of which were either protein and nonprotein associated. The results demonstrate that gravity-flow alkaline elution is a sensitive and accurate method to characterize the molecular events of DNA cross-linking. Using this procedure, elution of DNA from treated cells is completed in 1 hr, and only three fractions per sample are analyzed. This method may be useful as a rapid screening assay for genotoxicity and/or as an adjunct to other predictive assays for potential mutagenic or carcinogenic agents

  10. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway

    Science.gov (United States)

    Weeden, Clare E.; Chen, Yunshun; Ma, Stephen B.; Hu, Yifang; Ramm, Georg; Sutherland, Kate D.; Smyth, Gordon K.

    2017-01-01

    Lung squamous cell carcinoma (SqCC), the second most common subtype of lung cancer, is strongly associated with tobacco smoking and exhibits genomic instability. The cellular origins and molecular processes that contribute to SqCC formation are largely unexplored. Here we show that human basal stem cells (BSCs) isolated from heavy smokers proliferate extensively, whereas their alveolar progenitor cell counterparts have limited colony-forming capacity. We demonstrate that this difference arises in part because of the ability of BSCs to repair their DNA more efficiently than alveolar cells following ionizing radiation or chemical-induced DNA damage. Analysis of mice harbouring a mutation in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key enzyme in DNA damage repair by nonhomologous end joining (NHEJ), indicated that BSCs preferentially repair their DNA by this error-prone process. Interestingly, polyploidy, a phenomenon associated with genetically unstable cells, was only observed in the human BSC subset. Expression signature analysis indicated that BSCs are the likely cells of origin of human SqCC and that high levels of NHEJ genes in SqCC are correlated with increasing genomic instability. Hence, our results favour a model in which heavy smoking promotes proliferation of BSCs, and their predilection for error-prone NHEJ could lead to the high mutagenic burden that culminates in SqCC. Targeting DNA repair processes may therefore have a role in the prevention and therapy of SqCC. PMID:28125611

  11. Automated Method for the Rapid and Precise Estimation of Adherent Cell Culture Characteristics from Phase Contrast Microscopy Images

    Science.gov (United States)

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-01-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license. Biotechnol. Bioeng. 2014;111: 504–517. © 2013 Wiley Periodicals, Inc. PMID:24037521

  12. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.

    Science.gov (United States)

    Lee, Sangyeop; Chon, Hyangah; Lee, Jiyoung; Ko, Juhui; Chung, Bong Hyun; Lim, Dong Woo; Choo, Jaebum

    2014-01-15

    We report a surface-enhanced Raman scattering (SERS)-based cellular imaging technique to detect and quantify breast cancer phenotypic markers expressed on cell surfaces. This technique involves the synthesis of SERS nano tags consisting of silica-encapsulated hollow gold nanospheres (SEHGNs) conjugated with specific antibodies. Hollow gold nanospheres (HGNs) enhance SERS signal intensity of individual particles by localizing surface electromagnetic fields through pinholes in the hollow particle structures. This capacity to enhance imaging at the level of single molecules permits the use of HGNs to detect specific biological markers expressed in living cancer cells. In addition, silica encapsulation greatly enhances the stability of nanoparticles. Here we applied a SERS-based imaging technique using SEHGNs in the multiplex imaging of three breast cancer cell phenotypes. Expression of epidermal growth factor (EGF), ErbB2, and insulin-like growth factor-1 (IGF-1) receptors were assessed in the MDA-MB-468, KPL4 and SK-BR-3 human breast cancer cell lines. SERS imaging technology described here can be used to test the phenotype of a cancer cell and quantify proteins expressed on the cell surface simultaneously. Based on results, this technique may enable an earlier diagnosis of breast cancer than is currently possible and offer guidance in treatment. © 2013 Elsevier B.V. All rights reserved.

  13. Continuous de novo biosynthesis of haem and its rapid turnover to bilirubin are necessary for cytoprotection against cell damage

    Science.gov (United States)

    Takeda, Taka-aki; Mu, Anfeng; Tai, Tran Tien; Kitajima, Sakihito; Taketani, Shigeru

    2015-01-01

    It is well known that haem serves as the prosthetic group of various haemoproteins that function in oxygen transport, respiratory chain, and drug metabolism. However, much less is known about the functions of the catabolites of haem in mammalian cells. Haem is enzymatically degraded to iron, carbon monoxide (CO), and biliverdin, which is then converted to bilirubin. Owing to difficulties in measuring bilirubin, however, the generation and transport of this end product remain unclear despite its clinical importance. Here, we used UnaG, the recently identified bilirubin-binding fluorescent protein, to analyse bilirubin production in a variety of human cell lines. We detected a significant amount of bilirubin with many non-blood cell types, which was sensitive to inhibitors of haem metabolism. These results suggest that there is a basal level of haem synthesis and its conversion into bilirubin. Remarkably, substantial changes were observed in the bilirubin generation when cells were exposed to stress insults. Since the stress-induced cell damage was exacerbated by the pharmacological blockade of haem metabolism but was ameliorated by the addition of biliverdin and bilirubin, it is likely that the de novo synthesis of haem and subsequent conversion to bilirubin play indispensable cytoprotective roles against cell damage. PMID:25990790

  14. A single-cell technique for the measurement of membrane potential, membrane conductance, and the efflux of rapidly penetrating solutes in Amphiuma erythrocytes.

    Science.gov (United States)

    Stoner, L C; Kregenow, F M

    1980-10-01

    We describe a single-cell technique for measuring membrane potential, membrane resistance, and the efflux of rapidly penetrating solutes such as Cl and H2O. Erythrocytes from Amphiuma means were aspirated into a Sylgard (Dow Corning Corp.)-coated capillary. The aspirated cell separated a solution within the capillary from a solution in the bath. Each of these two solutions was contiguous with approximately 5% of the total membrane surface. Microelectrodes placed concentrically within the capillary permit the measurement of intracellular voltage, specific membrane resistance, and the electrical seal between the two solutions. The intracellular voltage averaged -17.7 mV (pH 7.6) and changed as either intra- or extracellular chloride was varied. The average specific membrane resistance measured by passing current across the exposed membrane surface was 110 ohm-cm2. 36Cl and tritiated H2O fluxes (0.84 +/- 0.05 x 10(-6) M . cm-2 . min-1 and 6.4 +/- 1.5 x 10(-3) M . cm-2 . min-1, respectively) were determined by noting the rate at which isotope leaves the cell and crosses the membrane exposed to the bath. Our measured values for the flux of 36Cl and tritiated H2O approximate reported values for free-floating cells. 36Cl efflux, in addition, is inhibited by 4-acetamido-4'-isothiocyano-stilbene 2,2'-disulfonic acid (SITS) and furosemide, known inhibitors of the anion exchange mechanism responsible for the rapid anion fluxes of red blood cells. One can also demonstrate directly that > 89% of 36Cl efflux is "electrically silent" by analyzing the flux in the presence of an imposed transcellular voltage.